Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.29.2.1
      1  1.29.2.1    bouyer /*	$NetBSD: rf_netbsdkintf.c,v 1.29.2.1 2000/11/20 11:42:55 bouyer Exp $	*/
      2       1.1     oster /*-
      3       1.1     oster  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4       1.1     oster  * All rights reserved.
      5       1.1     oster  *
      6       1.1     oster  * This code is derived from software contributed to The NetBSD Foundation
      7       1.1     oster  * by Greg Oster; Jason R. Thorpe.
      8       1.1     oster  *
      9       1.1     oster  * Redistribution and use in source and binary forms, with or without
     10       1.1     oster  * modification, are permitted provided that the following conditions
     11       1.1     oster  * are met:
     12       1.1     oster  * 1. Redistributions of source code must retain the above copyright
     13       1.1     oster  *    notice, this list of conditions and the following disclaimer.
     14       1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     16       1.1     oster  *    documentation and/or other materials provided with the distribution.
     17       1.1     oster  * 3. All advertising materials mentioning features or use of this software
     18       1.1     oster  *    must display the following acknowledgement:
     19       1.1     oster  *        This product includes software developed by the NetBSD
     20       1.1     oster  *        Foundation, Inc. and its contributors.
     21       1.1     oster  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22       1.1     oster  *    contributors may be used to endorse or promote products derived
     23       1.1     oster  *    from this software without specific prior written permission.
     24       1.1     oster  *
     25       1.1     oster  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26       1.1     oster  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27       1.1     oster  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28       1.1     oster  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29       1.1     oster  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30       1.1     oster  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31       1.1     oster  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32       1.1     oster  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33       1.1     oster  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34       1.1     oster  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35       1.1     oster  * POSSIBILITY OF SUCH DAMAGE.
     36       1.1     oster  */
     37       1.1     oster 
     38       1.1     oster /*
     39       1.1     oster  * Copyright (c) 1988 University of Utah.
     40       1.1     oster  * Copyright (c) 1990, 1993
     41       1.1     oster  *      The Regents of the University of California.  All rights reserved.
     42       1.1     oster  *
     43       1.1     oster  * This code is derived from software contributed to Berkeley by
     44       1.1     oster  * the Systems Programming Group of the University of Utah Computer
     45       1.1     oster  * Science Department.
     46       1.1     oster  *
     47       1.1     oster  * Redistribution and use in source and binary forms, with or without
     48       1.1     oster  * modification, are permitted provided that the following conditions
     49       1.1     oster  * are met:
     50       1.1     oster  * 1. Redistributions of source code must retain the above copyright
     51       1.1     oster  *    notice, this list of conditions and the following disclaimer.
     52       1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     53       1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     54       1.1     oster  *    documentation and/or other materials provided with the distribution.
     55       1.1     oster  * 3. All advertising materials mentioning features or use of this software
     56       1.1     oster  *    must display the following acknowledgement:
     57       1.1     oster  *      This product includes software developed by the University of
     58       1.1     oster  *      California, Berkeley and its contributors.
     59       1.1     oster  * 4. Neither the name of the University nor the names of its contributors
     60       1.1     oster  *    may be used to endorse or promote products derived from this software
     61       1.1     oster  *    without specific prior written permission.
     62       1.1     oster  *
     63       1.1     oster  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64       1.1     oster  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65       1.1     oster  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66       1.1     oster  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67       1.1     oster  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68       1.1     oster  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69       1.1     oster  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70       1.1     oster  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71       1.1     oster  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72       1.1     oster  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73       1.1     oster  * SUCH DAMAGE.
     74       1.1     oster  *
     75       1.1     oster  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76       1.1     oster  *
     77       1.1     oster  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78       1.1     oster  */
     79       1.1     oster 
     80       1.1     oster 
     81       1.1     oster 
     82       1.1     oster 
     83       1.1     oster /*
     84       1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
     85       1.1     oster  * All rights reserved.
     86       1.1     oster  *
     87       1.1     oster  * Authors: Mark Holland, Jim Zelenka
     88       1.1     oster  *
     89       1.1     oster  * Permission to use, copy, modify and distribute this software and
     90       1.1     oster  * its documentation is hereby granted, provided that both the copyright
     91       1.1     oster  * notice and this permission notice appear in all copies of the
     92       1.1     oster  * software, derivative works or modified versions, and any portions
     93       1.1     oster  * thereof, and that both notices appear in supporting documentation.
     94       1.1     oster  *
     95       1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96       1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97       1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98       1.1     oster  *
     99       1.1     oster  * Carnegie Mellon requests users of this software to return to
    100       1.1     oster  *
    101       1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102       1.1     oster  *  School of Computer Science
    103       1.1     oster  *  Carnegie Mellon University
    104       1.1     oster  *  Pittsburgh PA 15213-3890
    105       1.1     oster  *
    106       1.1     oster  * any improvements or extensions that they make and grant Carnegie the
    107       1.1     oster  * rights to redistribute these changes.
    108       1.1     oster  */
    109       1.1     oster 
    110       1.1     oster /***********************************************************
    111       1.1     oster  *
    112       1.1     oster  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113       1.1     oster  *
    114       1.1     oster  ***********************************************************/
    115       1.1     oster 
    116       1.1     oster #include <sys/errno.h>
    117       1.1     oster #include <sys/param.h>
    118       1.1     oster #include <sys/pool.h>
    119       1.1     oster #include <sys/queue.h>
    120       1.1     oster #include <sys/disk.h>
    121       1.1     oster #include <sys/device.h>
    122       1.1     oster #include <sys/stat.h>
    123       1.1     oster #include <sys/ioctl.h>
    124       1.1     oster #include <sys/fcntl.h>
    125       1.1     oster #include <sys/systm.h>
    126       1.1     oster #include <sys/namei.h>
    127       1.1     oster #include <sys/vnode.h>
    128       1.1     oster #include <sys/param.h>
    129       1.1     oster #include <sys/types.h>
    130       1.1     oster #include <machine/types.h>
    131       1.1     oster #include <sys/disklabel.h>
    132       1.1     oster #include <sys/conf.h>
    133       1.1     oster #include <sys/lock.h>
    134       1.1     oster #include <sys/buf.h>
    135       1.1     oster #include <sys/user.h>
    136  1.29.2.1    bouyer #include <sys/reboot.h>
    137       1.8     oster 
    138       1.8     oster #include "raid.h"
    139  1.29.2.1    bouyer #include "opt_raid_autoconfig.h"
    140       1.1     oster #include "rf_raid.h"
    141       1.1     oster #include "rf_raidframe.h"
    142  1.29.2.1    bouyer #include "rf_copyback.h"
    143       1.1     oster #include "rf_dag.h"
    144       1.1     oster #include "rf_dagflags.h"
    145  1.29.2.1    bouyer #include "rf_desc.h"
    146       1.1     oster #include "rf_diskqueue.h"
    147       1.1     oster #include "rf_acctrace.h"
    148       1.1     oster #include "rf_etimer.h"
    149       1.1     oster #include "rf_general.h"
    150       1.1     oster #include "rf_debugMem.h"
    151       1.1     oster #include "rf_kintf.h"
    152       1.1     oster #include "rf_options.h"
    153       1.1     oster #include "rf_driver.h"
    154       1.1     oster #include "rf_parityscan.h"
    155       1.1     oster #include "rf_debugprint.h"
    156       1.1     oster #include "rf_threadstuff.h"
    157  1.29.2.1    bouyer #include "rf_configure.h"
    158       1.1     oster 
    159       1.9     oster int     rf_kdebug_level = 0;
    160       1.1     oster 
    161       1.1     oster #ifdef DEBUG
    162       1.1     oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    163       1.9     oster #else				/* DEBUG */
    164       1.1     oster #define db1_printf(a) { }
    165       1.9     oster #endif				/* DEBUG */
    166       1.1     oster 
    167       1.9     oster static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    168       1.1     oster 
    169      1.11     oster RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    170       1.1     oster 
    171      1.10     oster static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    172      1.10     oster 						 * spare table */
    173      1.10     oster static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    174      1.10     oster 						 * installation process */
    175      1.10     oster 
    176       1.1     oster /* prototypes */
    177      1.10     oster static void KernelWakeupFunc(struct buf * bp);
    178      1.10     oster static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    179      1.10     oster 		   dev_t dev, RF_SectorNum_t startSect,
    180      1.10     oster 		   RF_SectorCount_t numSect, caddr_t buf,
    181      1.10     oster 		   void (*cbFunc) (struct buf *), void *cbArg,
    182      1.10     oster 		   int logBytesPerSector, struct proc * b_proc);
    183  1.29.2.1    bouyer static void raidinit __P((RF_Raid_t *));
    184       1.1     oster 
    185      1.10     oster void raidattach __P((int));
    186      1.10     oster int raidsize __P((dev_t));
    187      1.10     oster int raidopen __P((dev_t, int, int, struct proc *));
    188      1.10     oster int raidclose __P((dev_t, int, int, struct proc *));
    189      1.10     oster int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    190      1.10     oster int raidwrite __P((dev_t, struct uio *, int));
    191      1.10     oster int raidread __P((dev_t, struct uio *, int));
    192      1.10     oster void raidstrategy __P((struct buf *));
    193      1.10     oster int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    194       1.1     oster 
    195       1.1     oster /*
    196       1.1     oster  * Pilfered from ccd.c
    197       1.1     oster  */
    198       1.1     oster 
    199      1.10     oster struct raidbuf {
    200      1.10     oster 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    201      1.10     oster 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    202      1.10     oster 	int     rf_flags;	/* misc. flags */
    203      1.11     oster 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    204      1.10     oster };
    205       1.1     oster 
    206       1.1     oster 
    207       1.1     oster #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    208       1.1     oster #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    209       1.1     oster 
    210       1.9     oster /* XXX Not sure if the following should be replacing the raidPtrs above,
    211  1.29.2.1    bouyer    or if it should be used in conjunction with that...
    212  1.29.2.1    bouyer */
    213       1.1     oster 
    214      1.10     oster struct raid_softc {
    215      1.10     oster 	int     sc_flags;	/* flags */
    216      1.10     oster 	int     sc_cflags;	/* configuration flags */
    217      1.11     oster 	size_t  sc_size;        /* size of the raid device */
    218      1.10     oster 	char    sc_xname[20];	/* XXX external name */
    219      1.10     oster 	struct disk sc_dkdev;	/* generic disk device info */
    220      1.10     oster 	struct pool sc_cbufpool;	/* component buffer pool */
    221  1.29.2.1    bouyer 	struct buf_queue buf_queue;	/* used for the device queue */
    222      1.10     oster };
    223       1.1     oster /* sc_flags */
    224       1.1     oster #define RAIDF_INITED	0x01	/* unit has been initialized */
    225       1.1     oster #define RAIDF_WLABEL	0x02	/* label area is writable */
    226       1.1     oster #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    227       1.1     oster #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    228       1.1     oster #define RAIDF_LOCKED	0x80	/* unit is locked */
    229       1.1     oster 
    230       1.1     oster #define	raidunit(x)	DISKUNIT(x)
    231  1.29.2.1    bouyer int numraid = 0;
    232       1.1     oster 
    233      1.20     oster /*
    234      1.20     oster  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    235      1.20     oster  * Be aware that large numbers can allow the driver to consume a lot of
    236      1.28     oster  * kernel memory, especially on writes, and in degraded mode reads.
    237      1.28     oster  *
    238      1.28     oster  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    239      1.28     oster  * a single 64K write will typically require 64K for the old data,
    240      1.28     oster  * 64K for the old parity, and 64K for the new parity, for a total
    241      1.28     oster  * of 192K (if the parity buffer is not re-used immediately).
    242      1.28     oster  * Even it if is used immedately, that's still 128K, which when multiplied
    243      1.28     oster  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    244      1.28     oster  *
    245      1.28     oster  * Now in degraded mode, for example, a 64K read on the above setup may
    246      1.28     oster  * require data reconstruction, which will require *all* of the 4 remaining
    247      1.28     oster  * disks to participate -- 4 * 32K/disk == 128K again.
    248      1.20     oster  */
    249      1.20     oster 
    250      1.20     oster #ifndef RAIDOUTSTANDING
    251      1.28     oster #define RAIDOUTSTANDING   6
    252      1.20     oster #endif
    253      1.20     oster 
    254       1.1     oster #define RAIDLABELDEV(dev)	\
    255       1.1     oster 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    256       1.1     oster 
    257       1.1     oster /* declared here, and made public, for the benefit of KVM stuff.. */
    258      1.10     oster struct raid_softc *raid_softc;
    259       1.9     oster 
    260      1.10     oster static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    261      1.10     oster 				     struct disklabel *));
    262      1.10     oster static void raidgetdisklabel __P((dev_t));
    263      1.10     oster static void raidmakedisklabel __P((struct raid_softc *));
    264       1.1     oster 
    265      1.10     oster static int raidlock __P((struct raid_softc *));
    266      1.10     oster static void raidunlock __P((struct raid_softc *));
    267       1.1     oster 
    268      1.12     oster static void rf_markalldirty __P((RF_Raid_t *));
    269  1.29.2.1    bouyer void rf_mountroot_hook __P((struct device *));
    270  1.29.2.1    bouyer 
    271  1.29.2.1    bouyer struct device *raidrootdev;
    272  1.29.2.1    bouyer 
    273  1.29.2.1    bouyer void rf_ReconThread __P((struct rf_recon_req *));
    274  1.29.2.1    bouyer /* XXX what I want is: */
    275  1.29.2.1    bouyer /*void rf_ReconThread __P((RF_Raid_t *raidPtr));  */
    276  1.29.2.1    bouyer void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
    277  1.29.2.1    bouyer void rf_CopybackThread __P((RF_Raid_t *raidPtr));
    278  1.29.2.1    bouyer void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
    279  1.29.2.1    bouyer void rf_buildroothack __P((void *));
    280  1.29.2.1    bouyer 
    281  1.29.2.1    bouyer RF_AutoConfig_t *rf_find_raid_components __P((void));
    282  1.29.2.1    bouyer RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
    283  1.29.2.1    bouyer static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
    284  1.29.2.1    bouyer static int rf_reasonable_label __P((RF_ComponentLabel_t *));
    285  1.29.2.1    bouyer void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
    286  1.29.2.1    bouyer 				  RF_Raid_t *));
    287  1.29.2.1    bouyer int rf_set_autoconfig __P((RF_Raid_t *, int));
    288  1.29.2.1    bouyer int rf_set_rootpartition __P((RF_Raid_t *, int));
    289  1.29.2.1    bouyer void rf_release_all_vps __P((RF_ConfigSet_t *));
    290  1.29.2.1    bouyer void rf_cleanup_config_set __P((RF_ConfigSet_t *));
    291  1.29.2.1    bouyer int rf_have_enough_components __P((RF_ConfigSet_t *));
    292  1.29.2.1    bouyer int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
    293  1.29.2.1    bouyer 
    294  1.29.2.1    bouyer static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    295  1.29.2.1    bouyer 				  allow autoconfig to take place.
    296  1.29.2.1    bouyer 			          Note that this is overridden by having
    297  1.29.2.1    bouyer 			          RAID_AUTOCONFIG as an option in the
    298  1.29.2.1    bouyer 			          kernel config file.  */
    299       1.1     oster 
    300      1.10     oster void
    301      1.10     oster raidattach(num)
    302       1.9     oster 	int     num;
    303       1.1     oster {
    304      1.14     oster 	int raidID;
    305      1.14     oster 	int i, rc;
    306  1.29.2.1    bouyer 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    307  1.29.2.1    bouyer 	RF_ConfigSet_t *config_sets;
    308       1.1     oster 
    309       1.1     oster #ifdef DEBUG
    310       1.9     oster 	printf("raidattach: Asked for %d units\n", num);
    311       1.1     oster #endif
    312       1.1     oster 
    313       1.1     oster 	if (num <= 0) {
    314       1.1     oster #ifdef DIAGNOSTIC
    315       1.1     oster 		panic("raidattach: count <= 0");
    316       1.1     oster #endif
    317       1.1     oster 		return;
    318       1.1     oster 	}
    319       1.9     oster 	/* This is where all the initialization stuff gets done. */
    320       1.1     oster 
    321  1.29.2.1    bouyer 	numraid = num;
    322  1.29.2.1    bouyer 
    323       1.1     oster 	/* Make some space for requested number of units... */
    324       1.1     oster 
    325       1.1     oster 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    326       1.1     oster 	if (raidPtrs == NULL) {
    327       1.1     oster 		panic("raidPtrs is NULL!!\n");
    328       1.1     oster 	}
    329      1.14     oster 
    330      1.14     oster 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    331      1.14     oster 	if (rc) {
    332      1.14     oster 		RF_PANIC();
    333      1.14     oster 	}
    334      1.14     oster 
    335      1.14     oster 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    336      1.14     oster 
    337  1.29.2.1    bouyer 	for (i = 0; i < num; i++)
    338      1.14     oster 		raidPtrs[i] = NULL;
    339      1.14     oster 	rc = rf_BootRaidframe();
    340      1.14     oster 	if (rc == 0)
    341      1.14     oster 		printf("Kernelized RAIDframe activated\n");
    342      1.14     oster 	else
    343       1.1     oster 		panic("Serious error booting RAID!!\n");
    344      1.14     oster 
    345       1.9     oster 	/* put together some datastructures like the CCD device does.. This
    346       1.9     oster 	 * lets us lock the device and what-not when it gets opened. */
    347       1.1     oster 
    348       1.1     oster 	raid_softc = (struct raid_softc *)
    349  1.29.2.1    bouyer 		malloc(num * sizeof(struct raid_softc),
    350  1.29.2.1    bouyer 		       M_RAIDFRAME, M_NOWAIT);
    351       1.1     oster 	if (raid_softc == NULL) {
    352       1.1     oster 		printf("WARNING: no memory for RAIDframe driver\n");
    353       1.1     oster 		return;
    354       1.1     oster 	}
    355  1.29.2.1    bouyer 
    356       1.1     oster 	bzero(raid_softc, num * sizeof(struct raid_softc));
    357  1.29.2.1    bouyer 
    358  1.29.2.1    bouyer 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    359  1.29.2.1    bouyer 					      M_RAIDFRAME, M_NOWAIT);
    360  1.29.2.1    bouyer 	if (raidrootdev == NULL) {
    361  1.29.2.1    bouyer 		panic("No memory for RAIDframe driver!!?!?!\n");
    362  1.29.2.1    bouyer 	}
    363  1.29.2.1    bouyer 
    364       1.9     oster 	for (raidID = 0; raidID < num; raidID++) {
    365  1.29.2.1    bouyer 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    366  1.29.2.1    bouyer 
    367  1.29.2.1    bouyer 		raidrootdev[raidID].dv_class  = DV_DISK;
    368  1.29.2.1    bouyer 		raidrootdev[raidID].dv_cfdata = NULL;
    369  1.29.2.1    bouyer 		raidrootdev[raidID].dv_unit   = raidID;
    370  1.29.2.1    bouyer 		raidrootdev[raidID].dv_parent = NULL;
    371  1.29.2.1    bouyer 		raidrootdev[raidID].dv_flags  = 0;
    372  1.29.2.1    bouyer 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    373  1.29.2.1    bouyer 
    374       1.9     oster 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    375      1.11     oster 			  (RF_Raid_t *));
    376       1.9     oster 		if (raidPtrs[raidID] == NULL) {
    377  1.29.2.1    bouyer 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    378  1.29.2.1    bouyer 			numraid = raidID;
    379  1.29.2.1    bouyer 			return;
    380  1.29.2.1    bouyer 		}
    381  1.29.2.1    bouyer 	}
    382  1.29.2.1    bouyer 
    383  1.29.2.1    bouyer #if RAID_AUTOCONFIG
    384  1.29.2.1    bouyer 	raidautoconfig = 1;
    385  1.29.2.1    bouyer #endif
    386  1.29.2.1    bouyer 
    387  1.29.2.1    bouyer if (raidautoconfig) {
    388  1.29.2.1    bouyer 	/* 1. locate all RAID components on the system */
    389  1.29.2.1    bouyer 
    390  1.29.2.1    bouyer #if DEBUG
    391  1.29.2.1    bouyer 	printf("Searching for raid components...\n");
    392  1.29.2.1    bouyer #endif
    393  1.29.2.1    bouyer 	ac_list = rf_find_raid_components();
    394  1.29.2.1    bouyer 
    395  1.29.2.1    bouyer 	/* 2. sort them into their respective sets */
    396  1.29.2.1    bouyer 
    397  1.29.2.1    bouyer 	config_sets = rf_create_auto_sets(ac_list);
    398  1.29.2.1    bouyer 
    399  1.29.2.1    bouyer 	/* 3. evaluate each set and configure the valid ones
    400  1.29.2.1    bouyer 	   This gets done in rf_buildroothack() */
    401  1.29.2.1    bouyer 
    402  1.29.2.1    bouyer 	/* schedule the creation of the thread to do the
    403  1.29.2.1    bouyer 	   "/ on RAID" stuff */
    404  1.29.2.1    bouyer 
    405  1.29.2.1    bouyer 	kthread_create(rf_buildroothack,config_sets);
    406  1.29.2.1    bouyer 
    407  1.29.2.1    bouyer #if 0
    408  1.29.2.1    bouyer 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    409  1.29.2.1    bouyer #endif
    410  1.29.2.1    bouyer }
    411  1.29.2.1    bouyer 
    412  1.29.2.1    bouyer }
    413  1.29.2.1    bouyer 
    414  1.29.2.1    bouyer void
    415  1.29.2.1    bouyer rf_buildroothack(arg)
    416  1.29.2.1    bouyer 	void *arg;
    417  1.29.2.1    bouyer {
    418  1.29.2.1    bouyer 	RF_ConfigSet_t *config_sets = arg;
    419  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
    420  1.29.2.1    bouyer 	RF_ConfigSet_t *next_cset;
    421  1.29.2.1    bouyer 	int retcode;
    422  1.29.2.1    bouyer 	int raidID;
    423  1.29.2.1    bouyer 	int rootID;
    424  1.29.2.1    bouyer 	int num_root;
    425  1.29.2.1    bouyer 
    426  1.29.2.1    bouyer 	num_root = 0;
    427  1.29.2.1    bouyer 	cset = config_sets;
    428  1.29.2.1    bouyer 	while(cset != NULL ) {
    429  1.29.2.1    bouyer 		next_cset = cset->next;
    430  1.29.2.1    bouyer 		if (rf_have_enough_components(cset) &&
    431  1.29.2.1    bouyer 		    cset->ac->clabel->autoconfigure==1) {
    432  1.29.2.1    bouyer 			retcode = rf_auto_config_set(cset,&raidID);
    433  1.29.2.1    bouyer 			if (!retcode) {
    434  1.29.2.1    bouyer 				if (cset->rootable) {
    435  1.29.2.1    bouyer 					rootID = raidID;
    436  1.29.2.1    bouyer 					num_root++;
    437  1.29.2.1    bouyer 				}
    438  1.29.2.1    bouyer 			} else {
    439  1.29.2.1    bouyer 				/* The autoconfig didn't work :( */
    440  1.29.2.1    bouyer #if DEBUG
    441  1.29.2.1    bouyer 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442  1.29.2.1    bouyer #endif
    443  1.29.2.1    bouyer 				rf_release_all_vps(cset);
    444  1.29.2.1    bouyer 			}
    445  1.29.2.1    bouyer 		} else {
    446  1.29.2.1    bouyer 			/* we're not autoconfiguring this set...
    447  1.29.2.1    bouyer 			   release the associated resources */
    448  1.29.2.1    bouyer 			rf_release_all_vps(cset);
    449  1.29.2.1    bouyer 		}
    450  1.29.2.1    bouyer 		/* cleanup */
    451  1.29.2.1    bouyer 		rf_cleanup_config_set(cset);
    452  1.29.2.1    bouyer 		cset = next_cset;
    453  1.29.2.1    bouyer 	}
    454  1.29.2.1    bouyer 	if (boothowto & RB_ASKNAME) {
    455  1.29.2.1    bouyer 		/* We don't auto-config... */
    456  1.29.2.1    bouyer 	} else {
    457  1.29.2.1    bouyer 		/* They didn't ask, and we found something bootable... */
    458  1.29.2.1    bouyer 
    459  1.29.2.1    bouyer 		if (num_root == 1) {
    460  1.29.2.1    bouyer 			booted_device = &raidrootdev[rootID];
    461  1.29.2.1    bouyer 		} else if (num_root > 1) {
    462  1.29.2.1    bouyer 			/* we can't guess.. require the user to answer... */
    463  1.29.2.1    bouyer 			boothowto |= RB_ASKNAME;
    464       1.1     oster 		}
    465       1.1     oster 	}
    466       1.1     oster }
    467       1.1     oster 
    468       1.1     oster 
    469       1.1     oster int
    470       1.1     oster raidsize(dev)
    471       1.9     oster 	dev_t   dev;
    472       1.1     oster {
    473       1.1     oster 	struct raid_softc *rs;
    474       1.1     oster 	struct disklabel *lp;
    475       1.9     oster 	int     part, unit, omask, size;
    476       1.1     oster 
    477       1.1     oster 	unit = raidunit(dev);
    478       1.1     oster 	if (unit >= numraid)
    479       1.1     oster 		return (-1);
    480       1.1     oster 	rs = &raid_softc[unit];
    481       1.1     oster 
    482       1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483       1.1     oster 		return (-1);
    484       1.1     oster 
    485       1.1     oster 	part = DISKPART(dev);
    486       1.1     oster 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487       1.1     oster 	lp = rs->sc_dkdev.dk_label;
    488       1.1     oster 
    489       1.1     oster 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490       1.1     oster 		return (-1);
    491       1.1     oster 
    492       1.1     oster 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493       1.1     oster 		size = -1;
    494       1.1     oster 	else
    495       1.1     oster 		size = lp->d_partitions[part].p_size *
    496       1.1     oster 		    (lp->d_secsize / DEV_BSIZE);
    497       1.1     oster 
    498       1.1     oster 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499       1.1     oster 		return (-1);
    500       1.1     oster 
    501       1.1     oster 	return (size);
    502       1.1     oster 
    503       1.1     oster }
    504       1.1     oster 
    505       1.1     oster int
    506       1.1     oster raiddump(dev, blkno, va, size)
    507       1.9     oster 	dev_t   dev;
    508       1.1     oster 	daddr_t blkno;
    509       1.1     oster 	caddr_t va;
    510       1.9     oster 	size_t  size;
    511       1.1     oster {
    512       1.1     oster 	/* Not implemented. */
    513       1.1     oster 	return ENXIO;
    514       1.1     oster }
    515       1.1     oster /* ARGSUSED */
    516       1.1     oster int
    517       1.1     oster raidopen(dev, flags, fmt, p)
    518       1.9     oster 	dev_t   dev;
    519       1.9     oster 	int     flags, fmt;
    520       1.1     oster 	struct proc *p;
    521       1.1     oster {
    522       1.9     oster 	int     unit = raidunit(dev);
    523       1.1     oster 	struct raid_softc *rs;
    524       1.1     oster 	struct disklabel *lp;
    525       1.9     oster 	int     part, pmask;
    526       1.9     oster 	int     error = 0;
    527       1.9     oster 
    528       1.1     oster 	if (unit >= numraid)
    529       1.1     oster 		return (ENXIO);
    530       1.1     oster 	rs = &raid_softc[unit];
    531       1.1     oster 
    532       1.1     oster 	if ((error = raidlock(rs)) != 0)
    533       1.9     oster 		return (error);
    534       1.1     oster 	lp = rs->sc_dkdev.dk_label;
    535       1.1     oster 
    536       1.1     oster 	part = DISKPART(dev);
    537       1.1     oster 	pmask = (1 << part);
    538       1.1     oster 
    539       1.1     oster 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540      1.14     oster 		unit, part));
    541       1.1     oster 
    542       1.1     oster 
    543       1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) &&
    544       1.1     oster 	    (rs->sc_dkdev.dk_openmask == 0))
    545       1.9     oster 		raidgetdisklabel(dev);
    546       1.1     oster 
    547       1.1     oster 	/* make sure that this partition exists */
    548       1.1     oster 
    549       1.1     oster 	if (part != RAW_PART) {
    550       1.1     oster 		db1_printf(("Not a raw partition..\n"));
    551       1.1     oster 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552       1.1     oster 		    ((part >= lp->d_npartitions) ||
    553       1.9     oster 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554       1.1     oster 			error = ENXIO;
    555       1.1     oster 			raidunlock(rs);
    556       1.1     oster 			db1_printf(("Bailing out...\n"));
    557       1.9     oster 			return (error);
    558       1.1     oster 		}
    559       1.1     oster 	}
    560       1.1     oster 	/* Prevent this unit from being unconfigured while open. */
    561       1.1     oster 	switch (fmt) {
    562       1.1     oster 	case S_IFCHR:
    563       1.1     oster 		rs->sc_dkdev.dk_copenmask |= pmask;
    564       1.1     oster 		break;
    565       1.1     oster 
    566       1.1     oster 	case S_IFBLK:
    567       1.1     oster 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568       1.1     oster 		break;
    569       1.1     oster 	}
    570      1.13     oster 
    571      1.13     oster 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572      1.13     oster 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573      1.13     oster 		/* First one... mark things as dirty... Note that we *MUST*
    574      1.13     oster 		 have done a configure before this.  I DO NOT WANT TO BE
    575      1.13     oster 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576      1.13     oster 		 THAT THEY BELONG TOGETHER!!!!! */
    577      1.13     oster 		/* XXX should check to see if we're only open for reading
    578      1.13     oster 		   here... If so, we needn't do this, but then need some
    579      1.13     oster 		   other way of keeping track of what's happened.. */
    580      1.13     oster 
    581      1.13     oster 		rf_markalldirty( raidPtrs[unit] );
    582      1.13     oster 	}
    583      1.13     oster 
    584      1.13     oster 
    585       1.1     oster 	rs->sc_dkdev.dk_openmask =
    586       1.1     oster 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587       1.1     oster 
    588       1.1     oster 	raidunlock(rs);
    589       1.1     oster 
    590       1.9     oster 	return (error);
    591       1.1     oster 
    592       1.1     oster 
    593       1.1     oster }
    594       1.1     oster /* ARGSUSED */
    595       1.1     oster int
    596       1.1     oster raidclose(dev, flags, fmt, p)
    597       1.9     oster 	dev_t   dev;
    598       1.9     oster 	int     flags, fmt;
    599       1.1     oster 	struct proc *p;
    600       1.1     oster {
    601       1.9     oster 	int     unit = raidunit(dev);
    602       1.1     oster 	struct raid_softc *rs;
    603       1.9     oster 	int     error = 0;
    604       1.9     oster 	int     part;
    605       1.1     oster 
    606       1.1     oster 	if (unit >= numraid)
    607       1.1     oster 		return (ENXIO);
    608       1.1     oster 	rs = &raid_softc[unit];
    609       1.1     oster 
    610       1.1     oster 	if ((error = raidlock(rs)) != 0)
    611       1.1     oster 		return (error);
    612       1.1     oster 
    613       1.1     oster 	part = DISKPART(dev);
    614       1.1     oster 
    615       1.1     oster 	/* ...that much closer to allowing unconfiguration... */
    616       1.1     oster 	switch (fmt) {
    617       1.1     oster 	case S_IFCHR:
    618       1.1     oster 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619       1.1     oster 		break;
    620       1.1     oster 
    621       1.1     oster 	case S_IFBLK:
    622       1.1     oster 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623       1.1     oster 		break;
    624       1.1     oster 	}
    625       1.1     oster 	rs->sc_dkdev.dk_openmask =
    626       1.1     oster 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627      1.13     oster 
    628      1.13     oster 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629      1.13     oster 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630      1.13     oster 		/* Last one... device is not unconfigured yet.
    631      1.13     oster 		   Device shutdown has taken care of setting the
    632      1.13     oster 		   clean bits if RAIDF_INITED is not set
    633      1.13     oster 		   mark things as clean... */
    634  1.29.2.1    bouyer #if 0
    635  1.29.2.1    bouyer 		printf("Last one on raid%d.  Updating status.\n",unit);
    636  1.29.2.1    bouyer #endif
    637  1.29.2.1    bouyer 		rf_update_component_labels(raidPtrs[unit],
    638  1.29.2.1    bouyer 						 RF_FINAL_COMPONENT_UPDATE);
    639      1.13     oster 	}
    640       1.1     oster 
    641       1.1     oster 	raidunlock(rs);
    642       1.1     oster 	return (0);
    643       1.1     oster 
    644       1.1     oster }
    645       1.1     oster 
    646       1.1     oster void
    647       1.1     oster raidstrategy(bp)
    648  1.29.2.1    bouyer 	struct buf *bp;
    649       1.1     oster {
    650  1.29.2.1    bouyer 	int s;
    651       1.1     oster 
    652       1.1     oster 	unsigned int raidID = raidunit(bp->b_dev);
    653       1.1     oster 	RF_Raid_t *raidPtr;
    654       1.1     oster 	struct raid_softc *rs = &raid_softc[raidID];
    655       1.1     oster 	struct disklabel *lp;
    656       1.9     oster 	int     wlabel;
    657       1.1     oster 
    658  1.29.2.1    bouyer 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    659  1.29.2.1    bouyer 		bp->b_error = ENXIO;
    660  1.29.2.1    bouyer 		bp->b_flags = B_ERROR;
    661  1.29.2.1    bouyer 		bp->b_resid = bp->b_bcount;
    662  1.29.2.1    bouyer 		biodone(bp);
    663       1.1     oster 		return;
    664  1.29.2.1    bouyer 	}
    665       1.1     oster 	if (raidID >= numraid || !raidPtrs[raidID]) {
    666       1.1     oster 		bp->b_error = ENODEV;
    667       1.1     oster 		bp->b_flags |= B_ERROR;
    668       1.1     oster 		bp->b_resid = bp->b_bcount;
    669       1.1     oster 		biodone(bp);
    670       1.1     oster 		return;
    671       1.1     oster 	}
    672       1.1     oster 	raidPtr = raidPtrs[raidID];
    673       1.1     oster 	if (!raidPtr->valid) {
    674       1.1     oster 		bp->b_error = ENODEV;
    675       1.1     oster 		bp->b_flags |= B_ERROR;
    676       1.1     oster 		bp->b_resid = bp->b_bcount;
    677       1.1     oster 		biodone(bp);
    678       1.1     oster 		return;
    679       1.1     oster 	}
    680       1.1     oster 	if (bp->b_bcount == 0) {
    681       1.1     oster 		db1_printf(("b_bcount is zero..\n"));
    682       1.1     oster 		biodone(bp);
    683       1.1     oster 		return;
    684       1.1     oster 	}
    685       1.1     oster 	lp = rs->sc_dkdev.dk_label;
    686       1.1     oster 
    687       1.1     oster 	/*
    688       1.1     oster 	 * Do bounds checking and adjust transfer.  If there's an
    689       1.1     oster 	 * error, the bounds check will flag that for us.
    690       1.1     oster 	 */
    691       1.1     oster 
    692       1.9     oster 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    693       1.1     oster 	if (DISKPART(bp->b_dev) != RAW_PART)
    694       1.1     oster 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    695       1.1     oster 			db1_printf(("Bounds check failed!!:%d %d\n",
    696       1.9     oster 				(int) bp->b_blkno, (int) wlabel));
    697       1.1     oster 			biodone(bp);
    698       1.1     oster 			return;
    699       1.1     oster 		}
    700  1.29.2.1    bouyer 	s = splbio();
    701       1.1     oster 
    702       1.1     oster 	bp->b_resid = 0;
    703  1.29.2.1    bouyer 
    704  1.29.2.1    bouyer 	/* stuff it onto our queue */
    705  1.29.2.1    bouyer 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    706  1.29.2.1    bouyer 
    707  1.29.2.1    bouyer 	raidstart(raidPtrs[raidID]);
    708  1.29.2.1    bouyer 
    709       1.1     oster 	splx(s);
    710       1.1     oster }
    711       1.1     oster /* ARGSUSED */
    712       1.1     oster int
    713       1.1     oster raidread(dev, uio, flags)
    714       1.9     oster 	dev_t   dev;
    715       1.1     oster 	struct uio *uio;
    716       1.9     oster 	int     flags;
    717       1.1     oster {
    718       1.9     oster 	int     unit = raidunit(dev);
    719       1.1     oster 	struct raid_softc *rs;
    720       1.9     oster 	int     part;
    721       1.1     oster 
    722       1.1     oster 	if (unit >= numraid)
    723       1.1     oster 		return (ENXIO);
    724       1.1     oster 	rs = &raid_softc[unit];
    725       1.1     oster 
    726       1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    727       1.1     oster 		return (ENXIO);
    728       1.1     oster 	part = DISKPART(dev);
    729       1.1     oster 
    730       1.9     oster 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    731       1.1     oster 
    732       1.1     oster 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    733       1.1     oster 
    734       1.1     oster }
    735       1.1     oster /* ARGSUSED */
    736       1.1     oster int
    737       1.1     oster raidwrite(dev, uio, flags)
    738       1.9     oster 	dev_t   dev;
    739       1.1     oster 	struct uio *uio;
    740       1.9     oster 	int     flags;
    741       1.1     oster {
    742       1.9     oster 	int     unit = raidunit(dev);
    743       1.1     oster 	struct raid_softc *rs;
    744       1.1     oster 
    745       1.1     oster 	if (unit >= numraid)
    746       1.1     oster 		return (ENXIO);
    747       1.1     oster 	rs = &raid_softc[unit];
    748       1.1     oster 
    749       1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    750       1.1     oster 		return (ENXIO);
    751       1.1     oster 	db1_printf(("raidwrite\n"));
    752       1.1     oster 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    753       1.1     oster 
    754       1.1     oster }
    755       1.1     oster 
    756       1.1     oster int
    757       1.1     oster raidioctl(dev, cmd, data, flag, p)
    758       1.9     oster 	dev_t   dev;
    759       1.9     oster 	u_long  cmd;
    760       1.1     oster 	caddr_t data;
    761       1.9     oster 	int     flag;
    762       1.1     oster 	struct proc *p;
    763       1.1     oster {
    764       1.9     oster 	int     unit = raidunit(dev);
    765       1.9     oster 	int     error = 0;
    766       1.9     oster 	int     part, pmask;
    767       1.1     oster 	struct raid_softc *rs;
    768       1.1     oster 	RF_Config_t *k_cfg, *u_cfg;
    769  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
    770  1.29.2.1    bouyer 	RF_RaidDisk_t *diskPtr;
    771  1.29.2.1    bouyer 	RF_AccTotals_t *totals;
    772  1.29.2.1    bouyer 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    773       1.1     oster 	u_char *specific_buf;
    774      1.11     oster 	int retcode = 0;
    775      1.11     oster 	int row;
    776      1.11     oster 	int column;
    777       1.1     oster 	struct rf_recon_req *rrcopy, *rr;
    778  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
    779      1.11     oster 	RF_ComponentLabel_t ci_label;
    780  1.29.2.1    bouyer 	RF_ComponentLabel_t **clabel_ptr;
    781      1.12     oster 	RF_SingleComponent_t *sparePtr,*componentPtr;
    782      1.12     oster 	RF_SingleComponent_t hot_spare;
    783      1.12     oster 	RF_SingleComponent_t component;
    784  1.29.2.1    bouyer 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    785  1.29.2.1    bouyer 	int i, j, d;
    786       1.1     oster 
    787       1.1     oster 	if (unit >= numraid)
    788       1.1     oster 		return (ENXIO);
    789       1.1     oster 	rs = &raid_softc[unit];
    790  1.29.2.1    bouyer 	raidPtr = raidPtrs[unit];
    791       1.1     oster 
    792       1.9     oster 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    793       1.9     oster 		(int) DISKPART(dev), (int) unit, (int) cmd));
    794       1.1     oster 
    795       1.1     oster 	/* Must be open for writes for these commands... */
    796       1.1     oster 	switch (cmd) {
    797       1.1     oster 	case DIOCSDINFO:
    798       1.1     oster 	case DIOCWDINFO:
    799       1.1     oster 	case DIOCWLABEL:
    800       1.1     oster 		if ((flag & FWRITE) == 0)
    801       1.1     oster 			return (EBADF);
    802       1.1     oster 	}
    803       1.1     oster 
    804       1.1     oster 	/* Must be initialized for these... */
    805       1.1     oster 	switch (cmd) {
    806       1.1     oster 	case DIOCGDINFO:
    807       1.1     oster 	case DIOCSDINFO:
    808       1.1     oster 	case DIOCWDINFO:
    809       1.1     oster 	case DIOCGPART:
    810       1.1     oster 	case DIOCWLABEL:
    811       1.1     oster 	case DIOCGDEFLABEL:
    812       1.1     oster 	case RAIDFRAME_SHUTDOWN:
    813       1.1     oster 	case RAIDFRAME_REWRITEPARITY:
    814       1.1     oster 	case RAIDFRAME_GET_INFO:
    815       1.1     oster 	case RAIDFRAME_RESET_ACCTOTALS:
    816       1.1     oster 	case RAIDFRAME_GET_ACCTOTALS:
    817       1.1     oster 	case RAIDFRAME_KEEP_ACCTOTALS:
    818       1.1     oster 	case RAIDFRAME_GET_SIZE:
    819       1.1     oster 	case RAIDFRAME_FAIL_DISK:
    820       1.1     oster 	case RAIDFRAME_COPYBACK:
    821  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_RECON_STATUS:
    822  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    823      1.11     oster 	case RAIDFRAME_GET_COMPONENT_LABEL:
    824      1.11     oster 	case RAIDFRAME_SET_COMPONENT_LABEL:
    825      1.11     oster 	case RAIDFRAME_ADD_HOT_SPARE:
    826      1.11     oster 	case RAIDFRAME_REMOVE_HOT_SPARE:
    827      1.11     oster 	case RAIDFRAME_INIT_LABELS:
    828      1.12     oster 	case RAIDFRAME_REBUILD_IN_PLACE:
    829      1.23     oster 	case RAIDFRAME_CHECK_PARITY:
    830  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    831  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    832  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    833  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    834  1.29.2.1    bouyer 	case RAIDFRAME_SET_AUTOCONFIG:
    835  1.29.2.1    bouyer 	case RAIDFRAME_SET_ROOT:
    836  1.29.2.1    bouyer 	case RAIDFRAME_DELETE_COMPONENT:
    837  1.29.2.1    bouyer 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    838       1.1     oster 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    839       1.1     oster 			return (ENXIO);
    840       1.1     oster 	}
    841       1.9     oster 
    842       1.1     oster 	switch (cmd) {
    843       1.1     oster 
    844       1.1     oster 		/* configure the system */
    845       1.1     oster 	case RAIDFRAME_CONFIGURE:
    846       1.1     oster 
    847  1.29.2.1    bouyer 		if (raidPtr->valid) {
    848  1.29.2.1    bouyer 			/* There is a valid RAID set running on this unit! */
    849  1.29.2.1    bouyer 			printf("raid%d: Device already configured!\n",unit);
    850  1.29.2.1    bouyer 			return(EINVAL);
    851  1.29.2.1    bouyer 		}
    852  1.29.2.1    bouyer 
    853       1.1     oster 		/* copy-in the configuration information */
    854       1.1     oster 		/* data points to a pointer to the configuration structure */
    855  1.29.2.1    bouyer 
    856       1.9     oster 		u_cfg = *((RF_Config_t **) data);
    857       1.9     oster 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    858       1.1     oster 		if (k_cfg == NULL) {
    859       1.9     oster 			return (ENOMEM);
    860       1.1     oster 		}
    861       1.9     oster 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    862       1.9     oster 		    sizeof(RF_Config_t));
    863       1.1     oster 		if (retcode) {
    864  1.29.2.1    bouyer 			RF_Free(k_cfg, sizeof(RF_Config_t));
    865  1.29.2.1    bouyer 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    866       1.9     oster 				retcode));
    867       1.9     oster 			return (retcode);
    868       1.1     oster 		}
    869       1.9     oster 		/* allocate a buffer for the layout-specific data, and copy it
    870       1.9     oster 		 * in */
    871       1.1     oster 		if (k_cfg->layoutSpecificSize) {
    872       1.9     oster 			if (k_cfg->layoutSpecificSize > 10000) {
    873       1.1     oster 				/* sanity check */
    874  1.29.2.1    bouyer 				RF_Free(k_cfg, sizeof(RF_Config_t));
    875       1.9     oster 				return (EINVAL);
    876       1.1     oster 			}
    877       1.9     oster 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    878       1.9     oster 			    (u_char *));
    879       1.1     oster 			if (specific_buf == NULL) {
    880       1.9     oster 				RF_Free(k_cfg, sizeof(RF_Config_t));
    881       1.9     oster 				return (ENOMEM);
    882       1.1     oster 			}
    883       1.9     oster 			retcode = copyin(k_cfg->layoutSpecific,
    884       1.9     oster 			    (caddr_t) specific_buf,
    885       1.9     oster 			    k_cfg->layoutSpecificSize);
    886       1.1     oster 			if (retcode) {
    887  1.29.2.1    bouyer 				RF_Free(k_cfg, sizeof(RF_Config_t));
    888  1.29.2.1    bouyer 				RF_Free(specific_buf,
    889  1.29.2.1    bouyer 					k_cfg->layoutSpecificSize);
    890  1.29.2.1    bouyer 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    891       1.9     oster 					retcode));
    892       1.9     oster 				return (retcode);
    893       1.1     oster 			}
    894       1.9     oster 		} else
    895       1.9     oster 			specific_buf = NULL;
    896       1.1     oster 		k_cfg->layoutSpecific = specific_buf;
    897       1.9     oster 
    898       1.9     oster 		/* should do some kind of sanity check on the configuration.
    899       1.9     oster 		 * Store the sum of all the bytes in the last byte? */
    900       1.1     oster 
    901       1.1     oster 		/* configure the system */
    902       1.1     oster 
    903  1.29.2.1    bouyer 		/*
    904  1.29.2.1    bouyer 		 * Clear the entire RAID descriptor, just to make sure
    905  1.29.2.1    bouyer 		 *  there is no stale data left in the case of a
    906  1.29.2.1    bouyer 		 *  reconfiguration
    907  1.29.2.1    bouyer 		 */
    908  1.29.2.1    bouyer 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    909  1.29.2.1    bouyer 		raidPtr->raidid = unit;
    910       1.1     oster 
    911  1.29.2.1    bouyer 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    912       1.9     oster 
    913       1.1     oster 		if (retcode == 0) {
    914  1.29.2.1    bouyer 
    915  1.29.2.1    bouyer 			/* allow this many simultaneous IO's to
    916  1.29.2.1    bouyer 			   this RAID device */
    917  1.29.2.1    bouyer 			raidPtr->openings = RAIDOUTSTANDING;
    918  1.29.2.1    bouyer 
    919  1.29.2.1    bouyer 			raidinit(raidPtr);
    920  1.29.2.1    bouyer 			rf_markalldirty(raidPtr);
    921       1.9     oster 		}
    922       1.1     oster 		/* free the buffers.  No return code here. */
    923       1.1     oster 		if (k_cfg->layoutSpecificSize) {
    924       1.9     oster 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    925       1.1     oster 		}
    926       1.9     oster 		RF_Free(k_cfg, sizeof(RF_Config_t));
    927       1.9     oster 
    928       1.9     oster 		return (retcode);
    929       1.9     oster 
    930       1.9     oster 		/* shutdown the system */
    931       1.1     oster 	case RAIDFRAME_SHUTDOWN:
    932       1.9     oster 
    933       1.9     oster 		if ((error = raidlock(rs)) != 0)
    934       1.9     oster 			return (error);
    935       1.1     oster 
    936       1.1     oster 		/*
    937       1.1     oster 		 * If somebody has a partition mounted, we shouldn't
    938       1.1     oster 		 * shutdown.
    939       1.1     oster 		 */
    940       1.1     oster 
    941       1.1     oster 		part = DISKPART(dev);
    942       1.1     oster 		pmask = (1 << part);
    943       1.9     oster 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    944       1.9     oster 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    945       1.9     oster 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    946       1.9     oster 			raidunlock(rs);
    947       1.9     oster 			return (EBUSY);
    948       1.9     oster 		}
    949      1.11     oster 
    950  1.29.2.1    bouyer 		retcode = rf_Shutdown(raidPtr);
    951       1.1     oster 
    952       1.1     oster 		pool_destroy(&rs->sc_cbufpool);
    953       1.1     oster 
    954       1.1     oster 		/* It's no longer initialized... */
    955       1.1     oster 		rs->sc_flags &= ~RAIDF_INITED;
    956      1.16     oster 
    957       1.9     oster 		/* Detach the disk. */
    958       1.9     oster 		disk_detach(&rs->sc_dkdev);
    959       1.1     oster 
    960       1.1     oster 		raidunlock(rs);
    961       1.1     oster 
    962       1.9     oster 		return (retcode);
    963      1.11     oster 	case RAIDFRAME_GET_COMPONENT_LABEL:
    964  1.29.2.1    bouyer 		clabel_ptr = (RF_ComponentLabel_t **) data;
    965      1.11     oster 		/* need to read the component label for the disk indicated
    966  1.29.2.1    bouyer 		   by row,column in clabel */
    967      1.11     oster 
    968      1.11     oster 		/* For practice, let's get it directly fromdisk, rather
    969      1.11     oster 		   than from the in-core copy */
    970  1.29.2.1    bouyer 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    971      1.11     oster 			   (RF_ComponentLabel_t *));
    972  1.29.2.1    bouyer 		if (clabel == NULL)
    973      1.11     oster 			return (ENOMEM);
    974      1.11     oster 
    975  1.29.2.1    bouyer 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    976      1.11     oster 
    977  1.29.2.1    bouyer 		retcode = copyin( *clabel_ptr, clabel,
    978      1.11     oster 				  sizeof(RF_ComponentLabel_t));
    979      1.11     oster 
    980      1.11     oster 		if (retcode) {
    981  1.29.2.1    bouyer 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    982      1.11     oster 			return(retcode);
    983      1.11     oster 		}
    984      1.11     oster 
    985  1.29.2.1    bouyer 		row = clabel->row;
    986  1.29.2.1    bouyer 		column = clabel->column;
    987      1.26     oster 
    988  1.29.2.1    bouyer 		if ((row < 0) || (row >= raidPtr->numRow) ||
    989  1.29.2.1    bouyer 		    (column < 0) || (column >= raidPtr->numCol +
    990  1.29.2.1    bouyer 				     raidPtr->numSpare)) {
    991  1.29.2.1    bouyer 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    992      1.26     oster 			return(EINVAL);
    993      1.11     oster 		}
    994      1.11     oster 
    995  1.29.2.1    bouyer 		raidread_component_label(raidPtr->Disks[row][column].dev,
    996  1.29.2.1    bouyer 				raidPtr->raid_cinfo[row][column].ci_vp,
    997  1.29.2.1    bouyer 				clabel );
    998      1.11     oster 
    999  1.29.2.1    bouyer 		retcode = copyout((caddr_t) clabel,
   1000  1.29.2.1    bouyer 				  (caddr_t) *clabel_ptr,
   1001      1.11     oster 				  sizeof(RF_ComponentLabel_t));
   1002  1.29.2.1    bouyer 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1003      1.11     oster 		return (retcode);
   1004      1.11     oster 
   1005      1.11     oster 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1006  1.29.2.1    bouyer 		clabel = (RF_ComponentLabel_t *) data;
   1007      1.11     oster 
   1008      1.11     oster 		/* XXX check the label for valid stuff... */
   1009      1.11     oster 		/* Note that some things *should not* get modified --
   1010      1.11     oster 		   the user should be re-initing the labels instead of
   1011      1.11     oster 		   trying to patch things.
   1012      1.11     oster 		   */
   1013      1.11     oster 
   1014      1.11     oster 		printf("Got component label:\n");
   1015  1.29.2.1    bouyer 		printf("Version: %d\n",clabel->version);
   1016  1.29.2.1    bouyer 		printf("Serial Number: %d\n",clabel->serial_number);
   1017  1.29.2.1    bouyer 		printf("Mod counter: %d\n",clabel->mod_counter);
   1018  1.29.2.1    bouyer 		printf("Row: %d\n", clabel->row);
   1019  1.29.2.1    bouyer 		printf("Column: %d\n", clabel->column);
   1020  1.29.2.1    bouyer 		printf("Num Rows: %d\n", clabel->num_rows);
   1021  1.29.2.1    bouyer 		printf("Num Columns: %d\n", clabel->num_columns);
   1022  1.29.2.1    bouyer 		printf("Clean: %d\n", clabel->clean);
   1023  1.29.2.1    bouyer 		printf("Status: %d\n", clabel->status);
   1024      1.11     oster 
   1025  1.29.2.1    bouyer 		row = clabel->row;
   1026  1.29.2.1    bouyer 		column = clabel->column;
   1027      1.12     oster 
   1028  1.29.2.1    bouyer 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1029  1.29.2.1    bouyer 		    (column < 0) || (column >= raidPtr->numCol)) {
   1030      1.12     oster 			return(EINVAL);
   1031      1.11     oster 		}
   1032      1.12     oster 
   1033      1.12     oster 		/* XXX this isn't allowed to do anything for now :-) */
   1034  1.29.2.1    bouyer 
   1035  1.29.2.1    bouyer 		/* XXX and before it is, we need to fill in the rest
   1036  1.29.2.1    bouyer 		   of the fields!?!?!?! */
   1037      1.12     oster #if 0
   1038      1.11     oster 		raidwrite_component_label(
   1039  1.29.2.1    bouyer                             raidPtr->Disks[row][column].dev,
   1040  1.29.2.1    bouyer 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1041  1.29.2.1    bouyer 			    clabel );
   1042      1.12     oster #endif
   1043      1.12     oster 		return (0);
   1044      1.11     oster 
   1045      1.11     oster 	case RAIDFRAME_INIT_LABELS:
   1046  1.29.2.1    bouyer 		clabel = (RF_ComponentLabel_t *) data;
   1047      1.11     oster 		/*
   1048      1.11     oster 		   we only want the serial number from
   1049      1.11     oster 		   the above.  We get all the rest of the information
   1050      1.11     oster 		   from the config that was used to create this RAID
   1051      1.11     oster 		   set.
   1052      1.11     oster 		   */
   1053      1.12     oster 
   1054  1.29.2.1    bouyer 		raidPtr->serial_number = clabel->serial_number;
   1055  1.29.2.1    bouyer 
   1056  1.29.2.1    bouyer 		raid_init_component_label(raidPtr, &ci_label);
   1057  1.29.2.1    bouyer 		ci_label.serial_number = clabel->serial_number;
   1058      1.11     oster 
   1059  1.29.2.1    bouyer 		for(row=0;row<raidPtr->numRow;row++) {
   1060      1.11     oster 			ci_label.row = row;
   1061  1.29.2.1    bouyer 			for(column=0;column<raidPtr->numCol;column++) {
   1062  1.29.2.1    bouyer 				diskPtr = &raidPtr->Disks[row][column];
   1063  1.29.2.1    bouyer 				if (!RF_DEAD_DISK(diskPtr->status)) {
   1064  1.29.2.1    bouyer 					ci_label.partitionSize = diskPtr->partitionSize;
   1065  1.29.2.1    bouyer 					ci_label.column = column;
   1066  1.29.2.1    bouyer 					raidwrite_component_label(
   1067  1.29.2.1    bouyer 					  raidPtr->Disks[row][column].dev,
   1068  1.29.2.1    bouyer 					  raidPtr->raid_cinfo[row][column].ci_vp,
   1069  1.29.2.1    bouyer 					  &ci_label );
   1070  1.29.2.1    bouyer 				}
   1071      1.11     oster 			}
   1072      1.11     oster 		}
   1073      1.11     oster 
   1074      1.11     oster 		return (retcode);
   1075  1.29.2.1    bouyer 	case RAIDFRAME_SET_AUTOCONFIG:
   1076  1.29.2.1    bouyer 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1077  1.29.2.1    bouyer 		printf("New autoconfig value is: %d\n", d);
   1078  1.29.2.1    bouyer 		*(int *) data = d;
   1079  1.29.2.1    bouyer 		return (retcode);
   1080  1.29.2.1    bouyer 
   1081  1.29.2.1    bouyer 	case RAIDFRAME_SET_ROOT:
   1082  1.29.2.1    bouyer 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1083  1.29.2.1    bouyer 		printf("New rootpartition value is: %d\n", d);
   1084  1.29.2.1    bouyer 		*(int *) data = d;
   1085  1.29.2.1    bouyer 		return (retcode);
   1086       1.9     oster 
   1087       1.1     oster 		/* initialize all parity */
   1088       1.1     oster 	case RAIDFRAME_REWRITEPARITY:
   1089       1.1     oster 
   1090  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1091      1.17     oster 			/* Parity for RAID 0 is trivially correct */
   1092  1.29.2.1    bouyer 			raidPtr->parity_good = RF_RAID_CLEAN;
   1093      1.17     oster 			return(0);
   1094      1.17     oster 		}
   1095  1.29.2.1    bouyer 
   1096  1.29.2.1    bouyer 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1097  1.29.2.1    bouyer 			/* Re-write is already in progress! */
   1098  1.29.2.1    bouyer 			return(EINVAL);
   1099      1.11     oster 		}
   1100  1.29.2.1    bouyer 
   1101  1.29.2.1    bouyer 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1102  1.29.2.1    bouyer 					   rf_RewriteParityThread,
   1103  1.29.2.1    bouyer 					   raidPtr,"raid_parity");
   1104       1.9     oster 		return (retcode);
   1105       1.9     oster 
   1106      1.11     oster 
   1107      1.11     oster 	case RAIDFRAME_ADD_HOT_SPARE:
   1108      1.12     oster 		sparePtr = (RF_SingleComponent_t *) data;
   1109      1.12     oster 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1110  1.29.2.1    bouyer 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1111      1.11     oster 		return(retcode);
   1112      1.11     oster 
   1113      1.11     oster 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1114      1.11     oster 		return(retcode);
   1115      1.11     oster 
   1116  1.29.2.1    bouyer 	case RAIDFRAME_DELETE_COMPONENT:
   1117  1.29.2.1    bouyer 		componentPtr = (RF_SingleComponent_t *)data;
   1118  1.29.2.1    bouyer 		memcpy( &component, componentPtr,
   1119  1.29.2.1    bouyer 			sizeof(RF_SingleComponent_t));
   1120  1.29.2.1    bouyer 		retcode = rf_delete_component(raidPtr, &component);
   1121  1.29.2.1    bouyer 		return(retcode);
   1122  1.29.2.1    bouyer 
   1123  1.29.2.1    bouyer 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1124  1.29.2.1    bouyer 		componentPtr = (RF_SingleComponent_t *)data;
   1125  1.29.2.1    bouyer 		memcpy( &component, componentPtr,
   1126  1.29.2.1    bouyer 			sizeof(RF_SingleComponent_t));
   1127  1.29.2.1    bouyer 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1128  1.29.2.1    bouyer 		return(retcode);
   1129  1.29.2.1    bouyer 
   1130      1.12     oster 	case RAIDFRAME_REBUILD_IN_PLACE:
   1131      1.24     oster 
   1132  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1133      1.24     oster 			/* Can't do this on a RAID 0!! */
   1134      1.24     oster 			return(EINVAL);
   1135      1.24     oster 		}
   1136      1.24     oster 
   1137  1.29.2.1    bouyer 		if (raidPtr->recon_in_progress == 1) {
   1138  1.29.2.1    bouyer 			/* a reconstruct is already in progress! */
   1139  1.29.2.1    bouyer 			return(EINVAL);
   1140  1.29.2.1    bouyer 		}
   1141  1.29.2.1    bouyer 
   1142      1.12     oster 		componentPtr = (RF_SingleComponent_t *) data;
   1143      1.12     oster 		memcpy( &component, componentPtr,
   1144      1.12     oster 			sizeof(RF_SingleComponent_t));
   1145      1.12     oster 		row = component.row;
   1146      1.12     oster 		column = component.column;
   1147      1.12     oster 		printf("Rebuild: %d %d\n",row, column);
   1148  1.29.2.1    bouyer 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1149  1.29.2.1    bouyer 		    (column < 0) || (column >= raidPtr->numCol)) {
   1150      1.12     oster 			return(EINVAL);
   1151      1.12     oster 		}
   1152  1.29.2.1    bouyer 
   1153  1.29.2.1    bouyer 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1154  1.29.2.1    bouyer 		if (rrcopy == NULL)
   1155  1.29.2.1    bouyer 			return(ENOMEM);
   1156  1.29.2.1    bouyer 
   1157  1.29.2.1    bouyer 		rrcopy->raidPtr = (void *) raidPtr;
   1158  1.29.2.1    bouyer 		rrcopy->row = row;
   1159  1.29.2.1    bouyer 		rrcopy->col = column;
   1160  1.29.2.1    bouyer 
   1161  1.29.2.1    bouyer 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1162  1.29.2.1    bouyer 					   rf_ReconstructInPlaceThread,
   1163  1.29.2.1    bouyer 					   rrcopy,"raid_reconip");
   1164      1.12     oster 		return(retcode);
   1165      1.12     oster 
   1166       1.1     oster 	case RAIDFRAME_GET_INFO:
   1167  1.29.2.1    bouyer 		if (!raidPtr->valid)
   1168  1.29.2.1    bouyer 			return (ENODEV);
   1169  1.29.2.1    bouyer 		ucfgp = (RF_DeviceConfig_t **) data;
   1170  1.29.2.1    bouyer 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1171  1.29.2.1    bouyer 			  (RF_DeviceConfig_t *));
   1172  1.29.2.1    bouyer 		if (d_cfg == NULL)
   1173  1.29.2.1    bouyer 			return (ENOMEM);
   1174  1.29.2.1    bouyer 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1175  1.29.2.1    bouyer 		d_cfg->rows = raidPtr->numRow;
   1176  1.29.2.1    bouyer 		d_cfg->cols = raidPtr->numCol;
   1177  1.29.2.1    bouyer 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1178  1.29.2.1    bouyer 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1179  1.29.2.1    bouyer 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1180  1.29.2.1    bouyer 			return (ENOMEM);
   1181  1.29.2.1    bouyer 		}
   1182  1.29.2.1    bouyer 		d_cfg->nspares = raidPtr->numSpare;
   1183  1.29.2.1    bouyer 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1184  1.29.2.1    bouyer 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1185  1.29.2.1    bouyer 			return (ENOMEM);
   1186  1.29.2.1    bouyer 		}
   1187  1.29.2.1    bouyer 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1188  1.29.2.1    bouyer 		d = 0;
   1189  1.29.2.1    bouyer 		for (i = 0; i < d_cfg->rows; i++) {
   1190  1.29.2.1    bouyer 			for (j = 0; j < d_cfg->cols; j++) {
   1191  1.29.2.1    bouyer 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1192  1.29.2.1    bouyer 				d++;
   1193       1.1     oster 			}
   1194       1.1     oster 		}
   1195  1.29.2.1    bouyer 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1196  1.29.2.1    bouyer 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1197  1.29.2.1    bouyer 		}
   1198  1.29.2.1    bouyer 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1199  1.29.2.1    bouyer 				  sizeof(RF_DeviceConfig_t));
   1200  1.29.2.1    bouyer 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1201  1.29.2.1    bouyer 
   1202  1.29.2.1    bouyer 		return (retcode);
   1203  1.29.2.1    bouyer 
   1204      1.22     oster 	case RAIDFRAME_CHECK_PARITY:
   1205  1.29.2.1    bouyer 		*(int *) data = raidPtr->parity_good;
   1206      1.22     oster 		return (0);
   1207       1.9     oster 
   1208  1.29.2.1    bouyer 	case RAIDFRAME_RESET_ACCTOTALS:
   1209  1.29.2.1    bouyer 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1210  1.29.2.1    bouyer 		return (0);
   1211       1.9     oster 
   1212       1.1     oster 	case RAIDFRAME_GET_ACCTOTALS:
   1213  1.29.2.1    bouyer 		totals = (RF_AccTotals_t *) data;
   1214  1.29.2.1    bouyer 		*totals = raidPtr->acc_totals;
   1215  1.29.2.1    bouyer 		return (0);
   1216       1.9     oster 
   1217       1.1     oster 	case RAIDFRAME_KEEP_ACCTOTALS:
   1218  1.29.2.1    bouyer 		raidPtr->keep_acc_totals = *(int *)data;
   1219  1.29.2.1    bouyer 		return (0);
   1220       1.9     oster 
   1221       1.1     oster 	case RAIDFRAME_GET_SIZE:
   1222  1.29.2.1    bouyer 		*(int *) data = raidPtr->totalSectors;
   1223       1.9     oster 		return (0);
   1224       1.1     oster 
   1225       1.1     oster 		/* fail a disk & optionally start reconstruction */
   1226       1.1     oster 	case RAIDFRAME_FAIL_DISK:
   1227      1.24     oster 
   1228  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1229      1.24     oster 			/* Can't do this on a RAID 0!! */
   1230      1.24     oster 			return(EINVAL);
   1231      1.24     oster 		}
   1232      1.24     oster 
   1233       1.1     oster 		rr = (struct rf_recon_req *) data;
   1234       1.9     oster 
   1235  1.29.2.1    bouyer 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1236  1.29.2.1    bouyer 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1237       1.9     oster 			return (EINVAL);
   1238       1.1     oster 
   1239      1.12     oster 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1240      1.12     oster 		       unit, rr->row, rr->col);
   1241       1.9     oster 
   1242       1.9     oster 		/* make a copy of the recon request so that we don't rely on
   1243       1.9     oster 		 * the user's buffer */
   1244       1.1     oster 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1245  1.29.2.1    bouyer 		if (rrcopy == NULL)
   1246  1.29.2.1    bouyer 			return(ENOMEM);
   1247       1.1     oster 		bcopy(rr, rrcopy, sizeof(*rr));
   1248  1.29.2.1    bouyer 		rrcopy->raidPtr = (void *) raidPtr;
   1249       1.9     oster 
   1250  1.29.2.1    bouyer 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1251  1.29.2.1    bouyer 					   rf_ReconThread,
   1252  1.29.2.1    bouyer 					   rrcopy,"raid_recon");
   1253       1.9     oster 		return (0);
   1254       1.9     oster 
   1255       1.9     oster 		/* invoke a copyback operation after recon on whatever disk
   1256       1.9     oster 		 * needs it, if any */
   1257       1.9     oster 	case RAIDFRAME_COPYBACK:
   1258      1.24     oster 
   1259  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1260      1.24     oster 			/* This makes no sense on a RAID 0!! */
   1261      1.24     oster 			return(EINVAL);
   1262      1.24     oster 		}
   1263      1.24     oster 
   1264  1.29.2.1    bouyer 		if (raidPtr->copyback_in_progress == 1) {
   1265  1.29.2.1    bouyer 			/* Copyback is already in progress! */
   1266  1.29.2.1    bouyer 			return(EINVAL);
   1267  1.29.2.1    bouyer 		}
   1268      1.27     oster 
   1269  1.29.2.1    bouyer 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1270  1.29.2.1    bouyer 					   rf_CopybackThread,
   1271  1.29.2.1    bouyer 					   raidPtr,"raid_copyback");
   1272  1.29.2.1    bouyer 		return (retcode);
   1273       1.9     oster 
   1274       1.1     oster 		/* return the percentage completion of reconstruction */
   1275  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_RECON_STATUS:
   1276  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1277  1.29.2.1    bouyer 			/* This makes no sense on a RAID 0, so tell the
   1278  1.29.2.1    bouyer 			   user it's done. */
   1279  1.29.2.1    bouyer 			*(int *) data = 100;
   1280  1.29.2.1    bouyer 			return(0);
   1281      1.24     oster 		}
   1282  1.29.2.1    bouyer 		row = 0; /* XXX we only consider a single row... */
   1283  1.29.2.1    bouyer 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1284       1.1     oster 			*(int *) data = 100;
   1285       1.9     oster 		else
   1286  1.29.2.1    bouyer 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1287  1.29.2.1    bouyer 		return (0);
   1288  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1289  1.29.2.1    bouyer 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1290  1.29.2.1    bouyer 		row = 0; /* XXX we only consider a single row... */
   1291  1.29.2.1    bouyer 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1292  1.29.2.1    bouyer 			progressInfo.remaining = 0;
   1293  1.29.2.1    bouyer 			progressInfo.completed = 100;
   1294  1.29.2.1    bouyer 			progressInfo.total = 100;
   1295  1.29.2.1    bouyer 		} else {
   1296  1.29.2.1    bouyer 			progressInfo.total =
   1297  1.29.2.1    bouyer 				raidPtr->reconControl[row]->numRUsTotal;
   1298  1.29.2.1    bouyer 			progressInfo.completed =
   1299  1.29.2.1    bouyer 				raidPtr->reconControl[row]->numRUsComplete;
   1300  1.29.2.1    bouyer 			progressInfo.remaining = progressInfo.total -
   1301  1.29.2.1    bouyer 				progressInfo.completed;
   1302  1.29.2.1    bouyer 		}
   1303  1.29.2.1    bouyer 		retcode = copyout((caddr_t) &progressInfo,
   1304  1.29.2.1    bouyer 				  (caddr_t) *progressInfoPtr,
   1305  1.29.2.1    bouyer 				  sizeof(RF_ProgressInfo_t));
   1306  1.29.2.1    bouyer 		return (retcode);
   1307  1.29.2.1    bouyer 
   1308  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1309  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1310  1.29.2.1    bouyer 			/* This makes no sense on a RAID 0, so tell the
   1311  1.29.2.1    bouyer 			   user it's done. */
   1312  1.29.2.1    bouyer 			*(int *) data = 100;
   1313  1.29.2.1    bouyer 			return(0);
   1314  1.29.2.1    bouyer 		}
   1315  1.29.2.1    bouyer 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1316  1.29.2.1    bouyer 			*(int *) data = 100 *
   1317  1.29.2.1    bouyer 				raidPtr->parity_rewrite_stripes_done /
   1318  1.29.2.1    bouyer 				raidPtr->Layout.numStripe;
   1319  1.29.2.1    bouyer 		} else {
   1320  1.29.2.1    bouyer 			*(int *) data = 100;
   1321  1.29.2.1    bouyer 		}
   1322  1.29.2.1    bouyer 		return (0);
   1323  1.29.2.1    bouyer 
   1324  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1325  1.29.2.1    bouyer 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1326  1.29.2.1    bouyer 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1327  1.29.2.1    bouyer 			progressInfo.total = raidPtr->Layout.numStripe;
   1328  1.29.2.1    bouyer 			progressInfo.completed =
   1329  1.29.2.1    bouyer 				raidPtr->parity_rewrite_stripes_done;
   1330  1.29.2.1    bouyer 			progressInfo.remaining = progressInfo.total -
   1331  1.29.2.1    bouyer 				progressInfo.completed;
   1332  1.29.2.1    bouyer 		} else {
   1333  1.29.2.1    bouyer 			progressInfo.remaining = 0;
   1334  1.29.2.1    bouyer 			progressInfo.completed = 100;
   1335  1.29.2.1    bouyer 			progressInfo.total = 100;
   1336  1.29.2.1    bouyer 		}
   1337  1.29.2.1    bouyer 		retcode = copyout((caddr_t) &progressInfo,
   1338  1.29.2.1    bouyer 				  (caddr_t) *progressInfoPtr,
   1339  1.29.2.1    bouyer 				  sizeof(RF_ProgressInfo_t));
   1340  1.29.2.1    bouyer 		return (retcode);
   1341  1.29.2.1    bouyer 
   1342  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1343  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1344  1.29.2.1    bouyer 			/* This makes no sense on a RAID 0 */
   1345  1.29.2.1    bouyer 			*(int *) data = 100;
   1346  1.29.2.1    bouyer 			return(0);
   1347  1.29.2.1    bouyer 		}
   1348  1.29.2.1    bouyer 		if (raidPtr->copyback_in_progress == 1) {
   1349  1.29.2.1    bouyer 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1350  1.29.2.1    bouyer 				raidPtr->Layout.numStripe;
   1351  1.29.2.1    bouyer 		} else {
   1352  1.29.2.1    bouyer 			*(int *) data = 100;
   1353  1.29.2.1    bouyer 		}
   1354       1.9     oster 		return (0);
   1355       1.9     oster 
   1356  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1357  1.29.2.1    bouyer 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1358  1.29.2.1    bouyer 		if (raidPtr->copyback_in_progress == 1) {
   1359  1.29.2.1    bouyer 			progressInfo.total = raidPtr->Layout.numStripe;
   1360  1.29.2.1    bouyer 			progressInfo.completed =
   1361  1.29.2.1    bouyer 				raidPtr->copyback_stripes_done;
   1362  1.29.2.1    bouyer 			progressInfo.remaining = progressInfo.total -
   1363  1.29.2.1    bouyer 				progressInfo.completed;
   1364  1.29.2.1    bouyer 		} else {
   1365  1.29.2.1    bouyer 			progressInfo.remaining = 0;
   1366  1.29.2.1    bouyer 			progressInfo.completed = 100;
   1367  1.29.2.1    bouyer 			progressInfo.total = 100;
   1368  1.29.2.1    bouyer 		}
   1369  1.29.2.1    bouyer 		retcode = copyout((caddr_t) &progressInfo,
   1370  1.29.2.1    bouyer 				  (caddr_t) *progressInfoPtr,
   1371  1.29.2.1    bouyer 				  sizeof(RF_ProgressInfo_t));
   1372  1.29.2.1    bouyer 		return (retcode);
   1373  1.29.2.1    bouyer 
   1374       1.9     oster 		/* the sparetable daemon calls this to wait for the kernel to
   1375       1.9     oster 		 * need a spare table. this ioctl does not return until a
   1376       1.9     oster 		 * spare table is needed. XXX -- calling mpsleep here in the
   1377       1.9     oster 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1378       1.9     oster 		 * -- I should either compute the spare table in the kernel,
   1379       1.9     oster 		 * or have a different -- XXX XXX -- interface (a different
   1380  1.29.2.1    bouyer 		 * character device) for delivering the table     -- XXX */
   1381       1.1     oster #if 0
   1382       1.1     oster 	case RAIDFRAME_SPARET_WAIT:
   1383       1.1     oster 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1384       1.9     oster 		while (!rf_sparet_wait_queue)
   1385       1.9     oster 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1386       1.1     oster 		waitreq = rf_sparet_wait_queue;
   1387       1.1     oster 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1388       1.1     oster 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1389       1.9     oster 
   1390  1.29.2.1    bouyer 		/* structure assignment */
   1391  1.29.2.1    bouyer 		*((RF_SparetWait_t *) data) = *waitreq;
   1392       1.9     oster 
   1393       1.1     oster 		RF_Free(waitreq, sizeof(*waitreq));
   1394       1.9     oster 		return (0);
   1395       1.9     oster 
   1396       1.9     oster 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1397       1.9     oster 		 * code in it that will cause the dameon to exit */
   1398       1.1     oster 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1399       1.1     oster 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1400       1.1     oster 		waitreq->fcol = -1;
   1401       1.1     oster 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1402       1.1     oster 		waitreq->next = rf_sparet_wait_queue;
   1403       1.1     oster 		rf_sparet_wait_queue = waitreq;
   1404       1.1     oster 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1405       1.1     oster 		wakeup(&rf_sparet_wait_queue);
   1406       1.9     oster 		return (0);
   1407       1.1     oster 
   1408       1.9     oster 		/* used by the spare table daemon to deliver a spare table
   1409       1.9     oster 		 * into the kernel */
   1410       1.1     oster 	case RAIDFRAME_SEND_SPARET:
   1411       1.9     oster 
   1412       1.1     oster 		/* install the spare table */
   1413  1.29.2.1    bouyer 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1414       1.9     oster 
   1415       1.9     oster 		/* respond to the requestor.  the return status of the spare
   1416       1.9     oster 		 * table installation is passed in the "fcol" field */
   1417       1.1     oster 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1418       1.1     oster 		waitreq->fcol = retcode;
   1419       1.1     oster 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1420       1.1     oster 		waitreq->next = rf_sparet_resp_queue;
   1421       1.1     oster 		rf_sparet_resp_queue = waitreq;
   1422       1.1     oster 		wakeup(&rf_sparet_resp_queue);
   1423       1.1     oster 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1424       1.9     oster 
   1425       1.9     oster 		return (retcode);
   1426       1.1     oster #endif
   1427       1.1     oster 
   1428       1.9     oster 	default:
   1429  1.29.2.1    bouyer 		break; /* fall through to the os-specific code below */
   1430       1.1     oster 
   1431       1.1     oster 	}
   1432       1.9     oster 
   1433  1.29.2.1    bouyer 	if (!raidPtr->valid)
   1434       1.9     oster 		return (EINVAL);
   1435       1.9     oster 
   1436       1.1     oster 	/*
   1437       1.1     oster 	 * Add support for "regular" device ioctls here.
   1438       1.1     oster 	 */
   1439       1.9     oster 
   1440       1.1     oster 	switch (cmd) {
   1441       1.1     oster 	case DIOCGDINFO:
   1442       1.9     oster 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1443       1.1     oster 		break;
   1444       1.1     oster 
   1445       1.1     oster 	case DIOCGPART:
   1446       1.9     oster 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1447       1.9     oster 		((struct partinfo *) data)->part =
   1448       1.1     oster 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1449       1.1     oster 		break;
   1450       1.1     oster 
   1451       1.1     oster 	case DIOCWDINFO:
   1452       1.1     oster 	case DIOCSDINFO:
   1453       1.1     oster 		if ((error = raidlock(rs)) != 0)
   1454       1.1     oster 			return (error);
   1455       1.1     oster 
   1456       1.1     oster 		rs->sc_flags |= RAIDF_LABELLING;
   1457       1.1     oster 
   1458       1.1     oster 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1459       1.9     oster 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1460       1.1     oster 		if (error == 0) {
   1461       1.1     oster 			if (cmd == DIOCWDINFO)
   1462       1.1     oster 				error = writedisklabel(RAIDLABELDEV(dev),
   1463       1.1     oster 				    raidstrategy, rs->sc_dkdev.dk_label,
   1464       1.1     oster 				    rs->sc_dkdev.dk_cpulabel);
   1465       1.1     oster 		}
   1466       1.1     oster 		rs->sc_flags &= ~RAIDF_LABELLING;
   1467       1.1     oster 
   1468       1.1     oster 		raidunlock(rs);
   1469       1.1     oster 
   1470       1.1     oster 		if (error)
   1471       1.1     oster 			return (error);
   1472       1.1     oster 		break;
   1473       1.1     oster 
   1474       1.1     oster 	case DIOCWLABEL:
   1475       1.9     oster 		if (*(int *) data != 0)
   1476       1.1     oster 			rs->sc_flags |= RAIDF_WLABEL;
   1477       1.1     oster 		else
   1478       1.1     oster 			rs->sc_flags &= ~RAIDF_WLABEL;
   1479       1.1     oster 		break;
   1480       1.1     oster 
   1481       1.1     oster 	case DIOCGDEFLABEL:
   1482  1.29.2.1    bouyer 		raidgetdefaultlabel(raidPtr, rs,
   1483       1.9     oster 		    (struct disklabel *) data);
   1484       1.1     oster 		break;
   1485       1.1     oster 
   1486       1.1     oster 	default:
   1487  1.29.2.1    bouyer 		retcode = ENOTTY;
   1488       1.1     oster 	}
   1489       1.9     oster 	return (retcode);
   1490       1.1     oster 
   1491       1.1     oster }
   1492       1.1     oster 
   1493       1.1     oster 
   1494       1.9     oster /* raidinit -- complete the rest of the initialization for the
   1495       1.1     oster    RAIDframe device.  */
   1496       1.1     oster 
   1497       1.1     oster 
   1498  1.29.2.1    bouyer static void
   1499  1.29.2.1    bouyer raidinit(raidPtr)
   1500       1.1     oster 	RF_Raid_t *raidPtr;
   1501       1.1     oster {
   1502       1.1     oster 	struct raid_softc *rs;
   1503  1.29.2.1    bouyer 	int     unit;
   1504       1.1     oster 
   1505  1.29.2.1    bouyer 	unit = raidPtr->raidid;
   1506       1.1     oster 
   1507       1.1     oster 	rs = &raid_softc[unit];
   1508       1.1     oster 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1509      1.11     oster 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1510       1.9     oster 
   1511       1.1     oster 
   1512       1.1     oster 	/* XXX should check return code first... */
   1513       1.1     oster 	rs->sc_flags |= RAIDF_INITED;
   1514       1.1     oster 
   1515       1.9     oster 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1516       1.1     oster 
   1517       1.9     oster 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1518      1.11     oster 
   1519       1.1     oster 	/* disk_attach actually creates space for the CPU disklabel, among
   1520       1.9     oster 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1521       1.9     oster 	 * with disklabels. */
   1522      1.11     oster 
   1523       1.1     oster 	disk_attach(&rs->sc_dkdev);
   1524       1.1     oster 
   1525       1.1     oster 	/* XXX There may be a weird interaction here between this, and
   1526       1.9     oster 	 * protectedSectors, as used in RAIDframe.  */
   1527      1.11     oster 
   1528       1.9     oster 	rs->sc_size = raidPtr->totalSectors;
   1529      1.11     oster 
   1530       1.1     oster }
   1531       1.1     oster 
   1532       1.1     oster /* wake up the daemon & tell it to get us a spare table
   1533       1.1     oster  * XXX
   1534       1.9     oster  * the entries in the queues should be tagged with the raidPtr
   1535      1.11     oster  * so that in the extremely rare case that two recons happen at once,
   1536      1.11     oster  * we know for which device were requesting a spare table
   1537       1.1     oster  * XXX
   1538  1.29.2.1    bouyer  *
   1539  1.29.2.1    bouyer  * XXX This code is not currently used. GO
   1540       1.1     oster  */
   1541       1.9     oster int
   1542       1.9     oster rf_GetSpareTableFromDaemon(req)
   1543       1.9     oster 	RF_SparetWait_t *req;
   1544       1.9     oster {
   1545       1.9     oster 	int     retcode;
   1546       1.9     oster 
   1547       1.9     oster 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1548       1.9     oster 	req->next = rf_sparet_wait_queue;
   1549       1.9     oster 	rf_sparet_wait_queue = req;
   1550       1.9     oster 	wakeup(&rf_sparet_wait_queue);
   1551       1.9     oster 
   1552       1.9     oster 	/* mpsleep unlocks the mutex */
   1553       1.9     oster 	while (!rf_sparet_resp_queue) {
   1554      1.15     oster 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1555       1.9     oster 		    "raidframe getsparetable", 0);
   1556       1.9     oster 	}
   1557       1.9     oster 	req = rf_sparet_resp_queue;
   1558       1.9     oster 	rf_sparet_resp_queue = req->next;
   1559       1.9     oster 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1560       1.9     oster 
   1561       1.9     oster 	retcode = req->fcol;
   1562       1.9     oster 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1563       1.9     oster 					 * alloc'd */
   1564       1.9     oster 	return (retcode);
   1565       1.1     oster }
   1566  1.29.2.1    bouyer 
   1567      1.11     oster /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1568      1.11     oster  * bp & passes it down.
   1569       1.1     oster  * any calls originating in the kernel must use non-blocking I/O
   1570       1.1     oster  * do some extra sanity checking to return "appropriate" error values for
   1571       1.1     oster  * certain conditions (to make some standard utilities work)
   1572  1.29.2.1    bouyer  *
   1573  1.29.2.1    bouyer  * Formerly known as: rf_DoAccessKernel
   1574       1.1     oster  */
   1575  1.29.2.1    bouyer void
   1576  1.29.2.1    bouyer raidstart(raidPtr)
   1577       1.9     oster 	RF_Raid_t *raidPtr;
   1578       1.1     oster {
   1579       1.1     oster 	RF_SectorCount_t num_blocks, pb, sum;
   1580       1.1     oster 	RF_RaidAddr_t raid_addr;
   1581       1.9     oster 	int     retcode;
   1582       1.1     oster 	struct partition *pp;
   1583       1.9     oster 	daddr_t blocknum;
   1584       1.9     oster 	int     unit;
   1585       1.1     oster 	struct raid_softc *rs;
   1586       1.9     oster 	int     do_async;
   1587  1.29.2.1    bouyer 	struct buf *bp;
   1588       1.1     oster 
   1589       1.1     oster 	unit = raidPtr->raidid;
   1590       1.1     oster 	rs = &raid_softc[unit];
   1591  1.29.2.1    bouyer 
   1592  1.29.2.1    bouyer 	/* quick check to see if anything has died recently */
   1593  1.29.2.1    bouyer 	RF_LOCK_MUTEX(raidPtr->mutex);
   1594  1.29.2.1    bouyer 	if (raidPtr->numNewFailures > 0) {
   1595  1.29.2.1    bouyer 		rf_update_component_labels(raidPtr,
   1596  1.29.2.1    bouyer 					   RF_NORMAL_COMPONENT_UPDATE);
   1597  1.29.2.1    bouyer 		raidPtr->numNewFailures--;
   1598       1.1     oster 	}
   1599  1.29.2.1    bouyer 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1600      1.20     oster 
   1601  1.29.2.1    bouyer 	/* Check to see if we're at the limit... */
   1602      1.20     oster 	RF_LOCK_MUTEX(raidPtr->mutex);
   1603  1.29.2.1    bouyer 	while (raidPtr->openings > 0) {
   1604      1.20     oster 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1605      1.20     oster 
   1606  1.29.2.1    bouyer 		/* get the next item, if any, from the queue */
   1607  1.29.2.1    bouyer 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1608  1.29.2.1    bouyer 			/* nothing more to do */
   1609  1.29.2.1    bouyer 			return;
   1610  1.29.2.1    bouyer 		}
   1611  1.29.2.1    bouyer 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1612      1.20     oster 
   1613  1.29.2.1    bouyer 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1614  1.29.2.1    bouyer 		 * partition.. Need to make it absolute to the underlying
   1615  1.29.2.1    bouyer 		 * device.. */
   1616       1.7  explorer 
   1617  1.29.2.1    bouyer 		blocknum = bp->b_blkno;
   1618  1.29.2.1    bouyer 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1619  1.29.2.1    bouyer 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1620  1.29.2.1    bouyer 			blocknum += pp->p_offset;
   1621  1.29.2.1    bouyer 		}
   1622       1.7  explorer 
   1623  1.29.2.1    bouyer 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1624  1.29.2.1    bouyer 			    (int) blocknum));
   1625  1.29.2.1    bouyer 
   1626  1.29.2.1    bouyer 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1627  1.29.2.1    bouyer 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1628  1.29.2.1    bouyer 
   1629  1.29.2.1    bouyer 		/* *THIS* is where we adjust what block we're going to...
   1630  1.29.2.1    bouyer 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1631  1.29.2.1    bouyer 		raid_addr = blocknum;
   1632  1.29.2.1    bouyer 
   1633  1.29.2.1    bouyer 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1634  1.29.2.1    bouyer 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1635  1.29.2.1    bouyer 		sum = raid_addr + num_blocks + pb;
   1636  1.29.2.1    bouyer 		if (1 || rf_debugKernelAccess) {
   1637  1.29.2.1    bouyer 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1638  1.29.2.1    bouyer 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1639  1.29.2.1    bouyer 				    (int) pb, (int) bp->b_resid));
   1640  1.29.2.1    bouyer 		}
   1641  1.29.2.1    bouyer 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1642  1.29.2.1    bouyer 		    || (sum < num_blocks) || (sum < pb)) {
   1643  1.29.2.1    bouyer 			bp->b_error = ENOSPC;
   1644  1.29.2.1    bouyer 			bp->b_flags |= B_ERROR;
   1645  1.29.2.1    bouyer 			bp->b_resid = bp->b_bcount;
   1646  1.29.2.1    bouyer 			biodone(bp);
   1647  1.29.2.1    bouyer 			RF_LOCK_MUTEX(raidPtr->mutex);
   1648  1.29.2.1    bouyer 			continue;
   1649  1.29.2.1    bouyer 		}
   1650  1.29.2.1    bouyer 		/*
   1651  1.29.2.1    bouyer 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1652  1.29.2.1    bouyer 		 */
   1653  1.29.2.1    bouyer 
   1654  1.29.2.1    bouyer 		if (bp->b_bcount & raidPtr->sectorMask) {
   1655  1.29.2.1    bouyer 			bp->b_error = EINVAL;
   1656  1.29.2.1    bouyer 			bp->b_flags |= B_ERROR;
   1657  1.29.2.1    bouyer 			bp->b_resid = bp->b_bcount;
   1658  1.29.2.1    bouyer 			biodone(bp);
   1659  1.29.2.1    bouyer 			RF_LOCK_MUTEX(raidPtr->mutex);
   1660  1.29.2.1    bouyer 			continue;
   1661  1.29.2.1    bouyer 
   1662  1.29.2.1    bouyer 		}
   1663  1.29.2.1    bouyer 		db1_printf(("Calling DoAccess..\n"));
   1664  1.29.2.1    bouyer 
   1665  1.29.2.1    bouyer 
   1666  1.29.2.1    bouyer 		RF_LOCK_MUTEX(raidPtr->mutex);
   1667  1.29.2.1    bouyer 		raidPtr->openings--;
   1668  1.29.2.1    bouyer 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1669  1.29.2.1    bouyer 
   1670  1.29.2.1    bouyer 		/*
   1671  1.29.2.1    bouyer 		 * Everything is async.
   1672  1.29.2.1    bouyer 		 */
   1673  1.29.2.1    bouyer 		do_async = 1;
   1674  1.29.2.1    bouyer 
   1675  1.29.2.1    bouyer 		disk_busy(&rs->sc_dkdev);
   1676  1.29.2.1    bouyer 
   1677  1.29.2.1    bouyer 		/* XXX we're still at splbio() here... do we *really*
   1678  1.29.2.1    bouyer 		   need to be? */
   1679  1.29.2.1    bouyer 
   1680  1.29.2.1    bouyer 		/* don't ever condition on bp->b_flags & B_WRITE.
   1681  1.29.2.1    bouyer 		 * always condition on B_READ instead */
   1682  1.29.2.1    bouyer 
   1683  1.29.2.1    bouyer 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1684  1.29.2.1    bouyer 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1685  1.29.2.1    bouyer 				      do_async, raid_addr, num_blocks,
   1686  1.29.2.1    bouyer 				      bp->b_data, bp, NULL, NULL,
   1687  1.29.2.1    bouyer 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1688  1.29.2.1    bouyer 
   1689  1.29.2.1    bouyer 
   1690  1.29.2.1    bouyer 		RF_LOCK_MUTEX(raidPtr->mutex);
   1691  1.29.2.1    bouyer 	}
   1692  1.29.2.1    bouyer 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1693       1.1     oster }
   1694  1.29.2.1    bouyer 
   1695  1.29.2.1    bouyer 
   1696  1.29.2.1    bouyer 
   1697  1.29.2.1    bouyer 
   1698       1.1     oster /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1699       1.1     oster 
   1700       1.9     oster int
   1701       1.9     oster rf_DispatchKernelIO(queue, req)
   1702       1.9     oster 	RF_DiskQueue_t *queue;
   1703       1.9     oster 	RF_DiskQueueData_t *req;
   1704       1.1     oster {
   1705       1.9     oster 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1706       1.1     oster 	struct buf *bp;
   1707       1.9     oster 	struct raidbuf *raidbp = NULL;
   1708       1.1     oster 	struct raid_softc *rs;
   1709       1.9     oster 	int     unit;
   1710  1.29.2.1    bouyer 	int s;
   1711       1.9     oster 
   1712  1.29.2.1    bouyer 	s=0;
   1713  1.29.2.1    bouyer 	/* s = splbio();*/ /* want to test this */
   1714       1.1     oster 	/* XXX along with the vnode, we also need the softc associated with
   1715       1.9     oster 	 * this device.. */
   1716       1.9     oster 
   1717       1.1     oster 	req->queue = queue;
   1718       1.9     oster 
   1719       1.1     oster 	unit = queue->raidPtr->raidid;
   1720       1.1     oster 
   1721       1.9     oster 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1722       1.1     oster 
   1723       1.9     oster 	if (unit >= numraid) {
   1724       1.9     oster 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1725       1.1     oster 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1726       1.1     oster 	}
   1727       1.1     oster 	rs = &raid_softc[unit];
   1728       1.1     oster 
   1729       1.1     oster 	bp = req->bp;
   1730      1.16     oster #if 1
   1731       1.9     oster 	/* XXX when there is a physical disk failure, someone is passing us a
   1732       1.9     oster 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1733       1.9     oster 	 * without taking a performance hit... (not sure where the real bug
   1734       1.9     oster 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1735       1.4     oster 
   1736       1.4     oster 	if (bp->b_flags & B_ERROR) {
   1737       1.4     oster 		bp->b_flags &= ~B_ERROR;
   1738       1.4     oster 	}
   1739       1.9     oster 	if (bp->b_error != 0) {
   1740       1.4     oster 		bp->b_error = 0;
   1741       1.4     oster 	}
   1742      1.16     oster #endif
   1743       1.1     oster 	raidbp = RAIDGETBUF(rs);
   1744       1.1     oster 
   1745       1.9     oster 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1746       1.1     oster 
   1747       1.1     oster 	/*
   1748       1.1     oster 	 * context for raidiodone
   1749       1.1     oster 	 */
   1750       1.1     oster 	raidbp->rf_obp = bp;
   1751       1.1     oster 	raidbp->req = req;
   1752       1.1     oster 
   1753  1.29.2.1    bouyer 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1754  1.29.2.1    bouyer 
   1755       1.1     oster 	switch (req->type) {
   1756       1.9     oster 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1757       1.1     oster 		/* XXX need to do something extra here.. */
   1758       1.9     oster 		/* I'm leaving this in, as I've never actually seen it used,
   1759       1.9     oster 		 * and I'd like folks to report it... GO */
   1760       1.1     oster 		printf(("WAKEUP CALLED\n"));
   1761       1.1     oster 		queue->numOutstanding++;
   1762       1.1     oster 
   1763       1.1     oster 		/* XXX need to glue the original buffer into this??  */
   1764       1.1     oster 
   1765       1.1     oster 		KernelWakeupFunc(&raidbp->rf_buf);
   1766       1.1     oster 		break;
   1767       1.9     oster 
   1768       1.1     oster 	case RF_IO_TYPE_READ:
   1769       1.1     oster 	case RF_IO_TYPE_WRITE:
   1770       1.9     oster 
   1771       1.1     oster 		if (req->tracerec) {
   1772       1.1     oster 			RF_ETIMER_START(req->tracerec->timer);
   1773       1.1     oster 		}
   1774       1.9     oster 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1775       1.9     oster 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1776       1.9     oster 		    req->sectorOffset, req->numSector,
   1777       1.9     oster 		    req->buf, KernelWakeupFunc, (void *) req,
   1778       1.9     oster 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1779       1.1     oster 
   1780       1.1     oster 		if (rf_debugKernelAccess) {
   1781       1.9     oster 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1782       1.9     oster 				(long) bp->b_blkno));
   1783       1.1     oster 		}
   1784       1.1     oster 		queue->numOutstanding++;
   1785       1.1     oster 		queue->last_deq_sector = req->sectorOffset;
   1786       1.9     oster 		/* acc wouldn't have been let in if there were any pending
   1787       1.9     oster 		 * reqs at any other priority */
   1788       1.1     oster 		queue->curPriority = req->priority;
   1789       1.1     oster 
   1790       1.1     oster 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1791       1.9     oster 			req->type, unit, queue->row, queue->col));
   1792       1.1     oster 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1793       1.9     oster 			(int) req->sectorOffset, (int) req->numSector,
   1794       1.9     oster 			(int) (req->numSector <<
   1795       1.9     oster 			    queue->raidPtr->logBytesPerSector),
   1796       1.9     oster 			(int) queue->raidPtr->logBytesPerSector));
   1797       1.1     oster 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1798       1.1     oster 			raidbp->rf_buf.b_vp->v_numoutput++;
   1799       1.1     oster 		}
   1800       1.9     oster 		VOP_STRATEGY(&raidbp->rf_buf);
   1801       1.1     oster 
   1802       1.1     oster 		break;
   1803       1.9     oster 
   1804       1.1     oster 	default:
   1805       1.1     oster 		panic("bad req->type in rf_DispatchKernelIO");
   1806       1.1     oster 	}
   1807       1.1     oster 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1808  1.29.2.1    bouyer 	/* splx(s); */ /* want to test this */
   1809       1.9     oster 	return (0);
   1810       1.1     oster }
   1811       1.9     oster /* this is the callback function associated with a I/O invoked from
   1812       1.1     oster    kernel code.
   1813       1.1     oster  */
   1814       1.9     oster static void
   1815       1.9     oster KernelWakeupFunc(vbp)
   1816       1.9     oster 	struct buf *vbp;
   1817       1.9     oster {
   1818       1.9     oster 	RF_DiskQueueData_t *req = NULL;
   1819       1.9     oster 	RF_DiskQueue_t *queue;
   1820       1.9     oster 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1821       1.9     oster 	struct buf *bp;
   1822       1.9     oster 	struct raid_softc *rs;
   1823       1.9     oster 	int     unit;
   1824  1.29.2.1    bouyer 	int s;
   1825       1.9     oster 
   1826  1.29.2.1    bouyer 	s = splbio();
   1827       1.9     oster 	db1_printf(("recovering the request queue:\n"));
   1828       1.9     oster 	req = raidbp->req;
   1829       1.1     oster 
   1830       1.9     oster 	bp = raidbp->rf_obp;
   1831       1.1     oster 
   1832       1.9     oster 	queue = (RF_DiskQueue_t *) req->queue;
   1833       1.1     oster 
   1834       1.9     oster 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1835       1.9     oster 		bp->b_flags |= B_ERROR;
   1836       1.9     oster 		bp->b_error = raidbp->rf_buf.b_error ?
   1837       1.9     oster 		    raidbp->rf_buf.b_error : EIO;
   1838       1.9     oster 	}
   1839       1.1     oster 
   1840       1.9     oster 	/* XXX methinks this could be wrong... */
   1841       1.1     oster #if 1
   1842       1.9     oster 	bp->b_resid = raidbp->rf_buf.b_resid;
   1843       1.1     oster #endif
   1844       1.1     oster 
   1845       1.9     oster 	if (req->tracerec) {
   1846       1.9     oster 		RF_ETIMER_STOP(req->tracerec->timer);
   1847       1.9     oster 		RF_ETIMER_EVAL(req->tracerec->timer);
   1848       1.9     oster 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1849       1.9     oster 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1850       1.9     oster 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1851       1.9     oster 		req->tracerec->num_phys_ios++;
   1852       1.9     oster 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1853       1.9     oster 	}
   1854       1.9     oster 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1855       1.1     oster 
   1856       1.9     oster 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1857       1.1     oster 
   1858       1.1     oster 
   1859       1.9     oster 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1860       1.9     oster 	 * ballistic, and mark the component as hosed... */
   1861  1.29.2.1    bouyer 
   1862       1.9     oster 	if (bp->b_flags & B_ERROR) {
   1863       1.9     oster 		/* Mark the disk as dead */
   1864       1.9     oster 		/* but only mark it once... */
   1865       1.9     oster 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1866       1.9     oster 		    rf_ds_optimal) {
   1867       1.9     oster 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1868       1.9     oster 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1869       1.9     oster 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1870       1.9     oster 			    rf_ds_failed;
   1871       1.9     oster 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1872       1.9     oster 			queue->raidPtr->numFailures++;
   1873  1.29.2.1    bouyer 			queue->raidPtr->numNewFailures++;
   1874       1.9     oster 		} else {	/* Disk is already dead... */
   1875       1.9     oster 			/* printf("Disk already marked as dead!\n"); */
   1876       1.9     oster 		}
   1877       1.4     oster 
   1878       1.9     oster 	}
   1879       1.4     oster 
   1880       1.9     oster 	rs = &raid_softc[unit];
   1881       1.9     oster 	RAIDPUTBUF(rs, raidbp);
   1882       1.9     oster 
   1883       1.9     oster 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1884       1.9     oster 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1885       1.1     oster 
   1886  1.29.2.1    bouyer 	splx(s);
   1887       1.1     oster }
   1888       1.1     oster 
   1889       1.1     oster 
   1890       1.1     oster 
   1891       1.1     oster /*
   1892       1.1     oster  * initialize a buf structure for doing an I/O in the kernel.
   1893       1.1     oster  */
   1894       1.9     oster static void
   1895  1.29.2.1    bouyer InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1896  1.29.2.1    bouyer        logBytesPerSector, b_proc)
   1897  1.29.2.1    bouyer 	struct buf *bp;
   1898  1.29.2.1    bouyer 	struct vnode *b_vp;
   1899  1.29.2.1    bouyer 	unsigned rw_flag;
   1900  1.29.2.1    bouyer 	dev_t dev;
   1901  1.29.2.1    bouyer 	RF_SectorNum_t startSect;
   1902  1.29.2.1    bouyer 	RF_SectorCount_t numSect;
   1903  1.29.2.1    bouyer 	caddr_t buf;
   1904  1.29.2.1    bouyer 	void (*cbFunc) (struct buf *);
   1905  1.29.2.1    bouyer 	void *cbArg;
   1906  1.29.2.1    bouyer 	int logBytesPerSector;
   1907  1.29.2.1    bouyer 	struct proc *b_proc;
   1908       1.9     oster {
   1909       1.9     oster 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1910       1.9     oster 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1911       1.9     oster 	bp->b_bcount = numSect << logBytesPerSector;
   1912       1.9     oster 	bp->b_bufsize = bp->b_bcount;
   1913       1.9     oster 	bp->b_error = 0;
   1914       1.9     oster 	bp->b_dev = dev;
   1915  1.29.2.1    bouyer 	bp->b_data = buf;
   1916       1.9     oster 	bp->b_blkno = startSect;
   1917       1.9     oster 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1918       1.1     oster 	if (bp->b_bcount == 0) {
   1919       1.1     oster 		panic("bp->b_bcount is zero in InitBP!!\n");
   1920       1.1     oster 	}
   1921       1.9     oster 	bp->b_proc = b_proc;
   1922       1.9     oster 	bp->b_iodone = cbFunc;
   1923       1.9     oster 	bp->b_vp = b_vp;
   1924       1.9     oster 
   1925       1.1     oster }
   1926       1.1     oster 
   1927       1.1     oster static void
   1928       1.1     oster raidgetdefaultlabel(raidPtr, rs, lp)
   1929       1.1     oster 	RF_Raid_t *raidPtr;
   1930       1.1     oster 	struct raid_softc *rs;
   1931       1.1     oster 	struct disklabel *lp;
   1932       1.1     oster {
   1933       1.1     oster 	db1_printf(("Building a default label...\n"));
   1934       1.1     oster 	bzero(lp, sizeof(*lp));
   1935       1.1     oster 
   1936       1.1     oster 	/* fabricate a label... */
   1937       1.1     oster 	lp->d_secperunit = raidPtr->totalSectors;
   1938       1.1     oster 	lp->d_secsize = raidPtr->bytesPerSector;
   1939  1.29.2.1    bouyer 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1940       1.1     oster 	lp->d_ntracks = 1;
   1941  1.29.2.1    bouyer 	lp->d_ncylinders = raidPtr->totalSectors /
   1942  1.29.2.1    bouyer 		(lp->d_nsectors * lp->d_ntracks);
   1943       1.1     oster 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1944       1.1     oster 
   1945       1.1     oster 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1946       1.9     oster 	lp->d_type = DTYPE_RAID;
   1947       1.1     oster 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1948       1.1     oster 	lp->d_rpm = 3600;
   1949       1.1     oster 	lp->d_interleave = 1;
   1950       1.1     oster 	lp->d_flags = 0;
   1951       1.1     oster 
   1952       1.1     oster 	lp->d_partitions[RAW_PART].p_offset = 0;
   1953       1.1     oster 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1954       1.1     oster 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1955       1.1     oster 	lp->d_npartitions = RAW_PART + 1;
   1956       1.1     oster 
   1957       1.1     oster 	lp->d_magic = DISKMAGIC;
   1958       1.1     oster 	lp->d_magic2 = DISKMAGIC;
   1959       1.1     oster 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1960       1.1     oster 
   1961       1.1     oster }
   1962       1.1     oster /*
   1963       1.1     oster  * Read the disklabel from the raid device.  If one is not present, fake one
   1964       1.1     oster  * up.
   1965       1.1     oster  */
   1966       1.1     oster static void
   1967       1.1     oster raidgetdisklabel(dev)
   1968       1.9     oster 	dev_t   dev;
   1969       1.1     oster {
   1970       1.9     oster 	int     unit = raidunit(dev);
   1971       1.1     oster 	struct raid_softc *rs = &raid_softc[unit];
   1972       1.9     oster 	char   *errstring;
   1973       1.1     oster 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1974       1.1     oster 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1975       1.1     oster 	RF_Raid_t *raidPtr;
   1976       1.1     oster 
   1977       1.1     oster 	db1_printf(("Getting the disklabel...\n"));
   1978       1.1     oster 
   1979       1.1     oster 	bzero(clp, sizeof(*clp));
   1980       1.1     oster 
   1981       1.1     oster 	raidPtr = raidPtrs[unit];
   1982       1.1     oster 
   1983       1.1     oster 	raidgetdefaultlabel(raidPtr, rs, lp);
   1984       1.1     oster 
   1985       1.1     oster 	/*
   1986       1.1     oster 	 * Call the generic disklabel extraction routine.
   1987       1.1     oster 	 */
   1988       1.1     oster 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1989       1.1     oster 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1990       1.9     oster 	if (errstring)
   1991       1.1     oster 		raidmakedisklabel(rs);
   1992       1.1     oster 	else {
   1993       1.9     oster 		int     i;
   1994       1.1     oster 		struct partition *pp;
   1995       1.1     oster 
   1996       1.1     oster 		/*
   1997       1.1     oster 		 * Sanity check whether the found disklabel is valid.
   1998       1.1     oster 		 *
   1999       1.1     oster 		 * This is necessary since total size of the raid device
   2000       1.1     oster 		 * may vary when an interleave is changed even though exactly
   2001       1.1     oster 		 * same componets are used, and old disklabel may used
   2002       1.1     oster 		 * if that is found.
   2003       1.1     oster 		 */
   2004       1.1     oster 		if (lp->d_secperunit != rs->sc_size)
   2005       1.1     oster 			printf("WARNING: %s: "
   2006       1.1     oster 			    "total sector size in disklabel (%d) != "
   2007      1.18     oster 			    "the size of raid (%ld)\n", rs->sc_xname,
   2008      1.18     oster 			    lp->d_secperunit, (long) rs->sc_size);
   2009       1.1     oster 		for (i = 0; i < lp->d_npartitions; i++) {
   2010       1.1     oster 			pp = &lp->d_partitions[i];
   2011       1.1     oster 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2012       1.1     oster 				printf("WARNING: %s: end of partition `%c' "
   2013      1.18     oster 				    "exceeds the size of raid (%ld)\n",
   2014      1.18     oster 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2015       1.1     oster 		}
   2016       1.1     oster 	}
   2017       1.1     oster 
   2018       1.1     oster }
   2019       1.1     oster /*
   2020       1.1     oster  * Take care of things one might want to take care of in the event
   2021       1.1     oster  * that a disklabel isn't present.
   2022       1.1     oster  */
   2023       1.1     oster static void
   2024       1.1     oster raidmakedisklabel(rs)
   2025       1.1     oster 	struct raid_softc *rs;
   2026       1.1     oster {
   2027       1.1     oster 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2028       1.1     oster 	db1_printf(("Making a label..\n"));
   2029       1.1     oster 
   2030       1.1     oster 	/*
   2031       1.1     oster 	 * For historical reasons, if there's no disklabel present
   2032       1.1     oster 	 * the raw partition must be marked FS_BSDFFS.
   2033       1.1     oster 	 */
   2034       1.1     oster 
   2035       1.1     oster 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2036       1.1     oster 
   2037       1.1     oster 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2038       1.1     oster 
   2039       1.1     oster 	lp->d_checksum = dkcksum(lp);
   2040       1.1     oster }
   2041       1.1     oster /*
   2042       1.1     oster  * Lookup the provided name in the filesystem.  If the file exists,
   2043       1.1     oster  * is a valid block device, and isn't being used by anyone else,
   2044       1.1     oster  * set *vpp to the file's vnode.
   2045       1.9     oster  * You'll find the original of this in ccd.c
   2046       1.1     oster  */
   2047       1.1     oster int
   2048       1.1     oster raidlookup(path, p, vpp)
   2049       1.9     oster 	char   *path;
   2050       1.1     oster 	struct proc *p;
   2051       1.1     oster 	struct vnode **vpp;	/* result */
   2052       1.1     oster {
   2053       1.1     oster 	struct nameidata nd;
   2054       1.1     oster 	struct vnode *vp;
   2055       1.1     oster 	struct vattr va;
   2056       1.9     oster 	int     error;
   2057       1.1     oster 
   2058       1.1     oster 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2059       1.9     oster 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2060       1.1     oster #ifdef DEBUG
   2061       1.9     oster 		printf("RAIDframe: vn_open returned %d\n", error);
   2062       1.1     oster #endif
   2063       1.1     oster 		return (error);
   2064       1.1     oster 	}
   2065       1.1     oster 	vp = nd.ni_vp;
   2066       1.1     oster 	if (vp->v_usecount > 1) {
   2067       1.1     oster 		VOP_UNLOCK(vp, 0);
   2068       1.9     oster 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2069       1.1     oster 		return (EBUSY);
   2070       1.1     oster 	}
   2071       1.1     oster 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2072       1.1     oster 		VOP_UNLOCK(vp, 0);
   2073       1.9     oster 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2074       1.1     oster 		return (error);
   2075       1.1     oster 	}
   2076       1.1     oster 	/* XXX: eventually we should handle VREG, too. */
   2077       1.1     oster 	if (va.va_type != VBLK) {
   2078       1.1     oster 		VOP_UNLOCK(vp, 0);
   2079       1.9     oster 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2080       1.1     oster 		return (ENOTBLK);
   2081       1.1     oster 	}
   2082       1.1     oster 	VOP_UNLOCK(vp, 0);
   2083       1.1     oster 	*vpp = vp;
   2084       1.1     oster 	return (0);
   2085       1.1     oster }
   2086       1.1     oster /*
   2087       1.1     oster  * Wait interruptibly for an exclusive lock.
   2088       1.1     oster  *
   2089       1.1     oster  * XXX
   2090       1.1     oster  * Several drivers do this; it should be abstracted and made MP-safe.
   2091       1.1     oster  * (Hmm... where have we seen this warning before :->  GO )
   2092       1.1     oster  */
   2093       1.1     oster static int
   2094       1.1     oster raidlock(rs)
   2095       1.1     oster 	struct raid_softc *rs;
   2096       1.1     oster {
   2097       1.9     oster 	int     error;
   2098       1.1     oster 
   2099       1.1     oster 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2100       1.1     oster 		rs->sc_flags |= RAIDF_WANTED;
   2101       1.9     oster 		if ((error =
   2102       1.9     oster 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2103       1.1     oster 			return (error);
   2104       1.1     oster 	}
   2105       1.1     oster 	rs->sc_flags |= RAIDF_LOCKED;
   2106       1.1     oster 	return (0);
   2107       1.1     oster }
   2108       1.1     oster /*
   2109       1.1     oster  * Unlock and wake up any waiters.
   2110       1.1     oster  */
   2111       1.1     oster static void
   2112       1.1     oster raidunlock(rs)
   2113       1.1     oster 	struct raid_softc *rs;
   2114       1.1     oster {
   2115       1.1     oster 
   2116       1.1     oster 	rs->sc_flags &= ~RAIDF_LOCKED;
   2117       1.1     oster 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2118       1.1     oster 		rs->sc_flags &= ~RAIDF_WANTED;
   2119       1.1     oster 		wakeup(rs);
   2120       1.1     oster 	}
   2121      1.11     oster }
   2122      1.11     oster 
   2123      1.11     oster 
   2124      1.11     oster #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2125      1.11     oster #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2126      1.11     oster 
   2127      1.11     oster int
   2128      1.12     oster raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2129      1.12     oster {
   2130  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   2131  1.29.2.1    bouyer 	raidread_component_label(dev, b_vp, &clabel);
   2132  1.29.2.1    bouyer 	clabel.mod_counter = mod_counter;
   2133  1.29.2.1    bouyer 	clabel.clean = RF_RAID_CLEAN;
   2134  1.29.2.1    bouyer 	raidwrite_component_label(dev, b_vp, &clabel);
   2135      1.12     oster 	return(0);
   2136      1.12     oster }
   2137      1.12     oster 
   2138      1.12     oster 
   2139      1.12     oster int
   2140      1.12     oster raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2141      1.11     oster {
   2142  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   2143  1.29.2.1    bouyer 	raidread_component_label(dev, b_vp, &clabel);
   2144  1.29.2.1    bouyer 	clabel.mod_counter = mod_counter;
   2145  1.29.2.1    bouyer 	clabel.clean = RF_RAID_DIRTY;
   2146  1.29.2.1    bouyer 	raidwrite_component_label(dev, b_vp, &clabel);
   2147      1.11     oster 	return(0);
   2148      1.11     oster }
   2149      1.11     oster 
   2150      1.11     oster /* ARGSUSED */
   2151      1.11     oster int
   2152  1.29.2.1    bouyer raidread_component_label(dev, b_vp, clabel)
   2153      1.11     oster 	dev_t dev;
   2154      1.11     oster 	struct vnode *b_vp;
   2155  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2156      1.11     oster {
   2157      1.11     oster 	struct buf *bp;
   2158      1.11     oster 	int error;
   2159      1.11     oster 
   2160      1.11     oster 	/* XXX should probably ensure that we don't try to do this if
   2161      1.11     oster 	   someone has changed rf_protected_sectors. */
   2162      1.11     oster 
   2163  1.29.2.1    bouyer 	if (b_vp == NULL) {
   2164  1.29.2.1    bouyer 		/* For whatever reason, this component is not valid.
   2165  1.29.2.1    bouyer 		   Don't try to read a component label from it. */
   2166  1.29.2.1    bouyer 		return(EINVAL);
   2167  1.29.2.1    bouyer 	}
   2168  1.29.2.1    bouyer 
   2169      1.11     oster 	/* get a block of the appropriate size... */
   2170      1.11     oster 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2171      1.11     oster 	bp->b_dev = dev;
   2172      1.11     oster 
   2173      1.11     oster 	/* get our ducks in a row for the read */
   2174      1.11     oster 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2175      1.11     oster 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2176      1.11     oster 	bp->b_flags = B_BUSY | B_READ;
   2177      1.11     oster  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2178      1.11     oster 
   2179      1.11     oster 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2180      1.11     oster 
   2181      1.11     oster 	error = biowait(bp);
   2182      1.11     oster 
   2183      1.11     oster 	if (!error) {
   2184  1.29.2.1    bouyer 		memcpy(clabel, bp->b_data,
   2185      1.11     oster 		       sizeof(RF_ComponentLabel_t));
   2186      1.12     oster #if 0
   2187  1.29.2.1    bouyer 		rf_print_component_label( clabel );
   2188      1.11     oster #endif
   2189      1.11     oster         } else {
   2190  1.29.2.1    bouyer #if 0
   2191      1.11     oster 		printf("Failed to read RAID component label!\n");
   2192  1.29.2.1    bouyer #endif
   2193      1.11     oster 	}
   2194      1.11     oster 
   2195      1.11     oster         bp->b_flags = B_INVAL | B_AGE;
   2196      1.11     oster 	brelse(bp);
   2197      1.11     oster 	return(error);
   2198      1.11     oster }
   2199      1.11     oster /* ARGSUSED */
   2200      1.11     oster int
   2201  1.29.2.1    bouyer raidwrite_component_label(dev, b_vp, clabel)
   2202      1.11     oster 	dev_t dev;
   2203      1.11     oster 	struct vnode *b_vp;
   2204  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2205      1.11     oster {
   2206      1.11     oster 	struct buf *bp;
   2207      1.11     oster 	int error;
   2208      1.11     oster 
   2209      1.11     oster 	/* get a block of the appropriate size... */
   2210      1.11     oster 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2211      1.11     oster 	bp->b_dev = dev;
   2212      1.11     oster 
   2213      1.11     oster 	/* get our ducks in a row for the write */
   2214      1.11     oster 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2215      1.11     oster 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2216      1.11     oster 	bp->b_flags = B_BUSY | B_WRITE;
   2217      1.11     oster  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2218      1.11     oster 
   2219  1.29.2.1    bouyer 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2220      1.11     oster 
   2221  1.29.2.1    bouyer 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2222      1.11     oster 
   2223      1.11     oster 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2224      1.11     oster 	error = biowait(bp);
   2225      1.11     oster         bp->b_flags = B_INVAL | B_AGE;
   2226      1.11     oster 	brelse(bp);
   2227      1.11     oster 	if (error) {
   2228  1.29.2.1    bouyer #if 1
   2229      1.11     oster 		printf("Failed to write RAID component info!\n");
   2230  1.29.2.1    bouyer #endif
   2231      1.11     oster 	}
   2232      1.11     oster 
   2233      1.11     oster 	return(error);
   2234       1.1     oster }
   2235      1.12     oster 
   2236      1.12     oster void
   2237  1.29.2.1    bouyer rf_markalldirty(raidPtr)
   2238      1.12     oster 	RF_Raid_t *raidPtr;
   2239      1.12     oster {
   2240  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   2241      1.12     oster 	int r,c;
   2242      1.12     oster 
   2243      1.12     oster 	raidPtr->mod_counter++;
   2244      1.12     oster 	for (r = 0; r < raidPtr->numRow; r++) {
   2245      1.12     oster 		for (c = 0; c < raidPtr->numCol; c++) {
   2246  1.29.2.1    bouyer 			/* we don't want to touch (at all) a disk that has
   2247  1.29.2.1    bouyer 			   failed */
   2248  1.29.2.1    bouyer 			if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
   2249      1.12     oster 				raidread_component_label(
   2250      1.12     oster 					raidPtr->Disks[r][c].dev,
   2251      1.12     oster 					raidPtr->raid_cinfo[r][c].ci_vp,
   2252  1.29.2.1    bouyer 					&clabel);
   2253  1.29.2.1    bouyer 				if (clabel.status == rf_ds_spared) {
   2254      1.12     oster 					/* XXX do something special...
   2255      1.12     oster 					 but whatever you do, don't
   2256      1.12     oster 					 try to access it!! */
   2257      1.12     oster 				} else {
   2258      1.12     oster #if 0
   2259  1.29.2.1    bouyer 				clabel.status =
   2260      1.12     oster 					raidPtr->Disks[r][c].status;
   2261      1.12     oster 				raidwrite_component_label(
   2262      1.12     oster 					raidPtr->Disks[r][c].dev,
   2263      1.12     oster 					raidPtr->raid_cinfo[r][c].ci_vp,
   2264  1.29.2.1    bouyer 					&clabel);
   2265      1.12     oster #endif
   2266      1.12     oster 				raidmarkdirty(
   2267      1.12     oster 				       raidPtr->Disks[r][c].dev,
   2268      1.12     oster 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2269      1.12     oster 				       raidPtr->mod_counter);
   2270      1.12     oster 				}
   2271      1.12     oster 			}
   2272      1.12     oster 		}
   2273      1.12     oster 	}
   2274      1.13     oster 	/* printf("Component labels marked dirty.\n"); */
   2275      1.12     oster #if 0
   2276      1.12     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2277      1.12     oster 		sparecol = raidPtr->numCol + c;
   2278      1.12     oster 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2279      1.12     oster 			/*
   2280      1.12     oster 
   2281      1.12     oster 			   XXX this is where we get fancy and map this spare
   2282      1.12     oster 			   into it's correct spot in the array.
   2283      1.12     oster 
   2284      1.12     oster 			 */
   2285      1.12     oster 			/*
   2286      1.12     oster 
   2287      1.12     oster 			   we claim this disk is "optimal" if it's
   2288      1.12     oster 			   rf_ds_used_spare, as that means it should be
   2289      1.12     oster 			   directly substitutable for the disk it replaced.
   2290      1.12     oster 			   We note that too...
   2291      1.12     oster 
   2292      1.12     oster 			 */
   2293      1.12     oster 
   2294      1.12     oster 			for(i=0;i<raidPtr->numRow;i++) {
   2295      1.12     oster 				for(j=0;j<raidPtr->numCol;j++) {
   2296      1.12     oster 					if ((raidPtr->Disks[i][j].spareRow ==
   2297      1.12     oster 					     r) &&
   2298      1.12     oster 					    (raidPtr->Disks[i][j].spareCol ==
   2299      1.12     oster 					     sparecol)) {
   2300      1.12     oster 						srow = r;
   2301      1.12     oster 						scol = sparecol;
   2302      1.12     oster 						break;
   2303      1.12     oster 					}
   2304      1.12     oster 				}
   2305      1.12     oster 			}
   2306      1.12     oster 
   2307      1.12     oster 			raidread_component_label(
   2308      1.12     oster 				      raidPtr->Disks[r][sparecol].dev,
   2309      1.12     oster 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2310  1.29.2.1    bouyer 				      &clabel);
   2311      1.12     oster 			/* make sure status is noted */
   2312  1.29.2.1    bouyer 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2313  1.29.2.1    bouyer 			clabel.mod_counter = raidPtr->mod_counter;
   2314  1.29.2.1    bouyer 			clabel.serial_number = raidPtr->serial_number;
   2315  1.29.2.1    bouyer 			clabel.row = srow;
   2316  1.29.2.1    bouyer 			clabel.column = scol;
   2317  1.29.2.1    bouyer 			clabel.num_rows = raidPtr->numRow;
   2318  1.29.2.1    bouyer 			clabel.num_columns = raidPtr->numCol;
   2319  1.29.2.1    bouyer 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2320  1.29.2.1    bouyer 			clabel.status = rf_ds_optimal;
   2321      1.12     oster 			raidwrite_component_label(
   2322      1.12     oster 				      raidPtr->Disks[r][sparecol].dev,
   2323      1.12     oster 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2324  1.29.2.1    bouyer 				      &clabel);
   2325      1.12     oster 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2326      1.12     oster 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2327      1.12     oster 		}
   2328      1.12     oster 	}
   2329      1.12     oster 
   2330      1.12     oster #endif
   2331      1.12     oster }
   2332      1.12     oster 
   2333      1.13     oster 
   2334      1.13     oster void
   2335  1.29.2.1    bouyer rf_update_component_labels(raidPtr, final)
   2336      1.13     oster 	RF_Raid_t *raidPtr;
   2337  1.29.2.1    bouyer 	int final;
   2338      1.13     oster {
   2339  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   2340      1.13     oster 	int sparecol;
   2341      1.13     oster 	int r,c;
   2342      1.13     oster 	int i,j;
   2343      1.13     oster 	int srow, scol;
   2344      1.13     oster 
   2345      1.13     oster 	srow = -1;
   2346      1.13     oster 	scol = -1;
   2347      1.13     oster 
   2348      1.13     oster 	/* XXX should do extra checks to make sure things really are clean,
   2349      1.13     oster 	   rather than blindly setting the clean bit... */
   2350      1.13     oster 
   2351      1.13     oster 	raidPtr->mod_counter++;
   2352      1.13     oster 
   2353      1.13     oster 	for (r = 0; r < raidPtr->numRow; r++) {
   2354      1.13     oster 		for (c = 0; c < raidPtr->numCol; c++) {
   2355      1.13     oster 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2356      1.13     oster 				raidread_component_label(
   2357      1.13     oster 					raidPtr->Disks[r][c].dev,
   2358      1.13     oster 					raidPtr->raid_cinfo[r][c].ci_vp,
   2359  1.29.2.1    bouyer 					&clabel);
   2360      1.13     oster 				/* make sure status is noted */
   2361  1.29.2.1    bouyer 				clabel.status = rf_ds_optimal;
   2362  1.29.2.1    bouyer 				/* bump the counter */
   2363  1.29.2.1    bouyer 				clabel.mod_counter = raidPtr->mod_counter;
   2364  1.29.2.1    bouyer 
   2365      1.13     oster 				raidwrite_component_label(
   2366      1.13     oster 					raidPtr->Disks[r][c].dev,
   2367      1.13     oster 					raidPtr->raid_cinfo[r][c].ci_vp,
   2368  1.29.2.1    bouyer 					&clabel);
   2369  1.29.2.1    bouyer 				if (final == RF_FINAL_COMPONENT_UPDATE) {
   2370  1.29.2.1    bouyer 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2371  1.29.2.1    bouyer 						raidmarkclean(
   2372  1.29.2.1    bouyer 							      raidPtr->Disks[r][c].dev,
   2373  1.29.2.1    bouyer 							      raidPtr->raid_cinfo[r][c].ci_vp,
   2374  1.29.2.1    bouyer 							      raidPtr->mod_counter);
   2375  1.29.2.1    bouyer 					}
   2376      1.13     oster 				}
   2377      1.13     oster 			}
   2378      1.13     oster 			/* else we don't touch it.. */
   2379      1.13     oster 		}
   2380      1.13     oster 	}
   2381      1.13     oster 
   2382      1.13     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2383      1.13     oster 		sparecol = raidPtr->numCol + c;
   2384      1.13     oster 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2385      1.13     oster 			/*
   2386      1.13     oster 
   2387      1.13     oster 			   we claim this disk is "optimal" if it's
   2388      1.13     oster 			   rf_ds_used_spare, as that means it should be
   2389      1.13     oster 			   directly substitutable for the disk it replaced.
   2390      1.13     oster 			   We note that too...
   2391      1.13     oster 
   2392      1.13     oster 			 */
   2393      1.13     oster 
   2394      1.13     oster 			for(i=0;i<raidPtr->numRow;i++) {
   2395      1.13     oster 				for(j=0;j<raidPtr->numCol;j++) {
   2396      1.13     oster 					if ((raidPtr->Disks[i][j].spareRow ==
   2397      1.13     oster 					     0) &&
   2398      1.13     oster 					    (raidPtr->Disks[i][j].spareCol ==
   2399      1.13     oster 					     sparecol)) {
   2400      1.13     oster 						srow = i;
   2401      1.13     oster 						scol = j;
   2402      1.13     oster 						break;
   2403      1.13     oster 					}
   2404      1.13     oster 				}
   2405      1.13     oster 			}
   2406      1.13     oster 
   2407  1.29.2.1    bouyer 			/* XXX shouldn't *really* need this... */
   2408      1.13     oster 			raidread_component_label(
   2409      1.13     oster 				      raidPtr->Disks[0][sparecol].dev,
   2410      1.13     oster 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2411  1.29.2.1    bouyer 				      &clabel);
   2412      1.13     oster 			/* make sure status is noted */
   2413  1.29.2.1    bouyer 
   2414  1.29.2.1    bouyer 			raid_init_component_label(raidPtr, &clabel);
   2415  1.29.2.1    bouyer 
   2416  1.29.2.1    bouyer 			clabel.mod_counter = raidPtr->mod_counter;
   2417  1.29.2.1    bouyer 			clabel.row = srow;
   2418  1.29.2.1    bouyer 			clabel.column = scol;
   2419  1.29.2.1    bouyer 			clabel.status = rf_ds_optimal;
   2420  1.29.2.1    bouyer 
   2421      1.13     oster 			raidwrite_component_label(
   2422      1.13     oster 				      raidPtr->Disks[0][sparecol].dev,
   2423      1.13     oster 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2424  1.29.2.1    bouyer 				      &clabel);
   2425  1.29.2.1    bouyer 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2426  1.29.2.1    bouyer 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2427  1.29.2.1    bouyer 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2428  1.29.2.1    bouyer 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2429  1.29.2.1    bouyer 						       raidPtr->mod_counter);
   2430  1.29.2.1    bouyer 				}
   2431      1.13     oster 			}
   2432      1.13     oster 		}
   2433      1.13     oster 	}
   2434      1.13     oster 	/* 	printf("Component labels updated\n"); */
   2435  1.29.2.1    bouyer }
   2436  1.29.2.1    bouyer 
   2437  1.29.2.1    bouyer void
   2438  1.29.2.1    bouyer rf_close_component(raidPtr, vp, auto_configured)
   2439  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2440  1.29.2.1    bouyer 	struct vnode *vp;
   2441  1.29.2.1    bouyer 	int auto_configured;
   2442  1.29.2.1    bouyer {
   2443  1.29.2.1    bouyer 	struct proc *p;
   2444  1.29.2.1    bouyer 
   2445  1.29.2.1    bouyer 	p = raidPtr->engine_thread;
   2446  1.29.2.1    bouyer 
   2447  1.29.2.1    bouyer 	if (vp != NULL) {
   2448  1.29.2.1    bouyer 		if (auto_configured == 1) {
   2449  1.29.2.1    bouyer 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2450  1.29.2.1    bouyer 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2451  1.29.2.1    bouyer 			vput(vp);
   2452  1.29.2.1    bouyer 
   2453  1.29.2.1    bouyer 		} else {
   2454  1.29.2.1    bouyer 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2455  1.29.2.1    bouyer 		}
   2456  1.29.2.1    bouyer 	} else {
   2457  1.29.2.1    bouyer 		printf("vnode was NULL\n");
   2458  1.29.2.1    bouyer 	}
   2459  1.29.2.1    bouyer }
   2460  1.29.2.1    bouyer 
   2461  1.29.2.1    bouyer 
   2462  1.29.2.1    bouyer void
   2463  1.29.2.1    bouyer rf_UnconfigureVnodes(raidPtr)
   2464  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2465  1.29.2.1    bouyer {
   2466  1.29.2.1    bouyer 	int r,c;
   2467  1.29.2.1    bouyer 	struct proc *p;
   2468  1.29.2.1    bouyer 	struct vnode *vp;
   2469  1.29.2.1    bouyer 	int acd;
   2470  1.29.2.1    bouyer 
   2471  1.29.2.1    bouyer 
   2472  1.29.2.1    bouyer 	/* We take this opportunity to close the vnodes like we should.. */
   2473  1.29.2.1    bouyer 
   2474  1.29.2.1    bouyer 	p = raidPtr->engine_thread;
   2475  1.29.2.1    bouyer 
   2476  1.29.2.1    bouyer 	for (r = 0; r < raidPtr->numRow; r++) {
   2477  1.29.2.1    bouyer 		for (c = 0; c < raidPtr->numCol; c++) {
   2478  1.29.2.1    bouyer 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2479  1.29.2.1    bouyer 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2480  1.29.2.1    bouyer 			acd = raidPtr->Disks[r][c].auto_configured;
   2481  1.29.2.1    bouyer 			rf_close_component(raidPtr, vp, acd);
   2482  1.29.2.1    bouyer 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2483  1.29.2.1    bouyer 			raidPtr->Disks[r][c].auto_configured = 0;
   2484  1.29.2.1    bouyer 		}
   2485  1.29.2.1    bouyer 	}
   2486  1.29.2.1    bouyer 	for (r = 0; r < raidPtr->numSpare; r++) {
   2487  1.29.2.1    bouyer 		printf("Closing vnode for spare: %d\n", r);
   2488  1.29.2.1    bouyer 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2489  1.29.2.1    bouyer 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2490  1.29.2.1    bouyer 		rf_close_component(raidPtr, vp, acd);
   2491  1.29.2.1    bouyer 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2492  1.29.2.1    bouyer 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2493  1.29.2.1    bouyer 	}
   2494  1.29.2.1    bouyer }
   2495  1.29.2.1    bouyer 
   2496  1.29.2.1    bouyer 
   2497  1.29.2.1    bouyer void
   2498  1.29.2.1    bouyer rf_ReconThread(req)
   2499  1.29.2.1    bouyer 	struct rf_recon_req *req;
   2500  1.29.2.1    bouyer {
   2501  1.29.2.1    bouyer 	int     s;
   2502  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2503  1.29.2.1    bouyer 
   2504  1.29.2.1    bouyer 	s = splbio();
   2505  1.29.2.1    bouyer 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2506  1.29.2.1    bouyer 	raidPtr->recon_in_progress = 1;
   2507  1.29.2.1    bouyer 
   2508  1.29.2.1    bouyer 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2509  1.29.2.1    bouyer 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2510  1.29.2.1    bouyer 
   2511  1.29.2.1    bouyer 	/* XXX get rid of this! we don't need it at all.. */
   2512  1.29.2.1    bouyer 	RF_Free(req, sizeof(*req));
   2513  1.29.2.1    bouyer 
   2514  1.29.2.1    bouyer 	raidPtr->recon_in_progress = 0;
   2515  1.29.2.1    bouyer 	splx(s);
   2516  1.29.2.1    bouyer 
   2517  1.29.2.1    bouyer 	/* That's all... */
   2518  1.29.2.1    bouyer 	kthread_exit(0);        /* does not return */
   2519  1.29.2.1    bouyer }
   2520  1.29.2.1    bouyer 
   2521  1.29.2.1    bouyer void
   2522  1.29.2.1    bouyer rf_RewriteParityThread(raidPtr)
   2523  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2524  1.29.2.1    bouyer {
   2525  1.29.2.1    bouyer 	int retcode;
   2526  1.29.2.1    bouyer 	int s;
   2527  1.29.2.1    bouyer 
   2528  1.29.2.1    bouyer 	raidPtr->parity_rewrite_in_progress = 1;
   2529  1.29.2.1    bouyer 	s = splbio();
   2530  1.29.2.1    bouyer 	retcode = rf_RewriteParity(raidPtr);
   2531  1.29.2.1    bouyer 	splx(s);
   2532  1.29.2.1    bouyer 	if (retcode) {
   2533  1.29.2.1    bouyer 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2534  1.29.2.1    bouyer 	} else {
   2535  1.29.2.1    bouyer 		/* set the clean bit!  If we shutdown correctly,
   2536  1.29.2.1    bouyer 		   the clean bit on each component label will get
   2537  1.29.2.1    bouyer 		   set */
   2538  1.29.2.1    bouyer 		raidPtr->parity_good = RF_RAID_CLEAN;
   2539  1.29.2.1    bouyer 	}
   2540  1.29.2.1    bouyer 	raidPtr->parity_rewrite_in_progress = 0;
   2541  1.29.2.1    bouyer 
   2542  1.29.2.1    bouyer 	/* Anyone waiting for us to stop?  If so, inform them... */
   2543  1.29.2.1    bouyer 	if (raidPtr->waitShutdown) {
   2544  1.29.2.1    bouyer 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2545  1.29.2.1    bouyer 	}
   2546  1.29.2.1    bouyer 
   2547  1.29.2.1    bouyer 	/* That's all... */
   2548  1.29.2.1    bouyer 	kthread_exit(0);        /* does not return */
   2549  1.29.2.1    bouyer }
   2550  1.29.2.1    bouyer 
   2551  1.29.2.1    bouyer 
   2552  1.29.2.1    bouyer void
   2553  1.29.2.1    bouyer rf_CopybackThread(raidPtr)
   2554  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2555  1.29.2.1    bouyer {
   2556  1.29.2.1    bouyer 	int s;
   2557  1.29.2.1    bouyer 
   2558  1.29.2.1    bouyer 	raidPtr->copyback_in_progress = 1;
   2559  1.29.2.1    bouyer 	s = splbio();
   2560  1.29.2.1    bouyer 	rf_CopybackReconstructedData(raidPtr);
   2561  1.29.2.1    bouyer 	splx(s);
   2562  1.29.2.1    bouyer 	raidPtr->copyback_in_progress = 0;
   2563  1.29.2.1    bouyer 
   2564  1.29.2.1    bouyer 	/* That's all... */
   2565  1.29.2.1    bouyer 	kthread_exit(0);        /* does not return */
   2566  1.29.2.1    bouyer }
   2567  1.29.2.1    bouyer 
   2568  1.29.2.1    bouyer 
   2569  1.29.2.1    bouyer void
   2570  1.29.2.1    bouyer rf_ReconstructInPlaceThread(req)
   2571  1.29.2.1    bouyer 	struct rf_recon_req *req;
   2572  1.29.2.1    bouyer {
   2573  1.29.2.1    bouyer 	int retcode;
   2574  1.29.2.1    bouyer 	int s;
   2575  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2576  1.29.2.1    bouyer 
   2577  1.29.2.1    bouyer 	s = splbio();
   2578  1.29.2.1    bouyer 	raidPtr = req->raidPtr;
   2579  1.29.2.1    bouyer 	raidPtr->recon_in_progress = 1;
   2580  1.29.2.1    bouyer 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2581  1.29.2.1    bouyer 	RF_Free(req, sizeof(*req));
   2582  1.29.2.1    bouyer 	raidPtr->recon_in_progress = 0;
   2583  1.29.2.1    bouyer 	splx(s);
   2584  1.29.2.1    bouyer 
   2585  1.29.2.1    bouyer 	/* That's all... */
   2586  1.29.2.1    bouyer 	kthread_exit(0);        /* does not return */
   2587  1.29.2.1    bouyer }
   2588  1.29.2.1    bouyer 
   2589  1.29.2.1    bouyer void
   2590  1.29.2.1    bouyer rf_mountroot_hook(dev)
   2591  1.29.2.1    bouyer 	struct device *dev;
   2592  1.29.2.1    bouyer {
   2593  1.29.2.1    bouyer 
   2594  1.29.2.1    bouyer }
   2595  1.29.2.1    bouyer 
   2596  1.29.2.1    bouyer 
   2597  1.29.2.1    bouyer RF_AutoConfig_t *
   2598  1.29.2.1    bouyer rf_find_raid_components()
   2599  1.29.2.1    bouyer {
   2600  1.29.2.1    bouyer 	struct devnametobdevmaj *dtobdm;
   2601  1.29.2.1    bouyer 	struct vnode *vp;
   2602  1.29.2.1    bouyer 	struct disklabel label;
   2603  1.29.2.1    bouyer 	struct device *dv;
   2604  1.29.2.1    bouyer 	char *cd_name;
   2605  1.29.2.1    bouyer 	dev_t dev;
   2606  1.29.2.1    bouyer 	int error;
   2607  1.29.2.1    bouyer 	int i;
   2608  1.29.2.1    bouyer 	int good_one;
   2609  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2610  1.29.2.1    bouyer 	RF_AutoConfig_t *ac_list;
   2611  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   2612  1.29.2.1    bouyer 
   2613  1.29.2.1    bouyer 
   2614  1.29.2.1    bouyer 	/* initialize the AutoConfig list */
   2615  1.29.2.1    bouyer 	ac_list = NULL;
   2616  1.29.2.1    bouyer 
   2617  1.29.2.1    bouyer if (raidautoconfig) {
   2618  1.29.2.1    bouyer 
   2619  1.29.2.1    bouyer 	/* we begin by trolling through *all* the devices on the system */
   2620  1.29.2.1    bouyer 
   2621  1.29.2.1    bouyer 	for (dv = alldevs.tqh_first; dv != NULL;
   2622  1.29.2.1    bouyer 	     dv = dv->dv_list.tqe_next) {
   2623  1.29.2.1    bouyer 
   2624  1.29.2.1    bouyer 		/* we are only interested in disks... */
   2625  1.29.2.1    bouyer 		if (dv->dv_class != DV_DISK)
   2626  1.29.2.1    bouyer 			continue;
   2627  1.29.2.1    bouyer 
   2628  1.29.2.1    bouyer 		/* we don't care about floppies... */
   2629  1.29.2.1    bouyer 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2630  1.29.2.1    bouyer 			continue;
   2631  1.29.2.1    bouyer 		}
   2632  1.29.2.1    bouyer 
   2633  1.29.2.1    bouyer 		/* need to find the device_name_to_block_device_major stuff */
   2634  1.29.2.1    bouyer 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2635  1.29.2.1    bouyer 		dtobdm = dev_name2blk;
   2636  1.29.2.1    bouyer 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2637  1.29.2.1    bouyer 			dtobdm++;
   2638  1.29.2.1    bouyer 		}
   2639  1.29.2.1    bouyer 
   2640  1.29.2.1    bouyer 		/* get a vnode for the raw partition of this disk */
   2641  1.29.2.1    bouyer 
   2642  1.29.2.1    bouyer 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2643  1.29.2.1    bouyer 		if (bdevvp(dev, &vp))
   2644  1.29.2.1    bouyer 			panic("RAID can't alloc vnode");
   2645  1.29.2.1    bouyer 
   2646  1.29.2.1    bouyer 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2647  1.29.2.1    bouyer 
   2648  1.29.2.1    bouyer 		if (error) {
   2649  1.29.2.1    bouyer 			/* "Who cares."  Continue looking
   2650  1.29.2.1    bouyer 			   for something that exists*/
   2651  1.29.2.1    bouyer 			vput(vp);
   2652  1.29.2.1    bouyer 			continue;
   2653  1.29.2.1    bouyer 		}
   2654  1.29.2.1    bouyer 
   2655  1.29.2.1    bouyer 		/* Ok, the disk exists.  Go get the disklabel. */
   2656  1.29.2.1    bouyer 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2657  1.29.2.1    bouyer 				  FREAD, NOCRED, 0);
   2658  1.29.2.1    bouyer 		if (error) {
   2659  1.29.2.1    bouyer 			/*
   2660  1.29.2.1    bouyer 			 * XXX can't happen - open() would
   2661  1.29.2.1    bouyer 			 * have errored out (or faked up one)
   2662  1.29.2.1    bouyer 			 */
   2663  1.29.2.1    bouyer 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2664  1.29.2.1    bouyer 			       dv->dv_xname, 'a' + RAW_PART, error);
   2665  1.29.2.1    bouyer 		}
   2666  1.29.2.1    bouyer 
   2667  1.29.2.1    bouyer 		/* don't need this any more.  We'll allocate it again
   2668  1.29.2.1    bouyer 		   a little later if we really do... */
   2669  1.29.2.1    bouyer 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2670  1.29.2.1    bouyer 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2671  1.29.2.1    bouyer 		vput(vp);
   2672  1.29.2.1    bouyer 
   2673  1.29.2.1    bouyer 		for (i=0; i < label.d_npartitions; i++) {
   2674  1.29.2.1    bouyer 			/* We only support partitions marked as RAID */
   2675  1.29.2.1    bouyer 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2676  1.29.2.1    bouyer 				continue;
   2677  1.29.2.1    bouyer 
   2678  1.29.2.1    bouyer 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2679  1.29.2.1    bouyer 			if (bdevvp(dev, &vp))
   2680  1.29.2.1    bouyer 				panic("RAID can't alloc vnode");
   2681  1.29.2.1    bouyer 
   2682  1.29.2.1    bouyer 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2683  1.29.2.1    bouyer 			if (error) {
   2684  1.29.2.1    bouyer 				/* Whatever... */
   2685  1.29.2.1    bouyer 				vput(vp);
   2686  1.29.2.1    bouyer 				continue;
   2687  1.29.2.1    bouyer 			}
   2688  1.29.2.1    bouyer 
   2689  1.29.2.1    bouyer 			good_one = 0;
   2690  1.29.2.1    bouyer 
   2691  1.29.2.1    bouyer 			clabel = (RF_ComponentLabel_t *)
   2692  1.29.2.1    bouyer 				malloc(sizeof(RF_ComponentLabel_t),
   2693  1.29.2.1    bouyer 				       M_RAIDFRAME, M_NOWAIT);
   2694  1.29.2.1    bouyer 			if (clabel == NULL) {
   2695  1.29.2.1    bouyer 				/* XXX CLEANUP HERE */
   2696  1.29.2.1    bouyer 				printf("RAID auto config: out of memory!\n");
   2697  1.29.2.1    bouyer 				return(NULL); /* XXX probably should panic? */
   2698  1.29.2.1    bouyer 			}
   2699  1.29.2.1    bouyer 
   2700  1.29.2.1    bouyer 			if (!raidread_component_label(dev, vp, clabel)) {
   2701  1.29.2.1    bouyer 				/* Got the label.  Does it look reasonable? */
   2702  1.29.2.1    bouyer 				if (rf_reasonable_label(clabel) &&
   2703  1.29.2.1    bouyer 				    (clabel->partitionSize <=
   2704  1.29.2.1    bouyer 				     label.d_partitions[i].p_size)) {
   2705  1.29.2.1    bouyer #if DEBUG
   2706  1.29.2.1    bouyer 					printf("Component on: %s%c: %d\n",
   2707  1.29.2.1    bouyer 					       dv->dv_xname, 'a'+i,
   2708  1.29.2.1    bouyer 					       label.d_partitions[i].p_size);
   2709  1.29.2.1    bouyer 					rf_print_component_label(clabel);
   2710  1.29.2.1    bouyer #endif
   2711  1.29.2.1    bouyer 					/* if it's reasonable, add it,
   2712  1.29.2.1    bouyer 					   else ignore it. */
   2713  1.29.2.1    bouyer 					ac = (RF_AutoConfig_t *)
   2714  1.29.2.1    bouyer 						malloc(sizeof(RF_AutoConfig_t),
   2715  1.29.2.1    bouyer 						       M_RAIDFRAME,
   2716  1.29.2.1    bouyer 						       M_NOWAIT);
   2717  1.29.2.1    bouyer 					if (ac == NULL) {
   2718  1.29.2.1    bouyer 						/* XXX should panic?? */
   2719  1.29.2.1    bouyer 						return(NULL);
   2720  1.29.2.1    bouyer 					}
   2721  1.29.2.1    bouyer 
   2722  1.29.2.1    bouyer 					sprintf(ac->devname, "%s%c",
   2723  1.29.2.1    bouyer 						dv->dv_xname, 'a'+i);
   2724  1.29.2.1    bouyer 					ac->dev = dev;
   2725  1.29.2.1    bouyer 					ac->vp = vp;
   2726  1.29.2.1    bouyer 					ac->clabel = clabel;
   2727  1.29.2.1    bouyer 					ac->next = ac_list;
   2728  1.29.2.1    bouyer 					ac_list = ac;
   2729  1.29.2.1    bouyer 					good_one = 1;
   2730  1.29.2.1    bouyer 				}
   2731  1.29.2.1    bouyer 			}
   2732  1.29.2.1    bouyer 			if (!good_one) {
   2733  1.29.2.1    bouyer 				/* cleanup */
   2734  1.29.2.1    bouyer 				free(clabel, M_RAIDFRAME);
   2735  1.29.2.1    bouyer 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2736  1.29.2.1    bouyer 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2737  1.29.2.1    bouyer 				vput(vp);
   2738  1.29.2.1    bouyer 			}
   2739  1.29.2.1    bouyer 		}
   2740  1.29.2.1    bouyer 	}
   2741  1.29.2.1    bouyer }
   2742  1.29.2.1    bouyer return(ac_list);
   2743  1.29.2.1    bouyer }
   2744  1.29.2.1    bouyer 
   2745  1.29.2.1    bouyer static int
   2746  1.29.2.1    bouyer rf_reasonable_label(clabel)
   2747  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2748  1.29.2.1    bouyer {
   2749  1.29.2.1    bouyer 
   2750  1.29.2.1    bouyer 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2751  1.29.2.1    bouyer 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2752  1.29.2.1    bouyer 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2753  1.29.2.1    bouyer 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2754  1.29.2.1    bouyer 	    clabel->row >=0 &&
   2755  1.29.2.1    bouyer 	    clabel->column >= 0 &&
   2756  1.29.2.1    bouyer 	    clabel->num_rows > 0 &&
   2757  1.29.2.1    bouyer 	    clabel->num_columns > 0 &&
   2758  1.29.2.1    bouyer 	    clabel->row < clabel->num_rows &&
   2759  1.29.2.1    bouyer 	    clabel->column < clabel->num_columns &&
   2760  1.29.2.1    bouyer 	    clabel->blockSize > 0 &&
   2761  1.29.2.1    bouyer 	    clabel->numBlocks > 0) {
   2762  1.29.2.1    bouyer 		/* label looks reasonable enough... */
   2763  1.29.2.1    bouyer 		return(1);
   2764  1.29.2.1    bouyer 	}
   2765  1.29.2.1    bouyer 	return(0);
   2766  1.29.2.1    bouyer }
   2767  1.29.2.1    bouyer 
   2768  1.29.2.1    bouyer 
   2769  1.29.2.1    bouyer void
   2770  1.29.2.1    bouyer rf_print_component_label(clabel)
   2771  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2772  1.29.2.1    bouyer {
   2773  1.29.2.1    bouyer 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2774  1.29.2.1    bouyer 	       clabel->row, clabel->column,
   2775  1.29.2.1    bouyer 	       clabel->num_rows, clabel->num_columns);
   2776  1.29.2.1    bouyer 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2777  1.29.2.1    bouyer 	       clabel->version, clabel->serial_number,
   2778  1.29.2.1    bouyer 	       clabel->mod_counter);
   2779  1.29.2.1    bouyer 	printf("   Clean: %s Status: %d\n",
   2780  1.29.2.1    bouyer 	       clabel->clean ? "Yes" : "No", clabel->status );
   2781  1.29.2.1    bouyer 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2782  1.29.2.1    bouyer 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2783  1.29.2.1    bouyer 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2784  1.29.2.1    bouyer 	       (char) clabel->parityConfig, clabel->blockSize,
   2785  1.29.2.1    bouyer 	       clabel->numBlocks);
   2786  1.29.2.1    bouyer 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2787  1.29.2.1    bouyer 	printf("   Contains root partition: %s\n",
   2788  1.29.2.1    bouyer 	       clabel->root_partition ? "Yes" : "No" );
   2789  1.29.2.1    bouyer 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2790  1.29.2.1    bouyer #if 0
   2791  1.29.2.1    bouyer 	   printf("   Config order: %d\n", clabel->config_order);
   2792  1.29.2.1    bouyer #endif
   2793  1.29.2.1    bouyer 
   2794  1.29.2.1    bouyer }
   2795  1.29.2.1    bouyer 
   2796  1.29.2.1    bouyer RF_ConfigSet_t *
   2797  1.29.2.1    bouyer rf_create_auto_sets(ac_list)
   2798  1.29.2.1    bouyer 	RF_AutoConfig_t *ac_list;
   2799  1.29.2.1    bouyer {
   2800  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   2801  1.29.2.1    bouyer 	RF_ConfigSet_t *config_sets;
   2802  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   2803  1.29.2.1    bouyer 	RF_AutoConfig_t *ac_next;
   2804  1.29.2.1    bouyer 
   2805  1.29.2.1    bouyer 
   2806  1.29.2.1    bouyer 	config_sets = NULL;
   2807  1.29.2.1    bouyer 
   2808  1.29.2.1    bouyer 	/* Go through the AutoConfig list, and figure out which components
   2809  1.29.2.1    bouyer 	   belong to what sets.  */
   2810  1.29.2.1    bouyer 	ac = ac_list;
   2811  1.29.2.1    bouyer 	while(ac!=NULL) {
   2812  1.29.2.1    bouyer 		/* we're going to putz with ac->next, so save it here
   2813  1.29.2.1    bouyer 		   for use at the end of the loop */
   2814  1.29.2.1    bouyer 		ac_next = ac->next;
   2815  1.29.2.1    bouyer 
   2816  1.29.2.1    bouyer 		if (config_sets == NULL) {
   2817  1.29.2.1    bouyer 			/* will need at least this one... */
   2818  1.29.2.1    bouyer 			config_sets = (RF_ConfigSet_t *)
   2819  1.29.2.1    bouyer 				malloc(sizeof(RF_ConfigSet_t),
   2820  1.29.2.1    bouyer 				       M_RAIDFRAME, M_NOWAIT);
   2821  1.29.2.1    bouyer 			if (config_sets == NULL) {
   2822  1.29.2.1    bouyer 				panic("rf_create_auto_sets: No memory!\n");
   2823  1.29.2.1    bouyer 			}
   2824  1.29.2.1    bouyer 			/* this one is easy :) */
   2825  1.29.2.1    bouyer 			config_sets->ac = ac;
   2826  1.29.2.1    bouyer 			config_sets->next = NULL;
   2827  1.29.2.1    bouyer 			config_sets->rootable = 0;
   2828  1.29.2.1    bouyer 			ac->next = NULL;
   2829  1.29.2.1    bouyer 		} else {
   2830  1.29.2.1    bouyer 			/* which set does this component fit into? */
   2831  1.29.2.1    bouyer 			cset = config_sets;
   2832  1.29.2.1    bouyer 			while(cset!=NULL) {
   2833  1.29.2.1    bouyer 				if (rf_does_it_fit(cset, ac)) {
   2834  1.29.2.1    bouyer 					/* looks like it matches... */
   2835  1.29.2.1    bouyer 					ac->next = cset->ac;
   2836  1.29.2.1    bouyer 					cset->ac = ac;
   2837  1.29.2.1    bouyer 					break;
   2838  1.29.2.1    bouyer 				}
   2839  1.29.2.1    bouyer 				cset = cset->next;
   2840  1.29.2.1    bouyer 			}
   2841  1.29.2.1    bouyer 			if (cset==NULL) {
   2842  1.29.2.1    bouyer 				/* didn't find a match above... new set..*/
   2843  1.29.2.1    bouyer 				cset = (RF_ConfigSet_t *)
   2844  1.29.2.1    bouyer 					malloc(sizeof(RF_ConfigSet_t),
   2845  1.29.2.1    bouyer 					       M_RAIDFRAME, M_NOWAIT);
   2846  1.29.2.1    bouyer 				if (cset == NULL) {
   2847  1.29.2.1    bouyer 					panic("rf_create_auto_sets: No memory!\n");
   2848  1.29.2.1    bouyer 				}
   2849  1.29.2.1    bouyer 				cset->ac = ac;
   2850  1.29.2.1    bouyer 				ac->next = NULL;
   2851  1.29.2.1    bouyer 				cset->next = config_sets;
   2852  1.29.2.1    bouyer 				cset->rootable = 0;
   2853  1.29.2.1    bouyer 				config_sets = cset;
   2854  1.29.2.1    bouyer 			}
   2855  1.29.2.1    bouyer 		}
   2856  1.29.2.1    bouyer 		ac = ac_next;
   2857  1.29.2.1    bouyer 	}
   2858  1.29.2.1    bouyer 
   2859  1.29.2.1    bouyer 
   2860  1.29.2.1    bouyer 	return(config_sets);
   2861  1.29.2.1    bouyer }
   2862  1.29.2.1    bouyer 
   2863  1.29.2.1    bouyer static int
   2864  1.29.2.1    bouyer rf_does_it_fit(cset, ac)
   2865  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   2866  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   2867  1.29.2.1    bouyer {
   2868  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel1, *clabel2;
   2869  1.29.2.1    bouyer 
   2870  1.29.2.1    bouyer 	/* If this one matches the *first* one in the set, that's good
   2871  1.29.2.1    bouyer 	   enough, since the other members of the set would have been
   2872  1.29.2.1    bouyer 	   through here too... */
   2873  1.29.2.1    bouyer 	/* note that we are not checking partitionSize here..
   2874  1.29.2.1    bouyer 
   2875  1.29.2.1    bouyer 	   Note that we are also not checking the mod_counters here.
   2876  1.29.2.1    bouyer 	   If everything else matches execpt the mod_counter, that's
   2877  1.29.2.1    bouyer 	   good enough for this test.  We will deal with the mod_counters
   2878  1.29.2.1    bouyer 	   a little later in the autoconfiguration process.
   2879  1.29.2.1    bouyer 
   2880  1.29.2.1    bouyer 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2881  1.29.2.1    bouyer 
   2882  1.29.2.1    bouyer 	   The reason we don't check for this is that failed disks
   2883  1.29.2.1    bouyer 	   will have lower modification counts.  If those disks are
   2884  1.29.2.1    bouyer 	   not added to the set they used to belong to, then they will
   2885  1.29.2.1    bouyer 	   form their own set, which may result in 2 different sets,
   2886  1.29.2.1    bouyer 	   for example, competing to be configured at raid0, and
   2887  1.29.2.1    bouyer 	   perhaps competing to be the root filesystem set.  If the
   2888  1.29.2.1    bouyer 	   wrong ones get configured, or both attempt to become /,
   2889  1.29.2.1    bouyer 	   weird behaviour and or serious lossage will occur.  Thus we
   2890  1.29.2.1    bouyer 	   need to bring them into the fold here, and kick them out at
   2891  1.29.2.1    bouyer 	   a later point.
   2892  1.29.2.1    bouyer 
   2893  1.29.2.1    bouyer 	*/
   2894  1.29.2.1    bouyer 
   2895  1.29.2.1    bouyer 	clabel1 = cset->ac->clabel;
   2896  1.29.2.1    bouyer 	clabel2 = ac->clabel;
   2897  1.29.2.1    bouyer 	if ((clabel1->version == clabel2->version) &&
   2898  1.29.2.1    bouyer 	    (clabel1->serial_number == clabel2->serial_number) &&
   2899  1.29.2.1    bouyer 	    (clabel1->num_rows == clabel2->num_rows) &&
   2900  1.29.2.1    bouyer 	    (clabel1->num_columns == clabel2->num_columns) &&
   2901  1.29.2.1    bouyer 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2902  1.29.2.1    bouyer 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2903  1.29.2.1    bouyer 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2904  1.29.2.1    bouyer 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2905  1.29.2.1    bouyer 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2906  1.29.2.1    bouyer 	    (clabel1->blockSize == clabel2->blockSize) &&
   2907  1.29.2.1    bouyer 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2908  1.29.2.1    bouyer 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2909  1.29.2.1    bouyer 	    (clabel1->root_partition == clabel2->root_partition) &&
   2910  1.29.2.1    bouyer 	    (clabel1->last_unit == clabel2->last_unit) &&
   2911  1.29.2.1    bouyer 	    (clabel1->config_order == clabel2->config_order)) {
   2912  1.29.2.1    bouyer 		/* if it get's here, it almost *has* to be a match */
   2913  1.29.2.1    bouyer 	} else {
   2914  1.29.2.1    bouyer 		/* it's not consistent with somebody in the set..
   2915  1.29.2.1    bouyer 		   punt */
   2916  1.29.2.1    bouyer 		return(0);
   2917  1.29.2.1    bouyer 	}
   2918  1.29.2.1    bouyer 	/* all was fine.. it must fit... */
   2919  1.29.2.1    bouyer 	return(1);
   2920  1.29.2.1    bouyer }
   2921  1.29.2.1    bouyer 
   2922  1.29.2.1    bouyer int
   2923  1.29.2.1    bouyer rf_have_enough_components(cset)
   2924  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   2925  1.29.2.1    bouyer {
   2926  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   2927  1.29.2.1    bouyer 	RF_AutoConfig_t *auto_config;
   2928  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2929  1.29.2.1    bouyer 	int r,c;
   2930  1.29.2.1    bouyer 	int num_rows;
   2931  1.29.2.1    bouyer 	int num_cols;
   2932  1.29.2.1    bouyer 	int num_missing;
   2933  1.29.2.1    bouyer 	int mod_counter;
   2934  1.29.2.1    bouyer 	int mod_counter_found;
   2935  1.29.2.1    bouyer 	int even_pair_failed;
   2936  1.29.2.1    bouyer 	char parity_type;
   2937  1.29.2.1    bouyer 
   2938  1.29.2.1    bouyer 
   2939  1.29.2.1    bouyer 	/* check to see that we have enough 'live' components
   2940  1.29.2.1    bouyer 	   of this set.  If so, we can configure it if necessary */
   2941  1.29.2.1    bouyer 
   2942  1.29.2.1    bouyer 	num_rows = cset->ac->clabel->num_rows;
   2943  1.29.2.1    bouyer 	num_cols = cset->ac->clabel->num_columns;
   2944  1.29.2.1    bouyer 	parity_type = cset->ac->clabel->parityConfig;
   2945  1.29.2.1    bouyer 
   2946  1.29.2.1    bouyer 	/* XXX Check for duplicate components!?!?!? */
   2947  1.29.2.1    bouyer 
   2948  1.29.2.1    bouyer 	/* Determine what the mod_counter is supposed to be for this set. */
   2949  1.29.2.1    bouyer 
   2950  1.29.2.1    bouyer 	mod_counter_found = 0;
   2951  1.29.2.1    bouyer 	ac = cset->ac;
   2952  1.29.2.1    bouyer 	while(ac!=NULL) {
   2953  1.29.2.1    bouyer 		if (mod_counter_found==0) {
   2954  1.29.2.1    bouyer 			mod_counter = ac->clabel->mod_counter;
   2955  1.29.2.1    bouyer 			mod_counter_found = 1;
   2956  1.29.2.1    bouyer 		} else {
   2957  1.29.2.1    bouyer 			if (ac->clabel->mod_counter > mod_counter) {
   2958  1.29.2.1    bouyer 				mod_counter = ac->clabel->mod_counter;
   2959  1.29.2.1    bouyer 			}
   2960  1.29.2.1    bouyer 		}
   2961  1.29.2.1    bouyer 		ac = ac->next;
   2962  1.29.2.1    bouyer 	}
   2963  1.29.2.1    bouyer 
   2964  1.29.2.1    bouyer 	num_missing = 0;
   2965  1.29.2.1    bouyer 	auto_config = cset->ac;
   2966  1.29.2.1    bouyer 
   2967  1.29.2.1    bouyer 	for(r=0; r<num_rows; r++) {
   2968  1.29.2.1    bouyer 		even_pair_failed = 0;
   2969  1.29.2.1    bouyer 		for(c=0; c<num_cols; c++) {
   2970  1.29.2.1    bouyer 			ac = auto_config;
   2971  1.29.2.1    bouyer 			while(ac!=NULL) {
   2972  1.29.2.1    bouyer 				if ((ac->clabel->row == r) &&
   2973  1.29.2.1    bouyer 				    (ac->clabel->column == c) &&
   2974  1.29.2.1    bouyer 				    (ac->clabel->mod_counter == mod_counter)) {
   2975  1.29.2.1    bouyer 					/* it's this one... */
   2976  1.29.2.1    bouyer #if DEBUG
   2977  1.29.2.1    bouyer 					printf("Found: %s at %d,%d\n",
   2978  1.29.2.1    bouyer 					       ac->devname,r,c);
   2979  1.29.2.1    bouyer #endif
   2980  1.29.2.1    bouyer 					break;
   2981  1.29.2.1    bouyer 				}
   2982  1.29.2.1    bouyer 				ac=ac->next;
   2983  1.29.2.1    bouyer 			}
   2984  1.29.2.1    bouyer 			if (ac==NULL) {
   2985  1.29.2.1    bouyer 				/* Didn't find one here! */
   2986  1.29.2.1    bouyer 				/* special case for RAID 1, especially
   2987  1.29.2.1    bouyer 				   where there are more than 2
   2988  1.29.2.1    bouyer 				   components (where RAIDframe treats
   2989  1.29.2.1    bouyer 				   things a little differently :( ) */
   2990  1.29.2.1    bouyer 				if (parity_type == '1') {
   2991  1.29.2.1    bouyer 					if (c%2 == 0) { /* even component */
   2992  1.29.2.1    bouyer 						even_pair_failed = 1;
   2993  1.29.2.1    bouyer 					} else { /* odd component.  If
   2994  1.29.2.1    bouyer                                                     we're failed, and
   2995  1.29.2.1    bouyer                                                     so is the even
   2996  1.29.2.1    bouyer                                                     component, it's
   2997  1.29.2.1    bouyer                                                     "Good Night, Charlie" */
   2998  1.29.2.1    bouyer 						if (even_pair_failed == 1) {
   2999  1.29.2.1    bouyer 							return(0);
   3000  1.29.2.1    bouyer 						}
   3001  1.29.2.1    bouyer 					}
   3002  1.29.2.1    bouyer 				} else {
   3003  1.29.2.1    bouyer 					/* normal accounting */
   3004  1.29.2.1    bouyer 					num_missing++;
   3005  1.29.2.1    bouyer 				}
   3006  1.29.2.1    bouyer 			}
   3007  1.29.2.1    bouyer 			if ((parity_type == '1') && (c%2 == 1)) {
   3008  1.29.2.1    bouyer 				/* Just did an even component, and we didn't
   3009  1.29.2.1    bouyer 				   bail.. reset the even_pair_failed flag,
   3010  1.29.2.1    bouyer 				   and go on to the next component.... */
   3011  1.29.2.1    bouyer 				even_pair_failed = 0;
   3012  1.29.2.1    bouyer 			}
   3013  1.29.2.1    bouyer 		}
   3014  1.29.2.1    bouyer 	}
   3015  1.29.2.1    bouyer 
   3016  1.29.2.1    bouyer 	clabel = cset->ac->clabel;
   3017  1.29.2.1    bouyer 
   3018  1.29.2.1    bouyer 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3019  1.29.2.1    bouyer 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3020  1.29.2.1    bouyer 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3021  1.29.2.1    bouyer 		/* XXX this needs to be made *much* more general */
   3022  1.29.2.1    bouyer 		/* Too many failures */
   3023  1.29.2.1    bouyer 		return(0);
   3024  1.29.2.1    bouyer 	}
   3025  1.29.2.1    bouyer 	/* otherwise, all is well, and we've got enough to take a kick
   3026  1.29.2.1    bouyer 	   at autoconfiguring this set */
   3027  1.29.2.1    bouyer 	return(1);
   3028  1.29.2.1    bouyer }
   3029  1.29.2.1    bouyer 
   3030  1.29.2.1    bouyer void
   3031  1.29.2.1    bouyer rf_create_configuration(ac,config,raidPtr)
   3032  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   3033  1.29.2.1    bouyer 	RF_Config_t *config;
   3034  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3035  1.29.2.1    bouyer {
   3036  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   3037  1.29.2.1    bouyer 	int i;
   3038  1.29.2.1    bouyer 
   3039  1.29.2.1    bouyer 	clabel = ac->clabel;
   3040  1.29.2.1    bouyer 
   3041  1.29.2.1    bouyer 	/* 1. Fill in the common stuff */
   3042  1.29.2.1    bouyer 	config->numRow = clabel->num_rows;
   3043  1.29.2.1    bouyer 	config->numCol = clabel->num_columns;
   3044  1.29.2.1    bouyer 	config->numSpare = 0; /* XXX should this be set here? */
   3045  1.29.2.1    bouyer 	config->sectPerSU = clabel->sectPerSU;
   3046  1.29.2.1    bouyer 	config->SUsPerPU = clabel->SUsPerPU;
   3047  1.29.2.1    bouyer 	config->SUsPerRU = clabel->SUsPerRU;
   3048  1.29.2.1    bouyer 	config->parityConfig = clabel->parityConfig;
   3049  1.29.2.1    bouyer 	/* XXX... */
   3050  1.29.2.1    bouyer 	strcpy(config->diskQueueType,"fifo");
   3051  1.29.2.1    bouyer 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3052  1.29.2.1    bouyer 	config->layoutSpecificSize = 0; /* XXX ?? */
   3053  1.29.2.1    bouyer 
   3054  1.29.2.1    bouyer 	while(ac!=NULL) {
   3055  1.29.2.1    bouyer 		/* row/col values will be in range due to the checks
   3056  1.29.2.1    bouyer 		   in reasonable_label() */
   3057  1.29.2.1    bouyer 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3058  1.29.2.1    bouyer 		       ac->devname);
   3059  1.29.2.1    bouyer 		ac = ac->next;
   3060  1.29.2.1    bouyer 	}
   3061  1.29.2.1    bouyer 
   3062  1.29.2.1    bouyer 	for(i=0;i<RF_MAXDBGV;i++) {
   3063  1.29.2.1    bouyer 		config->debugVars[i][0] = NULL;
   3064  1.29.2.1    bouyer 	}
   3065  1.29.2.1    bouyer }
   3066  1.29.2.1    bouyer 
   3067  1.29.2.1    bouyer int
   3068  1.29.2.1    bouyer rf_set_autoconfig(raidPtr, new_value)
   3069  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3070  1.29.2.1    bouyer 	int new_value;
   3071  1.29.2.1    bouyer {
   3072  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   3073  1.29.2.1    bouyer 	struct vnode *vp;
   3074  1.29.2.1    bouyer 	dev_t dev;
   3075  1.29.2.1    bouyer 	int row, column;
   3076  1.29.2.1    bouyer 
   3077  1.29.2.1    bouyer 	raidPtr->autoconfigure = new_value;
   3078  1.29.2.1    bouyer 	for(row=0; row<raidPtr->numRow; row++) {
   3079  1.29.2.1    bouyer 		for(column=0; column<raidPtr->numCol; column++) {
   3080  1.29.2.1    bouyer 			if (raidPtr->Disks[row][column].status ==
   3081  1.29.2.1    bouyer 			    rf_ds_optimal) {
   3082  1.29.2.1    bouyer 				dev = raidPtr->Disks[row][column].dev;
   3083  1.29.2.1    bouyer 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3084  1.29.2.1    bouyer 				raidread_component_label(dev, vp, &clabel);
   3085  1.29.2.1    bouyer 				clabel.autoconfigure = new_value;
   3086  1.29.2.1    bouyer 				raidwrite_component_label(dev, vp, &clabel);
   3087  1.29.2.1    bouyer 			}
   3088  1.29.2.1    bouyer 		}
   3089  1.29.2.1    bouyer 	}
   3090  1.29.2.1    bouyer 	return(new_value);
   3091  1.29.2.1    bouyer }
   3092  1.29.2.1    bouyer 
   3093  1.29.2.1    bouyer int
   3094  1.29.2.1    bouyer rf_set_rootpartition(raidPtr, new_value)
   3095  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3096  1.29.2.1    bouyer 	int new_value;
   3097  1.29.2.1    bouyer {
   3098  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   3099  1.29.2.1    bouyer 	struct vnode *vp;
   3100  1.29.2.1    bouyer 	dev_t dev;
   3101  1.29.2.1    bouyer 	int row, column;
   3102  1.29.2.1    bouyer 
   3103  1.29.2.1    bouyer 	raidPtr->root_partition = new_value;
   3104  1.29.2.1    bouyer 	for(row=0; row<raidPtr->numRow; row++) {
   3105  1.29.2.1    bouyer 		for(column=0; column<raidPtr->numCol; column++) {
   3106  1.29.2.1    bouyer 			if (raidPtr->Disks[row][column].status ==
   3107  1.29.2.1    bouyer 			    rf_ds_optimal) {
   3108  1.29.2.1    bouyer 				dev = raidPtr->Disks[row][column].dev;
   3109  1.29.2.1    bouyer 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3110  1.29.2.1    bouyer 				raidread_component_label(dev, vp, &clabel);
   3111  1.29.2.1    bouyer 				clabel.root_partition = new_value;
   3112  1.29.2.1    bouyer 				raidwrite_component_label(dev, vp, &clabel);
   3113  1.29.2.1    bouyer 			}
   3114  1.29.2.1    bouyer 		}
   3115  1.29.2.1    bouyer 	}
   3116  1.29.2.1    bouyer 	return(new_value);
   3117  1.29.2.1    bouyer }
   3118  1.29.2.1    bouyer 
   3119  1.29.2.1    bouyer void
   3120  1.29.2.1    bouyer rf_release_all_vps(cset)
   3121  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   3122  1.29.2.1    bouyer {
   3123  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   3124  1.29.2.1    bouyer 
   3125  1.29.2.1    bouyer 	ac = cset->ac;
   3126  1.29.2.1    bouyer 	while(ac!=NULL) {
   3127  1.29.2.1    bouyer 		/* Close the vp, and give it back */
   3128  1.29.2.1    bouyer 		if (ac->vp) {
   3129  1.29.2.1    bouyer 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3130  1.29.2.1    bouyer 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3131  1.29.2.1    bouyer 			vput(ac->vp);
   3132  1.29.2.1    bouyer 			ac->vp = NULL;
   3133  1.29.2.1    bouyer 		}
   3134  1.29.2.1    bouyer 		ac = ac->next;
   3135  1.29.2.1    bouyer 	}
   3136  1.29.2.1    bouyer }
   3137  1.29.2.1    bouyer 
   3138  1.29.2.1    bouyer 
   3139  1.29.2.1    bouyer void
   3140  1.29.2.1    bouyer rf_cleanup_config_set(cset)
   3141  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   3142  1.29.2.1    bouyer {
   3143  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   3144  1.29.2.1    bouyer 	RF_AutoConfig_t *next_ac;
   3145  1.29.2.1    bouyer 
   3146  1.29.2.1    bouyer 	ac = cset->ac;
   3147  1.29.2.1    bouyer 	while(ac!=NULL) {
   3148  1.29.2.1    bouyer 		next_ac = ac->next;
   3149  1.29.2.1    bouyer 		/* nuke the label */
   3150  1.29.2.1    bouyer 		free(ac->clabel, M_RAIDFRAME);
   3151  1.29.2.1    bouyer 		/* cleanup the config structure */
   3152  1.29.2.1    bouyer 		free(ac, M_RAIDFRAME);
   3153  1.29.2.1    bouyer 		/* "next.." */
   3154  1.29.2.1    bouyer 		ac = next_ac;
   3155  1.29.2.1    bouyer 	}
   3156  1.29.2.1    bouyer 	/* and, finally, nuke the config set */
   3157  1.29.2.1    bouyer 	free(cset, M_RAIDFRAME);
   3158  1.29.2.1    bouyer }
   3159  1.29.2.1    bouyer 
   3160  1.29.2.1    bouyer 
   3161  1.29.2.1    bouyer void
   3162  1.29.2.1    bouyer raid_init_component_label(raidPtr, clabel)
   3163  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3164  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   3165  1.29.2.1    bouyer {
   3166  1.29.2.1    bouyer 	/* current version number */
   3167  1.29.2.1    bouyer 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3168  1.29.2.1    bouyer 	clabel->serial_number = raidPtr->serial_number;
   3169  1.29.2.1    bouyer 	clabel->mod_counter = raidPtr->mod_counter;
   3170  1.29.2.1    bouyer 	clabel->num_rows = raidPtr->numRow;
   3171  1.29.2.1    bouyer 	clabel->num_columns = raidPtr->numCol;
   3172  1.29.2.1    bouyer 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3173  1.29.2.1    bouyer 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3174  1.29.2.1    bouyer 
   3175  1.29.2.1    bouyer 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3176  1.29.2.1    bouyer 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3177  1.29.2.1    bouyer 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3178  1.29.2.1    bouyer 
   3179  1.29.2.1    bouyer 	clabel->blockSize = raidPtr->bytesPerSector;
   3180  1.29.2.1    bouyer 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3181  1.29.2.1    bouyer 
   3182  1.29.2.1    bouyer 	/* XXX not portable */
   3183  1.29.2.1    bouyer 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3184  1.29.2.1    bouyer 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3185  1.29.2.1    bouyer 	clabel->autoconfigure = raidPtr->autoconfigure;
   3186  1.29.2.1    bouyer 	clabel->root_partition = raidPtr->root_partition;
   3187  1.29.2.1    bouyer 	clabel->last_unit = raidPtr->raidid;
   3188  1.29.2.1    bouyer 	clabel->config_order = raidPtr->config_order;
   3189  1.29.2.1    bouyer }
   3190  1.29.2.1    bouyer 
   3191  1.29.2.1    bouyer int
   3192  1.29.2.1    bouyer rf_auto_config_set(cset,unit)
   3193  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   3194  1.29.2.1    bouyer 	int *unit;
   3195  1.29.2.1    bouyer {
   3196  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3197  1.29.2.1    bouyer 	RF_Config_t *config;
   3198  1.29.2.1    bouyer 	int raidID;
   3199  1.29.2.1    bouyer 	int retcode;
   3200  1.29.2.1    bouyer 
   3201  1.29.2.1    bouyer 	printf("RAID autoconfigure\n");
   3202  1.29.2.1    bouyer 
   3203  1.29.2.1    bouyer 	retcode = 0;
   3204  1.29.2.1    bouyer 	*unit = -1;
   3205  1.29.2.1    bouyer 
   3206  1.29.2.1    bouyer 	/* 1. Create a config structure */
   3207  1.29.2.1    bouyer 
   3208  1.29.2.1    bouyer 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3209  1.29.2.1    bouyer 				       M_RAIDFRAME,
   3210  1.29.2.1    bouyer 				       M_NOWAIT);
   3211  1.29.2.1    bouyer 	if (config==NULL) {
   3212  1.29.2.1    bouyer 		printf("Out of mem!?!?\n");
   3213  1.29.2.1    bouyer 				/* XXX do something more intelligent here. */
   3214  1.29.2.1    bouyer 		return(1);
   3215  1.29.2.1    bouyer 	}
   3216  1.29.2.1    bouyer 
   3217  1.29.2.1    bouyer 	memset(config, 0, sizeof(RF_Config_t));
   3218  1.29.2.1    bouyer 
   3219  1.29.2.1    bouyer 	/* XXX raidID needs to be set correctly.. */
   3220  1.29.2.1    bouyer 
   3221  1.29.2.1    bouyer 	/*
   3222  1.29.2.1    bouyer 	   2. Figure out what RAID ID this one is supposed to live at
   3223  1.29.2.1    bouyer 	   See if we can get the same RAID dev that it was configured
   3224  1.29.2.1    bouyer 	   on last time..
   3225  1.29.2.1    bouyer 	*/
   3226  1.29.2.1    bouyer 
   3227  1.29.2.1    bouyer 	raidID = cset->ac->clabel->last_unit;
   3228  1.29.2.1    bouyer 	if ((raidID < 0) || (raidID >= numraid)) {
   3229  1.29.2.1    bouyer 		/* let's not wander off into lala land. */
   3230  1.29.2.1    bouyer 		raidID = numraid - 1;
   3231  1.29.2.1    bouyer 	}
   3232  1.29.2.1    bouyer 	if (raidPtrs[raidID]->valid != 0) {
   3233  1.29.2.1    bouyer 
   3234  1.29.2.1    bouyer 		/*
   3235  1.29.2.1    bouyer 		   Nope... Go looking for an alternative...
   3236  1.29.2.1    bouyer 		   Start high so we don't immediately use raid0 if that's
   3237  1.29.2.1    bouyer 		   not taken.
   3238  1.29.2.1    bouyer 		*/
   3239  1.29.2.1    bouyer 
   3240  1.29.2.1    bouyer 		for(raidID = numraid; raidID >= 0; raidID--) {
   3241  1.29.2.1    bouyer 			if (raidPtrs[raidID]->valid == 0) {
   3242  1.29.2.1    bouyer 				/* can use this one! */
   3243  1.29.2.1    bouyer 				break;
   3244  1.29.2.1    bouyer 			}
   3245  1.29.2.1    bouyer 		}
   3246  1.29.2.1    bouyer 	}
   3247  1.29.2.1    bouyer 
   3248  1.29.2.1    bouyer 	if (raidID < 0) {
   3249  1.29.2.1    bouyer 		/* punt... */
   3250  1.29.2.1    bouyer 		printf("Unable to auto configure this set!\n");
   3251  1.29.2.1    bouyer 		printf("(Out of RAID devs!)\n");
   3252  1.29.2.1    bouyer 		return(1);
   3253  1.29.2.1    bouyer 	}
   3254  1.29.2.1    bouyer 	printf("Configuring raid%d:\n",raidID);
   3255  1.29.2.1    bouyer 	raidPtr = raidPtrs[raidID];
   3256  1.29.2.1    bouyer 
   3257  1.29.2.1    bouyer 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3258  1.29.2.1    bouyer 	raidPtr->raidid = raidID;
   3259  1.29.2.1    bouyer 	raidPtr->openings = RAIDOUTSTANDING;
   3260  1.29.2.1    bouyer 
   3261  1.29.2.1    bouyer 	/* 3. Build the configuration structure */
   3262  1.29.2.1    bouyer 	rf_create_configuration(cset->ac, config, raidPtr);
   3263  1.29.2.1    bouyer 
   3264  1.29.2.1    bouyer 	/* 4. Do the configuration */
   3265  1.29.2.1    bouyer 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3266  1.29.2.1    bouyer 
   3267  1.29.2.1    bouyer 	if (retcode == 0) {
   3268  1.29.2.1    bouyer 
   3269  1.29.2.1    bouyer 		raidinit(raidPtrs[raidID]);
   3270  1.29.2.1    bouyer 
   3271  1.29.2.1    bouyer 		rf_markalldirty(raidPtrs[raidID]);
   3272  1.29.2.1    bouyer 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3273  1.29.2.1    bouyer 		if (cset->ac->clabel->root_partition==1) {
   3274  1.29.2.1    bouyer 			/* everything configured just fine.  Make a note
   3275  1.29.2.1    bouyer 			   that this set is eligible to be root. */
   3276  1.29.2.1    bouyer 			cset->rootable = 1;
   3277  1.29.2.1    bouyer 			/* XXX do this here? */
   3278  1.29.2.1    bouyer 			raidPtrs[raidID]->root_partition = 1;
   3279  1.29.2.1    bouyer 		}
   3280  1.29.2.1    bouyer 	}
   3281  1.29.2.1    bouyer 
   3282  1.29.2.1    bouyer 	/* 5. Cleanup */
   3283  1.29.2.1    bouyer 	free(config, M_RAIDFRAME);
   3284  1.29.2.1    bouyer 
   3285  1.29.2.1    bouyer 	*unit = raidID;
   3286  1.29.2.1    bouyer 	return(retcode);
   3287  1.29.2.1    bouyer }
   3288  1.29.2.1    bouyer 
   3289  1.29.2.1    bouyer void
   3290  1.29.2.1    bouyer rf_disk_unbusy(desc)
   3291  1.29.2.1    bouyer 	RF_RaidAccessDesc_t *desc;
   3292  1.29.2.1    bouyer {
   3293  1.29.2.1    bouyer 	struct buf *bp;
   3294  1.29.2.1    bouyer 
   3295  1.29.2.1    bouyer 	bp = (struct buf *)desc->bp;
   3296  1.29.2.1    bouyer 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3297  1.29.2.1    bouyer 			    (bp->b_bcount - bp->b_resid));
   3298      1.13     oster }
   3299