rf_map.c revision 1.6 1 /* $NetBSD: rf_map.c,v 1.6 2001/07/18 06:45:33 thorpej Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include "rf_types.h"
36 #include "rf_threadstuff.h"
37 #include "rf_raid.h"
38 #include "rf_general.h"
39 #include "rf_map.h"
40 #include "rf_freelist.h"
41 #include "rf_shutdown.h"
42
43 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
44 static void
45 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
46 int count);
47
48 /*****************************************************************************************
49 *
50 * MapAccess -- main 1st order mapping routine.
51 *
52 * Maps an access in the RAID address space to the corresponding set of physical disk
53 * addresses. The result is returned as a list of AccessStripeMap structures, one per
54 * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr
55 * structures, which describe the physical locations touched by the user access. Note
56 * that this routine returns only static mapping information, i.e. the list of physical
57 * addresses returned does not necessarily identify the set of physical locations that
58 * will actually be read or written.
59 *
60 * The routine also maps the parity. The physical disk location returned always
61 * indicates the entire parity unit, even when only a subset of it is being accessed.
62 * This is because an access that is not stripe unit aligned but that spans a stripe
63 * unit boundary may require access two distinct portions of the parity unit, and we
64 * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm
65 * selection code to decide what subset of the parity unit to access.
66 *
67 * Note that addresses in the RAID address space must always be maintained as
68 * longs, instead of ints.
69 *
70 * This routine returns NULL if numBlocks is 0
71 *
72 ****************************************************************************************/
73
74 RF_AccessStripeMapHeader_t *
75 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
76 RF_Raid_t *raidPtr;
77 RF_RaidAddr_t raidAddress; /* starting address in RAID address
78 * space */
79 RF_SectorCount_t numBlocks; /* number of blocks in RAID address
80 * space to access */
81 caddr_t buffer; /* buffer to supply/receive data */
82 int remap; /* 1 => remap addresses to spare space */
83 {
84 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
85 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
86 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
87 int faultsTolerated = layoutPtr->map->faultsTolerated;
88 RF_RaidAddr_t startAddress = raidAddress; /* we'll change
89 * raidAddress along the
90 * way */
91 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
92 RF_RaidDisk_t **disks = raidPtr->Disks;
93
94 RF_PhysDiskAddr_t *pda_p, *pda_q;
95 RF_StripeCount_t numStripes = 0;
96 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
97 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
98 RF_StripeCount_t totStripes;
99 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
100 RF_AccessStripeMap_t *asmList, *t_asm;
101 RF_PhysDiskAddr_t *pdaList, *t_pda;
102
103 /* allocate all the ASMs and PDAs up front */
104 lastRaidAddr = raidAddress + numBlocks - 1;
105 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
106 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
107 totStripes = lastSID - stripeID + 1;
108 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
109 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
110
111 asmList = rf_AllocASMList(totStripes);
112 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
113 * per stripe for parity */
114
115 if (raidAddress + numBlocks > raidPtr->totalSectors) {
116 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
117 (int) raidAddress);
118 return (NULL);
119 }
120 if (rf_mapDebug)
121 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
122 for (; raidAddress < endAddress;) {
123 /* make the next stripe structure */
124 RF_ASSERT(asmList);
125 t_asm = asmList;
126 asmList = asmList->next;
127 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
128 if (!asm_p)
129 asm_list = asm_p = t_asm;
130 else {
131 asm_p->next = t_asm;
132 asm_p = asm_p->next;
133 }
134 numStripes++;
135
136 /* map SUs from current location to the end of the stripe */
137 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
138 raidAddress) */ stripeID++;
139 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
140 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
141 asm_p->raidAddress = raidAddress;
142 asm_p->endRaidAddress = stripeEndAddress;
143
144 /* map each stripe unit in the stripe */
145 pda_p = NULL;
146 startAddrWithinStripe = raidAddress; /* Raid addr of start of
147 * portion of access
148 * that is within this
149 * stripe */
150 for (; raidAddress < stripeEndAddress;) {
151 RF_ASSERT(pdaList);
152 t_pda = pdaList;
153 pdaList = pdaList->next;
154 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
155 if (!pda_p)
156 asm_p->physInfo = pda_p = t_pda;
157 else {
158 pda_p->next = t_pda;
159 pda_p = pda_p->next;
160 }
161
162 pda_p->type = RF_PDA_TYPE_DATA;
163 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
164
165 /* mark any failures we find. failedPDA is don't-care
166 * if there is more than one failure */
167 pda_p->raidAddress = raidAddress; /* the RAID address
168 * corresponding to this
169 * physical disk address */
170 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
171 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
172 RF_ASSERT(pda_p->numSector != 0);
173 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
174 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
175 asm_p->totalSectorsAccessed += pda_p->numSector;
176 asm_p->numStripeUnitsAccessed++;
177 asm_p->origRow = pda_p->row; /* redundant but
178 * harmless to do this
179 * in every loop
180 * iteration */
181
182 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
183 }
184
185 /* Map the parity. At this stage, the startSector and
186 * numSector fields for the parity unit are always set to
187 * indicate the entire parity unit. We may modify this after
188 * mapping the data portion. */
189 switch (faultsTolerated) {
190 case 0:
191 break;
192 case 1: /* single fault tolerant */
193 RF_ASSERT(pdaList);
194 t_pda = pdaList;
195 pdaList = pdaList->next;
196 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
197 pda_p = asm_p->parityInfo = t_pda;
198 pda_p->type = RF_PDA_TYPE_PARITY;
199 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
200 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
201 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
202 /* raidAddr may be needed to find unit to redirect to */
203 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
204 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
205 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
206
207 break;
208 case 2: /* two fault tolerant */
209 RF_ASSERT(pdaList && pdaList->next);
210 t_pda = pdaList;
211 pdaList = pdaList->next;
212 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
213 pda_p = asm_p->parityInfo = t_pda;
214 pda_p->type = RF_PDA_TYPE_PARITY;
215 t_pda = pdaList;
216 pdaList = pdaList->next;
217 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
218 pda_q = asm_p->qInfo = t_pda;
219 pda_q->type = RF_PDA_TYPE_Q;
220 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
221 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
222 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
223 &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
224 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
225 /* raidAddr may be needed to find unit to redirect to */
226 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
227 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
228 /* failure mode stuff */
229 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
230 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
231 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
232 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
233 break;
234 }
235 }
236 RF_ASSERT(asmList == NULL && pdaList == NULL);
237 /* make the header structure */
238 asm_hdr = rf_AllocAccessStripeMapHeader();
239 RF_ASSERT(numStripes == totStripes);
240 asm_hdr->numStripes = numStripes;
241 asm_hdr->stripeMap = asm_list;
242
243 if (rf_mapDebug)
244 rf_PrintAccessStripeMap(asm_hdr);
245 return (asm_hdr);
246 }
247 /*****************************************************************************************
248 * This routine walks through an ASM list and marks the PDAs that have failed.
249 * It's called only when a disk failure causes an in-flight DAG to fail.
250 * The parity may consist of two components, but we want to use only one failedPDA
251 * pointer. Thus we set failedPDA to point to the first parity component, and rely
252 * on the rest of the code to do the right thing with this.
253 ****************************************************************************************/
254
255 void
256 rf_MarkFailuresInASMList(raidPtr, asm_h)
257 RF_Raid_t *raidPtr;
258 RF_AccessStripeMapHeader_t *asm_h;
259 {
260 RF_RaidDisk_t **disks = raidPtr->Disks;
261 RF_AccessStripeMap_t *asmap;
262 RF_PhysDiskAddr_t *pda;
263
264 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
265 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
266 asmap->numFailedPDAs = 0;
267 memset((char *) asmap->failedPDAs, 0,
268 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
269 for (pda = asmap->physInfo; pda; pda = pda->next) {
270 if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
271 asmap->numDataFailed++;
272 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
273 asmap->numFailedPDAs++;
274 }
275 }
276 pda = asmap->parityInfo;
277 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
278 asmap->numParityFailed++;
279 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
280 asmap->numFailedPDAs++;
281 }
282 pda = asmap->qInfo;
283 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
284 asmap->numQFailed++;
285 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
286 asmap->numFailedPDAs++;
287 }
288 }
289 }
290 /*****************************************************************************************
291 *
292 * DuplicateASM -- duplicates an ASM and returns the new one
293 *
294 ****************************************************************************************/
295 RF_AccessStripeMap_t *
296 rf_DuplicateASM(asmap)
297 RF_AccessStripeMap_t *asmap;
298 {
299 RF_AccessStripeMap_t *new_asm;
300 RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
301
302 new_pda = NULL;
303 new_asm = rf_AllocAccessStripeMapComponent();
304 bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t));
305 new_asm->numFailedPDAs = 0; /* ??? */
306 new_asm->failedPDAs[0] = NULL;
307 new_asm->physInfo = NULL;
308 new_asm->parityInfo = NULL;
309 new_asm->next = NULL;
310
311 for (pda = asmap->physInfo; pda; pda = pda->next) { /* copy the physInfo
312 * list */
313 t_pda = rf_AllocPhysDiskAddr();
314 bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
315 t_pda->next = NULL;
316 if (!new_asm->physInfo) {
317 new_asm->physInfo = t_pda;
318 new_pda = t_pda;
319 } else {
320 new_pda->next = t_pda;
321 new_pda = new_pda->next;
322 }
323 if (pda == asmap->failedPDAs[0])
324 new_asm->failedPDAs[0] = t_pda;
325 }
326 for (pda = asmap->parityInfo; pda; pda = pda->next) { /* copy the parityInfo
327 * list */
328 t_pda = rf_AllocPhysDiskAddr();
329 bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
330 t_pda->next = NULL;
331 if (!new_asm->parityInfo) {
332 new_asm->parityInfo = t_pda;
333 new_pda = t_pda;
334 } else {
335 new_pda->next = t_pda;
336 new_pda = new_pda->next;
337 }
338 if (pda == asmap->failedPDAs[0])
339 new_asm->failedPDAs[0] = t_pda;
340 }
341 return (new_asm);
342 }
343 /*****************************************************************************************
344 *
345 * DuplicatePDA -- duplicates a PDA and returns the new one
346 *
347 ****************************************************************************************/
348 RF_PhysDiskAddr_t *
349 rf_DuplicatePDA(pda)
350 RF_PhysDiskAddr_t *pda;
351 {
352 RF_PhysDiskAddr_t *new;
353
354 new = rf_AllocPhysDiskAddr();
355 bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t));
356 return (new);
357 }
358 /*****************************************************************************************
359 *
360 * routines to allocate and free list elements. All allocation routines zero the
361 * structure before returning it.
362 *
363 * FreePhysDiskAddr is static. It should never be called directly, because
364 * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
365 *
366 ****************************************************************************************/
367
368 static RF_FreeList_t *rf_asmhdr_freelist;
369 #define RF_MAX_FREE_ASMHDR 128
370 #define RF_ASMHDR_INC 16
371 #define RF_ASMHDR_INITIAL 32
372
373 static RF_FreeList_t *rf_asm_freelist;
374 #define RF_MAX_FREE_ASM 192
375 #define RF_ASM_INC 24
376 #define RF_ASM_INITIAL 64
377
378 static RF_FreeList_t *rf_pda_freelist;
379 #define RF_MAX_FREE_PDA 192
380 #define RF_PDA_INC 24
381 #define RF_PDA_INITIAL 64
382
383 /* called at shutdown time. So far, all that is necessary is to release all the free lists */
384 static void rf_ShutdownMapModule(void *);
385 static void
386 rf_ShutdownMapModule(ignored)
387 void *ignored;
388 {
389 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
390 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
391 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
392 }
393
394 int
395 rf_ConfigureMapModule(listp)
396 RF_ShutdownList_t **listp;
397 {
398 int rc;
399
400 RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
401 RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
402 if (rf_asmhdr_freelist == NULL) {
403 return (ENOMEM);
404 }
405 RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
406 RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
407 if (rf_asm_freelist == NULL) {
408 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
409 return (ENOMEM);
410 }
411 RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
412 RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
413 if (rf_pda_freelist == NULL) {
414 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
415 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
416 return (ENOMEM);
417 }
418 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
419 if (rc) {
420 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
421 __LINE__, rc);
422 rf_ShutdownMapModule(NULL);
423 return (rc);
424 }
425 RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
426 (RF_AccessStripeMapHeader_t *));
427 RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
428 (RF_AccessStripeMap_t *));
429 RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
430 (RF_PhysDiskAddr_t *));
431
432 return (0);
433 }
434
435 RF_AccessStripeMapHeader_t *
436 rf_AllocAccessStripeMapHeader()
437 {
438 RF_AccessStripeMapHeader_t *p;
439
440 RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
441 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
442
443 return (p);
444 }
445
446
447 void
448 rf_FreeAccessStripeMapHeader(p)
449 RF_AccessStripeMapHeader_t *p;
450 {
451 RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
452 }
453
454 RF_PhysDiskAddr_t *
455 rf_AllocPhysDiskAddr()
456 {
457 RF_PhysDiskAddr_t *p;
458
459 RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
460 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
461
462 return (p);
463 }
464 /* allocates a list of PDAs, locking the free list only once
465 * when we have to call calloc, we do it one component at a time to simplify
466 * the process of freeing the list at program shutdown. This should not be
467 * much of a performance hit, because it should be very infrequently executed.
468 */
469 RF_PhysDiskAddr_t *
470 rf_AllocPDAList(count)
471 int count;
472 {
473 RF_PhysDiskAddr_t *p = NULL;
474
475 RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
476 return (p);
477 }
478
479 void
480 rf_FreePhysDiskAddr(p)
481 RF_PhysDiskAddr_t *p;
482 {
483 RF_FREELIST_FREE(rf_pda_freelist, p, next);
484 }
485
486 static void
487 rf_FreePDAList(l_start, l_end, count)
488 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
489 * of list */
490 int count; /* number of elements in list */
491 {
492 RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
493 }
494
495 RF_AccessStripeMap_t *
496 rf_AllocAccessStripeMapComponent()
497 {
498 RF_AccessStripeMap_t *p;
499
500 RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
501 memset((char *) p, 0, sizeof(RF_AccessStripeMap_t));
502
503 return (p);
504 }
505 /* this is essentially identical to AllocPDAList. I should combine the two.
506 * when we have to call calloc, we do it one component at a time to simplify
507 * the process of freeing the list at program shutdown. This should not be
508 * much of a performance hit, because it should be very infrequently executed.
509 */
510 RF_AccessStripeMap_t *
511 rf_AllocASMList(count)
512 int count;
513 {
514 RF_AccessStripeMap_t *p = NULL;
515
516 RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
517 return (p);
518 }
519
520 void
521 rf_FreeAccessStripeMapComponent(p)
522 RF_AccessStripeMap_t *p;
523 {
524 RF_FREELIST_FREE(rf_asm_freelist, p, next);
525 }
526
527 static void
528 rf_FreeASMList(l_start, l_end, count)
529 RF_AccessStripeMap_t *l_start, *l_end;
530 int count;
531 {
532 RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
533 }
534
535 void
536 rf_FreeAccessStripeMap(hdr)
537 RF_AccessStripeMapHeader_t *hdr;
538 {
539 RF_AccessStripeMap_t *p, *pt = NULL;
540 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
541 int count = 0, t, asm_count = 0;
542
543 for (p = hdr->stripeMap; p; p = p->next) {
544
545 /* link the 3 pda lists into the accumulating pda list */
546
547 if (!pdaList)
548 pdaList = p->qInfo;
549 else
550 pdaEnd->next = p->qInfo;
551 for (trailer = NULL, pdp = p->qInfo; pdp;) {
552 trailer = pdp;
553 pdp = pdp->next;
554 count++;
555 }
556 if (trailer)
557 pdaEnd = trailer;
558
559 if (!pdaList)
560 pdaList = p->parityInfo;
561 else
562 pdaEnd->next = p->parityInfo;
563 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
564 trailer = pdp;
565 pdp = pdp->next;
566 count++;
567 }
568 if (trailer)
569 pdaEnd = trailer;
570
571 if (!pdaList)
572 pdaList = p->physInfo;
573 else
574 pdaEnd->next = p->physInfo;
575 for (trailer = NULL, pdp = p->physInfo; pdp;) {
576 trailer = pdp;
577 pdp = pdp->next;
578 count++;
579 }
580 if (trailer)
581 pdaEnd = trailer;
582
583 pt = p;
584 asm_count++;
585 }
586
587 /* debug only */
588 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
589 t++;
590 RF_ASSERT(t == count);
591
592 if (pdaList)
593 rf_FreePDAList(pdaList, pdaEnd, count);
594 rf_FreeASMList(hdr->stripeMap, pt, asm_count);
595 rf_FreeAccessStripeMapHeader(hdr);
596 }
597 /* We can't use the large write optimization if there are any failures in the stripe.
598 * In the declustered layout, there is no way to immediately determine what disks
599 * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
600 * The reason we map the parity instead of just using asm->parityInfo->col is because
601 * the latter may have been already redirected to a spare drive, which would
602 * mess up the computation of the stripe offset.
603 *
604 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
605 */
606 int
607 rf_CheckStripeForFailures(raidPtr, asmap)
608 RF_Raid_t *raidPtr;
609 RF_AccessStripeMap_t *asmap;
610 {
611 RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
612 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
613 RF_StripeCount_t stripeOffset;
614 int numFailures;
615 RF_RaidAddr_t sosAddr;
616 RF_SectorNum_t diskOffset, poffset;
617 RF_RowCol_t testrow;
618
619 /* quick out in the fault-free case. */
620 RF_LOCK_MUTEX(raidPtr->mutex);
621 numFailures = raidPtr->numFailures;
622 RF_UNLOCK_MUTEX(raidPtr->mutex);
623 if (numFailures == 0)
624 return (0);
625
626 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
627 row = asmap->physInfo->row;
628 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
629 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
630
631 /* this need not be true if we've redirected the access to a spare in
632 * another row RF_ASSERT(row == testrow); */
633 stripeOffset = 0;
634 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
635 if (diskids[i] != pcol) {
636 if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
637 if (raidPtr->status[testrow] != rf_rs_reconstructing)
638 return (1);
639 RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
640 layoutPtr->map->MapSector(raidPtr,
641 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
642 &trow, &tcol, &diskOffset, 0);
643 RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
644 if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
645 return (1);
646 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
647 return (0);
648 }
649 stripeOffset++;
650 }
651 }
652 return (0);
653 }
654 /*
655 return the number of failed data units in the stripe.
656 */
657
658 int
659 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
660 RF_Raid_t *raidPtr;
661 RF_AccessStripeMap_t *asmap;
662 {
663 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
664 RF_RowCol_t trow, tcol, row, i;
665 RF_SectorNum_t diskOffset;
666 RF_RaidAddr_t sosAddr;
667 int numFailures;
668
669 /* quick out in the fault-free case. */
670 RF_LOCK_MUTEX(raidPtr->mutex);
671 numFailures = raidPtr->numFailures;
672 RF_UNLOCK_MUTEX(raidPtr->mutex);
673 if (numFailures == 0)
674 return (0);
675 numFailures = 0;
676
677 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
678 row = asmap->physInfo->row;
679 for (i = 0; i < layoutPtr->numDataCol; i++) {
680 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
681 &trow, &tcol, &diskOffset, 0);
682 if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
683 numFailures++;
684 }
685
686 return numFailures;
687 }
688
689
690 /*****************************************************************************************
691 *
692 * debug routines
693 *
694 ****************************************************************************************/
695
696 void
697 rf_PrintAccessStripeMap(asm_h)
698 RF_AccessStripeMapHeader_t *asm_h;
699 {
700 rf_PrintFullAccessStripeMap(asm_h, 0);
701 }
702
703 void
704 rf_PrintFullAccessStripeMap(asm_h, prbuf)
705 RF_AccessStripeMapHeader_t *asm_h;
706 int prbuf; /* flag to print buffer pointers */
707 {
708 int i;
709 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
710 RF_PhysDiskAddr_t *p;
711 printf("%d stripes total\n", (int) asm_h->numStripes);
712 for (; asmap; asmap = asmap->next) {
713 /* printf("Num failures: %d\n",asmap->numDataFailed); */
714 /* printf("Num sectors:
715 * %d\n",(int)asmap->totalSectorsAccessed); */
716 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
717 (int) asmap->stripeID,
718 (int) asmap->totalSectorsAccessed,
719 (int) asmap->numDataFailed,
720 (int) asmap->numParityFailed);
721 if (asmap->parityInfo) {
722 printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
723 (int) asmap->parityInfo->startSector,
724 (int) (asmap->parityInfo->startSector +
725 asmap->parityInfo->numSector - 1));
726 if (prbuf)
727 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
728 if (asmap->parityInfo->next) {
729 printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
730 asmap->parityInfo->next->col,
731 (int) asmap->parityInfo->next->startSector,
732 (int) (asmap->parityInfo->next->startSector +
733 asmap->parityInfo->next->numSector - 1));
734 if (prbuf)
735 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
736 RF_ASSERT(asmap->parityInfo->next->next == NULL);
737 }
738 printf("]\n\t");
739 }
740 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
741 printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
742 (int) (p->startSector + p->numSector - 1));
743 if (prbuf)
744 printf("b0x%lx ", (unsigned long) p->bufPtr);
745 if (i && !(i & 1))
746 printf("\n\t");
747 }
748 printf("\n");
749 p = asm_h->stripeMap->failedPDAs[0];
750 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
751 printf("[multiple failures]\n");
752 else
753 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
754 printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
755 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
756 }
757 }
758
759 void
760 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
761 RF_Raid_t *raidPtr;
762 RF_RaidAddr_t raidAddr;
763 RF_SectorCount_t numBlocks;
764 {
765 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
766 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
767
768 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
769 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
770 printf("%d (0x%x), ", (int) ra, (int) ra);
771 }
772 printf("\n");
773 printf("Offset into stripe unit: %d (0x%x)\n",
774 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
775 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
776 }
777 /*
778 given a parity descriptor and the starting address within a stripe,
779 range restrict the parity descriptor to touch only the correct stuff.
780 */
781 void
782 rf_ASMParityAdjust(
783 RF_PhysDiskAddr_t * toAdjust,
784 RF_StripeNum_t startAddrWithinStripe,
785 RF_SectorNum_t endAddress,
786 RF_RaidLayout_t * layoutPtr,
787 RF_AccessStripeMap_t * asm_p)
788 {
789 RF_PhysDiskAddr_t *new_pda;
790
791 /* when we're accessing only a portion of one stripe unit, we want the
792 * parity descriptor to identify only the chunk of parity associated
793 * with the data. When the access spans exactly one stripe unit
794 * boundary and is less than a stripe unit in size, it uses two
795 * disjoint regions of the parity unit. When an access spans more
796 * than one stripe unit boundary, it uses all of the parity unit.
797 *
798 * To better handle the case where stripe units are small, we may
799 * eventually want to change the 2nd case so that if the SU size is
800 * below some threshold, we just read/write the whole thing instead of
801 * breaking it up into two accesses. */
802 if (asm_p->numStripeUnitsAccessed == 1) {
803 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
804 toAdjust->startSector += x;
805 toAdjust->raidAddress += x;
806 toAdjust->numSector = asm_p->physInfo->numSector;
807 RF_ASSERT(toAdjust->numSector != 0);
808 } else
809 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
810 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
811
812 /* create a second pda and copy the parity map info
813 * into it */
814 RF_ASSERT(toAdjust->next == NULL);
815 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
816 *new_pda = *toAdjust; /* structure assignment */
817 new_pda->next = NULL;
818
819 /* adjust the start sector & number of blocks for the
820 * first parity pda */
821 toAdjust->startSector += x;
822 toAdjust->raidAddress += x;
823 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
824 RF_ASSERT(toAdjust->numSector != 0);
825
826 /* adjust the second pda */
827 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
828 /* new_pda->raidAddress =
829 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
830 * toAdjust->raidAddress); */
831 RF_ASSERT(new_pda->numSector != 0);
832 }
833 }
834 /*
835 Check if a disk has been spared or failed. If spared,
836 redirect the I/O.
837 If it has been failed, record it in the asm pointer.
838 Fourth arg is whether data or parity.
839 */
840 void
841 rf_ASMCheckStatus(
842 RF_Raid_t * raidPtr,
843 RF_PhysDiskAddr_t * pda_p,
844 RF_AccessStripeMap_t * asm_p,
845 RF_RaidDisk_t ** disks,
846 int parity)
847 {
848 RF_DiskStatus_t dstatus;
849 RF_RowCol_t frow, fcol;
850
851 dstatus = disks[pda_p->row][pda_p->col].status;
852
853 if (dstatus == rf_ds_spared) {
854 /* if the disk has been spared, redirect access to the spare */
855 frow = pda_p->row;
856 fcol = pda_p->col;
857 pda_p->row = disks[frow][fcol].spareRow;
858 pda_p->col = disks[frow][fcol].spareCol;
859 } else
860 if (dstatus == rf_ds_dist_spared) {
861 /* ditto if disk has been spared to dist spare space */
862 RF_RowCol_t or = pda_p->row, oc = pda_p->col;
863 RF_SectorNum_t oo = pda_p->startSector;
864
865 if (pda_p->type == RF_PDA_TYPE_DATA)
866 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
867 else
868 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
869
870 if (rf_mapDebug) {
871 printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
872 pda_p->row, pda_p->col, (int) pda_p->startSector);
873 }
874 } else
875 if (RF_DEAD_DISK(dstatus)) {
876 /* if the disk is inaccessible, mark the
877 * failure */
878 if (parity)
879 asm_p->numParityFailed++;
880 else {
881 asm_p->numDataFailed++;
882 #if 0
883 /* XXX Do we really want this spewing
884 * out on the console? GO */
885 printf("DATA_FAILED!\n");
886 #endif
887 }
888 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
889 asm_p->numFailedPDAs++;
890 #if 0
891 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
892 case 1:
893 asm_p->failedPDAs[0] = pda_p;
894 break;
895 case 2:
896 asm_p->failedPDAs[1] = pda_p;
897 default:
898 break;
899 }
900 #endif
901 }
902 /* the redirected access should never span a stripe unit boundary */
903 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
904 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
905 RF_ASSERT(pda_p->col != -1);
906 }
907