rf_netbsdkintf.c revision 1.29.2.4 1 1.29.2.2 bouyer /* $NetBSD: rf_netbsdkintf.c,v 1.29.2.4 2001/01/18 09:23:33 bouyer Exp $ */
2 1.1 oster /*-
3 1.1 oster * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
7 1.1 oster * by Greg Oster; Jason R. Thorpe.
8 1.1 oster *
9 1.1 oster * Redistribution and use in source and binary forms, with or without
10 1.1 oster * modification, are permitted provided that the following conditions
11 1.1 oster * are met:
12 1.1 oster * 1. Redistributions of source code must retain the above copyright
13 1.1 oster * notice, this list of conditions and the following disclaimer.
14 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 oster * notice, this list of conditions and the following disclaimer in the
16 1.1 oster * documentation and/or other materials provided with the distribution.
17 1.1 oster * 3. All advertising materials mentioning features or use of this software
18 1.1 oster * must display the following acknowledgement:
19 1.1 oster * This product includes software developed by the NetBSD
20 1.1 oster * Foundation, Inc. and its contributors.
21 1.1 oster * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 oster * contributors may be used to endorse or promote products derived
23 1.1 oster * from this software without specific prior written permission.
24 1.1 oster *
25 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
36 1.1 oster */
37 1.1 oster
38 1.1 oster /*
39 1.1 oster * Copyright (c) 1988 University of Utah.
40 1.1 oster * Copyright (c) 1990, 1993
41 1.1 oster * The Regents of the University of California. All rights reserved.
42 1.1 oster *
43 1.1 oster * This code is derived from software contributed to Berkeley by
44 1.1 oster * the Systems Programming Group of the University of Utah Computer
45 1.1 oster * Science Department.
46 1.1 oster *
47 1.1 oster * Redistribution and use in source and binary forms, with or without
48 1.1 oster * modification, are permitted provided that the following conditions
49 1.1 oster * are met:
50 1.1 oster * 1. Redistributions of source code must retain the above copyright
51 1.1 oster * notice, this list of conditions and the following disclaimer.
52 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 oster * notice, this list of conditions and the following disclaimer in the
54 1.1 oster * documentation and/or other materials provided with the distribution.
55 1.1 oster * 3. All advertising materials mentioning features or use of this software
56 1.1 oster * must display the following acknowledgement:
57 1.1 oster * This product includes software developed by the University of
58 1.1 oster * California, Berkeley and its contributors.
59 1.1 oster * 4. Neither the name of the University nor the names of its contributors
60 1.1 oster * may be used to endorse or promote products derived from this software
61 1.1 oster * without specific prior written permission.
62 1.1 oster *
63 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.1 oster * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.1 oster * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.1 oster * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.1 oster * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.1 oster * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.1 oster * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.1 oster * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.1 oster * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.1 oster * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.1 oster * SUCH DAMAGE.
74 1.1 oster *
75 1.1 oster * from: Utah $Hdr: cd.c 1.6 90/11/28$
76 1.1 oster *
77 1.1 oster * @(#)cd.c 8.2 (Berkeley) 11/16/93
78 1.1 oster */
79 1.1 oster
80 1.1 oster
81 1.1 oster
82 1.1 oster
83 1.1 oster /*
84 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
85 1.1 oster * All rights reserved.
86 1.1 oster *
87 1.1 oster * Authors: Mark Holland, Jim Zelenka
88 1.1 oster *
89 1.1 oster * Permission to use, copy, modify and distribute this software and
90 1.1 oster * its documentation is hereby granted, provided that both the copyright
91 1.1 oster * notice and this permission notice appear in all copies of the
92 1.1 oster * software, derivative works or modified versions, and any portions
93 1.1 oster * thereof, and that both notices appear in supporting documentation.
94 1.1 oster *
95 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
96 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
97 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
98 1.1 oster *
99 1.1 oster * Carnegie Mellon requests users of this software to return to
100 1.1 oster *
101 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
102 1.1 oster * School of Computer Science
103 1.1 oster * Carnegie Mellon University
104 1.1 oster * Pittsburgh PA 15213-3890
105 1.1 oster *
106 1.1 oster * any improvements or extensions that they make and grant Carnegie the
107 1.1 oster * rights to redistribute these changes.
108 1.1 oster */
109 1.1 oster
110 1.1 oster /***********************************************************
111 1.1 oster *
112 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
113 1.1 oster *
114 1.1 oster ***********************************************************/
115 1.1 oster
116 1.1 oster #include <sys/errno.h>
117 1.1 oster #include <sys/param.h>
118 1.1 oster #include <sys/pool.h>
119 1.1 oster #include <sys/queue.h>
120 1.1 oster #include <sys/disk.h>
121 1.1 oster #include <sys/device.h>
122 1.1 oster #include <sys/stat.h>
123 1.1 oster #include <sys/ioctl.h>
124 1.1 oster #include <sys/fcntl.h>
125 1.1 oster #include <sys/systm.h>
126 1.1 oster #include <sys/namei.h>
127 1.1 oster #include <sys/vnode.h>
128 1.1 oster #include <sys/param.h>
129 1.1 oster #include <sys/types.h>
130 1.1 oster #include <machine/types.h>
131 1.1 oster #include <sys/disklabel.h>
132 1.1 oster #include <sys/conf.h>
133 1.1 oster #include <sys/lock.h>
134 1.1 oster #include <sys/buf.h>
135 1.1 oster #include <sys/user.h>
136 1.29.2.1 bouyer #include <sys/reboot.h>
137 1.8 oster
138 1.8 oster #include "raid.h"
139 1.29.2.1 bouyer #include "opt_raid_autoconfig.h"
140 1.1 oster #include "rf_raid.h"
141 1.1 oster #include "rf_raidframe.h"
142 1.29.2.1 bouyer #include "rf_copyback.h"
143 1.1 oster #include "rf_dag.h"
144 1.1 oster #include "rf_dagflags.h"
145 1.29.2.1 bouyer #include "rf_desc.h"
146 1.1 oster #include "rf_diskqueue.h"
147 1.1 oster #include "rf_acctrace.h"
148 1.1 oster #include "rf_etimer.h"
149 1.1 oster #include "rf_general.h"
150 1.1 oster #include "rf_debugMem.h"
151 1.1 oster #include "rf_kintf.h"
152 1.1 oster #include "rf_options.h"
153 1.1 oster #include "rf_driver.h"
154 1.1 oster #include "rf_parityscan.h"
155 1.1 oster #include "rf_debugprint.h"
156 1.1 oster #include "rf_threadstuff.h"
157 1.29.2.1 bouyer #include "rf_configure.h"
158 1.1 oster
159 1.9 oster int rf_kdebug_level = 0;
160 1.1 oster
161 1.1 oster #ifdef DEBUG
162 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
163 1.9 oster #else /* DEBUG */
164 1.1 oster #define db1_printf(a) { }
165 1.9 oster #endif /* DEBUG */
166 1.1 oster
167 1.9 oster static RF_Raid_t **raidPtrs; /* global raid device descriptors */
168 1.1 oster
169 1.11 oster RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
170 1.1 oster
171 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
172 1.10 oster * spare table */
173 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
174 1.10 oster * installation process */
175 1.10 oster
176 1.1 oster /* prototypes */
177 1.10 oster static void KernelWakeupFunc(struct buf * bp);
178 1.10 oster static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
179 1.10 oster dev_t dev, RF_SectorNum_t startSect,
180 1.10 oster RF_SectorCount_t numSect, caddr_t buf,
181 1.10 oster void (*cbFunc) (struct buf *), void *cbArg,
182 1.10 oster int logBytesPerSector, struct proc * b_proc);
183 1.29.2.1 bouyer static void raidinit __P((RF_Raid_t *));
184 1.1 oster
185 1.10 oster void raidattach __P((int));
186 1.10 oster int raidsize __P((dev_t));
187 1.10 oster int raidopen __P((dev_t, int, int, struct proc *));
188 1.10 oster int raidclose __P((dev_t, int, int, struct proc *));
189 1.10 oster int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
190 1.10 oster int raidwrite __P((dev_t, struct uio *, int));
191 1.10 oster int raidread __P((dev_t, struct uio *, int));
192 1.10 oster void raidstrategy __P((struct buf *));
193 1.10 oster int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
194 1.1 oster
195 1.1 oster /*
196 1.1 oster * Pilfered from ccd.c
197 1.1 oster */
198 1.1 oster
199 1.10 oster struct raidbuf {
200 1.10 oster struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
201 1.10 oster struct buf *rf_obp; /* ptr. to original I/O buf */
202 1.10 oster int rf_flags; /* misc. flags */
203 1.11 oster RF_DiskQueueData_t *req;/* the request that this was part of.. */
204 1.10 oster };
205 1.1 oster
206 1.1 oster
207 1.1 oster #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
208 1.1 oster #define RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
209 1.1 oster
210 1.9 oster /* XXX Not sure if the following should be replacing the raidPtrs above,
211 1.29.2.1 bouyer or if it should be used in conjunction with that...
212 1.29.2.1 bouyer */
213 1.1 oster
214 1.10 oster struct raid_softc {
215 1.10 oster int sc_flags; /* flags */
216 1.10 oster int sc_cflags; /* configuration flags */
217 1.11 oster size_t sc_size; /* size of the raid device */
218 1.10 oster char sc_xname[20]; /* XXX external name */
219 1.10 oster struct disk sc_dkdev; /* generic disk device info */
220 1.10 oster struct pool sc_cbufpool; /* component buffer pool */
221 1.29.2.1 bouyer struct buf_queue buf_queue; /* used for the device queue */
222 1.10 oster };
223 1.1 oster /* sc_flags */
224 1.1 oster #define RAIDF_INITED 0x01 /* unit has been initialized */
225 1.1 oster #define RAIDF_WLABEL 0x02 /* label area is writable */
226 1.1 oster #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
227 1.1 oster #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
228 1.1 oster #define RAIDF_LOCKED 0x80 /* unit is locked */
229 1.1 oster
230 1.1 oster #define raidunit(x) DISKUNIT(x)
231 1.29.2.1 bouyer int numraid = 0;
232 1.1 oster
233 1.20 oster /*
234 1.20 oster * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
235 1.20 oster * Be aware that large numbers can allow the driver to consume a lot of
236 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
237 1.28 oster *
238 1.28 oster * For example: with a stripe width of 64 blocks (32k) and 5 disks,
239 1.28 oster * a single 64K write will typically require 64K for the old data,
240 1.28 oster * 64K for the old parity, and 64K for the new parity, for a total
241 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
242 1.28 oster * Even it if is used immedately, that's still 128K, which when multiplied
243 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
244 1.28 oster *
245 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
246 1.28 oster * require data reconstruction, which will require *all* of the 4 remaining
247 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
248 1.20 oster */
249 1.20 oster
250 1.20 oster #ifndef RAIDOUTSTANDING
251 1.28 oster #define RAIDOUTSTANDING 6
252 1.20 oster #endif
253 1.20 oster
254 1.1 oster #define RAIDLABELDEV(dev) \
255 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
256 1.1 oster
257 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
258 1.10 oster struct raid_softc *raid_softc;
259 1.9 oster
260 1.10 oster static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
261 1.10 oster struct disklabel *));
262 1.10 oster static void raidgetdisklabel __P((dev_t));
263 1.10 oster static void raidmakedisklabel __P((struct raid_softc *));
264 1.1 oster
265 1.10 oster static int raidlock __P((struct raid_softc *));
266 1.10 oster static void raidunlock __P((struct raid_softc *));
267 1.1 oster
268 1.12 oster static void rf_markalldirty __P((RF_Raid_t *));
269 1.29.2.1 bouyer void rf_mountroot_hook __P((struct device *));
270 1.29.2.1 bouyer
271 1.29.2.1 bouyer struct device *raidrootdev;
272 1.29.2.1 bouyer
273 1.29.2.1 bouyer void rf_ReconThread __P((struct rf_recon_req *));
274 1.29.2.1 bouyer /* XXX what I want is: */
275 1.29.2.1 bouyer /*void rf_ReconThread __P((RF_Raid_t *raidPtr)); */
276 1.29.2.1 bouyer void rf_RewriteParityThread __P((RF_Raid_t *raidPtr));
277 1.29.2.1 bouyer void rf_CopybackThread __P((RF_Raid_t *raidPtr));
278 1.29.2.1 bouyer void rf_ReconstructInPlaceThread __P((struct rf_recon_req *));
279 1.29.2.1 bouyer void rf_buildroothack __P((void *));
280 1.29.2.1 bouyer
281 1.29.2.1 bouyer RF_AutoConfig_t *rf_find_raid_components __P((void));
282 1.29.2.1 bouyer RF_ConfigSet_t *rf_create_auto_sets __P((RF_AutoConfig_t *));
283 1.29.2.1 bouyer static int rf_does_it_fit __P((RF_ConfigSet_t *,RF_AutoConfig_t *));
284 1.29.2.1 bouyer static int rf_reasonable_label __P((RF_ComponentLabel_t *));
285 1.29.2.1 bouyer void rf_create_configuration __P((RF_AutoConfig_t *,RF_Config_t *,
286 1.29.2.1 bouyer RF_Raid_t *));
287 1.29.2.1 bouyer int rf_set_autoconfig __P((RF_Raid_t *, int));
288 1.29.2.1 bouyer int rf_set_rootpartition __P((RF_Raid_t *, int));
289 1.29.2.1 bouyer void rf_release_all_vps __P((RF_ConfigSet_t *));
290 1.29.2.1 bouyer void rf_cleanup_config_set __P((RF_ConfigSet_t *));
291 1.29.2.1 bouyer int rf_have_enough_components __P((RF_ConfigSet_t *));
292 1.29.2.1 bouyer int rf_auto_config_set __P((RF_ConfigSet_t *, int *));
293 1.29.2.1 bouyer
294 1.29.2.1 bouyer static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
295 1.29.2.1 bouyer allow autoconfig to take place.
296 1.29.2.1 bouyer Note that this is overridden by having
297 1.29.2.1 bouyer RAID_AUTOCONFIG as an option in the
298 1.29.2.1 bouyer kernel config file. */
299 1.1 oster
300 1.10 oster void
301 1.10 oster raidattach(num)
302 1.9 oster int num;
303 1.1 oster {
304 1.14 oster int raidID;
305 1.14 oster int i, rc;
306 1.29.2.1 bouyer RF_AutoConfig_t *ac_list; /* autoconfig list */
307 1.29.2.1 bouyer RF_ConfigSet_t *config_sets;
308 1.1 oster
309 1.1 oster #ifdef DEBUG
310 1.9 oster printf("raidattach: Asked for %d units\n", num);
311 1.1 oster #endif
312 1.1 oster
313 1.1 oster if (num <= 0) {
314 1.1 oster #ifdef DIAGNOSTIC
315 1.1 oster panic("raidattach: count <= 0");
316 1.1 oster #endif
317 1.1 oster return;
318 1.1 oster }
319 1.9 oster /* This is where all the initialization stuff gets done. */
320 1.1 oster
321 1.29.2.1 bouyer numraid = num;
322 1.29.2.1 bouyer
323 1.1 oster /* Make some space for requested number of units... */
324 1.1 oster
325 1.1 oster RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
326 1.1 oster if (raidPtrs == NULL) {
327 1.1 oster panic("raidPtrs is NULL!!\n");
328 1.1 oster }
329 1.14 oster
330 1.14 oster rc = rf_mutex_init(&rf_sparet_wait_mutex);
331 1.14 oster if (rc) {
332 1.14 oster RF_PANIC();
333 1.14 oster }
334 1.14 oster
335 1.14 oster rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
336 1.14 oster
337 1.29.2.1 bouyer for (i = 0; i < num; i++)
338 1.14 oster raidPtrs[i] = NULL;
339 1.14 oster rc = rf_BootRaidframe();
340 1.14 oster if (rc == 0)
341 1.14 oster printf("Kernelized RAIDframe activated\n");
342 1.14 oster else
343 1.1 oster panic("Serious error booting RAID!!\n");
344 1.14 oster
345 1.9 oster /* put together some datastructures like the CCD device does.. This
346 1.9 oster * lets us lock the device and what-not when it gets opened. */
347 1.1 oster
348 1.1 oster raid_softc = (struct raid_softc *)
349 1.29.2.1 bouyer malloc(num * sizeof(struct raid_softc),
350 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
351 1.1 oster if (raid_softc == NULL) {
352 1.1 oster printf("WARNING: no memory for RAIDframe driver\n");
353 1.1 oster return;
354 1.1 oster }
355 1.29.2.1 bouyer
356 1.1 oster bzero(raid_softc, num * sizeof(struct raid_softc));
357 1.29.2.1 bouyer
358 1.29.2.1 bouyer raidrootdev = (struct device *)malloc(num * sizeof(struct device),
359 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
360 1.29.2.1 bouyer if (raidrootdev == NULL) {
361 1.29.2.1 bouyer panic("No memory for RAIDframe driver!!?!?!\n");
362 1.29.2.1 bouyer }
363 1.29.2.1 bouyer
364 1.9 oster for (raidID = 0; raidID < num; raidID++) {
365 1.29.2.1 bouyer BUFQ_INIT(&raid_softc[raidID].buf_queue);
366 1.29.2.1 bouyer
367 1.29.2.1 bouyer raidrootdev[raidID].dv_class = DV_DISK;
368 1.29.2.1 bouyer raidrootdev[raidID].dv_cfdata = NULL;
369 1.29.2.1 bouyer raidrootdev[raidID].dv_unit = raidID;
370 1.29.2.1 bouyer raidrootdev[raidID].dv_parent = NULL;
371 1.29.2.1 bouyer raidrootdev[raidID].dv_flags = 0;
372 1.29.2.1 bouyer sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
373 1.29.2.1 bouyer
374 1.9 oster RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
375 1.11 oster (RF_Raid_t *));
376 1.9 oster if (raidPtrs[raidID] == NULL) {
377 1.29.2.1 bouyer printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
378 1.29.2.1 bouyer numraid = raidID;
379 1.29.2.1 bouyer return;
380 1.29.2.1 bouyer }
381 1.29.2.1 bouyer }
382 1.29.2.1 bouyer
383 1.29.2.1 bouyer #if RAID_AUTOCONFIG
384 1.29.2.1 bouyer raidautoconfig = 1;
385 1.29.2.1 bouyer #endif
386 1.29.2.1 bouyer
387 1.29.2.1 bouyer if (raidautoconfig) {
388 1.29.2.1 bouyer /* 1. locate all RAID components on the system */
389 1.29.2.1 bouyer
390 1.29.2.1 bouyer #if DEBUG
391 1.29.2.1 bouyer printf("Searching for raid components...\n");
392 1.29.2.1 bouyer #endif
393 1.29.2.1 bouyer ac_list = rf_find_raid_components();
394 1.29.2.1 bouyer
395 1.29.2.1 bouyer /* 2. sort them into their respective sets */
396 1.29.2.1 bouyer
397 1.29.2.1 bouyer config_sets = rf_create_auto_sets(ac_list);
398 1.29.2.1 bouyer
399 1.29.2.1 bouyer /* 3. evaluate each set and configure the valid ones
400 1.29.2.1 bouyer This gets done in rf_buildroothack() */
401 1.29.2.1 bouyer
402 1.29.2.1 bouyer /* schedule the creation of the thread to do the
403 1.29.2.1 bouyer "/ on RAID" stuff */
404 1.29.2.1 bouyer
405 1.29.2.1 bouyer kthread_create(rf_buildroothack,config_sets);
406 1.29.2.1 bouyer
407 1.29.2.1 bouyer #if 0
408 1.29.2.1 bouyer mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
409 1.29.2.1 bouyer #endif
410 1.29.2.1 bouyer }
411 1.29.2.1 bouyer
412 1.29.2.1 bouyer }
413 1.29.2.1 bouyer
414 1.29.2.1 bouyer void
415 1.29.2.1 bouyer rf_buildroothack(arg)
416 1.29.2.1 bouyer void *arg;
417 1.29.2.1 bouyer {
418 1.29.2.1 bouyer RF_ConfigSet_t *config_sets = arg;
419 1.29.2.1 bouyer RF_ConfigSet_t *cset;
420 1.29.2.1 bouyer RF_ConfigSet_t *next_cset;
421 1.29.2.1 bouyer int retcode;
422 1.29.2.1 bouyer int raidID;
423 1.29.2.1 bouyer int rootID;
424 1.29.2.1 bouyer int num_root;
425 1.29.2.1 bouyer
426 1.29.2.3 bouyer rootID = 0;
427 1.29.2.1 bouyer num_root = 0;
428 1.29.2.1 bouyer cset = config_sets;
429 1.29.2.1 bouyer while(cset != NULL ) {
430 1.29.2.1 bouyer next_cset = cset->next;
431 1.29.2.1 bouyer if (rf_have_enough_components(cset) &&
432 1.29.2.1 bouyer cset->ac->clabel->autoconfigure==1) {
433 1.29.2.1 bouyer retcode = rf_auto_config_set(cset,&raidID);
434 1.29.2.1 bouyer if (!retcode) {
435 1.29.2.1 bouyer if (cset->rootable) {
436 1.29.2.1 bouyer rootID = raidID;
437 1.29.2.1 bouyer num_root++;
438 1.29.2.1 bouyer }
439 1.29.2.1 bouyer } else {
440 1.29.2.1 bouyer /* The autoconfig didn't work :( */
441 1.29.2.1 bouyer #if DEBUG
442 1.29.2.1 bouyer printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
443 1.29.2.1 bouyer #endif
444 1.29.2.1 bouyer rf_release_all_vps(cset);
445 1.29.2.1 bouyer }
446 1.29.2.1 bouyer } else {
447 1.29.2.1 bouyer /* we're not autoconfiguring this set...
448 1.29.2.1 bouyer release the associated resources */
449 1.29.2.1 bouyer rf_release_all_vps(cset);
450 1.29.2.1 bouyer }
451 1.29.2.1 bouyer /* cleanup */
452 1.29.2.1 bouyer rf_cleanup_config_set(cset);
453 1.29.2.1 bouyer cset = next_cset;
454 1.29.2.1 bouyer }
455 1.29.2.1 bouyer if (boothowto & RB_ASKNAME) {
456 1.29.2.1 bouyer /* We don't auto-config... */
457 1.29.2.1 bouyer } else {
458 1.29.2.1 bouyer /* They didn't ask, and we found something bootable... */
459 1.29.2.1 bouyer
460 1.29.2.1 bouyer if (num_root == 1) {
461 1.29.2.1 bouyer booted_device = &raidrootdev[rootID];
462 1.29.2.1 bouyer } else if (num_root > 1) {
463 1.29.2.1 bouyer /* we can't guess.. require the user to answer... */
464 1.29.2.1 bouyer boothowto |= RB_ASKNAME;
465 1.1 oster }
466 1.1 oster }
467 1.1 oster }
468 1.1 oster
469 1.1 oster
470 1.1 oster int
471 1.1 oster raidsize(dev)
472 1.9 oster dev_t dev;
473 1.1 oster {
474 1.1 oster struct raid_softc *rs;
475 1.1 oster struct disklabel *lp;
476 1.9 oster int part, unit, omask, size;
477 1.1 oster
478 1.1 oster unit = raidunit(dev);
479 1.1 oster if (unit >= numraid)
480 1.1 oster return (-1);
481 1.1 oster rs = &raid_softc[unit];
482 1.1 oster
483 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
484 1.1 oster return (-1);
485 1.1 oster
486 1.1 oster part = DISKPART(dev);
487 1.1 oster omask = rs->sc_dkdev.dk_openmask & (1 << part);
488 1.1 oster lp = rs->sc_dkdev.dk_label;
489 1.1 oster
490 1.1 oster if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
491 1.1 oster return (-1);
492 1.1 oster
493 1.1 oster if (lp->d_partitions[part].p_fstype != FS_SWAP)
494 1.1 oster size = -1;
495 1.1 oster else
496 1.1 oster size = lp->d_partitions[part].p_size *
497 1.1 oster (lp->d_secsize / DEV_BSIZE);
498 1.1 oster
499 1.1 oster if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
500 1.1 oster return (-1);
501 1.1 oster
502 1.1 oster return (size);
503 1.1 oster
504 1.1 oster }
505 1.1 oster
506 1.1 oster int
507 1.1 oster raiddump(dev, blkno, va, size)
508 1.9 oster dev_t dev;
509 1.1 oster daddr_t blkno;
510 1.1 oster caddr_t va;
511 1.9 oster size_t size;
512 1.1 oster {
513 1.1 oster /* Not implemented. */
514 1.1 oster return ENXIO;
515 1.1 oster }
516 1.1 oster /* ARGSUSED */
517 1.1 oster int
518 1.1 oster raidopen(dev, flags, fmt, p)
519 1.9 oster dev_t dev;
520 1.9 oster int flags, fmt;
521 1.1 oster struct proc *p;
522 1.1 oster {
523 1.9 oster int unit = raidunit(dev);
524 1.1 oster struct raid_softc *rs;
525 1.1 oster struct disklabel *lp;
526 1.9 oster int part, pmask;
527 1.9 oster int error = 0;
528 1.9 oster
529 1.1 oster if (unit >= numraid)
530 1.1 oster return (ENXIO);
531 1.1 oster rs = &raid_softc[unit];
532 1.1 oster
533 1.1 oster if ((error = raidlock(rs)) != 0)
534 1.9 oster return (error);
535 1.1 oster lp = rs->sc_dkdev.dk_label;
536 1.1 oster
537 1.1 oster part = DISKPART(dev);
538 1.1 oster pmask = (1 << part);
539 1.1 oster
540 1.1 oster db1_printf(("Opening raid device number: %d partition: %d\n",
541 1.14 oster unit, part));
542 1.1 oster
543 1.1 oster
544 1.1 oster if ((rs->sc_flags & RAIDF_INITED) &&
545 1.1 oster (rs->sc_dkdev.dk_openmask == 0))
546 1.9 oster raidgetdisklabel(dev);
547 1.1 oster
548 1.1 oster /* make sure that this partition exists */
549 1.1 oster
550 1.1 oster if (part != RAW_PART) {
551 1.1 oster db1_printf(("Not a raw partition..\n"));
552 1.1 oster if (((rs->sc_flags & RAIDF_INITED) == 0) ||
553 1.1 oster ((part >= lp->d_npartitions) ||
554 1.9 oster (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
555 1.1 oster error = ENXIO;
556 1.1 oster raidunlock(rs);
557 1.1 oster db1_printf(("Bailing out...\n"));
558 1.9 oster return (error);
559 1.1 oster }
560 1.1 oster }
561 1.1 oster /* Prevent this unit from being unconfigured while open. */
562 1.1 oster switch (fmt) {
563 1.1 oster case S_IFCHR:
564 1.1 oster rs->sc_dkdev.dk_copenmask |= pmask;
565 1.1 oster break;
566 1.1 oster
567 1.1 oster case S_IFBLK:
568 1.1 oster rs->sc_dkdev.dk_bopenmask |= pmask;
569 1.1 oster break;
570 1.1 oster }
571 1.13 oster
572 1.13 oster if ((rs->sc_dkdev.dk_openmask == 0) &&
573 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
574 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
575 1.13 oster have done a configure before this. I DO NOT WANT TO BE
576 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
577 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
578 1.13 oster /* XXX should check to see if we're only open for reading
579 1.13 oster here... If so, we needn't do this, but then need some
580 1.13 oster other way of keeping track of what's happened.. */
581 1.13 oster
582 1.13 oster rf_markalldirty( raidPtrs[unit] );
583 1.13 oster }
584 1.13 oster
585 1.13 oster
586 1.1 oster rs->sc_dkdev.dk_openmask =
587 1.1 oster rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
588 1.1 oster
589 1.1 oster raidunlock(rs);
590 1.1 oster
591 1.9 oster return (error);
592 1.1 oster
593 1.1 oster
594 1.1 oster }
595 1.1 oster /* ARGSUSED */
596 1.1 oster int
597 1.1 oster raidclose(dev, flags, fmt, p)
598 1.9 oster dev_t dev;
599 1.9 oster int flags, fmt;
600 1.1 oster struct proc *p;
601 1.1 oster {
602 1.9 oster int unit = raidunit(dev);
603 1.1 oster struct raid_softc *rs;
604 1.9 oster int error = 0;
605 1.9 oster int part;
606 1.1 oster
607 1.1 oster if (unit >= numraid)
608 1.1 oster return (ENXIO);
609 1.1 oster rs = &raid_softc[unit];
610 1.1 oster
611 1.1 oster if ((error = raidlock(rs)) != 0)
612 1.1 oster return (error);
613 1.1 oster
614 1.1 oster part = DISKPART(dev);
615 1.1 oster
616 1.1 oster /* ...that much closer to allowing unconfiguration... */
617 1.1 oster switch (fmt) {
618 1.1 oster case S_IFCHR:
619 1.1 oster rs->sc_dkdev.dk_copenmask &= ~(1 << part);
620 1.1 oster break;
621 1.1 oster
622 1.1 oster case S_IFBLK:
623 1.1 oster rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
624 1.1 oster break;
625 1.1 oster }
626 1.1 oster rs->sc_dkdev.dk_openmask =
627 1.1 oster rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
628 1.13 oster
629 1.13 oster if ((rs->sc_dkdev.dk_openmask == 0) &&
630 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
631 1.13 oster /* Last one... device is not unconfigured yet.
632 1.13 oster Device shutdown has taken care of setting the
633 1.13 oster clean bits if RAIDF_INITED is not set
634 1.13 oster mark things as clean... */
635 1.29.2.1 bouyer #if 0
636 1.29.2.1 bouyer printf("Last one on raid%d. Updating status.\n",unit);
637 1.29.2.1 bouyer #endif
638 1.29.2.1 bouyer rf_update_component_labels(raidPtrs[unit],
639 1.29.2.1 bouyer RF_FINAL_COMPONENT_UPDATE);
640 1.13 oster }
641 1.1 oster
642 1.1 oster raidunlock(rs);
643 1.1 oster return (0);
644 1.1 oster
645 1.1 oster }
646 1.1 oster
647 1.1 oster void
648 1.1 oster raidstrategy(bp)
649 1.29.2.1 bouyer struct buf *bp;
650 1.1 oster {
651 1.29.2.1 bouyer int s;
652 1.1 oster
653 1.1 oster unsigned int raidID = raidunit(bp->b_dev);
654 1.1 oster RF_Raid_t *raidPtr;
655 1.1 oster struct raid_softc *rs = &raid_softc[raidID];
656 1.1 oster struct disklabel *lp;
657 1.9 oster int wlabel;
658 1.1 oster
659 1.29.2.1 bouyer if ((rs->sc_flags & RAIDF_INITED) ==0) {
660 1.29.2.1 bouyer bp->b_error = ENXIO;
661 1.29.2.2 bouyer bp->b_flags |= B_ERROR;
662 1.29.2.1 bouyer bp->b_resid = bp->b_bcount;
663 1.29.2.1 bouyer biodone(bp);
664 1.1 oster return;
665 1.29.2.1 bouyer }
666 1.1 oster if (raidID >= numraid || !raidPtrs[raidID]) {
667 1.1 oster bp->b_error = ENODEV;
668 1.1 oster bp->b_flags |= B_ERROR;
669 1.1 oster bp->b_resid = bp->b_bcount;
670 1.1 oster biodone(bp);
671 1.1 oster return;
672 1.1 oster }
673 1.1 oster raidPtr = raidPtrs[raidID];
674 1.1 oster if (!raidPtr->valid) {
675 1.1 oster bp->b_error = ENODEV;
676 1.1 oster bp->b_flags |= B_ERROR;
677 1.1 oster bp->b_resid = bp->b_bcount;
678 1.1 oster biodone(bp);
679 1.1 oster return;
680 1.1 oster }
681 1.1 oster if (bp->b_bcount == 0) {
682 1.1 oster db1_printf(("b_bcount is zero..\n"));
683 1.1 oster biodone(bp);
684 1.1 oster return;
685 1.1 oster }
686 1.1 oster lp = rs->sc_dkdev.dk_label;
687 1.1 oster
688 1.1 oster /*
689 1.1 oster * Do bounds checking and adjust transfer. If there's an
690 1.1 oster * error, the bounds check will flag that for us.
691 1.1 oster */
692 1.1 oster
693 1.9 oster wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
694 1.1 oster if (DISKPART(bp->b_dev) != RAW_PART)
695 1.1 oster if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
696 1.1 oster db1_printf(("Bounds check failed!!:%d %d\n",
697 1.9 oster (int) bp->b_blkno, (int) wlabel));
698 1.1 oster biodone(bp);
699 1.1 oster return;
700 1.1 oster }
701 1.29.2.1 bouyer s = splbio();
702 1.1 oster
703 1.1 oster bp->b_resid = 0;
704 1.29.2.1 bouyer
705 1.29.2.1 bouyer /* stuff it onto our queue */
706 1.29.2.1 bouyer BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
707 1.29.2.1 bouyer
708 1.29.2.1 bouyer raidstart(raidPtrs[raidID]);
709 1.29.2.1 bouyer
710 1.1 oster splx(s);
711 1.1 oster }
712 1.1 oster /* ARGSUSED */
713 1.1 oster int
714 1.1 oster raidread(dev, uio, flags)
715 1.9 oster dev_t dev;
716 1.1 oster struct uio *uio;
717 1.9 oster int flags;
718 1.1 oster {
719 1.9 oster int unit = raidunit(dev);
720 1.1 oster struct raid_softc *rs;
721 1.9 oster int part;
722 1.1 oster
723 1.1 oster if (unit >= numraid)
724 1.1 oster return (ENXIO);
725 1.1 oster rs = &raid_softc[unit];
726 1.1 oster
727 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
728 1.1 oster return (ENXIO);
729 1.1 oster part = DISKPART(dev);
730 1.1 oster
731 1.9 oster db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
732 1.1 oster
733 1.1 oster return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
734 1.1 oster
735 1.1 oster }
736 1.1 oster /* ARGSUSED */
737 1.1 oster int
738 1.1 oster raidwrite(dev, uio, flags)
739 1.9 oster dev_t dev;
740 1.1 oster struct uio *uio;
741 1.9 oster int flags;
742 1.1 oster {
743 1.9 oster int unit = raidunit(dev);
744 1.1 oster struct raid_softc *rs;
745 1.1 oster
746 1.1 oster if (unit >= numraid)
747 1.1 oster return (ENXIO);
748 1.1 oster rs = &raid_softc[unit];
749 1.1 oster
750 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
751 1.1 oster return (ENXIO);
752 1.1 oster db1_printf(("raidwrite\n"));
753 1.1 oster return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
754 1.1 oster
755 1.1 oster }
756 1.1 oster
757 1.1 oster int
758 1.1 oster raidioctl(dev, cmd, data, flag, p)
759 1.9 oster dev_t dev;
760 1.9 oster u_long cmd;
761 1.1 oster caddr_t data;
762 1.9 oster int flag;
763 1.1 oster struct proc *p;
764 1.1 oster {
765 1.9 oster int unit = raidunit(dev);
766 1.9 oster int error = 0;
767 1.9 oster int part, pmask;
768 1.1 oster struct raid_softc *rs;
769 1.1 oster RF_Config_t *k_cfg, *u_cfg;
770 1.29.2.1 bouyer RF_Raid_t *raidPtr;
771 1.29.2.1 bouyer RF_RaidDisk_t *diskPtr;
772 1.29.2.1 bouyer RF_AccTotals_t *totals;
773 1.29.2.1 bouyer RF_DeviceConfig_t *d_cfg, **ucfgp;
774 1.1 oster u_char *specific_buf;
775 1.11 oster int retcode = 0;
776 1.11 oster int row;
777 1.11 oster int column;
778 1.1 oster struct rf_recon_req *rrcopy, *rr;
779 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
780 1.11 oster RF_ComponentLabel_t ci_label;
781 1.29.2.1 bouyer RF_ComponentLabel_t **clabel_ptr;
782 1.12 oster RF_SingleComponent_t *sparePtr,*componentPtr;
783 1.12 oster RF_SingleComponent_t hot_spare;
784 1.12 oster RF_SingleComponent_t component;
785 1.29.2.1 bouyer RF_ProgressInfo_t progressInfo, **progressInfoPtr;
786 1.29.2.1 bouyer int i, j, d;
787 1.29.2.4 bouyer #ifdef __HAVE_OLD_DISKLABEL
788 1.29.2.4 bouyer struct disklabel newlabel;
789 1.29.2.4 bouyer #endif
790 1.1 oster
791 1.1 oster if (unit >= numraid)
792 1.1 oster return (ENXIO);
793 1.1 oster rs = &raid_softc[unit];
794 1.29.2.1 bouyer raidPtr = raidPtrs[unit];
795 1.1 oster
796 1.9 oster db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
797 1.9 oster (int) DISKPART(dev), (int) unit, (int) cmd));
798 1.1 oster
799 1.1 oster /* Must be open for writes for these commands... */
800 1.1 oster switch (cmd) {
801 1.1 oster case DIOCSDINFO:
802 1.1 oster case DIOCWDINFO:
803 1.29.2.4 bouyer #ifdef __HAVE_OLD_DISKLABEL
804 1.29.2.4 bouyer case ODIOCWDINFO:
805 1.29.2.4 bouyer case ODIOCSDINFO:
806 1.29.2.4 bouyer #endif
807 1.1 oster case DIOCWLABEL:
808 1.1 oster if ((flag & FWRITE) == 0)
809 1.1 oster return (EBADF);
810 1.1 oster }
811 1.1 oster
812 1.1 oster /* Must be initialized for these... */
813 1.1 oster switch (cmd) {
814 1.1 oster case DIOCGDINFO:
815 1.1 oster case DIOCSDINFO:
816 1.1 oster case DIOCWDINFO:
817 1.29.2.4 bouyer #ifdef __HAVE_OLD_DISKLABEL
818 1.29.2.4 bouyer case ODIOCGDINFO:
819 1.29.2.4 bouyer case ODIOCWDINFO:
820 1.29.2.4 bouyer case ODIOCSDINFO:
821 1.29.2.4 bouyer case ODIOCGDEFLABEL:
822 1.29.2.4 bouyer #endif
823 1.1 oster case DIOCGPART:
824 1.1 oster case DIOCWLABEL:
825 1.1 oster case DIOCGDEFLABEL:
826 1.1 oster case RAIDFRAME_SHUTDOWN:
827 1.1 oster case RAIDFRAME_REWRITEPARITY:
828 1.1 oster case RAIDFRAME_GET_INFO:
829 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
830 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
831 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
832 1.1 oster case RAIDFRAME_GET_SIZE:
833 1.1 oster case RAIDFRAME_FAIL_DISK:
834 1.1 oster case RAIDFRAME_COPYBACK:
835 1.29.2.1 bouyer case RAIDFRAME_CHECK_RECON_STATUS:
836 1.29.2.1 bouyer case RAIDFRAME_CHECK_RECON_STATUS_EXT:
837 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
838 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
839 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
840 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
841 1.11 oster case RAIDFRAME_INIT_LABELS:
842 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
843 1.23 oster case RAIDFRAME_CHECK_PARITY:
844 1.29.2.1 bouyer case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
845 1.29.2.1 bouyer case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
846 1.29.2.1 bouyer case RAIDFRAME_CHECK_COPYBACK_STATUS:
847 1.29.2.1 bouyer case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
848 1.29.2.1 bouyer case RAIDFRAME_SET_AUTOCONFIG:
849 1.29.2.1 bouyer case RAIDFRAME_SET_ROOT:
850 1.29.2.1 bouyer case RAIDFRAME_DELETE_COMPONENT:
851 1.29.2.1 bouyer case RAIDFRAME_INCORPORATE_HOT_SPARE:
852 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
853 1.1 oster return (ENXIO);
854 1.1 oster }
855 1.9 oster
856 1.1 oster switch (cmd) {
857 1.1 oster
858 1.1 oster /* configure the system */
859 1.1 oster case RAIDFRAME_CONFIGURE:
860 1.1 oster
861 1.29.2.1 bouyer if (raidPtr->valid) {
862 1.29.2.1 bouyer /* There is a valid RAID set running on this unit! */
863 1.29.2.1 bouyer printf("raid%d: Device already configured!\n",unit);
864 1.29.2.1 bouyer return(EINVAL);
865 1.29.2.1 bouyer }
866 1.29.2.1 bouyer
867 1.1 oster /* copy-in the configuration information */
868 1.1 oster /* data points to a pointer to the configuration structure */
869 1.29.2.1 bouyer
870 1.9 oster u_cfg = *((RF_Config_t **) data);
871 1.9 oster RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
872 1.1 oster if (k_cfg == NULL) {
873 1.9 oster return (ENOMEM);
874 1.1 oster }
875 1.9 oster retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
876 1.9 oster sizeof(RF_Config_t));
877 1.1 oster if (retcode) {
878 1.29.2.1 bouyer RF_Free(k_cfg, sizeof(RF_Config_t));
879 1.29.2.1 bouyer db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
880 1.9 oster retcode));
881 1.9 oster return (retcode);
882 1.1 oster }
883 1.9 oster /* allocate a buffer for the layout-specific data, and copy it
884 1.9 oster * in */
885 1.1 oster if (k_cfg->layoutSpecificSize) {
886 1.9 oster if (k_cfg->layoutSpecificSize > 10000) {
887 1.1 oster /* sanity check */
888 1.29.2.1 bouyer RF_Free(k_cfg, sizeof(RF_Config_t));
889 1.9 oster return (EINVAL);
890 1.1 oster }
891 1.9 oster RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
892 1.9 oster (u_char *));
893 1.1 oster if (specific_buf == NULL) {
894 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
895 1.9 oster return (ENOMEM);
896 1.1 oster }
897 1.9 oster retcode = copyin(k_cfg->layoutSpecific,
898 1.9 oster (caddr_t) specific_buf,
899 1.9 oster k_cfg->layoutSpecificSize);
900 1.1 oster if (retcode) {
901 1.29.2.1 bouyer RF_Free(k_cfg, sizeof(RF_Config_t));
902 1.29.2.1 bouyer RF_Free(specific_buf,
903 1.29.2.1 bouyer k_cfg->layoutSpecificSize);
904 1.29.2.1 bouyer db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
905 1.9 oster retcode));
906 1.9 oster return (retcode);
907 1.1 oster }
908 1.9 oster } else
909 1.9 oster specific_buf = NULL;
910 1.1 oster k_cfg->layoutSpecific = specific_buf;
911 1.9 oster
912 1.9 oster /* should do some kind of sanity check on the configuration.
913 1.9 oster * Store the sum of all the bytes in the last byte? */
914 1.1 oster
915 1.1 oster /* configure the system */
916 1.1 oster
917 1.29.2.1 bouyer /*
918 1.29.2.1 bouyer * Clear the entire RAID descriptor, just to make sure
919 1.29.2.1 bouyer * there is no stale data left in the case of a
920 1.29.2.1 bouyer * reconfiguration
921 1.29.2.1 bouyer */
922 1.29.2.1 bouyer bzero((char *) raidPtr, sizeof(RF_Raid_t));
923 1.29.2.1 bouyer raidPtr->raidid = unit;
924 1.1 oster
925 1.29.2.1 bouyer retcode = rf_Configure(raidPtr, k_cfg, NULL);
926 1.9 oster
927 1.1 oster if (retcode == 0) {
928 1.29.2.1 bouyer
929 1.29.2.1 bouyer /* allow this many simultaneous IO's to
930 1.29.2.1 bouyer this RAID device */
931 1.29.2.1 bouyer raidPtr->openings = RAIDOUTSTANDING;
932 1.29.2.1 bouyer
933 1.29.2.1 bouyer raidinit(raidPtr);
934 1.29.2.1 bouyer rf_markalldirty(raidPtr);
935 1.9 oster }
936 1.1 oster /* free the buffers. No return code here. */
937 1.1 oster if (k_cfg->layoutSpecificSize) {
938 1.9 oster RF_Free(specific_buf, k_cfg->layoutSpecificSize);
939 1.1 oster }
940 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
941 1.9 oster
942 1.9 oster return (retcode);
943 1.9 oster
944 1.9 oster /* shutdown the system */
945 1.1 oster case RAIDFRAME_SHUTDOWN:
946 1.9 oster
947 1.9 oster if ((error = raidlock(rs)) != 0)
948 1.9 oster return (error);
949 1.1 oster
950 1.1 oster /*
951 1.1 oster * If somebody has a partition mounted, we shouldn't
952 1.1 oster * shutdown.
953 1.1 oster */
954 1.1 oster
955 1.1 oster part = DISKPART(dev);
956 1.1 oster pmask = (1 << part);
957 1.9 oster if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
958 1.9 oster ((rs->sc_dkdev.dk_bopenmask & pmask) &&
959 1.9 oster (rs->sc_dkdev.dk_copenmask & pmask))) {
960 1.9 oster raidunlock(rs);
961 1.9 oster return (EBUSY);
962 1.9 oster }
963 1.11 oster
964 1.29.2.1 bouyer retcode = rf_Shutdown(raidPtr);
965 1.1 oster
966 1.1 oster pool_destroy(&rs->sc_cbufpool);
967 1.1 oster
968 1.1 oster /* It's no longer initialized... */
969 1.1 oster rs->sc_flags &= ~RAIDF_INITED;
970 1.16 oster
971 1.9 oster /* Detach the disk. */
972 1.9 oster disk_detach(&rs->sc_dkdev);
973 1.1 oster
974 1.1 oster raidunlock(rs);
975 1.1 oster
976 1.9 oster return (retcode);
977 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
978 1.29.2.1 bouyer clabel_ptr = (RF_ComponentLabel_t **) data;
979 1.11 oster /* need to read the component label for the disk indicated
980 1.29.2.1 bouyer by row,column in clabel */
981 1.11 oster
982 1.11 oster /* For practice, let's get it directly fromdisk, rather
983 1.11 oster than from the in-core copy */
984 1.29.2.1 bouyer RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
985 1.11 oster (RF_ComponentLabel_t *));
986 1.29.2.1 bouyer if (clabel == NULL)
987 1.11 oster return (ENOMEM);
988 1.11 oster
989 1.29.2.1 bouyer bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
990 1.11 oster
991 1.29.2.1 bouyer retcode = copyin( *clabel_ptr, clabel,
992 1.11 oster sizeof(RF_ComponentLabel_t));
993 1.11 oster
994 1.11 oster if (retcode) {
995 1.29.2.1 bouyer RF_Free( clabel, sizeof(RF_ComponentLabel_t));
996 1.11 oster return(retcode);
997 1.11 oster }
998 1.11 oster
999 1.29.2.1 bouyer row = clabel->row;
1000 1.29.2.1 bouyer column = clabel->column;
1001 1.26 oster
1002 1.29.2.1 bouyer if ((row < 0) || (row >= raidPtr->numRow) ||
1003 1.29.2.1 bouyer (column < 0) || (column >= raidPtr->numCol +
1004 1.29.2.1 bouyer raidPtr->numSpare)) {
1005 1.29.2.1 bouyer RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1006 1.26 oster return(EINVAL);
1007 1.11 oster }
1008 1.11 oster
1009 1.29.2.1 bouyer raidread_component_label(raidPtr->Disks[row][column].dev,
1010 1.29.2.1 bouyer raidPtr->raid_cinfo[row][column].ci_vp,
1011 1.29.2.1 bouyer clabel );
1012 1.11 oster
1013 1.29.2.1 bouyer retcode = copyout((caddr_t) clabel,
1014 1.29.2.1 bouyer (caddr_t) *clabel_ptr,
1015 1.11 oster sizeof(RF_ComponentLabel_t));
1016 1.29.2.1 bouyer RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1017 1.11 oster return (retcode);
1018 1.11 oster
1019 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1020 1.29.2.1 bouyer clabel = (RF_ComponentLabel_t *) data;
1021 1.11 oster
1022 1.11 oster /* XXX check the label for valid stuff... */
1023 1.11 oster /* Note that some things *should not* get modified --
1024 1.11 oster the user should be re-initing the labels instead of
1025 1.11 oster trying to patch things.
1026 1.11 oster */
1027 1.11 oster
1028 1.11 oster printf("Got component label:\n");
1029 1.29.2.1 bouyer printf("Version: %d\n",clabel->version);
1030 1.29.2.1 bouyer printf("Serial Number: %d\n",clabel->serial_number);
1031 1.29.2.1 bouyer printf("Mod counter: %d\n",clabel->mod_counter);
1032 1.29.2.1 bouyer printf("Row: %d\n", clabel->row);
1033 1.29.2.1 bouyer printf("Column: %d\n", clabel->column);
1034 1.29.2.1 bouyer printf("Num Rows: %d\n", clabel->num_rows);
1035 1.29.2.1 bouyer printf("Num Columns: %d\n", clabel->num_columns);
1036 1.29.2.1 bouyer printf("Clean: %d\n", clabel->clean);
1037 1.29.2.1 bouyer printf("Status: %d\n", clabel->status);
1038 1.11 oster
1039 1.29.2.1 bouyer row = clabel->row;
1040 1.29.2.1 bouyer column = clabel->column;
1041 1.12 oster
1042 1.29.2.1 bouyer if ((row < 0) || (row >= raidPtr->numRow) ||
1043 1.29.2.1 bouyer (column < 0) || (column >= raidPtr->numCol)) {
1044 1.12 oster return(EINVAL);
1045 1.11 oster }
1046 1.12 oster
1047 1.12 oster /* XXX this isn't allowed to do anything for now :-) */
1048 1.29.2.1 bouyer
1049 1.29.2.1 bouyer /* XXX and before it is, we need to fill in the rest
1050 1.29.2.1 bouyer of the fields!?!?!?! */
1051 1.12 oster #if 0
1052 1.11 oster raidwrite_component_label(
1053 1.29.2.1 bouyer raidPtr->Disks[row][column].dev,
1054 1.29.2.1 bouyer raidPtr->raid_cinfo[row][column].ci_vp,
1055 1.29.2.1 bouyer clabel );
1056 1.12 oster #endif
1057 1.12 oster return (0);
1058 1.11 oster
1059 1.11 oster case RAIDFRAME_INIT_LABELS:
1060 1.29.2.1 bouyer clabel = (RF_ComponentLabel_t *) data;
1061 1.11 oster /*
1062 1.11 oster we only want the serial number from
1063 1.11 oster the above. We get all the rest of the information
1064 1.11 oster from the config that was used to create this RAID
1065 1.11 oster set.
1066 1.11 oster */
1067 1.12 oster
1068 1.29.2.1 bouyer raidPtr->serial_number = clabel->serial_number;
1069 1.29.2.1 bouyer
1070 1.29.2.1 bouyer raid_init_component_label(raidPtr, &ci_label);
1071 1.29.2.1 bouyer ci_label.serial_number = clabel->serial_number;
1072 1.11 oster
1073 1.29.2.1 bouyer for(row=0;row<raidPtr->numRow;row++) {
1074 1.11 oster ci_label.row = row;
1075 1.29.2.1 bouyer for(column=0;column<raidPtr->numCol;column++) {
1076 1.29.2.1 bouyer diskPtr = &raidPtr->Disks[row][column];
1077 1.29.2.1 bouyer if (!RF_DEAD_DISK(diskPtr->status)) {
1078 1.29.2.1 bouyer ci_label.partitionSize = diskPtr->partitionSize;
1079 1.29.2.1 bouyer ci_label.column = column;
1080 1.29.2.1 bouyer raidwrite_component_label(
1081 1.29.2.1 bouyer raidPtr->Disks[row][column].dev,
1082 1.29.2.1 bouyer raidPtr->raid_cinfo[row][column].ci_vp,
1083 1.29.2.1 bouyer &ci_label );
1084 1.29.2.1 bouyer }
1085 1.11 oster }
1086 1.11 oster }
1087 1.11 oster
1088 1.11 oster return (retcode);
1089 1.29.2.1 bouyer case RAIDFRAME_SET_AUTOCONFIG:
1090 1.29.2.1 bouyer d = rf_set_autoconfig(raidPtr, *(int *) data);
1091 1.29.2.1 bouyer printf("New autoconfig value is: %d\n", d);
1092 1.29.2.1 bouyer *(int *) data = d;
1093 1.29.2.1 bouyer return (retcode);
1094 1.29.2.1 bouyer
1095 1.29.2.1 bouyer case RAIDFRAME_SET_ROOT:
1096 1.29.2.1 bouyer d = rf_set_rootpartition(raidPtr, *(int *) data);
1097 1.29.2.1 bouyer printf("New rootpartition value is: %d\n", d);
1098 1.29.2.1 bouyer *(int *) data = d;
1099 1.29.2.1 bouyer return (retcode);
1100 1.9 oster
1101 1.1 oster /* initialize all parity */
1102 1.1 oster case RAIDFRAME_REWRITEPARITY:
1103 1.1 oster
1104 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1105 1.17 oster /* Parity for RAID 0 is trivially correct */
1106 1.29.2.1 bouyer raidPtr->parity_good = RF_RAID_CLEAN;
1107 1.17 oster return(0);
1108 1.17 oster }
1109 1.29.2.1 bouyer
1110 1.29.2.1 bouyer if (raidPtr->parity_rewrite_in_progress == 1) {
1111 1.29.2.1 bouyer /* Re-write is already in progress! */
1112 1.29.2.1 bouyer return(EINVAL);
1113 1.11 oster }
1114 1.29.2.1 bouyer
1115 1.29.2.1 bouyer retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1116 1.29.2.1 bouyer rf_RewriteParityThread,
1117 1.29.2.1 bouyer raidPtr,"raid_parity");
1118 1.9 oster return (retcode);
1119 1.9 oster
1120 1.11 oster
1121 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1122 1.12 oster sparePtr = (RF_SingleComponent_t *) data;
1123 1.12 oster memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1124 1.29.2.1 bouyer retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1125 1.11 oster return(retcode);
1126 1.11 oster
1127 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1128 1.11 oster return(retcode);
1129 1.11 oster
1130 1.29.2.1 bouyer case RAIDFRAME_DELETE_COMPONENT:
1131 1.29.2.1 bouyer componentPtr = (RF_SingleComponent_t *)data;
1132 1.29.2.1 bouyer memcpy( &component, componentPtr,
1133 1.29.2.1 bouyer sizeof(RF_SingleComponent_t));
1134 1.29.2.1 bouyer retcode = rf_delete_component(raidPtr, &component);
1135 1.29.2.1 bouyer return(retcode);
1136 1.29.2.1 bouyer
1137 1.29.2.1 bouyer case RAIDFRAME_INCORPORATE_HOT_SPARE:
1138 1.29.2.1 bouyer componentPtr = (RF_SingleComponent_t *)data;
1139 1.29.2.1 bouyer memcpy( &component, componentPtr,
1140 1.29.2.1 bouyer sizeof(RF_SingleComponent_t));
1141 1.29.2.1 bouyer retcode = rf_incorporate_hot_spare(raidPtr, &component);
1142 1.29.2.1 bouyer return(retcode);
1143 1.29.2.1 bouyer
1144 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1145 1.24 oster
1146 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1147 1.24 oster /* Can't do this on a RAID 0!! */
1148 1.24 oster return(EINVAL);
1149 1.24 oster }
1150 1.24 oster
1151 1.29.2.1 bouyer if (raidPtr->recon_in_progress == 1) {
1152 1.29.2.1 bouyer /* a reconstruct is already in progress! */
1153 1.29.2.1 bouyer return(EINVAL);
1154 1.29.2.1 bouyer }
1155 1.29.2.1 bouyer
1156 1.12 oster componentPtr = (RF_SingleComponent_t *) data;
1157 1.12 oster memcpy( &component, componentPtr,
1158 1.12 oster sizeof(RF_SingleComponent_t));
1159 1.12 oster row = component.row;
1160 1.12 oster column = component.column;
1161 1.12 oster printf("Rebuild: %d %d\n",row, column);
1162 1.29.2.1 bouyer if ((row < 0) || (row >= raidPtr->numRow) ||
1163 1.29.2.1 bouyer (column < 0) || (column >= raidPtr->numCol)) {
1164 1.12 oster return(EINVAL);
1165 1.12 oster }
1166 1.29.2.1 bouyer
1167 1.29.2.1 bouyer RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1168 1.29.2.1 bouyer if (rrcopy == NULL)
1169 1.29.2.1 bouyer return(ENOMEM);
1170 1.29.2.1 bouyer
1171 1.29.2.1 bouyer rrcopy->raidPtr = (void *) raidPtr;
1172 1.29.2.1 bouyer rrcopy->row = row;
1173 1.29.2.1 bouyer rrcopy->col = column;
1174 1.29.2.1 bouyer
1175 1.29.2.1 bouyer retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1176 1.29.2.1 bouyer rf_ReconstructInPlaceThread,
1177 1.29.2.1 bouyer rrcopy,"raid_reconip");
1178 1.12 oster return(retcode);
1179 1.12 oster
1180 1.1 oster case RAIDFRAME_GET_INFO:
1181 1.29.2.1 bouyer if (!raidPtr->valid)
1182 1.29.2.1 bouyer return (ENODEV);
1183 1.29.2.1 bouyer ucfgp = (RF_DeviceConfig_t **) data;
1184 1.29.2.1 bouyer RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1185 1.29.2.1 bouyer (RF_DeviceConfig_t *));
1186 1.29.2.1 bouyer if (d_cfg == NULL)
1187 1.29.2.1 bouyer return (ENOMEM);
1188 1.29.2.1 bouyer bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
1189 1.29.2.1 bouyer d_cfg->rows = raidPtr->numRow;
1190 1.29.2.1 bouyer d_cfg->cols = raidPtr->numCol;
1191 1.29.2.1 bouyer d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1192 1.29.2.1 bouyer if (d_cfg->ndevs >= RF_MAX_DISKS) {
1193 1.29.2.1 bouyer RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1194 1.29.2.1 bouyer return (ENOMEM);
1195 1.29.2.1 bouyer }
1196 1.29.2.1 bouyer d_cfg->nspares = raidPtr->numSpare;
1197 1.29.2.1 bouyer if (d_cfg->nspares >= RF_MAX_DISKS) {
1198 1.29.2.1 bouyer RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1199 1.29.2.1 bouyer return (ENOMEM);
1200 1.29.2.1 bouyer }
1201 1.29.2.1 bouyer d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1202 1.29.2.1 bouyer d = 0;
1203 1.29.2.1 bouyer for (i = 0; i < d_cfg->rows; i++) {
1204 1.29.2.1 bouyer for (j = 0; j < d_cfg->cols; j++) {
1205 1.29.2.1 bouyer d_cfg->devs[d] = raidPtr->Disks[i][j];
1206 1.29.2.1 bouyer d++;
1207 1.1 oster }
1208 1.1 oster }
1209 1.29.2.1 bouyer for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1210 1.29.2.1 bouyer d_cfg->spares[i] = raidPtr->Disks[0][j];
1211 1.29.2.1 bouyer }
1212 1.29.2.1 bouyer retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
1213 1.29.2.1 bouyer sizeof(RF_DeviceConfig_t));
1214 1.29.2.1 bouyer RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1215 1.29.2.1 bouyer
1216 1.29.2.1 bouyer return (retcode);
1217 1.29.2.1 bouyer
1218 1.22 oster case RAIDFRAME_CHECK_PARITY:
1219 1.29.2.1 bouyer *(int *) data = raidPtr->parity_good;
1220 1.22 oster return (0);
1221 1.9 oster
1222 1.29.2.1 bouyer case RAIDFRAME_RESET_ACCTOTALS:
1223 1.29.2.1 bouyer bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
1224 1.29.2.1 bouyer return (0);
1225 1.9 oster
1226 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1227 1.29.2.1 bouyer totals = (RF_AccTotals_t *) data;
1228 1.29.2.1 bouyer *totals = raidPtr->acc_totals;
1229 1.29.2.1 bouyer return (0);
1230 1.9 oster
1231 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1232 1.29.2.1 bouyer raidPtr->keep_acc_totals = *(int *)data;
1233 1.29.2.1 bouyer return (0);
1234 1.9 oster
1235 1.1 oster case RAIDFRAME_GET_SIZE:
1236 1.29.2.1 bouyer *(int *) data = raidPtr->totalSectors;
1237 1.9 oster return (0);
1238 1.1 oster
1239 1.1 oster /* fail a disk & optionally start reconstruction */
1240 1.1 oster case RAIDFRAME_FAIL_DISK:
1241 1.24 oster
1242 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1243 1.24 oster /* Can't do this on a RAID 0!! */
1244 1.24 oster return(EINVAL);
1245 1.24 oster }
1246 1.24 oster
1247 1.1 oster rr = (struct rf_recon_req *) data;
1248 1.9 oster
1249 1.29.2.1 bouyer if (rr->row < 0 || rr->row >= raidPtr->numRow
1250 1.29.2.1 bouyer || rr->col < 0 || rr->col >= raidPtr->numCol)
1251 1.9 oster return (EINVAL);
1252 1.1 oster
1253 1.12 oster printf("raid%d: Failing the disk: row: %d col: %d\n",
1254 1.12 oster unit, rr->row, rr->col);
1255 1.9 oster
1256 1.9 oster /* make a copy of the recon request so that we don't rely on
1257 1.9 oster * the user's buffer */
1258 1.1 oster RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1259 1.29.2.1 bouyer if (rrcopy == NULL)
1260 1.29.2.1 bouyer return(ENOMEM);
1261 1.1 oster bcopy(rr, rrcopy, sizeof(*rr));
1262 1.29.2.1 bouyer rrcopy->raidPtr = (void *) raidPtr;
1263 1.9 oster
1264 1.29.2.1 bouyer retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1265 1.29.2.1 bouyer rf_ReconThread,
1266 1.29.2.1 bouyer rrcopy,"raid_recon");
1267 1.9 oster return (0);
1268 1.9 oster
1269 1.9 oster /* invoke a copyback operation after recon on whatever disk
1270 1.9 oster * needs it, if any */
1271 1.9 oster case RAIDFRAME_COPYBACK:
1272 1.24 oster
1273 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1274 1.24 oster /* This makes no sense on a RAID 0!! */
1275 1.24 oster return(EINVAL);
1276 1.24 oster }
1277 1.24 oster
1278 1.29.2.1 bouyer if (raidPtr->copyback_in_progress == 1) {
1279 1.29.2.1 bouyer /* Copyback is already in progress! */
1280 1.29.2.1 bouyer return(EINVAL);
1281 1.29.2.1 bouyer }
1282 1.27 oster
1283 1.29.2.1 bouyer retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1284 1.29.2.1 bouyer rf_CopybackThread,
1285 1.29.2.1 bouyer raidPtr,"raid_copyback");
1286 1.29.2.1 bouyer return (retcode);
1287 1.9 oster
1288 1.1 oster /* return the percentage completion of reconstruction */
1289 1.29.2.1 bouyer case RAIDFRAME_CHECK_RECON_STATUS:
1290 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1291 1.29.2.1 bouyer /* This makes no sense on a RAID 0, so tell the
1292 1.29.2.1 bouyer user it's done. */
1293 1.29.2.1 bouyer *(int *) data = 100;
1294 1.29.2.1 bouyer return(0);
1295 1.24 oster }
1296 1.29.2.1 bouyer row = 0; /* XXX we only consider a single row... */
1297 1.29.2.1 bouyer if (raidPtr->status[row] != rf_rs_reconstructing)
1298 1.1 oster *(int *) data = 100;
1299 1.9 oster else
1300 1.29.2.1 bouyer *(int *) data = raidPtr->reconControl[row]->percentComplete;
1301 1.29.2.1 bouyer return (0);
1302 1.29.2.1 bouyer case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1303 1.29.2.1 bouyer progressInfoPtr = (RF_ProgressInfo_t **) data;
1304 1.29.2.1 bouyer row = 0; /* XXX we only consider a single row... */
1305 1.29.2.1 bouyer if (raidPtr->status[row] != rf_rs_reconstructing) {
1306 1.29.2.1 bouyer progressInfo.remaining = 0;
1307 1.29.2.1 bouyer progressInfo.completed = 100;
1308 1.29.2.1 bouyer progressInfo.total = 100;
1309 1.29.2.1 bouyer } else {
1310 1.29.2.1 bouyer progressInfo.total =
1311 1.29.2.1 bouyer raidPtr->reconControl[row]->numRUsTotal;
1312 1.29.2.1 bouyer progressInfo.completed =
1313 1.29.2.1 bouyer raidPtr->reconControl[row]->numRUsComplete;
1314 1.29.2.1 bouyer progressInfo.remaining = progressInfo.total -
1315 1.29.2.1 bouyer progressInfo.completed;
1316 1.29.2.1 bouyer }
1317 1.29.2.1 bouyer retcode = copyout((caddr_t) &progressInfo,
1318 1.29.2.1 bouyer (caddr_t) *progressInfoPtr,
1319 1.29.2.1 bouyer sizeof(RF_ProgressInfo_t));
1320 1.29.2.1 bouyer return (retcode);
1321 1.29.2.1 bouyer
1322 1.29.2.1 bouyer case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1323 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1324 1.29.2.1 bouyer /* This makes no sense on a RAID 0, so tell the
1325 1.29.2.1 bouyer user it's done. */
1326 1.29.2.1 bouyer *(int *) data = 100;
1327 1.29.2.1 bouyer return(0);
1328 1.29.2.1 bouyer }
1329 1.29.2.1 bouyer if (raidPtr->parity_rewrite_in_progress == 1) {
1330 1.29.2.1 bouyer *(int *) data = 100 *
1331 1.29.2.1 bouyer raidPtr->parity_rewrite_stripes_done /
1332 1.29.2.1 bouyer raidPtr->Layout.numStripe;
1333 1.29.2.1 bouyer } else {
1334 1.29.2.1 bouyer *(int *) data = 100;
1335 1.29.2.1 bouyer }
1336 1.29.2.1 bouyer return (0);
1337 1.29.2.1 bouyer
1338 1.29.2.1 bouyer case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1339 1.29.2.1 bouyer progressInfoPtr = (RF_ProgressInfo_t **) data;
1340 1.29.2.1 bouyer if (raidPtr->parity_rewrite_in_progress == 1) {
1341 1.29.2.1 bouyer progressInfo.total = raidPtr->Layout.numStripe;
1342 1.29.2.1 bouyer progressInfo.completed =
1343 1.29.2.1 bouyer raidPtr->parity_rewrite_stripes_done;
1344 1.29.2.1 bouyer progressInfo.remaining = progressInfo.total -
1345 1.29.2.1 bouyer progressInfo.completed;
1346 1.29.2.1 bouyer } else {
1347 1.29.2.1 bouyer progressInfo.remaining = 0;
1348 1.29.2.1 bouyer progressInfo.completed = 100;
1349 1.29.2.1 bouyer progressInfo.total = 100;
1350 1.29.2.1 bouyer }
1351 1.29.2.1 bouyer retcode = copyout((caddr_t) &progressInfo,
1352 1.29.2.1 bouyer (caddr_t) *progressInfoPtr,
1353 1.29.2.1 bouyer sizeof(RF_ProgressInfo_t));
1354 1.29.2.1 bouyer return (retcode);
1355 1.29.2.1 bouyer
1356 1.29.2.1 bouyer case RAIDFRAME_CHECK_COPYBACK_STATUS:
1357 1.29.2.1 bouyer if (raidPtr->Layout.map->faultsTolerated == 0) {
1358 1.29.2.1 bouyer /* This makes no sense on a RAID 0 */
1359 1.29.2.1 bouyer *(int *) data = 100;
1360 1.29.2.1 bouyer return(0);
1361 1.29.2.1 bouyer }
1362 1.29.2.1 bouyer if (raidPtr->copyback_in_progress == 1) {
1363 1.29.2.1 bouyer *(int *) data = 100 * raidPtr->copyback_stripes_done /
1364 1.29.2.1 bouyer raidPtr->Layout.numStripe;
1365 1.29.2.1 bouyer } else {
1366 1.29.2.1 bouyer *(int *) data = 100;
1367 1.29.2.1 bouyer }
1368 1.9 oster return (0);
1369 1.9 oster
1370 1.29.2.1 bouyer case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1371 1.29.2.1 bouyer progressInfoPtr = (RF_ProgressInfo_t **) data;
1372 1.29.2.1 bouyer if (raidPtr->copyback_in_progress == 1) {
1373 1.29.2.1 bouyer progressInfo.total = raidPtr->Layout.numStripe;
1374 1.29.2.1 bouyer progressInfo.completed =
1375 1.29.2.1 bouyer raidPtr->copyback_stripes_done;
1376 1.29.2.1 bouyer progressInfo.remaining = progressInfo.total -
1377 1.29.2.1 bouyer progressInfo.completed;
1378 1.29.2.1 bouyer } else {
1379 1.29.2.1 bouyer progressInfo.remaining = 0;
1380 1.29.2.1 bouyer progressInfo.completed = 100;
1381 1.29.2.1 bouyer progressInfo.total = 100;
1382 1.29.2.1 bouyer }
1383 1.29.2.1 bouyer retcode = copyout((caddr_t) &progressInfo,
1384 1.29.2.1 bouyer (caddr_t) *progressInfoPtr,
1385 1.29.2.1 bouyer sizeof(RF_ProgressInfo_t));
1386 1.29.2.1 bouyer return (retcode);
1387 1.29.2.1 bouyer
1388 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1389 1.9 oster * need a spare table. this ioctl does not return until a
1390 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1391 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1392 1.9 oster * -- I should either compute the spare table in the kernel,
1393 1.9 oster * or have a different -- XXX XXX -- interface (a different
1394 1.29.2.1 bouyer * character device) for delivering the table -- XXX */
1395 1.1 oster #if 0
1396 1.1 oster case RAIDFRAME_SPARET_WAIT:
1397 1.1 oster RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1398 1.9 oster while (!rf_sparet_wait_queue)
1399 1.9 oster mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1400 1.1 oster waitreq = rf_sparet_wait_queue;
1401 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1402 1.1 oster RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1403 1.9 oster
1404 1.29.2.1 bouyer /* structure assignment */
1405 1.29.2.1 bouyer *((RF_SparetWait_t *) data) = *waitreq;
1406 1.9 oster
1407 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1408 1.9 oster return (0);
1409 1.9 oster
1410 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1411 1.9 oster * code in it that will cause the dameon to exit */
1412 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1413 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1414 1.1 oster waitreq->fcol = -1;
1415 1.1 oster RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1416 1.1 oster waitreq->next = rf_sparet_wait_queue;
1417 1.1 oster rf_sparet_wait_queue = waitreq;
1418 1.1 oster RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1419 1.1 oster wakeup(&rf_sparet_wait_queue);
1420 1.9 oster return (0);
1421 1.1 oster
1422 1.9 oster /* used by the spare table daemon to deliver a spare table
1423 1.9 oster * into the kernel */
1424 1.1 oster case RAIDFRAME_SEND_SPARET:
1425 1.9 oster
1426 1.1 oster /* install the spare table */
1427 1.29.2.1 bouyer retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1428 1.9 oster
1429 1.9 oster /* respond to the requestor. the return status of the spare
1430 1.9 oster * table installation is passed in the "fcol" field */
1431 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1432 1.1 oster waitreq->fcol = retcode;
1433 1.1 oster RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1434 1.1 oster waitreq->next = rf_sparet_resp_queue;
1435 1.1 oster rf_sparet_resp_queue = waitreq;
1436 1.1 oster wakeup(&rf_sparet_resp_queue);
1437 1.1 oster RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1438 1.9 oster
1439 1.9 oster return (retcode);
1440 1.1 oster #endif
1441 1.1 oster
1442 1.9 oster default:
1443 1.29.2.1 bouyer break; /* fall through to the os-specific code below */
1444 1.1 oster
1445 1.1 oster }
1446 1.9 oster
1447 1.29.2.1 bouyer if (!raidPtr->valid)
1448 1.9 oster return (EINVAL);
1449 1.9 oster
1450 1.1 oster /*
1451 1.1 oster * Add support for "regular" device ioctls here.
1452 1.1 oster */
1453 1.9 oster
1454 1.1 oster switch (cmd) {
1455 1.1 oster case DIOCGDINFO:
1456 1.9 oster *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1457 1.1 oster break;
1458 1.29.2.4 bouyer #ifdef __HAVE_OLD_DISKLABEL
1459 1.29.2.4 bouyer case ODIOCGDINFO:
1460 1.29.2.4 bouyer newlabel = *(rs->sc_dkdev.dk_label);
1461 1.29.2.4 bouyer if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1462 1.29.2.4 bouyer return ENOTTY;
1463 1.29.2.4 bouyer memcpy(data, &newlabel, sizeof (struct olddisklabel));
1464 1.29.2.4 bouyer break;
1465 1.29.2.4 bouyer #endif
1466 1.1 oster
1467 1.1 oster case DIOCGPART:
1468 1.9 oster ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1469 1.9 oster ((struct partinfo *) data)->part =
1470 1.1 oster &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1471 1.1 oster break;
1472 1.1 oster
1473 1.1 oster case DIOCWDINFO:
1474 1.1 oster case DIOCSDINFO:
1475 1.29.2.4 bouyer #ifdef __HAVE_OLD_DISKLABEL
1476 1.29.2.4 bouyer case ODIOCWDINFO:
1477 1.29.2.4 bouyer case ODIOCSDINFO:
1478 1.29.2.4 bouyer #endif
1479 1.29.2.4 bouyer {
1480 1.29.2.4 bouyer struct disklabel *lp;
1481 1.29.2.4 bouyer #ifdef __HAVE_OLD_DISKLABEL
1482 1.29.2.4 bouyer if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1483 1.29.2.4 bouyer memset(&newlabel, 0, sizeof newlabel);
1484 1.29.2.4 bouyer memcpy(&newlabel, data, sizeof (struct olddisklabel));
1485 1.29.2.4 bouyer lp = &newlabel;
1486 1.29.2.4 bouyer } else
1487 1.29.2.4 bouyer #endif
1488 1.29.2.4 bouyer lp = (struct disklabel *)data;
1489 1.29.2.4 bouyer
1490 1.1 oster if ((error = raidlock(rs)) != 0)
1491 1.1 oster return (error);
1492 1.1 oster
1493 1.1 oster rs->sc_flags |= RAIDF_LABELLING;
1494 1.1 oster
1495 1.1 oster error = setdisklabel(rs->sc_dkdev.dk_label,
1496 1.29.2.4 bouyer lp, 0, rs->sc_dkdev.dk_cpulabel);
1497 1.1 oster if (error == 0) {
1498 1.29.2.4 bouyer if (cmd == DIOCWDINFO
1499 1.29.2.4 bouyer #ifdef __HAVE_OLD_DISKLABEL
1500 1.29.2.4 bouyer || cmd == ODIOCWDINFO
1501 1.29.2.4 bouyer #endif
1502 1.29.2.4 bouyer )
1503 1.1 oster error = writedisklabel(RAIDLABELDEV(dev),
1504 1.1 oster raidstrategy, rs->sc_dkdev.dk_label,
1505 1.1 oster rs->sc_dkdev.dk_cpulabel);
1506 1.1 oster }
1507 1.1 oster rs->sc_flags &= ~RAIDF_LABELLING;
1508 1.1 oster
1509 1.1 oster raidunlock(rs);
1510 1.1 oster
1511 1.1 oster if (error)
1512 1.1 oster return (error);
1513 1.1 oster break;
1514 1.29.2.4 bouyer }
1515 1.1 oster
1516 1.1 oster case DIOCWLABEL:
1517 1.9 oster if (*(int *) data != 0)
1518 1.1 oster rs->sc_flags |= RAIDF_WLABEL;
1519 1.1 oster else
1520 1.1 oster rs->sc_flags &= ~RAIDF_WLABEL;
1521 1.1 oster break;
1522 1.1 oster
1523 1.1 oster case DIOCGDEFLABEL:
1524 1.29.2.4 bouyer raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1525 1.1 oster break;
1526 1.29.2.4 bouyer
1527 1.29.2.4 bouyer #ifdef __HAVE_OLD_DISKLABEL
1528 1.29.2.4 bouyer case ODIOCGDEFLABEL:
1529 1.29.2.4 bouyer raidgetdefaultlabel(raidPtr, rs, &newlabel);
1530 1.29.2.4 bouyer if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1531 1.29.2.4 bouyer return ENOTTY;
1532 1.29.2.4 bouyer memcpy(data, &newlabel, sizeof (struct olddisklabel));
1533 1.29.2.4 bouyer break;
1534 1.29.2.4 bouyer #endif
1535 1.1 oster
1536 1.1 oster default:
1537 1.29.2.1 bouyer retcode = ENOTTY;
1538 1.1 oster }
1539 1.9 oster return (retcode);
1540 1.1 oster
1541 1.1 oster }
1542 1.1 oster
1543 1.1 oster
1544 1.9 oster /* raidinit -- complete the rest of the initialization for the
1545 1.1 oster RAIDframe device. */
1546 1.1 oster
1547 1.1 oster
1548 1.29.2.1 bouyer static void
1549 1.29.2.1 bouyer raidinit(raidPtr)
1550 1.1 oster RF_Raid_t *raidPtr;
1551 1.1 oster {
1552 1.1 oster struct raid_softc *rs;
1553 1.29.2.1 bouyer int unit;
1554 1.1 oster
1555 1.29.2.1 bouyer unit = raidPtr->raidid;
1556 1.1 oster
1557 1.1 oster rs = &raid_softc[unit];
1558 1.1 oster pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
1559 1.11 oster 0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
1560 1.9 oster
1561 1.1 oster
1562 1.1 oster /* XXX should check return code first... */
1563 1.1 oster rs->sc_flags |= RAIDF_INITED;
1564 1.1 oster
1565 1.9 oster sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1566 1.1 oster
1567 1.9 oster rs->sc_dkdev.dk_name = rs->sc_xname;
1568 1.11 oster
1569 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1570 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1571 1.9 oster * with disklabels. */
1572 1.11 oster
1573 1.1 oster disk_attach(&rs->sc_dkdev);
1574 1.1 oster
1575 1.1 oster /* XXX There may be a weird interaction here between this, and
1576 1.9 oster * protectedSectors, as used in RAIDframe. */
1577 1.11 oster
1578 1.9 oster rs->sc_size = raidPtr->totalSectors;
1579 1.11 oster
1580 1.1 oster }
1581 1.1 oster
1582 1.1 oster /* wake up the daemon & tell it to get us a spare table
1583 1.1 oster * XXX
1584 1.9 oster * the entries in the queues should be tagged with the raidPtr
1585 1.11 oster * so that in the extremely rare case that two recons happen at once,
1586 1.11 oster * we know for which device were requesting a spare table
1587 1.1 oster * XXX
1588 1.29.2.1 bouyer *
1589 1.29.2.1 bouyer * XXX This code is not currently used. GO
1590 1.1 oster */
1591 1.9 oster int
1592 1.9 oster rf_GetSpareTableFromDaemon(req)
1593 1.9 oster RF_SparetWait_t *req;
1594 1.9 oster {
1595 1.9 oster int retcode;
1596 1.9 oster
1597 1.9 oster RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1598 1.9 oster req->next = rf_sparet_wait_queue;
1599 1.9 oster rf_sparet_wait_queue = req;
1600 1.9 oster wakeup(&rf_sparet_wait_queue);
1601 1.9 oster
1602 1.9 oster /* mpsleep unlocks the mutex */
1603 1.9 oster while (!rf_sparet_resp_queue) {
1604 1.15 oster tsleep(&rf_sparet_resp_queue, PRIBIO,
1605 1.9 oster "raidframe getsparetable", 0);
1606 1.9 oster }
1607 1.9 oster req = rf_sparet_resp_queue;
1608 1.9 oster rf_sparet_resp_queue = req->next;
1609 1.9 oster RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1610 1.9 oster
1611 1.9 oster retcode = req->fcol;
1612 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
1613 1.9 oster * alloc'd */
1614 1.9 oster return (retcode);
1615 1.1 oster }
1616 1.29.2.1 bouyer
1617 1.11 oster /* a wrapper around rf_DoAccess that extracts appropriate info from the
1618 1.11 oster * bp & passes it down.
1619 1.1 oster * any calls originating in the kernel must use non-blocking I/O
1620 1.1 oster * do some extra sanity checking to return "appropriate" error values for
1621 1.1 oster * certain conditions (to make some standard utilities work)
1622 1.29.2.1 bouyer *
1623 1.29.2.1 bouyer * Formerly known as: rf_DoAccessKernel
1624 1.1 oster */
1625 1.29.2.1 bouyer void
1626 1.29.2.1 bouyer raidstart(raidPtr)
1627 1.9 oster RF_Raid_t *raidPtr;
1628 1.1 oster {
1629 1.1 oster RF_SectorCount_t num_blocks, pb, sum;
1630 1.1 oster RF_RaidAddr_t raid_addr;
1631 1.9 oster int retcode;
1632 1.1 oster struct partition *pp;
1633 1.9 oster daddr_t blocknum;
1634 1.9 oster int unit;
1635 1.1 oster struct raid_softc *rs;
1636 1.9 oster int do_async;
1637 1.29.2.1 bouyer struct buf *bp;
1638 1.1 oster
1639 1.1 oster unit = raidPtr->raidid;
1640 1.1 oster rs = &raid_softc[unit];
1641 1.29.2.1 bouyer
1642 1.29.2.1 bouyer /* quick check to see if anything has died recently */
1643 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1644 1.29.2.1 bouyer if (raidPtr->numNewFailures > 0) {
1645 1.29.2.1 bouyer rf_update_component_labels(raidPtr,
1646 1.29.2.1 bouyer RF_NORMAL_COMPONENT_UPDATE);
1647 1.29.2.1 bouyer raidPtr->numNewFailures--;
1648 1.1 oster }
1649 1.29.2.1 bouyer RF_UNLOCK_MUTEX(raidPtr->mutex);
1650 1.20 oster
1651 1.29.2.1 bouyer /* Check to see if we're at the limit... */
1652 1.20 oster RF_LOCK_MUTEX(raidPtr->mutex);
1653 1.29.2.1 bouyer while (raidPtr->openings > 0) {
1654 1.20 oster RF_UNLOCK_MUTEX(raidPtr->mutex);
1655 1.20 oster
1656 1.29.2.1 bouyer /* get the next item, if any, from the queue */
1657 1.29.2.1 bouyer if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
1658 1.29.2.1 bouyer /* nothing more to do */
1659 1.29.2.1 bouyer return;
1660 1.29.2.1 bouyer }
1661 1.29.2.1 bouyer BUFQ_REMOVE(&rs->buf_queue, bp);
1662 1.20 oster
1663 1.29.2.1 bouyer /* Ok, for the bp we have here, bp->b_blkno is relative to the
1664 1.29.2.1 bouyer * partition.. Need to make it absolute to the underlying
1665 1.29.2.1 bouyer * device.. */
1666 1.7 explorer
1667 1.29.2.1 bouyer blocknum = bp->b_blkno;
1668 1.29.2.1 bouyer if (DISKPART(bp->b_dev) != RAW_PART) {
1669 1.29.2.1 bouyer pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1670 1.29.2.1 bouyer blocknum += pp->p_offset;
1671 1.29.2.1 bouyer }
1672 1.7 explorer
1673 1.29.2.1 bouyer db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1674 1.29.2.1 bouyer (int) blocknum));
1675 1.29.2.1 bouyer
1676 1.29.2.1 bouyer db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1677 1.29.2.1 bouyer db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1678 1.29.2.1 bouyer
1679 1.29.2.1 bouyer /* *THIS* is where we adjust what block we're going to...
1680 1.29.2.1 bouyer * but DO NOT TOUCH bp->b_blkno!!! */
1681 1.29.2.1 bouyer raid_addr = blocknum;
1682 1.29.2.1 bouyer
1683 1.29.2.1 bouyer num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1684 1.29.2.1 bouyer pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1685 1.29.2.1 bouyer sum = raid_addr + num_blocks + pb;
1686 1.29.2.1 bouyer if (1 || rf_debugKernelAccess) {
1687 1.29.2.1 bouyer db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1688 1.29.2.1 bouyer (int) raid_addr, (int) sum, (int) num_blocks,
1689 1.29.2.1 bouyer (int) pb, (int) bp->b_resid));
1690 1.29.2.1 bouyer }
1691 1.29.2.1 bouyer if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1692 1.29.2.1 bouyer || (sum < num_blocks) || (sum < pb)) {
1693 1.29.2.1 bouyer bp->b_error = ENOSPC;
1694 1.29.2.1 bouyer bp->b_flags |= B_ERROR;
1695 1.29.2.1 bouyer bp->b_resid = bp->b_bcount;
1696 1.29.2.1 bouyer biodone(bp);
1697 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1698 1.29.2.1 bouyer continue;
1699 1.29.2.1 bouyer }
1700 1.29.2.1 bouyer /*
1701 1.29.2.1 bouyer * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1702 1.29.2.1 bouyer */
1703 1.29.2.1 bouyer
1704 1.29.2.1 bouyer if (bp->b_bcount & raidPtr->sectorMask) {
1705 1.29.2.1 bouyer bp->b_error = EINVAL;
1706 1.29.2.1 bouyer bp->b_flags |= B_ERROR;
1707 1.29.2.1 bouyer bp->b_resid = bp->b_bcount;
1708 1.29.2.1 bouyer biodone(bp);
1709 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1710 1.29.2.1 bouyer continue;
1711 1.29.2.1 bouyer
1712 1.29.2.1 bouyer }
1713 1.29.2.1 bouyer db1_printf(("Calling DoAccess..\n"));
1714 1.29.2.1 bouyer
1715 1.29.2.1 bouyer
1716 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1717 1.29.2.1 bouyer raidPtr->openings--;
1718 1.29.2.1 bouyer RF_UNLOCK_MUTEX(raidPtr->mutex);
1719 1.29.2.1 bouyer
1720 1.29.2.1 bouyer /*
1721 1.29.2.1 bouyer * Everything is async.
1722 1.29.2.1 bouyer */
1723 1.29.2.1 bouyer do_async = 1;
1724 1.29.2.1 bouyer
1725 1.29.2.1 bouyer disk_busy(&rs->sc_dkdev);
1726 1.29.2.1 bouyer
1727 1.29.2.1 bouyer /* XXX we're still at splbio() here... do we *really*
1728 1.29.2.1 bouyer need to be? */
1729 1.29.2.1 bouyer
1730 1.29.2.1 bouyer /* don't ever condition on bp->b_flags & B_WRITE.
1731 1.29.2.1 bouyer * always condition on B_READ instead */
1732 1.29.2.1 bouyer
1733 1.29.2.1 bouyer retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1734 1.29.2.1 bouyer RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1735 1.29.2.1 bouyer do_async, raid_addr, num_blocks,
1736 1.29.2.1 bouyer bp->b_data, bp, NULL, NULL,
1737 1.29.2.1 bouyer RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
1738 1.29.2.1 bouyer
1739 1.29.2.1 bouyer
1740 1.29.2.1 bouyer RF_LOCK_MUTEX(raidPtr->mutex);
1741 1.29.2.1 bouyer }
1742 1.29.2.1 bouyer RF_UNLOCK_MUTEX(raidPtr->mutex);
1743 1.1 oster }
1744 1.29.2.1 bouyer
1745 1.29.2.1 bouyer
1746 1.29.2.1 bouyer
1747 1.29.2.1 bouyer
1748 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1749 1.1 oster
1750 1.9 oster int
1751 1.9 oster rf_DispatchKernelIO(queue, req)
1752 1.9 oster RF_DiskQueue_t *queue;
1753 1.9 oster RF_DiskQueueData_t *req;
1754 1.1 oster {
1755 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1756 1.1 oster struct buf *bp;
1757 1.9 oster struct raidbuf *raidbp = NULL;
1758 1.1 oster struct raid_softc *rs;
1759 1.9 oster int unit;
1760 1.29.2.1 bouyer int s;
1761 1.9 oster
1762 1.29.2.1 bouyer s=0;
1763 1.29.2.1 bouyer /* s = splbio();*/ /* want to test this */
1764 1.1 oster /* XXX along with the vnode, we also need the softc associated with
1765 1.9 oster * this device.. */
1766 1.9 oster
1767 1.1 oster req->queue = queue;
1768 1.9 oster
1769 1.1 oster unit = queue->raidPtr->raidid;
1770 1.1 oster
1771 1.9 oster db1_printf(("DispatchKernelIO unit: %d\n", unit));
1772 1.1 oster
1773 1.9 oster if (unit >= numraid) {
1774 1.9 oster printf("Invalid unit number: %d %d\n", unit, numraid);
1775 1.1 oster panic("Invalid Unit number in rf_DispatchKernelIO\n");
1776 1.1 oster }
1777 1.1 oster rs = &raid_softc[unit];
1778 1.1 oster
1779 1.1 oster bp = req->bp;
1780 1.16 oster #if 1
1781 1.9 oster /* XXX when there is a physical disk failure, someone is passing us a
1782 1.9 oster * buffer that contains old stuff!! Attempt to deal with this problem
1783 1.9 oster * without taking a performance hit... (not sure where the real bug
1784 1.9 oster * is. It's buried in RAIDframe somewhere) :-( GO ) */
1785 1.4 oster
1786 1.4 oster if (bp->b_flags & B_ERROR) {
1787 1.4 oster bp->b_flags &= ~B_ERROR;
1788 1.4 oster }
1789 1.9 oster if (bp->b_error != 0) {
1790 1.4 oster bp->b_error = 0;
1791 1.4 oster }
1792 1.16 oster #endif
1793 1.1 oster raidbp = RAIDGETBUF(rs);
1794 1.1 oster
1795 1.9 oster raidbp->rf_flags = 0; /* XXX not really used anywhere... */
1796 1.1 oster
1797 1.1 oster /*
1798 1.1 oster * context for raidiodone
1799 1.1 oster */
1800 1.1 oster raidbp->rf_obp = bp;
1801 1.1 oster raidbp->req = req;
1802 1.1 oster
1803 1.29.2.1 bouyer LIST_INIT(&raidbp->rf_buf.b_dep);
1804 1.29.2.1 bouyer
1805 1.1 oster switch (req->type) {
1806 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1807 1.1 oster /* XXX need to do something extra here.. */
1808 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
1809 1.9 oster * and I'd like folks to report it... GO */
1810 1.1 oster printf(("WAKEUP CALLED\n"));
1811 1.1 oster queue->numOutstanding++;
1812 1.1 oster
1813 1.1 oster /* XXX need to glue the original buffer into this?? */
1814 1.1 oster
1815 1.1 oster KernelWakeupFunc(&raidbp->rf_buf);
1816 1.1 oster break;
1817 1.9 oster
1818 1.1 oster case RF_IO_TYPE_READ:
1819 1.1 oster case RF_IO_TYPE_WRITE:
1820 1.9 oster
1821 1.1 oster if (req->tracerec) {
1822 1.1 oster RF_ETIMER_START(req->tracerec->timer);
1823 1.1 oster }
1824 1.9 oster InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1825 1.9 oster op | bp->b_flags, queue->rf_cinfo->ci_dev,
1826 1.9 oster req->sectorOffset, req->numSector,
1827 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
1828 1.9 oster queue->raidPtr->logBytesPerSector, req->b_proc);
1829 1.1 oster
1830 1.1 oster if (rf_debugKernelAccess) {
1831 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
1832 1.9 oster (long) bp->b_blkno));
1833 1.1 oster }
1834 1.1 oster queue->numOutstanding++;
1835 1.1 oster queue->last_deq_sector = req->sectorOffset;
1836 1.9 oster /* acc wouldn't have been let in if there were any pending
1837 1.9 oster * reqs at any other priority */
1838 1.1 oster queue->curPriority = req->priority;
1839 1.1 oster
1840 1.1 oster db1_printf(("Going for %c to unit %d row %d col %d\n",
1841 1.9 oster req->type, unit, queue->row, queue->col));
1842 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
1843 1.9 oster (int) req->sectorOffset, (int) req->numSector,
1844 1.9 oster (int) (req->numSector <<
1845 1.9 oster queue->raidPtr->logBytesPerSector),
1846 1.9 oster (int) queue->raidPtr->logBytesPerSector));
1847 1.1 oster if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1848 1.1 oster raidbp->rf_buf.b_vp->v_numoutput++;
1849 1.1 oster }
1850 1.9 oster VOP_STRATEGY(&raidbp->rf_buf);
1851 1.1 oster
1852 1.1 oster break;
1853 1.9 oster
1854 1.1 oster default:
1855 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
1856 1.1 oster }
1857 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
1858 1.29.2.1 bouyer /* splx(s); */ /* want to test this */
1859 1.9 oster return (0);
1860 1.1 oster }
1861 1.9 oster /* this is the callback function associated with a I/O invoked from
1862 1.1 oster kernel code.
1863 1.1 oster */
1864 1.9 oster static void
1865 1.9 oster KernelWakeupFunc(vbp)
1866 1.9 oster struct buf *vbp;
1867 1.9 oster {
1868 1.9 oster RF_DiskQueueData_t *req = NULL;
1869 1.9 oster RF_DiskQueue_t *queue;
1870 1.9 oster struct raidbuf *raidbp = (struct raidbuf *) vbp;
1871 1.9 oster struct buf *bp;
1872 1.9 oster struct raid_softc *rs;
1873 1.9 oster int unit;
1874 1.29.2.1 bouyer int s;
1875 1.9 oster
1876 1.29.2.1 bouyer s = splbio();
1877 1.9 oster db1_printf(("recovering the request queue:\n"));
1878 1.9 oster req = raidbp->req;
1879 1.1 oster
1880 1.9 oster bp = raidbp->rf_obp;
1881 1.1 oster
1882 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
1883 1.1 oster
1884 1.9 oster if (raidbp->rf_buf.b_flags & B_ERROR) {
1885 1.9 oster bp->b_flags |= B_ERROR;
1886 1.9 oster bp->b_error = raidbp->rf_buf.b_error ?
1887 1.9 oster raidbp->rf_buf.b_error : EIO;
1888 1.9 oster }
1889 1.1 oster
1890 1.9 oster /* XXX methinks this could be wrong... */
1891 1.1 oster #if 1
1892 1.9 oster bp->b_resid = raidbp->rf_buf.b_resid;
1893 1.1 oster #endif
1894 1.1 oster
1895 1.9 oster if (req->tracerec) {
1896 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
1897 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
1898 1.9 oster RF_LOCK_MUTEX(rf_tracing_mutex);
1899 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1900 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1901 1.9 oster req->tracerec->num_phys_ios++;
1902 1.9 oster RF_UNLOCK_MUTEX(rf_tracing_mutex);
1903 1.9 oster }
1904 1.9 oster bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1905 1.1 oster
1906 1.9 oster unit = queue->raidPtr->raidid; /* *Much* simpler :-> */
1907 1.1 oster
1908 1.1 oster
1909 1.9 oster /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1910 1.9 oster * ballistic, and mark the component as hosed... */
1911 1.29.2.1 bouyer
1912 1.9 oster if (bp->b_flags & B_ERROR) {
1913 1.9 oster /* Mark the disk as dead */
1914 1.9 oster /* but only mark it once... */
1915 1.9 oster if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1916 1.9 oster rf_ds_optimal) {
1917 1.9 oster printf("raid%d: IO Error. Marking %s as failed.\n",
1918 1.9 oster unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
1919 1.9 oster queue->raidPtr->Disks[queue->row][queue->col].status =
1920 1.9 oster rf_ds_failed;
1921 1.9 oster queue->raidPtr->status[queue->row] = rf_rs_degraded;
1922 1.9 oster queue->raidPtr->numFailures++;
1923 1.29.2.1 bouyer queue->raidPtr->numNewFailures++;
1924 1.9 oster } else { /* Disk is already dead... */
1925 1.9 oster /* printf("Disk already marked as dead!\n"); */
1926 1.9 oster }
1927 1.4 oster
1928 1.9 oster }
1929 1.4 oster
1930 1.9 oster rs = &raid_softc[unit];
1931 1.9 oster RAIDPUTBUF(rs, raidbp);
1932 1.9 oster
1933 1.9 oster rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
1934 1.9 oster (req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
1935 1.1 oster
1936 1.29.2.1 bouyer splx(s);
1937 1.1 oster }
1938 1.1 oster
1939 1.1 oster
1940 1.1 oster
1941 1.1 oster /*
1942 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
1943 1.1 oster */
1944 1.9 oster static void
1945 1.29.2.1 bouyer InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1946 1.29.2.1 bouyer logBytesPerSector, b_proc)
1947 1.29.2.1 bouyer struct buf *bp;
1948 1.29.2.1 bouyer struct vnode *b_vp;
1949 1.29.2.1 bouyer unsigned rw_flag;
1950 1.29.2.1 bouyer dev_t dev;
1951 1.29.2.1 bouyer RF_SectorNum_t startSect;
1952 1.29.2.1 bouyer RF_SectorCount_t numSect;
1953 1.29.2.1 bouyer caddr_t buf;
1954 1.29.2.1 bouyer void (*cbFunc) (struct buf *);
1955 1.29.2.1 bouyer void *cbArg;
1956 1.29.2.1 bouyer int logBytesPerSector;
1957 1.29.2.1 bouyer struct proc *b_proc;
1958 1.9 oster {
1959 1.9 oster /* bp->b_flags = B_PHYS | rw_flag; */
1960 1.9 oster bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
1961 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
1962 1.9 oster bp->b_bufsize = bp->b_bcount;
1963 1.9 oster bp->b_error = 0;
1964 1.9 oster bp->b_dev = dev;
1965 1.29.2.1 bouyer bp->b_data = buf;
1966 1.9 oster bp->b_blkno = startSect;
1967 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
1968 1.1 oster if (bp->b_bcount == 0) {
1969 1.1 oster panic("bp->b_bcount is zero in InitBP!!\n");
1970 1.1 oster }
1971 1.9 oster bp->b_proc = b_proc;
1972 1.9 oster bp->b_iodone = cbFunc;
1973 1.9 oster bp->b_vp = b_vp;
1974 1.9 oster
1975 1.1 oster }
1976 1.1 oster
1977 1.1 oster static void
1978 1.1 oster raidgetdefaultlabel(raidPtr, rs, lp)
1979 1.1 oster RF_Raid_t *raidPtr;
1980 1.1 oster struct raid_softc *rs;
1981 1.1 oster struct disklabel *lp;
1982 1.1 oster {
1983 1.1 oster db1_printf(("Building a default label...\n"));
1984 1.1 oster bzero(lp, sizeof(*lp));
1985 1.1 oster
1986 1.1 oster /* fabricate a label... */
1987 1.1 oster lp->d_secperunit = raidPtr->totalSectors;
1988 1.1 oster lp->d_secsize = raidPtr->bytesPerSector;
1989 1.29.2.1 bouyer lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
1990 1.1 oster lp->d_ntracks = 1;
1991 1.29.2.1 bouyer lp->d_ncylinders = raidPtr->totalSectors /
1992 1.29.2.1 bouyer (lp->d_nsectors * lp->d_ntracks);
1993 1.1 oster lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
1994 1.1 oster
1995 1.1 oster strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
1996 1.9 oster lp->d_type = DTYPE_RAID;
1997 1.1 oster strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
1998 1.1 oster lp->d_rpm = 3600;
1999 1.1 oster lp->d_interleave = 1;
2000 1.1 oster lp->d_flags = 0;
2001 1.1 oster
2002 1.1 oster lp->d_partitions[RAW_PART].p_offset = 0;
2003 1.1 oster lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2004 1.1 oster lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2005 1.1 oster lp->d_npartitions = RAW_PART + 1;
2006 1.1 oster
2007 1.1 oster lp->d_magic = DISKMAGIC;
2008 1.1 oster lp->d_magic2 = DISKMAGIC;
2009 1.1 oster lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2010 1.1 oster
2011 1.1 oster }
2012 1.1 oster /*
2013 1.1 oster * Read the disklabel from the raid device. If one is not present, fake one
2014 1.1 oster * up.
2015 1.1 oster */
2016 1.1 oster static void
2017 1.1 oster raidgetdisklabel(dev)
2018 1.9 oster dev_t dev;
2019 1.1 oster {
2020 1.9 oster int unit = raidunit(dev);
2021 1.1 oster struct raid_softc *rs = &raid_softc[unit];
2022 1.9 oster char *errstring;
2023 1.1 oster struct disklabel *lp = rs->sc_dkdev.dk_label;
2024 1.1 oster struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2025 1.1 oster RF_Raid_t *raidPtr;
2026 1.1 oster
2027 1.1 oster db1_printf(("Getting the disklabel...\n"));
2028 1.1 oster
2029 1.1 oster bzero(clp, sizeof(*clp));
2030 1.1 oster
2031 1.1 oster raidPtr = raidPtrs[unit];
2032 1.1 oster
2033 1.1 oster raidgetdefaultlabel(raidPtr, rs, lp);
2034 1.1 oster
2035 1.1 oster /*
2036 1.1 oster * Call the generic disklabel extraction routine.
2037 1.1 oster */
2038 1.1 oster errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2039 1.1 oster rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2040 1.9 oster if (errstring)
2041 1.1 oster raidmakedisklabel(rs);
2042 1.1 oster else {
2043 1.9 oster int i;
2044 1.1 oster struct partition *pp;
2045 1.1 oster
2046 1.1 oster /*
2047 1.1 oster * Sanity check whether the found disklabel is valid.
2048 1.1 oster *
2049 1.1 oster * This is necessary since total size of the raid device
2050 1.1 oster * may vary when an interleave is changed even though exactly
2051 1.1 oster * same componets are used, and old disklabel may used
2052 1.1 oster * if that is found.
2053 1.1 oster */
2054 1.1 oster if (lp->d_secperunit != rs->sc_size)
2055 1.1 oster printf("WARNING: %s: "
2056 1.1 oster "total sector size in disklabel (%d) != "
2057 1.18 oster "the size of raid (%ld)\n", rs->sc_xname,
2058 1.18 oster lp->d_secperunit, (long) rs->sc_size);
2059 1.1 oster for (i = 0; i < lp->d_npartitions; i++) {
2060 1.1 oster pp = &lp->d_partitions[i];
2061 1.1 oster if (pp->p_offset + pp->p_size > rs->sc_size)
2062 1.1 oster printf("WARNING: %s: end of partition `%c' "
2063 1.18 oster "exceeds the size of raid (%ld)\n",
2064 1.18 oster rs->sc_xname, 'a' + i, (long) rs->sc_size);
2065 1.1 oster }
2066 1.1 oster }
2067 1.1 oster
2068 1.1 oster }
2069 1.1 oster /*
2070 1.1 oster * Take care of things one might want to take care of in the event
2071 1.1 oster * that a disklabel isn't present.
2072 1.1 oster */
2073 1.1 oster static void
2074 1.1 oster raidmakedisklabel(rs)
2075 1.1 oster struct raid_softc *rs;
2076 1.1 oster {
2077 1.1 oster struct disklabel *lp = rs->sc_dkdev.dk_label;
2078 1.1 oster db1_printf(("Making a label..\n"));
2079 1.1 oster
2080 1.1 oster /*
2081 1.1 oster * For historical reasons, if there's no disklabel present
2082 1.1 oster * the raw partition must be marked FS_BSDFFS.
2083 1.1 oster */
2084 1.1 oster
2085 1.1 oster lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2086 1.1 oster
2087 1.1 oster strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2088 1.1 oster
2089 1.1 oster lp->d_checksum = dkcksum(lp);
2090 1.1 oster }
2091 1.1 oster /*
2092 1.1 oster * Lookup the provided name in the filesystem. If the file exists,
2093 1.1 oster * is a valid block device, and isn't being used by anyone else,
2094 1.1 oster * set *vpp to the file's vnode.
2095 1.9 oster * You'll find the original of this in ccd.c
2096 1.1 oster */
2097 1.1 oster int
2098 1.1 oster raidlookup(path, p, vpp)
2099 1.9 oster char *path;
2100 1.1 oster struct proc *p;
2101 1.1 oster struct vnode **vpp; /* result */
2102 1.1 oster {
2103 1.1 oster struct nameidata nd;
2104 1.1 oster struct vnode *vp;
2105 1.1 oster struct vattr va;
2106 1.9 oster int error;
2107 1.1 oster
2108 1.1 oster NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2109 1.9 oster if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2110 1.1 oster #ifdef DEBUG
2111 1.9 oster printf("RAIDframe: vn_open returned %d\n", error);
2112 1.1 oster #endif
2113 1.1 oster return (error);
2114 1.1 oster }
2115 1.1 oster vp = nd.ni_vp;
2116 1.1 oster if (vp->v_usecount > 1) {
2117 1.1 oster VOP_UNLOCK(vp, 0);
2118 1.9 oster (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2119 1.1 oster return (EBUSY);
2120 1.1 oster }
2121 1.1 oster if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2122 1.1 oster VOP_UNLOCK(vp, 0);
2123 1.9 oster (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2124 1.1 oster return (error);
2125 1.1 oster }
2126 1.1 oster /* XXX: eventually we should handle VREG, too. */
2127 1.1 oster if (va.va_type != VBLK) {
2128 1.1 oster VOP_UNLOCK(vp, 0);
2129 1.9 oster (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2130 1.1 oster return (ENOTBLK);
2131 1.1 oster }
2132 1.1 oster VOP_UNLOCK(vp, 0);
2133 1.1 oster *vpp = vp;
2134 1.1 oster return (0);
2135 1.1 oster }
2136 1.1 oster /*
2137 1.1 oster * Wait interruptibly for an exclusive lock.
2138 1.1 oster *
2139 1.1 oster * XXX
2140 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2141 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2142 1.1 oster */
2143 1.1 oster static int
2144 1.1 oster raidlock(rs)
2145 1.1 oster struct raid_softc *rs;
2146 1.1 oster {
2147 1.9 oster int error;
2148 1.1 oster
2149 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2150 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2151 1.9 oster if ((error =
2152 1.9 oster tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2153 1.1 oster return (error);
2154 1.1 oster }
2155 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2156 1.1 oster return (0);
2157 1.1 oster }
2158 1.1 oster /*
2159 1.1 oster * Unlock and wake up any waiters.
2160 1.1 oster */
2161 1.1 oster static void
2162 1.1 oster raidunlock(rs)
2163 1.1 oster struct raid_softc *rs;
2164 1.1 oster {
2165 1.1 oster
2166 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2167 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2168 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2169 1.1 oster wakeup(rs);
2170 1.1 oster }
2171 1.11 oster }
2172 1.11 oster
2173 1.11 oster
2174 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2175 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2176 1.11 oster
2177 1.11 oster int
2178 1.12 oster raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2179 1.12 oster {
2180 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
2181 1.29.2.1 bouyer raidread_component_label(dev, b_vp, &clabel);
2182 1.29.2.1 bouyer clabel.mod_counter = mod_counter;
2183 1.29.2.1 bouyer clabel.clean = RF_RAID_CLEAN;
2184 1.29.2.1 bouyer raidwrite_component_label(dev, b_vp, &clabel);
2185 1.12 oster return(0);
2186 1.12 oster }
2187 1.12 oster
2188 1.12 oster
2189 1.12 oster int
2190 1.12 oster raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2191 1.11 oster {
2192 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
2193 1.29.2.1 bouyer raidread_component_label(dev, b_vp, &clabel);
2194 1.29.2.1 bouyer clabel.mod_counter = mod_counter;
2195 1.29.2.1 bouyer clabel.clean = RF_RAID_DIRTY;
2196 1.29.2.1 bouyer raidwrite_component_label(dev, b_vp, &clabel);
2197 1.11 oster return(0);
2198 1.11 oster }
2199 1.11 oster
2200 1.11 oster /* ARGSUSED */
2201 1.11 oster int
2202 1.29.2.1 bouyer raidread_component_label(dev, b_vp, clabel)
2203 1.11 oster dev_t dev;
2204 1.11 oster struct vnode *b_vp;
2205 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2206 1.11 oster {
2207 1.11 oster struct buf *bp;
2208 1.11 oster int error;
2209 1.11 oster
2210 1.11 oster /* XXX should probably ensure that we don't try to do this if
2211 1.11 oster someone has changed rf_protected_sectors. */
2212 1.11 oster
2213 1.29.2.1 bouyer if (b_vp == NULL) {
2214 1.29.2.1 bouyer /* For whatever reason, this component is not valid.
2215 1.29.2.1 bouyer Don't try to read a component label from it. */
2216 1.29.2.1 bouyer return(EINVAL);
2217 1.29.2.1 bouyer }
2218 1.29.2.1 bouyer
2219 1.11 oster /* get a block of the appropriate size... */
2220 1.11 oster bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2221 1.11 oster bp->b_dev = dev;
2222 1.11 oster
2223 1.11 oster /* get our ducks in a row for the read */
2224 1.11 oster bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2225 1.11 oster bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2226 1.29.2.2 bouyer bp->b_flags |= B_READ;
2227 1.11 oster bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2228 1.11 oster
2229 1.11 oster (*bdevsw[major(bp->b_dev)].d_strategy)(bp);
2230 1.11 oster
2231 1.11 oster error = biowait(bp);
2232 1.11 oster
2233 1.11 oster if (!error) {
2234 1.29.2.1 bouyer memcpy(clabel, bp->b_data,
2235 1.11 oster sizeof(RF_ComponentLabel_t));
2236 1.12 oster #if 0
2237 1.29.2.1 bouyer rf_print_component_label( clabel );
2238 1.11 oster #endif
2239 1.11 oster } else {
2240 1.29.2.1 bouyer #if 0
2241 1.11 oster printf("Failed to read RAID component label!\n");
2242 1.29.2.1 bouyer #endif
2243 1.11 oster }
2244 1.11 oster
2245 1.11 oster brelse(bp);
2246 1.11 oster return(error);
2247 1.11 oster }
2248 1.11 oster /* ARGSUSED */
2249 1.11 oster int
2250 1.29.2.1 bouyer raidwrite_component_label(dev, b_vp, clabel)
2251 1.11 oster dev_t dev;
2252 1.11 oster struct vnode *b_vp;
2253 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2254 1.11 oster {
2255 1.11 oster struct buf *bp;
2256 1.11 oster int error;
2257 1.11 oster
2258 1.11 oster /* get a block of the appropriate size... */
2259 1.11 oster bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2260 1.11 oster bp->b_dev = dev;
2261 1.11 oster
2262 1.11 oster /* get our ducks in a row for the write */
2263 1.11 oster bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2264 1.11 oster bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2265 1.29.2.2 bouyer bp->b_flags |= B_WRITE;
2266 1.11 oster bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2267 1.11 oster
2268 1.29.2.1 bouyer memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2269 1.11 oster
2270 1.29.2.1 bouyer memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2271 1.11 oster
2272 1.11 oster (*bdevsw[major(bp->b_dev)].d_strategy)(bp);
2273 1.11 oster error = biowait(bp);
2274 1.11 oster brelse(bp);
2275 1.11 oster if (error) {
2276 1.29.2.1 bouyer #if 1
2277 1.11 oster printf("Failed to write RAID component info!\n");
2278 1.29.2.1 bouyer #endif
2279 1.11 oster }
2280 1.11 oster
2281 1.11 oster return(error);
2282 1.1 oster }
2283 1.12 oster
2284 1.12 oster void
2285 1.29.2.1 bouyer rf_markalldirty(raidPtr)
2286 1.12 oster RF_Raid_t *raidPtr;
2287 1.12 oster {
2288 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
2289 1.12 oster int r,c;
2290 1.12 oster
2291 1.12 oster raidPtr->mod_counter++;
2292 1.12 oster for (r = 0; r < raidPtr->numRow; r++) {
2293 1.12 oster for (c = 0; c < raidPtr->numCol; c++) {
2294 1.29.2.1 bouyer /* we don't want to touch (at all) a disk that has
2295 1.29.2.1 bouyer failed */
2296 1.29.2.1 bouyer if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2297 1.12 oster raidread_component_label(
2298 1.12 oster raidPtr->Disks[r][c].dev,
2299 1.12 oster raidPtr->raid_cinfo[r][c].ci_vp,
2300 1.29.2.1 bouyer &clabel);
2301 1.29.2.1 bouyer if (clabel.status == rf_ds_spared) {
2302 1.12 oster /* XXX do something special...
2303 1.12 oster but whatever you do, don't
2304 1.12 oster try to access it!! */
2305 1.12 oster } else {
2306 1.12 oster #if 0
2307 1.29.2.1 bouyer clabel.status =
2308 1.12 oster raidPtr->Disks[r][c].status;
2309 1.12 oster raidwrite_component_label(
2310 1.12 oster raidPtr->Disks[r][c].dev,
2311 1.12 oster raidPtr->raid_cinfo[r][c].ci_vp,
2312 1.29.2.1 bouyer &clabel);
2313 1.12 oster #endif
2314 1.12 oster raidmarkdirty(
2315 1.12 oster raidPtr->Disks[r][c].dev,
2316 1.12 oster raidPtr->raid_cinfo[r][c].ci_vp,
2317 1.12 oster raidPtr->mod_counter);
2318 1.12 oster }
2319 1.12 oster }
2320 1.12 oster }
2321 1.12 oster }
2322 1.13 oster /* printf("Component labels marked dirty.\n"); */
2323 1.12 oster #if 0
2324 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2325 1.12 oster sparecol = raidPtr->numCol + c;
2326 1.12 oster if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
2327 1.12 oster /*
2328 1.12 oster
2329 1.12 oster XXX this is where we get fancy and map this spare
2330 1.12 oster into it's correct spot in the array.
2331 1.12 oster
2332 1.12 oster */
2333 1.12 oster /*
2334 1.12 oster
2335 1.12 oster we claim this disk is "optimal" if it's
2336 1.12 oster rf_ds_used_spare, as that means it should be
2337 1.12 oster directly substitutable for the disk it replaced.
2338 1.12 oster We note that too...
2339 1.12 oster
2340 1.12 oster */
2341 1.12 oster
2342 1.12 oster for(i=0;i<raidPtr->numRow;i++) {
2343 1.12 oster for(j=0;j<raidPtr->numCol;j++) {
2344 1.12 oster if ((raidPtr->Disks[i][j].spareRow ==
2345 1.12 oster r) &&
2346 1.12 oster (raidPtr->Disks[i][j].spareCol ==
2347 1.12 oster sparecol)) {
2348 1.12 oster srow = r;
2349 1.12 oster scol = sparecol;
2350 1.12 oster break;
2351 1.12 oster }
2352 1.12 oster }
2353 1.12 oster }
2354 1.12 oster
2355 1.12 oster raidread_component_label(
2356 1.12 oster raidPtr->Disks[r][sparecol].dev,
2357 1.12 oster raidPtr->raid_cinfo[r][sparecol].ci_vp,
2358 1.29.2.1 bouyer &clabel);
2359 1.12 oster /* make sure status is noted */
2360 1.29.2.1 bouyer clabel.version = RF_COMPONENT_LABEL_VERSION;
2361 1.29.2.1 bouyer clabel.mod_counter = raidPtr->mod_counter;
2362 1.29.2.1 bouyer clabel.serial_number = raidPtr->serial_number;
2363 1.29.2.1 bouyer clabel.row = srow;
2364 1.29.2.1 bouyer clabel.column = scol;
2365 1.29.2.1 bouyer clabel.num_rows = raidPtr->numRow;
2366 1.29.2.1 bouyer clabel.num_columns = raidPtr->numCol;
2367 1.29.2.1 bouyer clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
2368 1.29.2.1 bouyer clabel.status = rf_ds_optimal;
2369 1.12 oster raidwrite_component_label(
2370 1.12 oster raidPtr->Disks[r][sparecol].dev,
2371 1.12 oster raidPtr->raid_cinfo[r][sparecol].ci_vp,
2372 1.29.2.1 bouyer &clabel);
2373 1.12 oster raidmarkclean( raidPtr->Disks[r][sparecol].dev,
2374 1.12 oster raidPtr->raid_cinfo[r][sparecol].ci_vp);
2375 1.12 oster }
2376 1.12 oster }
2377 1.12 oster
2378 1.12 oster #endif
2379 1.12 oster }
2380 1.12 oster
2381 1.13 oster
2382 1.13 oster void
2383 1.29.2.1 bouyer rf_update_component_labels(raidPtr, final)
2384 1.13 oster RF_Raid_t *raidPtr;
2385 1.29.2.1 bouyer int final;
2386 1.13 oster {
2387 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
2388 1.13 oster int sparecol;
2389 1.13 oster int r,c;
2390 1.13 oster int i,j;
2391 1.13 oster int srow, scol;
2392 1.13 oster
2393 1.13 oster srow = -1;
2394 1.13 oster scol = -1;
2395 1.13 oster
2396 1.13 oster /* XXX should do extra checks to make sure things really are clean,
2397 1.13 oster rather than blindly setting the clean bit... */
2398 1.13 oster
2399 1.13 oster raidPtr->mod_counter++;
2400 1.13 oster
2401 1.13 oster for (r = 0; r < raidPtr->numRow; r++) {
2402 1.13 oster for (c = 0; c < raidPtr->numCol; c++) {
2403 1.13 oster if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2404 1.13 oster raidread_component_label(
2405 1.13 oster raidPtr->Disks[r][c].dev,
2406 1.13 oster raidPtr->raid_cinfo[r][c].ci_vp,
2407 1.29.2.1 bouyer &clabel);
2408 1.13 oster /* make sure status is noted */
2409 1.29.2.1 bouyer clabel.status = rf_ds_optimal;
2410 1.29.2.1 bouyer /* bump the counter */
2411 1.29.2.1 bouyer clabel.mod_counter = raidPtr->mod_counter;
2412 1.29.2.1 bouyer
2413 1.13 oster raidwrite_component_label(
2414 1.13 oster raidPtr->Disks[r][c].dev,
2415 1.13 oster raidPtr->raid_cinfo[r][c].ci_vp,
2416 1.29.2.1 bouyer &clabel);
2417 1.29.2.1 bouyer if (final == RF_FINAL_COMPONENT_UPDATE) {
2418 1.29.2.1 bouyer if (raidPtr->parity_good == RF_RAID_CLEAN) {
2419 1.29.2.1 bouyer raidmarkclean(
2420 1.29.2.1 bouyer raidPtr->Disks[r][c].dev,
2421 1.29.2.1 bouyer raidPtr->raid_cinfo[r][c].ci_vp,
2422 1.29.2.1 bouyer raidPtr->mod_counter);
2423 1.29.2.1 bouyer }
2424 1.13 oster }
2425 1.13 oster }
2426 1.13 oster /* else we don't touch it.. */
2427 1.13 oster }
2428 1.13 oster }
2429 1.13 oster
2430 1.13 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2431 1.13 oster sparecol = raidPtr->numCol + c;
2432 1.13 oster if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2433 1.13 oster /*
2434 1.13 oster
2435 1.13 oster we claim this disk is "optimal" if it's
2436 1.13 oster rf_ds_used_spare, as that means it should be
2437 1.13 oster directly substitutable for the disk it replaced.
2438 1.13 oster We note that too...
2439 1.13 oster
2440 1.13 oster */
2441 1.13 oster
2442 1.13 oster for(i=0;i<raidPtr->numRow;i++) {
2443 1.13 oster for(j=0;j<raidPtr->numCol;j++) {
2444 1.13 oster if ((raidPtr->Disks[i][j].spareRow ==
2445 1.13 oster 0) &&
2446 1.13 oster (raidPtr->Disks[i][j].spareCol ==
2447 1.13 oster sparecol)) {
2448 1.13 oster srow = i;
2449 1.13 oster scol = j;
2450 1.13 oster break;
2451 1.13 oster }
2452 1.13 oster }
2453 1.13 oster }
2454 1.13 oster
2455 1.29.2.1 bouyer /* XXX shouldn't *really* need this... */
2456 1.13 oster raidread_component_label(
2457 1.13 oster raidPtr->Disks[0][sparecol].dev,
2458 1.13 oster raidPtr->raid_cinfo[0][sparecol].ci_vp,
2459 1.29.2.1 bouyer &clabel);
2460 1.13 oster /* make sure status is noted */
2461 1.29.2.1 bouyer
2462 1.29.2.1 bouyer raid_init_component_label(raidPtr, &clabel);
2463 1.29.2.1 bouyer
2464 1.29.2.1 bouyer clabel.mod_counter = raidPtr->mod_counter;
2465 1.29.2.1 bouyer clabel.row = srow;
2466 1.29.2.1 bouyer clabel.column = scol;
2467 1.29.2.1 bouyer clabel.status = rf_ds_optimal;
2468 1.29.2.1 bouyer
2469 1.13 oster raidwrite_component_label(
2470 1.13 oster raidPtr->Disks[0][sparecol].dev,
2471 1.13 oster raidPtr->raid_cinfo[0][sparecol].ci_vp,
2472 1.29.2.1 bouyer &clabel);
2473 1.29.2.1 bouyer if (final == RF_FINAL_COMPONENT_UPDATE) {
2474 1.29.2.1 bouyer if (raidPtr->parity_good == RF_RAID_CLEAN) {
2475 1.29.2.1 bouyer raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2476 1.29.2.1 bouyer raidPtr->raid_cinfo[0][sparecol].ci_vp,
2477 1.29.2.1 bouyer raidPtr->mod_counter);
2478 1.29.2.1 bouyer }
2479 1.13 oster }
2480 1.13 oster }
2481 1.13 oster }
2482 1.13 oster /* printf("Component labels updated\n"); */
2483 1.29.2.1 bouyer }
2484 1.29.2.1 bouyer
2485 1.29.2.1 bouyer void
2486 1.29.2.1 bouyer rf_close_component(raidPtr, vp, auto_configured)
2487 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2488 1.29.2.1 bouyer struct vnode *vp;
2489 1.29.2.1 bouyer int auto_configured;
2490 1.29.2.1 bouyer {
2491 1.29.2.1 bouyer struct proc *p;
2492 1.29.2.1 bouyer
2493 1.29.2.1 bouyer p = raidPtr->engine_thread;
2494 1.29.2.1 bouyer
2495 1.29.2.1 bouyer if (vp != NULL) {
2496 1.29.2.1 bouyer if (auto_configured == 1) {
2497 1.29.2.1 bouyer vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2498 1.29.2.1 bouyer VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2499 1.29.2.1 bouyer vput(vp);
2500 1.29.2.1 bouyer
2501 1.29.2.1 bouyer } else {
2502 1.29.2.1 bouyer (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2503 1.29.2.1 bouyer }
2504 1.29.2.1 bouyer } else {
2505 1.29.2.1 bouyer printf("vnode was NULL\n");
2506 1.29.2.1 bouyer }
2507 1.29.2.1 bouyer }
2508 1.29.2.1 bouyer
2509 1.29.2.1 bouyer
2510 1.29.2.1 bouyer void
2511 1.29.2.1 bouyer rf_UnconfigureVnodes(raidPtr)
2512 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2513 1.29.2.1 bouyer {
2514 1.29.2.1 bouyer int r,c;
2515 1.29.2.1 bouyer struct proc *p;
2516 1.29.2.1 bouyer struct vnode *vp;
2517 1.29.2.1 bouyer int acd;
2518 1.29.2.1 bouyer
2519 1.29.2.1 bouyer
2520 1.29.2.1 bouyer /* We take this opportunity to close the vnodes like we should.. */
2521 1.29.2.1 bouyer
2522 1.29.2.1 bouyer p = raidPtr->engine_thread;
2523 1.29.2.1 bouyer
2524 1.29.2.1 bouyer for (r = 0; r < raidPtr->numRow; r++) {
2525 1.29.2.1 bouyer for (c = 0; c < raidPtr->numCol; c++) {
2526 1.29.2.1 bouyer printf("Closing vnode for row: %d col: %d\n", r, c);
2527 1.29.2.1 bouyer vp = raidPtr->raid_cinfo[r][c].ci_vp;
2528 1.29.2.1 bouyer acd = raidPtr->Disks[r][c].auto_configured;
2529 1.29.2.1 bouyer rf_close_component(raidPtr, vp, acd);
2530 1.29.2.1 bouyer raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2531 1.29.2.1 bouyer raidPtr->Disks[r][c].auto_configured = 0;
2532 1.29.2.1 bouyer }
2533 1.29.2.1 bouyer }
2534 1.29.2.1 bouyer for (r = 0; r < raidPtr->numSpare; r++) {
2535 1.29.2.1 bouyer printf("Closing vnode for spare: %d\n", r);
2536 1.29.2.1 bouyer vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2537 1.29.2.1 bouyer acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2538 1.29.2.1 bouyer rf_close_component(raidPtr, vp, acd);
2539 1.29.2.1 bouyer raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2540 1.29.2.1 bouyer raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2541 1.29.2.1 bouyer }
2542 1.29.2.1 bouyer }
2543 1.29.2.1 bouyer
2544 1.29.2.1 bouyer
2545 1.29.2.1 bouyer void
2546 1.29.2.1 bouyer rf_ReconThread(req)
2547 1.29.2.1 bouyer struct rf_recon_req *req;
2548 1.29.2.1 bouyer {
2549 1.29.2.1 bouyer int s;
2550 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2551 1.29.2.1 bouyer
2552 1.29.2.1 bouyer s = splbio();
2553 1.29.2.1 bouyer raidPtr = (RF_Raid_t *) req->raidPtr;
2554 1.29.2.1 bouyer raidPtr->recon_in_progress = 1;
2555 1.29.2.1 bouyer
2556 1.29.2.1 bouyer rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2557 1.29.2.1 bouyer ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2558 1.29.2.1 bouyer
2559 1.29.2.1 bouyer /* XXX get rid of this! we don't need it at all.. */
2560 1.29.2.1 bouyer RF_Free(req, sizeof(*req));
2561 1.29.2.1 bouyer
2562 1.29.2.1 bouyer raidPtr->recon_in_progress = 0;
2563 1.29.2.1 bouyer splx(s);
2564 1.29.2.1 bouyer
2565 1.29.2.1 bouyer /* That's all... */
2566 1.29.2.1 bouyer kthread_exit(0); /* does not return */
2567 1.29.2.1 bouyer }
2568 1.29.2.1 bouyer
2569 1.29.2.1 bouyer void
2570 1.29.2.1 bouyer rf_RewriteParityThread(raidPtr)
2571 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2572 1.29.2.1 bouyer {
2573 1.29.2.1 bouyer int retcode;
2574 1.29.2.1 bouyer int s;
2575 1.29.2.1 bouyer
2576 1.29.2.1 bouyer raidPtr->parity_rewrite_in_progress = 1;
2577 1.29.2.1 bouyer s = splbio();
2578 1.29.2.1 bouyer retcode = rf_RewriteParity(raidPtr);
2579 1.29.2.1 bouyer splx(s);
2580 1.29.2.1 bouyer if (retcode) {
2581 1.29.2.1 bouyer printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2582 1.29.2.1 bouyer } else {
2583 1.29.2.1 bouyer /* set the clean bit! If we shutdown correctly,
2584 1.29.2.1 bouyer the clean bit on each component label will get
2585 1.29.2.1 bouyer set */
2586 1.29.2.1 bouyer raidPtr->parity_good = RF_RAID_CLEAN;
2587 1.29.2.1 bouyer }
2588 1.29.2.1 bouyer raidPtr->parity_rewrite_in_progress = 0;
2589 1.29.2.1 bouyer
2590 1.29.2.1 bouyer /* Anyone waiting for us to stop? If so, inform them... */
2591 1.29.2.1 bouyer if (raidPtr->waitShutdown) {
2592 1.29.2.1 bouyer wakeup(&raidPtr->parity_rewrite_in_progress);
2593 1.29.2.1 bouyer }
2594 1.29.2.1 bouyer
2595 1.29.2.1 bouyer /* That's all... */
2596 1.29.2.1 bouyer kthread_exit(0); /* does not return */
2597 1.29.2.1 bouyer }
2598 1.29.2.1 bouyer
2599 1.29.2.1 bouyer
2600 1.29.2.1 bouyer void
2601 1.29.2.1 bouyer rf_CopybackThread(raidPtr)
2602 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2603 1.29.2.1 bouyer {
2604 1.29.2.1 bouyer int s;
2605 1.29.2.1 bouyer
2606 1.29.2.1 bouyer raidPtr->copyback_in_progress = 1;
2607 1.29.2.1 bouyer s = splbio();
2608 1.29.2.1 bouyer rf_CopybackReconstructedData(raidPtr);
2609 1.29.2.1 bouyer splx(s);
2610 1.29.2.1 bouyer raidPtr->copyback_in_progress = 0;
2611 1.29.2.1 bouyer
2612 1.29.2.1 bouyer /* That's all... */
2613 1.29.2.1 bouyer kthread_exit(0); /* does not return */
2614 1.29.2.1 bouyer }
2615 1.29.2.1 bouyer
2616 1.29.2.1 bouyer
2617 1.29.2.1 bouyer void
2618 1.29.2.1 bouyer rf_ReconstructInPlaceThread(req)
2619 1.29.2.1 bouyer struct rf_recon_req *req;
2620 1.29.2.1 bouyer {
2621 1.29.2.1 bouyer int retcode;
2622 1.29.2.1 bouyer int s;
2623 1.29.2.1 bouyer RF_Raid_t *raidPtr;
2624 1.29.2.1 bouyer
2625 1.29.2.1 bouyer s = splbio();
2626 1.29.2.1 bouyer raidPtr = req->raidPtr;
2627 1.29.2.1 bouyer raidPtr->recon_in_progress = 1;
2628 1.29.2.1 bouyer retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
2629 1.29.2.1 bouyer RF_Free(req, sizeof(*req));
2630 1.29.2.1 bouyer raidPtr->recon_in_progress = 0;
2631 1.29.2.1 bouyer splx(s);
2632 1.29.2.1 bouyer
2633 1.29.2.1 bouyer /* That's all... */
2634 1.29.2.1 bouyer kthread_exit(0); /* does not return */
2635 1.29.2.1 bouyer }
2636 1.29.2.1 bouyer
2637 1.29.2.1 bouyer void
2638 1.29.2.1 bouyer rf_mountroot_hook(dev)
2639 1.29.2.1 bouyer struct device *dev;
2640 1.29.2.1 bouyer {
2641 1.29.2.1 bouyer
2642 1.29.2.1 bouyer }
2643 1.29.2.1 bouyer
2644 1.29.2.1 bouyer
2645 1.29.2.1 bouyer RF_AutoConfig_t *
2646 1.29.2.1 bouyer rf_find_raid_components()
2647 1.29.2.1 bouyer {
2648 1.29.2.1 bouyer struct devnametobdevmaj *dtobdm;
2649 1.29.2.1 bouyer struct vnode *vp;
2650 1.29.2.1 bouyer struct disklabel label;
2651 1.29.2.1 bouyer struct device *dv;
2652 1.29.2.1 bouyer char *cd_name;
2653 1.29.2.1 bouyer dev_t dev;
2654 1.29.2.1 bouyer int error;
2655 1.29.2.1 bouyer int i;
2656 1.29.2.1 bouyer int good_one;
2657 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2658 1.29.2.1 bouyer RF_AutoConfig_t *ac_list;
2659 1.29.2.1 bouyer RF_AutoConfig_t *ac;
2660 1.29.2.1 bouyer
2661 1.29.2.1 bouyer
2662 1.29.2.1 bouyer /* initialize the AutoConfig list */
2663 1.29.2.1 bouyer ac_list = NULL;
2664 1.29.2.1 bouyer
2665 1.29.2.1 bouyer if (raidautoconfig) {
2666 1.29.2.1 bouyer
2667 1.29.2.1 bouyer /* we begin by trolling through *all* the devices on the system */
2668 1.29.2.1 bouyer
2669 1.29.2.1 bouyer for (dv = alldevs.tqh_first; dv != NULL;
2670 1.29.2.1 bouyer dv = dv->dv_list.tqe_next) {
2671 1.29.2.1 bouyer
2672 1.29.2.1 bouyer /* we are only interested in disks... */
2673 1.29.2.1 bouyer if (dv->dv_class != DV_DISK)
2674 1.29.2.1 bouyer continue;
2675 1.29.2.1 bouyer
2676 1.29.2.1 bouyer /* we don't care about floppies... */
2677 1.29.2.1 bouyer if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
2678 1.29.2.1 bouyer continue;
2679 1.29.2.1 bouyer }
2680 1.29.2.1 bouyer
2681 1.29.2.1 bouyer /* need to find the device_name_to_block_device_major stuff */
2682 1.29.2.1 bouyer cd_name = dv->dv_cfdata->cf_driver->cd_name;
2683 1.29.2.1 bouyer dtobdm = dev_name2blk;
2684 1.29.2.1 bouyer while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
2685 1.29.2.1 bouyer dtobdm++;
2686 1.29.2.1 bouyer }
2687 1.29.2.1 bouyer
2688 1.29.2.1 bouyer /* get a vnode for the raw partition of this disk */
2689 1.29.2.1 bouyer
2690 1.29.2.1 bouyer dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
2691 1.29.2.1 bouyer if (bdevvp(dev, &vp))
2692 1.29.2.1 bouyer panic("RAID can't alloc vnode");
2693 1.29.2.1 bouyer
2694 1.29.2.1 bouyer error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2695 1.29.2.1 bouyer
2696 1.29.2.1 bouyer if (error) {
2697 1.29.2.1 bouyer /* "Who cares." Continue looking
2698 1.29.2.1 bouyer for something that exists*/
2699 1.29.2.1 bouyer vput(vp);
2700 1.29.2.1 bouyer continue;
2701 1.29.2.1 bouyer }
2702 1.29.2.1 bouyer
2703 1.29.2.1 bouyer /* Ok, the disk exists. Go get the disklabel. */
2704 1.29.2.1 bouyer error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
2705 1.29.2.1 bouyer FREAD, NOCRED, 0);
2706 1.29.2.1 bouyer if (error) {
2707 1.29.2.1 bouyer /*
2708 1.29.2.1 bouyer * XXX can't happen - open() would
2709 1.29.2.1 bouyer * have errored out (or faked up one)
2710 1.29.2.1 bouyer */
2711 1.29.2.1 bouyer printf("can't get label for dev %s%c (%d)!?!?\n",
2712 1.29.2.1 bouyer dv->dv_xname, 'a' + RAW_PART, error);
2713 1.29.2.1 bouyer }
2714 1.29.2.1 bouyer
2715 1.29.2.1 bouyer /* don't need this any more. We'll allocate it again
2716 1.29.2.1 bouyer a little later if we really do... */
2717 1.29.2.1 bouyer vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2718 1.29.2.1 bouyer VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2719 1.29.2.1 bouyer vput(vp);
2720 1.29.2.1 bouyer
2721 1.29.2.1 bouyer for (i=0; i < label.d_npartitions; i++) {
2722 1.29.2.1 bouyer /* We only support partitions marked as RAID */
2723 1.29.2.1 bouyer if (label.d_partitions[i].p_fstype != FS_RAID)
2724 1.29.2.1 bouyer continue;
2725 1.29.2.1 bouyer
2726 1.29.2.1 bouyer dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
2727 1.29.2.1 bouyer if (bdevvp(dev, &vp))
2728 1.29.2.1 bouyer panic("RAID can't alloc vnode");
2729 1.29.2.1 bouyer
2730 1.29.2.1 bouyer error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2731 1.29.2.1 bouyer if (error) {
2732 1.29.2.1 bouyer /* Whatever... */
2733 1.29.2.1 bouyer vput(vp);
2734 1.29.2.1 bouyer continue;
2735 1.29.2.1 bouyer }
2736 1.29.2.1 bouyer
2737 1.29.2.1 bouyer good_one = 0;
2738 1.29.2.1 bouyer
2739 1.29.2.1 bouyer clabel = (RF_ComponentLabel_t *)
2740 1.29.2.1 bouyer malloc(sizeof(RF_ComponentLabel_t),
2741 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
2742 1.29.2.1 bouyer if (clabel == NULL) {
2743 1.29.2.1 bouyer /* XXX CLEANUP HERE */
2744 1.29.2.1 bouyer printf("RAID auto config: out of memory!\n");
2745 1.29.2.1 bouyer return(NULL); /* XXX probably should panic? */
2746 1.29.2.1 bouyer }
2747 1.29.2.1 bouyer
2748 1.29.2.1 bouyer if (!raidread_component_label(dev, vp, clabel)) {
2749 1.29.2.1 bouyer /* Got the label. Does it look reasonable? */
2750 1.29.2.1 bouyer if (rf_reasonable_label(clabel) &&
2751 1.29.2.1 bouyer (clabel->partitionSize <=
2752 1.29.2.1 bouyer label.d_partitions[i].p_size)) {
2753 1.29.2.1 bouyer #if DEBUG
2754 1.29.2.1 bouyer printf("Component on: %s%c: %d\n",
2755 1.29.2.1 bouyer dv->dv_xname, 'a'+i,
2756 1.29.2.1 bouyer label.d_partitions[i].p_size);
2757 1.29.2.1 bouyer rf_print_component_label(clabel);
2758 1.29.2.1 bouyer #endif
2759 1.29.2.1 bouyer /* if it's reasonable, add it,
2760 1.29.2.1 bouyer else ignore it. */
2761 1.29.2.1 bouyer ac = (RF_AutoConfig_t *)
2762 1.29.2.1 bouyer malloc(sizeof(RF_AutoConfig_t),
2763 1.29.2.1 bouyer M_RAIDFRAME,
2764 1.29.2.1 bouyer M_NOWAIT);
2765 1.29.2.1 bouyer if (ac == NULL) {
2766 1.29.2.1 bouyer /* XXX should panic?? */
2767 1.29.2.1 bouyer return(NULL);
2768 1.29.2.1 bouyer }
2769 1.29.2.1 bouyer
2770 1.29.2.1 bouyer sprintf(ac->devname, "%s%c",
2771 1.29.2.1 bouyer dv->dv_xname, 'a'+i);
2772 1.29.2.1 bouyer ac->dev = dev;
2773 1.29.2.1 bouyer ac->vp = vp;
2774 1.29.2.1 bouyer ac->clabel = clabel;
2775 1.29.2.1 bouyer ac->next = ac_list;
2776 1.29.2.1 bouyer ac_list = ac;
2777 1.29.2.1 bouyer good_one = 1;
2778 1.29.2.1 bouyer }
2779 1.29.2.1 bouyer }
2780 1.29.2.1 bouyer if (!good_one) {
2781 1.29.2.1 bouyer /* cleanup */
2782 1.29.2.1 bouyer free(clabel, M_RAIDFRAME);
2783 1.29.2.1 bouyer vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2784 1.29.2.1 bouyer VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2785 1.29.2.1 bouyer vput(vp);
2786 1.29.2.1 bouyer }
2787 1.29.2.1 bouyer }
2788 1.29.2.1 bouyer }
2789 1.29.2.1 bouyer }
2790 1.29.2.1 bouyer return(ac_list);
2791 1.29.2.1 bouyer }
2792 1.29.2.1 bouyer
2793 1.29.2.1 bouyer static int
2794 1.29.2.1 bouyer rf_reasonable_label(clabel)
2795 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2796 1.29.2.1 bouyer {
2797 1.29.2.1 bouyer
2798 1.29.2.1 bouyer if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2799 1.29.2.1 bouyer (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2800 1.29.2.1 bouyer ((clabel->clean == RF_RAID_CLEAN) ||
2801 1.29.2.1 bouyer (clabel->clean == RF_RAID_DIRTY)) &&
2802 1.29.2.1 bouyer clabel->row >=0 &&
2803 1.29.2.1 bouyer clabel->column >= 0 &&
2804 1.29.2.1 bouyer clabel->num_rows > 0 &&
2805 1.29.2.1 bouyer clabel->num_columns > 0 &&
2806 1.29.2.1 bouyer clabel->row < clabel->num_rows &&
2807 1.29.2.1 bouyer clabel->column < clabel->num_columns &&
2808 1.29.2.1 bouyer clabel->blockSize > 0 &&
2809 1.29.2.1 bouyer clabel->numBlocks > 0) {
2810 1.29.2.1 bouyer /* label looks reasonable enough... */
2811 1.29.2.1 bouyer return(1);
2812 1.29.2.1 bouyer }
2813 1.29.2.1 bouyer return(0);
2814 1.29.2.1 bouyer }
2815 1.29.2.1 bouyer
2816 1.29.2.1 bouyer
2817 1.29.2.1 bouyer void
2818 1.29.2.1 bouyer rf_print_component_label(clabel)
2819 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2820 1.29.2.1 bouyer {
2821 1.29.2.1 bouyer printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2822 1.29.2.1 bouyer clabel->row, clabel->column,
2823 1.29.2.1 bouyer clabel->num_rows, clabel->num_columns);
2824 1.29.2.1 bouyer printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2825 1.29.2.1 bouyer clabel->version, clabel->serial_number,
2826 1.29.2.1 bouyer clabel->mod_counter);
2827 1.29.2.1 bouyer printf(" Clean: %s Status: %d\n",
2828 1.29.2.1 bouyer clabel->clean ? "Yes" : "No", clabel->status );
2829 1.29.2.1 bouyer printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2830 1.29.2.1 bouyer clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2831 1.29.2.1 bouyer printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2832 1.29.2.1 bouyer (char) clabel->parityConfig, clabel->blockSize,
2833 1.29.2.1 bouyer clabel->numBlocks);
2834 1.29.2.1 bouyer printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2835 1.29.2.1 bouyer printf(" Contains root partition: %s\n",
2836 1.29.2.1 bouyer clabel->root_partition ? "Yes" : "No" );
2837 1.29.2.1 bouyer printf(" Last configured as: raid%d\n", clabel->last_unit );
2838 1.29.2.1 bouyer #if 0
2839 1.29.2.1 bouyer printf(" Config order: %d\n", clabel->config_order);
2840 1.29.2.1 bouyer #endif
2841 1.29.2.1 bouyer
2842 1.29.2.1 bouyer }
2843 1.29.2.1 bouyer
2844 1.29.2.1 bouyer RF_ConfigSet_t *
2845 1.29.2.1 bouyer rf_create_auto_sets(ac_list)
2846 1.29.2.1 bouyer RF_AutoConfig_t *ac_list;
2847 1.29.2.1 bouyer {
2848 1.29.2.1 bouyer RF_AutoConfig_t *ac;
2849 1.29.2.1 bouyer RF_ConfigSet_t *config_sets;
2850 1.29.2.1 bouyer RF_ConfigSet_t *cset;
2851 1.29.2.1 bouyer RF_AutoConfig_t *ac_next;
2852 1.29.2.1 bouyer
2853 1.29.2.1 bouyer
2854 1.29.2.1 bouyer config_sets = NULL;
2855 1.29.2.1 bouyer
2856 1.29.2.1 bouyer /* Go through the AutoConfig list, and figure out which components
2857 1.29.2.1 bouyer belong to what sets. */
2858 1.29.2.1 bouyer ac = ac_list;
2859 1.29.2.1 bouyer while(ac!=NULL) {
2860 1.29.2.1 bouyer /* we're going to putz with ac->next, so save it here
2861 1.29.2.1 bouyer for use at the end of the loop */
2862 1.29.2.1 bouyer ac_next = ac->next;
2863 1.29.2.1 bouyer
2864 1.29.2.1 bouyer if (config_sets == NULL) {
2865 1.29.2.1 bouyer /* will need at least this one... */
2866 1.29.2.1 bouyer config_sets = (RF_ConfigSet_t *)
2867 1.29.2.1 bouyer malloc(sizeof(RF_ConfigSet_t),
2868 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
2869 1.29.2.1 bouyer if (config_sets == NULL) {
2870 1.29.2.1 bouyer panic("rf_create_auto_sets: No memory!\n");
2871 1.29.2.1 bouyer }
2872 1.29.2.1 bouyer /* this one is easy :) */
2873 1.29.2.1 bouyer config_sets->ac = ac;
2874 1.29.2.1 bouyer config_sets->next = NULL;
2875 1.29.2.1 bouyer config_sets->rootable = 0;
2876 1.29.2.1 bouyer ac->next = NULL;
2877 1.29.2.1 bouyer } else {
2878 1.29.2.1 bouyer /* which set does this component fit into? */
2879 1.29.2.1 bouyer cset = config_sets;
2880 1.29.2.1 bouyer while(cset!=NULL) {
2881 1.29.2.1 bouyer if (rf_does_it_fit(cset, ac)) {
2882 1.29.2.1 bouyer /* looks like it matches... */
2883 1.29.2.1 bouyer ac->next = cset->ac;
2884 1.29.2.1 bouyer cset->ac = ac;
2885 1.29.2.1 bouyer break;
2886 1.29.2.1 bouyer }
2887 1.29.2.1 bouyer cset = cset->next;
2888 1.29.2.1 bouyer }
2889 1.29.2.1 bouyer if (cset==NULL) {
2890 1.29.2.1 bouyer /* didn't find a match above... new set..*/
2891 1.29.2.1 bouyer cset = (RF_ConfigSet_t *)
2892 1.29.2.1 bouyer malloc(sizeof(RF_ConfigSet_t),
2893 1.29.2.1 bouyer M_RAIDFRAME, M_NOWAIT);
2894 1.29.2.1 bouyer if (cset == NULL) {
2895 1.29.2.1 bouyer panic("rf_create_auto_sets: No memory!\n");
2896 1.29.2.1 bouyer }
2897 1.29.2.1 bouyer cset->ac = ac;
2898 1.29.2.1 bouyer ac->next = NULL;
2899 1.29.2.1 bouyer cset->next = config_sets;
2900 1.29.2.1 bouyer cset->rootable = 0;
2901 1.29.2.1 bouyer config_sets = cset;
2902 1.29.2.1 bouyer }
2903 1.29.2.1 bouyer }
2904 1.29.2.1 bouyer ac = ac_next;
2905 1.29.2.1 bouyer }
2906 1.29.2.1 bouyer
2907 1.29.2.1 bouyer
2908 1.29.2.1 bouyer return(config_sets);
2909 1.29.2.1 bouyer }
2910 1.29.2.1 bouyer
2911 1.29.2.1 bouyer static int
2912 1.29.2.1 bouyer rf_does_it_fit(cset, ac)
2913 1.29.2.1 bouyer RF_ConfigSet_t *cset;
2914 1.29.2.1 bouyer RF_AutoConfig_t *ac;
2915 1.29.2.1 bouyer {
2916 1.29.2.1 bouyer RF_ComponentLabel_t *clabel1, *clabel2;
2917 1.29.2.1 bouyer
2918 1.29.2.1 bouyer /* If this one matches the *first* one in the set, that's good
2919 1.29.2.1 bouyer enough, since the other members of the set would have been
2920 1.29.2.1 bouyer through here too... */
2921 1.29.2.1 bouyer /* note that we are not checking partitionSize here..
2922 1.29.2.1 bouyer
2923 1.29.2.1 bouyer Note that we are also not checking the mod_counters here.
2924 1.29.2.1 bouyer If everything else matches execpt the mod_counter, that's
2925 1.29.2.1 bouyer good enough for this test. We will deal with the mod_counters
2926 1.29.2.1 bouyer a little later in the autoconfiguration process.
2927 1.29.2.1 bouyer
2928 1.29.2.1 bouyer (clabel1->mod_counter == clabel2->mod_counter) &&
2929 1.29.2.1 bouyer
2930 1.29.2.1 bouyer The reason we don't check for this is that failed disks
2931 1.29.2.1 bouyer will have lower modification counts. If those disks are
2932 1.29.2.1 bouyer not added to the set they used to belong to, then they will
2933 1.29.2.1 bouyer form their own set, which may result in 2 different sets,
2934 1.29.2.1 bouyer for example, competing to be configured at raid0, and
2935 1.29.2.1 bouyer perhaps competing to be the root filesystem set. If the
2936 1.29.2.1 bouyer wrong ones get configured, or both attempt to become /,
2937 1.29.2.1 bouyer weird behaviour and or serious lossage will occur. Thus we
2938 1.29.2.1 bouyer need to bring them into the fold here, and kick them out at
2939 1.29.2.1 bouyer a later point.
2940 1.29.2.1 bouyer
2941 1.29.2.1 bouyer */
2942 1.29.2.1 bouyer
2943 1.29.2.1 bouyer clabel1 = cset->ac->clabel;
2944 1.29.2.1 bouyer clabel2 = ac->clabel;
2945 1.29.2.1 bouyer if ((clabel1->version == clabel2->version) &&
2946 1.29.2.1 bouyer (clabel1->serial_number == clabel2->serial_number) &&
2947 1.29.2.1 bouyer (clabel1->num_rows == clabel2->num_rows) &&
2948 1.29.2.1 bouyer (clabel1->num_columns == clabel2->num_columns) &&
2949 1.29.2.1 bouyer (clabel1->sectPerSU == clabel2->sectPerSU) &&
2950 1.29.2.1 bouyer (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2951 1.29.2.1 bouyer (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2952 1.29.2.1 bouyer (clabel1->parityConfig == clabel2->parityConfig) &&
2953 1.29.2.1 bouyer (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2954 1.29.2.1 bouyer (clabel1->blockSize == clabel2->blockSize) &&
2955 1.29.2.1 bouyer (clabel1->numBlocks == clabel2->numBlocks) &&
2956 1.29.2.1 bouyer (clabel1->autoconfigure == clabel2->autoconfigure) &&
2957 1.29.2.1 bouyer (clabel1->root_partition == clabel2->root_partition) &&
2958 1.29.2.1 bouyer (clabel1->last_unit == clabel2->last_unit) &&
2959 1.29.2.1 bouyer (clabel1->config_order == clabel2->config_order)) {
2960 1.29.2.1 bouyer /* if it get's here, it almost *has* to be a match */
2961 1.29.2.1 bouyer } else {
2962 1.29.2.1 bouyer /* it's not consistent with somebody in the set..
2963 1.29.2.1 bouyer punt */
2964 1.29.2.1 bouyer return(0);
2965 1.29.2.1 bouyer }
2966 1.29.2.1 bouyer /* all was fine.. it must fit... */
2967 1.29.2.1 bouyer return(1);
2968 1.29.2.1 bouyer }
2969 1.29.2.1 bouyer
2970 1.29.2.1 bouyer int
2971 1.29.2.1 bouyer rf_have_enough_components(cset)
2972 1.29.2.1 bouyer RF_ConfigSet_t *cset;
2973 1.29.2.1 bouyer {
2974 1.29.2.1 bouyer RF_AutoConfig_t *ac;
2975 1.29.2.1 bouyer RF_AutoConfig_t *auto_config;
2976 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
2977 1.29.2.1 bouyer int r,c;
2978 1.29.2.1 bouyer int num_rows;
2979 1.29.2.1 bouyer int num_cols;
2980 1.29.2.1 bouyer int num_missing;
2981 1.29.2.1 bouyer int mod_counter;
2982 1.29.2.1 bouyer int mod_counter_found;
2983 1.29.2.1 bouyer int even_pair_failed;
2984 1.29.2.1 bouyer char parity_type;
2985 1.29.2.1 bouyer
2986 1.29.2.1 bouyer
2987 1.29.2.1 bouyer /* check to see that we have enough 'live' components
2988 1.29.2.1 bouyer of this set. If so, we can configure it if necessary */
2989 1.29.2.1 bouyer
2990 1.29.2.1 bouyer num_rows = cset->ac->clabel->num_rows;
2991 1.29.2.1 bouyer num_cols = cset->ac->clabel->num_columns;
2992 1.29.2.1 bouyer parity_type = cset->ac->clabel->parityConfig;
2993 1.29.2.1 bouyer
2994 1.29.2.1 bouyer /* XXX Check for duplicate components!?!?!? */
2995 1.29.2.1 bouyer
2996 1.29.2.1 bouyer /* Determine what the mod_counter is supposed to be for this set. */
2997 1.29.2.1 bouyer
2998 1.29.2.1 bouyer mod_counter_found = 0;
2999 1.29.2.3 bouyer mod_counter = 0;
3000 1.29.2.1 bouyer ac = cset->ac;
3001 1.29.2.1 bouyer while(ac!=NULL) {
3002 1.29.2.1 bouyer if (mod_counter_found==0) {
3003 1.29.2.1 bouyer mod_counter = ac->clabel->mod_counter;
3004 1.29.2.1 bouyer mod_counter_found = 1;
3005 1.29.2.1 bouyer } else {
3006 1.29.2.1 bouyer if (ac->clabel->mod_counter > mod_counter) {
3007 1.29.2.1 bouyer mod_counter = ac->clabel->mod_counter;
3008 1.29.2.1 bouyer }
3009 1.29.2.1 bouyer }
3010 1.29.2.1 bouyer ac = ac->next;
3011 1.29.2.1 bouyer }
3012 1.29.2.1 bouyer
3013 1.29.2.1 bouyer num_missing = 0;
3014 1.29.2.1 bouyer auto_config = cset->ac;
3015 1.29.2.1 bouyer
3016 1.29.2.1 bouyer for(r=0; r<num_rows; r++) {
3017 1.29.2.1 bouyer even_pair_failed = 0;
3018 1.29.2.1 bouyer for(c=0; c<num_cols; c++) {
3019 1.29.2.1 bouyer ac = auto_config;
3020 1.29.2.1 bouyer while(ac!=NULL) {
3021 1.29.2.1 bouyer if ((ac->clabel->row == r) &&
3022 1.29.2.1 bouyer (ac->clabel->column == c) &&
3023 1.29.2.1 bouyer (ac->clabel->mod_counter == mod_counter)) {
3024 1.29.2.1 bouyer /* it's this one... */
3025 1.29.2.1 bouyer #if DEBUG
3026 1.29.2.1 bouyer printf("Found: %s at %d,%d\n",
3027 1.29.2.1 bouyer ac->devname,r,c);
3028 1.29.2.1 bouyer #endif
3029 1.29.2.1 bouyer break;
3030 1.29.2.1 bouyer }
3031 1.29.2.1 bouyer ac=ac->next;
3032 1.29.2.1 bouyer }
3033 1.29.2.1 bouyer if (ac==NULL) {
3034 1.29.2.1 bouyer /* Didn't find one here! */
3035 1.29.2.1 bouyer /* special case for RAID 1, especially
3036 1.29.2.1 bouyer where there are more than 2
3037 1.29.2.1 bouyer components (where RAIDframe treats
3038 1.29.2.1 bouyer things a little differently :( ) */
3039 1.29.2.1 bouyer if (parity_type == '1') {
3040 1.29.2.1 bouyer if (c%2 == 0) { /* even component */
3041 1.29.2.1 bouyer even_pair_failed = 1;
3042 1.29.2.1 bouyer } else { /* odd component. If
3043 1.29.2.1 bouyer we're failed, and
3044 1.29.2.1 bouyer so is the even
3045 1.29.2.1 bouyer component, it's
3046 1.29.2.1 bouyer "Good Night, Charlie" */
3047 1.29.2.1 bouyer if (even_pair_failed == 1) {
3048 1.29.2.1 bouyer return(0);
3049 1.29.2.1 bouyer }
3050 1.29.2.1 bouyer }
3051 1.29.2.1 bouyer } else {
3052 1.29.2.1 bouyer /* normal accounting */
3053 1.29.2.1 bouyer num_missing++;
3054 1.29.2.1 bouyer }
3055 1.29.2.1 bouyer }
3056 1.29.2.1 bouyer if ((parity_type == '1') && (c%2 == 1)) {
3057 1.29.2.1 bouyer /* Just did an even component, and we didn't
3058 1.29.2.1 bouyer bail.. reset the even_pair_failed flag,
3059 1.29.2.1 bouyer and go on to the next component.... */
3060 1.29.2.1 bouyer even_pair_failed = 0;
3061 1.29.2.1 bouyer }
3062 1.29.2.1 bouyer }
3063 1.29.2.1 bouyer }
3064 1.29.2.1 bouyer
3065 1.29.2.1 bouyer clabel = cset->ac->clabel;
3066 1.29.2.1 bouyer
3067 1.29.2.1 bouyer if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3068 1.29.2.1 bouyer ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3069 1.29.2.1 bouyer ((clabel->parityConfig == '5') && (num_missing > 1))) {
3070 1.29.2.1 bouyer /* XXX this needs to be made *much* more general */
3071 1.29.2.1 bouyer /* Too many failures */
3072 1.29.2.1 bouyer return(0);
3073 1.29.2.1 bouyer }
3074 1.29.2.1 bouyer /* otherwise, all is well, and we've got enough to take a kick
3075 1.29.2.1 bouyer at autoconfiguring this set */
3076 1.29.2.1 bouyer return(1);
3077 1.29.2.1 bouyer }
3078 1.29.2.1 bouyer
3079 1.29.2.1 bouyer void
3080 1.29.2.1 bouyer rf_create_configuration(ac,config,raidPtr)
3081 1.29.2.1 bouyer RF_AutoConfig_t *ac;
3082 1.29.2.1 bouyer RF_Config_t *config;
3083 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3084 1.29.2.1 bouyer {
3085 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
3086 1.29.2.1 bouyer int i;
3087 1.29.2.1 bouyer
3088 1.29.2.1 bouyer clabel = ac->clabel;
3089 1.29.2.1 bouyer
3090 1.29.2.1 bouyer /* 1. Fill in the common stuff */
3091 1.29.2.1 bouyer config->numRow = clabel->num_rows;
3092 1.29.2.1 bouyer config->numCol = clabel->num_columns;
3093 1.29.2.1 bouyer config->numSpare = 0; /* XXX should this be set here? */
3094 1.29.2.1 bouyer config->sectPerSU = clabel->sectPerSU;
3095 1.29.2.1 bouyer config->SUsPerPU = clabel->SUsPerPU;
3096 1.29.2.1 bouyer config->SUsPerRU = clabel->SUsPerRU;
3097 1.29.2.1 bouyer config->parityConfig = clabel->parityConfig;
3098 1.29.2.1 bouyer /* XXX... */
3099 1.29.2.1 bouyer strcpy(config->diskQueueType,"fifo");
3100 1.29.2.1 bouyer config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3101 1.29.2.1 bouyer config->layoutSpecificSize = 0; /* XXX ?? */
3102 1.29.2.1 bouyer
3103 1.29.2.1 bouyer while(ac!=NULL) {
3104 1.29.2.1 bouyer /* row/col values will be in range due to the checks
3105 1.29.2.1 bouyer in reasonable_label() */
3106 1.29.2.1 bouyer strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3107 1.29.2.1 bouyer ac->devname);
3108 1.29.2.1 bouyer ac = ac->next;
3109 1.29.2.1 bouyer }
3110 1.29.2.1 bouyer
3111 1.29.2.1 bouyer for(i=0;i<RF_MAXDBGV;i++) {
3112 1.29.2.1 bouyer config->debugVars[i][0] = NULL;
3113 1.29.2.1 bouyer }
3114 1.29.2.1 bouyer }
3115 1.29.2.1 bouyer
3116 1.29.2.1 bouyer int
3117 1.29.2.1 bouyer rf_set_autoconfig(raidPtr, new_value)
3118 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3119 1.29.2.1 bouyer int new_value;
3120 1.29.2.1 bouyer {
3121 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
3122 1.29.2.1 bouyer struct vnode *vp;
3123 1.29.2.1 bouyer dev_t dev;
3124 1.29.2.1 bouyer int row, column;
3125 1.29.2.1 bouyer
3126 1.29.2.1 bouyer raidPtr->autoconfigure = new_value;
3127 1.29.2.1 bouyer for(row=0; row<raidPtr->numRow; row++) {
3128 1.29.2.1 bouyer for(column=0; column<raidPtr->numCol; column++) {
3129 1.29.2.1 bouyer if (raidPtr->Disks[row][column].status ==
3130 1.29.2.1 bouyer rf_ds_optimal) {
3131 1.29.2.1 bouyer dev = raidPtr->Disks[row][column].dev;
3132 1.29.2.1 bouyer vp = raidPtr->raid_cinfo[row][column].ci_vp;
3133 1.29.2.1 bouyer raidread_component_label(dev, vp, &clabel);
3134 1.29.2.1 bouyer clabel.autoconfigure = new_value;
3135 1.29.2.1 bouyer raidwrite_component_label(dev, vp, &clabel);
3136 1.29.2.1 bouyer }
3137 1.29.2.1 bouyer }
3138 1.29.2.1 bouyer }
3139 1.29.2.1 bouyer return(new_value);
3140 1.29.2.1 bouyer }
3141 1.29.2.1 bouyer
3142 1.29.2.1 bouyer int
3143 1.29.2.1 bouyer rf_set_rootpartition(raidPtr, new_value)
3144 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3145 1.29.2.1 bouyer int new_value;
3146 1.29.2.1 bouyer {
3147 1.29.2.1 bouyer RF_ComponentLabel_t clabel;
3148 1.29.2.1 bouyer struct vnode *vp;
3149 1.29.2.1 bouyer dev_t dev;
3150 1.29.2.1 bouyer int row, column;
3151 1.29.2.1 bouyer
3152 1.29.2.1 bouyer raidPtr->root_partition = new_value;
3153 1.29.2.1 bouyer for(row=0; row<raidPtr->numRow; row++) {
3154 1.29.2.1 bouyer for(column=0; column<raidPtr->numCol; column++) {
3155 1.29.2.1 bouyer if (raidPtr->Disks[row][column].status ==
3156 1.29.2.1 bouyer rf_ds_optimal) {
3157 1.29.2.1 bouyer dev = raidPtr->Disks[row][column].dev;
3158 1.29.2.1 bouyer vp = raidPtr->raid_cinfo[row][column].ci_vp;
3159 1.29.2.1 bouyer raidread_component_label(dev, vp, &clabel);
3160 1.29.2.1 bouyer clabel.root_partition = new_value;
3161 1.29.2.1 bouyer raidwrite_component_label(dev, vp, &clabel);
3162 1.29.2.1 bouyer }
3163 1.29.2.1 bouyer }
3164 1.29.2.1 bouyer }
3165 1.29.2.1 bouyer return(new_value);
3166 1.29.2.1 bouyer }
3167 1.29.2.1 bouyer
3168 1.29.2.1 bouyer void
3169 1.29.2.1 bouyer rf_release_all_vps(cset)
3170 1.29.2.1 bouyer RF_ConfigSet_t *cset;
3171 1.29.2.1 bouyer {
3172 1.29.2.1 bouyer RF_AutoConfig_t *ac;
3173 1.29.2.1 bouyer
3174 1.29.2.1 bouyer ac = cset->ac;
3175 1.29.2.1 bouyer while(ac!=NULL) {
3176 1.29.2.1 bouyer /* Close the vp, and give it back */
3177 1.29.2.1 bouyer if (ac->vp) {
3178 1.29.2.1 bouyer vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3179 1.29.2.1 bouyer VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3180 1.29.2.1 bouyer vput(ac->vp);
3181 1.29.2.1 bouyer ac->vp = NULL;
3182 1.29.2.1 bouyer }
3183 1.29.2.1 bouyer ac = ac->next;
3184 1.29.2.1 bouyer }
3185 1.29.2.1 bouyer }
3186 1.29.2.1 bouyer
3187 1.29.2.1 bouyer
3188 1.29.2.1 bouyer void
3189 1.29.2.1 bouyer rf_cleanup_config_set(cset)
3190 1.29.2.1 bouyer RF_ConfigSet_t *cset;
3191 1.29.2.1 bouyer {
3192 1.29.2.1 bouyer RF_AutoConfig_t *ac;
3193 1.29.2.1 bouyer RF_AutoConfig_t *next_ac;
3194 1.29.2.1 bouyer
3195 1.29.2.1 bouyer ac = cset->ac;
3196 1.29.2.1 bouyer while(ac!=NULL) {
3197 1.29.2.1 bouyer next_ac = ac->next;
3198 1.29.2.1 bouyer /* nuke the label */
3199 1.29.2.1 bouyer free(ac->clabel, M_RAIDFRAME);
3200 1.29.2.1 bouyer /* cleanup the config structure */
3201 1.29.2.1 bouyer free(ac, M_RAIDFRAME);
3202 1.29.2.1 bouyer /* "next.." */
3203 1.29.2.1 bouyer ac = next_ac;
3204 1.29.2.1 bouyer }
3205 1.29.2.1 bouyer /* and, finally, nuke the config set */
3206 1.29.2.1 bouyer free(cset, M_RAIDFRAME);
3207 1.29.2.1 bouyer }
3208 1.29.2.1 bouyer
3209 1.29.2.1 bouyer
3210 1.29.2.1 bouyer void
3211 1.29.2.1 bouyer raid_init_component_label(raidPtr, clabel)
3212 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3213 1.29.2.1 bouyer RF_ComponentLabel_t *clabel;
3214 1.29.2.1 bouyer {
3215 1.29.2.1 bouyer /* current version number */
3216 1.29.2.1 bouyer clabel->version = RF_COMPONENT_LABEL_VERSION;
3217 1.29.2.1 bouyer clabel->serial_number = raidPtr->serial_number;
3218 1.29.2.1 bouyer clabel->mod_counter = raidPtr->mod_counter;
3219 1.29.2.1 bouyer clabel->num_rows = raidPtr->numRow;
3220 1.29.2.1 bouyer clabel->num_columns = raidPtr->numCol;
3221 1.29.2.1 bouyer clabel->clean = RF_RAID_DIRTY; /* not clean */
3222 1.29.2.1 bouyer clabel->status = rf_ds_optimal; /* "It's good!" */
3223 1.29.2.1 bouyer
3224 1.29.2.1 bouyer clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3225 1.29.2.1 bouyer clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3226 1.29.2.1 bouyer clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3227 1.29.2.1 bouyer
3228 1.29.2.1 bouyer clabel->blockSize = raidPtr->bytesPerSector;
3229 1.29.2.1 bouyer clabel->numBlocks = raidPtr->sectorsPerDisk;
3230 1.29.2.1 bouyer
3231 1.29.2.1 bouyer /* XXX not portable */
3232 1.29.2.1 bouyer clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3233 1.29.2.1 bouyer clabel->maxOutstanding = raidPtr->maxOutstanding;
3234 1.29.2.1 bouyer clabel->autoconfigure = raidPtr->autoconfigure;
3235 1.29.2.1 bouyer clabel->root_partition = raidPtr->root_partition;
3236 1.29.2.1 bouyer clabel->last_unit = raidPtr->raidid;
3237 1.29.2.1 bouyer clabel->config_order = raidPtr->config_order;
3238 1.29.2.1 bouyer }
3239 1.29.2.1 bouyer
3240 1.29.2.1 bouyer int
3241 1.29.2.1 bouyer rf_auto_config_set(cset,unit)
3242 1.29.2.1 bouyer RF_ConfigSet_t *cset;
3243 1.29.2.1 bouyer int *unit;
3244 1.29.2.1 bouyer {
3245 1.29.2.1 bouyer RF_Raid_t *raidPtr;
3246 1.29.2.1 bouyer RF_Config_t *config;
3247 1.29.2.1 bouyer int raidID;
3248 1.29.2.1 bouyer int retcode;
3249 1.29.2.1 bouyer
3250 1.29.2.1 bouyer printf("RAID autoconfigure\n");
3251 1.29.2.1 bouyer
3252 1.29.2.1 bouyer retcode = 0;
3253 1.29.2.1 bouyer *unit = -1;
3254 1.29.2.1 bouyer
3255 1.29.2.1 bouyer /* 1. Create a config structure */
3256 1.29.2.1 bouyer
3257 1.29.2.1 bouyer config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3258 1.29.2.1 bouyer M_RAIDFRAME,
3259 1.29.2.1 bouyer M_NOWAIT);
3260 1.29.2.1 bouyer if (config==NULL) {
3261 1.29.2.1 bouyer printf("Out of mem!?!?\n");
3262 1.29.2.1 bouyer /* XXX do something more intelligent here. */
3263 1.29.2.1 bouyer return(1);
3264 1.29.2.1 bouyer }
3265 1.29.2.1 bouyer
3266 1.29.2.1 bouyer memset(config, 0, sizeof(RF_Config_t));
3267 1.29.2.1 bouyer
3268 1.29.2.1 bouyer /* XXX raidID needs to be set correctly.. */
3269 1.29.2.1 bouyer
3270 1.29.2.1 bouyer /*
3271 1.29.2.1 bouyer 2. Figure out what RAID ID this one is supposed to live at
3272 1.29.2.1 bouyer See if we can get the same RAID dev that it was configured
3273 1.29.2.1 bouyer on last time..
3274 1.29.2.1 bouyer */
3275 1.29.2.1 bouyer
3276 1.29.2.1 bouyer raidID = cset->ac->clabel->last_unit;
3277 1.29.2.1 bouyer if ((raidID < 0) || (raidID >= numraid)) {
3278 1.29.2.1 bouyer /* let's not wander off into lala land. */
3279 1.29.2.1 bouyer raidID = numraid - 1;
3280 1.29.2.1 bouyer }
3281 1.29.2.1 bouyer if (raidPtrs[raidID]->valid != 0) {
3282 1.29.2.1 bouyer
3283 1.29.2.1 bouyer /*
3284 1.29.2.1 bouyer Nope... Go looking for an alternative...
3285 1.29.2.1 bouyer Start high so we don't immediately use raid0 if that's
3286 1.29.2.1 bouyer not taken.
3287 1.29.2.1 bouyer */
3288 1.29.2.1 bouyer
3289 1.29.2.1 bouyer for(raidID = numraid; raidID >= 0; raidID--) {
3290 1.29.2.1 bouyer if (raidPtrs[raidID]->valid == 0) {
3291 1.29.2.1 bouyer /* can use this one! */
3292 1.29.2.1 bouyer break;
3293 1.29.2.1 bouyer }
3294 1.29.2.1 bouyer }
3295 1.29.2.1 bouyer }
3296 1.29.2.1 bouyer
3297 1.29.2.1 bouyer if (raidID < 0) {
3298 1.29.2.1 bouyer /* punt... */
3299 1.29.2.1 bouyer printf("Unable to auto configure this set!\n");
3300 1.29.2.1 bouyer printf("(Out of RAID devs!)\n");
3301 1.29.2.1 bouyer return(1);
3302 1.29.2.1 bouyer }
3303 1.29.2.1 bouyer printf("Configuring raid%d:\n",raidID);
3304 1.29.2.1 bouyer raidPtr = raidPtrs[raidID];
3305 1.29.2.1 bouyer
3306 1.29.2.1 bouyer /* XXX all this stuff should be done SOMEWHERE ELSE! */
3307 1.29.2.1 bouyer raidPtr->raidid = raidID;
3308 1.29.2.1 bouyer raidPtr->openings = RAIDOUTSTANDING;
3309 1.29.2.1 bouyer
3310 1.29.2.1 bouyer /* 3. Build the configuration structure */
3311 1.29.2.1 bouyer rf_create_configuration(cset->ac, config, raidPtr);
3312 1.29.2.1 bouyer
3313 1.29.2.1 bouyer /* 4. Do the configuration */
3314 1.29.2.1 bouyer retcode = rf_Configure(raidPtr, config, cset->ac);
3315 1.29.2.1 bouyer
3316 1.29.2.1 bouyer if (retcode == 0) {
3317 1.29.2.1 bouyer
3318 1.29.2.1 bouyer raidinit(raidPtrs[raidID]);
3319 1.29.2.1 bouyer
3320 1.29.2.1 bouyer rf_markalldirty(raidPtrs[raidID]);
3321 1.29.2.1 bouyer raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3322 1.29.2.1 bouyer if (cset->ac->clabel->root_partition==1) {
3323 1.29.2.1 bouyer /* everything configured just fine. Make a note
3324 1.29.2.1 bouyer that this set is eligible to be root. */
3325 1.29.2.1 bouyer cset->rootable = 1;
3326 1.29.2.1 bouyer /* XXX do this here? */
3327 1.29.2.1 bouyer raidPtrs[raidID]->root_partition = 1;
3328 1.29.2.1 bouyer }
3329 1.29.2.1 bouyer }
3330 1.29.2.1 bouyer
3331 1.29.2.1 bouyer /* 5. Cleanup */
3332 1.29.2.1 bouyer free(config, M_RAIDFRAME);
3333 1.29.2.1 bouyer
3334 1.29.2.1 bouyer *unit = raidID;
3335 1.29.2.1 bouyer return(retcode);
3336 1.29.2.1 bouyer }
3337 1.29.2.1 bouyer
3338 1.29.2.1 bouyer void
3339 1.29.2.1 bouyer rf_disk_unbusy(desc)
3340 1.29.2.1 bouyer RF_RaidAccessDesc_t *desc;
3341 1.29.2.1 bouyer {
3342 1.29.2.1 bouyer struct buf *bp;
3343 1.29.2.1 bouyer
3344 1.29.2.1 bouyer bp = (struct buf *)desc->bp;
3345 1.29.2.1 bouyer disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3346 1.29.2.1 bouyer (bp->b_bcount - bp->b_resid));
3347 1.13 oster }
3348