rf_map.c revision 1.7 1 /* $NetBSD: rf_map.c,v 1.7 2001/10/04 15:58:54 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35 #include <dev/raidframe/raidframevar.h>
36
37 #include "rf_threadstuff.h"
38 #include "rf_raid.h"
39 #include "rf_general.h"
40 #include "rf_map.h"
41 #include "rf_freelist.h"
42 #include "rf_shutdown.h"
43
44 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
45 static void
46 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
47 int count);
48
49 /*****************************************************************************************
50 *
51 * MapAccess -- main 1st order mapping routine.
52 *
53 * Maps an access in the RAID address space to the corresponding set of physical disk
54 * addresses. The result is returned as a list of AccessStripeMap structures, one per
55 * stripe accessed. Each ASM structure contains a pointer to a list of PhysDiskAddr
56 * structures, which describe the physical locations touched by the user access. Note
57 * that this routine returns only static mapping information, i.e. the list of physical
58 * addresses returned does not necessarily identify the set of physical locations that
59 * will actually be read or written.
60 *
61 * The routine also maps the parity. The physical disk location returned always
62 * indicates the entire parity unit, even when only a subset of it is being accessed.
63 * This is because an access that is not stripe unit aligned but that spans a stripe
64 * unit boundary may require access two distinct portions of the parity unit, and we
65 * can't yet tell which portion(s) we'll actually need. We leave it up to the algorithm
66 * selection code to decide what subset of the parity unit to access.
67 *
68 * Note that addresses in the RAID address space must always be maintained as
69 * longs, instead of ints.
70 *
71 * This routine returns NULL if numBlocks is 0
72 *
73 ****************************************************************************************/
74
75 RF_AccessStripeMapHeader_t *
76 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
77 RF_Raid_t *raidPtr;
78 RF_RaidAddr_t raidAddress; /* starting address in RAID address
79 * space */
80 RF_SectorCount_t numBlocks; /* number of blocks in RAID address
81 * space to access */
82 caddr_t buffer; /* buffer to supply/receive data */
83 int remap; /* 1 => remap addresses to spare space */
84 {
85 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
86 RF_AccessStripeMapHeader_t *asm_hdr = NULL;
87 RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
88 int faultsTolerated = layoutPtr->map->faultsTolerated;
89 RF_RaidAddr_t startAddress = raidAddress; /* we'll change
90 * raidAddress along the
91 * way */
92 RF_RaidAddr_t endAddress = raidAddress + numBlocks;
93 RF_RaidDisk_t **disks = raidPtr->Disks;
94
95 RF_PhysDiskAddr_t *pda_p, *pda_q;
96 RF_StripeCount_t numStripes = 0;
97 RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
98 RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
99 RF_StripeCount_t totStripes;
100 RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
101 RF_AccessStripeMap_t *asmList, *t_asm;
102 RF_PhysDiskAddr_t *pdaList, *t_pda;
103
104 /* allocate all the ASMs and PDAs up front */
105 lastRaidAddr = raidAddress + numBlocks - 1;
106 stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
107 lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
108 totStripes = lastSID - stripeID + 1;
109 SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
110 lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
111
112 asmList = rf_AllocASMList(totStripes);
113 pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); /* may also need pda(s)
114 * per stripe for parity */
115
116 if (raidAddress + numBlocks > raidPtr->totalSectors) {
117 RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
118 (int) raidAddress);
119 return (NULL);
120 }
121 if (rf_mapDebug)
122 rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
123 for (; raidAddress < endAddress;) {
124 /* make the next stripe structure */
125 RF_ASSERT(asmList);
126 t_asm = asmList;
127 asmList = asmList->next;
128 memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
129 if (!asm_p)
130 asm_list = asm_p = t_asm;
131 else {
132 asm_p->next = t_asm;
133 asm_p = asm_p->next;
134 }
135 numStripes++;
136
137 /* map SUs from current location to the end of the stripe */
138 asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr,
139 raidAddress) */ stripeID++;
140 stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
141 stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
142 asm_p->raidAddress = raidAddress;
143 asm_p->endRaidAddress = stripeEndAddress;
144
145 /* map each stripe unit in the stripe */
146 pda_p = NULL;
147 startAddrWithinStripe = raidAddress; /* Raid addr of start of
148 * portion of access
149 * that is within this
150 * stripe */
151 for (; raidAddress < stripeEndAddress;) {
152 RF_ASSERT(pdaList);
153 t_pda = pdaList;
154 pdaList = pdaList->next;
155 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
156 if (!pda_p)
157 asm_p->physInfo = pda_p = t_pda;
158 else {
159 pda_p->next = t_pda;
160 pda_p = pda_p->next;
161 }
162
163 pda_p->type = RF_PDA_TYPE_DATA;
164 (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
165
166 /* mark any failures we find. failedPDA is don't-care
167 * if there is more than one failure */
168 pda_p->raidAddress = raidAddress; /* the RAID address
169 * corresponding to this
170 * physical disk address */
171 nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
172 pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
173 RF_ASSERT(pda_p->numSector != 0);
174 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
175 pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
176 asm_p->totalSectorsAccessed += pda_p->numSector;
177 asm_p->numStripeUnitsAccessed++;
178 asm_p->origRow = pda_p->row; /* redundant but
179 * harmless to do this
180 * in every loop
181 * iteration */
182
183 raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
184 }
185
186 /* Map the parity. At this stage, the startSector and
187 * numSector fields for the parity unit are always set to
188 * indicate the entire parity unit. We may modify this after
189 * mapping the data portion. */
190 switch (faultsTolerated) {
191 case 0:
192 break;
193 case 1: /* single fault tolerant */
194 RF_ASSERT(pdaList);
195 t_pda = pdaList;
196 pdaList = pdaList->next;
197 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
198 pda_p = asm_p->parityInfo = t_pda;
199 pda_p->type = RF_PDA_TYPE_PARITY;
200 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
201 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
202 pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
203 /* raidAddr may be needed to find unit to redirect to */
204 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
205 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
206 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
207
208 break;
209 case 2: /* two fault tolerant */
210 RF_ASSERT(pdaList && pdaList->next);
211 t_pda = pdaList;
212 pdaList = pdaList->next;
213 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
214 pda_p = asm_p->parityInfo = t_pda;
215 pda_p->type = RF_PDA_TYPE_PARITY;
216 t_pda = pdaList;
217 pdaList = pdaList->next;
218 memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
219 pda_q = asm_p->qInfo = t_pda;
220 pda_q->type = RF_PDA_TYPE_Q;
221 (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
222 &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
223 (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
224 &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
225 pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
226 /* raidAddr may be needed to find unit to redirect to */
227 pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
228 pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
229 /* failure mode stuff */
230 rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
231 rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
232 rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
233 rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
234 break;
235 }
236 }
237 RF_ASSERT(asmList == NULL && pdaList == NULL);
238 /* make the header structure */
239 asm_hdr = rf_AllocAccessStripeMapHeader();
240 RF_ASSERT(numStripes == totStripes);
241 asm_hdr->numStripes = numStripes;
242 asm_hdr->stripeMap = asm_list;
243
244 if (rf_mapDebug)
245 rf_PrintAccessStripeMap(asm_hdr);
246 return (asm_hdr);
247 }
248 /*****************************************************************************************
249 * This routine walks through an ASM list and marks the PDAs that have failed.
250 * It's called only when a disk failure causes an in-flight DAG to fail.
251 * The parity may consist of two components, but we want to use only one failedPDA
252 * pointer. Thus we set failedPDA to point to the first parity component, and rely
253 * on the rest of the code to do the right thing with this.
254 ****************************************************************************************/
255
256 void
257 rf_MarkFailuresInASMList(raidPtr, asm_h)
258 RF_Raid_t *raidPtr;
259 RF_AccessStripeMapHeader_t *asm_h;
260 {
261 RF_RaidDisk_t **disks = raidPtr->Disks;
262 RF_AccessStripeMap_t *asmap;
263 RF_PhysDiskAddr_t *pda;
264
265 for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
266 asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
267 asmap->numFailedPDAs = 0;
268 memset((char *) asmap->failedPDAs, 0,
269 RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
270 for (pda = asmap->physInfo; pda; pda = pda->next) {
271 if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
272 asmap->numDataFailed++;
273 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
274 asmap->numFailedPDAs++;
275 }
276 }
277 pda = asmap->parityInfo;
278 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
279 asmap->numParityFailed++;
280 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
281 asmap->numFailedPDAs++;
282 }
283 pda = asmap->qInfo;
284 if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
285 asmap->numQFailed++;
286 asmap->failedPDAs[asmap->numFailedPDAs] = pda;
287 asmap->numFailedPDAs++;
288 }
289 }
290 }
291 /*****************************************************************************************
292 *
293 * DuplicateASM -- duplicates an ASM and returns the new one
294 *
295 ****************************************************************************************/
296 RF_AccessStripeMap_t *
297 rf_DuplicateASM(asmap)
298 RF_AccessStripeMap_t *asmap;
299 {
300 RF_AccessStripeMap_t *new_asm;
301 RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
302
303 new_pda = NULL;
304 new_asm = rf_AllocAccessStripeMapComponent();
305 bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t));
306 new_asm->numFailedPDAs = 0; /* ??? */
307 new_asm->failedPDAs[0] = NULL;
308 new_asm->physInfo = NULL;
309 new_asm->parityInfo = NULL;
310 new_asm->next = NULL;
311
312 for (pda = asmap->physInfo; pda; pda = pda->next) { /* copy the physInfo
313 * list */
314 t_pda = rf_AllocPhysDiskAddr();
315 bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
316 t_pda->next = NULL;
317 if (!new_asm->physInfo) {
318 new_asm->physInfo = t_pda;
319 new_pda = t_pda;
320 } else {
321 new_pda->next = t_pda;
322 new_pda = new_pda->next;
323 }
324 if (pda == asmap->failedPDAs[0])
325 new_asm->failedPDAs[0] = t_pda;
326 }
327 for (pda = asmap->parityInfo; pda; pda = pda->next) { /* copy the parityInfo
328 * list */
329 t_pda = rf_AllocPhysDiskAddr();
330 bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
331 t_pda->next = NULL;
332 if (!new_asm->parityInfo) {
333 new_asm->parityInfo = t_pda;
334 new_pda = t_pda;
335 } else {
336 new_pda->next = t_pda;
337 new_pda = new_pda->next;
338 }
339 if (pda == asmap->failedPDAs[0])
340 new_asm->failedPDAs[0] = t_pda;
341 }
342 return (new_asm);
343 }
344 /*****************************************************************************************
345 *
346 * DuplicatePDA -- duplicates a PDA and returns the new one
347 *
348 ****************************************************************************************/
349 RF_PhysDiskAddr_t *
350 rf_DuplicatePDA(pda)
351 RF_PhysDiskAddr_t *pda;
352 {
353 RF_PhysDiskAddr_t *new;
354
355 new = rf_AllocPhysDiskAddr();
356 bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t));
357 return (new);
358 }
359 /*****************************************************************************************
360 *
361 * routines to allocate and free list elements. All allocation routines zero the
362 * structure before returning it.
363 *
364 * FreePhysDiskAddr is static. It should never be called directly, because
365 * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
366 *
367 ****************************************************************************************/
368
369 static RF_FreeList_t *rf_asmhdr_freelist;
370 #define RF_MAX_FREE_ASMHDR 128
371 #define RF_ASMHDR_INC 16
372 #define RF_ASMHDR_INITIAL 32
373
374 static RF_FreeList_t *rf_asm_freelist;
375 #define RF_MAX_FREE_ASM 192
376 #define RF_ASM_INC 24
377 #define RF_ASM_INITIAL 64
378
379 static RF_FreeList_t *rf_pda_freelist;
380 #define RF_MAX_FREE_PDA 192
381 #define RF_PDA_INC 24
382 #define RF_PDA_INITIAL 64
383
384 /* called at shutdown time. So far, all that is necessary is to release all the free lists */
385 static void rf_ShutdownMapModule(void *);
386 static void
387 rf_ShutdownMapModule(ignored)
388 void *ignored;
389 {
390 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
391 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
392 RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
393 }
394
395 int
396 rf_ConfigureMapModule(listp)
397 RF_ShutdownList_t **listp;
398 {
399 int rc;
400
401 RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
402 RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
403 if (rf_asmhdr_freelist == NULL) {
404 return (ENOMEM);
405 }
406 RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
407 RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
408 if (rf_asm_freelist == NULL) {
409 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
410 return (ENOMEM);
411 }
412 RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
413 RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
414 if (rf_pda_freelist == NULL) {
415 RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
416 RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
417 return (ENOMEM);
418 }
419 rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
420 if (rc) {
421 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
422 __LINE__, rc);
423 rf_ShutdownMapModule(NULL);
424 return (rc);
425 }
426 RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
427 (RF_AccessStripeMapHeader_t *));
428 RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
429 (RF_AccessStripeMap_t *));
430 RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
431 (RF_PhysDiskAddr_t *));
432
433 return (0);
434 }
435
436 RF_AccessStripeMapHeader_t *
437 rf_AllocAccessStripeMapHeader()
438 {
439 RF_AccessStripeMapHeader_t *p;
440
441 RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
442 memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
443
444 return (p);
445 }
446
447
448 void
449 rf_FreeAccessStripeMapHeader(p)
450 RF_AccessStripeMapHeader_t *p;
451 {
452 RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
453 }
454
455 RF_PhysDiskAddr_t *
456 rf_AllocPhysDiskAddr()
457 {
458 RF_PhysDiskAddr_t *p;
459
460 RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
461 memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
462
463 return (p);
464 }
465 /* allocates a list of PDAs, locking the free list only once
466 * when we have to call calloc, we do it one component at a time to simplify
467 * the process of freeing the list at program shutdown. This should not be
468 * much of a performance hit, because it should be very infrequently executed.
469 */
470 RF_PhysDiskAddr_t *
471 rf_AllocPDAList(count)
472 int count;
473 {
474 RF_PhysDiskAddr_t *p = NULL;
475
476 RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
477 return (p);
478 }
479
480 void
481 rf_FreePhysDiskAddr(p)
482 RF_PhysDiskAddr_t *p;
483 {
484 RF_FREELIST_FREE(rf_pda_freelist, p, next);
485 }
486
487 static void
488 rf_FreePDAList(l_start, l_end, count)
489 RF_PhysDiskAddr_t *l_start, *l_end; /* pointers to start and end
490 * of list */
491 int count; /* number of elements in list */
492 {
493 RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
494 }
495
496 RF_AccessStripeMap_t *
497 rf_AllocAccessStripeMapComponent()
498 {
499 RF_AccessStripeMap_t *p;
500
501 RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
502 memset((char *) p, 0, sizeof(RF_AccessStripeMap_t));
503
504 return (p);
505 }
506 /* this is essentially identical to AllocPDAList. I should combine the two.
507 * when we have to call calloc, we do it one component at a time to simplify
508 * the process of freeing the list at program shutdown. This should not be
509 * much of a performance hit, because it should be very infrequently executed.
510 */
511 RF_AccessStripeMap_t *
512 rf_AllocASMList(count)
513 int count;
514 {
515 RF_AccessStripeMap_t *p = NULL;
516
517 RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
518 return (p);
519 }
520
521 void
522 rf_FreeAccessStripeMapComponent(p)
523 RF_AccessStripeMap_t *p;
524 {
525 RF_FREELIST_FREE(rf_asm_freelist, p, next);
526 }
527
528 static void
529 rf_FreeASMList(l_start, l_end, count)
530 RF_AccessStripeMap_t *l_start, *l_end;
531 int count;
532 {
533 RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
534 }
535
536 void
537 rf_FreeAccessStripeMap(hdr)
538 RF_AccessStripeMapHeader_t *hdr;
539 {
540 RF_AccessStripeMap_t *p, *pt = NULL;
541 RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
542 int count = 0, t, asm_count = 0;
543
544 for (p = hdr->stripeMap; p; p = p->next) {
545
546 /* link the 3 pda lists into the accumulating pda list */
547
548 if (!pdaList)
549 pdaList = p->qInfo;
550 else
551 pdaEnd->next = p->qInfo;
552 for (trailer = NULL, pdp = p->qInfo; pdp;) {
553 trailer = pdp;
554 pdp = pdp->next;
555 count++;
556 }
557 if (trailer)
558 pdaEnd = trailer;
559
560 if (!pdaList)
561 pdaList = p->parityInfo;
562 else
563 pdaEnd->next = p->parityInfo;
564 for (trailer = NULL, pdp = p->parityInfo; pdp;) {
565 trailer = pdp;
566 pdp = pdp->next;
567 count++;
568 }
569 if (trailer)
570 pdaEnd = trailer;
571
572 if (!pdaList)
573 pdaList = p->physInfo;
574 else
575 pdaEnd->next = p->physInfo;
576 for (trailer = NULL, pdp = p->physInfo; pdp;) {
577 trailer = pdp;
578 pdp = pdp->next;
579 count++;
580 }
581 if (trailer)
582 pdaEnd = trailer;
583
584 pt = p;
585 asm_count++;
586 }
587
588 /* debug only */
589 for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
590 t++;
591 RF_ASSERT(t == count);
592
593 if (pdaList)
594 rf_FreePDAList(pdaList, pdaEnd, count);
595 rf_FreeASMList(hdr->stripeMap, pt, asm_count);
596 rf_FreeAccessStripeMapHeader(hdr);
597 }
598 /* We can't use the large write optimization if there are any failures in the stripe.
599 * In the declustered layout, there is no way to immediately determine what disks
600 * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
601 * The reason we map the parity instead of just using asm->parityInfo->col is because
602 * the latter may have been already redirected to a spare drive, which would
603 * mess up the computation of the stripe offset.
604 *
605 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
606 */
607 int
608 rf_CheckStripeForFailures(raidPtr, asmap)
609 RF_Raid_t *raidPtr;
610 RF_AccessStripeMap_t *asmap;
611 {
612 RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
613 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
614 RF_StripeCount_t stripeOffset;
615 int numFailures;
616 RF_RaidAddr_t sosAddr;
617 RF_SectorNum_t diskOffset, poffset;
618 RF_RowCol_t testrow;
619
620 /* quick out in the fault-free case. */
621 RF_LOCK_MUTEX(raidPtr->mutex);
622 numFailures = raidPtr->numFailures;
623 RF_UNLOCK_MUTEX(raidPtr->mutex);
624 if (numFailures == 0)
625 return (0);
626
627 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
628 row = asmap->physInfo->row;
629 (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
630 (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0); /* get pcol */
631
632 /* this need not be true if we've redirected the access to a spare in
633 * another row RF_ASSERT(row == testrow); */
634 stripeOffset = 0;
635 for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
636 if (diskids[i] != pcol) {
637 if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
638 if (raidPtr->status[testrow] != rf_rs_reconstructing)
639 return (1);
640 RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
641 layoutPtr->map->MapSector(raidPtr,
642 sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
643 &trow, &tcol, &diskOffset, 0);
644 RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
645 if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
646 return (1);
647 asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
648 return (0);
649 }
650 stripeOffset++;
651 }
652 }
653 return (0);
654 }
655 /*
656 return the number of failed data units in the stripe.
657 */
658
659 int
660 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
661 RF_Raid_t *raidPtr;
662 RF_AccessStripeMap_t *asmap;
663 {
664 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
665 RF_RowCol_t trow, tcol, row, i;
666 RF_SectorNum_t diskOffset;
667 RF_RaidAddr_t sosAddr;
668 int numFailures;
669
670 /* quick out in the fault-free case. */
671 RF_LOCK_MUTEX(raidPtr->mutex);
672 numFailures = raidPtr->numFailures;
673 RF_UNLOCK_MUTEX(raidPtr->mutex);
674 if (numFailures == 0)
675 return (0);
676 numFailures = 0;
677
678 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
679 row = asmap->physInfo->row;
680 for (i = 0; i < layoutPtr->numDataCol; i++) {
681 (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
682 &trow, &tcol, &diskOffset, 0);
683 if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
684 numFailures++;
685 }
686
687 return numFailures;
688 }
689
690
691 /*****************************************************************************************
692 *
693 * debug routines
694 *
695 ****************************************************************************************/
696
697 void
698 rf_PrintAccessStripeMap(asm_h)
699 RF_AccessStripeMapHeader_t *asm_h;
700 {
701 rf_PrintFullAccessStripeMap(asm_h, 0);
702 }
703
704 void
705 rf_PrintFullAccessStripeMap(asm_h, prbuf)
706 RF_AccessStripeMapHeader_t *asm_h;
707 int prbuf; /* flag to print buffer pointers */
708 {
709 int i;
710 RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
711 RF_PhysDiskAddr_t *p;
712 printf("%d stripes total\n", (int) asm_h->numStripes);
713 for (; asmap; asmap = asmap->next) {
714 /* printf("Num failures: %d\n",asmap->numDataFailed); */
715 /* printf("Num sectors:
716 * %d\n",(int)asmap->totalSectorsAccessed); */
717 printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
718 (int) asmap->stripeID,
719 (int) asmap->totalSectorsAccessed,
720 (int) asmap->numDataFailed,
721 (int) asmap->numParityFailed);
722 if (asmap->parityInfo) {
723 printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
724 (int) asmap->parityInfo->startSector,
725 (int) (asmap->parityInfo->startSector +
726 asmap->parityInfo->numSector - 1));
727 if (prbuf)
728 printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
729 if (asmap->parityInfo->next) {
730 printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
731 asmap->parityInfo->next->col,
732 (int) asmap->parityInfo->next->startSector,
733 (int) (asmap->parityInfo->next->startSector +
734 asmap->parityInfo->next->numSector - 1));
735 if (prbuf)
736 printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
737 RF_ASSERT(asmap->parityInfo->next->next == NULL);
738 }
739 printf("]\n\t");
740 }
741 for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
742 printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
743 (int) (p->startSector + p->numSector - 1));
744 if (prbuf)
745 printf("b0x%lx ", (unsigned long) p->bufPtr);
746 if (i && !(i & 1))
747 printf("\n\t");
748 }
749 printf("\n");
750 p = asm_h->stripeMap->failedPDAs[0];
751 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
752 printf("[multiple failures]\n");
753 else
754 if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
755 printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
756 (int) p->startSector, (int) (p->startSector + p->numSector - 1));
757 }
758 }
759
760 void
761 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
762 RF_Raid_t *raidPtr;
763 RF_RaidAddr_t raidAddr;
764 RF_SectorCount_t numBlocks;
765 {
766 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
767 RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
768
769 printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
770 for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
771 printf("%d (0x%x), ", (int) ra, (int) ra);
772 }
773 printf("\n");
774 printf("Offset into stripe unit: %d (0x%x)\n",
775 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
776 (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
777 }
778 /*
779 given a parity descriptor and the starting address within a stripe,
780 range restrict the parity descriptor to touch only the correct stuff.
781 */
782 void
783 rf_ASMParityAdjust(
784 RF_PhysDiskAddr_t * toAdjust,
785 RF_StripeNum_t startAddrWithinStripe,
786 RF_SectorNum_t endAddress,
787 RF_RaidLayout_t * layoutPtr,
788 RF_AccessStripeMap_t * asm_p)
789 {
790 RF_PhysDiskAddr_t *new_pda;
791
792 /* when we're accessing only a portion of one stripe unit, we want the
793 * parity descriptor to identify only the chunk of parity associated
794 * with the data. When the access spans exactly one stripe unit
795 * boundary and is less than a stripe unit in size, it uses two
796 * disjoint regions of the parity unit. When an access spans more
797 * than one stripe unit boundary, it uses all of the parity unit.
798 *
799 * To better handle the case where stripe units are small, we may
800 * eventually want to change the 2nd case so that if the SU size is
801 * below some threshold, we just read/write the whole thing instead of
802 * breaking it up into two accesses. */
803 if (asm_p->numStripeUnitsAccessed == 1) {
804 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
805 toAdjust->startSector += x;
806 toAdjust->raidAddress += x;
807 toAdjust->numSector = asm_p->physInfo->numSector;
808 RF_ASSERT(toAdjust->numSector != 0);
809 } else
810 if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
811 int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
812
813 /* create a second pda and copy the parity map info
814 * into it */
815 RF_ASSERT(toAdjust->next == NULL);
816 new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
817 *new_pda = *toAdjust; /* structure assignment */
818 new_pda->next = NULL;
819
820 /* adjust the start sector & number of blocks for the
821 * first parity pda */
822 toAdjust->startSector += x;
823 toAdjust->raidAddress += x;
824 toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
825 RF_ASSERT(toAdjust->numSector != 0);
826
827 /* adjust the second pda */
828 new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
829 /* new_pda->raidAddress =
830 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
831 * toAdjust->raidAddress); */
832 RF_ASSERT(new_pda->numSector != 0);
833 }
834 }
835 /*
836 Check if a disk has been spared or failed. If spared,
837 redirect the I/O.
838 If it has been failed, record it in the asm pointer.
839 Fourth arg is whether data or parity.
840 */
841 void
842 rf_ASMCheckStatus(
843 RF_Raid_t * raidPtr,
844 RF_PhysDiskAddr_t * pda_p,
845 RF_AccessStripeMap_t * asm_p,
846 RF_RaidDisk_t ** disks,
847 int parity)
848 {
849 RF_DiskStatus_t dstatus;
850 RF_RowCol_t frow, fcol;
851
852 dstatus = disks[pda_p->row][pda_p->col].status;
853
854 if (dstatus == rf_ds_spared) {
855 /* if the disk has been spared, redirect access to the spare */
856 frow = pda_p->row;
857 fcol = pda_p->col;
858 pda_p->row = disks[frow][fcol].spareRow;
859 pda_p->col = disks[frow][fcol].spareCol;
860 } else
861 if (dstatus == rf_ds_dist_spared) {
862 /* ditto if disk has been spared to dist spare space */
863 RF_RowCol_t or = pda_p->row, oc = pda_p->col;
864 RF_SectorNum_t oo = pda_p->startSector;
865
866 if (pda_p->type == RF_PDA_TYPE_DATA)
867 raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
868 else
869 raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
870
871 if (rf_mapDebug) {
872 printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
873 pda_p->row, pda_p->col, (int) pda_p->startSector);
874 }
875 } else
876 if (RF_DEAD_DISK(dstatus)) {
877 /* if the disk is inaccessible, mark the
878 * failure */
879 if (parity)
880 asm_p->numParityFailed++;
881 else {
882 asm_p->numDataFailed++;
883 #if 0
884 /* XXX Do we really want this spewing
885 * out on the console? GO */
886 printf("DATA_FAILED!\n");
887 #endif
888 }
889 asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
890 asm_p->numFailedPDAs++;
891 #if 0
892 switch (asm_p->numParityFailed + asm_p->numDataFailed) {
893 case 1:
894 asm_p->failedPDAs[0] = pda_p;
895 break;
896 case 2:
897 asm_p->failedPDAs[1] = pda_p;
898 default:
899 break;
900 }
901 #endif
902 }
903 /* the redirected access should never span a stripe unit boundary */
904 RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
905 rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
906 RF_ASSERT(pda_p->col != -1);
907 }
908