rf_netbsdkintf.c revision 1.29.2.3 1 1.29.2.2 bouyer /* $NetBSD: rf_netbsdkintf.c,v 1.29.2.3 2000/12/08 09:12:39 bouyer Exp $ */
2 1.1 oster /*-
3 1.1 oster * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
7 1.1 oster * by Greg Oster; Jason R. Thorpe.
8 1.1 oster *
9 1.1 oster * Redistribution and use in source and binary forms, with or without
10 1.1 oster * modification, are permitted provided that the following conditions
11 1.1 oster * are met:
12 1.1 oster * 1. Redistributions of source code must retain the above copyright
13 1.1 oster * notice, this list of conditions and the following disclaimer.
14 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 oster * notice, this list of conditions and the following disclaimer in the
16 1.1 oster * documentation and/or other materials provided with the distribution.
17 1.1 oster * 3. All advertising materials mentioning features or use of this software
18 1.1 oster * must display the following acknowledgement:
19 1.1 oster * This product includes software developed by the NetBSD
20 1.1 oster * Foundation, Inc. and its contributors.
21 1.1 oster * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 oster * contributors may be used to endorse or promote products derived
23 1.1 oster * from this software without specific prior written permission.
24 1.1 oster *
25 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
36 1.1 oster */
37 1.1 oster
38 1.1 oster /*
39 1.1 oster * Copyright (c) 1988 University of Utah.
40 1.1 oster * Copyright (c) 1990, 1993
41 1.1 oster * The Regents of the University of California. All rights reserved.
42 1.1 oster *
43 1.1 oster * This code is derived from software contributed to Berkeley by
44 1.1 oster * the Systems Programming Group of the University of Utah Computer
45 1.1 oster * Science Department.
46 1.1 oster *
47 1.1 oster * Redistribution and use in source and binary forms, with or without
48 1.1 oster * modification, are permitted provided that the following conditions
49 1.1 oster * are met:
50 1.1 oster * 1. Redistributions of source code must retain the above copyright
51 1.1 oster * notice, this list of conditions and the following disclaimer.
52 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 oster * notice, this list of conditions and the following disclaimer in the
54 1.1 oster * documentation and/or other materials provided with the distribution.
55 1.1 oster * 3. All advertising materials mentioning features or use of this software
56 1.1 oster * must display the following acknowledgement:
57 1.1 oster * This product includes software developed by the University of
58 1.1 oster * California, Berkeley and its contributors.
59 1.1 oster * 4. Neither the name of the University nor the names of its contributors
60 1.1 oster * may be used to endorse or promote products derived from this software
61 1.1 oster * without specific prior written permission.
62 1.1 oster *
63 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.1 oster * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.1 oster * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.1 oster * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.1 oster * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.1 oster * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.1 oster * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.1 oster * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.1 oster * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.1 oster * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.1 oster * SUCH DAMAGE.
74 1.1 oster *
75 1.1 oster * from: Utah $Hdr: cd.c 1.6 90/11/28$
76 1.1 oster *
77 1.1 oster * @(#)cd.c 8.2 (Berkeley) 11/16/93
78 1.1 oster */
79 1.1 oster
80 1.1 oster
81 1.1 oster
82 1.1 oster
83 1.1 oster /*
84 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
85 1.1 oster * All rights reserved.
86 1.1 oster *
87 1.1 oster * Authors: Mark Holland, Jim Zelenka
88 1.1 oster *
89 1.1 oster * Permission to use, copy, modify and distribute this software and
90 1.1 oster * its documentation is hereby granted, provided that both the copyright
91 1.1 oster * notice and this permission notice appear in all copies of the
92 1.1 oster * software, derivative works or modified versions, and any portions
93 1.1 oster * thereof, and that both notices appear in supporting documentation.
94 1.1 oster *
95 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
96 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
97 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
98 1.1 oster *
99 1.1 oster * Carnegie Mellon requests users of this software to return to
100 1.1 oster *
101 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
102 1.1 oster * School of Computer Science
103 1.1 oster * Carnegie Mellon University
104 1.1 oster * Pittsburgh PA 15213-3890
105 1.1 oster *
106 1.1 oster * any improvements or extensions that they make and grant Carnegie the
107 1.1 oster * rights to redistribute these changes.
108 1.1 oster */
109 1.1 oster
110 1.1 oster /***********************************************************
111 1.1 oster *
112 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
113 1.1 oster *
114 1.1 oster ***********************************************************/
115 1.1 oster
116 1.1 oster #include <sys/errno.h>
117 1.1 oster #include <sys/param.h>
118 1.1 oster #include <sys/pool.h>
119 1.1 oster #include <sys/queue.h>
120 1.1 oster #include <sys/disk.h>
121 1.1 oster #include <sys/device.h>
122 1.1 oster #include <sys/stat.h>
123 1.1 oster #include <sys/ioctl.h>
124 1.1 oster #include <sys/fcntl.h>
125 1.1 oster #include <sys/systm.h>
126 1.1 oster #include <sys/namei.h>
127 1.1 oster #include <sys/vnode.h>
128 1.1 oster #include <sys/param.h>
129 1.1 oster #include <sys/types.h>
130 1.1 oster #include <machine/types.h>
131 1.1 oster #include <sys/disklabel.h>
132 1.1 oster #include <sys/conf.h>
133 1.1 oster #include <sys/lock.h>
134 1.1 oster #include <sys/buf.h>
135 1.1 oster #include <sys/user.h>
136 1.29.2.1 bouyer #include <sys/reboot.h>
137 1.8 oster
138 1.8 oster #include "raid.h"
139 1.29.2.1 bouyer #include "opt_raid_autoconfig.h"
140 1.1 oster #include "rf_raid.h"
141 1.1 oster #include "rf_raidframe.h"
142 1.29.2.1 bouyer #include "rf_copyback.h"
143 1.1 oster #include "rf_dag.h"
144 1.1 oster #include "rf_dagflags.h"
145 1.29.2.1 bouyer #include "rf_desc.h"
146 1.1 oster #include "rf_diskqueue.h"
147 1.1 oster #include "rf_acctrace.h"
148 1.1 oster #include "rf_etimer.h"
149 1.1 oster #include "rf_general.h"
150 1.1 oster #include "rf_debugMem.h"
151 1.1 oster #include "rf_kintf.h"
152 1.1 oster #include "rf_options.h"
153 1.1 oster #include "rf_driver.h"
154 1.1 oster #include "rf_parityscan.h"
155 1.1 oster #include "rf_debugprint.h"
156 1.1 oster #include "rf_threadstuff.h"
157 1.29.2.1 bouyer #include "rf_configure.h"
158 1.1 oster
159 1.9 oster int rf_kdebug_level = 0;
160 1.1 oster
161 1.1 oster #ifdef DEBUG
162 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
163 1.9 oster #else /* DEBUG */
164 1.1 oster #define db1_printf(a) { }
165 1.9 oster #endif /* DEBUG */
166 1.1 oster
167 1.9 oster static RF_Raid_t **raidPtrs; /* global raid device descriptors */
168 1.1 oster
169 1.11 oster RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
170 1.1 oster
171 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
172 1.10 oster * spare table */
173 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
174 1.10 oster * installation process */
175 1.10 oster
176 1.1 oster /* prototypes */
177 1.10 oster static void KernelWakeupFunc(struct buf * bp);
178 1.10 oster static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
179 1.10 oster dev_t dev, RF_SectorNum_t startSect,
180 1.10 oster RF_SectorCount_t numSect, caddr_t buf,
181 1.10 oster void (*cbFunc) (struct buf *), void *cbArg,
182 1.10 oster int logBytesPerSector, struct proc * b_proc);
183 1.29.2.1 bouyer static void raidinit __P((RF_Raid_t *));
184 1.1 oster
185 1.10 oster void raidattach __P((int));
186 1.10 oster int raidsize __P((dev_t));
187 1.10 oster int raidopen __P((dev_t, int, int, struct proc *));
188 1.10 oster int raidclose __P((dev_t, int, int, struct proc *));
189 1.10 oster int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
190 1.10 oster int raidwrite __P((dev_t, struct uio *, int));
191 1.10 oster int raidread __P((dev_t, struct uio *, int));
192 1.10 oster void raidstrategy __P((struct buf *));
193 1.10 oster int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
194 1.1 oster
195 1.1 oster /*
196 1.1 oster * Pilfered from ccd.c
197 1.1 oster */
198 1.1 oster
199 1.10 oster struct raidbuf {
200 1.10 oster struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
201 1.10 oster struct buf *rf_obp; /* ptr. to original I/O buf */
202 1.10 oster int rf_flags; /* misc. flags */
203 1.11 oster RF_DiskQueueData_t *req;/* the request that this was part of.. */
204 1.10 oster };
205 1.1 oster
206 1.1 oster
207 1.1 oster #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
208 1.1 oster #define RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
209 1.1 oster
210 1.9 oster /* XXX Not sure if the following should be replacing the raidPtrs above,
211 1.29.2.1 bouyer or if it should be used in conjunction with that...
212 1.29.2.1 bouyer */
213 1.1 oster
214 1.10 oster struct raid_softc {
215 1.10 oster int sc_flags; /* flags */
216 1.10 oster int sc_cflags; /* configuration flags */
217 1.11 oster size_t sc_size; /* size of the raid device */
218 1.10 oster char sc_xname[20]; /* XXX external name */
219 1.10 oster struct disk sc_dkdev; /* generic disk device info */
220 1.10 oster struct pool sc_cbufpool; /* component buffer pool */
221 1.29.2.1 bouyer struct buf_queue buf_queue; /* used for the device queue */
222 1.10 oster };
223 1.1 oster /* sc_flags */
224 1.1 oster #define RAIDF_INITED 0x01 /* unit has been initialized */
225 1.1 oster #define RAIDF_WLABEL 0x02 /* label area is writable */
226 1.1 oster #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
227 1.1 oster #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
228 1.1 oster #define RAIDF_LOCKED 0x80 /* unit is locked */
229 1.1 oster
230 1.1 oster #define raidunit(x) DISKUNIT(x)
231 1.29.2.1 bouyer int numraid = 0;
232 1.1 oster
233 1.20 oster /*
234 1.20 oster * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
235 1.20 oster * Be aware that large numbers can allow the driver to consume a lot of
236 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
237 1.28 oster *
238 1.28 oster * For example: with a stripe width of 64 blocks (32k) and 5 disks,
239 1.28 oster * a single 64K write will typically require 64K for the old data,
240 1.28 oster * 64K for the old parity, and 64K for the new parity, for a total
241 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
242 1.28 oster * Even it if is used immedately, that's still 128K, which when multiplied
243 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
244 1.28 oster *
245 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
246 1.28 oster * require data reconstruction, which will require *all* of the 4 remaining
247 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
248 1.20 oster */
249 1.20 oster
250 1.20 oster #ifndef RAIDOUTSTANDING
251 1.28 oster #define RAIDOUTSTANDING 6
252 1.20 oster #endif
253 1.20 oster
254 1.1 oster #define RAIDLABELDEV(dev) \
255 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
256 1.1 oster
257 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
258 1.10 oster struct raid_softc *raid_softc;
259 1.9 oster
260 1.10 oster static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
261 1.10 oster struct disklabel *));
262 1.10 oster static void raidgetdisklabel __P((dev_t));
263 1.10 oster static void raidmakedisklabel __P((struct raid_softc *));
264 1.1 oster
265 1.10 oster static int raidlock __P((struct raid_softc *));
266 1.10 oster static void raidunlock __P((struct raid_softc *));
267 1.1 oster
268 1.12 oster static void rf_markalldirty __P((RF_Raid_t *));
269 1.29.2.1 bouyer void rf_mountroot_hook __P((struct device *));
270 1.29.2.1 bouyer
271 1.29.2.1 bouyer struct device *raidrootdev;
272 1.29.2.1 bouyer
273 1.29.2.1 bouyer void rf_ReconThread __P((struct rf_recon_req *));
274 1.29.2.1 bouyer /* XXX what I want is: */
275 1.29.2.1 bouyer /*void rf_ReconThread __P((RF_Raid_t *raidPtr)); */
276 1.29.2.1 bouyer void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
277 1.29.2.1 bouyer void rf_CopybackThread __P((RF_Raid_t *raidPtr));
278 1.29.2.1 bouyer void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
279 1.29.2.1 bouyer void rf_buildroothack __P((void *));
280 1.29.2.1 bouyer
281 1.29.2.1 bouyer RF_AutoConfig_t *rf_find_raid_components __P((void));
282 1.29.2.1 bouyer RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
283 1.29.2.1 bouyer static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
284 1.29.2.1 bouyer static int rf_reasonable_label __P((RF_ComponentLabel_t *));
285 1.29.2.1 bouyer void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
286 1.29.2.1 bouyer RF_Raid_t *));
287 1.29.2.1 bouyer int rf_set_autoconfig __P((RF_Raid_t *, int));
288 1.29.2.1 bouyer int rf_set_rootpartition __P((RF_Raid_t *, int));
289 1.29.2.1 bouyer void rf_release_all_vps __P((RF_ConfigSet_t *));
290 1.29.2.1 bouyer void rf_cleanup_config_set __P((RF_ConfigSet_t *));
291 1.29.2.1 bouyer int rf_have_enough_components __P((RF_ConfigSet_t *));
292 1.29.2.1 bouyer int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
293 1.29.2.1 bouyer
294 1.29.2.1 bouyer static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
295 1.29.2.1 bouyer allow autoconfig to take place.
296 1.29.2.1 bouyer Note that this is overridden by having
297 1.29.2.1 bouyer RAID_AUTOCONFIG as an option in the
298 1.29.2.1 bouyer kernel config file. */
299 1.1 oster
300 1.10 oster void
301 1.10 oster raidattach(num)
302 1.9 oster int num;
303 1.1 oster {
304 1.14 oster int raidID;
305 1.14 oster int i, rc;
306 1.29.2.1 bouyer RF_AutoConfig_t *ac_list; /* autoconfig list */
307 1.29.2.1 bouyer RF_ConfigSet_t *config_sets;
308 1.1 oster
309 1.1 oster #ifdef DEBUG
310 1.9 oster printf("raidattach: Asked for %d units\n", num);
311 1.1 oster #endif
312 1.1 oster
313 1.1 oster if (num <= 0) {
314 1.1 oster #ifdef DIAGNOSTIC
315 1.1 oster panic("raidattach: count <= 0");
316 1.1 oster #endif
317 1.1 oster return;
318 1.1 oster }
319 1.9 oster /* This is where all the initialization stuff gets done. */
320 1.1 oster
321 1.29.2.1 bouyer numraid = num;
322 1.29.2.1 bouyer
323 1.1 oster /* Make some space for requested number of units... */
324 1.1 oster
325 1.1 oster RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
326 1.1 oster if (raidPtrs == NULL) {
327 1.1 oster panic("raidPtrs is NULL!!\n");
328 1.1 oster }
329 1.14 oster
330 1.14 oster rc = rf_mutex_init(&rf_sparet_wait_mutex);
331 1.14 oster if (rc) {
332 1.14 oster RF_PANIC();
333 1.14 oster }
334 1.14 oster
335 1.14 oster rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
336 1.14 oster
337 1.29.2.1 bouyer for (i = 0; i < num; i++)
338 1.14 oster raidPtrs[i] = NULL;
339 1.14 oster rc = rf_BootRaidframe();
340 1.14 oster if (rc == 0)
341 1.14 oster printf("Kernelized RAIDframe activated\n");
342 1.14 oster else
343 1.1 oster panic("Serious error booting RAID!!\n");
344 1.14 oster
345 1.9 oster /* put together some datastructures like the CCD device does.. This
346 1.9 oster * lets us lock the device and what-not when it gets opened. */
347 1.1 oster
348 1.1 oster raid_softc = (struct raid_softc *)
349 1.29.2.1 bouyer malloc(num * sizeof(struct raid_softc),
350 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
351 1.1 oster if (raid_softc == NULL) {
352 1.1 oster printf("WARNING: no memory for RAIDframe driver\n");
353 1.1 oster return;
354 1.1 oster }
355 1.29.2.1 bouyer
356 1.1 oster bzero(raid_softc, num * sizeof(struct raid_softc));
357 1.29.2.1 bouyer
358 1.29.2.1 bouyer raidrootdev = (struct device *)malloc(num * sizeof(struct device),
359 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
360 1.29.2.1 bouyer if (raidrootdev == NULL) {
361 1.29.2.1 bouyer panic("No memory for RAIDframe driver!!?!?!\n");
362 1.29.2.1 bouyer }
363 1.29.2.1 bouyer
364 1.9 oster for (raidID = 0; raidID < num; raidID++) {
365 1.29.2.1 bouyer BUFQ_INIT(&raid_softc[raidID].buf_queue);
366 1.29.2.1 bouyer
367 1.29.2.1 bouyer raidrootdev[raidID].dv_class = DV_DISK;
368 1.29.2.1 bouyer raidrootdev[raidID].dv_cfdata = NULL;
369 1.29.2.1 bouyer raidrootdev[raidID].dv_unit = raidID;
370 1.29.2.1 bouyer raidrootdev[raidID].dv_parent = NULL;
371 1.29.2.1 bouyer raidrootdev[raidID].dv_flags = 0;
372 1.29.2.1 bouyer sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
373 1.29.2.1 bouyer
374 1.9 oster RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
375 1.11 oster (RF_Raid_t *));
376 1.9 oster if (raidPtrs[raidID] == NULL) {
377 1.29.2.1 bouyer printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
378 1.29.2.1 bouyer numraid = raidID;
379 1.29.2.1 bouyer return;
380 1.29.2.1 bouyer }
381 1.29.2.1 bouyer }
382 1.29.2.1 bouyer
383 1.29.2.1 bouyer #if RAID_AUTOCONFIG
384 1.29.2.1 bouyer raidautoconfig = 1;
385 1.29.2.1 bouyer #endif
386 1.29.2.1 bouyer
387 1.29.2.1 bouyer if (raidautoconfig) {
388 1.29.2.1 bouyer /* 1. locate all RAID components on the system */
389 1.29.2.1 bouyer
390 1.29.2.1 bouyer #if DEBUG
391 1.29.2.1 bouyer printf("Searching for raid components...\n");
392 1.29.2.1 bouyer #endif
393 1.29.2.1 bouyer ac_list = rf_find_raid_components();
394 1.29.2.1 bouyer
395 1.29.2.1 bouyer /* 2. sort them into their respective sets */
396 1.29.2.1 bouyer
397 1.29.2.1 bouyer config_sets = rf_create_auto_sets(ac_list);
398 1.29.2.1 bouyer
399 1.29.2.1 bouyer /* 3. evaluate each set and configure the valid ones
400 1.29.2.1 bouyer This gets done in rf_buildroothack() */
401 1.29.2.1 bouyer
402 1.29.2.1 bouyer /* schedule the creation of the thread to do the
403 1.29.2.1 bouyer "/ on RAID" stuff */
404 1.29.2.1 bouyer
405 1.29.2.1 bouyer kthread_create(rf_buildroothack,config_sets);
406 1.29.2.1 bouyer
407 1.29.2.1 bouyer #if 0
408 1.29.2.1 bouyer mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
409 1.29.2.1 bouyer #endif
410 1.29.2.1 bouyer }
411 1.29.2.1 bouyer
412 1.29.2.1 bouyer }
413 1.29.2.1 bouyer
414 1.29.2.1 bouyer void
415 1.29.2.1 bouyer rf_buildroothack(arg)
416 1.29.2.1 bouyer void *arg;
417 1.29.2.1 bouyer {
418 1.29.2.1 bouyer RF_ConfigSet_t *config_sets = arg;
419 1.29.2.1 bouyer RF_ConfigSet_t *cset;
420 1.29.2.1 bouyer RF_ConfigSet_t *next_cset;
421 1.29.2.1 bouyer int retcode;
422 1.29.2.1 bouyer int raidID;
423 1.29.2.1 bouyer int rootID;
424 1.29.2.1 bouyer int num_root;
425 1.29.2.1 bouyer
426 1.29.2.3 bouyer rootID = 0;
427 1.29.2.1 bouyer num_root = 0;
428 1.29.2.1 bouyer cset = config_sets;
429 1.29.2.1 bouyer while(cset != NULL ) {
430 1.29.2.1 bouyer next_cset = cset->next;
431 1.29.2.1 bouyer if (rf_have_enough_components(cset) &&
432 1.29.2.1 bouyer cset->ac->clabel->autoconfigure==1) {
433 1.29.2.1 bouyer retcode = rf_auto_config_set(cset,&raidID);
434 1.29.2.1 bouyer if (!retcode) {
435 1.29.2.1 bouyer if (cset->rootable) {
436 1.29.2.1 bouyer rootID = raidID;
437 1.29.2.1 bouyer num_root++;
438 1.29.2.1 bouyer }
439 1.29.2.1 bouyer } else {
440 1.29.2.1 bouyer /* The autoconfig didn't work :( */
441 1.29.2.1 bouyer #if DEBUG
442 1.29.2.1 bouyer printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
443 1.29.2.1 bouyer #endif
444 1.29.2.1 bouyer rf_release_all_vps(cset);
445 1.29.2.1 bouyer }
446 1.29.2.1 bouyer } else {
447 1.29.2.1 bouyer /* we're not autoconfiguring this set...
448 1.29.2.1 bouyer release the associated resources */
449 1.29.2.1 bouyer rf_release_all_vps(cset);
450 1.29.2.1 bouyer }
451 1.29.2.1 bouyer /* cleanup */
452 1.29.2.1 bouyer rf_cleanup_config_set(cset);
453 1.29.2.1 bouyer cset = next_cset;
454 1.29.2.1 bouyer }
455 1.29.2.1 bouyer if (boothowto & RB_ASKNAME) {
456 1.29.2.1 bouyer /* We don't auto-config... */
457 1.29.2.1 bouyer } else {
458 1.29.2.1 bouyer /* They didn't ask, and we found something bootable... */
459 1.29.2.1 bouyer
460 1.29.2.1 bouyer if (num_root == 1) {
461 1.29.2.1 bouyer booted_device = &raidrootdev[rootID];
462 1.29.2.1 bouyer } else if (num_root > 1) {
463 1.29.2.1 bouyer /* we can't guess.. require the user to answer... */
464 1.29.2.1 bouyer boothowto |= RB_ASKNAME;
465 1.1 oster }
466 1.1 oster }
467 1.1 oster }
468 1.1 oster
469 1.1 oster
470 1.1 oster int
471 1.1 oster raidsize(dev)
472 1.9 oster dev_t dev;
473 1.1 oster {
474 1.1 oster struct raid_softc *rs;
475 1.1 oster struct disklabel *lp;
476 1.9 oster int part, unit, omask, size;
477 1.1 oster
478 1.1 oster unit = raidunit(dev);
479 1.1 oster if (unit >= numraid)
480 1.1 oster return (-1);
481 1.1 oster rs = &raid_softc[unit];
482 1.1 oster
483 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
484 1.1 oster return (-1);
485 1.1 oster
486 1.1 oster part = DISKPART(dev);
487 1.1 oster omask = rs->sc_dkdev.dk_openmask & (1 << part);
488 1.1 oster lp = rs->sc_dkdev.dk_label;
489 1.1 oster
490 1.1 oster if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
491 1.1 oster return (-1);
492 1.1 oster
493 1.1 oster if (lp->d_partitions[part].p_fstype != FS_SWAP)
494 1.1 oster size = -1;
495 1.1 oster else
496 1.1 oster size = lp->d_partitions[part].p_size *
497 1.1 oster (lp->d_secsize / DEV_BSIZE);
498 1.1 oster
499 1.1 oster if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
500 1.1 oster return (-1);
501 1.1 oster
502 1.1 oster return (size);
503 1.1 oster
504 1.1 oster }
505 1.1 oster
506 1.1 oster int
507 1.1 oster raiddump(dev, blkno, va, size)
508 1.9 oster dev_t dev;
509 1.1 oster daddr_t blkno;
510 1.1 oster caddr_t va;
511 1.9 oster size_t size;
512 1.1 oster {
513 1.1 oster /* Not implemented. */
514 1.1 oster return ENXIO;
515 1.1 oster }
516 1.1 oster /* ARGSUSED */
517 1.1 oster int
518 1.1 oster raidopen(dev, flags, fmt, p)
519 1.9 oster dev_t dev;
520 1.9 oster int flags, fmt;
521 1.1 oster struct proc *p;
522 1.1 oster {
523 1.9 oster int unit = raidunit(dev);
524 1.1 oster struct raid_softc *rs;
525 1.1 oster struct disklabel *lp;
526 1.9 oster int part, pmask;
527 1.9 oster int error = 0;
528 1.9 oster
529 1.1 oster if (unit >= numraid)
530 1.1 oster return (ENXIO);
531 1.1 oster rs = &raid_softc[unit];
532 1.1 oster
533 1.1 oster if ((error = raidlock(rs)) != 0)
534 1.9 oster return (error);
535 1.1 oster lp = rs->sc_dkdev.dk_label;
536 1.1 oster
537 1.1 oster part = DISKPART(dev);
538 1.1 oster pmask = (1 << part);
539 1.1 oster
540 1.1 oster db1_printf(("Opening raid device number: %d partition: %d\n",
541 1.14 oster unit, part));
542 1.1 oster
543 1.1 oster
544 1.1 oster if ((rs->sc_flags & RAIDF_INITED) &&
545 1.1 oster (rs->sc_dkdev.dk_openmask == 0))
546 1.9 oster raidgetdisklabel(dev);
547 1.1 oster
548 1.1 oster /* make sure that this partition exists */
549 1.1 oster
550 1.1 oster if (part != RAW_PART) {
551 1.1 oster db1_printf(("Not a raw partition..\n"));
552 1.1 oster if (((rs->sc_flags & RAIDF_INITED) == 0) ||
553 1.1 oster ((part >= lp->d_npartitions) ||
554 1.9 oster (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
555 1.1 oster error = ENXIO;
556 1.1 oster raidunlock(rs);
557 1.1 oster db1_printf(("Bailing out...\n"));
558 1.9 oster return (error);
559 1.1 oster }
560 1.1 oster }
561 1.1 oster /* Prevent this unit from being unconfigured while open. */
562 1.1 oster switch (fmt) {
563 1.1 oster case S_IFCHR:
564 1.1 oster rs->sc_dkdev.dk_copenmask |= pmask;
565 1.1 oster break;
566 1.1 oster
567 1.1 oster case S_IFBLK:
568 1.1 oster rs->sc_dkdev.dk_bopenmask |= pmask;
569 1.1 oster break;
570 1.1 oster }
571 1.13 oster
572 1.13 oster if ((rs->sc_dkdev.dk_openmask == 0) &&
573 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
574 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
575 1.13 oster have done a configure before this. I DO NOT WANT TO BE
576 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
577 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
578 1.13 oster /* XXX should check to see if we're only open for reading
579 1.13 oster here... If so, we needn't do this, but then need some
580 1.13 oster other way of keeping track of what's happened.. */
581 1.13 oster
582 1.13 oster rf_markalldirty( raidPtrs[unit] );
583 1.13 oster }
584 1.13 oster
585 1.13 oster
586 1.1 oster rs->sc_dkdev.dk_openmask =
587 1.1 oster rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
588 1.1 oster
589 1.1 oster raidunlock(rs);
590 1.1 oster
591 1.9 oster return (error);
592 1.1 oster
593 1.1 oster
594 1.1 oster }
595 1.1 oster /* ARGSUSED */
596 1.1 oster int
597 1.1 oster raidclose(dev, flags, fmt, p)
598 1.9 oster dev_t dev;
599 1.9 oster int flags, fmt;
600 1.1 oster struct proc *p;
601 1.1 oster {
602 1.9 oster int unit = raidunit(dev);
603 1.1 oster struct raid_softc *rs;
604 1.9 oster int error = 0;
605 1.9 oster int part;
606 1.1 oster
607 1.1 oster if (unit >= numraid)
608 1.1 oster return (ENXIO);
609 1.1 oster rs = &raid_softc[unit];
610 1.1 oster
611 1.1 oster if ((error = raidlock(rs)) != 0)
612 1.1 oster return (error);
613 1.1 oster
614 1.1 oster part = DISKPART(dev);
615 1.1 oster
616 1.1 oster /* ...that much closer to allowing unconfiguration... */
617 1.1 oster switch (fmt) {
618 1.1 oster case S_IFCHR:
619 1.1 oster rs->sc_dkdev.dk_copenmask &= ~(1 << part);
620 1.1 oster break;
621 1.1 oster
622 1.1 oster case S_IFBLK:
623 1.1 oster rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
624 1.1 oster break;
625 1.1 oster }
626 1.1 oster rs->sc_dkdev.dk_openmask =
627 1.1 oster rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
628 1.13 oster
629 1.13 oster if ((rs->sc_dkdev.dk_openmask == 0) &&
630 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
631 1.13 oster /* Last one... device is not unconfigured yet.
632 1.13 oster Device shutdown has taken care of setting the
633 1.13 oster clean bits if RAIDF_INITED is not set
634 1.13 oster mark things as clean... */
635 1.29.2.1 bouyer #if 0
636 1.29.2.1 bouyer printf("Last one on raid%d. Updating status.\n",unit);
637 1.29.2.1 bouyer #endif
638 1.29.2.1 bouyer rf_update_component_labels(raidPtrs[unit],
639 1.29.2.1 bouyer RF_FINAL_COMPONENT_UPDATE);
640 1.13 oster }
641 1.1 oster
642 1.1 oster raidunlock(rs);
643 1.1 oster return (0);
644 1.1 oster
645 1.1 oster }
646 1.1 oster
647 1.1 oster void
648 1.1 oster raidstrategy(bp)
649 1.29.2.1 bouyer struct buf *bp;
650 1.1 oster {
651 1.29.2.1 bouyer int s;
652 1.1 oster
653 1.1 oster unsigned int raidID = raidunit(bp->b_dev);
654 1.1 oster RF_Raid_t *raidPtr;
655 1.1 oster struct raid_softc *rs = &raid_softc[raidID];
656 1.1 oster struct disklabel *lp;
657 1.9 oster int wlabel;
658 1.1 oster
659 1.29.2.1 bouyer if ((rs->sc_flags & RAIDF_INITED) ==0) {
660 1.29.2.1 bouyer bp->b_error = ENXIO;
661 1.29.2.2 bouyer bp->b_flags |= B_ERROR;
662 1.29.2.1 bouyer bp->b_resid = bp->b_bcount;
663 1.29.2.1 bouyer biodone(bp);
664 1.1 oster return;
665 1.29.2.1 bouyer }
666 1.1 oster if (raidID >= numraid || !raidPtrs[raidID]) {
667 1.1 oster bp->b_error = ENODEV;
668 1.1 oster bp->b_flags |= B_ERROR;
669 1.1 oster bp->b_resid = bp->b_bcount;
670 1.1 oster biodone(bp);
671 1.1 oster return;
672 1.1 oster }
673 1.1 oster raidPtr = raidPtrs[raidID];
674 1.1 oster if (!raidPtr->valid) {
675 1.1 oster bp->b_error = ENODEV;
676 1.1 oster bp->b_flags |= B_ERROR;
677 1.1 oster bp->b_resid = bp->b_bcount;
678 1.1 oster biodone(bp);
679 1.1 oster return;
680 1.1 oster }
681 1.1 oster if (bp->b_bcount == 0) {
682 1.1 oster db1_printf(("b_bcount is zero..\n"));
683 1.1 oster biodone(bp);
684 1.1 oster return;
685 1.1 oster }
686 1.1 oster lp = rs->sc_dkdev.dk_label;
687 1.1 oster
688 1.1 oster /*
689 1.1 oster * Do bounds checking and adjust transfer. If there's an
690 1.1 oster * error, the bounds check will flag that for us.
691 1.1 oster */
692 1.1 oster
693 1.9 oster wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
694 1.1 oster if (DISKPART(bp->b_dev) != RAW_PART)
695 1.1 oster if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
696 1.1 oster db1_printf(("Bounds check failed!!:%d %d\n",
697 1.9 oster (int) bp->b_blkno, (int) wlabel));
698 1.1 oster biodone(bp);
699 1.1 oster return;
700 1.1 oster }
701 1.29.2.1 bouyer s = splbio();
702 1.1 oster
703 1.1 oster bp->b_resid = 0;
704 1.29.2.1 bouyer
705 1.29.2.1 bouyer /* stuff it onto our queue */
706 1.29.2.1 bouyer BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
707 1.29.2.1 bouyer
708 1.29.2.1 bouyer raidstart(raidPtrs[raidID]);
709 1.29.2.1 bouyer
710 1.1 oster splx(s);
711 1.1 oster }
712 1.1 oster /* ARGSUSED */
713 1.1 oster int
714 1.1 oster raidread(dev, uio, flags)
715 1.9 oster dev_t dev;
716 1.1 oster struct uio *uio;
717 1.9 oster int flags;
718 1.1 oster {
719 1.9 oster int unit = raidunit(dev);
720 1.1 oster struct raid_softc *rs;
721 1.9 oster int part;
722 1.1 oster
723 1.1 oster if (unit >= numraid)
724 1.1 oster return (ENXIO);
725 1.1 oster rs = &raid_softc[unit];
726 1.1 oster
727 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
728 1.1 oster return (ENXIO);
729 1.1 oster part = DISKPART(dev);
730 1.1 oster
731 1.9 oster db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
732 1.1 oster
733 1.1 oster return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
734 1.1 oster
735 1.1 oster }
736 1.1 oster /* ARGSUSED */
737 1.1 oster int
738 1.1 oster raidwrite(dev, uio, flags)
739 1.9 oster dev_t dev;
740 1.1 oster struct uio *uio;
741 1.9 oster int flags;
742 1.1 oster {
743 1.9 oster int unit = raidunit(dev);
744 1.1 oster struct raid_softc *rs;
745 1.1 oster
746 1.1 oster if (unit >= numraid)
747 1.1 oster return (ENXIO);
748 1.1 oster rs = &raid_softc[unit];
749 1.1 oster
750 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
751 1.1 oster return (ENXIO);
752 1.1 oster db1_printf(("raidwrite\n"));
753 1.1 oster return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
754 1.1 oster
755 1.1 oster }
756 1.1 oster
757 1.1 oster int
758 1.1 oster raidioctl(dev, cmd, data, flag, p)
759 1.9 oster dev_t dev;
760 1.9 oster u_long cmd;
761 1.1 oster caddr_t data;
762 1.9 oster int flag;
763 1.1 oster struct proc *p;
764 1.1 oster {
765 1.9 oster int unit = raidunit(dev);
766 1.9 oster int error = 0;
767 1.9 oster int part, pmask;
768 1.1 oster struct raid_softc *rs;
769 1.1 oster RF_Config_t *k_cfg, *u_cfg;
770 1.29.2.1 bouyer RF_Raid_t *raidPtr;
771 1.29.2.1 bouyer RF_RaidDisk_t *diskPtr;
772 1.29.2.1 bouyer RF_AccTotals_t *totals;
773 1.29.2.1 bouyer RF_DeviceConfig_t *d_cfg, **ucfgp;
774 1.1 oster u_char *specific_buf;
775 1.11 oster int retcode = 0;
776 1.11 oster int row;
777 1.11 oster int column;
778 1.1 oster struct rf_recon_req *rrcopy, *rr;
779 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
780 1.11 oster RF_ComponentLabel_t ci_label;
781 1.29.2.1 bouyer RF_ComponentLabel_t **clabel_ptr;
782 1.12 oster RF_SingleComponent_t *sparePtr,*componentPtr;
783 1.12 oster RF_SingleComponent_t hot_spare;
784 1.12 oster RF_SingleComponent_t component;
785 1.29.2.1 bouyer RF_ProgressInfo_t progressInfo, **progressInfoPtr;
786 1.29.2.1 bouyer int i, j, d;
787 1.1 oster
788 1.1 oster if (unit >= numraid)
789 1.1 oster return (ENXIO);
790 1.1 oster rs = &raid_softc[unit];
791 1.29.2.1 bouyer raidPtr = raidPtrs[unit];
792 1.1 oster
793 1.9 oster db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
794 1.9 oster (int) DISKPART(dev), (int) unit, (int) cmd));
795 1.1 oster
796 1.1 oster /* Must be open for writes for these commands... */
797 1.1 oster switch (cmd) {
798 1.1 oster case DIOCSDINFO:
799 1.1 oster case DIOCWDINFO:
800 1.1 oster case DIOCWLABEL:
801 1.1 oster if ((flag & FWRITE) == 0)
802 1.1 oster return (EBADF);
803 1.1 oster }
804 1.1 oster
805 1.1 oster /* Must be initialized for these... */
806 1.1 oster switch (cmd) {
807 1.1 oster case DIOCGDINFO:
808 1.1 oster case DIOCSDINFO:
809 1.1 oster case DIOCWDINFO:
810 1.1 oster case DIOCGPART:
811 1.1 oster case DIOCWLABEL:
812 1.1 oster case DIOCGDEFLABEL:
813 1.1 oster case RAIDFRAME_SHUTDOWN:
814 1.1 oster case RAIDFRAME_REWRITEPARITY:
815 1.1 oster case RAIDFRAME_GET_INFO:
816 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
817 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
818 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
819 1.1 oster case RAIDFRAME_GET_SIZE:
820 1.1 oster case RAIDFRAME_FAIL_DISK:
821 1.1 oster case RAIDFRAME_COPYBACK:
822 1.29.2.1 bouyer case RAIDFRAME_CHECK_RECON_STATUS:
823 1.29.2.1 bouyer case RAIDFRAME_CHECK_RECON_STATUS_EXT:
824 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
825 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
826 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
827 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
828 1.11 oster case RAIDFRAME_INIT_LABELS:
829 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
830 1.23 oster case RAIDFRAME_CHECK_PARITY:
831 1.29.2.1 bouyer case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
832 1.29.2.1 bouyer case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
833 1.29.2.1 bouyer case RAIDFRAME_CHECK_COPYBACK_STATUS:
834 1.29.2.1 bouyer case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
835 1.29.2.1 bouyer case RAIDFRAME_SET_AUTOCONFIG:
836 1.29.2.1 bouyer case RAIDFRAME_SET_ROOT:
837 1.29.2.1 bouyer case RAIDFRAME_DELETE_COMPONENT:
838 1.29.2.1 bouyer case RAIDFRAME_INCORPORATE_HOT_SPARE:
839 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
840 1.1 oster return (ENXIO);
841 1.1 oster }
842 1.9 oster
843 1.1 oster switch (cmd) {
844 1.1 oster
845 1.1 oster /* configure the system */
846 1.1 oster case RAIDFRAME_CONFIGURE:
847 1.1 oster
848 1.29.2.1 bouyer if (raidPtr->valid) {
849 1.29.2.1 bouyer /* There is a valid RAID set running on this unit! */
850 1.29.2.1 bouyer printf("raid%d: Device already configured!\n",unit);
851 1.29.2.1 bouyer return(EINVAL);
852 1.29.2.1 bouyer }
853 1.29.2.1 bouyer
854 1.1 oster /* copy-in the configuration information */
855 1.1 oster /* data points to a pointer to the configuration structure */
856 1.29.2.1 bouyer
857 1.9 oster u_cfg = *((RF_Config_t **) data);
858 1.9 oster RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
859 1.1 oster if (k_cfg == NULL) {
860 1.9 oster return (ENOMEM);
861 1.1 oster }
862 1.9 oster retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
863 1.9 oster sizeof(RF_Config_t));
864 1.1 oster if (retcode) {
865 1.29.2.1 bouyer RF_Free(k_cfg, sizeof(RF_Config_t));
866 1.29.2.1 bouyer db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
867 1.9 oster retcode));
868 1.9 oster return (retcode);
869 1.1 oster }
870 1.9 oster /* allocate a buffer for the layout-specific data, and copy it
871 1.9 oster * in */
872 1.1 oster if (k_cfg->layoutSpecificSize) {
873 1.9 oster if (k_cfg->layoutSpecificSize > 10000) {
874 1.1 oster /* sanity check */
875 1.29.2.1 bouyer RF_Free(k_cfg, sizeof(RF_Config_t));
876 1.9 oster return (EINVAL);
877 1.1 oster }
878 1.9 oster RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
879 1.9 oster (u_char *));
880 1.1 oster if (specific_buf == NULL) {
881 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
882 1.9 oster return (ENOMEM);
883 1.1 oster }
884 1.9 oster retcode = copyin(k_cfg->layoutSpecific,
885 1.9 oster (caddr_t) specific_buf,
886 1.9 oster k_cfg->layoutSpecificSize);
887 1.1 oster if (retcode) {
888 1.29.2.1 bouyer RF_Free(k_cfg, sizeof(RF_Config_t));
889 1.29.2.1 bouyer RF_Free(specific_buf,
890 1.29.2.1 bouyer k_cfg->layoutSpecificSize);
891 1.29.2.1 bouyer db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
892 1.9 oster retcode));
893 1.9 oster return (retcode);
894 1.1 oster }
895 1.9 oster } else
896 1.9 oster specific_buf = NULL;
897 1.1 oster k_cfg->layoutSpecific = specific_buf;
898 1.9 oster
899 1.9 oster /* should do some kind of sanity check on the configuration.
900 1.9 oster * Store the sum of all the bytes in the last byte? */
901 1.1 oster
902 1.1 oster /* configure the system */
903 1.1 oster
904 1.29.2.1 bouyer /*
905 1.29.2.1 bouyer * Clear the entire RAID descriptor, just to make sure
906 1.29.2.1 bouyer * there is no stale data left in the case of a
907 1.29.2.1 bouyer * reconfiguration
908 1.29.2.1 bouyer */
909 1.29.2.1 bouyer bzero((char *) raidPtr, sizeof(RF_Raid_t));
910 1.29.2.1 bouyer raidPtr->raidid = unit;
911 1.1 oster
912 1.29.2.1 bouyer retcode = rf_Configure(raidPtr, k_cfg, NULL);
913 1.9 oster
914 1.1 oster if (retcode == 0) {
915 1.29.2.1 bouyer
916 1.29.2.1 bouyer /* allow this many simultaneous IO's to
917 1.29.2.1 bouyer this RAID device */
918 1.29.2.1 bouyer raidPtr->openings = RAIDOUTSTANDING;
919 1.29.2.1 bouyer
920 1.29.2.1 bouyer raidinit(raidPtr);
921 1.29.2.1 bouyer rf_markalldirty(raidPtr);
922 1.9 oster }
923 1.1 oster /* free the buffers. No return code here. */
924 1.1 oster if (k_cfg->layoutSpecificSize) {
925 1.9 oster RF_Free(specific_buf, k_cfg->layoutSpecificSize);
926 1.1 oster }
927 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
928 1.9 oster
929 1.9 oster return (retcode);
930 1.9 oster
931 1.9 oster /* shutdown the system */
932 1.1 oster case RAIDFRAME_SHUTDOWN:
933 1.9 oster
934 1.9 oster if ((error = raidlock(rs)) != 0)
935 1.9 oster return (error);
936 1.1 oster
937 1.1 oster /*
938 1.1 oster * If somebody has a partition mounted, we shouldn't
939 1.1 oster * shutdown.
940 1.1 oster */
941 1.1 oster
942 1.1 oster part = DISKPART(dev);
943 1.1 oster pmask = (1 << part);
944 1.9 oster if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
945 1.9 oster ((rs->sc_dkdev.dk_bopenmask & pmask) &&
946 1.9 oster (rs->sc_dkdev.dk_copenmask & pmask))) {
947 1.9 oster raidunlock(rs);
948 1.9 oster return (EBUSY);
949 1.9 oster }
950 1.11 oster
951 1.29.2.1 bouyer retcode = rf_Shutdown(raidPtr);
952 1.1 oster
953 1.1 oster pool_destroy(&rs->sc_cbufpool);
954 1.1 oster
955 1.1 oster /* It's no longer initialized... */
956 1.1 oster rs->sc_flags &= ~RAIDF_INITED;
957 1.16 oster
958 1.9 oster /* Detach the disk. */
959 1.9 oster disk_detach(&rs->sc_dkdev);
960 1.1 oster
961 1.1 oster raidunlock(rs);
962 1.1 oster
963 1.9 oster return (retcode);
964 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
965 1.29.2.1 bouyer clabel_ptr = (RF_ComponentLabel_t **) data;
966 1.11 oster /* need to read the component label for the disk indicated
967 1.29.2.1 bouyer by row,column in clabel */
968 1.11 oster
969 1.11 oster /* For practice, let's get it directly fromdisk, rather
970 1.11 oster than from the in-core copy */
971 1.29.2.1 bouyer RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
972 1.11 oster (RF_ComponentLabel_t *));
973 1.29.2.1 bouyer if (clabel == NULL)
974 1.11 oster return (ENOMEM);
975 1.11 oster
976 1.29.2.1 bouyer bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
977 1.11 oster
978 1.29.2.1 bouyer retcode = copyin( *clabel_ptr, clabel,
979 1.11 oster sizeof(RF_ComponentLabel_t));
980 1.11 oster
981 1.11 oster if (retcode) {
982 1.29.2.1 bouyer RF_Free( clabel, sizeof(RF_ComponentLabel_t));
983 1.11 oster return(retcode);
984 1.11 oster }
985 1.11 oster
986 1.29.2.1 bouyer row = clabel->row;
987 1.29.2.1 bouyer column = clabel->column;
988 1.26 oster
989 1.29.2.1 bouyer if ((row < 0) || (row >= raidPtr->numRow) ||
990 1.29.2.1 bouyer (column < 0) || (column >= raidPtr->numCol +
991 1.29.2.1 bouyer raidPtr->numSpare)) {
992 1.29.2.1 bouyer RF_Free( clabel, sizeof(RF_ComponentLabel_t));
993 1.26 oster return(EINVAL);
994 1.11 oster }
995 1.11 oster
996 1.29.2.1 bouyer raidread_component_label(raidPtr->Disks[row][column].dev,
997 1.29.2.1 bouyer raidPtr->raid_cinfo[row][column].ci_vp,
998 1.29.2.1 bouyer clabel );
999 1.11 oster
1000 1.29.2.1 bouyer retcode = copyout((caddr_t) clabel,
1001 1.29.2.1 bouyer (caddr_t) *clabel_ptr,
1002 1.11 oster sizeof(RF_ComponentLabel_t));
1003 1.29.2.1 bouyer RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1004 1.11 oster return (retcode);
1005 1.11 oster
1006 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1007 1.29.2.1 bouyer clabel = (RF_ComponentLabel_t *) data;
1008 1.11 oster
1009 1.11 oster /* XXX check the label for valid stuff... */
1010 1.11 oster /* Note that some things *should not* get modified --
1011 1.11 oster the user should be re-initing the labels instead of
1012 1.11 oster trying to patch things.
1013 1.11 oster */
1014 1.11 oster
1015 1.11 oster printf("Got component label:\n");
1016 1.29.2.1 bouyer printf("Version: %d\n",clabel->version);
1017 1.29.2.1 bouyer printf("Serial Number: %d\n",clabel->serial_number);
1018 1.29.2.1 bouyer printf("Mod counter: %d\n",clabel->mod_counter);
1019 1.29.2.1 bouyer printf("Row: %d\n", clabel->row);
1020 1.29.2.1 bouyer printf("Column: %d\n", clabel->column);
1021 1.29.2.1 bouyer printf("Num Rows: %d\n", clabel->num_rows);
1022 1.29.2.1 bouyer printf("Num Columns: %d\n", clabel->num_columns);
1023 1.29.2.1 bouyer printf("Clean: %d\n", clabel->clean);
1024 1.29.2.1 bouyer printf("Status: %d\n", clabel->status);
1025 1.11 oster
1026 1.29.2.1 bouyer row = clabel->row;
1027 1.29.2.1 bouyer column = clabel->column;
1028 1.12 oster
1029 1.29.2.1 bouyer if ((row < 0) || (row >= raidPtr->numRow) ||
1030 1.29.2.1 bouyer (column < 0) || (column >= raidPtr->numCol)) {
1031 1.12 oster return(EINVAL);
1032 1.11 oster }
1033 1.12 oster
1034 1.12 oster /* XXX this isn't allowed to do anything for now :-) */
1035 1.29.2.1 bouyer
1036 1.29.2.1 bouyer /* XXX and before it is, we need to fill in the rest
1037 1.29.2.1 bouyer of the fields!?!?!?! */
1038 1.12 oster #if 0
1039 1.11 oster raidwrite_component_label(
1040 1.29.2.1 bouyer raidPtr->Disks[row][column].dev,
1041 1.29.2.1 bouyer raidPtr->raid_cinfo[row][column].ci_vp,
1042 1.29.2.1 bouyer clabel );
1043 1.12 oster #endif
1044 1.12 oster return (0);
1045 1.11 oster
1046 1.11 oster case RAIDFRAME_INIT_LABELS:
1047 1.29.2.1 bouyer clabel = (RF_ComponentLabel_t *) data;
1048 1.11 oster /*
1049 1.11 oster we only want the serial number from
1050 1.11 oster the above. We get all the rest of the information
1051 1.11 oster from the config that was used to create this RAID
1052 1.11 oster set.
1053 1.11 oster */
1054 1.12 oster
1055 1.29.2.1 bouyer raidPtr->serial_number = clabel->serial_number;
1056 1.29.2.1 bouyer
1057 1.29.2.1 bouyer raid_init_component_label(raidPtr, &ci_label);
1058 1.29.2.1 bouyer ci_label.serial_number = clabel->serial_number;
1059 1.11 oster
1060 1.29.2.1 bouyer for(row=0;row<raidPtr->numRow;row++) {
1061 1.11 oster ci_label.row = row;
1062 1.29.2.1 bouyer for(column=0;column<raidPtr->numCol;column++) {
1063 1.29.2.1 bouyer diskPtr = &raidPtr->Disks[row][column];
1064 1.29.2.1 bouyer if (!RF_DEAD_DISK(diskPtr->status)) {
1065 1.29.2.1 bouyer ci_label.partitionSize = diskPtr->partitionSize;
1066 1.29.2.1 bouyer ci_label.column = column;
1067 1.29.2.1 bouyer raidwrite_component_label(
1068 1.29.2.1 bouyer raidPtr->Disks[row][column].dev,
1069 1.29.2.1 bouyer raidPtr->raid_cinfo[row][column].ci_vp,
1070 1.29.2.1 bouyer &ci_label );
1071 1.29.2.1 bouyer }
1072 1.11 oster }
1073 1.11 oster }
1074 1.11 oster
1075 1.11 oster return (retcode);
1076 1.29.2.1 bouyer case RAIDFRAME_SET_AUTOCONFIG:
1077 1.29.2.1 bouyer d = rf_set_autoconfig(raidPtr, *(int *) data);
1078 1.29.2.1 bouyer printf("New autoconfig value is: %d\n", d);
1079 1.29.2.1 bouyer *(int *) data = d;
1080 1.29.2.1 bouyer return (retcode);
1081 1.29.2.1 bouyer
1082 1.29.2.1 bouyer case RAIDFRAME_SET_ROOT:
1083 1.29.2.1 bouyer d = rf_set_rootpartition(raidPtr, *(int *) data);
1084 1.29.2.1 bouyer printf("New rootpartition value is: %d\n", d);
1085 1.29.2.1 bouyer *(int *) data = d;
1086 1.29.2.1 bouyer return (retcode);
1087 1.9 oster
1088 1.1 oster /* initialize all parity */
1089 1.1 oster case RAIDFRAME_REWRITEPARITY:
1090 1.1 oster
1091 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1092 1.17 oster /* Parity for RAID 0 is trivially correct */
1093 1.29.2.1 bouyer raidPtr->parity_good = RF_RAID_CLEAN;
1094 1.17 oster return(0);
1095 1.17 oster }
1096 1.29.2.1 bouyer
1097 1.29.2.1 bouyer if (raidPtr->parity_rewrite_in_progress == 1) {
1098 1.29.2.1 bouyer /* Re-write is already in progress! */
1099 1.29.2.1 bouyer return(EINVAL);
1100 1.11 oster }
1101 1.29.2.1 bouyer
1102 1.29.2.1 bouyer retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1103 1.29.2.1 bouyer rf_RewriteParityThread,
1104 1.29.2.1 bouyer raidPtr,"raid_parity");
1105 1.9 oster return (retcode);
1106 1.9 oster
1107 1.11 oster
1108 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1109 1.12 oster sparePtr = (RF_SingleComponent_t *) data;
1110 1.12 oster memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1111 1.29.2.1 bouyer retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1112 1.11 oster return(retcode);
1113 1.11 oster
1114 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1115 1.11 oster return(retcode);
1116 1.11 oster
1117 1.29.2.1 bouyer case RAIDFRAME_DELETE_COMPONENT:
1118 1.29.2.1 bouyer componentPtr = (RF_SingleComponent_t *)data;
1119 1.29.2.1 bouyer memcpy( &component, componentPtr,
1120 1.29.2.1 bouyer sizeof(RF_SingleComponent_t));
1121 1.29.2.1 bouyer retcode = rf_delete_component(raidPtr, &component);
1122 1.29.2.1 bouyer return(retcode);
1123 1.29.2.1 bouyer
1124 1.29.2.1 bouyer case RAIDFRAME_INCORPORATE_HOT_SPARE:
1125 1.29.2.1 bouyer componentPtr = (RF_SingleComponent_t *)data;
1126 1.29.2.1 bouyer memcpy( &component, componentPtr,
1127 1.29.2.1 bouyer sizeof(RF_SingleComponent_t));
1128 1.29.2.1 bouyer retcode = rf_incorporate_hot_spare(raidPtr, &component);
1129 1.29.2.1 bouyer return(retcode);
1130 1.29.2.1 bouyer
1131 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1132 1.24 oster
1133 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1134 1.24 oster /* Can't do this on a RAID 0!! */
1135 1.24 oster return(EINVAL);
1136 1.24 oster }
1137 1.24 oster
1138 1.29.2.1 bouyer if (raidPtr->recon_in_progress == 1) {
1139 1.29.2.1 bouyer /* a reconstruct is already in progress! */
1140 1.29.2.1 bouyer return(EINVAL);
1141 1.29.2.1 bouyer }
1142 1.29.2.1 bouyer
1143 1.12 oster componentPtr = (RF_SingleComponent_t *) data;
1144 1.12 oster memcpy( &component, componentPtr,
1145 1.12 oster sizeof(RF_SingleComponent_t));
1146 1.12 oster row = component.row;
1147 1.12 oster column = component.column;
1148 1.12 oster printf("Rebuild: %d %d\n",row, column);
1149 1.29.2.1 bouyer if ((row < 0) || (row >= raidPtr->numRow) ||
1150 1.29.2.1 bouyer (column < 0) || (column >= raidPtr->numCol)) {
1151 1.12 oster return(EINVAL);
1152 1.12 oster }
1153 1.29.2.1 bouyer
1154 1.29.2.1 bouyer RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1155 1.29.2.1 bouyer if (rrcopy == NULL)
1156 1.29.2.1 bouyer return(ENOMEM);
1157 1.29.2.1 bouyer
1158 1.29.2.1 bouyer rrcopy->raidPtr = (void *) raidPtr;
1159 1.29.2.1 bouyer rrcopy->row = row;
1160 1.29.2.1 bouyer rrcopy->col = column;
1161 1.29.2.1 bouyer
1162 1.29.2.1 bouyer retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1163 1.29.2.1 bouyer rf_ReconstructInPlaceThread,
1164 1.29.2.1 bouyer rrcopy,"raid_reconip");
1165 1.12 oster return(retcode);
1166 1.12 oster
1167 1.1 oster case RAIDFRAME_GET_INFO:
1168 1.29.2.1 bouyer if (!raidPtr->valid)
1169 1.29.2.1 bouyer return (ENODEV);
1170 1.29.2.1 bouyer ucfgp = (RF_DeviceConfig_t **) data;
1171 1.29.2.1 bouyer RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1172 1.29.2.1 bouyer (RF_DeviceConfig_t *));
1173 1.29.2.1 bouyer if (d_cfg == NULL)
1174 1.29.2.1 bouyer return (ENOMEM);
1175 1.29.2.1 bouyer bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
1176 1.29.2.1 bouyer d_cfg->rows = raidPtr->numRow;
1177 1.29.2.1 bouyer d_cfg->cols = raidPtr->numCol;
1178 1.29.2.1 bouyer d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1179 1.29.2.1 bouyer if (d_cfg->ndevs >= RF_MAX_DISKS) {
1180 1.29.2.1 bouyer RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1181 1.29.2.1 bouyer return (ENOMEM);
1182 1.29.2.1 bouyer }
1183 1.29.2.1 bouyer d_cfg->nspares = raidPtr->numSpare;
1184 1.29.2.1 bouyer if (d_cfg->nspares >= RF_MAX_DISKS) {
1185 1.29.2.1 bouyer RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1186 1.29.2.1 bouyer return (ENOMEM);
1187 1.29.2.1 bouyer }
1188 1.29.2.1 bouyer d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1189 1.29.2.1 bouyer d = 0;
1190 1.29.2.1 bouyer for (i = 0; i < d_cfg->rows; i++) {
1191 1.29.2.1 bouyer for (j = 0; j < d_cfg->cols; j++) {
1192 1.29.2.1 bouyer d_cfg->devs[d] = raidPtr->Disks[i][j];
1193 1.29.2.1 bouyer d++;
1194 1.1 oster }
1195 1.1 oster }
1196 1.29.2.1 bouyer for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1197 1.29.2.1 bouyer d_cfg->spares[i] = raidPtr->Disks[0][j];
1198 1.29.2.1 bouyer }
1199 1.29.2.1 bouyer retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
1200 1.29.2.1 bouyer sizeof(RF_DeviceConfig_t));
1201 1.29.2.1 bouyer RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1202 1.29.2.1 bouyer
1203 1.29.2.1 bouyer return (retcode);
1204 1.29.2.1 bouyer
1205 1.22 oster case RAIDFRAME_CHECK_PARITY:
1206 1.29.2.1 bouyer *(int *) data = raidPtr->parity_good;
1207 1.22 oster return (0);
1208 1.9 oster
1209 1.29.2.1 bouyer case RAIDFRAME_RESET_ACCTOTALS:
1210 1.29.2.1 bouyer bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
1211 1.29.2.1 bouyer return (0);
1212 1.9 oster
1213 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1214 1.29.2.1 bouyer totals = (RF_AccTotals_t *) data;
1215 1.29.2.1 bouyer *totals = raidPtr->acc_totals;
1216 1.29.2.1 bouyer return (0);
1217 1.9 oster
1218 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1219 1.29.2.1 bouyer raidPtr->keep_acc_totals = *(int *)data;
1220 1.29.2.1 bouyer return (0);
1221 1.9 oster
1222 1.1 oster case RAIDFRAME_GET_SIZE:
1223 1.29.2.1 bouyer *(int *) data = raidPtr->totalSectors;
1224 1.9 oster return (0);
1225 1.1 oster
1226 1.1 oster /* fail a disk & optionally start reconstruction */
1227 1.1 oster case RAIDFRAME_FAIL_DISK:
1228 1.24 oster
1229 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1230 1.24 oster /* Can't do this on a RAID 0!! */
1231 1.24 oster return(EINVAL);
1232 1.24 oster }
1233 1.24 oster
1234 1.1 oster rr = (struct rf_recon_req *) data;
1235 1.9 oster
1236 1.29.2.1 bouyer if (rr->row < 0 || rr->row >= raidPtr->numRow
1237 1.29.2.1 bouyer || rr->col < 0 || rr->col >= raidPtr->numCol)
1238 1.9 oster return (EINVAL);
1239 1.1 oster
1240 1.12 oster printf("raid%d: Failing the disk: row: %d col: %d\n",
1241 1.12 oster unit, rr->row, rr->col);
1242 1.9 oster
1243 1.9 oster /* make a copy of the recon request so that we don't rely on
1244 1.9 oster * the user's buffer */
1245 1.1 oster RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1246 1.29.2.1 bouyer if (rrcopy == NULL)
1247 1.29.2.1 bouyer return(ENOMEM);
1248 1.1 oster bcopy(rr, rrcopy, sizeof(*rr));
1249 1.29.2.1 bouyer rrcopy->raidPtr = (void *) raidPtr;
1250 1.9 oster
1251 1.29.2.1 bouyer retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1252 1.29.2.1 bouyer rf_ReconThread,
1253 1.29.2.1 bouyer rrcopy,"raid_recon");
1254 1.9 oster return (0);
1255 1.9 oster
1256 1.9 oster /* invoke a copyback operation after recon on whatever disk
1257 1.9 oster * needs it, if any */
1258 1.9 oster case RAIDFRAME_COPYBACK:
1259 1.24 oster
1260 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1261 1.24 oster /* This makes no sense on a RAID 0!! */
1262 1.24 oster return(EINVAL);
1263 1.24 oster }
1264 1.24 oster
1265 1.29.2.1 bouyer if (raidPtr->copyback_in_progress == 1) {
1266 1.29.2.1 bouyer /* Copyback is already in progress! */
1267 1.29.2.1 bouyer return(EINVAL);
1268 1.29.2.1 bouyer }
1269 1.27 oster
1270 1.29.2.1 bouyer retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1271 1.29.2.1 bouyer rf_CopybackThread,
1272 1.29.2.1 bouyer raidPtr,"raid_copyback");
1273 1.29.2.1 bouyer return (retcode);
1274 1.9 oster
1275 1.1 oster /* return the percentage completion of reconstruction */
1276 1.29.2.1 bouyer case RAIDFRAME_CHECK_RECON_STATUS:
1277 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1278 1.29.2.1 bouyer /* This makes no sense on a RAID 0, so tell the
1279 1.29.2.1 bouyer user it's done. */
1280 1.29.2.1 bouyer *(int *) data = 100;
1281 1.29.2.1 bouyer return(0);
1282 1.24 oster }
1283 1.29.2.1 bouyer row = 0; /* XXX we only consider a single row... */
1284 1.29.2.1 bouyer if (raidPtr->status[row] != rf_rs_reconstructing)
1285 1.1 oster *(int *) data = 100;
1286 1.9 oster else
1287 1.29.2.1 bouyer *(int *) data = raidPtr->reconControl[row]->percentComplete;
1288 1.29.2.1 bouyer return (0);
1289 1.29.2.1 bouyer case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1290 1.29.2.1 bouyer progressInfoPtr = (RF_ProgressInfo_t **) data;
1291 1.29.2.1 bouyer row = 0; /* XXX we only consider a single row... */
1292 1.29.2.1 bouyer if (raidPtr->status[row] != rf_rs_reconstructing) {
1293 1.29.2.1 bouyer progressInfo.remaining = 0;
1294 1.29.2.1 bouyer progressInfo.completed = 100;
1295 1.29.2.1 bouyer progressInfo.total = 100;
1296 1.29.2.1 bouyer } else {
1297 1.29.2.1 bouyer progressInfo.total =
1298 1.29.2.1 bouyer raidPtr->reconControl[row]->numRUsTotal;
1299 1.29.2.1 bouyer progressInfo.completed =
1300 1.29.2.1 bouyer raidPtr->reconControl[row]->numRUsComplete;
1301 1.29.2.1 bouyer progressInfo.remaining = progressInfo.total -
1302 1.29.2.1 bouyer progressInfo.completed;
1303 1.29.2.1 bouyer }
1304 1.29.2.1 bouyer retcode = copyout((caddr_t) &progressInfo,
1305 1.29.2.1 bouyer (caddr_t) *progressInfoPtr,
1306 1.29.2.1 bouyer sizeof(RF_ProgressInfo_t));
1307 1.29.2.1 bouyer return (retcode);
1308 1.29.2.1 bouyer
1309 1.29.2.1 bouyer case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1310 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1311 1.29.2.1 bouyer /* This makes no sense on a RAID 0, so tell the
1312 1.29.2.1 bouyer user it's done. */
1313 1.29.2.1 bouyer *(int *) data = 100;
1314 1.29.2.1 bouyer return(0);
1315 1.29.2.1 bouyer }
1316 1.29.2.1 bouyer if (raidPtr->parity_rewrite_in_progress == 1) {
1317 1.29.2.1 bouyer *(int *) data = 100 *
1318 1.29.2.1 bouyer raidPtr->parity_rewrite_stripes_done /
1319 1.29.2.1 bouyer raidPtr->Layout.numStripe;
1320 1.29.2.1 bouyer } else {
1321 1.29.2.1 bouyer *(int *) data = 100;
1322 1.29.2.1 bouyer }
1323 1.29.2.1 bouyer return (0);
1324 1.29.2.1 bouyer
1325 1.29.2.1 bouyer case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1326 1.29.2.1 bouyer progressInfoPtr = (RF_ProgressInfo_t **) data;
1327 1.29.2.1 bouyer if (raidPtr->parity_rewrite_in_progress == 1) {
1328 1.29.2.1 bouyer progressInfo.total = raidPtr->Layout.numStripe;
1329 1.29.2.1 bouyer progressInfo.completed =
1330 1.29.2.1 bouyer raidPtr->parity_rewrite_stripes_done;
1331 1.29.2.1 bouyer progressInfo.remaining = progressInfo.total -
1332 1.29.2.1 bouyer progressInfo.completed;
1333 1.29.2.1 bouyer } else {
1334 1.29.2.1 bouyer progressInfo.remaining = 0;
1335 1.29.2.1 bouyer progressInfo.completed = 100;
1336 1.29.2.1 bouyer progressInfo.total = 100;
1337 1.29.2.1 bouyer }
1338 1.29.2.1 bouyer retcode = copyout((caddr_t) &progressInfo,
1339 1.29.2.1 bouyer (caddr_t) *progressInfoPtr,
1340 1.29.2.1 bouyer sizeof(RF_ProgressInfo_t));
1341 1.29.2.1 bouyer return (retcode);
1342 1.29.2.1 bouyer
1343 1.29.2.1 bouyer case RAIDFRAME_CHECK_COPYBACK_STATUS:
1344 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1345 1.29.2.1 bouyer /* This makes no sense on a RAID 0 */
1346 1.29.2.1 bouyer *(int *) data = 100;
1347 1.29.2.1 bouyer return(0);
1348 1.29.2.1 bouyer }
1349 1.29.2.1 bouyer if (raidPtr->copyback_in_progress == 1) {
1350 1.29.2.1 bouyer *(int *) data = 100 * raidPtr->copyback_stripes_done /
1351 1.29.2.1 bouyer raidPtr->Layout.numStripe;
1352 1.29.2.1 bouyer } else {
1353 1.29.2.1 bouyer *(int *) data = 100;
1354 1.29.2.1 bouyer }
1355 1.9 oster return (0);
1356 1.9 oster
1357 1.29.2.1 bouyer case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1358 1.29.2.1 bouyer progressInfoPtr = (RF_ProgressInfo_t **) data;
1359 1.29.2.1 bouyer if (raidPtr->copyback_in_progress == 1) {
1360 1.29.2.1 bouyer progressInfo.total = raidPtr->Layout.numStripe;
1361 1.29.2.1 bouyer progressInfo.completed =
1362 1.29.2.1 bouyer raidPtr->copyback_stripes_done;
1363 1.29.2.1 bouyer progressInfo.remaining = progressInfo.total -
1364 1.29.2.1 bouyer progressInfo.completed;
1365 1.29.2.1 bouyer } else {
1366 1.29.2.1 bouyer progressInfo.remaining = 0;
1367 1.29.2.1 bouyer progressInfo.completed = 100;
1368 1.29.2.1 bouyer progressInfo.total = 100;
1369 1.29.2.1 bouyer }
1370 1.29.2.1 bouyer retcode = copyout((caddr_t) &progressInfo,
1371 1.29.2.1 bouyer (caddr_t) *progressInfoPtr,
1372 1.29.2.1 bouyer sizeof(RF_ProgressInfo_t));
1373 1.29.2.1 bouyer return (retcode);
1374 1.29.2.1 bouyer
1375 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1376 1.9 oster * need a spare table. this ioctl does not return until a
1377 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1378 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1379 1.9 oster * -- I should either compute the spare table in the kernel,
1380 1.9 oster * or have a different -- XXX XXX -- interface (a different
1381 1.29.2.1 bouyer * character device) for delivering the table -- XXX */
1382 1.1 oster #if 0
1383 1.1 oster case RAIDFRAME_SPARET_WAIT:
1384 1.1 oster RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1385 1.9 oster while (!rf_sparet_wait_queue)
1386 1.9 oster mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1387 1.1 oster waitreq = rf_sparet_wait_queue;
1388 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1389 1.1 oster RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1390 1.9 oster
1391 1.29.2.1 bouyer /* structure assignment */
1392 1.29.2.1 bouyer *((RF_SparetWait_t *) data) = *waitreq;
1393 1.9 oster
1394 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1395 1.9 oster return (0);
1396 1.9 oster
1397 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1398 1.9 oster * code in it that will cause the dameon to exit */
1399 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1400 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1401 1.1 oster waitreq->fcol = -1;
1402 1.1 oster RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1403 1.1 oster waitreq->next = rf_sparet_wait_queue;
1404 1.1 oster rf_sparet_wait_queue = waitreq;
1405 1.1 oster RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1406 1.1 oster wakeup(&rf_sparet_wait_queue);
1407 1.9 oster return (0);
1408 1.1 oster
1409 1.9 oster /* used by the spare table daemon to deliver a spare table
1410 1.9 oster * into the kernel */
1411 1.1 oster case RAIDFRAME_SEND_SPARET:
1412 1.9 oster
1413 1.1 oster /* install the spare table */
1414 1.29.2.1 bouyer retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1415 1.9 oster
1416 1.9 oster /* respond to the requestor. the return status of the spare
1417 1.9 oster * table installation is passed in the "fcol" field */
1418 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1419 1.1 oster waitreq->fcol = retcode;
1420 1.1 oster RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1421 1.1 oster waitreq->next = rf_sparet_resp_queue;
1422 1.1 oster rf_sparet_resp_queue = waitreq;
1423 1.1 oster wakeup(&rf_sparet_resp_queue);
1424 1.1 oster RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1425 1.9 oster
1426 1.9 oster return (retcode);
1427 1.1 oster #endif
1428 1.1 oster
1429 1.9 oster default:
1430 1.29.2.1 bouyer break; /* fall through to the os-specific code below */
1431 1.1 oster
1432 1.1 oster }
1433 1.9 oster
1434 1.29.2.1 bouyer if (!raidPtr->valid)
1435 1.9 oster return (EINVAL);
1436 1.9 oster
1437 1.1 oster /*
1438 1.1 oster * Add support for "regular" device ioctls here.
1439 1.1 oster */
1440 1.9 oster
1441 1.1 oster switch (cmd) {
1442 1.1 oster case DIOCGDINFO:
1443 1.9 oster *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1444 1.1 oster break;
1445 1.1 oster
1446 1.1 oster case DIOCGPART:
1447 1.9 oster ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1448 1.9 oster ((struct partinfo *) data)->part =
1449 1.1 oster &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1450 1.1 oster break;
1451 1.1 oster
1452 1.1 oster case DIOCWDINFO:
1453 1.1 oster case DIOCSDINFO:
1454 1.1 oster if ((error = raidlock(rs)) != 0)
1455 1.1 oster return (error);
1456 1.1 oster
1457 1.1 oster rs->sc_flags |= RAIDF_LABELLING;
1458 1.1 oster
1459 1.1 oster error = setdisklabel(rs->sc_dkdev.dk_label,
1460 1.9 oster (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
1461 1.1 oster if (error == 0) {
1462 1.1 oster if (cmd == DIOCWDINFO)
1463 1.1 oster error = writedisklabel(RAIDLABELDEV(dev),
1464 1.1 oster raidstrategy, rs->sc_dkdev.dk_label,
1465 1.1 oster rs->sc_dkdev.dk_cpulabel);
1466 1.1 oster }
1467 1.1 oster rs->sc_flags &= ~RAIDF_LABELLING;
1468 1.1 oster
1469 1.1 oster raidunlock(rs);
1470 1.1 oster
1471 1.1 oster if (error)
1472 1.1 oster return (error);
1473 1.1 oster break;
1474 1.1 oster
1475 1.1 oster case DIOCWLABEL:
1476 1.9 oster if (*(int *) data != 0)
1477 1.1 oster rs->sc_flags |= RAIDF_WLABEL;
1478 1.1 oster else
1479 1.1 oster rs->sc_flags &= ~RAIDF_WLABEL;
1480 1.1 oster break;
1481 1.1 oster
1482 1.1 oster case DIOCGDEFLABEL:
1483 1.29.2.1 bouyer raidgetdefaultlabel(raidPtr, rs,
1484 1.9 oster (struct disklabel *) data);
1485 1.1 oster break;
1486 1.1 oster
1487 1.1 oster default:
1488 1.29.2.1 bouyer retcode = ENOTTY;
1489 1.1 oster }
1490 1.9 oster return (retcode);
1491 1.1 oster
1492 1.1 oster }
1493 1.1 oster
1494 1.1 oster
1495 1.9 oster /* raidinit -- complete the rest of the initialization for the
1496 1.1 oster RAIDframe device. */
1497 1.1 oster
1498 1.1 oster
1499 1.29.2.1 bouyer static void
1500 1.29.2.1 bouyer raidinit(raidPtr)
1501 1.1 oster RF_Raid_t *raidPtr;
1502 1.1 oster {
1503 1.1 oster struct raid_softc *rs;
1504 1.29.2.1 bouyer int unit;
1505 1.1 oster
1506 1.29.2.1 bouyer unit = raidPtr->raidid;
1507 1.1 oster
1508 1.1 oster rs = &raid_softc[unit];
1509 1.1 oster pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
1510 1.11 oster 0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
1511 1.9 oster
1512 1.1 oster
1513 1.1 oster /* XXX should check return code first... */
1514 1.1 oster rs->sc_flags |= RAIDF_INITED;
1515 1.1 oster
1516 1.9 oster sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1517 1.1 oster
1518 1.9 oster rs->sc_dkdev.dk_name = rs->sc_xname;
1519 1.11 oster
1520 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1521 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1522 1.9 oster * with disklabels. */
1523 1.11 oster
1524 1.1 oster disk_attach(&rs->sc_dkdev);
1525 1.1 oster
1526 1.1 oster /* XXX There may be a weird interaction here between this, and
1527 1.9 oster * protectedSectors, as used in RAIDframe. */
1528 1.11 oster
1529 1.9 oster rs->sc_size = raidPtr->totalSectors;
1530 1.11 oster
1531 1.1 oster }
1532 1.1 oster
1533 1.1 oster /* wake up the daemon & tell it to get us a spare table
1534 1.1 oster * XXX
1535 1.9 oster * the entries in the queues should be tagged with the raidPtr
1536 1.11 oster * so that in the extremely rare case that two recons happen at once,
1537 1.11 oster * we know for which device were requesting a spare table
1538 1.1 oster * XXX
1539 1.29.2.1 bouyer *
1540 1.29.2.1 bouyer * XXX This code is not currently used. GO
1541 1.1 oster */
1542 1.9 oster int
1543 1.9 oster rf_GetSpareTableFromDaemon(req)
1544 1.9 oster RF_SparetWait_t *req;
1545 1.9 oster {
1546 1.9 oster int retcode;
1547 1.9 oster
1548 1.9 oster RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1549 1.9 oster req->next = rf_sparet_wait_queue;
1550 1.9 oster rf_sparet_wait_queue = req;
1551 1.9 oster wakeup(&rf_sparet_wait_queue);
1552 1.9 oster
1553 1.9 oster /* mpsleep unlocks the mutex */
1554 1.9 oster while (!rf_sparet_resp_queue) {
1555 1.15 oster tsleep(&rf_sparet_resp_queue, PRIBIO,
1556 1.9 oster "raidframe getsparetable", 0);
1557 1.9 oster }
1558 1.9 oster req = rf_sparet_resp_queue;
1559 1.9 oster rf_sparet_resp_queue = req->next;
1560 1.9 oster RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1561 1.9 oster
1562 1.9 oster retcode = req->fcol;
1563 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
1564 1.9 oster * alloc'd */
1565 1.9 oster return (retcode);
1566 1.1 oster }
1567 1.29.2.1 bouyer
1568 1.11 oster /* a wrapper around rf_DoAccess that extracts appropriate info from the
1569 1.11 oster * bp & passes it down.
1570 1.1 oster * any calls originating in the kernel must use non-blocking I/O
1571 1.1 oster * do some extra sanity checking to return "appropriate" error values for
1572 1.1 oster * certain conditions (to make some standard utilities work)
1573 1.29.2.1 bouyer *
1574 1.29.2.1 bouyer * Formerly known as: rf_DoAccessKernel
1575 1.1 oster */
1576 1.29.2.1 bouyer void
1577 1.29.2.1 bouyer raidstart(raidPtr)
1578 1.9 oster RF_Raid_t *raidPtr;
1579 1.1 oster {
1580 1.1 oster RF_SectorCount_t num_blocks, pb, sum;
1581 1.1 oster RF_RaidAddr_t raid_addr;
1582 1.9 oster int retcode;
1583 1.1 oster struct partition *pp;
1584 1.9 oster daddr_t blocknum;
1585 1.9 oster int unit;
1586 1.1 oster struct raid_softc *rs;
1587 1.9 oster int do_async;
1588 1.29.2.1 bouyer struct buf *bp;
1589 1.1 oster
1590 1.1 oster unit = raidPtr->raidid;
1591 1.1 oster rs = &raid_softc[unit];
1592 1.29.2.1 bouyer
1593 1.29.2.1 bouyer /* quick check to see if anything has died recently */
1594 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1595 1.29.2.1 bouyer if (raidPtr->numNewFailures > 0) {
1596 1.29.2.1 bouyer rf_update_component_labels(raidPtr,
1597 1.29.2.1 bouyer RF_NORMAL_COMPONENT_UPDATE);
1598 1.29.2.1 bouyer raidPtr->numNewFailures--;
1599 1.1 oster }
1600 1.29.2.1 bouyer RF_UNLOCK_MUTEX(raidPtr->mutex);
1601 1.20 oster
1602 1.29.2.1 bouyer /* Check to see if we're at the limit... */
1603 1.20 oster RF_LOCK_MUTEX(raidPtr->mutex);
1604 1.29.2.1 bouyer while (raidPtr->openings > 0) {
1605 1.20 oster RF_UNLOCK_MUTEX(raidPtr->mutex);
1606 1.20 oster
1607 1.29.2.1 bouyer /* get the next item, if any, from the queue */
1608 1.29.2.1 bouyer if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
1609 1.29.2.1 bouyer /* nothing more to do */
1610 1.29.2.1 bouyer return;
1611 1.29.2.1 bouyer }
1612 1.29.2.1 bouyer BUFQ_REMOVE(&rs->buf_queue, bp);
1613 1.20 oster
1614 1.29.2.1 bouyer /* Ok, for the bp we have here, bp->b_blkno is relative to the
1615 1.29.2.1 bouyer * partition.. Need to make it absolute to the underlying
1616 1.29.2.1 bouyer * device.. */
1617 1.7 explorer
1618 1.29.2.1 bouyer blocknum = bp->b_blkno;
1619 1.29.2.1 bouyer if (DISKPART(bp->b_dev) != RAW_PART) {
1620 1.29.2.1 bouyer pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1621 1.29.2.1 bouyer blocknum += pp->p_offset;
1622 1.29.2.1 bouyer }
1623 1.7 explorer
1624 1.29.2.1 bouyer db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1625 1.29.2.1 bouyer (int) blocknum));
1626 1.29.2.1 bouyer
1627 1.29.2.1 bouyer db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1628 1.29.2.1 bouyer db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1629 1.29.2.1 bouyer
1630 1.29.2.1 bouyer /* *THIS* is where we adjust what block we're going to...
1631 1.29.2.1 bouyer * but DO NOT TOUCH bp->b_blkno!!! */
1632 1.29.2.1 bouyer raid_addr = blocknum;
1633 1.29.2.1 bouyer
1634 1.29.2.1 bouyer num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1635 1.29.2.1 bouyer pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1636 1.29.2.1 bouyer sum = raid_addr + num_blocks + pb;
1637 1.29.2.1 bouyer if (1 || rf_debugKernelAccess) {
1638 1.29.2.1 bouyer db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1639 1.29.2.1 bouyer (int) raid_addr, (int) sum, (int) num_blocks,
1640 1.29.2.1 bouyer (int) pb, (int) bp->b_resid));
1641 1.29.2.1 bouyer }
1642 1.29.2.1 bouyer if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1643 1.29.2.1 bouyer || (sum < num_blocks) || (sum < pb)) {
1644 1.29.2.1 bouyer bp->b_error = ENOSPC;
1645 1.29.2.1 bouyer bp->b_flags |= B_ERROR;
1646 1.29.2.1 bouyer bp->b_resid = bp->b_bcount;
1647 1.29.2.1 bouyer biodone(bp);
1648 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1649 1.29.2.1 bouyer continue;
1650 1.29.2.1 bouyer }
1651 1.29.2.1 bouyer /*
1652 1.29.2.1 bouyer * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1653 1.29.2.1 bouyer */
1654 1.29.2.1 bouyer
1655 1.29.2.1 bouyer if (bp->b_bcount & raidPtr->sectorMask) {
1656 1.29.2.1 bouyer bp->b_error = EINVAL;
1657 1.29.2.1 bouyer bp->b_flags |= B_ERROR;
1658 1.29.2.1 bouyer bp->b_resid = bp->b_bcount;
1659 1.29.2.1 bouyer biodone(bp);
1660 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1661 1.29.2.1 bouyer continue;
1662 1.29.2.1 bouyer
1663 1.29.2.1 bouyer }
1664 1.29.2.1 bouyer db1_printf(("Calling DoAccess..\n"));
1665 1.29.2.1 bouyer
1666 1.29.2.1 bouyer
1667 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1668 1.29.2.1 bouyer raidPtr->openings--;
1669 1.29.2.1 bouyer RF_UNLOCK_MUTEX(raidPtr->mutex);
1670 1.29.2.1 bouyer
1671 1.29.2.1 bouyer /*
1672 1.29.2.1 bouyer * Everything is async.
1673 1.29.2.1 bouyer */
1674 1.29.2.1 bouyer do_async = 1;
1675 1.29.2.1 bouyer
1676 1.29.2.1 bouyer disk_busy(&rs->sc_dkdev);
1677 1.29.2.1 bouyer
1678 1.29.2.1 bouyer /* XXX we're still at splbio() here... do we *really*
1679 1.29.2.1 bouyer need to be? */
1680 1.29.2.1 bouyer
1681 1.29.2.1 bouyer /* don't ever condition on bp->b_flags & B_WRITE.
1682 1.29.2.1 bouyer * always condition on B_READ instead */
1683 1.29.2.1 bouyer
1684 1.29.2.1 bouyer retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1685 1.29.2.1 bouyer RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1686 1.29.2.1 bouyer do_async, raid_addr, num_blocks,
1687 1.29.2.1 bouyer bp->b_data, bp, NULL, NULL,
1688 1.29.2.1 bouyer RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
1689 1.29.2.1 bouyer
1690 1.29.2.1 bouyer
1691 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1692 1.29.2.1 bouyer }
1693 1.29.2.1 bouyer RF_UNLOCK_MUTEX(raidPtr->mutex);
1694 1.1 oster }
1695 1.29.2.1 bouyer
1696 1.29.2.1 bouyer
1697 1.29.2.1 bouyer
1698 1.29.2.1 bouyer
1699 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1700 1.1 oster
1701 1.9 oster int
1702 1.9 oster rf_DispatchKernelIO(queue, req)
1703 1.9 oster RF_DiskQueue_t *queue;
1704 1.9 oster RF_DiskQueueData_t *req;
1705 1.1 oster {
1706 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1707 1.1 oster struct buf *bp;
1708 1.9 oster struct raidbuf *raidbp = NULL;
1709 1.1 oster struct raid_softc *rs;
1710 1.9 oster int unit;
1711 1.29.2.1 bouyer int s;
1712 1.9 oster
1713 1.29.2.1 bouyer s=0;
1714 1.29.2.1 bouyer /* s = splbio();*/ /* want to test this */
1715 1.1 oster /* XXX along with the vnode, we also need the softc associated with
1716 1.9 oster * this device.. */
1717 1.9 oster
1718 1.1 oster req->queue = queue;
1719 1.9 oster
1720 1.1 oster unit = queue->raidPtr->raidid;
1721 1.1 oster
1722 1.9 oster db1_printf(("DispatchKernelIO unit: %d\n", unit));
1723 1.1 oster
1724 1.9 oster if (unit >= numraid) {
1725 1.9 oster printf("Invalid unit number: %d %d\n", unit, numraid);
1726 1.1 oster panic("Invalid Unit number in rf_DispatchKernelIO\n");
1727 1.1 oster }
1728 1.1 oster rs = &raid_softc[unit];
1729 1.1 oster
1730 1.1 oster bp = req->bp;
1731 1.16 oster #if 1
1732 1.9 oster /* XXX when there is a physical disk failure, someone is passing us a
1733 1.9 oster * buffer that contains old stuff!! Attempt to deal with this problem
1734 1.9 oster * without taking a performance hit... (not sure where the real bug
1735 1.9 oster * is. It's buried in RAIDframe somewhere) :-( GO ) */
1736 1.4 oster
1737 1.4 oster if (bp->b_flags & B_ERROR) {
1738 1.4 oster bp->b_flags &= ~B_ERROR;
1739 1.4 oster }
1740 1.9 oster if (bp->b_error != 0) {
1741 1.4 oster bp->b_error = 0;
1742 1.4 oster }
1743 1.16 oster #endif
1744 1.1 oster raidbp = RAIDGETBUF(rs);
1745 1.1 oster
1746 1.9 oster raidbp->rf_flags = 0; /* XXX not really used anywhere... */
1747 1.1 oster
1748 1.1 oster /*
1749 1.1 oster * context for raidiodone
1750 1.1 oster */
1751 1.1 oster raidbp->rf_obp = bp;
1752 1.1 oster raidbp->req = req;
1753 1.1 oster
1754 1.29.2.1 bouyer LIST_INIT(&raidbp->rf_buf.b_dep);
1755 1.29.2.1 bouyer
1756 1.1 oster switch (req->type) {
1757 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1758 1.1 oster /* XXX need to do something extra here.. */
1759 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
1760 1.9 oster * and I'd like folks to report it... GO */
1761 1.1 oster printf(("WAKEUP CALLED\n"));
1762 1.1 oster queue->numOutstanding++;
1763 1.1 oster
1764 1.1 oster /* XXX need to glue the original buffer into this?? */
1765 1.1 oster
1766 1.1 oster KernelWakeupFunc(&raidbp->rf_buf);
1767 1.1 oster break;
1768 1.9 oster
1769 1.1 oster case RF_IO_TYPE_READ:
1770 1.1 oster case RF_IO_TYPE_WRITE:
1771 1.9 oster
1772 1.1 oster if (req->tracerec) {
1773 1.1 oster RF_ETIMER_START(req->tracerec->timer);
1774 1.1 oster }
1775 1.9 oster InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1776 1.9 oster op | bp->b_flags, queue->rf_cinfo->ci_dev,
1777 1.9 oster req->sectorOffset, req->numSector,
1778 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
1779 1.9 oster queue->raidPtr->logBytesPerSector, req->b_proc);
1780 1.1 oster
1781 1.1 oster if (rf_debugKernelAccess) {
1782 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
1783 1.9 oster (long) bp->b_blkno));
1784 1.1 oster }
1785 1.1 oster queue->numOutstanding++;
1786 1.1 oster queue->last_deq_sector = req->sectorOffset;
1787 1.9 oster /* acc wouldn't have been let in if there were any pending
1788 1.9 oster * reqs at any other priority */
1789 1.1 oster queue->curPriority = req->priority;
1790 1.1 oster
1791 1.1 oster db1_printf(("Going for %c to unit %d row %d col %d\n",
1792 1.9 oster req->type, unit, queue->row, queue->col));
1793 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
1794 1.9 oster (int) req->sectorOffset, (int) req->numSector,
1795 1.9 oster (int) (req->numSector <<
1796 1.9 oster queue->raidPtr->logBytesPerSector),
1797 1.9 oster (int) queue->raidPtr->logBytesPerSector));
1798 1.1 oster if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1799 1.1 oster raidbp->rf_buf.b_vp->v_numoutput++;
1800 1.1 oster }
1801 1.9 oster VOP_STRATEGY(&raidbp->rf_buf);
1802 1.1 oster
1803 1.1 oster break;
1804 1.9 oster
1805 1.1 oster default:
1806 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
1807 1.1 oster }
1808 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
1809 1.29.2.1 bouyer /* splx(s); */ /* want to test this */
1810 1.9 oster return (0);
1811 1.1 oster }
1812 1.9 oster /* this is the callback function associated with a I/O invoked from
1813 1.1 oster kernel code.
1814 1.1 oster */
1815 1.9 oster static void
1816 1.9 oster KernelWakeupFunc(vbp)
1817 1.9 oster struct buf *vbp;
1818 1.9 oster {
1819 1.9 oster RF_DiskQueueData_t *req = NULL;
1820 1.9 oster RF_DiskQueue_t *queue;
1821 1.9 oster struct raidbuf *raidbp = (struct raidbuf *) vbp;
1822 1.9 oster struct buf *bp;
1823 1.9 oster struct raid_softc *rs;
1824 1.9 oster int unit;
1825 1.29.2.1 bouyer int s;
1826 1.9 oster
1827 1.29.2.1 bouyer s = splbio();
1828 1.9 oster db1_printf(("recovering the request queue:\n"));
1829 1.9 oster req = raidbp->req;
1830 1.1 oster
1831 1.9 oster bp = raidbp->rf_obp;
1832 1.1 oster
1833 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
1834 1.1 oster
1835 1.9 oster if (raidbp->rf_buf.b_flags & B_ERROR) {
1836 1.9 oster bp->b_flags |= B_ERROR;
1837 1.9 oster bp->b_error = raidbp->rf_buf.b_error ?
1838 1.9 oster raidbp->rf_buf.b_error : EIO;
1839 1.9 oster }
1840 1.1 oster
1841 1.9 oster /* XXX methinks this could be wrong... */
1842 1.1 oster #if 1
1843 1.9 oster bp->b_resid = raidbp->rf_buf.b_resid;
1844 1.1 oster #endif
1845 1.1 oster
1846 1.9 oster if (req->tracerec) {
1847 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
1848 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
1849 1.9 oster RF_LOCK_MUTEX(rf_tracing_mutex);
1850 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1851 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1852 1.9 oster req->tracerec->num_phys_ios++;
1853 1.9 oster RF_UNLOCK_MUTEX(rf_tracing_mutex);
1854 1.9 oster }
1855 1.9 oster bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1856 1.1 oster
1857 1.9 oster unit = queue->raidPtr->raidid; /* *Much* simpler :-> */
1858 1.1 oster
1859 1.1 oster
1860 1.9 oster /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1861 1.9 oster * ballistic, and mark the component as hosed... */
1862 1.29.2.1 bouyer
1863 1.9 oster if (bp->b_flags & B_ERROR) {
1864 1.9 oster /* Mark the disk as dead */
1865 1.9 oster /* but only mark it once... */
1866 1.9 oster if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1867 1.9 oster rf_ds_optimal) {
1868 1.9 oster printf("raid%d: IO Error. Marking %s as failed.\n",
1869 1.9 oster unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
1870 1.9 oster queue->raidPtr->Disks[queue->row][queue->col].status =
1871 1.9 oster rf_ds_failed;
1872 1.9 oster queue->raidPtr->status[queue->row] = rf_rs_degraded;
1873 1.9 oster queue->raidPtr->numFailures++;
1874 1.29.2.1 bouyer queue->raidPtr->numNewFailures++;
1875 1.9 oster } else { /* Disk is already dead... */
1876 1.9 oster /* printf("Disk already marked as dead!\n"); */
1877 1.9 oster }
1878 1.4 oster
1879 1.9 oster }
1880 1.4 oster
1881 1.9 oster rs = &raid_softc[unit];
1882 1.9 oster RAIDPUTBUF(rs, raidbp);
1883 1.9 oster
1884 1.9 oster rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
1885 1.9 oster (req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
1886 1.1 oster
1887 1.29.2.1 bouyer splx(s);
1888 1.1 oster }
1889 1.1 oster
1890 1.1 oster
1891 1.1 oster
1892 1.1 oster /*
1893 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
1894 1.1 oster */
1895 1.9 oster static void
1896 1.29.2.1 bouyer InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1897 1.29.2.1 bouyer logBytesPerSector, b_proc)
1898 1.29.2.1 bouyer struct buf *bp;
1899 1.29.2.1 bouyer struct vnode *b_vp;
1900 1.29.2.1 bouyer unsigned rw_flag;
1901 1.29.2.1 bouyer dev_t dev;
1902 1.29.2.1 bouyer RF_SectorNum_t startSect;
1903 1.29.2.1 bouyer RF_SectorCount_t numSect;
1904 1.29.2.1 bouyer caddr_t buf;
1905 1.29.2.1 bouyer void (*cbFunc) (struct buf *);
1906 1.29.2.1 bouyer void *cbArg;
1907 1.29.2.1 bouyer int logBytesPerSector;
1908 1.29.2.1 bouyer struct proc *b_proc;
1909 1.9 oster {
1910 1.9 oster /* bp->b_flags = B_PHYS | rw_flag; */
1911 1.9 oster bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
1912 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
1913 1.9 oster bp->b_bufsize = bp->b_bcount;
1914 1.9 oster bp->b_error = 0;
1915 1.9 oster bp->b_dev = dev;
1916 1.29.2.1 bouyer bp->b_data = buf;
1917 1.9 oster bp->b_blkno = startSect;
1918 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
1919 1.1 oster if (bp->b_bcount == 0) {
1920 1.1 oster panic("bp->b_bcount is zero in InitBP!!\n");
1921 1.1 oster }
1922 1.9 oster bp->b_proc = b_proc;
1923 1.9 oster bp->b_iodone = cbFunc;
1924 1.9 oster bp->b_vp = b_vp;
1925 1.9 oster
1926 1.1 oster }
1927 1.1 oster
1928 1.1 oster static void
1929 1.1 oster raidgetdefaultlabel(raidPtr, rs, lp)
1930 1.1 oster RF_Raid_t *raidPtr;
1931 1.1 oster struct raid_softc *rs;
1932 1.1 oster struct disklabel *lp;
1933 1.1 oster {
1934 1.1 oster db1_printf(("Building a default label...\n"));
1935 1.1 oster bzero(lp, sizeof(*lp));
1936 1.1 oster
1937 1.1 oster /* fabricate a label... */
1938 1.1 oster lp->d_secperunit = raidPtr->totalSectors;
1939 1.1 oster lp->d_secsize = raidPtr->bytesPerSector;
1940 1.29.2.1 bouyer lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
1941 1.1 oster lp->d_ntracks = 1;
1942 1.29.2.1 bouyer lp->d_ncylinders = raidPtr->totalSectors /
1943 1.29.2.1 bouyer (lp->d_nsectors * lp->d_ntracks);
1944 1.1 oster lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
1945 1.1 oster
1946 1.1 oster strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
1947 1.9 oster lp->d_type = DTYPE_RAID;
1948 1.1 oster strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
1949 1.1 oster lp->d_rpm = 3600;
1950 1.1 oster lp->d_interleave = 1;
1951 1.1 oster lp->d_flags = 0;
1952 1.1 oster
1953 1.1 oster lp->d_partitions[RAW_PART].p_offset = 0;
1954 1.1 oster lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
1955 1.1 oster lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
1956 1.1 oster lp->d_npartitions = RAW_PART + 1;
1957 1.1 oster
1958 1.1 oster lp->d_magic = DISKMAGIC;
1959 1.1 oster lp->d_magic2 = DISKMAGIC;
1960 1.1 oster lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
1961 1.1 oster
1962 1.1 oster }
1963 1.1 oster /*
1964 1.1 oster * Read the disklabel from the raid device. If one is not present, fake one
1965 1.1 oster * up.
1966 1.1 oster */
1967 1.1 oster static void
1968 1.1 oster raidgetdisklabel(dev)
1969 1.9 oster dev_t dev;
1970 1.1 oster {
1971 1.9 oster int unit = raidunit(dev);
1972 1.1 oster struct raid_softc *rs = &raid_softc[unit];
1973 1.9 oster char *errstring;
1974 1.1 oster struct disklabel *lp = rs->sc_dkdev.dk_label;
1975 1.1 oster struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
1976 1.1 oster RF_Raid_t *raidPtr;
1977 1.1 oster
1978 1.1 oster db1_printf(("Getting the disklabel...\n"));
1979 1.1 oster
1980 1.1 oster bzero(clp, sizeof(*clp));
1981 1.1 oster
1982 1.1 oster raidPtr = raidPtrs[unit];
1983 1.1 oster
1984 1.1 oster raidgetdefaultlabel(raidPtr, rs, lp);
1985 1.1 oster
1986 1.1 oster /*
1987 1.1 oster * Call the generic disklabel extraction routine.
1988 1.1 oster */
1989 1.1 oster errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
1990 1.1 oster rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
1991 1.9 oster if (errstring)
1992 1.1 oster raidmakedisklabel(rs);
1993 1.1 oster else {
1994 1.9 oster int i;
1995 1.1 oster struct partition *pp;
1996 1.1 oster
1997 1.1 oster /*
1998 1.1 oster * Sanity check whether the found disklabel is valid.
1999 1.1 oster *
2000 1.1 oster * This is necessary since total size of the raid device
2001 1.1 oster * may vary when an interleave is changed even though exactly
2002 1.1 oster * same componets are used, and old disklabel may used
2003 1.1 oster * if that is found.
2004 1.1 oster */
2005 1.1 oster if (lp->d_secperunit != rs->sc_size)
2006 1.1 oster printf("WARNING: %s: "
2007 1.1 oster "total sector size in disklabel (%d) != "
2008 1.18 oster "the size of raid (%ld)\n", rs->sc_xname,
2009 1.18 oster lp->d_secperunit, (long) rs->sc_size);
2010 1.1 oster for (i = 0; i < lp->d_npartitions; i++) {
2011 1.1 oster pp = &lp->d_partitions[i];
2012 1.1 oster if (pp->p_offset + pp->p_size > rs->sc_size)
2013 1.1 oster printf("WARNING: %s: end of partition `%c' "
2014 1.18 oster "exceeds the size of raid (%ld)\n",
2015 1.18 oster rs->sc_xname, 'a' + i, (long) rs->sc_size);
2016 1.1 oster }
2017 1.1 oster }
2018 1.1 oster
2019 1.1 oster }
2020 1.1 oster /*
2021 1.1 oster * Take care of things one might want to take care of in the event
2022 1.1 oster * that a disklabel isn't present.
2023 1.1 oster */
2024 1.1 oster static void
2025 1.1 oster raidmakedisklabel(rs)
2026 1.1 oster struct raid_softc *rs;
2027 1.1 oster {
2028 1.1 oster struct disklabel *lp = rs->sc_dkdev.dk_label;
2029 1.1 oster db1_printf(("Making a label..\n"));
2030 1.1 oster
2031 1.1 oster /*
2032 1.1 oster * For historical reasons, if there's no disklabel present
2033 1.1 oster * the raw partition must be marked FS_BSDFFS.
2034 1.1 oster */
2035 1.1 oster
2036 1.1 oster lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2037 1.1 oster
2038 1.1 oster strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2039 1.1 oster
2040 1.1 oster lp->d_checksum = dkcksum(lp);
2041 1.1 oster }
2042 1.1 oster /*
2043 1.1 oster * Lookup the provided name in the filesystem. If the file exists,
2044 1.1 oster * is a valid block device, and isn't being used by anyone else,
2045 1.1 oster * set *vpp to the file's vnode.
2046 1.9 oster * You'll find the original of this in ccd.c
2047 1.1 oster */
2048 1.1 oster int
2049 1.1 oster raidlookup(path, p, vpp)
2050 1.9 oster char *path;
2051 1.1 oster struct proc *p;
2052 1.1 oster struct vnode **vpp; /* result */
2053 1.1 oster {
2054 1.1 oster struct nameidata nd;
2055 1.1 oster struct vnode *vp;
2056 1.1 oster struct vattr va;
2057 1.9 oster int error;
2058 1.1 oster
2059 1.1 oster NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2060 1.9 oster if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2061 1.1 oster #ifdef DEBUG
2062 1.9 oster printf("RAIDframe: vn_open returned %d\n", error);
2063 1.1 oster #endif
2064 1.1 oster return (error);
2065 1.1 oster }
2066 1.1 oster vp = nd.ni_vp;
2067 1.1 oster if (vp->v_usecount > 1) {
2068 1.1 oster VOP_UNLOCK(vp, 0);
2069 1.9 oster (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2070 1.1 oster return (EBUSY);
2071 1.1 oster }
2072 1.1 oster if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2073 1.1 oster VOP_UNLOCK(vp, 0);
2074 1.9 oster (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2075 1.1 oster return (error);
2076 1.1 oster }
2077 1.1 oster /* XXX: eventually we should handle VREG, too. */
2078 1.1 oster if (va.va_type != VBLK) {
2079 1.1 oster VOP_UNLOCK(vp, 0);
2080 1.9 oster (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2081 1.1 oster return (ENOTBLK);
2082 1.1 oster }
2083 1.1 oster VOP_UNLOCK(vp, 0);
2084 1.1 oster *vpp = vp;
2085 1.1 oster return (0);
2086 1.1 oster }
2087 1.1 oster /*
2088 1.1 oster * Wait interruptibly for an exclusive lock.
2089 1.1 oster *
2090 1.1 oster * XXX
2091 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2092 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2093 1.1 oster */
2094 1.1 oster static int
2095 1.1 oster raidlock(rs)
2096 1.1 oster struct raid_softc *rs;
2097 1.1 oster {
2098 1.9 oster int error;
2099 1.1 oster
2100 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2101 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2102 1.9 oster if ((error =
2103 1.9 oster tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2104 1.1 oster return (error);
2105 1.1 oster }
2106 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2107 1.1 oster return (0);
2108 1.1 oster }
2109 1.1 oster /*
2110 1.1 oster * Unlock and wake up any waiters.
2111 1.1 oster */
2112 1.1 oster static void
2113 1.1 oster raidunlock(rs)
2114 1.1 oster struct raid_softc *rs;
2115 1.1 oster {
2116 1.1 oster
2117 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2118 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2119 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2120 1.1 oster wakeup(rs);
2121 1.1 oster }
2122 1.11 oster }
2123 1.11 oster
2124 1.11 oster
2125 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2126 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2127 1.11 oster
2128 1.11 oster int
2129 1.12 oster raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2130 1.12 oster {
2131 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
2132 1.29.2.1 bouyer raidread_component_label(dev, b_vp, &clabel);
2133 1.29.2.1 bouyer clabel.mod_counter = mod_counter;
2134 1.29.2.1 bouyer clabel.clean = RF_RAID_CLEAN;
2135 1.29.2.1 bouyer raidwrite_component_label(dev, b_vp, &clabel);
2136 1.12 oster return(0);
2137 1.12 oster }
2138 1.12 oster
2139 1.12 oster
2140 1.12 oster int
2141 1.12 oster raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2142 1.11 oster {
2143 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
2144 1.29.2.1 bouyer raidread_component_label(dev, b_vp, &clabel);
2145 1.29.2.1 bouyer clabel.mod_counter = mod_counter;
2146 1.29.2.1 bouyer clabel.clean = RF_RAID_DIRTY;
2147 1.29.2.1 bouyer raidwrite_component_label(dev, b_vp, &clabel);
2148 1.11 oster return(0);
2149 1.11 oster }
2150 1.11 oster
2151 1.11 oster /* ARGSUSED */
2152 1.11 oster int
2153 1.29.2.1 bouyer raidread_component_label(dev, b_vp, clabel)
2154 1.11 oster dev_t dev;
2155 1.11 oster struct vnode *b_vp;
2156 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2157 1.11 oster {
2158 1.11 oster struct buf *bp;
2159 1.11 oster int error;
2160 1.11 oster
2161 1.11 oster /* XXX should probably ensure that we don't try to do this if
2162 1.11 oster someone has changed rf_protected_sectors. */
2163 1.11 oster
2164 1.29.2.1 bouyer if (b_vp == NULL) {
2165 1.29.2.1 bouyer /* For whatever reason, this component is not valid.
2166 1.29.2.1 bouyer Don't try to read a component label from it. */
2167 1.29.2.1 bouyer return(EINVAL);
2168 1.29.2.1 bouyer }
2169 1.29.2.1 bouyer
2170 1.11 oster /* get a block of the appropriate size... */
2171 1.11 oster bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2172 1.11 oster bp->b_dev = dev;
2173 1.11 oster
2174 1.11 oster /* get our ducks in a row for the read */
2175 1.11 oster bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2176 1.11 oster bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2177 1.29.2.2 bouyer bp->b_flags |= B_READ;
2178 1.11 oster bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2179 1.11 oster
2180 1.11 oster (*bdevsw[major(bp->b_dev)].d_strategy)(bp);
2181 1.11 oster
2182 1.11 oster error = biowait(bp);
2183 1.11 oster
2184 1.11 oster if (!error) {
2185 1.29.2.1 bouyer memcpy(clabel, bp->b_data,
2186 1.11 oster sizeof(RF_ComponentLabel_t));
2187 1.12 oster #if 0
2188 1.29.2.1 bouyer rf_print_component_label( clabel );
2189 1.11 oster #endif
2190 1.11 oster } else {
2191 1.29.2.1 bouyer #if 0
2192 1.11 oster printf("Failed to read RAID component label!\n");
2193 1.29.2.1 bouyer #endif
2194 1.11 oster }
2195 1.11 oster
2196 1.11 oster brelse(bp);
2197 1.11 oster return(error);
2198 1.11 oster }
2199 1.11 oster /* ARGSUSED */
2200 1.11 oster int
2201 1.29.2.1 bouyer raidwrite_component_label(dev, b_vp, clabel)
2202 1.11 oster dev_t dev;
2203 1.11 oster struct vnode *b_vp;
2204 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2205 1.11 oster {
2206 1.11 oster struct buf *bp;
2207 1.11 oster int error;
2208 1.11 oster
2209 1.11 oster /* get a block of the appropriate size... */
2210 1.11 oster bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2211 1.11 oster bp->b_dev = dev;
2212 1.11 oster
2213 1.11 oster /* get our ducks in a row for the write */
2214 1.11 oster bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2215 1.11 oster bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2216 1.29.2.2 bouyer bp->b_flags |= B_WRITE;
2217 1.11 oster bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2218 1.11 oster
2219 1.29.2.1 bouyer memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2220 1.11 oster
2221 1.29.2.1 bouyer memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2222 1.11 oster
2223 1.11 oster (*bdevsw[major(bp->b_dev)].d_strategy)(bp);
2224 1.11 oster error = biowait(bp);
2225 1.11 oster brelse(bp);
2226 1.11 oster if (error) {
2227 1.29.2.1 bouyer #if 1
2228 1.11 oster printf("Failed to write RAID component info!\n");
2229 1.29.2.1 bouyer #endif
2230 1.11 oster }
2231 1.11 oster
2232 1.11 oster return(error);
2233 1.1 oster }
2234 1.12 oster
2235 1.12 oster void
2236 1.29.2.1 bouyer rf_markalldirty(raidPtr)
2237 1.12 oster RF_Raid_t *raidPtr;
2238 1.12 oster {
2239 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
2240 1.12 oster int r,c;
2241 1.12 oster
2242 1.12 oster raidPtr->mod_counter++;
2243 1.12 oster for (r = 0; r < raidPtr->numRow; r++) {
2244 1.12 oster for (c = 0; c < raidPtr->numCol; c++) {
2245 1.29.2.1 bouyer /* we don't want to touch (at all) a disk that has
2246 1.29.2.1 bouyer failed */
2247 1.29.2.1 bouyer if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2248 1.12 oster raidread_component_label(
2249 1.12 oster raidPtr->Disks[r][c].dev,
2250 1.12 oster raidPtr->raid_cinfo[r][c].ci_vp,
2251 1.29.2.1 bouyer &clabel);
2252 1.29.2.1 bouyer if (clabel.status == rf_ds_spared) {
2253 1.12 oster /* XXX do something special...
2254 1.12 oster but whatever you do, don't
2255 1.12 oster try to access it!! */
2256 1.12 oster } else {
2257 1.12 oster #if 0
2258 1.29.2.1 bouyer clabel.status =
2259 1.12 oster raidPtr->Disks[r][c].status;
2260 1.12 oster raidwrite_component_label(
2261 1.12 oster raidPtr->Disks[r][c].dev,
2262 1.12 oster raidPtr->raid_cinfo[r][c].ci_vp,
2263 1.29.2.1 bouyer &clabel);
2264 1.12 oster #endif
2265 1.12 oster raidmarkdirty(
2266 1.12 oster raidPtr->Disks[r][c].dev,
2267 1.12 oster raidPtr->raid_cinfo[r][c].ci_vp,
2268 1.12 oster raidPtr->mod_counter);
2269 1.12 oster }
2270 1.12 oster }
2271 1.12 oster }
2272 1.12 oster }
2273 1.13 oster /* printf("Component labels marked dirty.\n"); */
2274 1.12 oster #if 0
2275 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2276 1.12 oster sparecol = raidPtr->numCol + c;
2277 1.12 oster if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
2278 1.12 oster /*
2279 1.12 oster
2280 1.12 oster XXX this is where we get fancy and map this spare
2281 1.12 oster into it's correct spot in the array.
2282 1.12 oster
2283 1.12 oster */
2284 1.12 oster /*
2285 1.12 oster
2286 1.12 oster we claim this disk is "optimal" if it's
2287 1.12 oster rf_ds_used_spare, as that means it should be
2288 1.12 oster directly substitutable for the disk it replaced.
2289 1.12 oster We note that too...
2290 1.12 oster
2291 1.12 oster */
2292 1.12 oster
2293 1.12 oster for(i=0;i<raidPtr->numRow;i++) {
2294 1.12 oster for(j=0;j<raidPtr->numCol;j++) {
2295 1.12 oster if ((raidPtr->Disks[i][j].spareRow ==
2296 1.12 oster r) &&
2297 1.12 oster (raidPtr->Disks[i][j].spareCol ==
2298 1.12 oster sparecol)) {
2299 1.12 oster srow = r;
2300 1.12 oster scol = sparecol;
2301 1.12 oster break;
2302 1.12 oster }
2303 1.12 oster }
2304 1.12 oster }
2305 1.12 oster
2306 1.12 oster raidread_component_label(
2307 1.12 oster raidPtr->Disks[r][sparecol].dev,
2308 1.12 oster raidPtr->raid_cinfo[r][sparecol].ci_vp,
2309 1.29.2.1 bouyer &clabel);
2310 1.12 oster /* make sure status is noted */
2311 1.29.2.1 bouyer clabel.version = RF_COMPONENT_LABEL_VERSION;
2312 1.29.2.1 bouyer clabel.mod_counter = raidPtr->mod_counter;
2313 1.29.2.1 bouyer clabel.serial_number = raidPtr->serial_number;
2314 1.29.2.1 bouyer clabel.row = srow;
2315 1.29.2.1 bouyer clabel.column = scol;
2316 1.29.2.1 bouyer clabel.num_rows = raidPtr->numRow;
2317 1.29.2.1 bouyer clabel.num_columns = raidPtr->numCol;
2318 1.29.2.1 bouyer clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
2319 1.29.2.1 bouyer clabel.status = rf_ds_optimal;
2320 1.12 oster raidwrite_component_label(
2321 1.12 oster raidPtr->Disks[r][sparecol].dev,
2322 1.12 oster raidPtr->raid_cinfo[r][sparecol].ci_vp,
2323 1.29.2.1 bouyer &clabel);
2324 1.12 oster raidmarkclean( raidPtr->Disks[r][sparecol].dev,
2325 1.12 oster raidPtr->raid_cinfo[r][sparecol].ci_vp);
2326 1.12 oster }
2327 1.12 oster }
2328 1.12 oster
2329 1.12 oster #endif
2330 1.12 oster }
2331 1.12 oster
2332 1.13 oster
2333 1.13 oster void
2334 1.29.2.1 bouyer rf_update_component_labels(raidPtr, final)
2335 1.13 oster RF_Raid_t *raidPtr;
2336 1.29.2.1 bouyer int final;
2337 1.13 oster {
2338 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
2339 1.13 oster int sparecol;
2340 1.13 oster int r,c;
2341 1.13 oster int i,j;
2342 1.13 oster int srow, scol;
2343 1.13 oster
2344 1.13 oster srow = -1;
2345 1.13 oster scol = -1;
2346 1.13 oster
2347 1.13 oster /* XXX should do extra checks to make sure things really are clean,
2348 1.13 oster rather than blindly setting the clean bit... */
2349 1.13 oster
2350 1.13 oster raidPtr->mod_counter++;
2351 1.13 oster
2352 1.13 oster for (r = 0; r < raidPtr->numRow; r++) {
2353 1.13 oster for (c = 0; c < raidPtr->numCol; c++) {
2354 1.13 oster if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2355 1.13 oster raidread_component_label(
2356 1.13 oster raidPtr->Disks[r][c].dev,
2357 1.13 oster raidPtr->raid_cinfo[r][c].ci_vp,
2358 1.29.2.1 bouyer &clabel);
2359 1.13 oster /* make sure status is noted */
2360 1.29.2.1 bouyer clabel.status = rf_ds_optimal;
2361 1.29.2.1 bouyer /* bump the counter */
2362 1.29.2.1 bouyer clabel.mod_counter = raidPtr->mod_counter;
2363 1.29.2.1 bouyer
2364 1.13 oster raidwrite_component_label(
2365 1.13 oster raidPtr->Disks[r][c].dev,
2366 1.13 oster raidPtr->raid_cinfo[r][c].ci_vp,
2367 1.29.2.1 bouyer &clabel);
2368 1.29.2.1 bouyer if (final == RF_FINAL_COMPONENT_UPDATE) {
2369 1.29.2.1 bouyer if (raidPtr->parity_good == RF_RAID_CLEAN) {
2370 1.29.2.1 bouyer raidmarkclean(
2371 1.29.2.1 bouyer raidPtr->Disks[r][c].dev,
2372 1.29.2.1 bouyer raidPtr->raid_cinfo[r][c].ci_vp,
2373 1.29.2.1 bouyer raidPtr->mod_counter);
2374 1.29.2.1 bouyer }
2375 1.13 oster }
2376 1.13 oster }
2377 1.13 oster /* else we don't touch it.. */
2378 1.13 oster }
2379 1.13 oster }
2380 1.13 oster
2381 1.13 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2382 1.13 oster sparecol = raidPtr->numCol + c;
2383 1.13 oster if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2384 1.13 oster /*
2385 1.13 oster
2386 1.13 oster we claim this disk is "optimal" if it's
2387 1.13 oster rf_ds_used_spare, as that means it should be
2388 1.13 oster directly substitutable for the disk it replaced.
2389 1.13 oster We note that too...
2390 1.13 oster
2391 1.13 oster */
2392 1.13 oster
2393 1.13 oster for(i=0;i<raidPtr->numRow;i++) {
2394 1.13 oster for(j=0;j<raidPtr->numCol;j++) {
2395 1.13 oster if ((raidPtr->Disks[i][j].spareRow ==
2396 1.13 oster 0) &&
2397 1.13 oster (raidPtr->Disks[i][j].spareCol ==
2398 1.13 oster sparecol)) {
2399 1.13 oster srow = i;
2400 1.13 oster scol = j;
2401 1.13 oster break;
2402 1.13 oster }
2403 1.13 oster }
2404 1.13 oster }
2405 1.13 oster
2406 1.29.2.1 bouyer /* XXX shouldn't *really* need this... */
2407 1.13 oster raidread_component_label(
2408 1.13 oster raidPtr->Disks[0][sparecol].dev,
2409 1.13 oster raidPtr->raid_cinfo[0][sparecol].ci_vp,
2410 1.29.2.1 bouyer &clabel);
2411 1.13 oster /* make sure status is noted */
2412 1.29.2.1 bouyer
2413 1.29.2.1 bouyer raid_init_component_label(raidPtr, &clabel);
2414 1.29.2.1 bouyer
2415 1.29.2.1 bouyer clabel.mod_counter = raidPtr->mod_counter;
2416 1.29.2.1 bouyer clabel.row = srow;
2417 1.29.2.1 bouyer clabel.column = scol;
2418 1.29.2.1 bouyer clabel.status = rf_ds_optimal;
2419 1.29.2.1 bouyer
2420 1.13 oster raidwrite_component_label(
2421 1.13 oster raidPtr->Disks[0][sparecol].dev,
2422 1.13 oster raidPtr->raid_cinfo[0][sparecol].ci_vp,
2423 1.29.2.1 bouyer &clabel);
2424 1.29.2.1 bouyer if (final == RF_FINAL_COMPONENT_UPDATE) {
2425 1.29.2.1 bouyer if (raidPtr->parity_good == RF_RAID_CLEAN) {
2426 1.29.2.1 bouyer raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2427 1.29.2.1 bouyer raidPtr->raid_cinfo[0][sparecol].ci_vp,
2428 1.29.2.1 bouyer raidPtr->mod_counter);
2429 1.29.2.1 bouyer }
2430 1.13 oster }
2431 1.13 oster }
2432 1.13 oster }
2433 1.13 oster /* printf("Component labels updated\n"); */
2434 1.29.2.1 bouyer }
2435 1.29.2.1 bouyer
2436 1.29.2.1 bouyer void
2437 1.29.2.1 bouyer rf_close_component(raidPtr, vp, auto_configured)
2438 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2439 1.29.2.1 bouyer struct vnode *vp;
2440 1.29.2.1 bouyer int auto_configured;
2441 1.29.2.1 bouyer {
2442 1.29.2.1 bouyer struct proc *p;
2443 1.29.2.1 bouyer
2444 1.29.2.1 bouyer p = raidPtr->engine_thread;
2445 1.29.2.1 bouyer
2446 1.29.2.1 bouyer if (vp != NULL) {
2447 1.29.2.1 bouyer if (auto_configured == 1) {
2448 1.29.2.1 bouyer vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2449 1.29.2.1 bouyer VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2450 1.29.2.1 bouyer vput(vp);
2451 1.29.2.1 bouyer
2452 1.29.2.1 bouyer } else {
2453 1.29.2.1 bouyer (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2454 1.29.2.1 bouyer }
2455 1.29.2.1 bouyer } else {
2456 1.29.2.1 bouyer printf("vnode was NULL\n");
2457 1.29.2.1 bouyer }
2458 1.29.2.1 bouyer }
2459 1.29.2.1 bouyer
2460 1.29.2.1 bouyer
2461 1.29.2.1 bouyer void
2462 1.29.2.1 bouyer rf_UnconfigureVnodes(raidPtr)
2463 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2464 1.29.2.1 bouyer {
2465 1.29.2.1 bouyer int r,c;
2466 1.29.2.1 bouyer struct proc *p;
2467 1.29.2.1 bouyer struct vnode *vp;
2468 1.29.2.1 bouyer int acd;
2469 1.29.2.1 bouyer
2470 1.29.2.1 bouyer
2471 1.29.2.1 bouyer /* We take this opportunity to close the vnodes like we should.. */
2472 1.29.2.1 bouyer
2473 1.29.2.1 bouyer p = raidPtr->engine_thread;
2474 1.29.2.1 bouyer
2475 1.29.2.1 bouyer for (r = 0; r < raidPtr->numRow; r++) {
2476 1.29.2.1 bouyer for (c = 0; c < raidPtr->numCol; c++) {
2477 1.29.2.1 bouyer printf("Closing vnode for row: %d col: %d\n", r, c);
2478 1.29.2.1 bouyer vp = raidPtr->raid_cinfo[r][c].ci_vp;
2479 1.29.2.1 bouyer acd = raidPtr->Disks[r][c].auto_configured;
2480 1.29.2.1 bouyer rf_close_component(raidPtr, vp, acd);
2481 1.29.2.1 bouyer raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2482 1.29.2.1 bouyer raidPtr->Disks[r][c].auto_configured = 0;
2483 1.29.2.1 bouyer }
2484 1.29.2.1 bouyer }
2485 1.29.2.1 bouyer for (r = 0; r < raidPtr->numSpare; r++) {
2486 1.29.2.1 bouyer printf("Closing vnode for spare: %d\n", r);
2487 1.29.2.1 bouyer vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2488 1.29.2.1 bouyer acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2489 1.29.2.1 bouyer rf_close_component(raidPtr, vp, acd);
2490 1.29.2.1 bouyer raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2491 1.29.2.1 bouyer raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2492 1.29.2.1 bouyer }
2493 1.29.2.1 bouyer }
2494 1.29.2.1 bouyer
2495 1.29.2.1 bouyer
2496 1.29.2.1 bouyer void
2497 1.29.2.1 bouyer rf_ReconThread(req)
2498 1.29.2.1 bouyer struct rf_recon_req *req;
2499 1.29.2.1 bouyer {
2500 1.29.2.1 bouyer int s;
2501 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2502 1.29.2.1 bouyer
2503 1.29.2.1 bouyer s = splbio();
2504 1.29.2.1 bouyer raidPtr = (RF_Raid_t *) req->raidPtr;
2505 1.29.2.1 bouyer raidPtr->recon_in_progress = 1;
2506 1.29.2.1 bouyer
2507 1.29.2.1 bouyer rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2508 1.29.2.1 bouyer ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2509 1.29.2.1 bouyer
2510 1.29.2.1 bouyer /* XXX get rid of this! we don't need it at all.. */
2511 1.29.2.1 bouyer RF_Free(req, sizeof(*req));
2512 1.29.2.1 bouyer
2513 1.29.2.1 bouyer raidPtr->recon_in_progress = 0;
2514 1.29.2.1 bouyer splx(s);
2515 1.29.2.1 bouyer
2516 1.29.2.1 bouyer /* That's all... */
2517 1.29.2.1 bouyer kthread_exit(0); /* does not return */
2518 1.29.2.1 bouyer }
2519 1.29.2.1 bouyer
2520 1.29.2.1 bouyer void
2521 1.29.2.1 bouyer rf_RewriteParityThread(raidPtr)
2522 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2523 1.29.2.1 bouyer {
2524 1.29.2.1 bouyer int retcode;
2525 1.29.2.1 bouyer int s;
2526 1.29.2.1 bouyer
2527 1.29.2.1 bouyer raidPtr->parity_rewrite_in_progress = 1;
2528 1.29.2.1 bouyer s = splbio();
2529 1.29.2.1 bouyer retcode = rf_RewriteParity(raidPtr);
2530 1.29.2.1 bouyer splx(s);
2531 1.29.2.1 bouyer if (retcode) {
2532 1.29.2.1 bouyer printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2533 1.29.2.1 bouyer } else {
2534 1.29.2.1 bouyer /* set the clean bit! If we shutdown correctly,
2535 1.29.2.1 bouyer the clean bit on each component label will get
2536 1.29.2.1 bouyer set */
2537 1.29.2.1 bouyer raidPtr->parity_good = RF_RAID_CLEAN;
2538 1.29.2.1 bouyer }
2539 1.29.2.1 bouyer raidPtr->parity_rewrite_in_progress = 0;
2540 1.29.2.1 bouyer
2541 1.29.2.1 bouyer /* Anyone waiting for us to stop? If so, inform them... */
2542 1.29.2.1 bouyer if (raidPtr->waitShutdown) {
2543 1.29.2.1 bouyer wakeup(&raidPtr->parity_rewrite_in_progress);
2544 1.29.2.1 bouyer }
2545 1.29.2.1 bouyer
2546 1.29.2.1 bouyer /* That's all... */
2547 1.29.2.1 bouyer kthread_exit(0); /* does not return */
2548 1.29.2.1 bouyer }
2549 1.29.2.1 bouyer
2550 1.29.2.1 bouyer
2551 1.29.2.1 bouyer void
2552 1.29.2.1 bouyer rf_CopybackThread(raidPtr)
2553 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2554 1.29.2.1 bouyer {
2555 1.29.2.1 bouyer int s;
2556 1.29.2.1 bouyer
2557 1.29.2.1 bouyer raidPtr->copyback_in_progress = 1;
2558 1.29.2.1 bouyer s = splbio();
2559 1.29.2.1 bouyer rf_CopybackReconstructedData(raidPtr);
2560 1.29.2.1 bouyer splx(s);
2561 1.29.2.1 bouyer raidPtr->copyback_in_progress = 0;
2562 1.29.2.1 bouyer
2563 1.29.2.1 bouyer /* That's all... */
2564 1.29.2.1 bouyer kthread_exit(0); /* does not return */
2565 1.29.2.1 bouyer }
2566 1.29.2.1 bouyer
2567 1.29.2.1 bouyer
2568 1.29.2.1 bouyer void
2569 1.29.2.1 bouyer rf_ReconstructInPlaceThread(req)
2570 1.29.2.1 bouyer struct rf_recon_req *req;
2571 1.29.2.1 bouyer {
2572 1.29.2.1 bouyer int retcode;
2573 1.29.2.1 bouyer int s;
2574 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2575 1.29.2.1 bouyer
2576 1.29.2.1 bouyer s = splbio();
2577 1.29.2.1 bouyer raidPtr = req->raidPtr;
2578 1.29.2.1 bouyer raidPtr->recon_in_progress = 1;
2579 1.29.2.1 bouyer retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
2580 1.29.2.1 bouyer RF_Free(req, sizeof(*req));
2581 1.29.2.1 bouyer raidPtr->recon_in_progress = 0;
2582 1.29.2.1 bouyer splx(s);
2583 1.29.2.1 bouyer
2584 1.29.2.1 bouyer /* That's all... */
2585 1.29.2.1 bouyer kthread_exit(0); /* does not return */
2586 1.29.2.1 bouyer }
2587 1.29.2.1 bouyer
2588 1.29.2.1 bouyer void
2589 1.29.2.1 bouyer rf_mountroot_hook(dev)
2590 1.29.2.1 bouyer struct device *dev;
2591 1.29.2.1 bouyer {
2592 1.29.2.1 bouyer
2593 1.29.2.1 bouyer }
2594 1.29.2.1 bouyer
2595 1.29.2.1 bouyer
2596 1.29.2.1 bouyer RF_AutoConfig_t *
2597 1.29.2.1 bouyer rf_find_raid_components()
2598 1.29.2.1 bouyer {
2599 1.29.2.1 bouyer struct devnametobdevmaj *dtobdm;
2600 1.29.2.1 bouyer struct vnode *vp;
2601 1.29.2.1 bouyer struct disklabel label;
2602 1.29.2.1 bouyer struct device *dv;
2603 1.29.2.1 bouyer char *cd_name;
2604 1.29.2.1 bouyer dev_t dev;
2605 1.29.2.1 bouyer int error;
2606 1.29.2.1 bouyer int i;
2607 1.29.2.1 bouyer int good_one;
2608 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2609 1.29.2.1 bouyer RF_AutoConfig_t *ac_list;
2610 1.29.2.1 bouyer RF_AutoConfig_t *ac;
2611 1.29.2.1 bouyer
2612 1.29.2.1 bouyer
2613 1.29.2.1 bouyer /* initialize the AutoConfig list */
2614 1.29.2.1 bouyer ac_list = NULL;
2615 1.29.2.1 bouyer
2616 1.29.2.1 bouyer if (raidautoconfig) {
2617 1.29.2.1 bouyer
2618 1.29.2.1 bouyer /* we begin by trolling through *all* the devices on the system */
2619 1.29.2.1 bouyer
2620 1.29.2.1 bouyer for (dv = alldevs.tqh_first; dv != NULL;
2621 1.29.2.1 bouyer dv = dv->dv_list.tqe_next) {
2622 1.29.2.1 bouyer
2623 1.29.2.1 bouyer /* we are only interested in disks... */
2624 1.29.2.1 bouyer if (dv->dv_class != DV_DISK)
2625 1.29.2.1 bouyer continue;
2626 1.29.2.1 bouyer
2627 1.29.2.1 bouyer /* we don't care about floppies... */
2628 1.29.2.1 bouyer if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
2629 1.29.2.1 bouyer continue;
2630 1.29.2.1 bouyer }
2631 1.29.2.1 bouyer
2632 1.29.2.1 bouyer /* need to find the device_name_to_block_device_major stuff */
2633 1.29.2.1 bouyer cd_name = dv->dv_cfdata->cf_driver->cd_name;
2634 1.29.2.1 bouyer dtobdm = dev_name2blk;
2635 1.29.2.1 bouyer while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
2636 1.29.2.1 bouyer dtobdm++;
2637 1.29.2.1 bouyer }
2638 1.29.2.1 bouyer
2639 1.29.2.1 bouyer /* get a vnode for the raw partition of this disk */
2640 1.29.2.1 bouyer
2641 1.29.2.1 bouyer dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
2642 1.29.2.1 bouyer if (bdevvp(dev, &vp))
2643 1.29.2.1 bouyer panic("RAID can't alloc vnode");
2644 1.29.2.1 bouyer
2645 1.29.2.1 bouyer error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2646 1.29.2.1 bouyer
2647 1.29.2.1 bouyer if (error) {
2648 1.29.2.1 bouyer /* "Who cares." Continue looking
2649 1.29.2.1 bouyer for something that exists*/
2650 1.29.2.1 bouyer vput(vp);
2651 1.29.2.1 bouyer continue;
2652 1.29.2.1 bouyer }
2653 1.29.2.1 bouyer
2654 1.29.2.1 bouyer /* Ok, the disk exists. Go get the disklabel. */
2655 1.29.2.1 bouyer error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
2656 1.29.2.1 bouyer FREAD, NOCRED, 0);
2657 1.29.2.1 bouyer if (error) {
2658 1.29.2.1 bouyer /*
2659 1.29.2.1 bouyer * XXX can't happen - open() would
2660 1.29.2.1 bouyer * have errored out (or faked up one)
2661 1.29.2.1 bouyer */
2662 1.29.2.1 bouyer printf("can't get label for dev %s%c (%d)!?!?\n",
2663 1.29.2.1 bouyer dv->dv_xname, 'a' + RAW_PART, error);
2664 1.29.2.1 bouyer }
2665 1.29.2.1 bouyer
2666 1.29.2.1 bouyer /* don't need this any more. We'll allocate it again
2667 1.29.2.1 bouyer a little later if we really do... */
2668 1.29.2.1 bouyer vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2669 1.29.2.1 bouyer VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2670 1.29.2.1 bouyer vput(vp);
2671 1.29.2.1 bouyer
2672 1.29.2.1 bouyer for (i=0; i < label.d_npartitions; i++) {
2673 1.29.2.1 bouyer /* We only support partitions marked as RAID */
2674 1.29.2.1 bouyer if (label.d_partitions[i].p_fstype != FS_RAID)
2675 1.29.2.1 bouyer continue;
2676 1.29.2.1 bouyer
2677 1.29.2.1 bouyer dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
2678 1.29.2.1 bouyer if (bdevvp(dev, &vp))
2679 1.29.2.1 bouyer panic("RAID can't alloc vnode");
2680 1.29.2.1 bouyer
2681 1.29.2.1 bouyer error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2682 1.29.2.1 bouyer if (error) {
2683 1.29.2.1 bouyer /* Whatever... */
2684 1.29.2.1 bouyer vput(vp);
2685 1.29.2.1 bouyer continue;
2686 1.29.2.1 bouyer }
2687 1.29.2.1 bouyer
2688 1.29.2.1 bouyer good_one = 0;
2689 1.29.2.1 bouyer
2690 1.29.2.1 bouyer clabel = (RF_ComponentLabel_t *)
2691 1.29.2.1 bouyer malloc(sizeof(RF_ComponentLabel_t),
2692 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
2693 1.29.2.1 bouyer if (clabel == NULL) {
2694 1.29.2.1 bouyer /* XXX CLEANUP HERE */
2695 1.29.2.1 bouyer printf("RAID auto config: out of memory!\n");
2696 1.29.2.1 bouyer return(NULL); /* XXX probably should panic? */
2697 1.29.2.1 bouyer }
2698 1.29.2.1 bouyer
2699 1.29.2.1 bouyer if (!raidread_component_label(dev, vp, clabel)) {
2700 1.29.2.1 bouyer /* Got the label. Does it look reasonable? */
2701 1.29.2.1 bouyer if (rf_reasonable_label(clabel) &&
2702 1.29.2.1 bouyer (clabel->partitionSize <=
2703 1.29.2.1 bouyer label.d_partitions[i].p_size)) {
2704 1.29.2.1 bouyer #if DEBUG
2705 1.29.2.1 bouyer printf("Component on: %s%c: %d\n",
2706 1.29.2.1 bouyer dv->dv_xname, 'a'+i,
2707 1.29.2.1 bouyer label.d_partitions[i].p_size);
2708 1.29.2.1 bouyer rf_print_component_label(clabel);
2709 1.29.2.1 bouyer #endif
2710 1.29.2.1 bouyer /* if it's reasonable, add it,
2711 1.29.2.1 bouyer else ignore it. */
2712 1.29.2.1 bouyer ac = (RF_AutoConfig_t *)
2713 1.29.2.1 bouyer malloc(sizeof(RF_AutoConfig_t),
2714 1.29.2.1 bouyer M_RAIDFRAME,
2715 1.29.2.1 bouyer M_NOWAIT);
2716 1.29.2.1 bouyer if (ac == NULL) {
2717 1.29.2.1 bouyer /* XXX should panic?? */
2718 1.29.2.1 bouyer return(NULL);
2719 1.29.2.1 bouyer }
2720 1.29.2.1 bouyer
2721 1.29.2.1 bouyer sprintf(ac->devname, "%s%c",
2722 1.29.2.1 bouyer dv->dv_xname, 'a'+i);
2723 1.29.2.1 bouyer ac->dev = dev;
2724 1.29.2.1 bouyer ac->vp = vp;
2725 1.29.2.1 bouyer ac->clabel = clabel;
2726 1.29.2.1 bouyer ac->next = ac_list;
2727 1.29.2.1 bouyer ac_list = ac;
2728 1.29.2.1 bouyer good_one = 1;
2729 1.29.2.1 bouyer }
2730 1.29.2.1 bouyer }
2731 1.29.2.1 bouyer if (!good_one) {
2732 1.29.2.1 bouyer /* cleanup */
2733 1.29.2.1 bouyer free(clabel, M_RAIDFRAME);
2734 1.29.2.1 bouyer vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2735 1.29.2.1 bouyer VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2736 1.29.2.1 bouyer vput(vp);
2737 1.29.2.1 bouyer }
2738 1.29.2.1 bouyer }
2739 1.29.2.1 bouyer }
2740 1.29.2.1 bouyer }
2741 1.29.2.1 bouyer return(ac_list);
2742 1.29.2.1 bouyer }
2743 1.29.2.1 bouyer
2744 1.29.2.1 bouyer static int
2745 1.29.2.1 bouyer rf_reasonable_label(clabel)
2746 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2747 1.29.2.1 bouyer {
2748 1.29.2.1 bouyer
2749 1.29.2.1 bouyer if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2750 1.29.2.1 bouyer (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2751 1.29.2.1 bouyer ((clabel->clean == RF_RAID_CLEAN) ||
2752 1.29.2.1 bouyer (clabel->clean == RF_RAID_DIRTY)) &&
2753 1.29.2.1 bouyer clabel->row >=0 &&
2754 1.29.2.1 bouyer clabel->column >= 0 &&
2755 1.29.2.1 bouyer clabel->num_rows > 0 &&
2756 1.29.2.1 bouyer clabel->num_columns > 0 &&
2757 1.29.2.1 bouyer clabel->row < clabel->num_rows &&
2758 1.29.2.1 bouyer clabel->column < clabel->num_columns &&
2759 1.29.2.1 bouyer clabel->blockSize > 0 &&
2760 1.29.2.1 bouyer clabel->numBlocks > 0) {
2761 1.29.2.1 bouyer /* label looks reasonable enough... */
2762 1.29.2.1 bouyer return(1);
2763 1.29.2.1 bouyer }
2764 1.29.2.1 bouyer return(0);
2765 1.29.2.1 bouyer }
2766 1.29.2.1 bouyer
2767 1.29.2.1 bouyer
2768 1.29.2.1 bouyer void
2769 1.29.2.1 bouyer rf_print_component_label(clabel)
2770 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2771 1.29.2.1 bouyer {
2772 1.29.2.1 bouyer printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2773 1.29.2.1 bouyer clabel->row, clabel->column,
2774 1.29.2.1 bouyer clabel->num_rows, clabel->num_columns);
2775 1.29.2.1 bouyer printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2776 1.29.2.1 bouyer clabel->version, clabel->serial_number,
2777 1.29.2.1 bouyer clabel->mod_counter);
2778 1.29.2.1 bouyer printf(" Clean: %s Status: %d\n",
2779 1.29.2.1 bouyer clabel->clean ? "Yes" : "No", clabel->status );
2780 1.29.2.1 bouyer printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2781 1.29.2.1 bouyer clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2782 1.29.2.1 bouyer printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2783 1.29.2.1 bouyer (char) clabel->parityConfig, clabel->blockSize,
2784 1.29.2.1 bouyer clabel->numBlocks);
2785 1.29.2.1 bouyer printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2786 1.29.2.1 bouyer printf(" Contains root partition: %s\n",
2787 1.29.2.1 bouyer clabel->root_partition ? "Yes" : "No" );
2788 1.29.2.1 bouyer printf(" Last configured as: raid%d\n", clabel->last_unit );
2789 1.29.2.1 bouyer #if 0
2790 1.29.2.1 bouyer printf(" Config order: %d\n", clabel->config_order);
2791 1.29.2.1 bouyer #endif
2792 1.29.2.1 bouyer
2793 1.29.2.1 bouyer }
2794 1.29.2.1 bouyer
2795 1.29.2.1 bouyer RF_ConfigSet_t *
2796 1.29.2.1 bouyer rf_create_auto_sets(ac_list)
2797 1.29.2.1 bouyer RF_AutoConfig_t *ac_list;
2798 1.29.2.1 bouyer {
2799 1.29.2.1 bouyer RF_AutoConfig_t *ac;
2800 1.29.2.1 bouyer RF_ConfigSet_t *config_sets;
2801 1.29.2.1 bouyer RF_ConfigSet_t *cset;
2802 1.29.2.1 bouyer RF_AutoConfig_t *ac_next;
2803 1.29.2.1 bouyer
2804 1.29.2.1 bouyer
2805 1.29.2.1 bouyer config_sets = NULL;
2806 1.29.2.1 bouyer
2807 1.29.2.1 bouyer /* Go through the AutoConfig list, and figure out which components
2808 1.29.2.1 bouyer belong to what sets. */
2809 1.29.2.1 bouyer ac = ac_list;
2810 1.29.2.1 bouyer while(ac!=NULL) {
2811 1.29.2.1 bouyer /* we're going to putz with ac->next, so save it here
2812 1.29.2.1 bouyer for use at the end of the loop */
2813 1.29.2.1 bouyer ac_next = ac->next;
2814 1.29.2.1 bouyer
2815 1.29.2.1 bouyer if (config_sets == NULL) {
2816 1.29.2.1 bouyer /* will need at least this one... */
2817 1.29.2.1 bouyer config_sets = (RF_ConfigSet_t *)
2818 1.29.2.1 bouyer malloc(sizeof(RF_ConfigSet_t),
2819 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
2820 1.29.2.1 bouyer if (config_sets == NULL) {
2821 1.29.2.1 bouyer panic("rf_create_auto_sets: No memory!\n");
2822 1.29.2.1 bouyer }
2823 1.29.2.1 bouyer /* this one is easy :) */
2824 1.29.2.1 bouyer config_sets->ac = ac;
2825 1.29.2.1 bouyer config_sets->next = NULL;
2826 1.29.2.1 bouyer config_sets->rootable = 0;
2827 1.29.2.1 bouyer ac->next = NULL;
2828 1.29.2.1 bouyer } else {
2829 1.29.2.1 bouyer /* which set does this component fit into? */
2830 1.29.2.1 bouyer cset = config_sets;
2831 1.29.2.1 bouyer while(cset!=NULL) {
2832 1.29.2.1 bouyer if (rf_does_it_fit(cset, ac)) {
2833 1.29.2.1 bouyer /* looks like it matches... */
2834 1.29.2.1 bouyer ac->next = cset->ac;
2835 1.29.2.1 bouyer cset->ac = ac;
2836 1.29.2.1 bouyer break;
2837 1.29.2.1 bouyer }
2838 1.29.2.1 bouyer cset = cset->next;
2839 1.29.2.1 bouyer }
2840 1.29.2.1 bouyer if (cset==NULL) {
2841 1.29.2.1 bouyer /* didn't find a match above... new set..*/
2842 1.29.2.1 bouyer cset = (RF_ConfigSet_t *)
2843 1.29.2.1 bouyer malloc(sizeof(RF_ConfigSet_t),
2844 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
2845 1.29.2.1 bouyer if (cset == NULL) {
2846 1.29.2.1 bouyer panic("rf_create_auto_sets: No memory!\n");
2847 1.29.2.1 bouyer }
2848 1.29.2.1 bouyer cset->ac = ac;
2849 1.29.2.1 bouyer ac->next = NULL;
2850 1.29.2.1 bouyer cset->next = config_sets;
2851 1.29.2.1 bouyer cset->rootable = 0;
2852 1.29.2.1 bouyer config_sets = cset;
2853 1.29.2.1 bouyer }
2854 1.29.2.1 bouyer }
2855 1.29.2.1 bouyer ac = ac_next;
2856 1.29.2.1 bouyer }
2857 1.29.2.1 bouyer
2858 1.29.2.1 bouyer
2859 1.29.2.1 bouyer return(config_sets);
2860 1.29.2.1 bouyer }
2861 1.29.2.1 bouyer
2862 1.29.2.1 bouyer static int
2863 1.29.2.1 bouyer rf_does_it_fit(cset, ac)
2864 1.29.2.1 bouyer RF_ConfigSet_t *cset;
2865 1.29.2.1 bouyer RF_AutoConfig_t *ac;
2866 1.29.2.1 bouyer {
2867 1.29.2.1 bouyer RF_ComponentLabel_t *clabel1, *clabel2;
2868 1.29.2.1 bouyer
2869 1.29.2.1 bouyer /* If this one matches the *first* one in the set, that's good
2870 1.29.2.1 bouyer enough, since the other members of the set would have been
2871 1.29.2.1 bouyer through here too... */
2872 1.29.2.1 bouyer /* note that we are not checking partitionSize here..
2873 1.29.2.1 bouyer
2874 1.29.2.1 bouyer Note that we are also not checking the mod_counters here.
2875 1.29.2.1 bouyer If everything else matches execpt the mod_counter, that's
2876 1.29.2.1 bouyer good enough for this test. We will deal with the mod_counters
2877 1.29.2.1 bouyer a little later in the autoconfiguration process.
2878 1.29.2.1 bouyer
2879 1.29.2.1 bouyer (clabel1->mod_counter == clabel2->mod_counter) &&
2880 1.29.2.1 bouyer
2881 1.29.2.1 bouyer The reason we don't check for this is that failed disks
2882 1.29.2.1 bouyer will have lower modification counts. If those disks are
2883 1.29.2.1 bouyer not added to the set they used to belong to, then they will
2884 1.29.2.1 bouyer form their own set, which may result in 2 different sets,
2885 1.29.2.1 bouyer for example, competing to be configured at raid0, and
2886 1.29.2.1 bouyer perhaps competing to be the root filesystem set. If the
2887 1.29.2.1 bouyer wrong ones get configured, or both attempt to become /,
2888 1.29.2.1 bouyer weird behaviour and or serious lossage will occur. Thus we
2889 1.29.2.1 bouyer need to bring them into the fold here, and kick them out at
2890 1.29.2.1 bouyer a later point.
2891 1.29.2.1 bouyer
2892 1.29.2.1 bouyer */
2893 1.29.2.1 bouyer
2894 1.29.2.1 bouyer clabel1 = cset->ac->clabel;
2895 1.29.2.1 bouyer clabel2 = ac->clabel;
2896 1.29.2.1 bouyer if ((clabel1->version == clabel2->version) &&
2897 1.29.2.1 bouyer (clabel1->serial_number == clabel2->serial_number) &&
2898 1.29.2.1 bouyer (clabel1->num_rows == clabel2->num_rows) &&
2899 1.29.2.1 bouyer (clabel1->num_columns == clabel2->num_columns) &&
2900 1.29.2.1 bouyer (clabel1->sectPerSU == clabel2->sectPerSU) &&
2901 1.29.2.1 bouyer (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2902 1.29.2.1 bouyer (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2903 1.29.2.1 bouyer (clabel1->parityConfig == clabel2->parityConfig) &&
2904 1.29.2.1 bouyer (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2905 1.29.2.1 bouyer (clabel1->blockSize == clabel2->blockSize) &&
2906 1.29.2.1 bouyer (clabel1->numBlocks == clabel2->numBlocks) &&
2907 1.29.2.1 bouyer (clabel1->autoconfigure == clabel2->autoconfigure) &&
2908 1.29.2.1 bouyer (clabel1->root_partition == clabel2->root_partition) &&
2909 1.29.2.1 bouyer (clabel1->last_unit == clabel2->last_unit) &&
2910 1.29.2.1 bouyer (clabel1->config_order == clabel2->config_order)) {
2911 1.29.2.1 bouyer /* if it get's here, it almost *has* to be a match */
2912 1.29.2.1 bouyer } else {
2913 1.29.2.1 bouyer /* it's not consistent with somebody in the set..
2914 1.29.2.1 bouyer punt */
2915 1.29.2.1 bouyer return(0);
2916 1.29.2.1 bouyer }
2917 1.29.2.1 bouyer /* all was fine.. it must fit... */
2918 1.29.2.1 bouyer return(1);
2919 1.29.2.1 bouyer }
2920 1.29.2.1 bouyer
2921 1.29.2.1 bouyer int
2922 1.29.2.1 bouyer rf_have_enough_components(cset)
2923 1.29.2.1 bouyer RF_ConfigSet_t *cset;
2924 1.29.2.1 bouyer {
2925 1.29.2.1 bouyer RF_AutoConfig_t *ac;
2926 1.29.2.1 bouyer RF_AutoConfig_t *auto_config;
2927 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2928 1.29.2.1 bouyer int r,c;
2929 1.29.2.1 bouyer int num_rows;
2930 1.29.2.1 bouyer int num_cols;
2931 1.29.2.1 bouyer int num_missing;
2932 1.29.2.1 bouyer int mod_counter;
2933 1.29.2.1 bouyer int mod_counter_found;
2934 1.29.2.1 bouyer int even_pair_failed;
2935 1.29.2.1 bouyer char parity_type;
2936 1.29.2.1 bouyer
2937 1.29.2.1 bouyer
2938 1.29.2.1 bouyer /* check to see that we have enough 'live' components
2939 1.29.2.1 bouyer of this set. If so, we can configure it if necessary */
2940 1.29.2.1 bouyer
2941 1.29.2.1 bouyer num_rows = cset->ac->clabel->num_rows;
2942 1.29.2.1 bouyer num_cols = cset->ac->clabel->num_columns;
2943 1.29.2.1 bouyer parity_type = cset->ac->clabel->parityConfig;
2944 1.29.2.1 bouyer
2945 1.29.2.1 bouyer /* XXX Check for duplicate components!?!?!? */
2946 1.29.2.1 bouyer
2947 1.29.2.1 bouyer /* Determine what the mod_counter is supposed to be for this set. */
2948 1.29.2.1 bouyer
2949 1.29.2.1 bouyer mod_counter_found = 0;
2950 1.29.2.3 bouyer mod_counter = 0;
2951 1.29.2.1 bouyer ac = cset->ac;
2952 1.29.2.1 bouyer while(ac!=NULL) {
2953 1.29.2.1 bouyer if (mod_counter_found==0) {
2954 1.29.2.1 bouyer mod_counter = ac->clabel->mod_counter;
2955 1.29.2.1 bouyer mod_counter_found = 1;
2956 1.29.2.1 bouyer } else {
2957 1.29.2.1 bouyer if (ac->clabel->mod_counter > mod_counter) {
2958 1.29.2.1 bouyer mod_counter = ac->clabel->mod_counter;
2959 1.29.2.1 bouyer }
2960 1.29.2.1 bouyer }
2961 1.29.2.1 bouyer ac = ac->next;
2962 1.29.2.1 bouyer }
2963 1.29.2.1 bouyer
2964 1.29.2.1 bouyer num_missing = 0;
2965 1.29.2.1 bouyer auto_config = cset->ac;
2966 1.29.2.1 bouyer
2967 1.29.2.1 bouyer for(r=0; r<num_rows; r++) {
2968 1.29.2.1 bouyer even_pair_failed = 0;
2969 1.29.2.1 bouyer for(c=0; c<num_cols; c++) {
2970 1.29.2.1 bouyer ac = auto_config;
2971 1.29.2.1 bouyer while(ac!=NULL) {
2972 1.29.2.1 bouyer if ((ac->clabel->row == r) &&
2973 1.29.2.1 bouyer (ac->clabel->column == c) &&
2974 1.29.2.1 bouyer (ac->clabel->mod_counter == mod_counter)) {
2975 1.29.2.1 bouyer /* it's this one... */
2976 1.29.2.1 bouyer #if DEBUG
2977 1.29.2.1 bouyer printf("Found: %s at %d,%d\n",
2978 1.29.2.1 bouyer ac->devname,r,c);
2979 1.29.2.1 bouyer #endif
2980 1.29.2.1 bouyer break;
2981 1.29.2.1 bouyer }
2982 1.29.2.1 bouyer ac=ac->next;
2983 1.29.2.1 bouyer }
2984 1.29.2.1 bouyer if (ac==NULL) {
2985 1.29.2.1 bouyer /* Didn't find one here! */
2986 1.29.2.1 bouyer /* special case for RAID 1, especially
2987 1.29.2.1 bouyer where there are more than 2
2988 1.29.2.1 bouyer components (where RAIDframe treats
2989 1.29.2.1 bouyer things a little differently :( ) */
2990 1.29.2.1 bouyer if (parity_type == '1') {
2991 1.29.2.1 bouyer if (c%2 == 0) { /* even component */
2992 1.29.2.1 bouyer even_pair_failed = 1;
2993 1.29.2.1 bouyer } else { /* odd component. If
2994 1.29.2.1 bouyer we're failed, and
2995 1.29.2.1 bouyer so is the even
2996 1.29.2.1 bouyer component, it's
2997 1.29.2.1 bouyer "Good Night, Charlie" */
2998 1.29.2.1 bouyer if (even_pair_failed == 1) {
2999 1.29.2.1 bouyer return(0);
3000 1.29.2.1 bouyer }
3001 1.29.2.1 bouyer }
3002 1.29.2.1 bouyer } else {
3003 1.29.2.1 bouyer /* normal accounting */
3004 1.29.2.1 bouyer num_missing++;
3005 1.29.2.1 bouyer }
3006 1.29.2.1 bouyer }
3007 1.29.2.1 bouyer if ((parity_type == '1') && (c%2 == 1)) {
3008 1.29.2.1 bouyer /* Just did an even component, and we didn't
3009 1.29.2.1 bouyer bail.. reset the even_pair_failed flag,
3010 1.29.2.1 bouyer and go on to the next component.... */
3011 1.29.2.1 bouyer even_pair_failed = 0;
3012 1.29.2.1 bouyer }
3013 1.29.2.1 bouyer }
3014 1.29.2.1 bouyer }
3015 1.29.2.1 bouyer
3016 1.29.2.1 bouyer clabel = cset->ac->clabel;
3017 1.29.2.1 bouyer
3018 1.29.2.1 bouyer if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3019 1.29.2.1 bouyer ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3020 1.29.2.1 bouyer ((clabel->parityConfig == '5') && (num_missing > 1))) {
3021 1.29.2.1 bouyer /* XXX this needs to be made *much* more general */
3022 1.29.2.1 bouyer /* Too many failures */
3023 1.29.2.1 bouyer return(0);
3024 1.29.2.1 bouyer }
3025 1.29.2.1 bouyer /* otherwise, all is well, and we've got enough to take a kick
3026 1.29.2.1 bouyer at autoconfiguring this set */
3027 1.29.2.1 bouyer return(1);
3028 1.29.2.1 bouyer }
3029 1.29.2.1 bouyer
3030 1.29.2.1 bouyer void
3031 1.29.2.1 bouyer rf_create_configuration(ac,config,raidPtr)
3032 1.29.2.1 bouyer RF_AutoConfig_t *ac;
3033 1.29.2.1 bouyer RF_Config_t *config;
3034 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3035 1.29.2.1 bouyer {
3036 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
3037 1.29.2.1 bouyer int i;
3038 1.29.2.1 bouyer
3039 1.29.2.1 bouyer clabel = ac->clabel;
3040 1.29.2.1 bouyer
3041 1.29.2.1 bouyer /* 1. Fill in the common stuff */
3042 1.29.2.1 bouyer config->numRow = clabel->num_rows;
3043 1.29.2.1 bouyer config->numCol = clabel->num_columns;
3044 1.29.2.1 bouyer config->numSpare = 0; /* XXX should this be set here? */
3045 1.29.2.1 bouyer config->sectPerSU = clabel->sectPerSU;
3046 1.29.2.1 bouyer config->SUsPerPU = clabel->SUsPerPU;
3047 1.29.2.1 bouyer config->SUsPerRU = clabel->SUsPerRU;
3048 1.29.2.1 bouyer config->parityConfig = clabel->parityConfig;
3049 1.29.2.1 bouyer /* XXX... */
3050 1.29.2.1 bouyer strcpy(config->diskQueueType,"fifo");
3051 1.29.2.1 bouyer config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3052 1.29.2.1 bouyer config->layoutSpecificSize = 0; /* XXX ?? */
3053 1.29.2.1 bouyer
3054 1.29.2.1 bouyer while(ac!=NULL) {
3055 1.29.2.1 bouyer /* row/col values will be in range due to the checks
3056 1.29.2.1 bouyer in reasonable_label() */
3057 1.29.2.1 bouyer strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3058 1.29.2.1 bouyer ac->devname);
3059 1.29.2.1 bouyer ac = ac->next;
3060 1.29.2.1 bouyer }
3061 1.29.2.1 bouyer
3062 1.29.2.1 bouyer for(i=0;i<RF_MAXDBGV;i++) {
3063 1.29.2.1 bouyer config->debugVars[i][0] = NULL;
3064 1.29.2.1 bouyer }
3065 1.29.2.1 bouyer }
3066 1.29.2.1 bouyer
3067 1.29.2.1 bouyer int
3068 1.29.2.1 bouyer rf_set_autoconfig(raidPtr, new_value)
3069 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3070 1.29.2.1 bouyer int new_value;
3071 1.29.2.1 bouyer {
3072 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
3073 1.29.2.1 bouyer struct vnode *vp;
3074 1.29.2.1 bouyer dev_t dev;
3075 1.29.2.1 bouyer int row, column;
3076 1.29.2.1 bouyer
3077 1.29.2.1 bouyer raidPtr->autoconfigure = new_value;
3078 1.29.2.1 bouyer for(row=0; row<raidPtr->numRow; row++) {
3079 1.29.2.1 bouyer for(column=0; column<raidPtr->numCol; column++) {
3080 1.29.2.1 bouyer if (raidPtr->Disks[row][column].status ==
3081 1.29.2.1 bouyer rf_ds_optimal) {
3082 1.29.2.1 bouyer dev = raidPtr->Disks[row][column].dev;
3083 1.29.2.1 bouyer vp = raidPtr->raid_cinfo[row][column].ci_vp;
3084 1.29.2.1 bouyer raidread_component_label(dev, vp, &clabel);
3085 1.29.2.1 bouyer clabel.autoconfigure = new_value;
3086 1.29.2.1 bouyer raidwrite_component_label(dev, vp, &clabel);
3087 1.29.2.1 bouyer }
3088 1.29.2.1 bouyer }
3089 1.29.2.1 bouyer }
3090 1.29.2.1 bouyer return(new_value);
3091 1.29.2.1 bouyer }
3092 1.29.2.1 bouyer
3093 1.29.2.1 bouyer int
3094 1.29.2.1 bouyer rf_set_rootpartition(raidPtr, new_value)
3095 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3096 1.29.2.1 bouyer int new_value;
3097 1.29.2.1 bouyer {
3098 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
3099 1.29.2.1 bouyer struct vnode *vp;
3100 1.29.2.1 bouyer dev_t dev;
3101 1.29.2.1 bouyer int row, column;
3102 1.29.2.1 bouyer
3103 1.29.2.1 bouyer raidPtr->root_partition = new_value;
3104 1.29.2.1 bouyer for(row=0; row<raidPtr->numRow; row++) {
3105 1.29.2.1 bouyer for(column=0; column<raidPtr->numCol; column++) {
3106 1.29.2.1 bouyer if (raidPtr->Disks[row][column].status ==
3107 1.29.2.1 bouyer rf_ds_optimal) {
3108 1.29.2.1 bouyer dev = raidPtr->Disks[row][column].dev;
3109 1.29.2.1 bouyer vp = raidPtr->raid_cinfo[row][column].ci_vp;
3110 1.29.2.1 bouyer raidread_component_label(dev, vp, &clabel);
3111 1.29.2.1 bouyer clabel.root_partition = new_value;
3112 1.29.2.1 bouyer raidwrite_component_label(dev, vp, &clabel);
3113 1.29.2.1 bouyer }
3114 1.29.2.1 bouyer }
3115 1.29.2.1 bouyer }
3116 1.29.2.1 bouyer return(new_value);
3117 1.29.2.1 bouyer }
3118 1.29.2.1 bouyer
3119 1.29.2.1 bouyer void
3120 1.29.2.1 bouyer rf_release_all_vps(cset)
3121 1.29.2.1 bouyer RF_ConfigSet_t *cset;
3122 1.29.2.1 bouyer {
3123 1.29.2.1 bouyer RF_AutoConfig_t *ac;
3124 1.29.2.1 bouyer
3125 1.29.2.1 bouyer ac = cset->ac;
3126 1.29.2.1 bouyer while(ac!=NULL) {
3127 1.29.2.1 bouyer /* Close the vp, and give it back */
3128 1.29.2.1 bouyer if (ac->vp) {
3129 1.29.2.1 bouyer vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3130 1.29.2.1 bouyer VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3131 1.29.2.1 bouyer vput(ac->vp);
3132 1.29.2.1 bouyer ac->vp = NULL;
3133 1.29.2.1 bouyer }
3134 1.29.2.1 bouyer ac = ac->next;
3135 1.29.2.1 bouyer }
3136 1.29.2.1 bouyer }
3137 1.29.2.1 bouyer
3138 1.29.2.1 bouyer
3139 1.29.2.1 bouyer void
3140 1.29.2.1 bouyer rf_cleanup_config_set(cset)
3141 1.29.2.1 bouyer RF_ConfigSet_t *cset;
3142 1.29.2.1 bouyer {
3143 1.29.2.1 bouyer RF_AutoConfig_t *ac;
3144 1.29.2.1 bouyer RF_AutoConfig_t *next_ac;
3145 1.29.2.1 bouyer
3146 1.29.2.1 bouyer ac = cset->ac;
3147 1.29.2.1 bouyer while(ac!=NULL) {
3148 1.29.2.1 bouyer next_ac = ac->next;
3149 1.29.2.1 bouyer /* nuke the label */
3150 1.29.2.1 bouyer free(ac->clabel, M_RAIDFRAME);
3151 1.29.2.1 bouyer /* cleanup the config structure */
3152 1.29.2.1 bouyer free(ac, M_RAIDFRAME);
3153 1.29.2.1 bouyer /* "next.." */
3154 1.29.2.1 bouyer ac = next_ac;
3155 1.29.2.1 bouyer }
3156 1.29.2.1 bouyer /* and, finally, nuke the config set */
3157 1.29.2.1 bouyer free(cset, M_RAIDFRAME);
3158 1.29.2.1 bouyer }
3159 1.29.2.1 bouyer
3160 1.29.2.1 bouyer
3161 1.29.2.1 bouyer void
3162 1.29.2.1 bouyer raid_init_component_label(raidPtr, clabel)
3163 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3164 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
3165 1.29.2.1 bouyer {
3166 1.29.2.1 bouyer /* current version number */
3167 1.29.2.1 bouyer clabel->version = RF_COMPONENT_LABEL_VERSION;
3168 1.29.2.1 bouyer clabel->serial_number = raidPtr->serial_number;
3169 1.29.2.1 bouyer clabel->mod_counter = raidPtr->mod_counter;
3170 1.29.2.1 bouyer clabel->num_rows = raidPtr->numRow;
3171 1.29.2.1 bouyer clabel->num_columns = raidPtr->numCol;
3172 1.29.2.1 bouyer clabel->clean = RF_RAID_DIRTY; /* not clean */
3173 1.29.2.1 bouyer clabel->status = rf_ds_optimal; /* "It's good!" */
3174 1.29.2.1 bouyer
3175 1.29.2.1 bouyer clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3176 1.29.2.1 bouyer clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3177 1.29.2.1 bouyer clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3178 1.29.2.1 bouyer
3179 1.29.2.1 bouyer clabel->blockSize = raidPtr->bytesPerSector;
3180 1.29.2.1 bouyer clabel->numBlocks = raidPtr->sectorsPerDisk;
3181 1.29.2.1 bouyer
3182 1.29.2.1 bouyer /* XXX not portable */
3183 1.29.2.1 bouyer clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3184 1.29.2.1 bouyer clabel->maxOutstanding = raidPtr->maxOutstanding;
3185 1.29.2.1 bouyer clabel->autoconfigure = raidPtr->autoconfigure;
3186 1.29.2.1 bouyer clabel->root_partition = raidPtr->root_partition;
3187 1.29.2.1 bouyer clabel->last_unit = raidPtr->raidid;
3188 1.29.2.1 bouyer clabel->config_order = raidPtr->config_order;
3189 1.29.2.1 bouyer }
3190 1.29.2.1 bouyer
3191 1.29.2.1 bouyer int
3192 1.29.2.1 bouyer rf_auto_config_set(cset,unit)
3193 1.29.2.1 bouyer RF_ConfigSet_t *cset;
3194 1.29.2.1 bouyer int *unit;
3195 1.29.2.1 bouyer {
3196 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3197 1.29.2.1 bouyer RF_Config_t *config;
3198 1.29.2.1 bouyer int raidID;
3199 1.29.2.1 bouyer int retcode;
3200 1.29.2.1 bouyer
3201 1.29.2.1 bouyer printf("RAID autoconfigure\n");
3202 1.29.2.1 bouyer
3203 1.29.2.1 bouyer retcode = 0;
3204 1.29.2.1 bouyer *unit = -1;
3205 1.29.2.1 bouyer
3206 1.29.2.1 bouyer /* 1. Create a config structure */
3207 1.29.2.1 bouyer
3208 1.29.2.1 bouyer config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3209 1.29.2.1 bouyer M_RAIDFRAME,
3210 1.29.2.1 bouyer M_NOWAIT);
3211 1.29.2.1 bouyer if (config==NULL) {
3212 1.29.2.1 bouyer printf("Out of mem!?!?\n");
3213 1.29.2.1 bouyer /* XXX do something more intelligent here. */
3214 1.29.2.1 bouyer return(1);
3215 1.29.2.1 bouyer }
3216 1.29.2.1 bouyer
3217 1.29.2.1 bouyer memset(config, 0, sizeof(RF_Config_t));
3218 1.29.2.1 bouyer
3219 1.29.2.1 bouyer /* XXX raidID needs to be set correctly.. */
3220 1.29.2.1 bouyer
3221 1.29.2.1 bouyer /*
3222 1.29.2.1 bouyer 2. Figure out what RAID ID this one is supposed to live at
3223 1.29.2.1 bouyer See if we can get the same RAID dev that it was configured
3224 1.29.2.1 bouyer on last time..
3225 1.29.2.1 bouyer */
3226 1.29.2.1 bouyer
3227 1.29.2.1 bouyer raidID = cset->ac->clabel->last_unit;
3228 1.29.2.1 bouyer if ((raidID < 0) || (raidID >= numraid)) {
3229 1.29.2.1 bouyer /* let's not wander off into lala land. */
3230 1.29.2.1 bouyer raidID = numraid - 1;
3231 1.29.2.1 bouyer }
3232 1.29.2.1 bouyer if (raidPtrs[raidID]->valid != 0) {
3233 1.29.2.1 bouyer
3234 1.29.2.1 bouyer /*
3235 1.29.2.1 bouyer Nope... Go looking for an alternative...
3236 1.29.2.1 bouyer Start high so we don't immediately use raid0 if that's
3237 1.29.2.1 bouyer not taken.
3238 1.29.2.1 bouyer */
3239 1.29.2.1 bouyer
3240 1.29.2.1 bouyer for(raidID = numraid; raidID >= 0; raidID--) {
3241 1.29.2.1 bouyer if (raidPtrs[raidID]->valid == 0) {
3242 1.29.2.1 bouyer /* can use this one! */
3243 1.29.2.1 bouyer break;
3244 1.29.2.1 bouyer }
3245 1.29.2.1 bouyer }
3246 1.29.2.1 bouyer }
3247 1.29.2.1 bouyer
3248 1.29.2.1 bouyer if (raidID < 0) {
3249 1.29.2.1 bouyer /* punt... */
3250 1.29.2.1 bouyer printf("Unable to auto configure this set!\n");
3251 1.29.2.1 bouyer printf("(Out of RAID devs!)\n");
3252 1.29.2.1 bouyer return(1);
3253 1.29.2.1 bouyer }
3254 1.29.2.1 bouyer printf("Configuring raid%d:\n",raidID);
3255 1.29.2.1 bouyer raidPtr = raidPtrs[raidID];
3256 1.29.2.1 bouyer
3257 1.29.2.1 bouyer /* XXX all this stuff should be done SOMEWHERE ELSE! */
3258 1.29.2.1 bouyer raidPtr->raidid = raidID;
3259 1.29.2.1 bouyer raidPtr->openings = RAIDOUTSTANDING;
3260 1.29.2.1 bouyer
3261 1.29.2.1 bouyer /* 3. Build the configuration structure */
3262 1.29.2.1 bouyer rf_create_configuration(cset->ac, config, raidPtr);
3263 1.29.2.1 bouyer
3264 1.29.2.1 bouyer /* 4. Do the configuration */
3265 1.29.2.1 bouyer retcode = rf_Configure(raidPtr, config, cset->ac);
3266 1.29.2.1 bouyer
3267 1.29.2.1 bouyer if (retcode == 0) {
3268 1.29.2.1 bouyer
3269 1.29.2.1 bouyer raidinit(raidPtrs[raidID]);
3270 1.29.2.1 bouyer
3271 1.29.2.1 bouyer rf_markalldirty(raidPtrs[raidID]);
3272 1.29.2.1 bouyer raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3273 1.29.2.1 bouyer if (cset->ac->clabel->root_partition==1) {
3274 1.29.2.1 bouyer /* everything configured just fine. Make a note
3275 1.29.2.1 bouyer that this set is eligible to be root. */
3276 1.29.2.1 bouyer cset->rootable = 1;
3277 1.29.2.1 bouyer /* XXX do this here? */
3278 1.29.2.1 bouyer raidPtrs[raidID]->root_partition = 1;
3279 1.29.2.1 bouyer }
3280 1.29.2.1 bouyer }
3281 1.29.2.1 bouyer
3282 1.29.2.1 bouyer /* 5. Cleanup */
3283 1.29.2.1 bouyer free(config, M_RAIDFRAME);
3284 1.29.2.1 bouyer
3285 1.29.2.1 bouyer *unit = raidID;
3286 1.29.2.1 bouyer return(retcode);
3287 1.29.2.1 bouyer }
3288 1.29.2.1 bouyer
3289 1.29.2.1 bouyer void
3290 1.29.2.1 bouyer rf_disk_unbusy(desc)
3291 1.29.2.1 bouyer RF_RaidAccessDesc_t *desc;
3292 1.29.2.1 bouyer {
3293 1.29.2.1 bouyer struct buf *bp;
3294 1.29.2.1 bouyer
3295 1.29.2.1 bouyer bp = (struct buf *)desc->bp;
3296 1.29.2.1 bouyer disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3297 1.29.2.1 bouyer (bp->b_bcount - bp->b_resid));
3298 1.13 oster }
3299