1 1.418 andvar /* $NetBSD: rf_netbsdkintf.c,v 1.418 2025/01/08 08:25:36 andvar Exp $ */ 2 1.281 rmind 3 1.1 oster /*- 4 1.295 erh * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc. 5 1.1 oster * All rights reserved. 6 1.1 oster * 7 1.1 oster * This code is derived from software contributed to The NetBSD Foundation 8 1.1 oster * by Greg Oster; Jason R. Thorpe. 9 1.1 oster * 10 1.1 oster * Redistribution and use in source and binary forms, with or without 11 1.1 oster * modification, are permitted provided that the following conditions 12 1.1 oster * are met: 13 1.1 oster * 1. Redistributions of source code must retain the above copyright 14 1.1 oster * notice, this list of conditions and the following disclaimer. 15 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 oster * notice, this list of conditions and the following disclaimer in the 17 1.1 oster * documentation and/or other materials provided with the distribution. 18 1.1 oster * 19 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 oster * POSSIBILITY OF SUCH DAMAGE. 30 1.1 oster */ 31 1.1 oster 32 1.1 oster /* 33 1.281 rmind * Copyright (c) 1988 University of Utah. 34 1.1 oster * Copyright (c) 1990, 1993 35 1.1 oster * The Regents of the University of California. All rights reserved. 36 1.1 oster * 37 1.1 oster * This code is derived from software contributed to Berkeley by 38 1.1 oster * the Systems Programming Group of the University of Utah Computer 39 1.1 oster * Science Department. 40 1.1 oster * 41 1.1 oster * Redistribution and use in source and binary forms, with or without 42 1.1 oster * modification, are permitted provided that the following conditions 43 1.1 oster * are met: 44 1.1 oster * 1. Redistributions of source code must retain the above copyright 45 1.1 oster * notice, this list of conditions and the following disclaimer. 46 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright 47 1.1 oster * notice, this list of conditions and the following disclaimer in the 48 1.1 oster * documentation and/or other materials provided with the distribution. 49 1.162 agc * 3. Neither the name of the University nor the names of its contributors 50 1.162 agc * may be used to endorse or promote products derived from this software 51 1.162 agc * without specific prior written permission. 52 1.162 agc * 53 1.162 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 1.162 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 1.162 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 1.162 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 1.162 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 1.162 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 1.162 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 1.162 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 1.162 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 1.162 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 1.162 agc * SUCH DAMAGE. 64 1.162 agc * 65 1.405 wiz * from: Utah $Hdr: cd.c 1.6 90/11/28$ 66 1.162 agc * 67 1.162 agc * @(#)cd.c 8.2 (Berkeley) 11/16/93 68 1.162 agc */ 69 1.162 agc 70 1.162 agc /* 71 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University. 72 1.1 oster * All rights reserved. 73 1.1 oster * 74 1.1 oster * Authors: Mark Holland, Jim Zelenka 75 1.1 oster * 76 1.1 oster * Permission to use, copy, modify and distribute this software and 77 1.1 oster * its documentation is hereby granted, provided that both the copyright 78 1.1 oster * notice and this permission notice appear in all copies of the 79 1.1 oster * software, derivative works or modified versions, and any portions 80 1.1 oster * thereof, and that both notices appear in supporting documentation. 81 1.1 oster * 82 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 83 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 84 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 85 1.1 oster * 86 1.1 oster * Carnegie Mellon requests users of this software to return to 87 1.1 oster * 88 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU 89 1.1 oster * School of Computer Science 90 1.1 oster * Carnegie Mellon University 91 1.1 oster * Pittsburgh PA 15213-3890 92 1.1 oster * 93 1.1 oster * any improvements or extensions that they make and grant Carnegie the 94 1.1 oster * rights to redistribute these changes. 95 1.1 oster */ 96 1.1 oster 97 1.1 oster /*********************************************************** 98 1.1 oster * 99 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe 100 1.1 oster * 101 1.1 oster ***********************************************************/ 102 1.112 lukem 103 1.112 lukem #include <sys/cdefs.h> 104 1.418 andvar __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.418 2025/01/08 08:25:36 andvar Exp $"); 105 1.251 ad 106 1.251 ad #ifdef _KERNEL_OPT 107 1.251 ad #include "opt_raid_autoconfig.h" 108 1.363 mrg #include "opt_compat_netbsd32.h" 109 1.251 ad #endif 110 1.1 oster 111 1.113 lukem #include <sys/param.h> 112 1.1 oster #include <sys/errno.h> 113 1.1 oster #include <sys/pool.h> 114 1.152 thorpej #include <sys/proc.h> 115 1.1 oster #include <sys/queue.h> 116 1.1 oster #include <sys/disk.h> 117 1.1 oster #include <sys/device.h> 118 1.1 oster #include <sys/stat.h> 119 1.1 oster #include <sys/ioctl.h> 120 1.1 oster #include <sys/fcntl.h> 121 1.1 oster #include <sys/systm.h> 122 1.1 oster #include <sys/vnode.h> 123 1.1 oster #include <sys/disklabel.h> 124 1.1 oster #include <sys/conf.h> 125 1.1 oster #include <sys/buf.h> 126 1.182 yamt #include <sys/bufq.h> 127 1.65 oster #include <sys/reboot.h> 128 1.208 elad #include <sys/kauth.h> 129 1.327 pgoyette #include <sys/module.h> 130 1.358 pgoyette #include <sys/compat_stub.h> 131 1.8 oster 132 1.234 oster #include <prop/proplib.h> 133 1.234 oster 134 1.110 oster #include <dev/raidframe/raidframevar.h> 135 1.110 oster #include <dev/raidframe/raidframeio.h> 136 1.269 jld #include <dev/raidframe/rf_paritymap.h> 137 1.251 ad 138 1.1 oster #include "rf_raid.h" 139 1.1 oster #include "rf_dag.h" 140 1.1 oster #include "rf_dagflags.h" 141 1.99 oster #include "rf_desc.h" 142 1.1 oster #include "rf_diskqueue.h" 143 1.1 oster #include "rf_etimer.h" 144 1.1 oster #include "rf_general.h" 145 1.1 oster #include "rf_kintf.h" 146 1.1 oster #include "rf_options.h" 147 1.1 oster #include "rf_driver.h" 148 1.1 oster #include "rf_parityscan.h" 149 1.1 oster #include "rf_threadstuff.h" 150 1.1 oster 151 1.325 christos #include "ioconf.h" 152 1.325 christos 153 1.133 oster #ifdef DEBUG 154 1.9 oster int rf_kdebug_level = 0; 155 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a 156 1.9 oster #else /* DEBUG */ 157 1.1 oster #define db1_printf(a) { } 158 1.9 oster #endif /* DEBUG */ 159 1.1 oster 160 1.416 manu #define DEVICE_XNAME(dev) dev ? device_xname(dev) : "null" 161 1.416 manu 162 1.249 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 163 1.289 mrg static rf_declare_mutex2(rf_sparet_wait_mutex); 164 1.287 mrg static rf_declare_cond2(rf_sparet_wait_cv); 165 1.287 mrg static rf_declare_cond2(rf_sparet_resp_cv); 166 1.1 oster 167 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a 168 1.10 oster * spare table */ 169 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from 170 1.10 oster * installation process */ 171 1.249 oster #endif 172 1.153 thorpej 173 1.384 jdolecek const int rf_b_pass = (B_PHYS|B_RAW|B_MEDIA_FLAGS); 174 1.384 jdolecek 175 1.153 thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures"); 176 1.10 oster 177 1.1 oster /* prototypes */ 178 1.187 christos static void KernelWakeupFunc(struct buf *); 179 1.187 christos static void InitBP(struct buf *, struct vnode *, unsigned, 180 1.225 christos dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *), 181 1.384 jdolecek void *, int); 182 1.300 christos static void raidinit(struct raid_softc *); 183 1.335 mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp); 184 1.348 jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *); 185 1.1 oster 186 1.261 dyoung static int raid_match(device_t, cfdata_t, void *); 187 1.261 dyoung static void raid_attach(device_t, device_t, void *); 188 1.261 dyoung static int raid_detach(device_t, int); 189 1.130 gehenna 190 1.385 riastrad static int raidread_component_area(dev_t, struct vnode *, void *, size_t, 191 1.269 jld daddr_t, daddr_t); 192 1.269 jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t, 193 1.411 riastrad daddr_t, daddr_t); 194 1.269 jld 195 1.276 mrg static int raidwrite_component_label(unsigned, 196 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *); 197 1.276 mrg static int raidread_component_label(unsigned, 198 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *); 199 1.269 jld 200 1.335 mlelstv static int raid_diskstart(device_t, struct buf *bp); 201 1.335 mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int); 202 1.335 mlelstv static int raid_lastclose(device_t); 203 1.269 jld 204 1.324 mrg static dev_type_open(raidopen); 205 1.324 mrg static dev_type_close(raidclose); 206 1.324 mrg static dev_type_read(raidread); 207 1.324 mrg static dev_type_write(raidwrite); 208 1.324 mrg static dev_type_ioctl(raidioctl); 209 1.324 mrg static dev_type_strategy(raidstrategy); 210 1.324 mrg static dev_type_dump(raiddump); 211 1.324 mrg static dev_type_size(raidsize); 212 1.130 gehenna 213 1.130 gehenna const struct bdevsw raid_bdevsw = { 214 1.305 dholland .d_open = raidopen, 215 1.305 dholland .d_close = raidclose, 216 1.305 dholland .d_strategy = raidstrategy, 217 1.305 dholland .d_ioctl = raidioctl, 218 1.305 dholland .d_dump = raiddump, 219 1.305 dholland .d_psize = raidsize, 220 1.311 dholland .d_discard = nodiscard, 221 1.305 dholland .d_flag = D_DISK 222 1.130 gehenna }; 223 1.130 gehenna 224 1.130 gehenna const struct cdevsw raid_cdevsw = { 225 1.305 dholland .d_open = raidopen, 226 1.305 dholland .d_close = raidclose, 227 1.305 dholland .d_read = raidread, 228 1.305 dholland .d_write = raidwrite, 229 1.305 dholland .d_ioctl = raidioctl, 230 1.305 dholland .d_stop = nostop, 231 1.305 dholland .d_tty = notty, 232 1.305 dholland .d_poll = nopoll, 233 1.305 dholland .d_mmap = nommap, 234 1.305 dholland .d_kqfilter = nokqfilter, 235 1.312 dholland .d_discard = nodiscard, 236 1.305 dholland .d_flag = D_DISK 237 1.130 gehenna }; 238 1.1 oster 239 1.323 mlelstv static struct dkdriver rf_dkdriver = { 240 1.335 mlelstv .d_open = raidopen, 241 1.335 mlelstv .d_close = raidclose, 242 1.323 mlelstv .d_strategy = raidstrategy, 243 1.335 mlelstv .d_diskstart = raid_diskstart, 244 1.335 mlelstv .d_dumpblocks = raid_dumpblocks, 245 1.335 mlelstv .d_lastclose = raid_lastclose, 246 1.323 mlelstv .d_minphys = minphys 247 1.323 mlelstv }; 248 1.235 oster 249 1.1 oster #define raidunit(x) DISKUNIT(x) 250 1.335 mlelstv #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc) 251 1.1 oster 252 1.202 oster extern struct cfdriver raid_cd; 253 1.266 dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc), 254 1.266 dyoung raid_match, raid_attach, raid_detach, NULL, NULL, NULL, 255 1.266 dyoung DVF_DETACH_SHUTDOWN); 256 1.202 oster 257 1.353 mrg /* Internal representation of a rf_recon_req */ 258 1.353 mrg struct rf_recon_req_internal { 259 1.353 mrg RF_RowCol_t col; 260 1.353 mrg RF_ReconReqFlags_t flags; 261 1.353 mrg void *raidPtr; 262 1.353 mrg }; 263 1.353 mrg 264 1.186 perry /* 265 1.186 perry * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device. 266 1.186 perry * Be aware that large numbers can allow the driver to consume a lot of 267 1.28 oster * kernel memory, especially on writes, and in degraded mode reads. 268 1.186 perry * 269 1.186 perry * For example: with a stripe width of 64 blocks (32k) and 5 disks, 270 1.186 perry * a single 64K write will typically require 64K for the old data, 271 1.186 perry * 64K for the old parity, and 64K for the new parity, for a total 272 1.28 oster * of 192K (if the parity buffer is not re-used immediately). 273 1.110 oster * Even it if is used immediately, that's still 128K, which when multiplied 274 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data. 275 1.186 perry * 276 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may 277 1.186 perry * require data reconstruction, which will require *all* of the 4 remaining 278 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again. 279 1.20 oster */ 280 1.20 oster 281 1.20 oster #ifndef RAIDOUTSTANDING 282 1.28 oster #define RAIDOUTSTANDING 6 283 1.20 oster #endif 284 1.20 oster 285 1.1 oster #define RAIDLABELDEV(dev) \ 286 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART)) 287 1.1 oster 288 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */ 289 1.9 oster 290 1.104 oster static int raidlock(struct raid_softc *); 291 1.104 oster static void raidunlock(struct raid_softc *); 292 1.1 oster 293 1.266 dyoung static int raid_detach_unlocked(struct raid_softc *); 294 1.266 dyoung 295 1.104 oster static void rf_markalldirty(RF_Raid_t *); 296 1.304 christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *); 297 1.48 oster 298 1.393 mrg static void rf_ReconThread(struct rf_recon_req_internal *); 299 1.393 mrg static void rf_RewriteParityThread(RF_Raid_t *raidPtr); 300 1.393 mrg static void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *); 301 1.393 mrg static int rf_autoconfig(device_t); 302 1.398 oster static int rf_rescan(void); 303 1.393 mrg static void rf_buildroothack(RF_ConfigSet_t *); 304 1.104 oster 305 1.393 mrg static RF_AutoConfig_t *rf_find_raid_components(void); 306 1.393 mrg static RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *); 307 1.104 oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *); 308 1.393 mrg static void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *); 309 1.393 mrg static int rf_set_autoconfig(RF_Raid_t *, int); 310 1.393 mrg static int rf_set_rootpartition(RF_Raid_t *, int); 311 1.393 mrg static void rf_release_all_vps(RF_ConfigSet_t *); 312 1.393 mrg static void rf_cleanup_config_set(RF_ConfigSet_t *); 313 1.393 mrg static int rf_have_enough_components(RF_ConfigSet_t *); 314 1.393 mrg static struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *); 315 1.278 mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t); 316 1.48 oster 317 1.295 erh /* 318 1.295 erh * Debugging, mostly. Set to 0 to not allow autoconfig to take place. 319 1.295 erh * Note that this is overridden by having RAID_AUTOCONFIG as an option 320 1.295 erh * in the kernel config file. 321 1.295 erh */ 322 1.295 erh #ifdef RAID_AUTOCONFIG 323 1.295 erh int raidautoconfig = 1; 324 1.295 erh #else 325 1.295 erh int raidautoconfig = 0; 326 1.295 erh #endif 327 1.295 erh static bool raidautoconfigdone = false; 328 1.37 oster 329 1.395 oster struct pool rf_alloclist_pool; /* AllocList */ 330 1.177 oster 331 1.300 christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids); 332 1.300 christos static kmutex_t raid_lock; 333 1.1 oster 334 1.300 christos static struct raid_softc * 335 1.300 christos raidcreate(int unit) { 336 1.300 christos struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP); 337 1.300 christos sc->sc_unit = unit; 338 1.327 pgoyette cv_init(&sc->sc_cv, "raidunit"); 339 1.327 pgoyette mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE); 340 1.300 christos return sc; 341 1.300 christos } 342 1.1 oster 343 1.300 christos static void 344 1.300 christos raiddestroy(struct raid_softc *sc) { 345 1.327 pgoyette cv_destroy(&sc->sc_cv); 346 1.327 pgoyette mutex_destroy(&sc->sc_mutex); 347 1.300 christos kmem_free(sc, sizeof(*sc)); 348 1.300 christos } 349 1.50 oster 350 1.300 christos static struct raid_softc * 351 1.327 pgoyette raidget(int unit, bool create) { 352 1.300 christos struct raid_softc *sc; 353 1.300 christos if (unit < 0) { 354 1.300 christos #ifdef DIAGNOSTIC 355 1.300 christos panic("%s: unit %d!", __func__, unit); 356 1.300 christos #endif 357 1.300 christos return NULL; 358 1.300 christos } 359 1.300 christos mutex_enter(&raid_lock); 360 1.300 christos LIST_FOREACH(sc, &raids, sc_link) { 361 1.300 christos if (sc->sc_unit == unit) { 362 1.300 christos mutex_exit(&raid_lock); 363 1.300 christos return sc; 364 1.300 christos } 365 1.300 christos } 366 1.300 christos mutex_exit(&raid_lock); 367 1.327 pgoyette if (!create) 368 1.327 pgoyette return NULL; 369 1.379 chs sc = raidcreate(unit); 370 1.300 christos mutex_enter(&raid_lock); 371 1.300 christos LIST_INSERT_HEAD(&raids, sc, sc_link); 372 1.300 christos mutex_exit(&raid_lock); 373 1.300 christos return sc; 374 1.300 christos } 375 1.300 christos 376 1.385 riastrad static void 377 1.300 christos raidput(struct raid_softc *sc) { 378 1.300 christos mutex_enter(&raid_lock); 379 1.300 christos LIST_REMOVE(sc, sc_link); 380 1.300 christos mutex_exit(&raid_lock); 381 1.300 christos raiddestroy(sc); 382 1.300 christos } 383 1.1 oster 384 1.300 christos void 385 1.300 christos raidattach(int num) 386 1.300 christos { 387 1.62 oster 388 1.142 thorpej /* 389 1.327 pgoyette * Device attachment and associated initialization now occurs 390 1.327 pgoyette * as part of the module initialization. 391 1.142 thorpej */ 392 1.142 thorpej } 393 1.142 thorpej 394 1.393 mrg static int 395 1.261 dyoung rf_autoconfig(device_t self) 396 1.142 thorpej { 397 1.142 thorpej RF_AutoConfig_t *ac_list; 398 1.142 thorpej RF_ConfigSet_t *config_sets; 399 1.142 thorpej 400 1.295 erh if (!raidautoconfig || raidautoconfigdone == true) 401 1.389 skrll return 0; 402 1.142 thorpej 403 1.142 thorpej /* XXX This code can only be run once. */ 404 1.295 erh raidautoconfigdone = true; 405 1.142 thorpej 406 1.307 christos #ifdef __HAVE_CPU_BOOTCONF 407 1.307 christos /* 408 1.307 christos * 0. find the boot device if needed first so we can use it later 409 1.307 christos * this needs to be done before we autoconfigure any raid sets, 410 1.307 christos * because if we use wedges we are not going to be able to open 411 1.307 christos * the boot device later 412 1.307 christos */ 413 1.307 christos if (booted_device == NULL) 414 1.307 christos cpu_bootconf(); 415 1.307 christos #endif 416 1.48 oster /* 1. locate all RAID components on the system */ 417 1.258 ad aprint_debug("Searching for RAID components...\n"); 418 1.48 oster ac_list = rf_find_raid_components(); 419 1.48 oster 420 1.142 thorpej /* 2. Sort them into their respective sets. */ 421 1.48 oster config_sets = rf_create_auto_sets(ac_list); 422 1.48 oster 423 1.142 thorpej /* 424 1.299 oster * 3. Evaluate each set and configure the valid ones. 425 1.142 thorpej * This gets done in rf_buildroothack(). 426 1.142 thorpej */ 427 1.142 thorpej rf_buildroothack(config_sets); 428 1.48 oster 429 1.213 christos return 1; 430 1.48 oster } 431 1.48 oster 432 1.367 christos int 433 1.367 christos rf_inited(const struct raid_softc *rs) { 434 1.367 christos return (rs->sc_flags & RAIDF_INITED) != 0; 435 1.367 christos } 436 1.367 christos 437 1.368 oster RF_Raid_t * 438 1.368 oster rf_get_raid(struct raid_softc *rs) { 439 1.368 oster return &rs->sc_r; 440 1.368 oster } 441 1.368 oster 442 1.367 christos int 443 1.367 christos rf_get_unit(const struct raid_softc *rs) { 444 1.367 christos return rs->sc_unit; 445 1.367 christos } 446 1.367 christos 447 1.306 christos static int 448 1.307 christos rf_containsboot(RF_Raid_t *r, device_t bdv) { 449 1.359 bad const char *bootname; 450 1.359 bad size_t len; 451 1.359 bad 452 1.359 bad /* if bdv is NULL, the set can't contain it. exit early. */ 453 1.359 bad if (bdv == NULL) 454 1.359 bad return 0; 455 1.359 bad 456 1.359 bad bootname = device_xname(bdv); 457 1.359 bad len = strlen(bootname); 458 1.306 christos 459 1.306 christos for (int col = 0; col < r->numCol; col++) { 460 1.307 christos const char *devname = r->Disks[col].devname; 461 1.306 christos devname += sizeof("/dev/") - 1; 462 1.307 christos if (strncmp(devname, "dk", 2) == 0) { 463 1.307 christos const char *parent = 464 1.307 christos dkwedge_get_parent_name(r->Disks[col].dev); 465 1.307 christos if (parent != NULL) 466 1.307 christos devname = parent; 467 1.307 christos } 468 1.306 christos if (strncmp(devname, bootname, len) == 0) { 469 1.306 christos struct raid_softc *sc = r->softc; 470 1.306 christos aprint_debug("raid%d includes boot device %s\n", 471 1.306 christos sc->sc_unit, devname); 472 1.306 christos return 1; 473 1.306 christos } 474 1.306 christos } 475 1.306 christos return 0; 476 1.306 christos } 477 1.306 christos 478 1.398 oster static int 479 1.398 oster rf_rescan(void) 480 1.398 oster { 481 1.398 oster RF_AutoConfig_t *ac_list; 482 1.398 oster RF_ConfigSet_t *config_sets, *cset, *next_cset; 483 1.398 oster struct raid_softc *sc; 484 1.398 oster int raid_added; 485 1.398 oster 486 1.398 oster ac_list = rf_find_raid_components(); 487 1.398 oster config_sets = rf_create_auto_sets(ac_list); 488 1.398 oster 489 1.398 oster raid_added = 1; 490 1.398 oster while (raid_added > 0) { 491 1.398 oster raid_added = 0; 492 1.398 oster cset = config_sets; 493 1.398 oster while (cset != NULL) { 494 1.398 oster next_cset = cset->next; 495 1.398 oster if (rf_have_enough_components(cset) && 496 1.398 oster cset->ac->clabel->autoconfigure == 1) { 497 1.398 oster sc = rf_auto_config_set(cset); 498 1.398 oster if (sc != NULL) { 499 1.398 oster aprint_debug("raid%d: configured ok, rootable %d\n", 500 1.398 oster sc->sc_unit, cset->rootable); 501 1.398 oster /* We added one RAID set */ 502 1.398 oster raid_added++; 503 1.398 oster } else { 504 1.398 oster /* The autoconfig didn't work :( */ 505 1.398 oster aprint_debug("Autoconfig failed\n"); 506 1.398 oster rf_release_all_vps(cset); 507 1.398 oster } 508 1.398 oster } else { 509 1.398 oster /* we're not autoconfiguring this set... 510 1.398 oster release the associated resources */ 511 1.398 oster rf_release_all_vps(cset); 512 1.398 oster } 513 1.398 oster /* cleanup */ 514 1.398 oster rf_cleanup_config_set(cset); 515 1.398 oster cset = next_cset; 516 1.398 oster } 517 1.398 oster if (raid_added > 0) { 518 1.398 oster /* We added at least one RAID set, so re-scan for recursive RAID */ 519 1.398 oster ac_list = rf_find_raid_components(); 520 1.398 oster config_sets = rf_create_auto_sets(ac_list); 521 1.398 oster } 522 1.398 oster } 523 1.398 oster 524 1.398 oster return 0; 525 1.398 oster } 526 1.398 oster 527 1.416 manu /* 528 1.416 manu * Example setup: 529 1.416 manu * dk1 at wd0: "raid@wd0", 171965 blocks at 32802, type: raidframe 530 1.416 manu * dk3 at wd1: "raid@wd1", 171965 blocks at 32802, type: raidframz 531 1.416 manu * raid1: Components: /dev/dk1 /dev/dk3 532 1.416 manu * dk4 at raid1: "empty@raid1", 8192 blocks at 34, type: msdos 533 1.416 manu * dk5 at raid1: "root@raid1", 163517 blocks at 8226, type: ffs 534 1.416 manu * 535 1.416 manu * If booted from wd0, booted_device will be 536 1.416 manu * disk wd0, startblk = 41092, nblks = 163517 537 1.416 manu * 538 1.416 manu * That is, dk5 with startblk computed from the beginning of wd0 539 1.416 manu * instead of beginning of raid1: 540 1.416 manu * 32802 + 64 (RF_PROTECTED_SECTORS) + 8226 = 41092 541 1.416 manu * 542 1.416 manu * In order to find the boot wedge, we must iterate on each component, 543 1.418 andvar * find its offset from disk beginning, and look for the boot wedge with 544 1.416 manu * startblck adjusted. 545 1.416 manu */ 546 1.416 manu static device_t 547 1.416 manu rf_find_bootwedge(struct raid_softc *rsc) 548 1.416 manu { 549 1.416 manu RF_Raid_t *r = &rsc->sc_r; 550 1.416 manu const char *bootname; 551 1.416 manu size_t len; 552 1.416 manu device_t rdev = NULL; 553 1.416 manu 554 1.416 manu if (booted_device == NULL) 555 1.416 manu goto out; 556 1.416 manu 557 1.416 manu bootname = device_xname(booted_device); 558 1.416 manu len = strlen(bootname); 559 1.416 manu 560 1.416 manu aprint_debug("%s: booted_device %s, startblk = %"PRId64", " 561 1.416 manu "nblks = %"PRId64"\n", __func__, 562 1.416 manu bootname, booted_startblk, booted_nblks); 563 1.416 manu 564 1.416 manu for (int col = 0; col < r->numCol; col++) { 565 1.416 manu const char *devname = r->Disks[col].devname; 566 1.416 manu const char *parent; 567 1.416 manu struct disk *dk; 568 1.416 manu u_int nwedges; 569 1.416 manu struct dkwedge_info *dkwi; 570 1.416 manu struct dkwedge_list dkwl; 571 1.416 manu size_t dkwi_len; 572 1.416 manu int i; 573 1.416 manu 574 1.416 manu devname += sizeof("/dev/") - 1; 575 1.416 manu if (strncmp(devname, "dk", 2) != 0) 576 1.416 manu continue; 577 1.416 manu 578 1.416 manu parent = dkwedge_get_parent_name(r->Disks[col].dev); 579 1.416 manu if (parent == NULL) { 580 1.416 manu aprint_debug("%s: cannot find parent for " 581 1.416 manu "component /dev/%s", __func__, devname); 582 1.416 manu continue; 583 1.416 manu } 584 1.416 manu 585 1.416 manu if (strncmp(parent, bootname, len) != 0) 586 1.416 manu continue; 587 1.416 manu 588 1.416 manu aprint_debug("%s: looking up wedge %s in device %s\n", 589 1.416 manu __func__, devname, parent); 590 1.416 manu 591 1.416 manu dk = disk_find(parent); 592 1.416 manu nwedges = dk->dk_nwedges; 593 1.416 manu dkwi_len = sizeof(*dkwi) * nwedges; 594 1.416 manu dkwi = RF_Malloc(dkwi_len); 595 1.416 manu 596 1.416 manu dkwl.dkwl_buf = dkwi; 597 1.416 manu dkwl.dkwl_bufsize = dkwi_len; 598 1.416 manu dkwl.dkwl_nwedges = 0; 599 1.416 manu dkwl.dkwl_ncopied = 0; 600 1.416 manu 601 1.416 manu if (dkwedge_list(dk, &dkwl, curlwp) == 0) { 602 1.416 manu daddr_t startblk; 603 1.416 manu 604 1.416 manu for (i = 0; i < dkwl.dkwl_ncopied; i++) { 605 1.416 manu if (strcmp(dkwi[i].dkw_devname, devname) == 0) 606 1.416 manu break; 607 1.416 manu } 608 1.416 manu 609 1.416 manu KASSERT(i < dkwl.dkwl_ncopied); 610 1.416 manu 611 1.416 manu aprint_debug("%s: wedge %s, " 612 1.416 manu "startblk = %"PRId64", " 613 1.416 manu "nblks = %"PRId64"\n", 614 1.416 manu __func__, 615 1.416 manu dkwi[i].dkw_devname, 616 1.416 manu dkwi[i].dkw_offset, 617 1.416 manu dkwi[i].dkw_size); 618 1.416 manu 619 1.416 manu startblk = booted_startblk 620 1.416 manu - dkwi[i].dkw_offset 621 1.416 manu - RF_PROTECTED_SECTORS; 622 1.416 manu 623 1.416 manu aprint_debug("%s: looking for wedge in %s, " 624 1.416 manu "startblk = %"PRId64", " 625 1.416 manu "nblks = %"PRId64"\n", 626 1.416 manu __func__, 627 1.416 manu DEVICE_XNAME(rsc->sc_dksc.sc_dev), 628 1.416 manu startblk, booted_nblks); 629 1.416 manu 630 1.416 manu rdev = dkwedge_find_partition(rsc->sc_dksc.sc_dev, 631 1.416 manu startblk, 632 1.416 manu booted_nblks); 633 1.416 manu if (rdev) { 634 1.416 manu aprint_debug("%s: root candidate wedge %s " 635 1.416 manu "shifted from %s\n", __func__, 636 1.416 manu device_xname(rdev), 637 1.416 manu dkwi[i].dkw_devname); 638 1.416 manu goto done; 639 1.416 manu } else { 640 1.416 manu aprint_debug("%s: not found\n", __func__); 641 1.416 manu } 642 1.416 manu } 643 1.416 manu 644 1.416 manu aprint_debug("%s: nothing found for col %d\n", __func__, col); 645 1.416 manu done: 646 1.416 manu RF_Free(dkwi, dkwi_len); 647 1.416 manu } 648 1.416 manu 649 1.416 manu out: 650 1.416 manu if (!rdev) 651 1.416 manu aprint_debug("%s: nothing found\n", __func__); 652 1.416 manu 653 1.416 manu return rdev; 654 1.416 manu } 655 1.398 oster 656 1.393 mrg static void 657 1.142 thorpej rf_buildroothack(RF_ConfigSet_t *config_sets) 658 1.48 oster { 659 1.397 oster RF_AutoConfig_t *ac_list; 660 1.48 oster RF_ConfigSet_t *cset; 661 1.48 oster RF_ConfigSet_t *next_cset; 662 1.51 oster int num_root; 663 1.397 oster int raid_added; 664 1.300 christos struct raid_softc *sc, *rsc; 665 1.378 martin struct dk_softc *dksc = NULL; /* XXX gcc -Os: may be used uninit. */ 666 1.48 oster 667 1.300 christos sc = rsc = NULL; 668 1.51 oster num_root = 0; 669 1.397 oster 670 1.397 oster raid_added = 1; 671 1.397 oster while (raid_added > 0) { 672 1.397 oster raid_added = 0; 673 1.397 oster cset = config_sets; 674 1.397 oster while (cset != NULL) { 675 1.397 oster next_cset = cset->next; 676 1.397 oster if (rf_have_enough_components(cset) && 677 1.397 oster cset->ac->clabel->autoconfigure == 1) { 678 1.397 oster sc = rf_auto_config_set(cset); 679 1.397 oster if (sc != NULL) { 680 1.397 oster aprint_debug("raid%d: configured ok, rootable %d\n", 681 1.397 oster sc->sc_unit, cset->rootable); 682 1.397 oster /* We added one RAID set */ 683 1.397 oster raid_added++; 684 1.397 oster if (cset->rootable) { 685 1.397 oster rsc = sc; 686 1.397 oster num_root++; 687 1.397 oster } 688 1.397 oster } else { 689 1.397 oster /* The autoconfig didn't work :( */ 690 1.397 oster aprint_debug("Autoconfig failed\n"); 691 1.397 oster rf_release_all_vps(cset); 692 1.51 oster } 693 1.51 oster } else { 694 1.397 oster /* we're not autoconfiguring this set... 695 1.397 oster release the associated resources */ 696 1.51 oster rf_release_all_vps(cset); 697 1.48 oster } 698 1.397 oster /* cleanup */ 699 1.397 oster rf_cleanup_config_set(cset); 700 1.397 oster cset = next_cset; 701 1.397 oster } 702 1.397 oster if (raid_added > 0) { 703 1.397 oster /* We added at least one RAID set, so re-scan for recursive RAID */ 704 1.397 oster ac_list = rf_find_raid_components(); 705 1.397 oster config_sets = rf_create_auto_sets(ac_list); 706 1.48 oster } 707 1.48 oster } 708 1.397 oster 709 1.223 oster /* if the user has specified what the root device should be 710 1.223 oster then we don't touch booted_device or boothowto... */ 711 1.223 oster 712 1.359 bad if (rootspec != NULL) { 713 1.403 mrg aprint_debug("%s: rootspec %s\n", __func__, rootspec); 714 1.223 oster return; 715 1.359 bad } 716 1.223 oster 717 1.122 oster /* we found something bootable... */ 718 1.122 oster if (num_root == 1) { 719 1.416 manu device_t candidate_root = NULL; 720 1.377 maxv dksc = &rsc->sc_dksc; 721 1.416 manu 722 1.335 mlelstv if (dksc->sc_dkdev.dk_nwedges != 0) { 723 1.416 manu 724 1.416 manu /* Find the wedge we booted from */ 725 1.416 manu candidate_root = rf_find_bootwedge(rsc); 726 1.416 manu 727 1.416 manu /* Try first partition */ 728 1.344 christos if (candidate_root == NULL) { 729 1.344 christos size_t i = 0; 730 1.344 christos candidate_root = dkwedge_find_by_parent( 731 1.344 christos device_xname(dksc->sc_dev), &i); 732 1.344 christos } 733 1.416 manu aprint_debug("%s: candidate wedge root %s\n", 734 1.416 manu __func__, DEVICE_XNAME(candidate_root)); 735 1.416 manu } else { 736 1.335 mlelstv candidate_root = dksc->sc_dev; 737 1.416 manu } 738 1.416 manu 739 1.416 manu aprint_debug("%s: candidate root = %s, booted_device = %s, " 740 1.416 manu "root_partition = %d, contains_boot=%d\n", 741 1.416 manu __func__, DEVICE_XNAME(candidate_root), 742 1.416 manu DEVICE_XNAME(booted_device), rsc->sc_r.root_partition, 743 1.402 mrg rf_containsboot(&rsc->sc_r, booted_device)); 744 1.416 manu 745 1.359 bad /* XXX the check for booted_device == NULL can probably be 746 1.359 bad * dropped, now that rf_containsboot handles that case. 747 1.359 bad */ 748 1.308 christos if (booted_device == NULL || 749 1.308 christos rsc->sc_r.root_partition == 1 || 750 1.310 christos rf_containsboot(&rsc->sc_r, booted_device)) { 751 1.308 christos booted_device = candidate_root; 752 1.351 christos booted_method = "raidframe/single"; 753 1.310 christos booted_partition = 0; /* XXX assume 'a' */ 754 1.416 manu aprint_debug("%s: set booted_device = %s\n", __func__, 755 1.416 manu DEVICE_XNAME(booted_device)); 756 1.310 christos } 757 1.122 oster } else if (num_root > 1) { 758 1.416 manu aprint_debug("%s: many roots=%d, %s\n", __func__, num_root, 759 1.416 manu DEVICE_XNAME(booted_device)); 760 1.226 oster 761 1.385 riastrad /* 762 1.226 oster * Maybe the MD code can help. If it cannot, then 763 1.226 oster * setroot() will discover that we have no 764 1.226 oster * booted_device and will ask the user if nothing was 765 1.385 riastrad * hardwired in the kernel config file 766 1.226 oster */ 767 1.385 riastrad if (booted_device == NULL) 768 1.226 oster return; 769 1.226 oster 770 1.226 oster num_root = 0; 771 1.300 christos mutex_enter(&raid_lock); 772 1.300 christos LIST_FOREACH(sc, &raids, sc_link) { 773 1.300 christos RF_Raid_t *r = &sc->sc_r; 774 1.300 christos if (r->valid == 0) 775 1.226 oster continue; 776 1.226 oster 777 1.300 christos if (r->root_partition == 0) 778 1.226 oster continue; 779 1.226 oster 780 1.306 christos if (rf_containsboot(r, booted_device)) { 781 1.226 oster num_root++; 782 1.300 christos rsc = sc; 783 1.335 mlelstv dksc = &rsc->sc_dksc; 784 1.226 oster } 785 1.226 oster } 786 1.300 christos mutex_exit(&raid_lock); 787 1.295 erh 788 1.226 oster if (num_root == 1) { 789 1.335 mlelstv booted_device = dksc->sc_dev; 790 1.351 christos booted_method = "raidframe/multi"; 791 1.310 christos booted_partition = 0; /* XXX assume 'a' */ 792 1.226 oster } else { 793 1.226 oster /* we can't guess.. require the user to answer... */ 794 1.226 oster boothowto |= RB_ASKNAME; 795 1.226 oster } 796 1.51 oster } 797 1.1 oster } 798 1.1 oster 799 1.324 mrg static int 800 1.169 oster raidsize(dev_t dev) 801 1.1 oster { 802 1.1 oster struct raid_softc *rs; 803 1.335 mlelstv struct dk_softc *dksc; 804 1.335 mlelstv unsigned int unit; 805 1.1 oster 806 1.1 oster unit = raidunit(dev); 807 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) 808 1.336 mlelstv return -1; 809 1.335 mlelstv dksc = &rs->sc_dksc; 810 1.335 mlelstv 811 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0) 812 1.336 mlelstv return -1; 813 1.1 oster 814 1.335 mlelstv return dk_size(dksc, dev); 815 1.335 mlelstv } 816 1.1 oster 817 1.335 mlelstv static int 818 1.335 mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size) 819 1.335 mlelstv { 820 1.335 mlelstv unsigned int unit; 821 1.335 mlelstv struct raid_softc *rs; 822 1.335 mlelstv struct dk_softc *dksc; 823 1.1 oster 824 1.335 mlelstv unit = raidunit(dev); 825 1.335 mlelstv if ((rs = raidget(unit, false)) == NULL) 826 1.335 mlelstv return ENXIO; 827 1.335 mlelstv dksc = &rs->sc_dksc; 828 1.1 oster 829 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) 830 1.335 mlelstv return ENODEV; 831 1.1 oster 832 1.336 mlelstv /* 833 1.336 mlelstv Note that blkno is relative to this particular partition. 834 1.336 mlelstv By adding adding RF_PROTECTED_SECTORS, we get a value that 835 1.336 mlelstv is relative to the partition used for the underlying component. 836 1.336 mlelstv */ 837 1.336 mlelstv blkno += RF_PROTECTED_SECTORS; 838 1.336 mlelstv 839 1.380 riastrad return dk_dump(dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE); 840 1.1 oster } 841 1.1 oster 842 1.324 mrg static int 843 1.335 mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk) 844 1.1 oster { 845 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev); 846 1.231 oster const struct bdevsw *bdev; 847 1.231 oster RF_Raid_t *raidPtr; 848 1.335 mlelstv int c, sparecol, j, scol, dumpto; 849 1.231 oster int error = 0; 850 1.231 oster 851 1.300 christos raidPtr = &rs->sc_r; 852 1.231 oster 853 1.231 oster /* we only support dumping to RAID 1 sets */ 854 1.385 riastrad if (raidPtr->Layout.numDataCol != 1 || 855 1.231 oster raidPtr->Layout.numParityCol != 1) 856 1.231 oster return EINVAL; 857 1.231 oster 858 1.231 oster if ((error = raidlock(rs)) != 0) 859 1.231 oster return error; 860 1.231 oster 861 1.231 oster /* figure out what device is alive.. */ 862 1.231 oster 863 1.385 riastrad /* 864 1.231 oster Look for a component to dump to. The preference for the 865 1.231 oster component to dump to is as follows: 866 1.383 oster 1) the first component 867 1.383 oster 2) a used_spare of the first component 868 1.383 oster 3) the second component 869 1.383 oster 4) a used_spare of the second component 870 1.231 oster */ 871 1.231 oster 872 1.231 oster dumpto = -1; 873 1.231 oster for (c = 0; c < raidPtr->numCol; c++) { 874 1.231 oster if (raidPtr->Disks[c].status == rf_ds_optimal) { 875 1.231 oster /* this might be the one */ 876 1.231 oster dumpto = c; 877 1.231 oster break; 878 1.231 oster } 879 1.231 oster } 880 1.385 riastrad 881 1.385 riastrad /* 882 1.383 oster At this point we have possibly selected a live component. 883 1.418 andvar If we didn't find a live component, we now check to see 884 1.383 oster if there is a relevant spared component. 885 1.231 oster */ 886 1.231 oster 887 1.231 oster for (c = 0; c < raidPtr->numSpare; c++) { 888 1.231 oster sparecol = raidPtr->numCol + c; 889 1.414 oster 890 1.231 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 891 1.231 oster /* How about this one? */ 892 1.231 oster scol = -1; 893 1.231 oster for(j=0;j<raidPtr->numCol;j++) { 894 1.231 oster if (raidPtr->Disks[j].spareCol == sparecol) { 895 1.231 oster scol = j; 896 1.231 oster break; 897 1.231 oster } 898 1.231 oster } 899 1.231 oster if (scol == 0) { 900 1.385 riastrad /* 901 1.383 oster We must have found a spared first 902 1.383 oster component! We'll take that over 903 1.383 oster anything else found so far. (We 904 1.383 oster couldn't have found a real first 905 1.383 oster component before, since this is a 906 1.383 oster used spare, and it's saying that 907 1.383 oster it's replacing the first 908 1.383 oster component.) On reboot (with 909 1.231 oster autoconfiguration turned on) 910 1.383 oster sparecol will become the first 911 1.383 oster component (component0) of this set. 912 1.231 oster */ 913 1.231 oster dumpto = sparecol; 914 1.231 oster break; 915 1.231 oster } else if (scol != -1) { 916 1.385 riastrad /* 917 1.385 riastrad Must be a spared second component. 918 1.385 riastrad We'll dump to that if we havn't found 919 1.385 riastrad anything else so far. 920 1.231 oster */ 921 1.231 oster if (dumpto == -1) 922 1.231 oster dumpto = sparecol; 923 1.231 oster } 924 1.231 oster } 925 1.231 oster } 926 1.385 riastrad 927 1.231 oster if (dumpto == -1) { 928 1.231 oster /* we couldn't find any live components to dump to!?!? 929 1.231 oster */ 930 1.231 oster error = EINVAL; 931 1.231 oster goto out; 932 1.231 oster } 933 1.231 oster 934 1.231 oster bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev); 935 1.342 mlelstv if (bdev == NULL) { 936 1.342 mlelstv error = ENXIO; 937 1.342 mlelstv goto out; 938 1.342 mlelstv } 939 1.231 oster 940 1.385 riastrad error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev, 941 1.336 mlelstv blkno, va, nblk * raidPtr->bytesPerSector); 942 1.385 riastrad 943 1.231 oster out: 944 1.231 oster raidunlock(rs); 945 1.385 riastrad 946 1.231 oster return error; 947 1.1 oster } 948 1.324 mrg 949 1.1 oster /* ARGSUSED */ 950 1.324 mrg static int 951 1.222 christos raidopen(dev_t dev, int flags, int fmt, 952 1.222 christos struct lwp *l) 953 1.1 oster { 954 1.9 oster int unit = raidunit(dev); 955 1.1 oster struct raid_softc *rs; 956 1.335 mlelstv struct dk_softc *dksc; 957 1.335 mlelstv int error = 0; 958 1.9 oster int part, pmask; 959 1.9 oster 960 1.327 pgoyette if ((rs = raidget(unit, true)) == NULL) 961 1.300 christos return ENXIO; 962 1.1 oster if ((error = raidlock(rs)) != 0) 963 1.389 skrll return error; 964 1.266 dyoung 965 1.266 dyoung if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) { 966 1.266 dyoung error = EBUSY; 967 1.266 dyoung goto bad; 968 1.266 dyoung } 969 1.266 dyoung 970 1.335 mlelstv dksc = &rs->sc_dksc; 971 1.1 oster 972 1.1 oster part = DISKPART(dev); 973 1.1 oster pmask = (1 << part); 974 1.1 oster 975 1.335 mlelstv if (!DK_BUSY(dksc, pmask) && 976 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) { 977 1.13 oster /* First one... mark things as dirty... Note that we *MUST* 978 1.13 oster have done a configure before this. I DO NOT WANT TO BE 979 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED 980 1.13 oster THAT THEY BELONG TOGETHER!!!!! */ 981 1.13 oster /* XXX should check to see if we're only open for reading 982 1.13 oster here... If so, we needn't do this, but then need some 983 1.13 oster other way of keeping track of what's happened.. */ 984 1.13 oster 985 1.300 christos rf_markalldirty(&rs->sc_r); 986 1.13 oster } 987 1.13 oster 988 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) 989 1.335 mlelstv error = dk_open(dksc, dev, flags, fmt, l); 990 1.1 oster 991 1.213 christos bad: 992 1.1 oster raidunlock(rs); 993 1.1 oster 994 1.389 skrll return error; 995 1.1 oster 996 1.1 oster 997 1.1 oster } 998 1.324 mrg 999 1.335 mlelstv static int 1000 1.335 mlelstv raid_lastclose(device_t self) 1001 1.335 mlelstv { 1002 1.335 mlelstv struct raid_softc *rs = raidsoftc(self); 1003 1.335 mlelstv 1004 1.335 mlelstv /* Last one... device is not unconfigured yet. 1005 1.335 mlelstv Device shutdown has taken care of setting the 1006 1.335 mlelstv clean bits if RAIDF_INITED is not set 1007 1.335 mlelstv mark things as clean... */ 1008 1.335 mlelstv 1009 1.335 mlelstv rf_update_component_labels(&rs->sc_r, 1010 1.335 mlelstv RF_FINAL_COMPONENT_UPDATE); 1011 1.335 mlelstv 1012 1.335 mlelstv /* pass to unlocked code */ 1013 1.335 mlelstv if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) 1014 1.335 mlelstv rs->sc_flags |= RAIDF_DETACH; 1015 1.335 mlelstv 1016 1.335 mlelstv return 0; 1017 1.335 mlelstv } 1018 1.335 mlelstv 1019 1.1 oster /* ARGSUSED */ 1020 1.324 mrg static int 1021 1.222 christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l) 1022 1.1 oster { 1023 1.9 oster int unit = raidunit(dev); 1024 1.1 oster struct raid_softc *rs; 1025 1.335 mlelstv struct dk_softc *dksc; 1026 1.335 mlelstv cfdata_t cf; 1027 1.335 mlelstv int error = 0, do_detach = 0, do_put = 0; 1028 1.1 oster 1029 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) 1030 1.300 christos return ENXIO; 1031 1.335 mlelstv dksc = &rs->sc_dksc; 1032 1.1 oster 1033 1.1 oster if ((error = raidlock(rs)) != 0) 1034 1.389 skrll return error; 1035 1.1 oster 1036 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) { 1037 1.335 mlelstv error = dk_close(dksc, dev, flags, fmt, l); 1038 1.335 mlelstv if ((rs->sc_flags & RAIDF_DETACH) != 0) 1039 1.335 mlelstv do_detach = 1; 1040 1.335 mlelstv } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) 1041 1.335 mlelstv do_put = 1; 1042 1.1 oster 1043 1.335 mlelstv raidunlock(rs); 1044 1.1 oster 1045 1.335 mlelstv if (do_detach) { 1046 1.335 mlelstv /* free the pseudo device attach bits */ 1047 1.335 mlelstv cf = device_cfdata(dksc->sc_dev); 1048 1.335 mlelstv error = config_detach(dksc->sc_dev, 0); 1049 1.385 riastrad if (error == 0) 1050 1.335 mlelstv free(cf, M_RAIDFRAME); 1051 1.335 mlelstv } else if (do_put) { 1052 1.335 mlelstv raidput(rs); 1053 1.1 oster } 1054 1.186 perry 1055 1.389 skrll return error; 1056 1.147 oster 1057 1.335 mlelstv } 1058 1.327 pgoyette 1059 1.335 mlelstv static void 1060 1.335 mlelstv raid_wakeup(RF_Raid_t *raidPtr) 1061 1.335 mlelstv { 1062 1.335 mlelstv rf_lock_mutex2(raidPtr->iodone_lock); 1063 1.335 mlelstv rf_signal_cond2(raidPtr->iodone_cv); 1064 1.335 mlelstv rf_unlock_mutex2(raidPtr->iodone_lock); 1065 1.1 oster } 1066 1.1 oster 1067 1.324 mrg static void 1068 1.169 oster raidstrategy(struct buf *bp) 1069 1.1 oster { 1070 1.335 mlelstv unsigned int unit; 1071 1.335 mlelstv struct raid_softc *rs; 1072 1.335 mlelstv struct dk_softc *dksc; 1073 1.1 oster RF_Raid_t *raidPtr; 1074 1.1 oster 1075 1.335 mlelstv unit = raidunit(bp->b_dev); 1076 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) { 1077 1.30 oster bp->b_error = ENXIO; 1078 1.335 mlelstv goto fail; 1079 1.30 oster } 1080 1.300 christos if ((rs->sc_flags & RAIDF_INITED) == 0) { 1081 1.300 christos bp->b_error = ENXIO; 1082 1.335 mlelstv goto fail; 1083 1.1 oster } 1084 1.335 mlelstv dksc = &rs->sc_dksc; 1085 1.300 christos raidPtr = &rs->sc_r; 1086 1.335 mlelstv 1087 1.335 mlelstv /* Queue IO only */ 1088 1.335 mlelstv if (dk_strategy_defer(dksc, bp)) 1089 1.196 yamt goto done; 1090 1.1 oster 1091 1.335 mlelstv /* schedule the IO to happen at the next convenient time */ 1092 1.335 mlelstv raid_wakeup(raidPtr); 1093 1.335 mlelstv 1094 1.335 mlelstv done: 1095 1.335 mlelstv return; 1096 1.335 mlelstv 1097 1.335 mlelstv fail: 1098 1.335 mlelstv bp->b_resid = bp->b_bcount; 1099 1.335 mlelstv biodone(bp); 1100 1.335 mlelstv } 1101 1.335 mlelstv 1102 1.335 mlelstv static int 1103 1.335 mlelstv raid_diskstart(device_t dev, struct buf *bp) 1104 1.335 mlelstv { 1105 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev); 1106 1.335 mlelstv RF_Raid_t *raidPtr; 1107 1.1 oster 1108 1.335 mlelstv raidPtr = &rs->sc_r; 1109 1.335 mlelstv if (!raidPtr->valid) { 1110 1.335 mlelstv db1_printf(("raid is not valid..\n")); 1111 1.335 mlelstv return ENODEV; 1112 1.196 yamt } 1113 1.285 mrg 1114 1.335 mlelstv /* XXX */ 1115 1.335 mlelstv bp->b_resid = 0; 1116 1.335 mlelstv 1117 1.335 mlelstv return raiddoaccess(raidPtr, bp); 1118 1.335 mlelstv } 1119 1.1 oster 1120 1.335 mlelstv void 1121 1.335 mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp) 1122 1.335 mlelstv { 1123 1.335 mlelstv struct raid_softc *rs; 1124 1.335 mlelstv struct dk_softc *dksc; 1125 1.34 oster 1126 1.335 mlelstv rs = raidPtr->softc; 1127 1.335 mlelstv dksc = &rs->sc_dksc; 1128 1.34 oster 1129 1.335 mlelstv dk_done(dksc, bp); 1130 1.34 oster 1131 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex); 1132 1.335 mlelstv raidPtr->openings++; 1133 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex); 1134 1.196 yamt 1135 1.335 mlelstv /* schedule more IO */ 1136 1.335 mlelstv raid_wakeup(raidPtr); 1137 1.1 oster } 1138 1.324 mrg 1139 1.1 oster /* ARGSUSED */ 1140 1.324 mrg static int 1141 1.222 christos raidread(dev_t dev, struct uio *uio, int flags) 1142 1.1 oster { 1143 1.9 oster int unit = raidunit(dev); 1144 1.1 oster struct raid_softc *rs; 1145 1.1 oster 1146 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) 1147 1.300 christos return ENXIO; 1148 1.1 oster 1149 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0) 1150 1.389 skrll return ENXIO; 1151 1.1 oster 1152 1.389 skrll return physio(raidstrategy, NULL, dev, B_READ, minphys, uio); 1153 1.1 oster 1154 1.1 oster } 1155 1.324 mrg 1156 1.1 oster /* ARGSUSED */ 1157 1.324 mrg static int 1158 1.222 christos raidwrite(dev_t dev, struct uio *uio, int flags) 1159 1.1 oster { 1160 1.9 oster int unit = raidunit(dev); 1161 1.1 oster struct raid_softc *rs; 1162 1.1 oster 1163 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) 1164 1.300 christos return ENXIO; 1165 1.1 oster 1166 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0) 1167 1.389 skrll return ENXIO; 1168 1.147 oster 1169 1.389 skrll return physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio); 1170 1.1 oster 1171 1.1 oster } 1172 1.1 oster 1173 1.266 dyoung static int 1174 1.266 dyoung raid_detach_unlocked(struct raid_softc *rs) 1175 1.266 dyoung { 1176 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc; 1177 1.335 mlelstv RF_Raid_t *raidPtr; 1178 1.266 dyoung int error; 1179 1.266 dyoung 1180 1.300 christos raidPtr = &rs->sc_r; 1181 1.266 dyoung 1182 1.337 mlelstv if (DK_BUSY(dksc, 0) || 1183 1.337 mlelstv raidPtr->recon_in_progress != 0 || 1184 1.415 oster raidPtr->parity_rewrite_in_progress != 0) 1185 1.266 dyoung return EBUSY; 1186 1.266 dyoung 1187 1.266 dyoung if ((rs->sc_flags & RAIDF_INITED) == 0) 1188 1.333 mlelstv return 0; 1189 1.333 mlelstv 1190 1.333 mlelstv rs->sc_flags &= ~RAIDF_SHUTDOWN; 1191 1.333 mlelstv 1192 1.333 mlelstv if ((error = rf_Shutdown(raidPtr)) != 0) 1193 1.266 dyoung return error; 1194 1.266 dyoung 1195 1.335 mlelstv rs->sc_flags &= ~RAIDF_INITED; 1196 1.335 mlelstv 1197 1.335 mlelstv /* Kill off any queued buffers */ 1198 1.335 mlelstv dk_drain(dksc); 1199 1.335 mlelstv bufq_free(dksc->sc_bufq); 1200 1.335 mlelstv 1201 1.266 dyoung /* Detach the disk. */ 1202 1.335 mlelstv dkwedge_delall(&dksc->sc_dkdev); 1203 1.335 mlelstv disk_detach(&dksc->sc_dkdev); 1204 1.335 mlelstv disk_destroy(&dksc->sc_dkdev); 1205 1.335 mlelstv dk_detach(dksc); 1206 1.333 mlelstv 1207 1.266 dyoung return 0; 1208 1.266 dyoung } 1209 1.266 dyoung 1210 1.366 christos int 1211 1.366 christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr) 1212 1.366 christos { 1213 1.366 christos struct rf_recon_req_internal *rrint; 1214 1.366 christos 1215 1.366 christos if (raidPtr->Layout.map->faultsTolerated == 0) { 1216 1.366 christos /* Can't do this on a RAID 0!! */ 1217 1.366 christos return EINVAL; 1218 1.366 christos } 1219 1.366 christos 1220 1.366 christos if (rr->col < 0 || rr->col >= raidPtr->numCol) { 1221 1.366 christos /* bad column */ 1222 1.366 christos return EINVAL; 1223 1.366 christos } 1224 1.366 christos 1225 1.366 christos rf_lock_mutex2(raidPtr->mutex); 1226 1.366 christos if (raidPtr->status == rf_rs_reconstructing) { 1227 1.414 oster raidPtr->abortRecon[rr->col] = 1; 1228 1.366 christos } 1229 1.366 christos if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) && 1230 1.366 christos (raidPtr->numFailures > 0)) { 1231 1.366 christos /* some other component has failed. Let's not make 1232 1.366 christos things worse. XXX wrong for RAID6 */ 1233 1.366 christos goto out; 1234 1.366 christos } 1235 1.366 christos if (raidPtr->Disks[rr->col].status == rf_ds_spared) { 1236 1.414 oster int spareCol = raidPtr->Disks[rr->col].spareCol; 1237 1.414 oster 1238 1.414 oster if (spareCol < raidPtr->numCol || 1239 1.414 oster spareCol >= raidPtr->numCol + raidPtr->numSpare) 1240 1.414 oster goto out; 1241 1.414 oster 1242 1.414 oster /* 1243 1.414 oster * Fail the spare disk so that we can 1244 1.414 oster * reconstruct on another one. 1245 1.414 oster */ 1246 1.414 oster raidPtr->Disks[spareCol].status = rf_ds_failed; 1247 1.414 oster 1248 1.366 christos } 1249 1.366 christos rf_unlock_mutex2(raidPtr->mutex); 1250 1.366 christos 1251 1.366 christos /* make a copy of the recon request so that we don't rely on 1252 1.366 christos * the user's buffer */ 1253 1.374 christos rrint = RF_Malloc(sizeof(*rrint)); 1254 1.366 christos if (rrint == NULL) 1255 1.366 christos return(ENOMEM); 1256 1.366 christos rrint->col = rr->col; 1257 1.366 christos rrint->flags = rr->flags; 1258 1.366 christos rrint->raidPtr = raidPtr; 1259 1.366 christos 1260 1.366 christos return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread, 1261 1.366 christos rrint, "raid_recon"); 1262 1.366 christos out: 1263 1.366 christos rf_unlock_mutex2(raidPtr->mutex); 1264 1.366 christos return EINVAL; 1265 1.366 christos } 1266 1.366 christos 1267 1.324 mrg static int 1268 1.367 christos rf_copyinspecificbuf(RF_Config_t *k_cfg) 1269 1.367 christos { 1270 1.367 christos /* allocate a buffer for the layout-specific data, and copy it in */ 1271 1.367 christos if (k_cfg->layoutSpecificSize == 0) 1272 1.367 christos return 0; 1273 1.367 christos 1274 1.367 christos if (k_cfg->layoutSpecificSize > 10000) { 1275 1.367 christos /* sanity check */ 1276 1.367 christos return EINVAL; 1277 1.367 christos } 1278 1.367 christos 1279 1.367 christos u_char *specific_buf; 1280 1.374 christos specific_buf = RF_Malloc(k_cfg->layoutSpecificSize); 1281 1.367 christos if (specific_buf == NULL) 1282 1.367 christos return ENOMEM; 1283 1.367 christos 1284 1.367 christos int retcode = copyin(k_cfg->layoutSpecific, specific_buf, 1285 1.367 christos k_cfg->layoutSpecificSize); 1286 1.367 christos if (retcode) { 1287 1.367 christos RF_Free(specific_buf, k_cfg->layoutSpecificSize); 1288 1.367 christos db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode)); 1289 1.367 christos return retcode; 1290 1.367 christos } 1291 1.367 christos 1292 1.367 christos k_cfg->layoutSpecific = specific_buf; 1293 1.367 christos return 0; 1294 1.367 christos } 1295 1.367 christos 1296 1.367 christos static int 1297 1.367 christos rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg) 1298 1.367 christos { 1299 1.372 christos RF_Config_t *u_cfg = *((RF_Config_t **) data); 1300 1.372 christos 1301 1.367 christos if (rs->sc_r.valid) { 1302 1.367 christos /* There is a valid RAID set running on this unit! */ 1303 1.367 christos printf("raid%d: Device already configured!\n", rs->sc_unit); 1304 1.367 christos return EINVAL; 1305 1.367 christos } 1306 1.367 christos 1307 1.367 christos /* copy-in the configuration information */ 1308 1.367 christos /* data points to a pointer to the configuration structure */ 1309 1.374 christos *k_cfg = RF_Malloc(sizeof(**k_cfg)); 1310 1.367 christos if (*k_cfg == NULL) { 1311 1.367 christos return ENOMEM; 1312 1.367 christos } 1313 1.373 christos int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t)); 1314 1.367 christos if (retcode == 0) 1315 1.367 christos return 0; 1316 1.367 christos RF_Free(*k_cfg, sizeof(RF_Config_t)); 1317 1.367 christos db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode)); 1318 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN; 1319 1.367 christos return retcode; 1320 1.367 christos } 1321 1.367 christos 1322 1.367 christos int 1323 1.367 christos rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg) 1324 1.367 christos { 1325 1.408 mrg int retcode, i; 1326 1.367 christos RF_Raid_t *raidPtr = &rs->sc_r; 1327 1.367 christos 1328 1.367 christos rs->sc_flags &= ~RAIDF_SHUTDOWN; 1329 1.367 christos 1330 1.367 christos if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0) 1331 1.367 christos goto out; 1332 1.367 christos 1333 1.367 christos /* should do some kind of sanity check on the configuration. 1334 1.367 christos * Store the sum of all the bytes in the last byte? */ 1335 1.367 christos 1336 1.408 mrg /* Force nul-termination on all strings. */ 1337 1.408 mrg #define ZERO_FINAL(s) do { s[sizeof(s) - 1] = '\0'; } while (0) 1338 1.408 mrg for (i = 0; i < RF_MAXCOL; i++) { 1339 1.408 mrg ZERO_FINAL(k_cfg->devnames[0][i]); 1340 1.408 mrg } 1341 1.408 mrg for (i = 0; i < RF_MAXSPARE; i++) { 1342 1.408 mrg ZERO_FINAL(k_cfg->spare_names[i]); 1343 1.408 mrg } 1344 1.408 mrg for (i = 0; i < RF_MAXDBGV; i++) { 1345 1.408 mrg ZERO_FINAL(k_cfg->debugVars[i]); 1346 1.408 mrg } 1347 1.408 mrg #undef ZERO_FINAL 1348 1.408 mrg 1349 1.408 mrg /* Check some basic limits. */ 1350 1.408 mrg if (k_cfg->numCol >= RF_MAXCOL || k_cfg->numCol < 0) { 1351 1.408 mrg retcode = EINVAL; 1352 1.408 mrg goto out; 1353 1.408 mrg } 1354 1.408 mrg if (k_cfg->numSpare >= RF_MAXSPARE || k_cfg->numSpare < 0) { 1355 1.408 mrg retcode = EINVAL; 1356 1.408 mrg goto out; 1357 1.408 mrg } 1358 1.408 mrg 1359 1.367 christos /* configure the system */ 1360 1.367 christos 1361 1.367 christos /* 1362 1.367 christos * Clear the entire RAID descriptor, just to make sure 1363 1.367 christos * there is no stale data left in the case of a 1364 1.367 christos * reconfiguration 1365 1.367 christos */ 1366 1.367 christos memset(raidPtr, 0, sizeof(*raidPtr)); 1367 1.367 christos raidPtr->softc = rs; 1368 1.367 christos raidPtr->raidid = rs->sc_unit; 1369 1.367 christos 1370 1.367 christos retcode = rf_Configure(raidPtr, k_cfg, NULL); 1371 1.367 christos 1372 1.367 christos if (retcode == 0) { 1373 1.367 christos /* allow this many simultaneous IO's to 1374 1.367 christos this RAID device */ 1375 1.367 christos raidPtr->openings = RAIDOUTSTANDING; 1376 1.367 christos 1377 1.367 christos raidinit(rs); 1378 1.367 christos raid_wakeup(raidPtr); 1379 1.367 christos rf_markalldirty(raidPtr); 1380 1.367 christos } 1381 1.367 christos 1382 1.367 christos /* free the buffers. No return code here. */ 1383 1.367 christos if (k_cfg->layoutSpecificSize) { 1384 1.367 christos RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize); 1385 1.367 christos } 1386 1.367 christos out: 1387 1.367 christos RF_Free(k_cfg, sizeof(RF_Config_t)); 1388 1.367 christos if (retcode) { 1389 1.367 christos /* 1390 1.367 christos * If configuration failed, set sc_flags so that we 1391 1.367 christos * will detach the device when we close it. 1392 1.367 christos */ 1393 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN; 1394 1.367 christos } 1395 1.367 christos return retcode; 1396 1.367 christos } 1397 1.367 christos 1398 1.367 christos #if RF_DISABLED 1399 1.367 christos static int 1400 1.367 christos rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel) 1401 1.367 christos { 1402 1.367 christos 1403 1.367 christos /* XXX check the label for valid stuff... */ 1404 1.367 christos /* Note that some things *should not* get modified -- 1405 1.367 christos the user should be re-initing the labels instead of 1406 1.367 christos trying to patch things. 1407 1.367 christos */ 1408 1.367 christos #ifdef DEBUG 1409 1.367 christos int raidid = raidPtr->raidid; 1410 1.367 christos printf("raid%d: Got component label:\n", raidid); 1411 1.367 christos printf("raid%d: Version: %d\n", raidid, clabel->version); 1412 1.367 christos printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number); 1413 1.367 christos printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter); 1414 1.367 christos printf("raid%d: Column: %d\n", raidid, clabel->column); 1415 1.367 christos printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns); 1416 1.367 christos printf("raid%d: Clean: %d\n", raidid, clabel->clean); 1417 1.367 christos printf("raid%d: Status: %d\n", raidid, clabel->status); 1418 1.367 christos #endif /* DEBUG */ 1419 1.367 christos clabel->row = 0; 1420 1.367 christos int column = clabel->column; 1421 1.367 christos 1422 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) { 1423 1.367 christos return(EINVAL); 1424 1.367 christos } 1425 1.367 christos 1426 1.367 christos /* XXX this isn't allowed to do anything for now :-) */ 1427 1.367 christos 1428 1.367 christos /* XXX and before it is, we need to fill in the rest 1429 1.367 christos of the fields!?!?!?! */ 1430 1.367 christos memcpy(raidget_component_label(raidPtr, column), 1431 1.367 christos clabel, sizeof(*clabel)); 1432 1.367 christos raidflush_component_label(raidPtr, column); 1433 1.367 christos return 0; 1434 1.367 christos } 1435 1.367 christos #endif 1436 1.367 christos 1437 1.367 christos static int 1438 1.367 christos rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel) 1439 1.367 christos { 1440 1.367 christos /* 1441 1.367 christos we only want the serial number from 1442 1.367 christos the above. We get all the rest of the information 1443 1.367 christos from the config that was used to create this RAID 1444 1.367 christos set. 1445 1.367 christos */ 1446 1.367 christos 1447 1.367 christos raidPtr->serial_number = clabel->serial_number; 1448 1.367 christos 1449 1.367 christos for (int column = 0; column < raidPtr->numCol; column++) { 1450 1.367 christos RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column]; 1451 1.367 christos if (RF_DEAD_DISK(diskPtr->status)) 1452 1.367 christos continue; 1453 1.367 christos RF_ComponentLabel_t *ci_label = raidget_component_label( 1454 1.367 christos raidPtr, column); 1455 1.367 christos /* Zeroing this is important. */ 1456 1.367 christos memset(ci_label, 0, sizeof(*ci_label)); 1457 1.367 christos raid_init_component_label(raidPtr, ci_label); 1458 1.367 christos ci_label->serial_number = raidPtr->serial_number; 1459 1.367 christos ci_label->row = 0; /* we dont' pretend to support more */ 1460 1.367 christos rf_component_label_set_partitionsize(ci_label, 1461 1.367 christos diskPtr->partitionSize); 1462 1.367 christos ci_label->column = column; 1463 1.367 christos raidflush_component_label(raidPtr, column); 1464 1.367 christos /* XXXjld what about the spares? */ 1465 1.367 christos } 1466 1.385 riastrad 1467 1.367 christos return 0; 1468 1.367 christos } 1469 1.367 christos 1470 1.367 christos static int 1471 1.367 christos rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr) 1472 1.367 christos { 1473 1.367 christos 1474 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0) { 1475 1.367 christos /* Can't do this on a RAID 0!! */ 1476 1.367 christos return EINVAL; 1477 1.367 christos } 1478 1.367 christos 1479 1.367 christos if (raidPtr->recon_in_progress == 1) { 1480 1.367 christos /* a reconstruct is already in progress! */ 1481 1.367 christos return EINVAL; 1482 1.367 christos } 1483 1.367 christos 1484 1.367 christos RF_SingleComponent_t component; 1485 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t)); 1486 1.367 christos component.row = 0; /* we don't support any more */ 1487 1.367 christos int column = component.column; 1488 1.367 christos 1489 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) { 1490 1.367 christos return EINVAL; 1491 1.367 christos } 1492 1.367 christos 1493 1.367 christos rf_lock_mutex2(raidPtr->mutex); 1494 1.367 christos if ((raidPtr->Disks[column].status == rf_ds_optimal) && 1495 1.367 christos (raidPtr->numFailures > 0)) { 1496 1.367 christos /* XXX 0 above shouldn't be constant!!! */ 1497 1.367 christos /* some component other than this has failed. 1498 1.367 christos Let's not make things worse than they already 1499 1.367 christos are... */ 1500 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n", 1501 1.367 christos raidPtr->raidid); 1502 1.367 christos printf("raid%d: Col: %d Too many failures.\n", 1503 1.367 christos raidPtr->raidid, column); 1504 1.367 christos rf_unlock_mutex2(raidPtr->mutex); 1505 1.367 christos return EINVAL; 1506 1.367 christos } 1507 1.367 christos 1508 1.367 christos if (raidPtr->Disks[column].status == rf_ds_reconstructing) { 1509 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n", 1510 1.367 christos raidPtr->raidid); 1511 1.367 christos printf("raid%d: Col: %d " 1512 1.367 christos "Reconstruction already occurring!\n", 1513 1.367 christos raidPtr->raidid, column); 1514 1.367 christos 1515 1.367 christos rf_unlock_mutex2(raidPtr->mutex); 1516 1.367 christos return EINVAL; 1517 1.367 christos } 1518 1.367 christos 1519 1.367 christos if (raidPtr->Disks[column].status == rf_ds_spared) { 1520 1.367 christos rf_unlock_mutex2(raidPtr->mutex); 1521 1.367 christos return EINVAL; 1522 1.367 christos } 1523 1.367 christos 1524 1.367 christos rf_unlock_mutex2(raidPtr->mutex); 1525 1.367 christos 1526 1.367 christos struct rf_recon_req_internal *rrint; 1527 1.374 christos rrint = RF_Malloc(sizeof(*rrint)); 1528 1.367 christos if (rrint == NULL) 1529 1.367 christos return ENOMEM; 1530 1.367 christos 1531 1.367 christos rrint->col = column; 1532 1.367 christos rrint->raidPtr = raidPtr; 1533 1.367 christos 1534 1.367 christos return RF_CREATE_THREAD(raidPtr->recon_thread, 1535 1.367 christos rf_ReconstructInPlaceThread, rrint, "raid_reconip"); 1536 1.367 christos } 1537 1.367 christos 1538 1.367 christos static int 1539 1.367 christos rf_check_recon_status(RF_Raid_t *raidPtr, int *data) 1540 1.367 christos { 1541 1.367 christos /* 1542 1.367 christos * This makes no sense on a RAID 0, or if we are not reconstructing 1543 1.367 christos * so tell the user it's done. 1544 1.367 christos */ 1545 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0 || 1546 1.367 christos raidPtr->status != rf_rs_reconstructing) { 1547 1.367 christos *data = 100; 1548 1.367 christos return 0; 1549 1.367 christos } 1550 1.367 christos if (raidPtr->reconControl->numRUsTotal == 0) { 1551 1.367 christos *data = 0; 1552 1.367 christos return 0; 1553 1.367 christos } 1554 1.367 christos *data = (raidPtr->reconControl->numRUsComplete * 100 1555 1.367 christos / raidPtr->reconControl->numRUsTotal); 1556 1.367 christos return 0; 1557 1.367 christos } 1558 1.367 christos 1559 1.408 mrg /* 1560 1.408 mrg * Copy a RF_SingleComponent_t from 'data', ensuring nul-termination 1561 1.408 mrg * on the component_name[] array. 1562 1.408 mrg */ 1563 1.408 mrg static void 1564 1.408 mrg rf_copy_single_component(RF_SingleComponent_t *component, void *data) 1565 1.408 mrg { 1566 1.408 mrg 1567 1.408 mrg memcpy(component, data, sizeof *component); 1568 1.408 mrg component->component_name[sizeof(component->component_name) - 1] = '\0'; 1569 1.408 mrg } 1570 1.408 mrg 1571 1.367 christos static int 1572 1.225 christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 1573 1.1 oster { 1574 1.9 oster int unit = raidunit(dev); 1575 1.335 mlelstv int part, pmask; 1576 1.1 oster struct raid_softc *rs; 1577 1.335 mlelstv struct dk_softc *dksc; 1578 1.367 christos RF_Config_t *k_cfg; 1579 1.42 oster RF_Raid_t *raidPtr; 1580 1.41 oster RF_AccTotals_t *totals; 1581 1.367 christos RF_SingleComponent_t component; 1582 1.371 oster RF_DeviceConfig_t *d_cfg, *ucfgp; 1583 1.11 oster int retcode = 0; 1584 1.11 oster int column; 1585 1.48 oster RF_ComponentLabel_t *clabel; 1586 1.353 mrg int d; 1587 1.1 oster 1588 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) 1589 1.300 christos return ENXIO; 1590 1.366 christos 1591 1.335 mlelstv dksc = &rs->sc_dksc; 1592 1.300 christos raidPtr = &rs->sc_r; 1593 1.1 oster 1594 1.276 mrg db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev, 1595 1.366 christos (int) DISKPART(dev), (int) unit, cmd)); 1596 1.1 oster 1597 1.410 oster /* Only CONFIGURE and RESCAN can be done without the RAID being initialized. */ 1598 1.410 oster switch (cmd) { 1599 1.410 oster case RAIDFRAME_CONFIGURE: 1600 1.410 oster case RAIDFRAME_RESCAN: 1601 1.410 oster break; 1602 1.410 oster default: 1603 1.410 oster if (!rf_inited(rs)) 1604 1.410 oster return ENXIO; 1605 1.410 oster } 1606 1.9 oster 1607 1.358 pgoyette switch (cmd) { 1608 1.1 oster /* configure the system */ 1609 1.1 oster case RAIDFRAME_CONFIGURE: 1610 1.367 christos if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0) 1611 1.367 christos return retcode; 1612 1.367 christos return rf_construct(rs, k_cfg); 1613 1.9 oster 1614 1.9 oster /* shutdown the system */ 1615 1.1 oster case RAIDFRAME_SHUTDOWN: 1616 1.9 oster 1617 1.266 dyoung part = DISKPART(dev); 1618 1.266 dyoung pmask = (1 << part); 1619 1.266 dyoung 1620 1.367 christos if ((retcode = raidlock(rs)) != 0) 1621 1.367 christos return retcode; 1622 1.1 oster 1623 1.337 mlelstv if (DK_BUSY(dksc, pmask) || 1624 1.337 mlelstv raidPtr->recon_in_progress != 0 || 1625 1.415 oster raidPtr->parity_rewrite_in_progress != 0) 1626 1.266 dyoung retcode = EBUSY; 1627 1.266 dyoung else { 1628 1.335 mlelstv /* detach and free on close */ 1629 1.266 dyoung rs->sc_flags |= RAIDF_SHUTDOWN; 1630 1.266 dyoung retcode = 0; 1631 1.9 oster } 1632 1.11 oster 1633 1.266 dyoung raidunlock(rs); 1634 1.1 oster 1635 1.367 christos return retcode; 1636 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL: 1637 1.353 mrg return rf_get_component_label(raidPtr, data); 1638 1.11 oster 1639 1.367 christos #if RF_DISABLED 1640 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL: 1641 1.367 christos return rf_set_component_label(raidPtr, data); 1642 1.367 christos #endif 1643 1.11 oster 1644 1.367 christos case RAIDFRAME_INIT_LABELS: 1645 1.367 christos return rf_init_component_label(raidPtr, data); 1646 1.12 oster 1647 1.48 oster case RAIDFRAME_SET_AUTOCONFIG: 1648 1.78 minoura d = rf_set_autoconfig(raidPtr, *(int *) data); 1649 1.186 perry printf("raid%d: New autoconfig value is: %d\n", 1650 1.123 oster raidPtr->raidid, d); 1651 1.78 minoura *(int *) data = d; 1652 1.367 christos return retcode; 1653 1.48 oster 1654 1.48 oster case RAIDFRAME_SET_ROOT: 1655 1.78 minoura d = rf_set_rootpartition(raidPtr, *(int *) data); 1656 1.186 perry printf("raid%d: New rootpartition value is: %d\n", 1657 1.123 oster raidPtr->raidid, d); 1658 1.78 minoura *(int *) data = d; 1659 1.367 christos return retcode; 1660 1.9 oster 1661 1.1 oster /* initialize all parity */ 1662 1.1 oster case RAIDFRAME_REWRITEPARITY: 1663 1.1 oster 1664 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) { 1665 1.17 oster /* Parity for RAID 0 is trivially correct */ 1666 1.42 oster raidPtr->parity_good = RF_RAID_CLEAN; 1667 1.367 christos return 0; 1668 1.17 oster } 1669 1.186 perry 1670 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) { 1671 1.37 oster /* Re-write is already in progress! */ 1672 1.367 christos return EINVAL; 1673 1.37 oster } 1674 1.27 oster 1675 1.367 christos return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread, 1676 1.367 christos rf_RewriteParityThread, raidPtr,"raid_parity"); 1677 1.11 oster 1678 1.11 oster case RAIDFRAME_ADD_HOT_SPARE: 1679 1.408 mrg rf_copy_single_component(&component, data); 1680 1.367 christos return rf_add_hot_spare(raidPtr, &component); 1681 1.11 oster 1682 1.414 oster /* Remove a non hot-spare component, never implemented in userland */ 1683 1.73 oster case RAIDFRAME_DELETE_COMPONENT: 1684 1.408 mrg rf_copy_single_component(&component, data); 1685 1.367 christos return rf_delete_component(raidPtr, &component); 1686 1.73 oster 1687 1.414 oster case RAIDFRAME_REMOVE_COMPONENT: 1688 1.414 oster rf_copy_single_component(&component, data); 1689 1.414 oster return rf_remove_component(raidPtr, &component); 1690 1.414 oster 1691 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE: 1692 1.408 mrg rf_copy_single_component(&component, data); 1693 1.367 christos return rf_incorporate_hot_spare(raidPtr, &component); 1694 1.11 oster 1695 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE: 1696 1.367 christos return rf_rebuild_in_place(raidPtr, data); 1697 1.398 oster 1698 1.366 christos case RAIDFRAME_GET_INFO: 1699 1.371 oster ucfgp = *(RF_DeviceConfig_t **)data; 1700 1.374 christos d_cfg = RF_Malloc(sizeof(*d_cfg)); 1701 1.41 oster if (d_cfg == NULL) 1702 1.366 christos return ENOMEM; 1703 1.353 mrg retcode = rf_get_info(raidPtr, d_cfg); 1704 1.353 mrg if (retcode == 0) { 1705 1.371 oster retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg)); 1706 1.41 oster } 1707 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t)); 1708 1.366 christos return retcode; 1709 1.9 oster 1710 1.22 oster case RAIDFRAME_CHECK_PARITY: 1711 1.42 oster *(int *) data = raidPtr->parity_good; 1712 1.367 christos return 0; 1713 1.41 oster 1714 1.269 jld case RAIDFRAME_PARITYMAP_STATUS: 1715 1.273 jld if (rf_paritymap_ineligible(raidPtr)) 1716 1.273 jld return EINVAL; 1717 1.367 christos rf_paritymap_status(raidPtr->parity_map, data); 1718 1.269 jld return 0; 1719 1.269 jld 1720 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS: 1721 1.273 jld if (rf_paritymap_ineligible(raidPtr)) 1722 1.273 jld return EINVAL; 1723 1.269 jld if (raidPtr->parity_map == NULL) 1724 1.269 jld return ENOENT; /* ??? */ 1725 1.367 christos if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0) 1726 1.269 jld return EINVAL; 1727 1.269 jld return 0; 1728 1.269 jld 1729 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE: 1730 1.273 jld if (rf_paritymap_ineligible(raidPtr)) 1731 1.273 jld return EINVAL; 1732 1.269 jld *(int *) data = rf_paritymap_get_disable(raidPtr); 1733 1.269 jld return 0; 1734 1.269 jld 1735 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE: 1736 1.273 jld if (rf_paritymap_ineligible(raidPtr)) 1737 1.273 jld return EINVAL; 1738 1.269 jld rf_paritymap_set_disable(raidPtr, *(int *)data); 1739 1.269 jld /* XXX should errors be passed up? */ 1740 1.269 jld return 0; 1741 1.269 jld 1742 1.398 oster case RAIDFRAME_RESCAN: 1743 1.398 oster return rf_rescan(); 1744 1.398 oster 1745 1.1 oster case RAIDFRAME_RESET_ACCTOTALS: 1746 1.108 thorpej memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals)); 1747 1.367 christos return 0; 1748 1.9 oster 1749 1.1 oster case RAIDFRAME_GET_ACCTOTALS: 1750 1.41 oster totals = (RF_AccTotals_t *) data; 1751 1.42 oster *totals = raidPtr->acc_totals; 1752 1.366 christos return 0; 1753 1.9 oster 1754 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS: 1755 1.42 oster raidPtr->keep_acc_totals = *(int *)data; 1756 1.366 christos return 0; 1757 1.9 oster 1758 1.1 oster case RAIDFRAME_GET_SIZE: 1759 1.42 oster *(int *) data = raidPtr->totalSectors; 1760 1.366 christos return 0; 1761 1.1 oster 1762 1.1 oster case RAIDFRAME_FAIL_DISK: 1763 1.366 christos return rf_fail_disk(raidPtr, data); 1764 1.9 oster 1765 1.415 oster /* copyback is no longer supported */ 1766 1.9 oster case RAIDFRAME_COPYBACK: 1767 1.415 oster return EINVAL; 1768 1.9 oster 1769 1.1 oster /* return the percentage completion of reconstruction */ 1770 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS: 1771 1.367 christos return rf_check_recon_status(raidPtr, data); 1772 1.367 christos 1773 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT: 1774 1.353 mrg rf_check_recon_status_ext(raidPtr, data); 1775 1.367 christos return 0; 1776 1.9 oster 1777 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS: 1778 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) { 1779 1.80 oster /* This makes no sense on a RAID 0, so tell the 1780 1.80 oster user it's done. */ 1781 1.80 oster *(int *) data = 100; 1782 1.367 christos return 0; 1783 1.37 oster } 1784 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) { 1785 1.186 perry *(int *) data = 100 * 1786 1.186 perry raidPtr->parity_rewrite_stripes_done / 1787 1.83 oster raidPtr->Layout.numStripe; 1788 1.37 oster } else { 1789 1.37 oster *(int *) data = 100; 1790 1.37 oster } 1791 1.367 christos return 0; 1792 1.37 oster 1793 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT: 1794 1.353 mrg rf_check_parityrewrite_status_ext(raidPtr, data); 1795 1.367 christos return 0; 1796 1.83 oster 1797 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS: 1798 1.415 oster *(int *) data = 100; 1799 1.367 christos return 0; 1800 1.37 oster 1801 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT: 1802 1.353 mrg rf_check_copyback_status_ext(raidPtr, data); 1803 1.353 mrg return 0; 1804 1.37 oster 1805 1.341 christos case RAIDFRAME_SET_LAST_UNIT: 1806 1.341 christos for (column = 0; column < raidPtr->numCol; column++) 1807 1.341 christos if (raidPtr->Disks[column].status != rf_ds_optimal) 1808 1.341 christos return EBUSY; 1809 1.341 christos 1810 1.341 christos for (column = 0; column < raidPtr->numCol; column++) { 1811 1.341 christos clabel = raidget_component_label(raidPtr, column); 1812 1.341 christos clabel->last_unit = *(int *)data; 1813 1.341 christos raidflush_component_label(raidPtr, column); 1814 1.341 christos } 1815 1.341 christos rs->sc_cflags |= RAIDF_UNIT_CHANGED; 1816 1.341 christos return 0; 1817 1.341 christos 1818 1.9 oster /* the sparetable daemon calls this to wait for the kernel to 1819 1.9 oster * need a spare table. this ioctl does not return until a 1820 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the 1821 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX 1822 1.9 oster * -- I should either compute the spare table in the kernel, 1823 1.9 oster * or have a different -- XXX XXX -- interface (a different 1824 1.42 oster * character device) for delivering the table -- XXX */ 1825 1.367 christos #if RF_DISABLED 1826 1.1 oster case RAIDFRAME_SPARET_WAIT: 1827 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex); 1828 1.9 oster while (!rf_sparet_wait_queue) 1829 1.287 mrg rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex); 1830 1.367 christos RF_SparetWait_t *waitreq = rf_sparet_wait_queue; 1831 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next; 1832 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex); 1833 1.9 oster 1834 1.42 oster /* structure assignment */ 1835 1.186 perry *((RF_SparetWait_t *) data) = *waitreq; 1836 1.9 oster 1837 1.1 oster RF_Free(waitreq, sizeof(*waitreq)); 1838 1.367 christos return 0; 1839 1.9 oster 1840 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error 1841 1.9 oster * code in it that will cause the dameon to exit */ 1842 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT: 1843 1.374 christos waitreq = RF_Malloc(sizeof(*waitreq)); 1844 1.1 oster waitreq->fcol = -1; 1845 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex); 1846 1.1 oster waitreq->next = rf_sparet_wait_queue; 1847 1.1 oster rf_sparet_wait_queue = waitreq; 1848 1.367 christos rf_broadcast_cond2(rf_sparet_wait_cv); 1849 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex); 1850 1.367 christos return 0; 1851 1.1 oster 1852 1.9 oster /* used by the spare table daemon to deliver a spare table 1853 1.9 oster * into the kernel */ 1854 1.1 oster case RAIDFRAME_SEND_SPARET: 1855 1.9 oster 1856 1.1 oster /* install the spare table */ 1857 1.42 oster retcode = rf_SetSpareTable(raidPtr, *(void **) data); 1858 1.9 oster 1859 1.9 oster /* respond to the requestor. the return status of the spare 1860 1.9 oster * table installation is passed in the "fcol" field */ 1861 1.374 christos waitred = RF_Malloc(sizeof(*waitreq)); 1862 1.1 oster waitreq->fcol = retcode; 1863 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex); 1864 1.1 oster waitreq->next = rf_sparet_resp_queue; 1865 1.1 oster rf_sparet_resp_queue = waitreq; 1866 1.287 mrg rf_broadcast_cond2(rf_sparet_resp_cv); 1867 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex); 1868 1.9 oster 1869 1.367 christos return retcode; 1870 1.367 christos #endif 1871 1.367 christos default: 1872 1.372 christos /* 1873 1.372 christos * Don't bother trying to load compat modules 1874 1.372 christos * if it is not our ioctl. This is more efficient 1875 1.372 christos * and makes rump tests not depend on compat code 1876 1.372 christos */ 1877 1.372 christos if (IOCGROUP(cmd) != 'r') 1878 1.372 christos break; 1879 1.367 christos #ifdef _LP64 1880 1.367 christos if ((l->l_proc->p_flag & PK_32) != 0) { 1881 1.367 christos module_autoload("compat_netbsd32_raid", 1882 1.367 christos MODULE_CLASS_EXEC); 1883 1.376 pgoyette MODULE_HOOK_CALL(raidframe_netbsd32_ioctl_hook, 1884 1.367 christos (rs, cmd, data), enosys(), retcode); 1885 1.367 christos if (retcode != EPASSTHROUGH) 1886 1.367 christos return retcode; 1887 1.367 christos } 1888 1.1 oster #endif 1889 1.367 christos module_autoload("compat_raid_80", MODULE_CLASS_EXEC); 1890 1.376 pgoyette MODULE_HOOK_CALL(raidframe_ioctl_80_hook, 1891 1.367 christos (rs, cmd, data), enosys(), retcode); 1892 1.367 christos if (retcode != EPASSTHROUGH) 1893 1.367 christos return retcode; 1894 1.1 oster 1895 1.367 christos module_autoload("compat_raid_50", MODULE_CLASS_EXEC); 1896 1.376 pgoyette MODULE_HOOK_CALL(raidframe_ioctl_50_hook, 1897 1.367 christos (rs, cmd, data), enosys(), retcode); 1898 1.367 christos if (retcode != EPASSTHROUGH) 1899 1.367 christos return retcode; 1900 1.36 oster break; /* fall through to the os-specific code below */ 1901 1.1 oster 1902 1.1 oster } 1903 1.9 oster 1904 1.42 oster if (!raidPtr->valid) 1905 1.389 skrll return EINVAL; 1906 1.9 oster 1907 1.1 oster /* 1908 1.1 oster * Add support for "regular" device ioctls here. 1909 1.1 oster */ 1910 1.385 riastrad 1911 1.1 oster switch (cmd) { 1912 1.348 jdolecek case DIOCGCACHE: 1913 1.348 jdolecek retcode = rf_get_component_caches(raidPtr, (int *)data); 1914 1.348 jdolecek break; 1915 1.348 jdolecek 1916 1.252 oster case DIOCCACHESYNC: 1917 1.390 christos retcode = rf_sync_component_caches(raidPtr, *(int *)data); 1918 1.347 jdolecek break; 1919 1.298 buhrow 1920 1.1 oster default: 1921 1.346 jdolecek retcode = dk_ioctl(dksc, dev, cmd, data, flag, l); 1922 1.347 jdolecek break; 1923 1.1 oster } 1924 1.346 jdolecek 1925 1.389 skrll return retcode; 1926 1.1 oster 1927 1.1 oster } 1928 1.1 oster 1929 1.1 oster 1930 1.9 oster /* raidinit -- complete the rest of the initialization for the 1931 1.1 oster RAIDframe device. */ 1932 1.1 oster 1933 1.1 oster 1934 1.59 oster static void 1935 1.300 christos raidinit(struct raid_softc *rs) 1936 1.1 oster { 1937 1.262 cegger cfdata_t cf; 1938 1.335 mlelstv unsigned int unit; 1939 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc; 1940 1.300 christos RF_Raid_t *raidPtr = &rs->sc_r; 1941 1.335 mlelstv device_t dev; 1942 1.1 oster 1943 1.59 oster unit = raidPtr->raidid; 1944 1.1 oster 1945 1.179 itojun /* XXX doesn't check bounds. */ 1946 1.335 mlelstv snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit); 1947 1.1 oster 1948 1.217 oster /* attach the pseudo device */ 1949 1.217 oster cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK); 1950 1.217 oster cf->cf_name = raid_cd.cd_name; 1951 1.217 oster cf->cf_atname = raid_cd.cd_name; 1952 1.217 oster cf->cf_unit = unit; 1953 1.217 oster cf->cf_fstate = FSTATE_STAR; 1954 1.217 oster 1955 1.335 mlelstv dev = config_attach_pseudo(cf); 1956 1.335 mlelstv if (dev == NULL) { 1957 1.217 oster printf("raid%d: config_attach_pseudo failed\n", 1958 1.270 christos raidPtr->raidid); 1959 1.265 pooka free(cf, M_RAIDFRAME); 1960 1.265 pooka return; 1961 1.217 oster } 1962 1.217 oster 1963 1.335 mlelstv /* provide a backpointer to the real softc */ 1964 1.335 mlelstv raidsoftc(dev) = rs; 1965 1.335 mlelstv 1966 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among 1967 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing 1968 1.9 oster * with disklabels. */ 1969 1.335 mlelstv dk_init(dksc, dev, DKTYPE_RAID); 1970 1.335 mlelstv disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver); 1971 1.1 oster 1972 1.1 oster /* XXX There may be a weird interaction here between this, and 1973 1.9 oster * protectedSectors, as used in RAIDframe. */ 1974 1.11 oster 1975 1.9 oster rs->sc_size = raidPtr->totalSectors; 1976 1.234 oster 1977 1.335 mlelstv /* Attach dk and disk subsystems */ 1978 1.335 mlelstv dk_attach(dksc); 1979 1.335 mlelstv disk_attach(&dksc->sc_dkdev); 1980 1.318 mlelstv rf_set_geometry(rs, raidPtr); 1981 1.318 mlelstv 1982 1.335 mlelstv bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK); 1983 1.335 mlelstv 1984 1.335 mlelstv /* mark unit as usuable */ 1985 1.335 mlelstv rs->sc_flags |= RAIDF_INITED; 1986 1.234 oster 1987 1.335 mlelstv dkwedge_discover(&dksc->sc_dkdev); 1988 1.1 oster } 1989 1.335 mlelstv 1990 1.150 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 1991 1.1 oster /* wake up the daemon & tell it to get us a spare table 1992 1.1 oster * XXX 1993 1.9 oster * the entries in the queues should be tagged with the raidPtr 1994 1.186 perry * so that in the extremely rare case that two recons happen at once, 1995 1.11 oster * we know for which device were requesting a spare table 1996 1.1 oster * XXX 1997 1.186 perry * 1998 1.39 oster * XXX This code is not currently used. GO 1999 1.1 oster */ 2000 1.186 perry int 2001 1.169 oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req) 2002 1.9 oster { 2003 1.9 oster int retcode; 2004 1.9 oster 2005 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex); 2006 1.9 oster req->next = rf_sparet_wait_queue; 2007 1.9 oster rf_sparet_wait_queue = req; 2008 1.289 mrg rf_broadcast_cond2(rf_sparet_wait_cv); 2009 1.9 oster 2010 1.9 oster /* mpsleep unlocks the mutex */ 2011 1.9 oster while (!rf_sparet_resp_queue) { 2012 1.289 mrg rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex); 2013 1.9 oster } 2014 1.9 oster req = rf_sparet_resp_queue; 2015 1.9 oster rf_sparet_resp_queue = req->next; 2016 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex); 2017 1.9 oster 2018 1.9 oster retcode = req->fcol; 2019 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we 2020 1.9 oster * alloc'd */ 2021 1.389 skrll return retcode; 2022 1.1 oster } 2023 1.150 oster #endif 2024 1.39 oster 2025 1.186 perry /* a wrapper around rf_DoAccess that extracts appropriate info from the 2026 1.11 oster * bp & passes it down. 2027 1.1 oster * any calls originating in the kernel must use non-blocking I/O 2028 1.1 oster * do some extra sanity checking to return "appropriate" error values for 2029 1.1 oster * certain conditions (to make some standard utilities work) 2030 1.186 perry * 2031 1.34 oster * Formerly known as: rf_DoAccessKernel 2032 1.1 oster */ 2033 1.34 oster void 2034 1.169 oster raidstart(RF_Raid_t *raidPtr) 2035 1.1 oster { 2036 1.1 oster struct raid_softc *rs; 2037 1.335 mlelstv struct dk_softc *dksc; 2038 1.1 oster 2039 1.300 christos rs = raidPtr->softc; 2040 1.335 mlelstv dksc = &rs->sc_dksc; 2041 1.56 oster /* quick check to see if anything has died recently */ 2042 1.291 mrg rf_lock_mutex2(raidPtr->mutex); 2043 1.56 oster if (raidPtr->numNewFailures > 0) { 2044 1.291 mrg rf_unlock_mutex2(raidPtr->mutex); 2045 1.186 perry rf_update_component_labels(raidPtr, 2046 1.91 oster RF_NORMAL_COMPONENT_UPDATE); 2047 1.291 mrg rf_lock_mutex2(raidPtr->mutex); 2048 1.56 oster raidPtr->numNewFailures--; 2049 1.56 oster } 2050 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex); 2051 1.56 oster 2052 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) { 2053 1.335 mlelstv printf("raid%d: raidstart not ready\n", raidPtr->raidid); 2054 1.335 mlelstv return; 2055 1.335 mlelstv } 2056 1.34 oster 2057 1.335 mlelstv dk_start(dksc, NULL); 2058 1.335 mlelstv } 2059 1.34 oster 2060 1.335 mlelstv static int 2061 1.335 mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp) 2062 1.335 mlelstv { 2063 1.335 mlelstv RF_SectorCount_t num_blocks, pb, sum; 2064 1.335 mlelstv RF_RaidAddr_t raid_addr; 2065 1.335 mlelstv daddr_t blocknum; 2066 1.335 mlelstv int rc; 2067 1.186 perry 2068 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex); 2069 1.335 mlelstv if (raidPtr->openings == 0) { 2070 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex); 2071 1.335 mlelstv return EAGAIN; 2072 1.335 mlelstv } 2073 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex); 2074 1.186 perry 2075 1.335 mlelstv blocknum = bp->b_rawblkno; 2076 1.186 perry 2077 1.335 mlelstv db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, 2078 1.335 mlelstv (int) blocknum)); 2079 1.1 oster 2080 1.335 mlelstv db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount)); 2081 1.335 mlelstv db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid)); 2082 1.1 oster 2083 1.335 mlelstv /* *THIS* is where we adjust what block we're going to... 2084 1.335 mlelstv * but DO NOT TOUCH bp->b_blkno!!! */ 2085 1.335 mlelstv raid_addr = blocknum; 2086 1.335 mlelstv 2087 1.335 mlelstv num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector; 2088 1.335 mlelstv pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0; 2089 1.335 mlelstv sum = raid_addr + num_blocks + pb; 2090 1.335 mlelstv if (1 || rf_debugKernelAccess) { 2091 1.335 mlelstv db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n", 2092 1.335 mlelstv (int) raid_addr, (int) sum, (int) num_blocks, 2093 1.335 mlelstv (int) pb, (int) bp->b_resid)); 2094 1.335 mlelstv } 2095 1.335 mlelstv if ((sum > raidPtr->totalSectors) || (sum < raid_addr) 2096 1.335 mlelstv || (sum < num_blocks) || (sum < pb)) { 2097 1.335 mlelstv rc = ENOSPC; 2098 1.335 mlelstv goto done; 2099 1.335 mlelstv } 2100 1.335 mlelstv /* 2101 1.335 mlelstv * XXX rf_DoAccess() should do this, not just DoAccessKernel() 2102 1.335 mlelstv */ 2103 1.186 perry 2104 1.335 mlelstv if (bp->b_bcount & raidPtr->sectorMask) { 2105 1.335 mlelstv rc = ENOSPC; 2106 1.335 mlelstv goto done; 2107 1.335 mlelstv } 2108 1.335 mlelstv db1_printf(("Calling DoAccess..\n")); 2109 1.99 oster 2110 1.20 oster 2111 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex); 2112 1.335 mlelstv raidPtr->openings--; 2113 1.291 mrg rf_unlock_mutex2(raidPtr->mutex); 2114 1.20 oster 2115 1.335 mlelstv /* don't ever condition on bp->b_flags & B_WRITE. 2116 1.335 mlelstv * always condition on B_READ instead */ 2117 1.7 explorer 2118 1.335 mlelstv rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ? 2119 1.335 mlelstv RF_IO_TYPE_READ : RF_IO_TYPE_WRITE, 2120 1.396 oster raid_addr, num_blocks, 2121 1.335 mlelstv bp->b_data, bp, RF_DAG_NONBLOCKING_IO); 2122 1.335 mlelstv 2123 1.335 mlelstv done: 2124 1.335 mlelstv return rc; 2125 1.335 mlelstv } 2126 1.7 explorer 2127 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */ 2128 1.1 oster 2129 1.186 perry int 2130 1.169 oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req) 2131 1.1 oster { 2132 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE; 2133 1.1 oster struct buf *bp; 2134 1.9 oster 2135 1.1 oster req->queue = queue; 2136 1.1 oster bp = req->bp; 2137 1.1 oster 2138 1.1 oster switch (req->type) { 2139 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */ 2140 1.1 oster /* XXX need to do something extra here.. */ 2141 1.9 oster /* I'm leaving this in, as I've never actually seen it used, 2142 1.9 oster * and I'd like folks to report it... GO */ 2143 1.391 mrg printf("%s: WAKEUP CALLED\n", __func__); 2144 1.1 oster queue->numOutstanding++; 2145 1.1 oster 2146 1.197 oster bp->b_flags = 0; 2147 1.207 simonb bp->b_private = req; 2148 1.1 oster 2149 1.194 oster KernelWakeupFunc(bp); 2150 1.1 oster break; 2151 1.9 oster 2152 1.1 oster case RF_IO_TYPE_READ: 2153 1.1 oster case RF_IO_TYPE_WRITE: 2154 1.175 oster #if RF_ACC_TRACE > 0 2155 1.1 oster if (req->tracerec) { 2156 1.1 oster RF_ETIMER_START(req->tracerec->timer); 2157 1.1 oster } 2158 1.175 oster #endif 2159 1.194 oster InitBP(bp, queue->rf_cinfo->ci_vp, 2160 1.197 oster op, queue->rf_cinfo->ci_dev, 2161 1.9 oster req->sectorOffset, req->numSector, 2162 1.9 oster req->buf, KernelWakeupFunc, (void *) req, 2163 1.384 jdolecek queue->raidPtr->logBytesPerSector); 2164 1.1 oster 2165 1.1 oster if (rf_debugKernelAccess) { 2166 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n", 2167 1.9 oster (long) bp->b_blkno)); 2168 1.1 oster } 2169 1.1 oster queue->numOutstanding++; 2170 1.1 oster queue->last_deq_sector = req->sectorOffset; 2171 1.9 oster /* acc wouldn't have been let in if there were any pending 2172 1.9 oster * reqs at any other priority */ 2173 1.1 oster queue->curPriority = req->priority; 2174 1.1 oster 2175 1.166 oster db1_printf(("Going for %c to unit %d col %d\n", 2176 1.186 perry req->type, queue->raidPtr->raidid, 2177 1.166 oster queue->col)); 2178 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n", 2179 1.9 oster (int) req->sectorOffset, (int) req->numSector, 2180 1.9 oster (int) (req->numSector << 2181 1.9 oster queue->raidPtr->logBytesPerSector), 2182 1.9 oster (int) queue->raidPtr->logBytesPerSector)); 2183 1.256 oster 2184 1.256 oster /* 2185 1.385 riastrad * XXX: drop lock here since this can block at 2186 1.256 oster * least with backing SCSI devices. Retake it 2187 1.256 oster * to minimize fuss with calling interfaces. 2188 1.256 oster */ 2189 1.256 oster 2190 1.256 oster RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam"); 2191 1.247 oster bdev_strategy(bp); 2192 1.256 oster RF_LOCK_QUEUE_MUTEX(queue, "unusedparam"); 2193 1.1 oster break; 2194 1.9 oster 2195 1.1 oster default: 2196 1.1 oster panic("bad req->type in rf_DispatchKernelIO"); 2197 1.1 oster } 2198 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n")); 2199 1.134 oster 2200 1.389 skrll return 0; 2201 1.1 oster } 2202 1.9 oster /* this is the callback function associated with a I/O invoked from 2203 1.1 oster kernel code. 2204 1.1 oster */ 2205 1.186 perry static void 2206 1.194 oster KernelWakeupFunc(struct buf *bp) 2207 1.9 oster { 2208 1.9 oster RF_DiskQueueData_t *req = NULL; 2209 1.9 oster RF_DiskQueue_t *queue; 2210 1.9 oster 2211 1.9 oster db1_printf(("recovering the request queue:\n")); 2212 1.285 mrg 2213 1.207 simonb req = bp->b_private; 2214 1.1 oster 2215 1.9 oster queue = (RF_DiskQueue_t *) req->queue; 2216 1.1 oster 2217 1.286 mrg rf_lock_mutex2(queue->raidPtr->iodone_lock); 2218 1.285 mrg 2219 1.175 oster #if RF_ACC_TRACE > 0 2220 1.9 oster if (req->tracerec) { 2221 1.9 oster RF_ETIMER_STOP(req->tracerec->timer); 2222 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer); 2223 1.288 mrg rf_lock_mutex2(rf_tracing_mutex); 2224 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer); 2225 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer); 2226 1.9 oster req->tracerec->num_phys_ios++; 2227 1.288 mrg rf_unlock_mutex2(rf_tracing_mutex); 2228 1.9 oster } 2229 1.175 oster #endif 2230 1.1 oster 2231 1.230 ad /* XXX Ok, let's get aggressive... If b_error is set, let's go 2232 1.9 oster * ballistic, and mark the component as hosed... */ 2233 1.36 oster 2234 1.230 ad if (bp->b_error != 0) { 2235 1.9 oster /* Mark the disk as dead */ 2236 1.9 oster /* but only mark it once... */ 2237 1.186 perry /* and only if it wouldn't leave this RAID set 2238 1.183 oster completely broken */ 2239 1.193 oster if (((queue->raidPtr->Disks[queue->col].status == 2240 1.193 oster rf_ds_optimal) || 2241 1.193 oster (queue->raidPtr->Disks[queue->col].status == 2242 1.385 riastrad rf_ds_used_spare)) && 2243 1.193 oster (queue->raidPtr->numFailures < 2244 1.204 simonb queue->raidPtr->Layout.map->faultsTolerated)) { 2245 1.322 prlw1 printf("raid%d: IO Error (%d). Marking %s as failed.\n", 2246 1.136 oster queue->raidPtr->raidid, 2247 1.322 prlw1 bp->b_error, 2248 1.166 oster queue->raidPtr->Disks[queue->col].devname); 2249 1.166 oster queue->raidPtr->Disks[queue->col].status = 2250 1.9 oster rf_ds_failed; 2251 1.166 oster queue->raidPtr->status = rf_rs_degraded; 2252 1.9 oster queue->raidPtr->numFailures++; 2253 1.56 oster queue->raidPtr->numNewFailures++; 2254 1.9 oster } else { /* Disk is already dead... */ 2255 1.9 oster /* printf("Disk already marked as dead!\n"); */ 2256 1.9 oster } 2257 1.4 oster 2258 1.9 oster } 2259 1.4 oster 2260 1.143 oster /* Fill in the error value */ 2261 1.230 ad req->error = bp->b_error; 2262 1.143 oster 2263 1.143 oster /* Drop this one on the "finished" queue... */ 2264 1.143 oster TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries); 2265 1.143 oster 2266 1.143 oster /* Let the raidio thread know there is work to be done. */ 2267 1.286 mrg rf_signal_cond2(queue->raidPtr->iodone_cv); 2268 1.143 oster 2269 1.286 mrg rf_unlock_mutex2(queue->raidPtr->iodone_lock); 2270 1.1 oster } 2271 1.1 oster 2272 1.1 oster 2273 1.1 oster /* 2274 1.1 oster * initialize a buf structure for doing an I/O in the kernel. 2275 1.1 oster */ 2276 1.186 perry static void 2277 1.169 oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev, 2278 1.225 christos RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf, 2279 1.384 jdolecek void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector) 2280 1.9 oster { 2281 1.384 jdolecek bp->b_flags = rw_flag | (bp->b_flags & rf_b_pass); 2282 1.242 ad bp->b_oflags = 0; 2283 1.242 ad bp->b_cflags = 0; 2284 1.9 oster bp->b_bcount = numSect << logBytesPerSector; 2285 1.9 oster bp->b_bufsize = bp->b_bcount; 2286 1.9 oster bp->b_error = 0; 2287 1.9 oster bp->b_dev = dev; 2288 1.187 christos bp->b_data = bf; 2289 1.275 mrg bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT; 2290 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */ 2291 1.1 oster if (bp->b_bcount == 0) { 2292 1.141 provos panic("bp->b_bcount is zero in InitBP!!"); 2293 1.1 oster } 2294 1.9 oster bp->b_iodone = cbFunc; 2295 1.207 simonb bp->b_private = cbArg; 2296 1.1 oster } 2297 1.1 oster 2298 1.1 oster /* 2299 1.1 oster * Wait interruptibly for an exclusive lock. 2300 1.1 oster * 2301 1.1 oster * XXX 2302 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe. 2303 1.1 oster * (Hmm... where have we seen this warning before :-> GO ) 2304 1.1 oster */ 2305 1.1 oster static int 2306 1.169 oster raidlock(struct raid_softc *rs) 2307 1.1 oster { 2308 1.9 oster int error; 2309 1.1 oster 2310 1.335 mlelstv error = 0; 2311 1.327 pgoyette mutex_enter(&rs->sc_mutex); 2312 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) { 2313 1.1 oster rs->sc_flags |= RAIDF_WANTED; 2314 1.327 pgoyette error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex); 2315 1.327 pgoyette if (error != 0) 2316 1.335 mlelstv goto done; 2317 1.1 oster } 2318 1.1 oster rs->sc_flags |= RAIDF_LOCKED; 2319 1.335 mlelstv done: 2320 1.327 pgoyette mutex_exit(&rs->sc_mutex); 2321 1.389 skrll return error; 2322 1.1 oster } 2323 1.1 oster /* 2324 1.1 oster * Unlock and wake up any waiters. 2325 1.1 oster */ 2326 1.1 oster static void 2327 1.169 oster raidunlock(struct raid_softc *rs) 2328 1.1 oster { 2329 1.1 oster 2330 1.327 pgoyette mutex_enter(&rs->sc_mutex); 2331 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED; 2332 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) { 2333 1.1 oster rs->sc_flags &= ~RAIDF_WANTED; 2334 1.327 pgoyette cv_broadcast(&rs->sc_cv); 2335 1.1 oster } 2336 1.327 pgoyette mutex_exit(&rs->sc_mutex); 2337 1.11 oster } 2338 1.186 perry 2339 1.11 oster 2340 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */ 2341 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */ 2342 1.269 jld #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE 2343 1.11 oster 2344 1.276 mrg static daddr_t 2345 1.276 mrg rf_component_info_offset(void) 2346 1.276 mrg { 2347 1.276 mrg 2348 1.276 mrg return RF_COMPONENT_INFO_OFFSET; 2349 1.276 mrg } 2350 1.276 mrg 2351 1.276 mrg static daddr_t 2352 1.276 mrg rf_component_info_size(unsigned secsize) 2353 1.276 mrg { 2354 1.276 mrg daddr_t info_size; 2355 1.276 mrg 2356 1.276 mrg KASSERT(secsize); 2357 1.276 mrg if (secsize > RF_COMPONENT_INFO_SIZE) 2358 1.276 mrg info_size = secsize; 2359 1.276 mrg else 2360 1.276 mrg info_size = RF_COMPONENT_INFO_SIZE; 2361 1.276 mrg 2362 1.276 mrg return info_size; 2363 1.276 mrg } 2364 1.276 mrg 2365 1.276 mrg static daddr_t 2366 1.276 mrg rf_parity_map_offset(RF_Raid_t *raidPtr) 2367 1.276 mrg { 2368 1.276 mrg daddr_t map_offset; 2369 1.276 mrg 2370 1.276 mrg KASSERT(raidPtr->bytesPerSector); 2371 1.276 mrg if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE) 2372 1.276 mrg map_offset = raidPtr->bytesPerSector; 2373 1.276 mrg else 2374 1.276 mrg map_offset = RF_COMPONENT_INFO_SIZE; 2375 1.276 mrg map_offset += rf_component_info_offset(); 2376 1.276 mrg 2377 1.276 mrg return map_offset; 2378 1.276 mrg } 2379 1.276 mrg 2380 1.276 mrg static daddr_t 2381 1.276 mrg rf_parity_map_size(RF_Raid_t *raidPtr) 2382 1.276 mrg { 2383 1.276 mrg daddr_t map_size; 2384 1.276 mrg 2385 1.276 mrg if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE) 2386 1.276 mrg map_size = raidPtr->bytesPerSector; 2387 1.276 mrg else 2388 1.276 mrg map_size = RF_PARITY_MAP_SIZE; 2389 1.276 mrg 2390 1.276 mrg return map_size; 2391 1.276 mrg } 2392 1.276 mrg 2393 1.186 perry int 2394 1.269 jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col) 2395 1.12 oster { 2396 1.269 jld RF_ComponentLabel_t *clabel; 2397 1.269 jld 2398 1.269 jld clabel = raidget_component_label(raidPtr, col); 2399 1.269 jld clabel->clean = RF_RAID_CLEAN; 2400 1.269 jld raidflush_component_label(raidPtr, col); 2401 1.12 oster return(0); 2402 1.12 oster } 2403 1.12 oster 2404 1.12 oster 2405 1.186 perry int 2406 1.269 jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col) 2407 1.11 oster { 2408 1.269 jld RF_ComponentLabel_t *clabel; 2409 1.269 jld 2410 1.269 jld clabel = raidget_component_label(raidPtr, col); 2411 1.269 jld clabel->clean = RF_RAID_DIRTY; 2412 1.269 jld raidflush_component_label(raidPtr, col); 2413 1.11 oster return(0); 2414 1.11 oster } 2415 1.11 oster 2416 1.11 oster int 2417 1.269 jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col) 2418 1.269 jld { 2419 1.276 mrg KASSERT(raidPtr->bytesPerSector); 2420 1.394 mrg 2421 1.276 mrg return raidread_component_label(raidPtr->bytesPerSector, 2422 1.276 mrg raidPtr->Disks[col].dev, 2423 1.385 riastrad raidPtr->raid_cinfo[col].ci_vp, 2424 1.269 jld &raidPtr->raid_cinfo[col].ci_label); 2425 1.269 jld } 2426 1.269 jld 2427 1.269 jld RF_ComponentLabel_t * 2428 1.269 jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col) 2429 1.269 jld { 2430 1.269 jld return &raidPtr->raid_cinfo[col].ci_label; 2431 1.269 jld } 2432 1.269 jld 2433 1.269 jld int 2434 1.269 jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col) 2435 1.269 jld { 2436 1.269 jld RF_ComponentLabel_t *label; 2437 1.269 jld 2438 1.269 jld label = &raidPtr->raid_cinfo[col].ci_label; 2439 1.269 jld label->mod_counter = raidPtr->mod_counter; 2440 1.269 jld #ifndef RF_NO_PARITY_MAP 2441 1.269 jld label->parity_map_modcount = label->mod_counter; 2442 1.269 jld #endif 2443 1.276 mrg return raidwrite_component_label(raidPtr->bytesPerSector, 2444 1.276 mrg raidPtr->Disks[col].dev, 2445 1.269 jld raidPtr->raid_cinfo[col].ci_vp, label); 2446 1.269 jld } 2447 1.269 jld 2448 1.394 mrg /* 2449 1.394 mrg * Swap the label endianness. 2450 1.394 mrg * 2451 1.394 mrg * Everything in the component label is 4-byte-swapped except the version, 2452 1.394 mrg * which is kept in the byte-swapped version at all times, and indicates 2453 1.394 mrg * for the writer that a swap is necessary. 2454 1.394 mrg * 2455 1.394 mrg * For reads it is expected that out_label == clabel, but writes expect 2456 1.394 mrg * separate labels so only the re-swapped label is written out to disk, 2457 1.394 mrg * leaving the swapped-except-version internally. 2458 1.394 mrg * 2459 1.394 mrg * Only support swapping label version 2. 2460 1.394 mrg */ 2461 1.394 mrg static void 2462 1.394 mrg rf_swap_label(RF_ComponentLabel_t *clabel, RF_ComponentLabel_t *out_label) 2463 1.394 mrg { 2464 1.394 mrg int *in, *out, *in_last; 2465 1.394 mrg 2466 1.394 mrg KASSERT(clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)); 2467 1.394 mrg 2468 1.394 mrg /* Don't swap the label, but do copy it. */ 2469 1.394 mrg out_label->version = clabel->version; 2470 1.394 mrg 2471 1.394 mrg in = &clabel->serial_number; 2472 1.394 mrg in_last = &clabel->future_use2[42]; 2473 1.394 mrg out = &out_label->serial_number; 2474 1.394 mrg 2475 1.394 mrg for (; in < in_last; in++, out++) 2476 1.394 mrg *out = bswap32(*in); 2477 1.394 mrg } 2478 1.269 jld 2479 1.269 jld static int 2480 1.276 mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp, 2481 1.269 jld RF_ComponentLabel_t *clabel) 2482 1.269 jld { 2483 1.394 mrg int error; 2484 1.394 mrg 2485 1.394 mrg error = raidread_component_area(dev, b_vp, clabel, 2486 1.269 jld sizeof(RF_ComponentLabel_t), 2487 1.276 mrg rf_component_info_offset(), 2488 1.276 mrg rf_component_info_size(secsize)); 2489 1.394 mrg 2490 1.394 mrg if (error == 0 && 2491 1.394 mrg clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)) { 2492 1.394 mrg rf_swap_label(clabel, clabel); 2493 1.394 mrg } 2494 1.394 mrg 2495 1.394 mrg return error; 2496 1.269 jld } 2497 1.269 jld 2498 1.269 jld /* ARGSUSED */ 2499 1.269 jld static int 2500 1.269 jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data, 2501 1.269 jld size_t msize, daddr_t offset, daddr_t dsize) 2502 1.11 oster { 2503 1.11 oster struct buf *bp; 2504 1.11 oster int error; 2505 1.186 perry 2506 1.11 oster /* XXX should probably ensure that we don't try to do this if 2507 1.186 perry someone has changed rf_protected_sectors. */ 2508 1.11 oster 2509 1.98 oster if (b_vp == NULL) { 2510 1.98 oster /* For whatever reason, this component is not valid. 2511 1.98 oster Don't try to read a component label from it. */ 2512 1.98 oster return(EINVAL); 2513 1.98 oster } 2514 1.98 oster 2515 1.11 oster /* get a block of the appropriate size... */ 2516 1.269 jld bp = geteblk((int)dsize); 2517 1.11 oster bp->b_dev = dev; 2518 1.11 oster 2519 1.11 oster /* get our ducks in a row for the read */ 2520 1.269 jld bp->b_blkno = offset / DEV_BSIZE; 2521 1.269 jld bp->b_bcount = dsize; 2522 1.100 chs bp->b_flags |= B_READ; 2523 1.269 jld bp->b_resid = dsize; 2524 1.11 oster 2525 1.331 mlelstv bdev_strategy(bp); 2526 1.340 christos error = biowait(bp); 2527 1.11 oster 2528 1.11 oster if (!error) { 2529 1.269 jld memcpy(data, bp->b_data, msize); 2530 1.204 simonb } 2531 1.11 oster 2532 1.233 ad brelse(bp, 0); 2533 1.11 oster return(error); 2534 1.11 oster } 2535 1.269 jld 2536 1.269 jld static int 2537 1.276 mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp, 2538 1.276 mrg RF_ComponentLabel_t *clabel) 2539 1.269 jld { 2540 1.394 mrg RF_ComponentLabel_t *clabel_write = clabel; 2541 1.394 mrg RF_ComponentLabel_t lclabel; 2542 1.394 mrg int error; 2543 1.394 mrg 2544 1.394 mrg if (clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)) { 2545 1.394 mrg clabel_write = &lclabel; 2546 1.394 mrg rf_swap_label(clabel, clabel_write); 2547 1.394 mrg } 2548 1.394 mrg error = raidwrite_component_area(dev, b_vp, clabel_write, 2549 1.269 jld sizeof(RF_ComponentLabel_t), 2550 1.276 mrg rf_component_info_offset(), 2551 1.411 riastrad rf_component_info_size(secsize)); 2552 1.394 mrg 2553 1.394 mrg return error; 2554 1.269 jld } 2555 1.269 jld 2556 1.11 oster /* ARGSUSED */ 2557 1.269 jld static int 2558 1.385 riastrad raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data, 2559 1.411 riastrad size_t msize, daddr_t offset, daddr_t dsize) 2560 1.11 oster { 2561 1.11 oster struct buf *bp; 2562 1.11 oster int error; 2563 1.11 oster 2564 1.11 oster /* get a block of the appropriate size... */ 2565 1.269 jld bp = geteblk((int)dsize); 2566 1.11 oster bp->b_dev = dev; 2567 1.11 oster 2568 1.11 oster /* get our ducks in a row for the write */ 2569 1.269 jld bp->b_blkno = offset / DEV_BSIZE; 2570 1.269 jld bp->b_bcount = dsize; 2571 1.411 riastrad bp->b_flags |= B_WRITE; 2572 1.269 jld bp->b_resid = dsize; 2573 1.11 oster 2574 1.269 jld memset(bp->b_data, 0, dsize); 2575 1.269 jld memcpy(bp->b_data, data, msize); 2576 1.11 oster 2577 1.331 mlelstv bdev_strategy(bp); 2578 1.340 christos error = biowait(bp); 2579 1.233 ad brelse(bp, 0); 2580 1.11 oster if (error) { 2581 1.48 oster #if 1 2582 1.11 oster printf("Failed to write RAID component info!\n"); 2583 1.48 oster #endif 2584 1.11 oster } 2585 1.11 oster 2586 1.11 oster return(error); 2587 1.1 oster } 2588 1.12 oster 2589 1.186 perry void 2590 1.269 jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map) 2591 1.269 jld { 2592 1.269 jld int c; 2593 1.269 jld 2594 1.269 jld for (c = 0; c < raidPtr->numCol; c++) { 2595 1.269 jld /* Skip dead disks. */ 2596 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status)) 2597 1.269 jld continue; 2598 1.269 jld /* XXXjld: what if an error occurs here? */ 2599 1.269 jld raidwrite_component_area(raidPtr->Disks[c].dev, 2600 1.269 jld raidPtr->raid_cinfo[c].ci_vp, map, 2601 1.269 jld RF_PARITYMAP_NBYTE, 2602 1.276 mrg rf_parity_map_offset(raidPtr), 2603 1.411 riastrad rf_parity_map_size(raidPtr)); 2604 1.269 jld } 2605 1.269 jld } 2606 1.269 jld 2607 1.269 jld void 2608 1.269 jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map) 2609 1.269 jld { 2610 1.269 jld struct rf_paritymap_ondisk tmp; 2611 1.272 oster int c,first; 2612 1.269 jld 2613 1.272 oster first=1; 2614 1.269 jld for (c = 0; c < raidPtr->numCol; c++) { 2615 1.269 jld /* Skip dead disks. */ 2616 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status)) 2617 1.269 jld continue; 2618 1.269 jld raidread_component_area(raidPtr->Disks[c].dev, 2619 1.269 jld raidPtr->raid_cinfo[c].ci_vp, &tmp, 2620 1.269 jld RF_PARITYMAP_NBYTE, 2621 1.276 mrg rf_parity_map_offset(raidPtr), 2622 1.276 mrg rf_parity_map_size(raidPtr)); 2623 1.272 oster if (first) { 2624 1.269 jld memcpy(map, &tmp, sizeof(*map)); 2625 1.272 oster first = 0; 2626 1.269 jld } else { 2627 1.269 jld rf_paritymap_merge(map, &tmp); 2628 1.269 jld } 2629 1.269 jld } 2630 1.269 jld } 2631 1.269 jld 2632 1.269 jld void 2633 1.169 oster rf_markalldirty(RF_Raid_t *raidPtr) 2634 1.12 oster { 2635 1.269 jld RF_ComponentLabel_t *clabel; 2636 1.146 oster int sparecol; 2637 1.166 oster int c; 2638 1.166 oster int j; 2639 1.166 oster int scol = -1; 2640 1.12 oster 2641 1.12 oster raidPtr->mod_counter++; 2642 1.166 oster for (c = 0; c < raidPtr->numCol; c++) { 2643 1.166 oster /* we don't want to touch (at all) a disk that has 2644 1.166 oster failed */ 2645 1.166 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) { 2646 1.269 jld clabel = raidget_component_label(raidPtr, c); 2647 1.269 jld if (clabel->status == rf_ds_spared) { 2648 1.186 perry /* XXX do something special... 2649 1.186 perry but whatever you do, don't 2650 1.166 oster try to access it!! */ 2651 1.166 oster } else { 2652 1.269 jld raidmarkdirty(raidPtr, c); 2653 1.12 oster } 2654 1.166 oster } 2655 1.186 perry } 2656 1.146 oster 2657 1.414 oster for (c = 0; c < raidPtr->numSpare ; c++) { 2658 1.12 oster sparecol = raidPtr->numCol + c; 2659 1.414 oster 2660 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 2661 1.186 perry /* 2662 1.186 perry 2663 1.186 perry we claim this disk is "optimal" if it's 2664 1.186 perry rf_ds_used_spare, as that means it should be 2665 1.186 perry directly substitutable for the disk it replaced. 2666 1.12 oster We note that too... 2667 1.12 oster 2668 1.12 oster */ 2669 1.12 oster 2670 1.166 oster for(j=0;j<raidPtr->numCol;j++) { 2671 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) { 2672 1.166 oster scol = j; 2673 1.166 oster break; 2674 1.12 oster } 2675 1.12 oster } 2676 1.186 perry 2677 1.269 jld clabel = raidget_component_label(raidPtr, sparecol); 2678 1.12 oster /* make sure status is noted */ 2679 1.146 oster 2680 1.269 jld raid_init_component_label(raidPtr, clabel); 2681 1.146 oster 2682 1.269 jld clabel->row = 0; 2683 1.269 jld clabel->column = scol; 2684 1.146 oster /* Note: we *don't* change status from rf_ds_used_spare 2685 1.146 oster to rf_ds_optimal */ 2686 1.146 oster /* clabel.status = rf_ds_optimal; */ 2687 1.186 perry 2688 1.269 jld raidmarkdirty(raidPtr, sparecol); 2689 1.12 oster } 2690 1.12 oster } 2691 1.12 oster } 2692 1.12 oster 2693 1.13 oster 2694 1.13 oster void 2695 1.169 oster rf_update_component_labels(RF_Raid_t *raidPtr, int final) 2696 1.13 oster { 2697 1.269 jld RF_ComponentLabel_t *clabel; 2698 1.13 oster int sparecol; 2699 1.166 oster int c; 2700 1.166 oster int j; 2701 1.166 oster int scol; 2702 1.341 christos struct raid_softc *rs = raidPtr->softc; 2703 1.13 oster 2704 1.13 oster scol = -1; 2705 1.13 oster 2706 1.186 perry /* XXX should do extra checks to make sure things really are clean, 2707 1.13 oster rather than blindly setting the clean bit... */ 2708 1.13 oster 2709 1.13 oster raidPtr->mod_counter++; 2710 1.13 oster 2711 1.166 oster for (c = 0; c < raidPtr->numCol; c++) { 2712 1.166 oster if (raidPtr->Disks[c].status == rf_ds_optimal) { 2713 1.269 jld clabel = raidget_component_label(raidPtr, c); 2714 1.201 oster /* make sure status is noted */ 2715 1.269 jld clabel->status = rf_ds_optimal; 2716 1.385 riastrad 2717 1.214 oster /* note what unit we are configured as */ 2718 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0) 2719 1.341 christos clabel->last_unit = raidPtr->raidid; 2720 1.214 oster 2721 1.269 jld raidflush_component_label(raidPtr, c); 2722 1.166 oster if (final == RF_FINAL_COMPONENT_UPDATE) { 2723 1.166 oster if (raidPtr->parity_good == RF_RAID_CLEAN) { 2724 1.269 jld raidmarkclean(raidPtr, c); 2725 1.91 oster } 2726 1.166 oster } 2727 1.186 perry } 2728 1.166 oster /* else we don't touch it.. */ 2729 1.186 perry } 2730 1.63 oster 2731 1.414 oster for (c = 0; c < raidPtr->numSpare ; c++) { 2732 1.63 oster sparecol = raidPtr->numCol + c; 2733 1.414 oster 2734 1.110 oster /* Need to ensure that the reconstruct actually completed! */ 2735 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 2736 1.186 perry /* 2737 1.186 perry 2738 1.186 perry we claim this disk is "optimal" if it's 2739 1.186 perry rf_ds_used_spare, as that means it should be 2740 1.186 perry directly substitutable for the disk it replaced. 2741 1.63 oster We note that too... 2742 1.63 oster 2743 1.63 oster */ 2744 1.63 oster 2745 1.166 oster for(j=0;j<raidPtr->numCol;j++) { 2746 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) { 2747 1.166 oster scol = j; 2748 1.166 oster break; 2749 1.63 oster } 2750 1.63 oster } 2751 1.186 perry 2752 1.63 oster /* XXX shouldn't *really* need this... */ 2753 1.269 jld clabel = raidget_component_label(raidPtr, sparecol); 2754 1.63 oster /* make sure status is noted */ 2755 1.63 oster 2756 1.269 jld raid_init_component_label(raidPtr, clabel); 2757 1.269 jld 2758 1.269 jld clabel->column = scol; 2759 1.269 jld clabel->status = rf_ds_optimal; 2760 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0) 2761 1.341 christos clabel->last_unit = raidPtr->raidid; 2762 1.63 oster 2763 1.269 jld raidflush_component_label(raidPtr, sparecol); 2764 1.91 oster if (final == RF_FINAL_COMPONENT_UPDATE) { 2765 1.13 oster if (raidPtr->parity_good == RF_RAID_CLEAN) { 2766 1.269 jld raidmarkclean(raidPtr, sparecol); 2767 1.13 oster } 2768 1.13 oster } 2769 1.13 oster } 2770 1.13 oster } 2771 1.68 oster } 2772 1.68 oster 2773 1.68 oster void 2774 1.169 oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured) 2775 1.69 oster { 2776 1.69 oster 2777 1.69 oster if (vp != NULL) { 2778 1.69 oster if (auto_configured == 1) { 2779 1.96 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2780 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 2781 1.69 oster vput(vp); 2782 1.186 perry 2783 1.186 perry } else { 2784 1.244 ad (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred); 2785 1.69 oster } 2786 1.186 perry } 2787 1.69 oster } 2788 1.69 oster 2789 1.69 oster 2790 1.69 oster void 2791 1.169 oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr) 2792 1.68 oster { 2793 1.186 perry int r,c; 2794 1.69 oster struct vnode *vp; 2795 1.69 oster int acd; 2796 1.68 oster 2797 1.68 oster 2798 1.68 oster /* We take this opportunity to close the vnodes like we should.. */ 2799 1.68 oster 2800 1.166 oster for (c = 0; c < raidPtr->numCol; c++) { 2801 1.166 oster vp = raidPtr->raid_cinfo[c].ci_vp; 2802 1.166 oster acd = raidPtr->Disks[c].auto_configured; 2803 1.166 oster rf_close_component(raidPtr, vp, acd); 2804 1.166 oster raidPtr->raid_cinfo[c].ci_vp = NULL; 2805 1.166 oster raidPtr->Disks[c].auto_configured = 0; 2806 1.68 oster } 2807 1.166 oster 2808 1.68 oster for (r = 0; r < raidPtr->numSpare; r++) { 2809 1.166 oster vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp; 2810 1.166 oster acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured; 2811 1.69 oster rf_close_component(raidPtr, vp, acd); 2812 1.166 oster raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL; 2813 1.166 oster raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0; 2814 1.68 oster } 2815 1.37 oster } 2816 1.63 oster 2817 1.37 oster 2818 1.393 mrg static void 2819 1.353 mrg rf_ReconThread(struct rf_recon_req_internal *req) 2820 1.37 oster { 2821 1.37 oster int s; 2822 1.37 oster RF_Raid_t *raidPtr; 2823 1.37 oster 2824 1.37 oster s = splbio(); 2825 1.37 oster raidPtr = (RF_Raid_t *) req->raidPtr; 2826 1.37 oster raidPtr->recon_in_progress = 1; 2827 1.37 oster 2828 1.398 oster if (req->flags & RF_FDFLAGS_RECON_FORCE) { 2829 1.398 oster raidPtr->forceRecon = 1; 2830 1.398 oster } 2831 1.398 oster 2832 1.166 oster rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col, 2833 1.37 oster ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0)); 2834 1.37 oster 2835 1.398 oster if (req->flags & RF_FDFLAGS_RECON_FORCE) { 2836 1.398 oster raidPtr->forceRecon = 0; 2837 1.398 oster } 2838 1.398 oster 2839 1.37 oster RF_Free(req, sizeof(*req)); 2840 1.37 oster 2841 1.37 oster raidPtr->recon_in_progress = 0; 2842 1.37 oster splx(s); 2843 1.37 oster 2844 1.37 oster /* That's all... */ 2845 1.204 simonb kthread_exit(0); /* does not return */ 2846 1.37 oster } 2847 1.37 oster 2848 1.393 mrg static void 2849 1.169 oster rf_RewriteParityThread(RF_Raid_t *raidPtr) 2850 1.37 oster { 2851 1.37 oster int retcode; 2852 1.37 oster int s; 2853 1.37 oster 2854 1.184 oster raidPtr->parity_rewrite_stripes_done = 0; 2855 1.37 oster raidPtr->parity_rewrite_in_progress = 1; 2856 1.37 oster s = splbio(); 2857 1.37 oster retcode = rf_RewriteParity(raidPtr); 2858 1.37 oster splx(s); 2859 1.37 oster if (retcode) { 2860 1.279 christos printf("raid%d: Error re-writing parity (%d)!\n", 2861 1.279 christos raidPtr->raidid, retcode); 2862 1.37 oster } else { 2863 1.37 oster /* set the clean bit! If we shutdown correctly, 2864 1.37 oster the clean bit on each component label will get 2865 1.37 oster set */ 2866 1.37 oster raidPtr->parity_good = RF_RAID_CLEAN; 2867 1.37 oster } 2868 1.37 oster raidPtr->parity_rewrite_in_progress = 0; 2869 1.85 oster 2870 1.85 oster /* Anyone waiting for us to stop? If so, inform them... */ 2871 1.85 oster if (raidPtr->waitShutdown) { 2872 1.357 mrg rf_lock_mutex2(raidPtr->rad_lock); 2873 1.357 mrg cv_broadcast(&raidPtr->parity_rewrite_cv); 2874 1.357 mrg rf_unlock_mutex2(raidPtr->rad_lock); 2875 1.85 oster } 2876 1.37 oster 2877 1.37 oster /* That's all... */ 2878 1.204 simonb kthread_exit(0); /* does not return */ 2879 1.37 oster } 2880 1.37 oster 2881 1.393 mrg static void 2882 1.353 mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req) 2883 1.37 oster { 2884 1.37 oster int s; 2885 1.37 oster RF_Raid_t *raidPtr; 2886 1.186 perry 2887 1.37 oster s = splbio(); 2888 1.37 oster raidPtr = req->raidPtr; 2889 1.37 oster raidPtr->recon_in_progress = 1; 2890 1.398 oster 2891 1.398 oster if (req->flags & RF_FDFLAGS_RECON_FORCE) { 2892 1.398 oster raidPtr->forceRecon = 1; 2893 1.398 oster } 2894 1.398 oster 2895 1.166 oster rf_ReconstructInPlace(raidPtr, req->col); 2896 1.398 oster 2897 1.398 oster if (req->flags & RF_FDFLAGS_RECON_FORCE) { 2898 1.398 oster raidPtr->forceRecon = 0; 2899 1.398 oster } 2900 1.398 oster 2901 1.37 oster RF_Free(req, sizeof(*req)); 2902 1.37 oster raidPtr->recon_in_progress = 0; 2903 1.37 oster splx(s); 2904 1.37 oster 2905 1.37 oster /* That's all... */ 2906 1.204 simonb kthread_exit(0); /* does not return */ 2907 1.48 oster } 2908 1.48 oster 2909 1.213 christos static RF_AutoConfig_t * 2910 1.213 christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp, 2911 1.276 mrg const char *cname, RF_SectorCount_t size, uint64_t numsecs, 2912 1.276 mrg unsigned secsize) 2913 1.213 christos { 2914 1.213 christos int good_one = 0; 2915 1.385 riastrad RF_ComponentLabel_t *clabel; 2916 1.213 christos RF_AutoConfig_t *ac; 2917 1.213 christos 2918 1.379 chs clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_WAITOK); 2919 1.213 christos 2920 1.276 mrg if (!raidread_component_label(secsize, dev, vp, clabel)) { 2921 1.276 mrg /* Got the label. Does it look reasonable? */ 2922 1.385 riastrad if (rf_reasonable_label(clabel, numsecs) && 2923 1.282 enami (rf_component_label_partitionsize(clabel) <= size)) { 2924 1.224 oster #ifdef DEBUG 2925 1.276 mrg printf("Component on: %s: %llu\n", 2926 1.213 christos cname, (unsigned long long)size); 2927 1.276 mrg rf_print_component_label(clabel); 2928 1.213 christos #endif 2929 1.276 mrg /* if it's reasonable, add it, else ignore it. */ 2930 1.276 mrg ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME, 2931 1.379 chs M_WAITOK); 2932 1.276 mrg strlcpy(ac->devname, cname, sizeof(ac->devname)); 2933 1.276 mrg ac->dev = dev; 2934 1.276 mrg ac->vp = vp; 2935 1.276 mrg ac->clabel = clabel; 2936 1.276 mrg ac->next = ac_list; 2937 1.276 mrg ac_list = ac; 2938 1.276 mrg good_one = 1; 2939 1.276 mrg } 2940 1.213 christos } 2941 1.213 christos if (!good_one) { 2942 1.213 christos /* cleanup */ 2943 1.213 christos free(clabel, M_RAIDFRAME); 2944 1.213 christos vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2945 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 2946 1.213 christos vput(vp); 2947 1.213 christos } 2948 1.213 christos return ac_list; 2949 1.213 christos } 2950 1.213 christos 2951 1.393 mrg static RF_AutoConfig_t * 2952 1.259 cegger rf_find_raid_components(void) 2953 1.48 oster { 2954 1.48 oster struct vnode *vp; 2955 1.48 oster struct disklabel label; 2956 1.261 dyoung device_t dv; 2957 1.268 dyoung deviter_t di; 2958 1.48 oster dev_t dev; 2959 1.296 buhrow int bmajor, bminor, wedge, rf_part_found; 2960 1.48 oster int error; 2961 1.48 oster int i; 2962 1.48 oster RF_AutoConfig_t *ac_list; 2963 1.276 mrg uint64_t numsecs; 2964 1.276 mrg unsigned secsize; 2965 1.335 mlelstv int dowedges; 2966 1.48 oster 2967 1.48 oster /* initialize the AutoConfig list */ 2968 1.48 oster ac_list = NULL; 2969 1.48 oster 2970 1.335 mlelstv /* 2971 1.335 mlelstv * we begin by trolling through *all* the devices on the system *twice* 2972 1.335 mlelstv * first we scan for wedges, second for other devices. This avoids 2973 1.335 mlelstv * using a raw partition instead of a wedge that covers the whole disk 2974 1.335 mlelstv */ 2975 1.48 oster 2976 1.335 mlelstv for (dowedges=1; dowedges>=0; --dowedges) { 2977 1.335 mlelstv for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL; 2978 1.335 mlelstv dv = deviter_next(&di)) { 2979 1.48 oster 2980 1.393 mrg /* we are only interested in disks */ 2981 1.335 mlelstv if (device_class(dv) != DV_DISK) 2982 1.335 mlelstv continue; 2983 1.48 oster 2984 1.393 mrg /* we don't care about floppies */ 2985 1.335 mlelstv if (device_is_a(dv, "fd")) { 2986 1.335 mlelstv continue; 2987 1.335 mlelstv } 2988 1.129 oster 2989 1.393 mrg /* we don't care about CDs. */ 2990 1.335 mlelstv if (device_is_a(dv, "cd")) { 2991 1.335 mlelstv continue; 2992 1.335 mlelstv } 2993 1.129 oster 2994 1.393 mrg /* we don't care about md. */ 2995 1.335 mlelstv if (device_is_a(dv, "md")) { 2996 1.335 mlelstv continue; 2997 1.335 mlelstv } 2998 1.248 oster 2999 1.335 mlelstv /* hdfd is the Atari/Hades floppy driver */ 3000 1.335 mlelstv if (device_is_a(dv, "hdfd")) { 3001 1.335 mlelstv continue; 3002 1.335 mlelstv } 3003 1.206 thorpej 3004 1.335 mlelstv /* fdisa is the Atari/Milan floppy driver */ 3005 1.335 mlelstv if (device_is_a(dv, "fdisa")) { 3006 1.335 mlelstv continue; 3007 1.335 mlelstv } 3008 1.186 perry 3009 1.393 mrg /* we don't care about spiflash */ 3010 1.393 mrg if (device_is_a(dv, "spiflash")) { 3011 1.393 mrg continue; 3012 1.393 mrg } 3013 1.393 mrg 3014 1.335 mlelstv /* are we in the wedges pass ? */ 3015 1.335 mlelstv wedge = device_is_a(dv, "dk"); 3016 1.335 mlelstv if (wedge != dowedges) { 3017 1.335 mlelstv continue; 3018 1.335 mlelstv } 3019 1.48 oster 3020 1.335 mlelstv /* need to find the device_name_to_block_device_major stuff */ 3021 1.335 mlelstv bmajor = devsw_name2blk(device_xname(dv), NULL, 0); 3022 1.296 buhrow 3023 1.335 mlelstv rf_part_found = 0; /*No raid partition as yet*/ 3024 1.48 oster 3025 1.335 mlelstv /* get a vnode for the raw partition of this disk */ 3026 1.335 mlelstv bminor = minor(device_unit(dv)); 3027 1.335 mlelstv dev = wedge ? makedev(bmajor, bminor) : 3028 1.335 mlelstv MAKEDISKDEV(bmajor, bminor, RAW_PART); 3029 1.335 mlelstv if (bdevvp(dev, &vp)) 3030 1.335 mlelstv panic("RAID can't alloc vnode"); 3031 1.48 oster 3032 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3033 1.335 mlelstv error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED); 3034 1.48 oster 3035 1.335 mlelstv if (error) { 3036 1.335 mlelstv /* "Who cares." Continue looking 3037 1.335 mlelstv for something that exists*/ 3038 1.335 mlelstv vput(vp); 3039 1.335 mlelstv continue; 3040 1.335 mlelstv } 3041 1.48 oster 3042 1.335 mlelstv error = getdisksize(vp, &numsecs, &secsize); 3043 1.213 christos if (error) { 3044 1.339 mlelstv /* 3045 1.339 mlelstv * Pseudo devices like vnd and cgd can be 3046 1.339 mlelstv * opened but may still need some configuration. 3047 1.339 mlelstv * Ignore these quietly. 3048 1.339 mlelstv */ 3049 1.339 mlelstv if (error != ENXIO) 3050 1.339 mlelstv printf("RAIDframe: can't get disk size" 3051 1.339 mlelstv " for dev %s (%d)\n", 3052 1.339 mlelstv device_xname(dv), error); 3053 1.241 oster VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 3054 1.241 oster vput(vp); 3055 1.213 christos continue; 3056 1.213 christos } 3057 1.335 mlelstv if (wedge) { 3058 1.335 mlelstv struct dkwedge_info dkw; 3059 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, 3060 1.335 mlelstv NOCRED); 3061 1.335 mlelstv if (error) { 3062 1.335 mlelstv printf("RAIDframe: can't get wedge info for " 3063 1.335 mlelstv "dev %s (%d)\n", device_xname(dv), error); 3064 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 3065 1.335 mlelstv vput(vp); 3066 1.335 mlelstv continue; 3067 1.335 mlelstv } 3068 1.213 christos 3069 1.335 mlelstv if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) { 3070 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 3071 1.335 mlelstv vput(vp); 3072 1.335 mlelstv continue; 3073 1.335 mlelstv } 3074 1.385 riastrad 3075 1.412 hannken VOP_UNLOCK(vp); 3076 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, 3077 1.335 mlelstv device_xname(dv), dkw.dkw_size, numsecs, secsize); 3078 1.335 mlelstv rf_part_found = 1; /*There is a raid component on this disk*/ 3079 1.228 christos continue; 3080 1.241 oster } 3081 1.213 christos 3082 1.335 mlelstv /* Ok, the disk exists. Go get the disklabel. */ 3083 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED); 3084 1.335 mlelstv if (error) { 3085 1.335 mlelstv /* 3086 1.335 mlelstv * XXX can't happen - open() would 3087 1.335 mlelstv * have errored out (or faked up one) 3088 1.335 mlelstv */ 3089 1.335 mlelstv if (error != ENOTTY) 3090 1.335 mlelstv printf("RAIDframe: can't get label for dev " 3091 1.335 mlelstv "%s (%d)\n", device_xname(dv), error); 3092 1.335 mlelstv } 3093 1.48 oster 3094 1.335 mlelstv /* don't need this any more. We'll allocate it again 3095 1.335 mlelstv a little later if we really do... */ 3096 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED); 3097 1.335 mlelstv vput(vp); 3098 1.48 oster 3099 1.335 mlelstv if (error) 3100 1.48 oster continue; 3101 1.48 oster 3102 1.335 mlelstv rf_part_found = 0; /*No raid partitions yet*/ 3103 1.335 mlelstv for (i = 0; i < label.d_npartitions; i++) { 3104 1.335 mlelstv char cname[sizeof(ac_list->devname)]; 3105 1.335 mlelstv 3106 1.335 mlelstv /* We only support partitions marked as RAID */ 3107 1.335 mlelstv if (label.d_partitions[i].p_fstype != FS_RAID) 3108 1.335 mlelstv continue; 3109 1.335 mlelstv 3110 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), i); 3111 1.335 mlelstv if (bdevvp(dev, &vp)) 3112 1.335 mlelstv panic("RAID can't alloc vnode"); 3113 1.335 mlelstv 3114 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3115 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED); 3116 1.335 mlelstv if (error) { 3117 1.400 oster /* Not quite a 'whatever'. In 3118 1.400 oster * this situation we know 3119 1.400 oster * there is a FS_RAID 3120 1.400 oster * partition, but we can't 3121 1.400 oster * open it. The most likely 3122 1.400 oster * reason is that the 3123 1.400 oster * partition is already in 3124 1.400 oster * use by another RAID set. 3125 1.400 oster * So note that we've already 3126 1.400 oster * found a partition on this 3127 1.400 oster * disk so we don't attempt 3128 1.400 oster * to use the raw disk later. */ 3129 1.400 oster rf_part_found = 1; 3130 1.335 mlelstv vput(vp); 3131 1.335 mlelstv continue; 3132 1.335 mlelstv } 3133 1.375 hannken VOP_UNLOCK(vp); 3134 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c", 3135 1.335 mlelstv device_xname(dv), 'a' + i); 3136 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname, 3137 1.335 mlelstv label.d_partitions[i].p_size, numsecs, secsize); 3138 1.335 mlelstv rf_part_found = 1; /*There is at least one raid partition on this disk*/ 3139 1.48 oster } 3140 1.296 buhrow 3141 1.335 mlelstv /* 3142 1.335 mlelstv *If there is no raid component on this disk, either in a 3143 1.335 mlelstv *disklabel or inside a wedge, check the raw partition as well, 3144 1.335 mlelstv *as it is possible to configure raid components on raw disk 3145 1.335 mlelstv *devices. 3146 1.335 mlelstv */ 3147 1.296 buhrow 3148 1.335 mlelstv if (!rf_part_found) { 3149 1.335 mlelstv char cname[sizeof(ac_list->devname)]; 3150 1.296 buhrow 3151 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART); 3152 1.335 mlelstv if (bdevvp(dev, &vp)) 3153 1.335 mlelstv panic("RAID can't alloc vnode"); 3154 1.335 mlelstv 3155 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3156 1.375 hannken 3157 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED); 3158 1.335 mlelstv if (error) { 3159 1.335 mlelstv /* Whatever... */ 3160 1.335 mlelstv vput(vp); 3161 1.335 mlelstv continue; 3162 1.335 mlelstv } 3163 1.375 hannken VOP_UNLOCK(vp); 3164 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c", 3165 1.335 mlelstv device_xname(dv), 'a' + RAW_PART); 3166 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname, 3167 1.335 mlelstv label.d_partitions[RAW_PART].p_size, numsecs, secsize); 3168 1.296 buhrow } 3169 1.48 oster } 3170 1.335 mlelstv deviter_release(&di); 3171 1.48 oster } 3172 1.213 christos return ac_list; 3173 1.48 oster } 3174 1.186 perry 3175 1.292 oster int 3176 1.284 mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs) 3177 1.48 oster { 3178 1.186 perry 3179 1.393 mrg if ((clabel->version==RF_COMPONENT_LABEL_VERSION_1 || 3180 1.394 mrg clabel->version==RF_COMPONENT_LABEL_VERSION || 3181 1.394 mrg clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)) && 3182 1.393 mrg (clabel->clean == RF_RAID_CLEAN || 3183 1.393 mrg clabel->clean == RF_RAID_DIRTY) && 3184 1.186 perry clabel->row >=0 && 3185 1.186 perry clabel->column >= 0 && 3186 1.48 oster clabel->num_rows > 0 && 3187 1.48 oster clabel->num_columns > 0 && 3188 1.186 perry clabel->row < clabel->num_rows && 3189 1.48 oster clabel->column < clabel->num_columns && 3190 1.48 oster clabel->blockSize > 0 && 3191 1.282 enami /* 3192 1.282 enami * numBlocksHi may contain garbage, but it is ok since 3193 1.282 enami * the type is unsigned. If it is really garbage, 3194 1.282 enami * rf_fix_old_label_size() will fix it. 3195 1.282 enami */ 3196 1.282 enami rf_component_label_numblocks(clabel) > 0) { 3197 1.284 mrg /* 3198 1.284 mrg * label looks reasonable enough... 3199 1.284 mrg * let's make sure it has no old garbage. 3200 1.284 mrg */ 3201 1.292 oster if (numsecs) 3202 1.292 oster rf_fix_old_label_size(clabel, numsecs); 3203 1.48 oster return(1); 3204 1.48 oster } 3205 1.48 oster return(0); 3206 1.48 oster } 3207 1.48 oster 3208 1.48 oster 3209 1.278 mrg /* 3210 1.278 mrg * For reasons yet unknown, some old component labels have garbage in 3211 1.278 mrg * the newer numBlocksHi region, and this causes lossage. Since those 3212 1.278 mrg * disks will also have numsecs set to less than 32 bits of sectors, 3213 1.299 oster * we can determine when this corruption has occurred, and fix it. 3214 1.284 mrg * 3215 1.284 mrg * The exact same problem, with the same unknown reason, happens to 3216 1.284 mrg * the partitionSizeHi member as well. 3217 1.278 mrg */ 3218 1.278 mrg static void 3219 1.278 mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs) 3220 1.278 mrg { 3221 1.278 mrg 3222 1.284 mrg if (numsecs < ((uint64_t)1 << 32)) { 3223 1.284 mrg if (clabel->numBlocksHi) { 3224 1.284 mrg printf("WARNING: total sectors < 32 bits, yet " 3225 1.284 mrg "numBlocksHi set\n" 3226 1.284 mrg "WARNING: resetting numBlocksHi to zero.\n"); 3227 1.284 mrg clabel->numBlocksHi = 0; 3228 1.284 mrg } 3229 1.284 mrg 3230 1.284 mrg if (clabel->partitionSizeHi) { 3231 1.284 mrg printf("WARNING: total sectors < 32 bits, yet " 3232 1.284 mrg "partitionSizeHi set\n" 3233 1.284 mrg "WARNING: resetting partitionSizeHi to zero.\n"); 3234 1.284 mrg clabel->partitionSizeHi = 0; 3235 1.284 mrg } 3236 1.278 mrg } 3237 1.278 mrg } 3238 1.278 mrg 3239 1.278 mrg 3240 1.224 oster #ifdef DEBUG 3241 1.48 oster void 3242 1.169 oster rf_print_component_label(RF_ComponentLabel_t *clabel) 3243 1.48 oster { 3244 1.282 enami uint64_t numBlocks; 3245 1.308 christos static const char *rp[] = { 3246 1.308 christos "No", "Force", "Soft", "*invalid*" 3247 1.308 christos }; 3248 1.308 christos 3249 1.275 mrg 3250 1.282 enami numBlocks = rf_component_label_numblocks(clabel); 3251 1.275 mrg 3252 1.48 oster printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n", 3253 1.186 perry clabel->row, clabel->column, 3254 1.48 oster clabel->num_rows, clabel->num_columns); 3255 1.48 oster printf(" Version: %d Serial Number: %d Mod Counter: %d\n", 3256 1.48 oster clabel->version, clabel->serial_number, 3257 1.48 oster clabel->mod_counter); 3258 1.48 oster printf(" Clean: %s Status: %d\n", 3259 1.271 dyoung clabel->clean ? "Yes" : "No", clabel->status); 3260 1.48 oster printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n", 3261 1.48 oster clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU); 3262 1.275 mrg printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n", 3263 1.275 mrg (char) clabel->parityConfig, clabel->blockSize, numBlocks); 3264 1.271 dyoung printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No"); 3265 1.308 christos printf(" Root partition: %s\n", rp[clabel->root_partition & 3]); 3266 1.271 dyoung printf(" Last configured as: raid%d\n", clabel->last_unit); 3267 1.51 oster #if 0 3268 1.51 oster printf(" Config order: %d\n", clabel->config_order); 3269 1.51 oster #endif 3270 1.186 perry 3271 1.48 oster } 3272 1.133 oster #endif 3273 1.48 oster 3274 1.393 mrg static RF_ConfigSet_t * 3275 1.169 oster rf_create_auto_sets(RF_AutoConfig_t *ac_list) 3276 1.48 oster { 3277 1.48 oster RF_AutoConfig_t *ac; 3278 1.48 oster RF_ConfigSet_t *config_sets; 3279 1.48 oster RF_ConfigSet_t *cset; 3280 1.48 oster RF_AutoConfig_t *ac_next; 3281 1.48 oster 3282 1.48 oster 3283 1.48 oster config_sets = NULL; 3284 1.48 oster 3285 1.48 oster /* Go through the AutoConfig list, and figure out which components 3286 1.48 oster belong to what sets. */ 3287 1.48 oster ac = ac_list; 3288 1.48 oster while(ac!=NULL) { 3289 1.48 oster /* we're going to putz with ac->next, so save it here 3290 1.48 oster for use at the end of the loop */ 3291 1.48 oster ac_next = ac->next; 3292 1.48 oster 3293 1.48 oster if (config_sets == NULL) { 3294 1.48 oster /* will need at least this one... */ 3295 1.379 chs config_sets = malloc(sizeof(RF_ConfigSet_t), 3296 1.379 chs M_RAIDFRAME, M_WAITOK); 3297 1.48 oster /* this one is easy :) */ 3298 1.48 oster config_sets->ac = ac; 3299 1.48 oster config_sets->next = NULL; 3300 1.51 oster config_sets->rootable = 0; 3301 1.48 oster ac->next = NULL; 3302 1.48 oster } else { 3303 1.48 oster /* which set does this component fit into? */ 3304 1.48 oster cset = config_sets; 3305 1.48 oster while(cset!=NULL) { 3306 1.49 oster if (rf_does_it_fit(cset, ac)) { 3307 1.86 oster /* looks like it matches... */ 3308 1.86 oster ac->next = cset->ac; 3309 1.86 oster cset->ac = ac; 3310 1.48 oster break; 3311 1.48 oster } 3312 1.48 oster cset = cset->next; 3313 1.48 oster } 3314 1.48 oster if (cset==NULL) { 3315 1.48 oster /* didn't find a match above... new set..*/ 3316 1.379 chs cset = malloc(sizeof(RF_ConfigSet_t), 3317 1.379 chs M_RAIDFRAME, M_WAITOK); 3318 1.48 oster cset->ac = ac; 3319 1.48 oster ac->next = NULL; 3320 1.48 oster cset->next = config_sets; 3321 1.51 oster cset->rootable = 0; 3322 1.48 oster config_sets = cset; 3323 1.48 oster } 3324 1.48 oster } 3325 1.48 oster ac = ac_next; 3326 1.48 oster } 3327 1.48 oster 3328 1.48 oster 3329 1.48 oster return(config_sets); 3330 1.48 oster } 3331 1.48 oster 3332 1.48 oster static int 3333 1.169 oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac) 3334 1.48 oster { 3335 1.48 oster RF_ComponentLabel_t *clabel1, *clabel2; 3336 1.48 oster 3337 1.48 oster /* If this one matches the *first* one in the set, that's good 3338 1.48 oster enough, since the other members of the set would have been 3339 1.48 oster through here too... */ 3340 1.60 oster /* note that we are not checking partitionSize here.. 3341 1.60 oster 3342 1.60 oster Note that we are also not checking the mod_counters here. 3343 1.299 oster If everything else matches except the mod_counter, that's 3344 1.60 oster good enough for this test. We will deal with the mod_counters 3345 1.186 perry a little later in the autoconfiguration process. 3346 1.60 oster 3347 1.60 oster (clabel1->mod_counter == clabel2->mod_counter) && 3348 1.81 oster 3349 1.81 oster The reason we don't check for this is that failed disks 3350 1.81 oster will have lower modification counts. If those disks are 3351 1.81 oster not added to the set they used to belong to, then they will 3352 1.81 oster form their own set, which may result in 2 different sets, 3353 1.81 oster for example, competing to be configured at raid0, and 3354 1.81 oster perhaps competing to be the root filesystem set. If the 3355 1.81 oster wrong ones get configured, or both attempt to become /, 3356 1.81 oster weird behaviour and or serious lossage will occur. Thus we 3357 1.81 oster need to bring them into the fold here, and kick them out at 3358 1.81 oster a later point. 3359 1.60 oster 3360 1.60 oster */ 3361 1.48 oster 3362 1.48 oster clabel1 = cset->ac->clabel; 3363 1.48 oster clabel2 = ac->clabel; 3364 1.48 oster if ((clabel1->version == clabel2->version) && 3365 1.48 oster (clabel1->serial_number == clabel2->serial_number) && 3366 1.48 oster (clabel1->num_rows == clabel2->num_rows) && 3367 1.48 oster (clabel1->num_columns == clabel2->num_columns) && 3368 1.48 oster (clabel1->sectPerSU == clabel2->sectPerSU) && 3369 1.48 oster (clabel1->SUsPerPU == clabel2->SUsPerPU) && 3370 1.48 oster (clabel1->SUsPerRU == clabel2->SUsPerRU) && 3371 1.48 oster (clabel1->parityConfig == clabel2->parityConfig) && 3372 1.48 oster (clabel1->maxOutstanding == clabel2->maxOutstanding) && 3373 1.48 oster (clabel1->blockSize == clabel2->blockSize) && 3374 1.282 enami rf_component_label_numblocks(clabel1) == 3375 1.282 enami rf_component_label_numblocks(clabel2) && 3376 1.48 oster (clabel1->autoconfigure == clabel2->autoconfigure) && 3377 1.48 oster (clabel1->root_partition == clabel2->root_partition) && 3378 1.48 oster (clabel1->last_unit == clabel2->last_unit) && 3379 1.48 oster (clabel1->config_order == clabel2->config_order)) { 3380 1.48 oster /* if it get's here, it almost *has* to be a match */ 3381 1.48 oster } else { 3382 1.186 perry /* it's not consistent with somebody in the set.. 3383 1.48 oster punt */ 3384 1.48 oster return(0); 3385 1.48 oster } 3386 1.48 oster /* all was fine.. it must fit... */ 3387 1.48 oster return(1); 3388 1.48 oster } 3389 1.48 oster 3390 1.393 mrg static int 3391 1.169 oster rf_have_enough_components(RF_ConfigSet_t *cset) 3392 1.48 oster { 3393 1.51 oster RF_AutoConfig_t *ac; 3394 1.51 oster RF_AutoConfig_t *auto_config; 3395 1.51 oster RF_ComponentLabel_t *clabel; 3396 1.166 oster int c; 3397 1.51 oster int num_cols; 3398 1.51 oster int num_missing; 3399 1.86 oster int mod_counter; 3400 1.87 oster int mod_counter_found; 3401 1.88 oster int even_pair_failed; 3402 1.88 oster char parity_type; 3403 1.186 perry 3404 1.51 oster 3405 1.48 oster /* check to see that we have enough 'live' components 3406 1.48 oster of this set. If so, we can configure it if necessary */ 3407 1.48 oster 3408 1.51 oster num_cols = cset->ac->clabel->num_columns; 3409 1.88 oster parity_type = cset->ac->clabel->parityConfig; 3410 1.51 oster 3411 1.51 oster /* XXX Check for duplicate components!?!?!? */ 3412 1.51 oster 3413 1.86 oster /* Determine what the mod_counter is supposed to be for this set. */ 3414 1.86 oster 3415 1.87 oster mod_counter_found = 0; 3416 1.101 oster mod_counter = 0; 3417 1.86 oster ac = cset->ac; 3418 1.86 oster while(ac!=NULL) { 3419 1.87 oster if (mod_counter_found==0) { 3420 1.86 oster mod_counter = ac->clabel->mod_counter; 3421 1.87 oster mod_counter_found = 1; 3422 1.87 oster } else { 3423 1.87 oster if (ac->clabel->mod_counter > mod_counter) { 3424 1.87 oster mod_counter = ac->clabel->mod_counter; 3425 1.87 oster } 3426 1.86 oster } 3427 1.86 oster ac = ac->next; 3428 1.86 oster } 3429 1.86 oster 3430 1.51 oster num_missing = 0; 3431 1.51 oster auto_config = cset->ac; 3432 1.51 oster 3433 1.166 oster even_pair_failed = 0; 3434 1.166 oster for(c=0; c<num_cols; c++) { 3435 1.166 oster ac = auto_config; 3436 1.166 oster while(ac!=NULL) { 3437 1.186 perry if ((ac->clabel->column == c) && 3438 1.166 oster (ac->clabel->mod_counter == mod_counter)) { 3439 1.166 oster /* it's this one... */ 3440 1.224 oster #ifdef DEBUG 3441 1.166 oster printf("Found: %s at %d\n", 3442 1.166 oster ac->devname,c); 3443 1.51 oster #endif 3444 1.166 oster break; 3445 1.51 oster } 3446 1.166 oster ac=ac->next; 3447 1.166 oster } 3448 1.166 oster if (ac==NULL) { 3449 1.51 oster /* Didn't find one here! */ 3450 1.88 oster /* special case for RAID 1, especially 3451 1.88 oster where there are more than 2 3452 1.88 oster components (where RAIDframe treats 3453 1.88 oster things a little differently :( ) */ 3454 1.166 oster if (parity_type == '1') { 3455 1.166 oster if (c%2 == 0) { /* even component */ 3456 1.166 oster even_pair_failed = 1; 3457 1.166 oster } else { /* odd component. If 3458 1.166 oster we're failed, and 3459 1.166 oster so is the even 3460 1.166 oster component, it's 3461 1.166 oster "Good Night, Charlie" */ 3462 1.166 oster if (even_pair_failed == 1) { 3463 1.166 oster return(0); 3464 1.88 oster } 3465 1.88 oster } 3466 1.166 oster } else { 3467 1.166 oster /* normal accounting */ 3468 1.166 oster num_missing++; 3469 1.88 oster } 3470 1.166 oster } 3471 1.166 oster if ((parity_type == '1') && (c%2 == 1)) { 3472 1.88 oster /* Just did an even component, and we didn't 3473 1.186 perry bail.. reset the even_pair_failed flag, 3474 1.88 oster and go on to the next component.... */ 3475 1.166 oster even_pair_failed = 0; 3476 1.51 oster } 3477 1.51 oster } 3478 1.51 oster 3479 1.51 oster clabel = cset->ac->clabel; 3480 1.51 oster 3481 1.51 oster if (((clabel->parityConfig == '0') && (num_missing > 0)) || 3482 1.51 oster ((clabel->parityConfig == '4') && (num_missing > 1)) || 3483 1.51 oster ((clabel->parityConfig == '5') && (num_missing > 1))) { 3484 1.51 oster /* XXX this needs to be made *much* more general */ 3485 1.51 oster /* Too many failures */ 3486 1.51 oster return(0); 3487 1.51 oster } 3488 1.51 oster /* otherwise, all is well, and we've got enough to take a kick 3489 1.51 oster at autoconfiguring this set */ 3490 1.51 oster return(1); 3491 1.48 oster } 3492 1.48 oster 3493 1.393 mrg static void 3494 1.169 oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config, 3495 1.222 christos RF_Raid_t *raidPtr) 3496 1.48 oster { 3497 1.48 oster RF_ComponentLabel_t *clabel; 3498 1.77 oster int i; 3499 1.48 oster 3500 1.48 oster clabel = ac->clabel; 3501 1.48 oster 3502 1.48 oster /* 1. Fill in the common stuff */ 3503 1.48 oster config->numCol = clabel->num_columns; 3504 1.48 oster config->numSpare = 0; /* XXX should this be set here? */ 3505 1.48 oster config->sectPerSU = clabel->sectPerSU; 3506 1.48 oster config->SUsPerPU = clabel->SUsPerPU; 3507 1.48 oster config->SUsPerRU = clabel->SUsPerRU; 3508 1.48 oster config->parityConfig = clabel->parityConfig; 3509 1.48 oster /* XXX... */ 3510 1.48 oster strcpy(config->diskQueueType,"fifo"); 3511 1.48 oster config->maxOutstandingDiskReqs = clabel->maxOutstanding; 3512 1.48 oster config->layoutSpecificSize = 0; /* XXX ?? */ 3513 1.48 oster 3514 1.48 oster while(ac!=NULL) { 3515 1.48 oster /* row/col values will be in range due to the checks 3516 1.48 oster in reasonable_label() */ 3517 1.166 oster strcpy(config->devnames[0][ac->clabel->column], 3518 1.48 oster ac->devname); 3519 1.48 oster ac = ac->next; 3520 1.48 oster } 3521 1.48 oster 3522 1.77 oster for(i=0;i<RF_MAXDBGV;i++) { 3523 1.163 fvdl config->debugVars[i][0] = 0; 3524 1.77 oster } 3525 1.48 oster } 3526 1.48 oster 3527 1.393 mrg static int 3528 1.169 oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value) 3529 1.48 oster { 3530 1.269 jld RF_ComponentLabel_t *clabel; 3531 1.166 oster int column; 3532 1.148 oster int sparecol; 3533 1.48 oster 3534 1.54 oster raidPtr->autoconfigure = new_value; 3535 1.166 oster 3536 1.166 oster for(column=0; column<raidPtr->numCol; column++) { 3537 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) { 3538 1.269 jld clabel = raidget_component_label(raidPtr, column); 3539 1.269 jld clabel->autoconfigure = new_value; 3540 1.269 jld raidflush_component_label(raidPtr, column); 3541 1.48 oster } 3542 1.48 oster } 3543 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) { 3544 1.148 oster sparecol = raidPtr->numCol + column; 3545 1.414 oster 3546 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 3547 1.269 jld clabel = raidget_component_label(raidPtr, sparecol); 3548 1.269 jld clabel->autoconfigure = new_value; 3549 1.269 jld raidflush_component_label(raidPtr, sparecol); 3550 1.148 oster } 3551 1.148 oster } 3552 1.48 oster return(new_value); 3553 1.48 oster } 3554 1.48 oster 3555 1.393 mrg static int 3556 1.169 oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value) 3557 1.48 oster { 3558 1.269 jld RF_ComponentLabel_t *clabel; 3559 1.166 oster int column; 3560 1.148 oster int sparecol; 3561 1.48 oster 3562 1.54 oster raidPtr->root_partition = new_value; 3563 1.166 oster for(column=0; column<raidPtr->numCol; column++) { 3564 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) { 3565 1.269 jld clabel = raidget_component_label(raidPtr, column); 3566 1.269 jld clabel->root_partition = new_value; 3567 1.269 jld raidflush_component_label(raidPtr, column); 3568 1.148 oster } 3569 1.148 oster } 3570 1.414 oster for (column = 0; column < raidPtr->numSpare ; column++) { 3571 1.148 oster sparecol = raidPtr->numCol + column; 3572 1.414 oster 3573 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 3574 1.269 jld clabel = raidget_component_label(raidPtr, sparecol); 3575 1.269 jld clabel->root_partition = new_value; 3576 1.269 jld raidflush_component_label(raidPtr, sparecol); 3577 1.48 oster } 3578 1.48 oster } 3579 1.48 oster return(new_value); 3580 1.48 oster } 3581 1.48 oster 3582 1.393 mrg static void 3583 1.169 oster rf_release_all_vps(RF_ConfigSet_t *cset) 3584 1.48 oster { 3585 1.48 oster RF_AutoConfig_t *ac; 3586 1.186 perry 3587 1.48 oster ac = cset->ac; 3588 1.48 oster while(ac!=NULL) { 3589 1.48 oster /* Close the vp, and give it back */ 3590 1.48 oster if (ac->vp) { 3591 1.96 oster vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY); 3592 1.335 mlelstv VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED); 3593 1.48 oster vput(ac->vp); 3594 1.86 oster ac->vp = NULL; 3595 1.48 oster } 3596 1.48 oster ac = ac->next; 3597 1.48 oster } 3598 1.48 oster } 3599 1.48 oster 3600 1.48 oster 3601 1.393 mrg static void 3602 1.169 oster rf_cleanup_config_set(RF_ConfigSet_t *cset) 3603 1.48 oster { 3604 1.48 oster RF_AutoConfig_t *ac; 3605 1.48 oster RF_AutoConfig_t *next_ac; 3606 1.186 perry 3607 1.48 oster ac = cset->ac; 3608 1.48 oster while(ac!=NULL) { 3609 1.48 oster next_ac = ac->next; 3610 1.48 oster /* nuke the label */ 3611 1.48 oster free(ac->clabel, M_RAIDFRAME); 3612 1.48 oster /* cleanup the config structure */ 3613 1.48 oster free(ac, M_RAIDFRAME); 3614 1.48 oster /* "next.." */ 3615 1.48 oster ac = next_ac; 3616 1.48 oster } 3617 1.48 oster /* and, finally, nuke the config set */ 3618 1.48 oster free(cset, M_RAIDFRAME); 3619 1.48 oster } 3620 1.48 oster 3621 1.48 oster 3622 1.48 oster void 3623 1.169 oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel) 3624 1.48 oster { 3625 1.394 mrg /* avoid over-writing byteswapped version. */ 3626 1.394 mrg if (clabel->version != bswap32(RF_COMPONENT_LABEL_VERSION)) 3627 1.394 mrg clabel->version = RF_COMPONENT_LABEL_VERSION; 3628 1.57 oster clabel->serial_number = raidPtr->serial_number; 3629 1.48 oster clabel->mod_counter = raidPtr->mod_counter; 3630 1.269 jld 3631 1.166 oster clabel->num_rows = 1; 3632 1.48 oster clabel->num_columns = raidPtr->numCol; 3633 1.48 oster clabel->clean = RF_RAID_DIRTY; /* not clean */ 3634 1.48 oster clabel->status = rf_ds_optimal; /* "It's good!" */ 3635 1.186 perry 3636 1.48 oster clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; 3637 1.48 oster clabel->SUsPerPU = raidPtr->Layout.SUsPerPU; 3638 1.48 oster clabel->SUsPerRU = raidPtr->Layout.SUsPerRU; 3639 1.54 oster 3640 1.54 oster clabel->blockSize = raidPtr->bytesPerSector; 3641 1.282 enami rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk); 3642 1.54 oster 3643 1.48 oster /* XXX not portable */ 3644 1.48 oster clabel->parityConfig = raidPtr->Layout.map->parityConfig; 3645 1.54 oster clabel->maxOutstanding = raidPtr->maxOutstanding; 3646 1.54 oster clabel->autoconfigure = raidPtr->autoconfigure; 3647 1.54 oster clabel->root_partition = raidPtr->root_partition; 3648 1.48 oster clabel->last_unit = raidPtr->raidid; 3649 1.54 oster clabel->config_order = raidPtr->config_order; 3650 1.269 jld 3651 1.269 jld #ifndef RF_NO_PARITY_MAP 3652 1.269 jld rf_paritymap_init_label(raidPtr->parity_map, clabel); 3653 1.269 jld #endif 3654 1.51 oster } 3655 1.51 oster 3656 1.393 mrg static struct raid_softc * 3657 1.300 christos rf_auto_config_set(RF_ConfigSet_t *cset) 3658 1.51 oster { 3659 1.51 oster RF_Raid_t *raidPtr; 3660 1.51 oster RF_Config_t *config; 3661 1.51 oster int raidID; 3662 1.300 christos struct raid_softc *sc; 3663 1.51 oster 3664 1.224 oster #ifdef DEBUG 3665 1.72 oster printf("RAID autoconfigure\n"); 3666 1.127 oster #endif 3667 1.51 oster 3668 1.51 oster /* 1. Create a config structure */ 3669 1.379 chs config = malloc(sizeof(*config), M_RAIDFRAME, M_WAITOK|M_ZERO); 3670 1.77 oster 3671 1.186 perry /* 3672 1.186 perry 2. Figure out what RAID ID this one is supposed to live at 3673 1.51 oster See if we can get the same RAID dev that it was configured 3674 1.186 perry on last time.. 3675 1.51 oster */ 3676 1.51 oster 3677 1.51 oster raidID = cset->ac->clabel->last_unit; 3678 1.327 pgoyette for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0; 3679 1.327 pgoyette sc = raidget(++raidID, false)) 3680 1.300 christos continue; 3681 1.224 oster #ifdef DEBUG 3682 1.72 oster printf("Configuring raid%d:\n",raidID); 3683 1.127 oster #endif 3684 1.127 oster 3685 1.327 pgoyette if (sc == NULL) 3686 1.327 pgoyette sc = raidget(raidID, true); 3687 1.300 christos raidPtr = &sc->sc_r; 3688 1.51 oster 3689 1.51 oster /* XXX all this stuff should be done SOMEWHERE ELSE! */ 3690 1.302 christos raidPtr->softc = sc; 3691 1.51 oster raidPtr->raidid = raidID; 3692 1.51 oster raidPtr->openings = RAIDOUTSTANDING; 3693 1.51 oster 3694 1.51 oster /* 3. Build the configuration structure */ 3695 1.51 oster rf_create_configuration(cset->ac, config, raidPtr); 3696 1.51 oster 3697 1.51 oster /* 4. Do the configuration */ 3698 1.300 christos if (rf_Configure(raidPtr, config, cset->ac) == 0) { 3699 1.300 christos raidinit(sc); 3700 1.186 perry 3701 1.300 christos rf_markalldirty(raidPtr); 3702 1.300 christos raidPtr->autoconfigure = 1; /* XXX do this here? */ 3703 1.308 christos switch (cset->ac->clabel->root_partition) { 3704 1.308 christos case 1: /* Force Root */ 3705 1.308 christos case 2: /* Soft Root: root when boot partition part of raid */ 3706 1.308 christos /* 3707 1.308 christos * everything configured just fine. Make a note 3708 1.308 christos * that this set is eligible to be root, 3709 1.308 christos * or forced to be root 3710 1.308 christos */ 3711 1.308 christos cset->rootable = cset->ac->clabel->root_partition; 3712 1.54 oster /* XXX do this here? */ 3713 1.308 christos raidPtr->root_partition = cset->rootable; 3714 1.308 christos break; 3715 1.308 christos default: 3716 1.308 christos break; 3717 1.51 oster } 3718 1.300 christos } else { 3719 1.300 christos raidput(sc); 3720 1.300 christos sc = NULL; 3721 1.51 oster } 3722 1.51 oster 3723 1.51 oster /* 5. Cleanup */ 3724 1.51 oster free(config, M_RAIDFRAME); 3725 1.300 christos return sc; 3726 1.99 oster } 3727 1.99 oster 3728 1.99 oster void 3729 1.395 oster rf_pool_init(RF_Raid_t *raidPtr, char *w_chan, struct pool *p, size_t size, const char *pool_name, 3730 1.187 christos size_t xmin, size_t xmax) 3731 1.177 oster { 3732 1.352 christos 3733 1.395 oster /* Format: raid%d_foo */ 3734 1.395 oster snprintf(w_chan, RF_MAX_POOLNAMELEN, "raid%d_%s", raidPtr->raidid, pool_name); 3735 1.395 oster 3736 1.227 ad pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO); 3737 1.187 christos pool_sethiwat(p, xmax); 3738 1.382 chs pool_prime(p, xmin); 3739 1.177 oster } 3740 1.190 oster 3741 1.395 oster 3742 1.190 oster /* 3743 1.335 mlelstv * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue 3744 1.335 mlelstv * to see if there is IO pending and if that IO could possibly be done 3745 1.335 mlelstv * for a given RAID set. Returns 0 if IO is waiting and can be done, 1 3746 1.190 oster * otherwise. 3747 1.190 oster * 3748 1.190 oster */ 3749 1.190 oster int 3750 1.300 christos rf_buf_queue_check(RF_Raid_t *raidPtr) 3751 1.190 oster { 3752 1.335 mlelstv struct raid_softc *rs; 3753 1.335 mlelstv struct dk_softc *dksc; 3754 1.335 mlelstv 3755 1.335 mlelstv rs = raidPtr->softc; 3756 1.335 mlelstv dksc = &rs->sc_dksc; 3757 1.335 mlelstv 3758 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) 3759 1.335 mlelstv return 1; 3760 1.335 mlelstv 3761 1.335 mlelstv if (dk_strategy_pending(dksc) && raidPtr->openings > 0) { 3762 1.190 oster /* there is work to do */ 3763 1.190 oster return 0; 3764 1.335 mlelstv } 3765 1.190 oster /* default is nothing to do */ 3766 1.190 oster return 1; 3767 1.190 oster } 3768 1.213 christos 3769 1.213 christos int 3770 1.294 oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr) 3771 1.213 christos { 3772 1.275 mrg uint64_t numsecs; 3773 1.275 mrg unsigned secsize; 3774 1.213 christos int error; 3775 1.213 christos 3776 1.275 mrg error = getdisksize(vp, &numsecs, &secsize); 3777 1.213 christos if (error == 0) { 3778 1.275 mrg diskPtr->blockSize = secsize; 3779 1.275 mrg diskPtr->numBlocks = numsecs - rf_protectedSectors; 3780 1.275 mrg diskPtr->partitionSize = numsecs; 3781 1.213 christos return 0; 3782 1.213 christos } 3783 1.213 christos return error; 3784 1.213 christos } 3785 1.217 oster 3786 1.217 oster static int 3787 1.261 dyoung raid_match(device_t self, cfdata_t cfdata, void *aux) 3788 1.217 oster { 3789 1.217 oster return 1; 3790 1.217 oster } 3791 1.217 oster 3792 1.217 oster static void 3793 1.261 dyoung raid_attach(device_t parent, device_t self, void *aux) 3794 1.217 oster { 3795 1.217 oster } 3796 1.217 oster 3797 1.217 oster 3798 1.217 oster static int 3799 1.261 dyoung raid_detach(device_t self, int flags) 3800 1.217 oster { 3801 1.266 dyoung int error; 3802 1.335 mlelstv struct raid_softc *rs = raidsoftc(self); 3803 1.303 christos 3804 1.303 christos if (rs == NULL) 3805 1.303 christos return ENXIO; 3806 1.266 dyoung 3807 1.266 dyoung if ((error = raidlock(rs)) != 0) 3808 1.389 skrll return error; 3809 1.217 oster 3810 1.266 dyoung error = raid_detach_unlocked(rs); 3811 1.266 dyoung 3812 1.332 mlelstv raidunlock(rs); 3813 1.332 mlelstv 3814 1.332 mlelstv /* XXX raid can be referenced here */ 3815 1.332 mlelstv 3816 1.332 mlelstv if (error) 3817 1.332 mlelstv return error; 3818 1.332 mlelstv 3819 1.332 mlelstv /* Free the softc */ 3820 1.332 mlelstv raidput(rs); 3821 1.332 mlelstv 3822 1.332 mlelstv return 0; 3823 1.217 oster } 3824 1.217 oster 3825 1.234 oster static void 3826 1.304 christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr) 3827 1.234 oster { 3828 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc; 3829 1.335 mlelstv struct disk_geom *dg = &dksc->sc_dkdev.dk_geom; 3830 1.304 christos 3831 1.304 christos memset(dg, 0, sizeof(*dg)); 3832 1.304 christos 3833 1.304 christos dg->dg_secperunit = raidPtr->totalSectors; 3834 1.304 christos dg->dg_secsize = raidPtr->bytesPerSector; 3835 1.304 christos dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe; 3836 1.304 christos dg->dg_ntracks = 4 * raidPtr->numCol; 3837 1.304 christos 3838 1.335 mlelstv disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL); 3839 1.234 oster } 3840 1.252 oster 3841 1.348 jdolecek /* 3842 1.348 jdolecek * Get cache info for all the components (including spares). 3843 1.348 jdolecek * Returns intersection of all the cache flags of all disks, or first 3844 1.348 jdolecek * error if any encountered. 3845 1.348 jdolecek * XXXfua feature flags can change as spares are added - lock down somehow 3846 1.348 jdolecek */ 3847 1.348 jdolecek static int 3848 1.348 jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data) 3849 1.348 jdolecek { 3850 1.348 jdolecek int c; 3851 1.348 jdolecek int error; 3852 1.348 jdolecek int dkwhole = 0, dkpart; 3853 1.385 riastrad 3854 1.348 jdolecek for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) { 3855 1.348 jdolecek /* 3856 1.348 jdolecek * Check any non-dead disk, even when currently being 3857 1.348 jdolecek * reconstructed. 3858 1.348 jdolecek */ 3859 1.413 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) { 3860 1.348 jdolecek error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, 3861 1.348 jdolecek DIOCGCACHE, &dkpart, FREAD, NOCRED); 3862 1.348 jdolecek if (error) { 3863 1.348 jdolecek if (error != ENODEV) { 3864 1.348 jdolecek printf("raid%d: get cache for component %s failed\n", 3865 1.348 jdolecek raidPtr->raidid, 3866 1.348 jdolecek raidPtr->Disks[c].devname); 3867 1.348 jdolecek } 3868 1.348 jdolecek 3869 1.348 jdolecek return error; 3870 1.348 jdolecek } 3871 1.348 jdolecek 3872 1.348 jdolecek if (c == 0) 3873 1.348 jdolecek dkwhole = dkpart; 3874 1.348 jdolecek else 3875 1.348 jdolecek dkwhole = DKCACHE_COMBINE(dkwhole, dkpart); 3876 1.348 jdolecek } 3877 1.348 jdolecek } 3878 1.348 jdolecek 3879 1.349 jdolecek *data = dkwhole; 3880 1.348 jdolecek 3881 1.348 jdolecek return 0; 3882 1.348 jdolecek } 3883 1.348 jdolecek 3884 1.385 riastrad /* 3885 1.252 oster * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components. 3886 1.252 oster * We end up returning whatever error was returned by the first cache flush 3887 1.252 oster * that fails. 3888 1.252 oster */ 3889 1.252 oster 3890 1.386 christos static int 3891 1.390 christos rf_sync_component_cache(RF_Raid_t *raidPtr, int c, int force) 3892 1.386 christos { 3893 1.386 christos int e = 0; 3894 1.386 christos for (int i = 0; i < 5; i++) { 3895 1.386 christos e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC, 3896 1.386 christos &force, FWRITE, NOCRED); 3897 1.386 christos if (!e || e == ENODEV) 3898 1.386 christos return e; 3899 1.386 christos printf("raid%d: cache flush[%d] to component %s failed (%d)\n", 3900 1.386 christos raidPtr->raidid, i, raidPtr->Disks[c].devname, e); 3901 1.386 christos } 3902 1.387 christos return e; 3903 1.386 christos } 3904 1.386 christos 3905 1.269 jld int 3906 1.390 christos rf_sync_component_caches(RF_Raid_t *raidPtr, int force) 3907 1.252 oster { 3908 1.386 christos int c, error; 3909 1.385 riastrad 3910 1.252 oster error = 0; 3911 1.252 oster for (c = 0; c < raidPtr->numCol; c++) { 3912 1.252 oster if (raidPtr->Disks[c].status == rf_ds_optimal) { 3913 1.390 christos int e = rf_sync_component_cache(raidPtr, c, force); 3914 1.387 christos if (e && !error) 3915 1.386 christos error = e; 3916 1.252 oster } 3917 1.252 oster } 3918 1.252 oster 3919 1.386 christos for (c = 0; c < raidPtr->numSpare ; c++) { 3920 1.386 christos int sparecol = raidPtr->numCol + c; 3921 1.414 oster 3922 1.252 oster /* Need to ensure that the reconstruct actually completed! */ 3923 1.252 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) { 3924 1.390 christos int e = rf_sync_component_cache(raidPtr, sparecol, 3925 1.390 christos force); 3926 1.387 christos if (e && !error) 3927 1.386 christos error = e; 3928 1.252 oster } 3929 1.252 oster } 3930 1.252 oster return error; 3931 1.252 oster } 3932 1.327 pgoyette 3933 1.353 mrg /* Fill in info with the current status */ 3934 1.353 mrg void 3935 1.353 mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info) 3936 1.353 mrg { 3937 1.353 mrg 3938 1.401 riastrad memset(info, 0, sizeof(*info)); 3939 1.401 riastrad 3940 1.353 mrg if (raidPtr->status != rf_rs_reconstructing) { 3941 1.353 mrg info->total = 100; 3942 1.353 mrg info->completed = 100; 3943 1.353 mrg } else { 3944 1.353 mrg info->total = raidPtr->reconControl->numRUsTotal; 3945 1.353 mrg info->completed = raidPtr->reconControl->numRUsComplete; 3946 1.353 mrg } 3947 1.353 mrg info->remaining = info->total - info->completed; 3948 1.353 mrg } 3949 1.353 mrg 3950 1.353 mrg /* Fill in info with the current status */ 3951 1.353 mrg void 3952 1.353 mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info) 3953 1.353 mrg { 3954 1.353 mrg 3955 1.401 riastrad memset(info, 0, sizeof(*info)); 3956 1.401 riastrad 3957 1.353 mrg if (raidPtr->parity_rewrite_in_progress == 1) { 3958 1.353 mrg info->total = raidPtr->Layout.numStripe; 3959 1.353 mrg info->completed = raidPtr->parity_rewrite_stripes_done; 3960 1.353 mrg } else { 3961 1.353 mrg info->completed = 100; 3962 1.353 mrg info->total = 100; 3963 1.353 mrg } 3964 1.353 mrg info->remaining = info->total - info->completed; 3965 1.353 mrg } 3966 1.353 mrg 3967 1.353 mrg /* Fill in info with the current status */ 3968 1.353 mrg void 3969 1.353 mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info) 3970 1.353 mrg { 3971 1.353 mrg 3972 1.401 riastrad memset(info, 0, sizeof(*info)); 3973 1.415 oster info->remaining = 0; 3974 1.415 oster info->completed = 100; 3975 1.415 oster info->total = 100; 3976 1.353 mrg } 3977 1.353 mrg 3978 1.353 mrg /* Fill in config with the current info */ 3979 1.353 mrg int 3980 1.353 mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config) 3981 1.353 mrg { 3982 1.353 mrg int d, i, j; 3983 1.353 mrg 3984 1.353 mrg if (!raidPtr->valid) 3985 1.389 skrll return ENODEV; 3986 1.353 mrg config->cols = raidPtr->numCol; 3987 1.353 mrg config->ndevs = raidPtr->numCol; 3988 1.353 mrg if (config->ndevs >= RF_MAX_DISKS) 3989 1.389 skrll return ENOMEM; 3990 1.353 mrg config->nspares = raidPtr->numSpare; 3991 1.353 mrg if (config->nspares >= RF_MAX_DISKS) 3992 1.389 skrll return ENOMEM; 3993 1.353 mrg config->maxqdepth = raidPtr->maxQueueDepth; 3994 1.353 mrg d = 0; 3995 1.353 mrg for (j = 0; j < config->cols; j++) { 3996 1.353 mrg config->devs[d] = raidPtr->Disks[j]; 3997 1.353 mrg d++; 3998 1.353 mrg } 3999 1.414 oster for (i = 0; i < config->nspares; i++) { 4000 1.414 oster config->spares[i] = raidPtr->Disks[raidPtr->numCol + i]; 4001 1.417 oster if (config->spares[i].status == rf_ds_rebuilding_spare) { 4002 1.417 oster /* raidctl(8) expects to see this as a used spare */ 4003 1.417 oster config->spares[i].status = rf_ds_used_spare; 4004 1.417 oster } 4005 1.353 mrg } 4006 1.353 mrg return 0; 4007 1.353 mrg } 4008 1.353 mrg 4009 1.353 mrg int 4010 1.353 mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data) 4011 1.353 mrg { 4012 1.353 mrg RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data; 4013 1.353 mrg RF_ComponentLabel_t *raid_clabel; 4014 1.353 mrg int column = clabel->column; 4015 1.353 mrg 4016 1.353 mrg if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare)) 4017 1.353 mrg return EINVAL; 4018 1.353 mrg raid_clabel = raidget_component_label(raidPtr, column); 4019 1.353 mrg memcpy(clabel, raid_clabel, sizeof *clabel); 4020 1.394 mrg /* Fix-up for userland. */ 4021 1.394 mrg if (clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)) 4022 1.394 mrg clabel->version = RF_COMPONENT_LABEL_VERSION; 4023 1.353 mrg 4024 1.353 mrg return 0; 4025 1.353 mrg } 4026 1.353 mrg 4027 1.327 pgoyette /* 4028 1.327 pgoyette * Module interface 4029 1.327 pgoyette */ 4030 1.327 pgoyette 4031 1.356 pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs"); 4032 1.327 pgoyette 4033 1.327 pgoyette #ifdef _MODULE 4034 1.327 pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL); 4035 1.327 pgoyette #endif 4036 1.327 pgoyette 4037 1.327 pgoyette static int raid_modcmd(modcmd_t, void *); 4038 1.327 pgoyette static int raid_modcmd_init(void); 4039 1.327 pgoyette static int raid_modcmd_fini(void); 4040 1.327 pgoyette 4041 1.327 pgoyette static int 4042 1.327 pgoyette raid_modcmd(modcmd_t cmd, void *data) 4043 1.327 pgoyette { 4044 1.327 pgoyette int error; 4045 1.327 pgoyette 4046 1.327 pgoyette error = 0; 4047 1.327 pgoyette switch (cmd) { 4048 1.327 pgoyette case MODULE_CMD_INIT: 4049 1.327 pgoyette error = raid_modcmd_init(); 4050 1.327 pgoyette break; 4051 1.327 pgoyette case MODULE_CMD_FINI: 4052 1.327 pgoyette error = raid_modcmd_fini(); 4053 1.327 pgoyette break; 4054 1.327 pgoyette default: 4055 1.327 pgoyette error = ENOTTY; 4056 1.327 pgoyette break; 4057 1.327 pgoyette } 4058 1.327 pgoyette return error; 4059 1.327 pgoyette } 4060 1.327 pgoyette 4061 1.327 pgoyette static int 4062 1.327 pgoyette raid_modcmd_init(void) 4063 1.327 pgoyette { 4064 1.327 pgoyette int error; 4065 1.327 pgoyette int bmajor, cmajor; 4066 1.327 pgoyette 4067 1.327 pgoyette mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE); 4068 1.327 pgoyette mutex_enter(&raid_lock); 4069 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 4070 1.327 pgoyette rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM); 4071 1.327 pgoyette rf_init_cond2(rf_sparet_wait_cv, "sparetw"); 4072 1.327 pgoyette rf_init_cond2(rf_sparet_resp_cv, "rfgst"); 4073 1.327 pgoyette 4074 1.327 pgoyette rf_sparet_wait_queue = rf_sparet_resp_queue = NULL; 4075 1.327 pgoyette #endif 4076 1.327 pgoyette 4077 1.327 pgoyette bmajor = cmajor = -1; 4078 1.327 pgoyette error = devsw_attach("raid", &raid_bdevsw, &bmajor, 4079 1.327 pgoyette &raid_cdevsw, &cmajor); 4080 1.327 pgoyette if (error != 0 && error != EEXIST) { 4081 1.327 pgoyette aprint_error("%s: devsw_attach failed %d\n", __func__, error); 4082 1.327 pgoyette mutex_exit(&raid_lock); 4083 1.327 pgoyette return error; 4084 1.327 pgoyette } 4085 1.327 pgoyette #ifdef _MODULE 4086 1.327 pgoyette error = config_cfdriver_attach(&raid_cd); 4087 1.327 pgoyette if (error != 0) { 4088 1.327 pgoyette aprint_error("%s: config_cfdriver_attach failed %d\n", 4089 1.327 pgoyette __func__, error); 4090 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw); 4091 1.327 pgoyette mutex_exit(&raid_lock); 4092 1.327 pgoyette return error; 4093 1.327 pgoyette } 4094 1.327 pgoyette #endif 4095 1.327 pgoyette error = config_cfattach_attach(raid_cd.cd_name, &raid_ca); 4096 1.327 pgoyette if (error != 0) { 4097 1.327 pgoyette aprint_error("%s: config_cfattach_attach failed %d\n", 4098 1.327 pgoyette __func__, error); 4099 1.327 pgoyette #ifdef _MODULE 4100 1.327 pgoyette config_cfdriver_detach(&raid_cd); 4101 1.327 pgoyette #endif 4102 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw); 4103 1.327 pgoyette mutex_exit(&raid_lock); 4104 1.327 pgoyette return error; 4105 1.327 pgoyette } 4106 1.327 pgoyette 4107 1.327 pgoyette raidautoconfigdone = false; 4108 1.327 pgoyette 4109 1.327 pgoyette mutex_exit(&raid_lock); 4110 1.327 pgoyette 4111 1.327 pgoyette if (error == 0) { 4112 1.327 pgoyette if (rf_BootRaidframe(true) == 0) 4113 1.327 pgoyette aprint_verbose("Kernelized RAIDframe activated\n"); 4114 1.327 pgoyette else 4115 1.327 pgoyette panic("Serious error activating RAID!!"); 4116 1.327 pgoyette } 4117 1.327 pgoyette 4118 1.327 pgoyette /* 4119 1.327 pgoyette * Register a finalizer which will be used to auto-config RAID 4120 1.327 pgoyette * sets once all real hardware devices have been found. 4121 1.327 pgoyette */ 4122 1.327 pgoyette error = config_finalize_register(NULL, rf_autoconfig); 4123 1.327 pgoyette if (error != 0) { 4124 1.327 pgoyette aprint_error("WARNING: unable to register RAIDframe " 4125 1.327 pgoyette "finalizer\n"); 4126 1.329 pgoyette error = 0; 4127 1.327 pgoyette } 4128 1.327 pgoyette 4129 1.327 pgoyette return error; 4130 1.327 pgoyette } 4131 1.327 pgoyette 4132 1.327 pgoyette static int 4133 1.327 pgoyette raid_modcmd_fini(void) 4134 1.327 pgoyette { 4135 1.327 pgoyette int error; 4136 1.327 pgoyette 4137 1.327 pgoyette mutex_enter(&raid_lock); 4138 1.327 pgoyette 4139 1.327 pgoyette /* Don't allow unload if raid device(s) exist. */ 4140 1.327 pgoyette if (!LIST_EMPTY(&raids)) { 4141 1.327 pgoyette mutex_exit(&raid_lock); 4142 1.327 pgoyette return EBUSY; 4143 1.327 pgoyette } 4144 1.327 pgoyette 4145 1.327 pgoyette error = config_cfattach_detach(raid_cd.cd_name, &raid_ca); 4146 1.327 pgoyette if (error != 0) { 4147 1.335 mlelstv aprint_error("%s: cannot detach cfattach\n",__func__); 4148 1.327 pgoyette mutex_exit(&raid_lock); 4149 1.327 pgoyette return error; 4150 1.327 pgoyette } 4151 1.327 pgoyette #ifdef _MODULE 4152 1.327 pgoyette error = config_cfdriver_detach(&raid_cd); 4153 1.327 pgoyette if (error != 0) { 4154 1.335 mlelstv aprint_error("%s: cannot detach cfdriver\n",__func__); 4155 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca); 4156 1.327 pgoyette mutex_exit(&raid_lock); 4157 1.327 pgoyette return error; 4158 1.327 pgoyette } 4159 1.327 pgoyette #endif 4160 1.404 riastrad devsw_detach(&raid_bdevsw, &raid_cdevsw); 4161 1.327 pgoyette rf_BootRaidframe(false); 4162 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0) 4163 1.327 pgoyette rf_destroy_mutex2(rf_sparet_wait_mutex); 4164 1.327 pgoyette rf_destroy_cond2(rf_sparet_wait_cv); 4165 1.327 pgoyette rf_destroy_cond2(rf_sparet_resp_cv); 4166 1.327 pgoyette #endif 4167 1.327 pgoyette mutex_exit(&raid_lock); 4168 1.327 pgoyette mutex_destroy(&raid_lock); 4169 1.327 pgoyette 4170 1.327 pgoyette return error; 4171 1.327 pgoyette } 4172