Home | History | Annotate | Line # | Download | only in raidframe
rf_map.c revision 1.6
      1 /*	$NetBSD: rf_map.c,v 1.6 2001/07/18 06:45:33 thorpej Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /**************************************************************************
     30  *
     31  * map.c -- main code for mapping RAID addresses to physical disk addresses
     32  *
     33  **************************************************************************/
     34 
     35 #include "rf_types.h"
     36 #include "rf_threadstuff.h"
     37 #include "rf_raid.h"
     38 #include "rf_general.h"
     39 #include "rf_map.h"
     40 #include "rf_freelist.h"
     41 #include "rf_shutdown.h"
     42 
     43 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
     44 static void
     45 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
     46     int count);
     47 
     48 /*****************************************************************************************
     49  *
     50  * MapAccess -- main 1st order mapping routine.
     51  *
     52  * Maps an access in the RAID address space to the corresponding set of physical disk
     53  * addresses.  The result is returned as a list of AccessStripeMap structures, one per
     54  * stripe accessed.  Each ASM structure contains a pointer to a list of PhysDiskAddr
     55  * structures, which describe the physical locations touched by the user access.  Note
     56  * that this routine returns only static mapping information, i.e. the list of physical
     57  * addresses returned does not necessarily identify the set of physical locations that
     58  * will actually be read or written.
     59  *
     60  * The routine also maps the parity.  The physical disk location returned always
     61  * indicates the entire parity unit, even when only a subset of it is being accessed.
     62  * This is because an access that is not stripe unit aligned but that spans a stripe
     63  * unit boundary may require access two distinct portions of the parity unit, and we
     64  * can't yet tell which portion(s) we'll actually need.  We leave it up to the algorithm
     65  * selection code to decide what subset of the parity unit to access.
     66  *
     67  * Note that addresses in the RAID address space must always be maintained as
     68  * longs, instead of ints.
     69  *
     70  * This routine returns NULL if numBlocks is 0
     71  *
     72  ****************************************************************************************/
     73 
     74 RF_AccessStripeMapHeader_t *
     75 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
     76 	RF_Raid_t *raidPtr;
     77 	RF_RaidAddr_t raidAddress;	/* starting address in RAID address
     78 					 * space */
     79 	RF_SectorCount_t numBlocks;	/* number of blocks in RAID address
     80 					 * space to access */
     81 	caddr_t buffer;		/* buffer to supply/receive data */
     82 	int     remap;		/* 1 => remap addresses to spare space */
     83 {
     84 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     85 	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
     86 	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
     87 	int     faultsTolerated = layoutPtr->map->faultsTolerated;
     88 	RF_RaidAddr_t startAddress = raidAddress;	/* we'll change
     89 							 * raidAddress along the
     90 							 * way */
     91 	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
     92 	RF_RaidDisk_t **disks = raidPtr->Disks;
     93 
     94 	RF_PhysDiskAddr_t *pda_p, *pda_q;
     95 	RF_StripeCount_t numStripes = 0;
     96 	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
     97 	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
     98 	RF_StripeCount_t totStripes;
     99 	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
    100 	RF_AccessStripeMap_t *asmList, *t_asm;
    101 	RF_PhysDiskAddr_t *pdaList, *t_pda;
    102 
    103 	/* allocate all the ASMs and PDAs up front */
    104 	lastRaidAddr = raidAddress + numBlocks - 1;
    105 	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
    106 	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
    107 	totStripes = lastSID - stripeID + 1;
    108 	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
    109 	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
    110 
    111 	asmList = rf_AllocASMList(totStripes);
    112 	pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes);	/* may also need pda(s)
    113 											 * per stripe for parity */
    114 
    115 	if (raidAddress + numBlocks > raidPtr->totalSectors) {
    116 		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
    117 		    (int) raidAddress);
    118 		return (NULL);
    119 	}
    120 	if (rf_mapDebug)
    121 		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
    122 	for (; raidAddress < endAddress;) {
    123 		/* make the next stripe structure */
    124 		RF_ASSERT(asmList);
    125 		t_asm = asmList;
    126 		asmList = asmList->next;
    127 		memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
    128 		if (!asm_p)
    129 			asm_list = asm_p = t_asm;
    130 		else {
    131 			asm_p->next = t_asm;
    132 			asm_p = asm_p->next;
    133 		}
    134 		numStripes++;
    135 
    136 		/* map SUs from current location to the end of the stripe */
    137 		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
    138 		        raidAddress) */ stripeID++;
    139 		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
    140 		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
    141 		asm_p->raidAddress = raidAddress;
    142 		asm_p->endRaidAddress = stripeEndAddress;
    143 
    144 		/* map each stripe unit in the stripe */
    145 		pda_p = NULL;
    146 		startAddrWithinStripe = raidAddress;	/* Raid addr of start of
    147 							 * portion of access
    148 							 * that is within this
    149 							 * stripe */
    150 		for (; raidAddress < stripeEndAddress;) {
    151 			RF_ASSERT(pdaList);
    152 			t_pda = pdaList;
    153 			pdaList = pdaList->next;
    154 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    155 			if (!pda_p)
    156 				asm_p->physInfo = pda_p = t_pda;
    157 			else {
    158 				pda_p->next = t_pda;
    159 				pda_p = pda_p->next;
    160 			}
    161 
    162 			pda_p->type = RF_PDA_TYPE_DATA;
    163 			(layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    164 
    165 			/* mark any failures we find.  failedPDA is don't-care
    166 			 * if there is more than one failure */
    167 			pda_p->raidAddress = raidAddress;	/* the RAID address
    168 								 * corresponding to this
    169 								 * physical disk address */
    170 			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
    171 			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
    172 			RF_ASSERT(pda_p->numSector != 0);
    173 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
    174 			pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
    175 			asm_p->totalSectorsAccessed += pda_p->numSector;
    176 			asm_p->numStripeUnitsAccessed++;
    177 			asm_p->origRow = pda_p->row;	/* redundant but
    178 							 * harmless to do this
    179 							 * in every loop
    180 							 * iteration */
    181 
    182 			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
    183 		}
    184 
    185 		/* Map the parity. At this stage, the startSector and
    186 		 * numSector fields for the parity unit are always set to
    187 		 * indicate the entire parity unit. We may modify this after
    188 		 * mapping the data portion. */
    189 		switch (faultsTolerated) {
    190 		case 0:
    191 			break;
    192 		case 1:	/* single fault tolerant */
    193 			RF_ASSERT(pdaList);
    194 			t_pda = pdaList;
    195 			pdaList = pdaList->next;
    196 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    197 			pda_p = asm_p->parityInfo = t_pda;
    198 			pda_p->type = RF_PDA_TYPE_PARITY;
    199 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    200 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    201 			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    202 			/* raidAddr may be needed to find unit to redirect to */
    203 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    204 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    205 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    206 
    207 			break;
    208 		case 2:	/* two fault tolerant */
    209 			RF_ASSERT(pdaList && pdaList->next);
    210 			t_pda = pdaList;
    211 			pdaList = pdaList->next;
    212 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    213 			pda_p = asm_p->parityInfo = t_pda;
    214 			pda_p->type = RF_PDA_TYPE_PARITY;
    215 			t_pda = pdaList;
    216 			pdaList = pdaList->next;
    217 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    218 			pda_q = asm_p->qInfo = t_pda;
    219 			pda_q->type = RF_PDA_TYPE_Q;
    220 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    221 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    222 			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    223 			    &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
    224 			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    225 			/* raidAddr may be needed to find unit to redirect to */
    226 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    227 			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    228 			/* failure mode stuff */
    229 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    230 			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
    231 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    232 			rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    233 			break;
    234 		}
    235 	}
    236 	RF_ASSERT(asmList == NULL && pdaList == NULL);
    237 	/* make the header structure */
    238 	asm_hdr = rf_AllocAccessStripeMapHeader();
    239 	RF_ASSERT(numStripes == totStripes);
    240 	asm_hdr->numStripes = numStripes;
    241 	asm_hdr->stripeMap = asm_list;
    242 
    243 	if (rf_mapDebug)
    244 		rf_PrintAccessStripeMap(asm_hdr);
    245 	return (asm_hdr);
    246 }
    247 /*****************************************************************************************
    248  * This routine walks through an ASM list and marks the PDAs that have failed.
    249  * It's called only when a disk failure causes an in-flight DAG to fail.
    250  * The parity may consist of two components, but we want to use only one failedPDA
    251  * pointer.  Thus we set failedPDA to point to the first parity component, and rely
    252  * on the rest of the code to do the right thing with this.
    253  ****************************************************************************************/
    254 
    255 void
    256 rf_MarkFailuresInASMList(raidPtr, asm_h)
    257 	RF_Raid_t *raidPtr;
    258 	RF_AccessStripeMapHeader_t *asm_h;
    259 {
    260 	RF_RaidDisk_t **disks = raidPtr->Disks;
    261 	RF_AccessStripeMap_t *asmap;
    262 	RF_PhysDiskAddr_t *pda;
    263 
    264 	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
    265 		asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
    266 		asmap->numFailedPDAs = 0;
    267 		memset((char *) asmap->failedPDAs, 0,
    268 		    RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
    269 		for (pda = asmap->physInfo; pda; pda = pda->next) {
    270 			if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    271 				asmap->numDataFailed++;
    272 				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    273 				asmap->numFailedPDAs++;
    274 			}
    275 		}
    276 		pda = asmap->parityInfo;
    277 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    278 			asmap->numParityFailed++;
    279 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    280 			asmap->numFailedPDAs++;
    281 		}
    282 		pda = asmap->qInfo;
    283 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    284 			asmap->numQFailed++;
    285 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    286 			asmap->numFailedPDAs++;
    287 		}
    288 	}
    289 }
    290 /*****************************************************************************************
    291  *
    292  * DuplicateASM -- duplicates an ASM and returns the new one
    293  *
    294  ****************************************************************************************/
    295 RF_AccessStripeMap_t *
    296 rf_DuplicateASM(asmap)
    297 	RF_AccessStripeMap_t *asmap;
    298 {
    299 	RF_AccessStripeMap_t *new_asm;
    300 	RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
    301 
    302 	new_pda = NULL;
    303 	new_asm = rf_AllocAccessStripeMapComponent();
    304 	bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t));
    305 	new_asm->numFailedPDAs = 0;	/* ??? */
    306 	new_asm->failedPDAs[0] = NULL;
    307 	new_asm->physInfo = NULL;
    308 	new_asm->parityInfo = NULL;
    309 	new_asm->next = NULL;
    310 
    311 	for (pda = asmap->physInfo; pda; pda = pda->next) {	/* copy the physInfo
    312 								 * list */
    313 		t_pda = rf_AllocPhysDiskAddr();
    314 		bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
    315 		t_pda->next = NULL;
    316 		if (!new_asm->physInfo) {
    317 			new_asm->physInfo = t_pda;
    318 			new_pda = t_pda;
    319 		} else {
    320 			new_pda->next = t_pda;
    321 			new_pda = new_pda->next;
    322 		}
    323 		if (pda == asmap->failedPDAs[0])
    324 			new_asm->failedPDAs[0] = t_pda;
    325 	}
    326 	for (pda = asmap->parityInfo; pda; pda = pda->next) {	/* copy the parityInfo
    327 								 * list */
    328 		t_pda = rf_AllocPhysDiskAddr();
    329 		bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
    330 		t_pda->next = NULL;
    331 		if (!new_asm->parityInfo) {
    332 			new_asm->parityInfo = t_pda;
    333 			new_pda = t_pda;
    334 		} else {
    335 			new_pda->next = t_pda;
    336 			new_pda = new_pda->next;
    337 		}
    338 		if (pda == asmap->failedPDAs[0])
    339 			new_asm->failedPDAs[0] = t_pda;
    340 	}
    341 	return (new_asm);
    342 }
    343 /*****************************************************************************************
    344  *
    345  * DuplicatePDA -- duplicates a PDA and returns the new one
    346  *
    347  ****************************************************************************************/
    348 RF_PhysDiskAddr_t *
    349 rf_DuplicatePDA(pda)
    350 	RF_PhysDiskAddr_t *pda;
    351 {
    352 	RF_PhysDiskAddr_t *new;
    353 
    354 	new = rf_AllocPhysDiskAddr();
    355 	bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t));
    356 	return (new);
    357 }
    358 /*****************************************************************************************
    359  *
    360  * routines to allocate and free list elements.  All allocation routines zero the
    361  * structure before returning it.
    362  *
    363  * FreePhysDiskAddr is static.  It should never be called directly, because
    364  * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
    365  *
    366  ****************************************************************************************/
    367 
    368 static RF_FreeList_t *rf_asmhdr_freelist;
    369 #define RF_MAX_FREE_ASMHDR 128
    370 #define RF_ASMHDR_INC       16
    371 #define RF_ASMHDR_INITIAL   32
    372 
    373 static RF_FreeList_t *rf_asm_freelist;
    374 #define RF_MAX_FREE_ASM 192
    375 #define RF_ASM_INC       24
    376 #define RF_ASM_INITIAL   64
    377 
    378 static RF_FreeList_t *rf_pda_freelist;
    379 #define RF_MAX_FREE_PDA 192
    380 #define RF_PDA_INC       24
    381 #define RF_PDA_INITIAL   64
    382 
    383 /* called at shutdown time.  So far, all that is necessary is to release all the free lists */
    384 static void rf_ShutdownMapModule(void *);
    385 static void
    386 rf_ShutdownMapModule(ignored)
    387 	void   *ignored;
    388 {
    389 	RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    390 	RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
    391 	RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
    392 }
    393 
    394 int
    395 rf_ConfigureMapModule(listp)
    396 	RF_ShutdownList_t **listp;
    397 {
    398 	int     rc;
    399 
    400 	RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
    401 	    RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
    402 	if (rf_asmhdr_freelist == NULL) {
    403 		return (ENOMEM);
    404 	}
    405 	RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
    406 	    RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
    407 	if (rf_asm_freelist == NULL) {
    408 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    409 		return (ENOMEM);
    410 	}
    411 	RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
    412 	    RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
    413 	if (rf_pda_freelist == NULL) {
    414 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    415 		RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
    416 		return (ENOMEM);
    417 	}
    418 	rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
    419 	if (rc) {
    420 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
    421 		    __LINE__, rc);
    422 		rf_ShutdownMapModule(NULL);
    423 		return (rc);
    424 	}
    425 	RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
    426 	    (RF_AccessStripeMapHeader_t *));
    427 	RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
    428 	    (RF_AccessStripeMap_t *));
    429 	RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
    430 	    (RF_PhysDiskAddr_t *));
    431 
    432 	return (0);
    433 }
    434 
    435 RF_AccessStripeMapHeader_t *
    436 rf_AllocAccessStripeMapHeader()
    437 {
    438 	RF_AccessStripeMapHeader_t *p;
    439 
    440 	RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
    441 	memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
    442 
    443 	return (p);
    444 }
    445 
    446 
    447 void
    448 rf_FreeAccessStripeMapHeader(p)
    449 	RF_AccessStripeMapHeader_t *p;
    450 {
    451 	RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
    452 }
    453 
    454 RF_PhysDiskAddr_t *
    455 rf_AllocPhysDiskAddr()
    456 {
    457 	RF_PhysDiskAddr_t *p;
    458 
    459 	RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
    460 	memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
    461 
    462 	return (p);
    463 }
    464 /* allocates a list of PDAs, locking the free list only once
    465  * when we have to call calloc, we do it one component at a time to simplify
    466  * the process of freeing the list at program shutdown.  This should not be
    467  * much of a performance hit, because it should be very infrequently executed.
    468  */
    469 RF_PhysDiskAddr_t *
    470 rf_AllocPDAList(count)
    471 	int     count;
    472 {
    473 	RF_PhysDiskAddr_t *p = NULL;
    474 
    475 	RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
    476 	return (p);
    477 }
    478 
    479 void
    480 rf_FreePhysDiskAddr(p)
    481 	RF_PhysDiskAddr_t *p;
    482 {
    483 	RF_FREELIST_FREE(rf_pda_freelist, p, next);
    484 }
    485 
    486 static void
    487 rf_FreePDAList(l_start, l_end, count)
    488 	RF_PhysDiskAddr_t *l_start, *l_end;	/* pointers to start and end
    489 						 * of list */
    490 	int     count;		/* number of elements in list */
    491 {
    492 	RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
    493 }
    494 
    495 RF_AccessStripeMap_t *
    496 rf_AllocAccessStripeMapComponent()
    497 {
    498 	RF_AccessStripeMap_t *p;
    499 
    500 	RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
    501 	memset((char *) p, 0, sizeof(RF_AccessStripeMap_t));
    502 
    503 	return (p);
    504 }
    505 /* this is essentially identical to AllocPDAList.  I should combine the two.
    506  * when we have to call calloc, we do it one component at a time to simplify
    507  * the process of freeing the list at program shutdown.  This should not be
    508  * much of a performance hit, because it should be very infrequently executed.
    509  */
    510 RF_AccessStripeMap_t *
    511 rf_AllocASMList(count)
    512 	int     count;
    513 {
    514 	RF_AccessStripeMap_t *p = NULL;
    515 
    516 	RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
    517 	return (p);
    518 }
    519 
    520 void
    521 rf_FreeAccessStripeMapComponent(p)
    522 	RF_AccessStripeMap_t *p;
    523 {
    524 	RF_FREELIST_FREE(rf_asm_freelist, p, next);
    525 }
    526 
    527 static void
    528 rf_FreeASMList(l_start, l_end, count)
    529 	RF_AccessStripeMap_t *l_start, *l_end;
    530 	int     count;
    531 {
    532 	RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
    533 }
    534 
    535 void
    536 rf_FreeAccessStripeMap(hdr)
    537 	RF_AccessStripeMapHeader_t *hdr;
    538 {
    539 	RF_AccessStripeMap_t *p, *pt = NULL;
    540 	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
    541 	int     count = 0, t, asm_count = 0;
    542 
    543 	for (p = hdr->stripeMap; p; p = p->next) {
    544 
    545 		/* link the 3 pda lists into the accumulating pda list */
    546 
    547 		if (!pdaList)
    548 			pdaList = p->qInfo;
    549 		else
    550 			pdaEnd->next = p->qInfo;
    551 		for (trailer = NULL, pdp = p->qInfo; pdp;) {
    552 			trailer = pdp;
    553 			pdp = pdp->next;
    554 			count++;
    555 		}
    556 		if (trailer)
    557 			pdaEnd = trailer;
    558 
    559 		if (!pdaList)
    560 			pdaList = p->parityInfo;
    561 		else
    562 			pdaEnd->next = p->parityInfo;
    563 		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
    564 			trailer = pdp;
    565 			pdp = pdp->next;
    566 			count++;
    567 		}
    568 		if (trailer)
    569 			pdaEnd = trailer;
    570 
    571 		if (!pdaList)
    572 			pdaList = p->physInfo;
    573 		else
    574 			pdaEnd->next = p->physInfo;
    575 		for (trailer = NULL, pdp = p->physInfo; pdp;) {
    576 			trailer = pdp;
    577 			pdp = pdp->next;
    578 			count++;
    579 		}
    580 		if (trailer)
    581 			pdaEnd = trailer;
    582 
    583 		pt = p;
    584 		asm_count++;
    585 	}
    586 
    587 	/* debug only */
    588 	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
    589 		t++;
    590 	RF_ASSERT(t == count);
    591 
    592 	if (pdaList)
    593 		rf_FreePDAList(pdaList, pdaEnd, count);
    594 	rf_FreeASMList(hdr->stripeMap, pt, asm_count);
    595 	rf_FreeAccessStripeMapHeader(hdr);
    596 }
    597 /* We can't use the large write optimization if there are any failures in the stripe.
    598  * In the declustered layout, there is no way to immediately determine what disks
    599  * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
    600  * The reason we map the parity instead of just using asm->parityInfo->col is because
    601  * the latter may have been already redirected to a spare drive, which would
    602  * mess up the computation of the stripe offset.
    603  *
    604  * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
    605  */
    606 int
    607 rf_CheckStripeForFailures(raidPtr, asmap)
    608 	RF_Raid_t *raidPtr;
    609 	RF_AccessStripeMap_t *asmap;
    610 {
    611 	RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
    612 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    613 	RF_StripeCount_t stripeOffset;
    614 	int     numFailures;
    615 	RF_RaidAddr_t sosAddr;
    616 	RF_SectorNum_t diskOffset, poffset;
    617 	RF_RowCol_t testrow;
    618 
    619 	/* quick out in the fault-free case.  */
    620 	RF_LOCK_MUTEX(raidPtr->mutex);
    621 	numFailures = raidPtr->numFailures;
    622 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    623 	if (numFailures == 0)
    624 		return (0);
    625 
    626 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    627 	row = asmap->physInfo->row;
    628 	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
    629 	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0);	/* get pcol */
    630 
    631 	/* this need not be true if we've redirected the access to a spare in
    632 	 * another row RF_ASSERT(row == testrow); */
    633 	stripeOffset = 0;
    634 	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
    635 		if (diskids[i] != pcol) {
    636 			if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
    637 				if (raidPtr->status[testrow] != rf_rs_reconstructing)
    638 					return (1);
    639 				RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
    640 				layoutPtr->map->MapSector(raidPtr,
    641 				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
    642 				    &trow, &tcol, &diskOffset, 0);
    643 				RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
    644 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
    645 					return (1);
    646 				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
    647 				return (0);
    648 			}
    649 			stripeOffset++;
    650 		}
    651 	}
    652 	return (0);
    653 }
    654 /*
    655    return the number of failed data units in the stripe.
    656 */
    657 
    658 int
    659 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
    660 	RF_Raid_t *raidPtr;
    661 	RF_AccessStripeMap_t *asmap;
    662 {
    663 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    664 	RF_RowCol_t trow, tcol, row, i;
    665 	RF_SectorNum_t diskOffset;
    666 	RF_RaidAddr_t sosAddr;
    667 	int     numFailures;
    668 
    669 	/* quick out in the fault-free case.  */
    670 	RF_LOCK_MUTEX(raidPtr->mutex);
    671 	numFailures = raidPtr->numFailures;
    672 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    673 	if (numFailures == 0)
    674 		return (0);
    675 	numFailures = 0;
    676 
    677 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    678 	row = asmap->physInfo->row;
    679 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    680 		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
    681 		    &trow, &tcol, &diskOffset, 0);
    682 		if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
    683 			numFailures++;
    684 	}
    685 
    686 	return numFailures;
    687 }
    688 
    689 
    690 /*****************************************************************************************
    691  *
    692  * debug routines
    693  *
    694  ****************************************************************************************/
    695 
    696 void
    697 rf_PrintAccessStripeMap(asm_h)
    698 	RF_AccessStripeMapHeader_t *asm_h;
    699 {
    700 	rf_PrintFullAccessStripeMap(asm_h, 0);
    701 }
    702 
    703 void
    704 rf_PrintFullAccessStripeMap(asm_h, prbuf)
    705 	RF_AccessStripeMapHeader_t *asm_h;
    706 	int     prbuf;		/* flag to print buffer pointers */
    707 {
    708 	int     i;
    709 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    710 	RF_PhysDiskAddr_t *p;
    711 	printf("%d stripes total\n", (int) asm_h->numStripes);
    712 	for (; asmap; asmap = asmap->next) {
    713 		/* printf("Num failures: %d\n",asmap->numDataFailed); */
    714 		/* printf("Num sectors:
    715 		 * %d\n",(int)asmap->totalSectorsAccessed); */
    716 		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
    717 		    (int) asmap->stripeID,
    718 		    (int) asmap->totalSectorsAccessed,
    719 		    (int) asmap->numDataFailed,
    720 		    (int) asmap->numParityFailed);
    721 		if (asmap->parityInfo) {
    722 			printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
    723 			    (int) asmap->parityInfo->startSector,
    724 			    (int) (asmap->parityInfo->startSector +
    725 				asmap->parityInfo->numSector - 1));
    726 			if (prbuf)
    727 				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
    728 			if (asmap->parityInfo->next) {
    729 				printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
    730 				    asmap->parityInfo->next->col,
    731 				    (int) asmap->parityInfo->next->startSector,
    732 				    (int) (asmap->parityInfo->next->startSector +
    733 					asmap->parityInfo->next->numSector - 1));
    734 				if (prbuf)
    735 					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
    736 				RF_ASSERT(asmap->parityInfo->next->next == NULL);
    737 			}
    738 			printf("]\n\t");
    739 		}
    740 		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
    741 			printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
    742 			    (int) (p->startSector + p->numSector - 1));
    743 			if (prbuf)
    744 				printf("b0x%lx ", (unsigned long) p->bufPtr);
    745 			if (i && !(i & 1))
    746 				printf("\n\t");
    747 		}
    748 		printf("\n");
    749 		p = asm_h->stripeMap->failedPDAs[0];
    750 		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
    751 			printf("[multiple failures]\n");
    752 		else
    753 			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
    754 				printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
    755 				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
    756 	}
    757 }
    758 
    759 void
    760 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
    761 	RF_Raid_t *raidPtr;
    762 	RF_RaidAddr_t raidAddr;
    763 	RF_SectorCount_t numBlocks;
    764 {
    765 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    766 	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    767 
    768 	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
    769 	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
    770 		printf("%d (0x%x), ", (int) ra, (int) ra);
    771 	}
    772 	printf("\n");
    773 	printf("Offset into stripe unit: %d (0x%x)\n",
    774 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
    775 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
    776 }
    777 /*
    778    given a parity descriptor and the starting address within a stripe,
    779    range restrict the parity descriptor to touch only the correct stuff.
    780 */
    781 void
    782 rf_ASMParityAdjust(
    783     RF_PhysDiskAddr_t * toAdjust,
    784     RF_StripeNum_t startAddrWithinStripe,
    785     RF_SectorNum_t endAddress,
    786     RF_RaidLayout_t * layoutPtr,
    787     RF_AccessStripeMap_t * asm_p)
    788 {
    789 	RF_PhysDiskAddr_t *new_pda;
    790 
    791 	/* when we're accessing only a portion of one stripe unit, we want the
    792 	 * parity descriptor to identify only the chunk of parity associated
    793 	 * with the data.  When the access spans exactly one stripe unit
    794 	 * boundary and is less than a stripe unit in size, it uses two
    795 	 * disjoint regions of the parity unit.  When an access spans more
    796 	 * than one stripe unit boundary, it uses all of the parity unit.
    797 	 *
    798 	 * To better handle the case where stripe units are small, we may
    799 	 * eventually want to change the 2nd case so that if the SU size is
    800 	 * below some threshold, we just read/write the whole thing instead of
    801 	 * breaking it up into two accesses. */
    802 	if (asm_p->numStripeUnitsAccessed == 1) {
    803 		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    804 		toAdjust->startSector += x;
    805 		toAdjust->raidAddress += x;
    806 		toAdjust->numSector = asm_p->physInfo->numSector;
    807 		RF_ASSERT(toAdjust->numSector != 0);
    808 	} else
    809 		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
    810 			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    811 
    812 			/* create a second pda and copy the parity map info
    813 			 * into it */
    814 			RF_ASSERT(toAdjust->next == NULL);
    815 			new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
    816 			*new_pda = *toAdjust;	/* structure assignment */
    817 			new_pda->next = NULL;
    818 
    819 			/* adjust the start sector & number of blocks for the
    820 			 * first parity pda */
    821 			toAdjust->startSector += x;
    822 			toAdjust->raidAddress += x;
    823 			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
    824 			RF_ASSERT(toAdjust->numSector != 0);
    825 
    826 			/* adjust the second pda */
    827 			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
    828 			/* new_pda->raidAddress =
    829 			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
    830 			 * toAdjust->raidAddress); */
    831 			RF_ASSERT(new_pda->numSector != 0);
    832 		}
    833 }
    834 /*
    835    Check if a disk has been spared or failed. If spared,
    836    redirect the I/O.
    837    If it has been failed, record it in the asm pointer.
    838    Fourth arg is whether data or parity.
    839 */
    840 void
    841 rf_ASMCheckStatus(
    842     RF_Raid_t * raidPtr,
    843     RF_PhysDiskAddr_t * pda_p,
    844     RF_AccessStripeMap_t * asm_p,
    845     RF_RaidDisk_t ** disks,
    846     int parity)
    847 {
    848 	RF_DiskStatus_t dstatus;
    849 	RF_RowCol_t frow, fcol;
    850 
    851 	dstatus = disks[pda_p->row][pda_p->col].status;
    852 
    853 	if (dstatus == rf_ds_spared) {
    854 		/* if the disk has been spared, redirect access to the spare */
    855 		frow = pda_p->row;
    856 		fcol = pda_p->col;
    857 		pda_p->row = disks[frow][fcol].spareRow;
    858 		pda_p->col = disks[frow][fcol].spareCol;
    859 	} else
    860 		if (dstatus == rf_ds_dist_spared) {
    861 			/* ditto if disk has been spared to dist spare space */
    862 			RF_RowCol_t or = pda_p->row, oc = pda_p->col;
    863 			RF_SectorNum_t oo = pda_p->startSector;
    864 
    865 			if (pda_p->type == RF_PDA_TYPE_DATA)
    866 				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
    867 			else
    868 				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
    869 
    870 			if (rf_mapDebug) {
    871 				printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
    872 				    pda_p->row, pda_p->col, (int) pda_p->startSector);
    873 			}
    874 		} else
    875 			if (RF_DEAD_DISK(dstatus)) {
    876 				/* if the disk is inaccessible, mark the
    877 				 * failure */
    878 				if (parity)
    879 					asm_p->numParityFailed++;
    880 				else {
    881 					asm_p->numDataFailed++;
    882 #if 0
    883 					/* XXX Do we really want this spewing
    884 					 * out on the console? GO */
    885 					printf("DATA_FAILED!\n");
    886 #endif
    887 				}
    888 				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
    889 				asm_p->numFailedPDAs++;
    890 #if 0
    891 				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
    892 				case 1:
    893 					asm_p->failedPDAs[0] = pda_p;
    894 					break;
    895 				case 2:
    896 					asm_p->failedPDAs[1] = pda_p;
    897 				default:
    898 					break;
    899 				}
    900 #endif
    901 			}
    902 	/* the redirected access should never span a stripe unit boundary */
    903 	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
    904 	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
    905 	RF_ASSERT(pda_p->col != -1);
    906 }
    907