Home | History | Annotate | Line # | Download | only in raidframe
rf_map.c revision 1.7
      1 /*	$NetBSD: rf_map.c,v 1.7 2001/10/04 15:58:54 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /**************************************************************************
     30  *
     31  * map.c -- main code for mapping RAID addresses to physical disk addresses
     32  *
     33  **************************************************************************/
     34 
     35 #include <dev/raidframe/raidframevar.h>
     36 
     37 #include "rf_threadstuff.h"
     38 #include "rf_raid.h"
     39 #include "rf_general.h"
     40 #include "rf_map.h"
     41 #include "rf_freelist.h"
     42 #include "rf_shutdown.h"
     43 
     44 static void rf_FreePDAList(RF_PhysDiskAddr_t * start, RF_PhysDiskAddr_t * end, int count);
     45 static void
     46 rf_FreeASMList(RF_AccessStripeMap_t * start, RF_AccessStripeMap_t * end,
     47     int count);
     48 
     49 /*****************************************************************************************
     50  *
     51  * MapAccess -- main 1st order mapping routine.
     52  *
     53  * Maps an access in the RAID address space to the corresponding set of physical disk
     54  * addresses.  The result is returned as a list of AccessStripeMap structures, one per
     55  * stripe accessed.  Each ASM structure contains a pointer to a list of PhysDiskAddr
     56  * structures, which describe the physical locations touched by the user access.  Note
     57  * that this routine returns only static mapping information, i.e. the list of physical
     58  * addresses returned does not necessarily identify the set of physical locations that
     59  * will actually be read or written.
     60  *
     61  * The routine also maps the parity.  The physical disk location returned always
     62  * indicates the entire parity unit, even when only a subset of it is being accessed.
     63  * This is because an access that is not stripe unit aligned but that spans a stripe
     64  * unit boundary may require access two distinct portions of the parity unit, and we
     65  * can't yet tell which portion(s) we'll actually need.  We leave it up to the algorithm
     66  * selection code to decide what subset of the parity unit to access.
     67  *
     68  * Note that addresses in the RAID address space must always be maintained as
     69  * longs, instead of ints.
     70  *
     71  * This routine returns NULL if numBlocks is 0
     72  *
     73  ****************************************************************************************/
     74 
     75 RF_AccessStripeMapHeader_t *
     76 rf_MapAccess(raidPtr, raidAddress, numBlocks, buffer, remap)
     77 	RF_Raid_t *raidPtr;
     78 	RF_RaidAddr_t raidAddress;	/* starting address in RAID address
     79 					 * space */
     80 	RF_SectorCount_t numBlocks;	/* number of blocks in RAID address
     81 					 * space to access */
     82 	caddr_t buffer;		/* buffer to supply/receive data */
     83 	int     remap;		/* 1 => remap addresses to spare space */
     84 {
     85 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     86 	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
     87 	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
     88 	int     faultsTolerated = layoutPtr->map->faultsTolerated;
     89 	RF_RaidAddr_t startAddress = raidAddress;	/* we'll change
     90 							 * raidAddress along the
     91 							 * way */
     92 	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
     93 	RF_RaidDisk_t **disks = raidPtr->Disks;
     94 
     95 	RF_PhysDiskAddr_t *pda_p, *pda_q;
     96 	RF_StripeCount_t numStripes = 0;
     97 	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress;
     98 	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
     99 	RF_StripeCount_t totStripes;
    100 	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
    101 	RF_AccessStripeMap_t *asmList, *t_asm;
    102 	RF_PhysDiskAddr_t *pdaList, *t_pda;
    103 
    104 	/* allocate all the ASMs and PDAs up front */
    105 	lastRaidAddr = raidAddress + numBlocks - 1;
    106 	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
    107 	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
    108 	totStripes = lastSID - stripeID + 1;
    109 	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
    110 	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
    111 
    112 	asmList = rf_AllocASMList(totStripes);
    113 	pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes);	/* may also need pda(s)
    114 											 * per stripe for parity */
    115 
    116 	if (raidAddress + numBlocks > raidPtr->totalSectors) {
    117 		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
    118 		    (int) raidAddress);
    119 		return (NULL);
    120 	}
    121 	if (rf_mapDebug)
    122 		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
    123 	for (; raidAddress < endAddress;) {
    124 		/* make the next stripe structure */
    125 		RF_ASSERT(asmList);
    126 		t_asm = asmList;
    127 		asmList = asmList->next;
    128 		memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
    129 		if (!asm_p)
    130 			asm_list = asm_p = t_asm;
    131 		else {
    132 			asm_p->next = t_asm;
    133 			asm_p = asm_p->next;
    134 		}
    135 		numStripes++;
    136 
    137 		/* map SUs from current location to the end of the stripe */
    138 		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
    139 		        raidAddress) */ stripeID++;
    140 		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
    141 		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
    142 		asm_p->raidAddress = raidAddress;
    143 		asm_p->endRaidAddress = stripeEndAddress;
    144 
    145 		/* map each stripe unit in the stripe */
    146 		pda_p = NULL;
    147 		startAddrWithinStripe = raidAddress;	/* Raid addr of start of
    148 							 * portion of access
    149 							 * that is within this
    150 							 * stripe */
    151 		for (; raidAddress < stripeEndAddress;) {
    152 			RF_ASSERT(pdaList);
    153 			t_pda = pdaList;
    154 			pdaList = pdaList->next;
    155 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    156 			if (!pda_p)
    157 				asm_p->physInfo = pda_p = t_pda;
    158 			else {
    159 				pda_p->next = t_pda;
    160 				pda_p = pda_p->next;
    161 			}
    162 
    163 			pda_p->type = RF_PDA_TYPE_DATA;
    164 			(layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    165 
    166 			/* mark any failures we find.  failedPDA is don't-care
    167 			 * if there is more than one failure */
    168 			pda_p->raidAddress = raidAddress;	/* the RAID address
    169 								 * corresponding to this
    170 								 * physical disk address */
    171 			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
    172 			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
    173 			RF_ASSERT(pda_p->numSector != 0);
    174 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
    175 			pda_p->bufPtr = buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
    176 			asm_p->totalSectorsAccessed += pda_p->numSector;
    177 			asm_p->numStripeUnitsAccessed++;
    178 			asm_p->origRow = pda_p->row;	/* redundant but
    179 							 * harmless to do this
    180 							 * in every loop
    181 							 * iteration */
    182 
    183 			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
    184 		}
    185 
    186 		/* Map the parity. At this stage, the startSector and
    187 		 * numSector fields for the parity unit are always set to
    188 		 * indicate the entire parity unit. We may modify this after
    189 		 * mapping the data portion. */
    190 		switch (faultsTolerated) {
    191 		case 0:
    192 			break;
    193 		case 1:	/* single fault tolerant */
    194 			RF_ASSERT(pdaList);
    195 			t_pda = pdaList;
    196 			pdaList = pdaList->next;
    197 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    198 			pda_p = asm_p->parityInfo = t_pda;
    199 			pda_p->type = RF_PDA_TYPE_PARITY;
    200 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    201 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    202 			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    203 			/* raidAddr may be needed to find unit to redirect to */
    204 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    205 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    206 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    207 
    208 			break;
    209 		case 2:	/* two fault tolerant */
    210 			RF_ASSERT(pdaList && pdaList->next);
    211 			t_pda = pdaList;
    212 			pdaList = pdaList->next;
    213 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    214 			pda_p = asm_p->parityInfo = t_pda;
    215 			pda_p->type = RF_PDA_TYPE_PARITY;
    216 			t_pda = pdaList;
    217 			pdaList = pdaList->next;
    218 			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
    219 			pda_q = asm_p->qInfo = t_pda;
    220 			pda_q->type = RF_PDA_TYPE_Q;
    221 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    222 			    &(pda_p->row), &(pda_p->col), &(pda_p->startSector), remap);
    223 			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    224 			    &(pda_q->row), &(pda_q->col), &(pda_q->startSector), remap);
    225 			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    226 			/* raidAddr may be needed to find unit to redirect to */
    227 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    228 			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    229 			/* failure mode stuff */
    230 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    231 			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
    232 			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    233 			rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    234 			break;
    235 		}
    236 	}
    237 	RF_ASSERT(asmList == NULL && pdaList == NULL);
    238 	/* make the header structure */
    239 	asm_hdr = rf_AllocAccessStripeMapHeader();
    240 	RF_ASSERT(numStripes == totStripes);
    241 	asm_hdr->numStripes = numStripes;
    242 	asm_hdr->stripeMap = asm_list;
    243 
    244 	if (rf_mapDebug)
    245 		rf_PrintAccessStripeMap(asm_hdr);
    246 	return (asm_hdr);
    247 }
    248 /*****************************************************************************************
    249  * This routine walks through an ASM list and marks the PDAs that have failed.
    250  * It's called only when a disk failure causes an in-flight DAG to fail.
    251  * The parity may consist of two components, but we want to use only one failedPDA
    252  * pointer.  Thus we set failedPDA to point to the first parity component, and rely
    253  * on the rest of the code to do the right thing with this.
    254  ****************************************************************************************/
    255 
    256 void
    257 rf_MarkFailuresInASMList(raidPtr, asm_h)
    258 	RF_Raid_t *raidPtr;
    259 	RF_AccessStripeMapHeader_t *asm_h;
    260 {
    261 	RF_RaidDisk_t **disks = raidPtr->Disks;
    262 	RF_AccessStripeMap_t *asmap;
    263 	RF_PhysDiskAddr_t *pda;
    264 
    265 	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
    266 		asmap->numDataFailed = asmap->numParityFailed = asmap->numQFailed = 0;
    267 		asmap->numFailedPDAs = 0;
    268 		memset((char *) asmap->failedPDAs, 0,
    269 		    RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
    270 		for (pda = asmap->physInfo; pda; pda = pda->next) {
    271 			if (RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    272 				asmap->numDataFailed++;
    273 				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    274 				asmap->numFailedPDAs++;
    275 			}
    276 		}
    277 		pda = asmap->parityInfo;
    278 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    279 			asmap->numParityFailed++;
    280 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    281 			asmap->numFailedPDAs++;
    282 		}
    283 		pda = asmap->qInfo;
    284 		if (pda && RF_DEAD_DISK(disks[pda->row][pda->col].status)) {
    285 			asmap->numQFailed++;
    286 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    287 			asmap->numFailedPDAs++;
    288 		}
    289 	}
    290 }
    291 /*****************************************************************************************
    292  *
    293  * DuplicateASM -- duplicates an ASM and returns the new one
    294  *
    295  ****************************************************************************************/
    296 RF_AccessStripeMap_t *
    297 rf_DuplicateASM(asmap)
    298 	RF_AccessStripeMap_t *asmap;
    299 {
    300 	RF_AccessStripeMap_t *new_asm;
    301 	RF_PhysDiskAddr_t *pda, *new_pda, *t_pda;
    302 
    303 	new_pda = NULL;
    304 	new_asm = rf_AllocAccessStripeMapComponent();
    305 	bcopy((char *) asmap, (char *) new_asm, sizeof(RF_AccessStripeMap_t));
    306 	new_asm->numFailedPDAs = 0;	/* ??? */
    307 	new_asm->failedPDAs[0] = NULL;
    308 	new_asm->physInfo = NULL;
    309 	new_asm->parityInfo = NULL;
    310 	new_asm->next = NULL;
    311 
    312 	for (pda = asmap->physInfo; pda; pda = pda->next) {	/* copy the physInfo
    313 								 * list */
    314 		t_pda = rf_AllocPhysDiskAddr();
    315 		bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
    316 		t_pda->next = NULL;
    317 		if (!new_asm->physInfo) {
    318 			new_asm->physInfo = t_pda;
    319 			new_pda = t_pda;
    320 		} else {
    321 			new_pda->next = t_pda;
    322 			new_pda = new_pda->next;
    323 		}
    324 		if (pda == asmap->failedPDAs[0])
    325 			new_asm->failedPDAs[0] = t_pda;
    326 	}
    327 	for (pda = asmap->parityInfo; pda; pda = pda->next) {	/* copy the parityInfo
    328 								 * list */
    329 		t_pda = rf_AllocPhysDiskAddr();
    330 		bcopy((char *) pda, (char *) t_pda, sizeof(RF_PhysDiskAddr_t));
    331 		t_pda->next = NULL;
    332 		if (!new_asm->parityInfo) {
    333 			new_asm->parityInfo = t_pda;
    334 			new_pda = t_pda;
    335 		} else {
    336 			new_pda->next = t_pda;
    337 			new_pda = new_pda->next;
    338 		}
    339 		if (pda == asmap->failedPDAs[0])
    340 			new_asm->failedPDAs[0] = t_pda;
    341 	}
    342 	return (new_asm);
    343 }
    344 /*****************************************************************************************
    345  *
    346  * DuplicatePDA -- duplicates a PDA and returns the new one
    347  *
    348  ****************************************************************************************/
    349 RF_PhysDiskAddr_t *
    350 rf_DuplicatePDA(pda)
    351 	RF_PhysDiskAddr_t *pda;
    352 {
    353 	RF_PhysDiskAddr_t *new;
    354 
    355 	new = rf_AllocPhysDiskAddr();
    356 	bcopy((char *) pda, (char *) new, sizeof(RF_PhysDiskAddr_t));
    357 	return (new);
    358 }
    359 /*****************************************************************************************
    360  *
    361  * routines to allocate and free list elements.  All allocation routines zero the
    362  * structure before returning it.
    363  *
    364  * FreePhysDiskAddr is static.  It should never be called directly, because
    365  * FreeAccessStripeMap takes care of freeing the PhysDiskAddr list.
    366  *
    367  ****************************************************************************************/
    368 
    369 static RF_FreeList_t *rf_asmhdr_freelist;
    370 #define RF_MAX_FREE_ASMHDR 128
    371 #define RF_ASMHDR_INC       16
    372 #define RF_ASMHDR_INITIAL   32
    373 
    374 static RF_FreeList_t *rf_asm_freelist;
    375 #define RF_MAX_FREE_ASM 192
    376 #define RF_ASM_INC       24
    377 #define RF_ASM_INITIAL   64
    378 
    379 static RF_FreeList_t *rf_pda_freelist;
    380 #define RF_MAX_FREE_PDA 192
    381 #define RF_PDA_INC       24
    382 #define RF_PDA_INITIAL   64
    383 
    384 /* called at shutdown time.  So far, all that is necessary is to release all the free lists */
    385 static void rf_ShutdownMapModule(void *);
    386 static void
    387 rf_ShutdownMapModule(ignored)
    388 	void   *ignored;
    389 {
    390 	RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    391 	RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
    392 	RF_FREELIST_DESTROY(rf_asm_freelist, next, (RF_AccessStripeMap_t *));
    393 }
    394 
    395 int
    396 rf_ConfigureMapModule(listp)
    397 	RF_ShutdownList_t **listp;
    398 {
    399 	int     rc;
    400 
    401 	RF_FREELIST_CREATE(rf_asmhdr_freelist, RF_MAX_FREE_ASMHDR,
    402 	    RF_ASMHDR_INC, sizeof(RF_AccessStripeMapHeader_t));
    403 	if (rf_asmhdr_freelist == NULL) {
    404 		return (ENOMEM);
    405 	}
    406 	RF_FREELIST_CREATE(rf_asm_freelist, RF_MAX_FREE_ASM,
    407 	    RF_ASM_INC, sizeof(RF_AccessStripeMap_t));
    408 	if (rf_asm_freelist == NULL) {
    409 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    410 		return (ENOMEM);
    411 	}
    412 	RF_FREELIST_CREATE(rf_pda_freelist, RF_MAX_FREE_PDA,
    413 	    RF_PDA_INC, sizeof(RF_PhysDiskAddr_t));
    414 	if (rf_pda_freelist == NULL) {
    415 		RF_FREELIST_DESTROY(rf_asmhdr_freelist, next, (RF_AccessStripeMapHeader_t *));
    416 		RF_FREELIST_DESTROY(rf_pda_freelist, next, (RF_PhysDiskAddr_t *));
    417 		return (ENOMEM);
    418 	}
    419 	rc = rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
    420 	if (rc) {
    421 		RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n", __FILE__,
    422 		    __LINE__, rc);
    423 		rf_ShutdownMapModule(NULL);
    424 		return (rc);
    425 	}
    426 	RF_FREELIST_PRIME(rf_asmhdr_freelist, RF_ASMHDR_INITIAL, next,
    427 	    (RF_AccessStripeMapHeader_t *));
    428 	RF_FREELIST_PRIME(rf_asm_freelist, RF_ASM_INITIAL, next,
    429 	    (RF_AccessStripeMap_t *));
    430 	RF_FREELIST_PRIME(rf_pda_freelist, RF_PDA_INITIAL, next,
    431 	    (RF_PhysDiskAddr_t *));
    432 
    433 	return (0);
    434 }
    435 
    436 RF_AccessStripeMapHeader_t *
    437 rf_AllocAccessStripeMapHeader()
    438 {
    439 	RF_AccessStripeMapHeader_t *p;
    440 
    441 	RF_FREELIST_GET(rf_asmhdr_freelist, p, next, (RF_AccessStripeMapHeader_t *));
    442 	memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
    443 
    444 	return (p);
    445 }
    446 
    447 
    448 void
    449 rf_FreeAccessStripeMapHeader(p)
    450 	RF_AccessStripeMapHeader_t *p;
    451 {
    452 	RF_FREELIST_FREE(rf_asmhdr_freelist, p, next);
    453 }
    454 
    455 RF_PhysDiskAddr_t *
    456 rf_AllocPhysDiskAddr()
    457 {
    458 	RF_PhysDiskAddr_t *p;
    459 
    460 	RF_FREELIST_GET(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *));
    461 	memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
    462 
    463 	return (p);
    464 }
    465 /* allocates a list of PDAs, locking the free list only once
    466  * when we have to call calloc, we do it one component at a time to simplify
    467  * the process of freeing the list at program shutdown.  This should not be
    468  * much of a performance hit, because it should be very infrequently executed.
    469  */
    470 RF_PhysDiskAddr_t *
    471 rf_AllocPDAList(count)
    472 	int     count;
    473 {
    474 	RF_PhysDiskAddr_t *p = NULL;
    475 
    476 	RF_FREELIST_GET_N(rf_pda_freelist, p, next, (RF_PhysDiskAddr_t *), count);
    477 	return (p);
    478 }
    479 
    480 void
    481 rf_FreePhysDiskAddr(p)
    482 	RF_PhysDiskAddr_t *p;
    483 {
    484 	RF_FREELIST_FREE(rf_pda_freelist, p, next);
    485 }
    486 
    487 static void
    488 rf_FreePDAList(l_start, l_end, count)
    489 	RF_PhysDiskAddr_t *l_start, *l_end;	/* pointers to start and end
    490 						 * of list */
    491 	int     count;		/* number of elements in list */
    492 {
    493 	RF_FREELIST_FREE_N(rf_pda_freelist, l_start, next, (RF_PhysDiskAddr_t *), count);
    494 }
    495 
    496 RF_AccessStripeMap_t *
    497 rf_AllocAccessStripeMapComponent()
    498 {
    499 	RF_AccessStripeMap_t *p;
    500 
    501 	RF_FREELIST_GET(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *));
    502 	memset((char *) p, 0, sizeof(RF_AccessStripeMap_t));
    503 
    504 	return (p);
    505 }
    506 /* this is essentially identical to AllocPDAList.  I should combine the two.
    507  * when we have to call calloc, we do it one component at a time to simplify
    508  * the process of freeing the list at program shutdown.  This should not be
    509  * much of a performance hit, because it should be very infrequently executed.
    510  */
    511 RF_AccessStripeMap_t *
    512 rf_AllocASMList(count)
    513 	int     count;
    514 {
    515 	RF_AccessStripeMap_t *p = NULL;
    516 
    517 	RF_FREELIST_GET_N(rf_asm_freelist, p, next, (RF_AccessStripeMap_t *), count);
    518 	return (p);
    519 }
    520 
    521 void
    522 rf_FreeAccessStripeMapComponent(p)
    523 	RF_AccessStripeMap_t *p;
    524 {
    525 	RF_FREELIST_FREE(rf_asm_freelist, p, next);
    526 }
    527 
    528 static void
    529 rf_FreeASMList(l_start, l_end, count)
    530 	RF_AccessStripeMap_t *l_start, *l_end;
    531 	int     count;
    532 {
    533 	RF_FREELIST_FREE_N(rf_asm_freelist, l_start, next, (RF_AccessStripeMap_t *), count);
    534 }
    535 
    536 void
    537 rf_FreeAccessStripeMap(hdr)
    538 	RF_AccessStripeMapHeader_t *hdr;
    539 {
    540 	RF_AccessStripeMap_t *p, *pt = NULL;
    541 	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
    542 	int     count = 0, t, asm_count = 0;
    543 
    544 	for (p = hdr->stripeMap; p; p = p->next) {
    545 
    546 		/* link the 3 pda lists into the accumulating pda list */
    547 
    548 		if (!pdaList)
    549 			pdaList = p->qInfo;
    550 		else
    551 			pdaEnd->next = p->qInfo;
    552 		for (trailer = NULL, pdp = p->qInfo; pdp;) {
    553 			trailer = pdp;
    554 			pdp = pdp->next;
    555 			count++;
    556 		}
    557 		if (trailer)
    558 			pdaEnd = trailer;
    559 
    560 		if (!pdaList)
    561 			pdaList = p->parityInfo;
    562 		else
    563 			pdaEnd->next = p->parityInfo;
    564 		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
    565 			trailer = pdp;
    566 			pdp = pdp->next;
    567 			count++;
    568 		}
    569 		if (trailer)
    570 			pdaEnd = trailer;
    571 
    572 		if (!pdaList)
    573 			pdaList = p->physInfo;
    574 		else
    575 			pdaEnd->next = p->physInfo;
    576 		for (trailer = NULL, pdp = p->physInfo; pdp;) {
    577 			trailer = pdp;
    578 			pdp = pdp->next;
    579 			count++;
    580 		}
    581 		if (trailer)
    582 			pdaEnd = trailer;
    583 
    584 		pt = p;
    585 		asm_count++;
    586 	}
    587 
    588 	/* debug only */
    589 	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
    590 		t++;
    591 	RF_ASSERT(t == count);
    592 
    593 	if (pdaList)
    594 		rf_FreePDAList(pdaList, pdaEnd, count);
    595 	rf_FreeASMList(hdr->stripeMap, pt, asm_count);
    596 	rf_FreeAccessStripeMapHeader(hdr);
    597 }
    598 /* We can't use the large write optimization if there are any failures in the stripe.
    599  * In the declustered layout, there is no way to immediately determine what disks
    600  * constitute a stripe, so we actually have to hunt through the stripe looking for failures.
    601  * The reason we map the parity instead of just using asm->parityInfo->col is because
    602  * the latter may have been already redirected to a spare drive, which would
    603  * mess up the computation of the stripe offset.
    604  *
    605  * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.
    606  */
    607 int
    608 rf_CheckStripeForFailures(raidPtr, asmap)
    609 	RF_Raid_t *raidPtr;
    610 	RF_AccessStripeMap_t *asmap;
    611 {
    612 	RF_RowCol_t trow, tcol, prow, pcol, *diskids, row, i;
    613 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    614 	RF_StripeCount_t stripeOffset;
    615 	int     numFailures;
    616 	RF_RaidAddr_t sosAddr;
    617 	RF_SectorNum_t diskOffset, poffset;
    618 	RF_RowCol_t testrow;
    619 
    620 	/* quick out in the fault-free case.  */
    621 	RF_LOCK_MUTEX(raidPtr->mutex);
    622 	numFailures = raidPtr->numFailures;
    623 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    624 	if (numFailures == 0)
    625 		return (0);
    626 
    627 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    628 	row = asmap->physInfo->row;
    629 	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &testrow);
    630 	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &prow, &pcol, &poffset, 0);	/* get pcol */
    631 
    632 	/* this need not be true if we've redirected the access to a spare in
    633 	 * another row RF_ASSERT(row == testrow); */
    634 	stripeOffset = 0;
    635 	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
    636 		if (diskids[i] != pcol) {
    637 			if (RF_DEAD_DISK(raidPtr->Disks[testrow][diskids[i]].status)) {
    638 				if (raidPtr->status[testrow] != rf_rs_reconstructing)
    639 					return (1);
    640 				RF_ASSERT(raidPtr->reconControl[testrow]->fcol == diskids[i]);
    641 				layoutPtr->map->MapSector(raidPtr,
    642 				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
    643 				    &trow, &tcol, &diskOffset, 0);
    644 				RF_ASSERT((trow == testrow) && (tcol == diskids[i]));
    645 				if (!rf_CheckRUReconstructed(raidPtr->reconControl[testrow]->reconMap, diskOffset))
    646 					return (1);
    647 				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
    648 				return (0);
    649 			}
    650 			stripeOffset++;
    651 		}
    652 	}
    653 	return (0);
    654 }
    655 /*
    656    return the number of failed data units in the stripe.
    657 */
    658 
    659 int
    660 rf_NumFailedDataUnitsInStripe(raidPtr, asmap)
    661 	RF_Raid_t *raidPtr;
    662 	RF_AccessStripeMap_t *asmap;
    663 {
    664 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    665 	RF_RowCol_t trow, tcol, row, i;
    666 	RF_SectorNum_t diskOffset;
    667 	RF_RaidAddr_t sosAddr;
    668 	int     numFailures;
    669 
    670 	/* quick out in the fault-free case.  */
    671 	RF_LOCK_MUTEX(raidPtr->mutex);
    672 	numFailures = raidPtr->numFailures;
    673 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    674 	if (numFailures == 0)
    675 		return (0);
    676 	numFailures = 0;
    677 
    678 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    679 	row = asmap->physInfo->row;
    680 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    681 		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
    682 		    &trow, &tcol, &diskOffset, 0);
    683 		if (RF_DEAD_DISK(raidPtr->Disks[trow][tcol].status))
    684 			numFailures++;
    685 	}
    686 
    687 	return numFailures;
    688 }
    689 
    690 
    691 /*****************************************************************************************
    692  *
    693  * debug routines
    694  *
    695  ****************************************************************************************/
    696 
    697 void
    698 rf_PrintAccessStripeMap(asm_h)
    699 	RF_AccessStripeMapHeader_t *asm_h;
    700 {
    701 	rf_PrintFullAccessStripeMap(asm_h, 0);
    702 }
    703 
    704 void
    705 rf_PrintFullAccessStripeMap(asm_h, prbuf)
    706 	RF_AccessStripeMapHeader_t *asm_h;
    707 	int     prbuf;		/* flag to print buffer pointers */
    708 {
    709 	int     i;
    710 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    711 	RF_PhysDiskAddr_t *p;
    712 	printf("%d stripes total\n", (int) asm_h->numStripes);
    713 	for (; asmap; asmap = asmap->next) {
    714 		/* printf("Num failures: %d\n",asmap->numDataFailed); */
    715 		/* printf("Num sectors:
    716 		 * %d\n",(int)asmap->totalSectorsAccessed); */
    717 		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
    718 		    (int) asmap->stripeID,
    719 		    (int) asmap->totalSectorsAccessed,
    720 		    (int) asmap->numDataFailed,
    721 		    (int) asmap->numParityFailed);
    722 		if (asmap->parityInfo) {
    723 			printf("Parity [r%d c%d s%d-%d", asmap->parityInfo->row, asmap->parityInfo->col,
    724 			    (int) asmap->parityInfo->startSector,
    725 			    (int) (asmap->parityInfo->startSector +
    726 				asmap->parityInfo->numSector - 1));
    727 			if (prbuf)
    728 				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
    729 			if (asmap->parityInfo->next) {
    730 				printf(", r%d c%d s%d-%d", asmap->parityInfo->next->row,
    731 				    asmap->parityInfo->next->col,
    732 				    (int) asmap->parityInfo->next->startSector,
    733 				    (int) (asmap->parityInfo->next->startSector +
    734 					asmap->parityInfo->next->numSector - 1));
    735 				if (prbuf)
    736 					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
    737 				RF_ASSERT(asmap->parityInfo->next->next == NULL);
    738 			}
    739 			printf("]\n\t");
    740 		}
    741 		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
    742 			printf("SU r%d c%d s%d-%d ", p->row, p->col, (int) p->startSector,
    743 			    (int) (p->startSector + p->numSector - 1));
    744 			if (prbuf)
    745 				printf("b0x%lx ", (unsigned long) p->bufPtr);
    746 			if (i && !(i & 1))
    747 				printf("\n\t");
    748 		}
    749 		printf("\n");
    750 		p = asm_h->stripeMap->failedPDAs[0];
    751 		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
    752 			printf("[multiple failures]\n");
    753 		else
    754 			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
    755 				printf("\t[Failed PDA: r%d c%d s%d-%d]\n", p->row, p->col,
    756 				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
    757 	}
    758 }
    759 
    760 void
    761 rf_PrintRaidAddressInfo(raidPtr, raidAddr, numBlocks)
    762 	RF_Raid_t *raidPtr;
    763 	RF_RaidAddr_t raidAddr;
    764 	RF_SectorCount_t numBlocks;
    765 {
    766 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    767 	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    768 
    769 	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
    770 	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
    771 		printf("%d (0x%x), ", (int) ra, (int) ra);
    772 	}
    773 	printf("\n");
    774 	printf("Offset into stripe unit: %d (0x%x)\n",
    775 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
    776 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
    777 }
    778 /*
    779    given a parity descriptor and the starting address within a stripe,
    780    range restrict the parity descriptor to touch only the correct stuff.
    781 */
    782 void
    783 rf_ASMParityAdjust(
    784     RF_PhysDiskAddr_t * toAdjust,
    785     RF_StripeNum_t startAddrWithinStripe,
    786     RF_SectorNum_t endAddress,
    787     RF_RaidLayout_t * layoutPtr,
    788     RF_AccessStripeMap_t * asm_p)
    789 {
    790 	RF_PhysDiskAddr_t *new_pda;
    791 
    792 	/* when we're accessing only a portion of one stripe unit, we want the
    793 	 * parity descriptor to identify only the chunk of parity associated
    794 	 * with the data.  When the access spans exactly one stripe unit
    795 	 * boundary and is less than a stripe unit in size, it uses two
    796 	 * disjoint regions of the parity unit.  When an access spans more
    797 	 * than one stripe unit boundary, it uses all of the parity unit.
    798 	 *
    799 	 * To better handle the case where stripe units are small, we may
    800 	 * eventually want to change the 2nd case so that if the SU size is
    801 	 * below some threshold, we just read/write the whole thing instead of
    802 	 * breaking it up into two accesses. */
    803 	if (asm_p->numStripeUnitsAccessed == 1) {
    804 		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    805 		toAdjust->startSector += x;
    806 		toAdjust->raidAddress += x;
    807 		toAdjust->numSector = asm_p->physInfo->numSector;
    808 		RF_ASSERT(toAdjust->numSector != 0);
    809 	} else
    810 		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
    811 			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    812 
    813 			/* create a second pda and copy the parity map info
    814 			 * into it */
    815 			RF_ASSERT(toAdjust->next == NULL);
    816 			new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
    817 			*new_pda = *toAdjust;	/* structure assignment */
    818 			new_pda->next = NULL;
    819 
    820 			/* adjust the start sector & number of blocks for the
    821 			 * first parity pda */
    822 			toAdjust->startSector += x;
    823 			toAdjust->raidAddress += x;
    824 			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
    825 			RF_ASSERT(toAdjust->numSector != 0);
    826 
    827 			/* adjust the second pda */
    828 			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
    829 			/* new_pda->raidAddress =
    830 			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
    831 			 * toAdjust->raidAddress); */
    832 			RF_ASSERT(new_pda->numSector != 0);
    833 		}
    834 }
    835 /*
    836    Check if a disk has been spared or failed. If spared,
    837    redirect the I/O.
    838    If it has been failed, record it in the asm pointer.
    839    Fourth arg is whether data or parity.
    840 */
    841 void
    842 rf_ASMCheckStatus(
    843     RF_Raid_t * raidPtr,
    844     RF_PhysDiskAddr_t * pda_p,
    845     RF_AccessStripeMap_t * asm_p,
    846     RF_RaidDisk_t ** disks,
    847     int parity)
    848 {
    849 	RF_DiskStatus_t dstatus;
    850 	RF_RowCol_t frow, fcol;
    851 
    852 	dstatus = disks[pda_p->row][pda_p->col].status;
    853 
    854 	if (dstatus == rf_ds_spared) {
    855 		/* if the disk has been spared, redirect access to the spare */
    856 		frow = pda_p->row;
    857 		fcol = pda_p->col;
    858 		pda_p->row = disks[frow][fcol].spareRow;
    859 		pda_p->col = disks[frow][fcol].spareCol;
    860 	} else
    861 		if (dstatus == rf_ds_dist_spared) {
    862 			/* ditto if disk has been spared to dist spare space */
    863 			RF_RowCol_t or = pda_p->row, oc = pda_p->col;
    864 			RF_SectorNum_t oo = pda_p->startSector;
    865 
    866 			if (pda_p->type == RF_PDA_TYPE_DATA)
    867 				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
    868 			else
    869 				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->row, &pda_p->col, &pda_p->startSector, RF_REMAP);
    870 
    871 			if (rf_mapDebug) {
    872 				printf("Redirected r %d c %d o %d -> r%d c %d o %d\n", or, oc, (int) oo,
    873 				    pda_p->row, pda_p->col, (int) pda_p->startSector);
    874 			}
    875 		} else
    876 			if (RF_DEAD_DISK(dstatus)) {
    877 				/* if the disk is inaccessible, mark the
    878 				 * failure */
    879 				if (parity)
    880 					asm_p->numParityFailed++;
    881 				else {
    882 					asm_p->numDataFailed++;
    883 #if 0
    884 					/* XXX Do we really want this spewing
    885 					 * out on the console? GO */
    886 					printf("DATA_FAILED!\n");
    887 #endif
    888 				}
    889 				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
    890 				asm_p->numFailedPDAs++;
    891 #if 0
    892 				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
    893 				case 1:
    894 					asm_p->failedPDAs[0] = pda_p;
    895 					break;
    896 				case 2:
    897 					asm_p->failedPDAs[1] = pda_p;
    898 				default:
    899 					break;
    900 				}
    901 #endif
    902 			}
    903 	/* the redirected access should never span a stripe unit boundary */
    904 	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
    905 	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
    906 	RF_ASSERT(pda_p->col != -1);
    907 }
    908