Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.29.2.6
      1  1.29.2.6    bouyer /*	$NetBSD: rf_netbsdkintf.c,v 1.29.2.6 2001/04/21 17:49:43 bouyer Exp $	*/
      2       1.1     oster /*-
      3       1.1     oster  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4       1.1     oster  * All rights reserved.
      5       1.1     oster  *
      6       1.1     oster  * This code is derived from software contributed to The NetBSD Foundation
      7       1.1     oster  * by Greg Oster; Jason R. Thorpe.
      8       1.1     oster  *
      9       1.1     oster  * Redistribution and use in source and binary forms, with or without
     10       1.1     oster  * modification, are permitted provided that the following conditions
     11       1.1     oster  * are met:
     12       1.1     oster  * 1. Redistributions of source code must retain the above copyright
     13       1.1     oster  *    notice, this list of conditions and the following disclaimer.
     14       1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     16       1.1     oster  *    documentation and/or other materials provided with the distribution.
     17       1.1     oster  * 3. All advertising materials mentioning features or use of this software
     18       1.1     oster  *    must display the following acknowledgement:
     19       1.1     oster  *        This product includes software developed by the NetBSD
     20       1.1     oster  *        Foundation, Inc. and its contributors.
     21       1.1     oster  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22       1.1     oster  *    contributors may be used to endorse or promote products derived
     23       1.1     oster  *    from this software without specific prior written permission.
     24       1.1     oster  *
     25       1.1     oster  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26       1.1     oster  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27       1.1     oster  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28       1.1     oster  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29       1.1     oster  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30       1.1     oster  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31       1.1     oster  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32       1.1     oster  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33       1.1     oster  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34       1.1     oster  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35       1.1     oster  * POSSIBILITY OF SUCH DAMAGE.
     36       1.1     oster  */
     37       1.1     oster 
     38       1.1     oster /*
     39       1.1     oster  * Copyright (c) 1988 University of Utah.
     40       1.1     oster  * Copyright (c) 1990, 1993
     41       1.1     oster  *      The Regents of the University of California.  All rights reserved.
     42       1.1     oster  *
     43       1.1     oster  * This code is derived from software contributed to Berkeley by
     44       1.1     oster  * the Systems Programming Group of the University of Utah Computer
     45       1.1     oster  * Science Department.
     46       1.1     oster  *
     47       1.1     oster  * Redistribution and use in source and binary forms, with or without
     48       1.1     oster  * modification, are permitted provided that the following conditions
     49       1.1     oster  * are met:
     50       1.1     oster  * 1. Redistributions of source code must retain the above copyright
     51       1.1     oster  *    notice, this list of conditions and the following disclaimer.
     52       1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     53       1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     54       1.1     oster  *    documentation and/or other materials provided with the distribution.
     55       1.1     oster  * 3. All advertising materials mentioning features or use of this software
     56       1.1     oster  *    must display the following acknowledgement:
     57       1.1     oster  *      This product includes software developed by the University of
     58       1.1     oster  *      California, Berkeley and its contributors.
     59       1.1     oster  * 4. Neither the name of the University nor the names of its contributors
     60       1.1     oster  *    may be used to endorse or promote products derived from this software
     61       1.1     oster  *    without specific prior written permission.
     62       1.1     oster  *
     63       1.1     oster  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64       1.1     oster  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65       1.1     oster  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66       1.1     oster  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67       1.1     oster  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68       1.1     oster  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69       1.1     oster  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70       1.1     oster  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71       1.1     oster  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72       1.1     oster  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73       1.1     oster  * SUCH DAMAGE.
     74       1.1     oster  *
     75       1.1     oster  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76       1.1     oster  *
     77       1.1     oster  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78       1.1     oster  */
     79       1.1     oster 
     80       1.1     oster 
     81       1.1     oster 
     82       1.1     oster 
     83       1.1     oster /*
     84       1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
     85       1.1     oster  * All rights reserved.
     86       1.1     oster  *
     87       1.1     oster  * Authors: Mark Holland, Jim Zelenka
     88       1.1     oster  *
     89       1.1     oster  * Permission to use, copy, modify and distribute this software and
     90       1.1     oster  * its documentation is hereby granted, provided that both the copyright
     91       1.1     oster  * notice and this permission notice appear in all copies of the
     92       1.1     oster  * software, derivative works or modified versions, and any portions
     93       1.1     oster  * thereof, and that both notices appear in supporting documentation.
     94       1.1     oster  *
     95       1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96       1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97       1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98       1.1     oster  *
     99       1.1     oster  * Carnegie Mellon requests users of this software to return to
    100       1.1     oster  *
    101       1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102       1.1     oster  *  School of Computer Science
    103       1.1     oster  *  Carnegie Mellon University
    104       1.1     oster  *  Pittsburgh PA 15213-3890
    105       1.1     oster  *
    106       1.1     oster  * any improvements or extensions that they make and grant Carnegie the
    107       1.1     oster  * rights to redistribute these changes.
    108       1.1     oster  */
    109       1.1     oster 
    110       1.1     oster /***********************************************************
    111       1.1     oster  *
    112       1.1     oster  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113       1.1     oster  *
    114       1.1     oster  ***********************************************************/
    115       1.1     oster 
    116       1.1     oster #include <sys/errno.h>
    117       1.1     oster #include <sys/param.h>
    118       1.1     oster #include <sys/pool.h>
    119       1.1     oster #include <sys/queue.h>
    120       1.1     oster #include <sys/disk.h>
    121       1.1     oster #include <sys/device.h>
    122       1.1     oster #include <sys/stat.h>
    123       1.1     oster #include <sys/ioctl.h>
    124       1.1     oster #include <sys/fcntl.h>
    125       1.1     oster #include <sys/systm.h>
    126       1.1     oster #include <sys/namei.h>
    127       1.1     oster #include <sys/vnode.h>
    128       1.1     oster #include <sys/param.h>
    129       1.1     oster #include <sys/types.h>
    130       1.1     oster #include <machine/types.h>
    131       1.1     oster #include <sys/disklabel.h>
    132       1.1     oster #include <sys/conf.h>
    133       1.1     oster #include <sys/lock.h>
    134       1.1     oster #include <sys/buf.h>
    135       1.1     oster #include <sys/user.h>
    136  1.29.2.1    bouyer #include <sys/reboot.h>
    137       1.8     oster 
    138       1.8     oster #include "raid.h"
    139  1.29.2.1    bouyer #include "opt_raid_autoconfig.h"
    140       1.1     oster #include "rf_raid.h"
    141       1.1     oster #include "rf_raidframe.h"
    142  1.29.2.1    bouyer #include "rf_copyback.h"
    143       1.1     oster #include "rf_dag.h"
    144       1.1     oster #include "rf_dagflags.h"
    145  1.29.2.1    bouyer #include "rf_desc.h"
    146       1.1     oster #include "rf_diskqueue.h"
    147       1.1     oster #include "rf_acctrace.h"
    148       1.1     oster #include "rf_etimer.h"
    149       1.1     oster #include "rf_general.h"
    150       1.1     oster #include "rf_debugMem.h"
    151       1.1     oster #include "rf_kintf.h"
    152       1.1     oster #include "rf_options.h"
    153       1.1     oster #include "rf_driver.h"
    154       1.1     oster #include "rf_parityscan.h"
    155       1.1     oster #include "rf_debugprint.h"
    156       1.1     oster #include "rf_threadstuff.h"
    157  1.29.2.1    bouyer #include "rf_configure.h"
    158       1.1     oster 
    159       1.9     oster int     rf_kdebug_level = 0;
    160       1.1     oster 
    161       1.1     oster #ifdef DEBUG
    162       1.1     oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    163       1.9     oster #else				/* DEBUG */
    164       1.1     oster #define db1_printf(a) { }
    165       1.9     oster #endif				/* DEBUG */
    166       1.1     oster 
    167       1.9     oster static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    168       1.1     oster 
    169      1.11     oster RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    170       1.1     oster 
    171      1.10     oster static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    172      1.10     oster 						 * spare table */
    173      1.10     oster static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    174      1.10     oster 						 * installation process */
    175      1.10     oster 
    176       1.1     oster /* prototypes */
    177      1.10     oster static void KernelWakeupFunc(struct buf * bp);
    178      1.10     oster static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    179      1.10     oster 		   dev_t dev, RF_SectorNum_t startSect,
    180      1.10     oster 		   RF_SectorCount_t numSect, caddr_t buf,
    181      1.10     oster 		   void (*cbFunc) (struct buf *), void *cbArg,
    182      1.10     oster 		   int logBytesPerSector, struct proc * b_proc);
    183  1.29.2.5    bouyer static void raidinit(RF_Raid_t *);
    184       1.1     oster 
    185  1.29.2.5    bouyer void raidattach(int);
    186  1.29.2.5    bouyer int raidsize(dev_t);
    187  1.29.2.5    bouyer int raidopen(dev_t, int, int, struct proc *);
    188  1.29.2.5    bouyer int raidclose(dev_t, int, int, struct proc *);
    189  1.29.2.5    bouyer int raidioctl(dev_t, u_long, caddr_t, int, struct proc *);
    190  1.29.2.5    bouyer int raidwrite(dev_t, struct uio *, int);
    191  1.29.2.5    bouyer int raidread(dev_t, struct uio *, int);
    192  1.29.2.5    bouyer void raidstrategy(struct buf *);
    193  1.29.2.5    bouyer int raiddump(dev_t, daddr_t, caddr_t, size_t);
    194       1.1     oster 
    195       1.1     oster /*
    196       1.1     oster  * Pilfered from ccd.c
    197       1.1     oster  */
    198       1.1     oster 
    199      1.10     oster struct raidbuf {
    200      1.10     oster 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    201      1.10     oster 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    202      1.10     oster 	int     rf_flags;	/* misc. flags */
    203      1.11     oster 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    204      1.10     oster };
    205       1.1     oster 
    206       1.1     oster 
    207       1.1     oster #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    208       1.1     oster #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    209       1.1     oster 
    210       1.9     oster /* XXX Not sure if the following should be replacing the raidPtrs above,
    211  1.29.2.1    bouyer    or if it should be used in conjunction with that...
    212  1.29.2.1    bouyer */
    213       1.1     oster 
    214      1.10     oster struct raid_softc {
    215      1.10     oster 	int     sc_flags;	/* flags */
    216      1.10     oster 	int     sc_cflags;	/* configuration flags */
    217      1.11     oster 	size_t  sc_size;        /* size of the raid device */
    218      1.10     oster 	char    sc_xname[20];	/* XXX external name */
    219      1.10     oster 	struct disk sc_dkdev;	/* generic disk device info */
    220      1.10     oster 	struct pool sc_cbufpool;	/* component buffer pool */
    221  1.29.2.1    bouyer 	struct buf_queue buf_queue;	/* used for the device queue */
    222      1.10     oster };
    223       1.1     oster /* sc_flags */
    224       1.1     oster #define RAIDF_INITED	0x01	/* unit has been initialized */
    225       1.1     oster #define RAIDF_WLABEL	0x02	/* label area is writable */
    226       1.1     oster #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    227       1.1     oster #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    228       1.1     oster #define RAIDF_LOCKED	0x80	/* unit is locked */
    229       1.1     oster 
    230       1.1     oster #define	raidunit(x)	DISKUNIT(x)
    231  1.29.2.1    bouyer int numraid = 0;
    232       1.1     oster 
    233      1.20     oster /*
    234      1.20     oster  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    235      1.20     oster  * Be aware that large numbers can allow the driver to consume a lot of
    236      1.28     oster  * kernel memory, especially on writes, and in degraded mode reads.
    237      1.28     oster  *
    238      1.28     oster  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    239      1.28     oster  * a single 64K write will typically require 64K for the old data,
    240      1.28     oster  * 64K for the old parity, and 64K for the new parity, for a total
    241      1.28     oster  * of 192K (if the parity buffer is not re-used immediately).
    242      1.28     oster  * Even it if is used immedately, that's still 128K, which when multiplied
    243      1.28     oster  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    244      1.28     oster  *
    245      1.28     oster  * Now in degraded mode, for example, a 64K read on the above setup may
    246      1.28     oster  * require data reconstruction, which will require *all* of the 4 remaining
    247      1.28     oster  * disks to participate -- 4 * 32K/disk == 128K again.
    248      1.20     oster  */
    249      1.20     oster 
    250      1.20     oster #ifndef RAIDOUTSTANDING
    251      1.28     oster #define RAIDOUTSTANDING   6
    252      1.20     oster #endif
    253      1.20     oster 
    254       1.1     oster #define RAIDLABELDEV(dev)	\
    255       1.1     oster 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    256       1.1     oster 
    257       1.1     oster /* declared here, and made public, for the benefit of KVM stuff.. */
    258      1.10     oster struct raid_softc *raid_softc;
    259       1.9     oster 
    260  1.29.2.5    bouyer static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    261  1.29.2.5    bouyer 				     struct disklabel *);
    262  1.29.2.5    bouyer static void raidgetdisklabel(dev_t);
    263  1.29.2.5    bouyer static void raidmakedisklabel(struct raid_softc *);
    264       1.1     oster 
    265  1.29.2.5    bouyer static int raidlock(struct raid_softc *);
    266  1.29.2.5    bouyer static void raidunlock(struct raid_softc *);
    267       1.1     oster 
    268  1.29.2.5    bouyer static void rf_markalldirty(RF_Raid_t *);
    269  1.29.2.5    bouyer void rf_mountroot_hook(struct device *);
    270  1.29.2.1    bouyer 
    271  1.29.2.1    bouyer struct device *raidrootdev;
    272  1.29.2.1    bouyer 
    273  1.29.2.5    bouyer void rf_ReconThread(struct rf_recon_req *);
    274  1.29.2.1    bouyer /* XXX what I want is: */
    275  1.29.2.5    bouyer /*void rf_ReconThread(RF_Raid_t *raidPtr);  */
    276  1.29.2.5    bouyer void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    277  1.29.2.5    bouyer void rf_CopybackThread(RF_Raid_t *raidPtr);
    278  1.29.2.5    bouyer void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    279  1.29.2.5    bouyer void rf_buildroothack(void *);
    280  1.29.2.5    bouyer 
    281  1.29.2.5    bouyer RF_AutoConfig_t *rf_find_raid_components(void);
    282  1.29.2.5    bouyer RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    283  1.29.2.5    bouyer static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    284  1.29.2.5    bouyer static int rf_reasonable_label(RF_ComponentLabel_t *);
    285  1.29.2.5    bouyer void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    286  1.29.2.5    bouyer int rf_set_autoconfig(RF_Raid_t *, int);
    287  1.29.2.5    bouyer int rf_set_rootpartition(RF_Raid_t *, int);
    288  1.29.2.5    bouyer void rf_release_all_vps(RF_ConfigSet_t *);
    289  1.29.2.5    bouyer void rf_cleanup_config_set(RF_ConfigSet_t *);
    290  1.29.2.5    bouyer int rf_have_enough_components(RF_ConfigSet_t *);
    291  1.29.2.5    bouyer int rf_auto_config_set(RF_ConfigSet_t *, int *);
    292  1.29.2.1    bouyer 
    293  1.29.2.1    bouyer static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    294  1.29.2.1    bouyer 				  allow autoconfig to take place.
    295  1.29.2.1    bouyer 			          Note that this is overridden by having
    296  1.29.2.1    bouyer 			          RAID_AUTOCONFIG as an option in the
    297  1.29.2.1    bouyer 			          kernel config file.  */
    298       1.1     oster 
    299      1.10     oster void
    300      1.10     oster raidattach(num)
    301       1.9     oster 	int     num;
    302       1.1     oster {
    303      1.14     oster 	int raidID;
    304      1.14     oster 	int i, rc;
    305  1.29.2.1    bouyer 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    306  1.29.2.1    bouyer 	RF_ConfigSet_t *config_sets;
    307       1.1     oster 
    308       1.1     oster #ifdef DEBUG
    309       1.9     oster 	printf("raidattach: Asked for %d units\n", num);
    310       1.1     oster #endif
    311       1.1     oster 
    312       1.1     oster 	if (num <= 0) {
    313       1.1     oster #ifdef DIAGNOSTIC
    314       1.1     oster 		panic("raidattach: count <= 0");
    315       1.1     oster #endif
    316       1.1     oster 		return;
    317       1.1     oster 	}
    318       1.9     oster 	/* This is where all the initialization stuff gets done. */
    319       1.1     oster 
    320  1.29.2.1    bouyer 	numraid = num;
    321  1.29.2.1    bouyer 
    322       1.1     oster 	/* Make some space for requested number of units... */
    323       1.1     oster 
    324       1.1     oster 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    325       1.1     oster 	if (raidPtrs == NULL) {
    326       1.1     oster 		panic("raidPtrs is NULL!!\n");
    327       1.1     oster 	}
    328      1.14     oster 
    329      1.14     oster 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    330      1.14     oster 	if (rc) {
    331      1.14     oster 		RF_PANIC();
    332      1.14     oster 	}
    333      1.14     oster 
    334      1.14     oster 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    335      1.14     oster 
    336  1.29.2.1    bouyer 	for (i = 0; i < num; i++)
    337      1.14     oster 		raidPtrs[i] = NULL;
    338      1.14     oster 	rc = rf_BootRaidframe();
    339      1.14     oster 	if (rc == 0)
    340      1.14     oster 		printf("Kernelized RAIDframe activated\n");
    341      1.14     oster 	else
    342       1.1     oster 		panic("Serious error booting RAID!!\n");
    343      1.14     oster 
    344       1.9     oster 	/* put together some datastructures like the CCD device does.. This
    345       1.9     oster 	 * lets us lock the device and what-not when it gets opened. */
    346       1.1     oster 
    347       1.1     oster 	raid_softc = (struct raid_softc *)
    348  1.29.2.1    bouyer 		malloc(num * sizeof(struct raid_softc),
    349  1.29.2.1    bouyer 		       M_RAIDFRAME, M_NOWAIT);
    350       1.1     oster 	if (raid_softc == NULL) {
    351       1.1     oster 		printf("WARNING: no memory for RAIDframe driver\n");
    352       1.1     oster 		return;
    353       1.1     oster 	}
    354  1.29.2.1    bouyer 
    355       1.1     oster 	bzero(raid_softc, num * sizeof(struct raid_softc));
    356  1.29.2.1    bouyer 
    357  1.29.2.1    bouyer 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    358  1.29.2.1    bouyer 					      M_RAIDFRAME, M_NOWAIT);
    359  1.29.2.1    bouyer 	if (raidrootdev == NULL) {
    360  1.29.2.1    bouyer 		panic("No memory for RAIDframe driver!!?!?!\n");
    361  1.29.2.1    bouyer 	}
    362  1.29.2.1    bouyer 
    363       1.9     oster 	for (raidID = 0; raidID < num; raidID++) {
    364  1.29.2.1    bouyer 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    365  1.29.2.1    bouyer 
    366  1.29.2.1    bouyer 		raidrootdev[raidID].dv_class  = DV_DISK;
    367  1.29.2.1    bouyer 		raidrootdev[raidID].dv_cfdata = NULL;
    368  1.29.2.1    bouyer 		raidrootdev[raidID].dv_unit   = raidID;
    369  1.29.2.1    bouyer 		raidrootdev[raidID].dv_parent = NULL;
    370  1.29.2.1    bouyer 		raidrootdev[raidID].dv_flags  = 0;
    371  1.29.2.1    bouyer 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    372  1.29.2.1    bouyer 
    373       1.9     oster 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    374      1.11     oster 			  (RF_Raid_t *));
    375       1.9     oster 		if (raidPtrs[raidID] == NULL) {
    376  1.29.2.1    bouyer 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    377  1.29.2.1    bouyer 			numraid = raidID;
    378  1.29.2.1    bouyer 			return;
    379  1.29.2.1    bouyer 		}
    380  1.29.2.1    bouyer 	}
    381  1.29.2.1    bouyer 
    382  1.29.2.1    bouyer #if RAID_AUTOCONFIG
    383  1.29.2.1    bouyer 	raidautoconfig = 1;
    384  1.29.2.1    bouyer #endif
    385  1.29.2.1    bouyer 
    386  1.29.2.1    bouyer if (raidautoconfig) {
    387  1.29.2.1    bouyer 	/* 1. locate all RAID components on the system */
    388  1.29.2.1    bouyer 
    389  1.29.2.1    bouyer #if DEBUG
    390  1.29.2.1    bouyer 	printf("Searching for raid components...\n");
    391  1.29.2.1    bouyer #endif
    392  1.29.2.1    bouyer 	ac_list = rf_find_raid_components();
    393  1.29.2.1    bouyer 
    394  1.29.2.1    bouyer 	/* 2. sort them into their respective sets */
    395  1.29.2.1    bouyer 
    396  1.29.2.1    bouyer 	config_sets = rf_create_auto_sets(ac_list);
    397  1.29.2.1    bouyer 
    398  1.29.2.1    bouyer 	/* 3. evaluate each set and configure the valid ones
    399  1.29.2.1    bouyer 	   This gets done in rf_buildroothack() */
    400  1.29.2.1    bouyer 
    401  1.29.2.1    bouyer 	/* schedule the creation of the thread to do the
    402  1.29.2.1    bouyer 	   "/ on RAID" stuff */
    403  1.29.2.1    bouyer 
    404  1.29.2.1    bouyer 	kthread_create(rf_buildroothack,config_sets);
    405  1.29.2.1    bouyer 
    406  1.29.2.1    bouyer #if 0
    407  1.29.2.1    bouyer 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    408  1.29.2.1    bouyer #endif
    409  1.29.2.1    bouyer }
    410  1.29.2.1    bouyer 
    411  1.29.2.1    bouyer }
    412  1.29.2.1    bouyer 
    413  1.29.2.1    bouyer void
    414  1.29.2.1    bouyer rf_buildroothack(arg)
    415  1.29.2.1    bouyer 	void *arg;
    416  1.29.2.1    bouyer {
    417  1.29.2.1    bouyer 	RF_ConfigSet_t *config_sets = arg;
    418  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
    419  1.29.2.1    bouyer 	RF_ConfigSet_t *next_cset;
    420  1.29.2.1    bouyer 	int retcode;
    421  1.29.2.1    bouyer 	int raidID;
    422  1.29.2.1    bouyer 	int rootID;
    423  1.29.2.1    bouyer 	int num_root;
    424  1.29.2.1    bouyer 
    425  1.29.2.3    bouyer 	rootID = 0;
    426  1.29.2.1    bouyer 	num_root = 0;
    427  1.29.2.1    bouyer 	cset = config_sets;
    428  1.29.2.1    bouyer 	while(cset != NULL ) {
    429  1.29.2.1    bouyer 		next_cset = cset->next;
    430  1.29.2.1    bouyer 		if (rf_have_enough_components(cset) &&
    431  1.29.2.1    bouyer 		    cset->ac->clabel->autoconfigure==1) {
    432  1.29.2.1    bouyer 			retcode = rf_auto_config_set(cset,&raidID);
    433  1.29.2.1    bouyer 			if (!retcode) {
    434  1.29.2.1    bouyer 				if (cset->rootable) {
    435  1.29.2.1    bouyer 					rootID = raidID;
    436  1.29.2.1    bouyer 					num_root++;
    437  1.29.2.1    bouyer 				}
    438  1.29.2.1    bouyer 			} else {
    439  1.29.2.1    bouyer 				/* The autoconfig didn't work :( */
    440  1.29.2.1    bouyer #if DEBUG
    441  1.29.2.1    bouyer 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442  1.29.2.1    bouyer #endif
    443  1.29.2.1    bouyer 				rf_release_all_vps(cset);
    444  1.29.2.1    bouyer 			}
    445  1.29.2.1    bouyer 		} else {
    446  1.29.2.1    bouyer 			/* we're not autoconfiguring this set...
    447  1.29.2.1    bouyer 			   release the associated resources */
    448  1.29.2.1    bouyer 			rf_release_all_vps(cset);
    449  1.29.2.1    bouyer 		}
    450  1.29.2.1    bouyer 		/* cleanup */
    451  1.29.2.1    bouyer 		rf_cleanup_config_set(cset);
    452  1.29.2.1    bouyer 		cset = next_cset;
    453  1.29.2.1    bouyer 	}
    454  1.29.2.1    bouyer 	if (boothowto & RB_ASKNAME) {
    455  1.29.2.1    bouyer 		/* We don't auto-config... */
    456  1.29.2.1    bouyer 	} else {
    457  1.29.2.1    bouyer 		/* They didn't ask, and we found something bootable... */
    458  1.29.2.1    bouyer 
    459  1.29.2.1    bouyer 		if (num_root == 1) {
    460  1.29.2.1    bouyer 			booted_device = &raidrootdev[rootID];
    461  1.29.2.1    bouyer 		} else if (num_root > 1) {
    462  1.29.2.1    bouyer 			/* we can't guess.. require the user to answer... */
    463  1.29.2.1    bouyer 			boothowto |= RB_ASKNAME;
    464       1.1     oster 		}
    465       1.1     oster 	}
    466       1.1     oster }
    467       1.1     oster 
    468       1.1     oster 
    469       1.1     oster int
    470       1.1     oster raidsize(dev)
    471       1.9     oster 	dev_t   dev;
    472       1.1     oster {
    473       1.1     oster 	struct raid_softc *rs;
    474       1.1     oster 	struct disklabel *lp;
    475       1.9     oster 	int     part, unit, omask, size;
    476       1.1     oster 
    477       1.1     oster 	unit = raidunit(dev);
    478       1.1     oster 	if (unit >= numraid)
    479       1.1     oster 		return (-1);
    480       1.1     oster 	rs = &raid_softc[unit];
    481       1.1     oster 
    482       1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483       1.1     oster 		return (-1);
    484       1.1     oster 
    485       1.1     oster 	part = DISKPART(dev);
    486       1.1     oster 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487       1.1     oster 	lp = rs->sc_dkdev.dk_label;
    488       1.1     oster 
    489       1.1     oster 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490       1.1     oster 		return (-1);
    491       1.1     oster 
    492       1.1     oster 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493       1.1     oster 		size = -1;
    494       1.1     oster 	else
    495       1.1     oster 		size = lp->d_partitions[part].p_size *
    496       1.1     oster 		    (lp->d_secsize / DEV_BSIZE);
    497       1.1     oster 
    498       1.1     oster 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499       1.1     oster 		return (-1);
    500       1.1     oster 
    501       1.1     oster 	return (size);
    502       1.1     oster 
    503       1.1     oster }
    504       1.1     oster 
    505       1.1     oster int
    506       1.1     oster raiddump(dev, blkno, va, size)
    507       1.9     oster 	dev_t   dev;
    508       1.1     oster 	daddr_t blkno;
    509       1.1     oster 	caddr_t va;
    510       1.9     oster 	size_t  size;
    511       1.1     oster {
    512       1.1     oster 	/* Not implemented. */
    513       1.1     oster 	return ENXIO;
    514       1.1     oster }
    515       1.1     oster /* ARGSUSED */
    516       1.1     oster int
    517       1.1     oster raidopen(dev, flags, fmt, p)
    518       1.9     oster 	dev_t   dev;
    519       1.9     oster 	int     flags, fmt;
    520       1.1     oster 	struct proc *p;
    521       1.1     oster {
    522       1.9     oster 	int     unit = raidunit(dev);
    523       1.1     oster 	struct raid_softc *rs;
    524       1.1     oster 	struct disklabel *lp;
    525       1.9     oster 	int     part, pmask;
    526       1.9     oster 	int     error = 0;
    527       1.9     oster 
    528       1.1     oster 	if (unit >= numraid)
    529       1.1     oster 		return (ENXIO);
    530       1.1     oster 	rs = &raid_softc[unit];
    531       1.1     oster 
    532       1.1     oster 	if ((error = raidlock(rs)) != 0)
    533       1.9     oster 		return (error);
    534       1.1     oster 	lp = rs->sc_dkdev.dk_label;
    535       1.1     oster 
    536       1.1     oster 	part = DISKPART(dev);
    537       1.1     oster 	pmask = (1 << part);
    538       1.1     oster 
    539       1.1     oster 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540      1.14     oster 		unit, part));
    541       1.1     oster 
    542       1.1     oster 
    543       1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) &&
    544       1.1     oster 	    (rs->sc_dkdev.dk_openmask == 0))
    545       1.9     oster 		raidgetdisklabel(dev);
    546       1.1     oster 
    547       1.1     oster 	/* make sure that this partition exists */
    548       1.1     oster 
    549       1.1     oster 	if (part != RAW_PART) {
    550       1.1     oster 		db1_printf(("Not a raw partition..\n"));
    551       1.1     oster 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552       1.1     oster 		    ((part >= lp->d_npartitions) ||
    553       1.9     oster 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554       1.1     oster 			error = ENXIO;
    555       1.1     oster 			raidunlock(rs);
    556       1.1     oster 			db1_printf(("Bailing out...\n"));
    557       1.9     oster 			return (error);
    558       1.1     oster 		}
    559       1.1     oster 	}
    560       1.1     oster 	/* Prevent this unit from being unconfigured while open. */
    561       1.1     oster 	switch (fmt) {
    562       1.1     oster 	case S_IFCHR:
    563       1.1     oster 		rs->sc_dkdev.dk_copenmask |= pmask;
    564       1.1     oster 		break;
    565       1.1     oster 
    566       1.1     oster 	case S_IFBLK:
    567       1.1     oster 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568       1.1     oster 		break;
    569       1.1     oster 	}
    570      1.13     oster 
    571      1.13     oster 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572      1.13     oster 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573      1.13     oster 		/* First one... mark things as dirty... Note that we *MUST*
    574      1.13     oster 		 have done a configure before this.  I DO NOT WANT TO BE
    575      1.13     oster 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576      1.13     oster 		 THAT THEY BELONG TOGETHER!!!!! */
    577      1.13     oster 		/* XXX should check to see if we're only open for reading
    578      1.13     oster 		   here... If so, we needn't do this, but then need some
    579      1.13     oster 		   other way of keeping track of what's happened.. */
    580      1.13     oster 
    581      1.13     oster 		rf_markalldirty( raidPtrs[unit] );
    582      1.13     oster 	}
    583      1.13     oster 
    584      1.13     oster 
    585       1.1     oster 	rs->sc_dkdev.dk_openmask =
    586       1.1     oster 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587       1.1     oster 
    588       1.1     oster 	raidunlock(rs);
    589       1.1     oster 
    590       1.9     oster 	return (error);
    591       1.1     oster 
    592       1.1     oster 
    593       1.1     oster }
    594       1.1     oster /* ARGSUSED */
    595       1.1     oster int
    596       1.1     oster raidclose(dev, flags, fmt, p)
    597       1.9     oster 	dev_t   dev;
    598       1.9     oster 	int     flags, fmt;
    599       1.1     oster 	struct proc *p;
    600       1.1     oster {
    601       1.9     oster 	int     unit = raidunit(dev);
    602       1.1     oster 	struct raid_softc *rs;
    603       1.9     oster 	int     error = 0;
    604       1.9     oster 	int     part;
    605       1.1     oster 
    606       1.1     oster 	if (unit >= numraid)
    607       1.1     oster 		return (ENXIO);
    608       1.1     oster 	rs = &raid_softc[unit];
    609       1.1     oster 
    610       1.1     oster 	if ((error = raidlock(rs)) != 0)
    611       1.1     oster 		return (error);
    612       1.1     oster 
    613       1.1     oster 	part = DISKPART(dev);
    614       1.1     oster 
    615       1.1     oster 	/* ...that much closer to allowing unconfiguration... */
    616       1.1     oster 	switch (fmt) {
    617       1.1     oster 	case S_IFCHR:
    618       1.1     oster 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619       1.1     oster 		break;
    620       1.1     oster 
    621       1.1     oster 	case S_IFBLK:
    622       1.1     oster 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623       1.1     oster 		break;
    624       1.1     oster 	}
    625       1.1     oster 	rs->sc_dkdev.dk_openmask =
    626       1.1     oster 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627      1.13     oster 
    628      1.13     oster 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629      1.13     oster 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630      1.13     oster 		/* Last one... device is not unconfigured yet.
    631      1.13     oster 		   Device shutdown has taken care of setting the
    632      1.13     oster 		   clean bits if RAIDF_INITED is not set
    633      1.13     oster 		   mark things as clean... */
    634  1.29.2.1    bouyer #if 0
    635  1.29.2.1    bouyer 		printf("Last one on raid%d.  Updating status.\n",unit);
    636  1.29.2.1    bouyer #endif
    637  1.29.2.1    bouyer 		rf_update_component_labels(raidPtrs[unit],
    638  1.29.2.1    bouyer 						 RF_FINAL_COMPONENT_UPDATE);
    639      1.13     oster 	}
    640       1.1     oster 
    641       1.1     oster 	raidunlock(rs);
    642       1.1     oster 	return (0);
    643       1.1     oster 
    644       1.1     oster }
    645       1.1     oster 
    646       1.1     oster void
    647       1.1     oster raidstrategy(bp)
    648  1.29.2.1    bouyer 	struct buf *bp;
    649       1.1     oster {
    650  1.29.2.1    bouyer 	int s;
    651       1.1     oster 
    652       1.1     oster 	unsigned int raidID = raidunit(bp->b_dev);
    653       1.1     oster 	RF_Raid_t *raidPtr;
    654       1.1     oster 	struct raid_softc *rs = &raid_softc[raidID];
    655       1.1     oster 	struct disklabel *lp;
    656       1.9     oster 	int     wlabel;
    657       1.1     oster 
    658  1.29.2.1    bouyer 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    659  1.29.2.1    bouyer 		bp->b_error = ENXIO;
    660  1.29.2.2    bouyer 		bp->b_flags |= B_ERROR;
    661  1.29.2.1    bouyer 		bp->b_resid = bp->b_bcount;
    662  1.29.2.1    bouyer 		biodone(bp);
    663       1.1     oster 		return;
    664  1.29.2.1    bouyer 	}
    665       1.1     oster 	if (raidID >= numraid || !raidPtrs[raidID]) {
    666       1.1     oster 		bp->b_error = ENODEV;
    667       1.1     oster 		bp->b_flags |= B_ERROR;
    668       1.1     oster 		bp->b_resid = bp->b_bcount;
    669       1.1     oster 		biodone(bp);
    670       1.1     oster 		return;
    671       1.1     oster 	}
    672       1.1     oster 	raidPtr = raidPtrs[raidID];
    673       1.1     oster 	if (!raidPtr->valid) {
    674       1.1     oster 		bp->b_error = ENODEV;
    675       1.1     oster 		bp->b_flags |= B_ERROR;
    676       1.1     oster 		bp->b_resid = bp->b_bcount;
    677       1.1     oster 		biodone(bp);
    678       1.1     oster 		return;
    679       1.1     oster 	}
    680       1.1     oster 	if (bp->b_bcount == 0) {
    681       1.1     oster 		db1_printf(("b_bcount is zero..\n"));
    682       1.1     oster 		biodone(bp);
    683       1.1     oster 		return;
    684       1.1     oster 	}
    685       1.1     oster 	lp = rs->sc_dkdev.dk_label;
    686       1.1     oster 
    687       1.1     oster 	/*
    688       1.1     oster 	 * Do bounds checking and adjust transfer.  If there's an
    689       1.1     oster 	 * error, the bounds check will flag that for us.
    690       1.1     oster 	 */
    691       1.1     oster 
    692       1.9     oster 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    693       1.1     oster 	if (DISKPART(bp->b_dev) != RAW_PART)
    694       1.1     oster 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    695       1.1     oster 			db1_printf(("Bounds check failed!!:%d %d\n",
    696       1.9     oster 				(int) bp->b_blkno, (int) wlabel));
    697       1.1     oster 			biodone(bp);
    698       1.1     oster 			return;
    699       1.1     oster 		}
    700  1.29.2.1    bouyer 	s = splbio();
    701       1.1     oster 
    702       1.1     oster 	bp->b_resid = 0;
    703  1.29.2.1    bouyer 
    704  1.29.2.1    bouyer 	/* stuff it onto our queue */
    705  1.29.2.1    bouyer 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    706  1.29.2.1    bouyer 
    707  1.29.2.1    bouyer 	raidstart(raidPtrs[raidID]);
    708  1.29.2.1    bouyer 
    709       1.1     oster 	splx(s);
    710       1.1     oster }
    711       1.1     oster /* ARGSUSED */
    712       1.1     oster int
    713       1.1     oster raidread(dev, uio, flags)
    714       1.9     oster 	dev_t   dev;
    715       1.1     oster 	struct uio *uio;
    716       1.9     oster 	int     flags;
    717       1.1     oster {
    718       1.9     oster 	int     unit = raidunit(dev);
    719       1.1     oster 	struct raid_softc *rs;
    720       1.9     oster 	int     part;
    721       1.1     oster 
    722       1.1     oster 	if (unit >= numraid)
    723       1.1     oster 		return (ENXIO);
    724       1.1     oster 	rs = &raid_softc[unit];
    725       1.1     oster 
    726       1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    727       1.1     oster 		return (ENXIO);
    728       1.1     oster 	part = DISKPART(dev);
    729       1.1     oster 
    730       1.9     oster 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    731       1.1     oster 
    732       1.1     oster 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    733       1.1     oster 
    734       1.1     oster }
    735       1.1     oster /* ARGSUSED */
    736       1.1     oster int
    737       1.1     oster raidwrite(dev, uio, flags)
    738       1.9     oster 	dev_t   dev;
    739       1.1     oster 	struct uio *uio;
    740       1.9     oster 	int     flags;
    741       1.1     oster {
    742       1.9     oster 	int     unit = raidunit(dev);
    743       1.1     oster 	struct raid_softc *rs;
    744       1.1     oster 
    745       1.1     oster 	if (unit >= numraid)
    746       1.1     oster 		return (ENXIO);
    747       1.1     oster 	rs = &raid_softc[unit];
    748       1.1     oster 
    749       1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    750       1.1     oster 		return (ENXIO);
    751       1.1     oster 	db1_printf(("raidwrite\n"));
    752       1.1     oster 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    753       1.1     oster 
    754       1.1     oster }
    755       1.1     oster 
    756       1.1     oster int
    757       1.1     oster raidioctl(dev, cmd, data, flag, p)
    758       1.9     oster 	dev_t   dev;
    759       1.9     oster 	u_long  cmd;
    760       1.1     oster 	caddr_t data;
    761       1.9     oster 	int     flag;
    762       1.1     oster 	struct proc *p;
    763       1.1     oster {
    764       1.9     oster 	int     unit = raidunit(dev);
    765       1.9     oster 	int     error = 0;
    766       1.9     oster 	int     part, pmask;
    767       1.1     oster 	struct raid_softc *rs;
    768       1.1     oster 	RF_Config_t *k_cfg, *u_cfg;
    769  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
    770  1.29.2.1    bouyer 	RF_RaidDisk_t *diskPtr;
    771  1.29.2.1    bouyer 	RF_AccTotals_t *totals;
    772  1.29.2.1    bouyer 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    773       1.1     oster 	u_char *specific_buf;
    774      1.11     oster 	int retcode = 0;
    775      1.11     oster 	int row;
    776      1.11     oster 	int column;
    777       1.1     oster 	struct rf_recon_req *rrcopy, *rr;
    778  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
    779      1.11     oster 	RF_ComponentLabel_t ci_label;
    780  1.29.2.1    bouyer 	RF_ComponentLabel_t **clabel_ptr;
    781      1.12     oster 	RF_SingleComponent_t *sparePtr,*componentPtr;
    782      1.12     oster 	RF_SingleComponent_t hot_spare;
    783      1.12     oster 	RF_SingleComponent_t component;
    784  1.29.2.1    bouyer 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    785  1.29.2.1    bouyer 	int i, j, d;
    786  1.29.2.4    bouyer #ifdef __HAVE_OLD_DISKLABEL
    787  1.29.2.4    bouyer 	struct disklabel newlabel;
    788  1.29.2.4    bouyer #endif
    789       1.1     oster 
    790       1.1     oster 	if (unit >= numraid)
    791       1.1     oster 		return (ENXIO);
    792       1.1     oster 	rs = &raid_softc[unit];
    793  1.29.2.1    bouyer 	raidPtr = raidPtrs[unit];
    794       1.1     oster 
    795       1.9     oster 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    796       1.9     oster 		(int) DISKPART(dev), (int) unit, (int) cmd));
    797       1.1     oster 
    798       1.1     oster 	/* Must be open for writes for these commands... */
    799       1.1     oster 	switch (cmd) {
    800       1.1     oster 	case DIOCSDINFO:
    801       1.1     oster 	case DIOCWDINFO:
    802  1.29.2.4    bouyer #ifdef __HAVE_OLD_DISKLABEL
    803  1.29.2.4    bouyer 	case ODIOCWDINFO:
    804  1.29.2.4    bouyer 	case ODIOCSDINFO:
    805  1.29.2.4    bouyer #endif
    806       1.1     oster 	case DIOCWLABEL:
    807       1.1     oster 		if ((flag & FWRITE) == 0)
    808       1.1     oster 			return (EBADF);
    809       1.1     oster 	}
    810       1.1     oster 
    811       1.1     oster 	/* Must be initialized for these... */
    812       1.1     oster 	switch (cmd) {
    813       1.1     oster 	case DIOCGDINFO:
    814       1.1     oster 	case DIOCSDINFO:
    815       1.1     oster 	case DIOCWDINFO:
    816  1.29.2.4    bouyer #ifdef __HAVE_OLD_DISKLABEL
    817  1.29.2.4    bouyer 	case ODIOCGDINFO:
    818  1.29.2.4    bouyer 	case ODIOCWDINFO:
    819  1.29.2.4    bouyer 	case ODIOCSDINFO:
    820  1.29.2.4    bouyer 	case ODIOCGDEFLABEL:
    821  1.29.2.4    bouyer #endif
    822       1.1     oster 	case DIOCGPART:
    823       1.1     oster 	case DIOCWLABEL:
    824       1.1     oster 	case DIOCGDEFLABEL:
    825       1.1     oster 	case RAIDFRAME_SHUTDOWN:
    826       1.1     oster 	case RAIDFRAME_REWRITEPARITY:
    827       1.1     oster 	case RAIDFRAME_GET_INFO:
    828       1.1     oster 	case RAIDFRAME_RESET_ACCTOTALS:
    829       1.1     oster 	case RAIDFRAME_GET_ACCTOTALS:
    830       1.1     oster 	case RAIDFRAME_KEEP_ACCTOTALS:
    831       1.1     oster 	case RAIDFRAME_GET_SIZE:
    832       1.1     oster 	case RAIDFRAME_FAIL_DISK:
    833       1.1     oster 	case RAIDFRAME_COPYBACK:
    834  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_RECON_STATUS:
    835  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    836      1.11     oster 	case RAIDFRAME_GET_COMPONENT_LABEL:
    837      1.11     oster 	case RAIDFRAME_SET_COMPONENT_LABEL:
    838      1.11     oster 	case RAIDFRAME_ADD_HOT_SPARE:
    839      1.11     oster 	case RAIDFRAME_REMOVE_HOT_SPARE:
    840      1.11     oster 	case RAIDFRAME_INIT_LABELS:
    841      1.12     oster 	case RAIDFRAME_REBUILD_IN_PLACE:
    842      1.23     oster 	case RAIDFRAME_CHECK_PARITY:
    843  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    844  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    845  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    846  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    847  1.29.2.1    bouyer 	case RAIDFRAME_SET_AUTOCONFIG:
    848  1.29.2.1    bouyer 	case RAIDFRAME_SET_ROOT:
    849  1.29.2.1    bouyer 	case RAIDFRAME_DELETE_COMPONENT:
    850  1.29.2.1    bouyer 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    851       1.1     oster 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    852       1.1     oster 			return (ENXIO);
    853       1.1     oster 	}
    854       1.9     oster 
    855       1.1     oster 	switch (cmd) {
    856       1.1     oster 
    857       1.1     oster 		/* configure the system */
    858       1.1     oster 	case RAIDFRAME_CONFIGURE:
    859       1.1     oster 
    860  1.29.2.1    bouyer 		if (raidPtr->valid) {
    861  1.29.2.1    bouyer 			/* There is a valid RAID set running on this unit! */
    862  1.29.2.1    bouyer 			printf("raid%d: Device already configured!\n",unit);
    863  1.29.2.1    bouyer 			return(EINVAL);
    864  1.29.2.1    bouyer 		}
    865  1.29.2.1    bouyer 
    866       1.1     oster 		/* copy-in the configuration information */
    867       1.1     oster 		/* data points to a pointer to the configuration structure */
    868  1.29.2.1    bouyer 
    869       1.9     oster 		u_cfg = *((RF_Config_t **) data);
    870       1.9     oster 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    871       1.1     oster 		if (k_cfg == NULL) {
    872       1.9     oster 			return (ENOMEM);
    873       1.1     oster 		}
    874       1.9     oster 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    875       1.9     oster 		    sizeof(RF_Config_t));
    876       1.1     oster 		if (retcode) {
    877  1.29.2.1    bouyer 			RF_Free(k_cfg, sizeof(RF_Config_t));
    878  1.29.2.1    bouyer 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    879       1.9     oster 				retcode));
    880       1.9     oster 			return (retcode);
    881       1.1     oster 		}
    882       1.9     oster 		/* allocate a buffer for the layout-specific data, and copy it
    883       1.9     oster 		 * in */
    884       1.1     oster 		if (k_cfg->layoutSpecificSize) {
    885       1.9     oster 			if (k_cfg->layoutSpecificSize > 10000) {
    886       1.1     oster 				/* sanity check */
    887  1.29.2.1    bouyer 				RF_Free(k_cfg, sizeof(RF_Config_t));
    888       1.9     oster 				return (EINVAL);
    889       1.1     oster 			}
    890       1.9     oster 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    891       1.9     oster 			    (u_char *));
    892       1.1     oster 			if (specific_buf == NULL) {
    893       1.9     oster 				RF_Free(k_cfg, sizeof(RF_Config_t));
    894       1.9     oster 				return (ENOMEM);
    895       1.1     oster 			}
    896       1.9     oster 			retcode = copyin(k_cfg->layoutSpecific,
    897       1.9     oster 			    (caddr_t) specific_buf,
    898       1.9     oster 			    k_cfg->layoutSpecificSize);
    899       1.1     oster 			if (retcode) {
    900  1.29.2.1    bouyer 				RF_Free(k_cfg, sizeof(RF_Config_t));
    901  1.29.2.1    bouyer 				RF_Free(specific_buf,
    902  1.29.2.1    bouyer 					k_cfg->layoutSpecificSize);
    903  1.29.2.1    bouyer 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    904       1.9     oster 					retcode));
    905       1.9     oster 				return (retcode);
    906       1.1     oster 			}
    907       1.9     oster 		} else
    908       1.9     oster 			specific_buf = NULL;
    909       1.1     oster 		k_cfg->layoutSpecific = specific_buf;
    910       1.9     oster 
    911       1.9     oster 		/* should do some kind of sanity check on the configuration.
    912       1.9     oster 		 * Store the sum of all the bytes in the last byte? */
    913       1.1     oster 
    914       1.1     oster 		/* configure the system */
    915       1.1     oster 
    916  1.29.2.1    bouyer 		/*
    917  1.29.2.1    bouyer 		 * Clear the entire RAID descriptor, just to make sure
    918  1.29.2.1    bouyer 		 *  there is no stale data left in the case of a
    919  1.29.2.1    bouyer 		 *  reconfiguration
    920  1.29.2.1    bouyer 		 */
    921  1.29.2.1    bouyer 		bzero((char *) raidPtr, sizeof(RF_Raid_t));
    922  1.29.2.1    bouyer 		raidPtr->raidid = unit;
    923       1.1     oster 
    924  1.29.2.1    bouyer 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    925       1.9     oster 
    926       1.1     oster 		if (retcode == 0) {
    927  1.29.2.1    bouyer 
    928  1.29.2.1    bouyer 			/* allow this many simultaneous IO's to
    929  1.29.2.1    bouyer 			   this RAID device */
    930  1.29.2.1    bouyer 			raidPtr->openings = RAIDOUTSTANDING;
    931  1.29.2.1    bouyer 
    932  1.29.2.1    bouyer 			raidinit(raidPtr);
    933  1.29.2.1    bouyer 			rf_markalldirty(raidPtr);
    934       1.9     oster 		}
    935       1.1     oster 		/* free the buffers.  No return code here. */
    936       1.1     oster 		if (k_cfg->layoutSpecificSize) {
    937       1.9     oster 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    938       1.1     oster 		}
    939       1.9     oster 		RF_Free(k_cfg, sizeof(RF_Config_t));
    940       1.9     oster 
    941       1.9     oster 		return (retcode);
    942       1.9     oster 
    943       1.9     oster 		/* shutdown the system */
    944       1.1     oster 	case RAIDFRAME_SHUTDOWN:
    945       1.9     oster 
    946       1.9     oster 		if ((error = raidlock(rs)) != 0)
    947       1.9     oster 			return (error);
    948       1.1     oster 
    949       1.1     oster 		/*
    950       1.1     oster 		 * If somebody has a partition mounted, we shouldn't
    951       1.1     oster 		 * shutdown.
    952       1.1     oster 		 */
    953       1.1     oster 
    954       1.1     oster 		part = DISKPART(dev);
    955       1.1     oster 		pmask = (1 << part);
    956       1.9     oster 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    957       1.9     oster 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    958       1.9     oster 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    959       1.9     oster 			raidunlock(rs);
    960       1.9     oster 			return (EBUSY);
    961       1.9     oster 		}
    962      1.11     oster 
    963  1.29.2.1    bouyer 		retcode = rf_Shutdown(raidPtr);
    964       1.1     oster 
    965       1.1     oster 		pool_destroy(&rs->sc_cbufpool);
    966       1.1     oster 
    967       1.1     oster 		/* It's no longer initialized... */
    968       1.1     oster 		rs->sc_flags &= ~RAIDF_INITED;
    969      1.16     oster 
    970       1.9     oster 		/* Detach the disk. */
    971       1.9     oster 		disk_detach(&rs->sc_dkdev);
    972       1.1     oster 
    973       1.1     oster 		raidunlock(rs);
    974       1.1     oster 
    975       1.9     oster 		return (retcode);
    976      1.11     oster 	case RAIDFRAME_GET_COMPONENT_LABEL:
    977  1.29.2.1    bouyer 		clabel_ptr = (RF_ComponentLabel_t **) data;
    978      1.11     oster 		/* need to read the component label for the disk indicated
    979  1.29.2.1    bouyer 		   by row,column in clabel */
    980      1.11     oster 
    981      1.11     oster 		/* For practice, let's get it directly fromdisk, rather
    982      1.11     oster 		   than from the in-core copy */
    983  1.29.2.1    bouyer 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    984      1.11     oster 			   (RF_ComponentLabel_t *));
    985  1.29.2.1    bouyer 		if (clabel == NULL)
    986      1.11     oster 			return (ENOMEM);
    987      1.11     oster 
    988  1.29.2.1    bouyer 		bzero((char *) clabel, sizeof(RF_ComponentLabel_t));
    989      1.11     oster 
    990  1.29.2.1    bouyer 		retcode = copyin( *clabel_ptr, clabel,
    991      1.11     oster 				  sizeof(RF_ComponentLabel_t));
    992      1.11     oster 
    993      1.11     oster 		if (retcode) {
    994  1.29.2.1    bouyer 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
    995      1.11     oster 			return(retcode);
    996      1.11     oster 		}
    997      1.11     oster 
    998  1.29.2.1    bouyer 		row = clabel->row;
    999  1.29.2.1    bouyer 		column = clabel->column;
   1000      1.26     oster 
   1001  1.29.2.1    bouyer 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1002  1.29.2.1    bouyer 		    (column < 0) || (column >= raidPtr->numCol +
   1003  1.29.2.1    bouyer 				     raidPtr->numSpare)) {
   1004  1.29.2.1    bouyer 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1005      1.26     oster 			return(EINVAL);
   1006      1.11     oster 		}
   1007      1.11     oster 
   1008  1.29.2.1    bouyer 		raidread_component_label(raidPtr->Disks[row][column].dev,
   1009  1.29.2.1    bouyer 				raidPtr->raid_cinfo[row][column].ci_vp,
   1010  1.29.2.1    bouyer 				clabel );
   1011      1.11     oster 
   1012  1.29.2.1    bouyer 		retcode = copyout((caddr_t) clabel,
   1013  1.29.2.1    bouyer 				  (caddr_t) *clabel_ptr,
   1014      1.11     oster 				  sizeof(RF_ComponentLabel_t));
   1015  1.29.2.1    bouyer 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1016      1.11     oster 		return (retcode);
   1017      1.11     oster 
   1018      1.11     oster 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1019  1.29.2.1    bouyer 		clabel = (RF_ComponentLabel_t *) data;
   1020      1.11     oster 
   1021      1.11     oster 		/* XXX check the label for valid stuff... */
   1022      1.11     oster 		/* Note that some things *should not* get modified --
   1023      1.11     oster 		   the user should be re-initing the labels instead of
   1024      1.11     oster 		   trying to patch things.
   1025      1.11     oster 		   */
   1026      1.11     oster 
   1027      1.11     oster 		printf("Got component label:\n");
   1028  1.29.2.1    bouyer 		printf("Version: %d\n",clabel->version);
   1029  1.29.2.1    bouyer 		printf("Serial Number: %d\n",clabel->serial_number);
   1030  1.29.2.1    bouyer 		printf("Mod counter: %d\n",clabel->mod_counter);
   1031  1.29.2.1    bouyer 		printf("Row: %d\n", clabel->row);
   1032  1.29.2.1    bouyer 		printf("Column: %d\n", clabel->column);
   1033  1.29.2.1    bouyer 		printf("Num Rows: %d\n", clabel->num_rows);
   1034  1.29.2.1    bouyer 		printf("Num Columns: %d\n", clabel->num_columns);
   1035  1.29.2.1    bouyer 		printf("Clean: %d\n", clabel->clean);
   1036  1.29.2.1    bouyer 		printf("Status: %d\n", clabel->status);
   1037      1.11     oster 
   1038  1.29.2.1    bouyer 		row = clabel->row;
   1039  1.29.2.1    bouyer 		column = clabel->column;
   1040      1.12     oster 
   1041  1.29.2.1    bouyer 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1042  1.29.2.1    bouyer 		    (column < 0) || (column >= raidPtr->numCol)) {
   1043      1.12     oster 			return(EINVAL);
   1044      1.11     oster 		}
   1045      1.12     oster 
   1046      1.12     oster 		/* XXX this isn't allowed to do anything for now :-) */
   1047  1.29.2.1    bouyer 
   1048  1.29.2.1    bouyer 		/* XXX and before it is, we need to fill in the rest
   1049  1.29.2.1    bouyer 		   of the fields!?!?!?! */
   1050      1.12     oster #if 0
   1051      1.11     oster 		raidwrite_component_label(
   1052  1.29.2.1    bouyer                             raidPtr->Disks[row][column].dev,
   1053  1.29.2.1    bouyer 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1054  1.29.2.1    bouyer 			    clabel );
   1055      1.12     oster #endif
   1056      1.12     oster 		return (0);
   1057      1.11     oster 
   1058      1.11     oster 	case RAIDFRAME_INIT_LABELS:
   1059  1.29.2.1    bouyer 		clabel = (RF_ComponentLabel_t *) data;
   1060      1.11     oster 		/*
   1061      1.11     oster 		   we only want the serial number from
   1062      1.11     oster 		   the above.  We get all the rest of the information
   1063      1.11     oster 		   from the config that was used to create this RAID
   1064      1.11     oster 		   set.
   1065      1.11     oster 		   */
   1066      1.12     oster 
   1067  1.29.2.1    bouyer 		raidPtr->serial_number = clabel->serial_number;
   1068  1.29.2.1    bouyer 
   1069  1.29.2.1    bouyer 		raid_init_component_label(raidPtr, &ci_label);
   1070  1.29.2.1    bouyer 		ci_label.serial_number = clabel->serial_number;
   1071      1.11     oster 
   1072  1.29.2.1    bouyer 		for(row=0;row<raidPtr->numRow;row++) {
   1073      1.11     oster 			ci_label.row = row;
   1074  1.29.2.1    bouyer 			for(column=0;column<raidPtr->numCol;column++) {
   1075  1.29.2.1    bouyer 				diskPtr = &raidPtr->Disks[row][column];
   1076  1.29.2.1    bouyer 				if (!RF_DEAD_DISK(diskPtr->status)) {
   1077  1.29.2.1    bouyer 					ci_label.partitionSize = diskPtr->partitionSize;
   1078  1.29.2.1    bouyer 					ci_label.column = column;
   1079  1.29.2.1    bouyer 					raidwrite_component_label(
   1080  1.29.2.1    bouyer 					  raidPtr->Disks[row][column].dev,
   1081  1.29.2.1    bouyer 					  raidPtr->raid_cinfo[row][column].ci_vp,
   1082  1.29.2.1    bouyer 					  &ci_label );
   1083  1.29.2.1    bouyer 				}
   1084      1.11     oster 			}
   1085      1.11     oster 		}
   1086      1.11     oster 
   1087      1.11     oster 		return (retcode);
   1088  1.29.2.1    bouyer 	case RAIDFRAME_SET_AUTOCONFIG:
   1089  1.29.2.1    bouyer 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1090  1.29.2.1    bouyer 		printf("New autoconfig value is: %d\n", d);
   1091  1.29.2.1    bouyer 		*(int *) data = d;
   1092  1.29.2.1    bouyer 		return (retcode);
   1093  1.29.2.1    bouyer 
   1094  1.29.2.1    bouyer 	case RAIDFRAME_SET_ROOT:
   1095  1.29.2.1    bouyer 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1096  1.29.2.1    bouyer 		printf("New rootpartition value is: %d\n", d);
   1097  1.29.2.1    bouyer 		*(int *) data = d;
   1098  1.29.2.1    bouyer 		return (retcode);
   1099       1.9     oster 
   1100       1.1     oster 		/* initialize all parity */
   1101       1.1     oster 	case RAIDFRAME_REWRITEPARITY:
   1102       1.1     oster 
   1103  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1104      1.17     oster 			/* Parity for RAID 0 is trivially correct */
   1105  1.29.2.1    bouyer 			raidPtr->parity_good = RF_RAID_CLEAN;
   1106      1.17     oster 			return(0);
   1107      1.17     oster 		}
   1108  1.29.2.1    bouyer 
   1109  1.29.2.1    bouyer 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1110  1.29.2.1    bouyer 			/* Re-write is already in progress! */
   1111  1.29.2.1    bouyer 			return(EINVAL);
   1112      1.11     oster 		}
   1113  1.29.2.1    bouyer 
   1114  1.29.2.1    bouyer 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1115  1.29.2.1    bouyer 					   rf_RewriteParityThread,
   1116  1.29.2.1    bouyer 					   raidPtr,"raid_parity");
   1117       1.9     oster 		return (retcode);
   1118       1.9     oster 
   1119      1.11     oster 
   1120      1.11     oster 	case RAIDFRAME_ADD_HOT_SPARE:
   1121      1.12     oster 		sparePtr = (RF_SingleComponent_t *) data;
   1122      1.12     oster 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1123  1.29.2.1    bouyer 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1124      1.11     oster 		return(retcode);
   1125      1.11     oster 
   1126      1.11     oster 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1127      1.11     oster 		return(retcode);
   1128      1.11     oster 
   1129  1.29.2.1    bouyer 	case RAIDFRAME_DELETE_COMPONENT:
   1130  1.29.2.1    bouyer 		componentPtr = (RF_SingleComponent_t *)data;
   1131  1.29.2.1    bouyer 		memcpy( &component, componentPtr,
   1132  1.29.2.1    bouyer 			sizeof(RF_SingleComponent_t));
   1133  1.29.2.1    bouyer 		retcode = rf_delete_component(raidPtr, &component);
   1134  1.29.2.1    bouyer 		return(retcode);
   1135  1.29.2.1    bouyer 
   1136  1.29.2.1    bouyer 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1137  1.29.2.1    bouyer 		componentPtr = (RF_SingleComponent_t *)data;
   1138  1.29.2.1    bouyer 		memcpy( &component, componentPtr,
   1139  1.29.2.1    bouyer 			sizeof(RF_SingleComponent_t));
   1140  1.29.2.1    bouyer 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1141  1.29.2.1    bouyer 		return(retcode);
   1142  1.29.2.1    bouyer 
   1143      1.12     oster 	case RAIDFRAME_REBUILD_IN_PLACE:
   1144      1.24     oster 
   1145  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1146      1.24     oster 			/* Can't do this on a RAID 0!! */
   1147      1.24     oster 			return(EINVAL);
   1148      1.24     oster 		}
   1149      1.24     oster 
   1150  1.29.2.1    bouyer 		if (raidPtr->recon_in_progress == 1) {
   1151  1.29.2.1    bouyer 			/* a reconstruct is already in progress! */
   1152  1.29.2.1    bouyer 			return(EINVAL);
   1153  1.29.2.1    bouyer 		}
   1154  1.29.2.1    bouyer 
   1155      1.12     oster 		componentPtr = (RF_SingleComponent_t *) data;
   1156      1.12     oster 		memcpy( &component, componentPtr,
   1157      1.12     oster 			sizeof(RF_SingleComponent_t));
   1158      1.12     oster 		row = component.row;
   1159      1.12     oster 		column = component.column;
   1160      1.12     oster 		printf("Rebuild: %d %d\n",row, column);
   1161  1.29.2.1    bouyer 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1162  1.29.2.1    bouyer 		    (column < 0) || (column >= raidPtr->numCol)) {
   1163      1.12     oster 			return(EINVAL);
   1164      1.12     oster 		}
   1165  1.29.2.1    bouyer 
   1166  1.29.2.1    bouyer 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1167  1.29.2.1    bouyer 		if (rrcopy == NULL)
   1168  1.29.2.1    bouyer 			return(ENOMEM);
   1169  1.29.2.1    bouyer 
   1170  1.29.2.1    bouyer 		rrcopy->raidPtr = (void *) raidPtr;
   1171  1.29.2.1    bouyer 		rrcopy->row = row;
   1172  1.29.2.1    bouyer 		rrcopy->col = column;
   1173  1.29.2.1    bouyer 
   1174  1.29.2.1    bouyer 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1175  1.29.2.1    bouyer 					   rf_ReconstructInPlaceThread,
   1176  1.29.2.1    bouyer 					   rrcopy,"raid_reconip");
   1177      1.12     oster 		return(retcode);
   1178      1.12     oster 
   1179       1.1     oster 	case RAIDFRAME_GET_INFO:
   1180  1.29.2.1    bouyer 		if (!raidPtr->valid)
   1181  1.29.2.1    bouyer 			return (ENODEV);
   1182  1.29.2.1    bouyer 		ucfgp = (RF_DeviceConfig_t **) data;
   1183  1.29.2.1    bouyer 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1184  1.29.2.1    bouyer 			  (RF_DeviceConfig_t *));
   1185  1.29.2.1    bouyer 		if (d_cfg == NULL)
   1186  1.29.2.1    bouyer 			return (ENOMEM);
   1187  1.29.2.1    bouyer 		bzero((char *) d_cfg, sizeof(RF_DeviceConfig_t));
   1188  1.29.2.1    bouyer 		d_cfg->rows = raidPtr->numRow;
   1189  1.29.2.1    bouyer 		d_cfg->cols = raidPtr->numCol;
   1190  1.29.2.1    bouyer 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1191  1.29.2.1    bouyer 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1192  1.29.2.1    bouyer 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1193  1.29.2.1    bouyer 			return (ENOMEM);
   1194  1.29.2.1    bouyer 		}
   1195  1.29.2.1    bouyer 		d_cfg->nspares = raidPtr->numSpare;
   1196  1.29.2.1    bouyer 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1197  1.29.2.1    bouyer 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1198  1.29.2.1    bouyer 			return (ENOMEM);
   1199  1.29.2.1    bouyer 		}
   1200  1.29.2.1    bouyer 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1201  1.29.2.1    bouyer 		d = 0;
   1202  1.29.2.1    bouyer 		for (i = 0; i < d_cfg->rows; i++) {
   1203  1.29.2.1    bouyer 			for (j = 0; j < d_cfg->cols; j++) {
   1204  1.29.2.1    bouyer 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1205  1.29.2.1    bouyer 				d++;
   1206       1.1     oster 			}
   1207       1.1     oster 		}
   1208  1.29.2.1    bouyer 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1209  1.29.2.1    bouyer 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1210  1.29.2.1    bouyer 		}
   1211  1.29.2.1    bouyer 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1212  1.29.2.1    bouyer 				  sizeof(RF_DeviceConfig_t));
   1213  1.29.2.1    bouyer 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1214  1.29.2.1    bouyer 
   1215  1.29.2.1    bouyer 		return (retcode);
   1216  1.29.2.1    bouyer 
   1217      1.22     oster 	case RAIDFRAME_CHECK_PARITY:
   1218  1.29.2.1    bouyer 		*(int *) data = raidPtr->parity_good;
   1219      1.22     oster 		return (0);
   1220       1.9     oster 
   1221  1.29.2.1    bouyer 	case RAIDFRAME_RESET_ACCTOTALS:
   1222  1.29.2.1    bouyer 		bzero(&raidPtr->acc_totals, sizeof(raidPtr->acc_totals));
   1223  1.29.2.1    bouyer 		return (0);
   1224       1.9     oster 
   1225       1.1     oster 	case RAIDFRAME_GET_ACCTOTALS:
   1226  1.29.2.1    bouyer 		totals = (RF_AccTotals_t *) data;
   1227  1.29.2.1    bouyer 		*totals = raidPtr->acc_totals;
   1228  1.29.2.1    bouyer 		return (0);
   1229       1.9     oster 
   1230       1.1     oster 	case RAIDFRAME_KEEP_ACCTOTALS:
   1231  1.29.2.1    bouyer 		raidPtr->keep_acc_totals = *(int *)data;
   1232  1.29.2.1    bouyer 		return (0);
   1233       1.9     oster 
   1234       1.1     oster 	case RAIDFRAME_GET_SIZE:
   1235  1.29.2.1    bouyer 		*(int *) data = raidPtr->totalSectors;
   1236       1.9     oster 		return (0);
   1237       1.1     oster 
   1238       1.1     oster 		/* fail a disk & optionally start reconstruction */
   1239       1.1     oster 	case RAIDFRAME_FAIL_DISK:
   1240      1.24     oster 
   1241  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1242      1.24     oster 			/* Can't do this on a RAID 0!! */
   1243      1.24     oster 			return(EINVAL);
   1244      1.24     oster 		}
   1245      1.24     oster 
   1246       1.1     oster 		rr = (struct rf_recon_req *) data;
   1247       1.9     oster 
   1248  1.29.2.1    bouyer 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1249  1.29.2.1    bouyer 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1250       1.9     oster 			return (EINVAL);
   1251       1.1     oster 
   1252      1.12     oster 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1253      1.12     oster 		       unit, rr->row, rr->col);
   1254       1.9     oster 
   1255       1.9     oster 		/* make a copy of the recon request so that we don't rely on
   1256       1.9     oster 		 * the user's buffer */
   1257       1.1     oster 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1258  1.29.2.1    bouyer 		if (rrcopy == NULL)
   1259  1.29.2.1    bouyer 			return(ENOMEM);
   1260       1.1     oster 		bcopy(rr, rrcopy, sizeof(*rr));
   1261  1.29.2.1    bouyer 		rrcopy->raidPtr = (void *) raidPtr;
   1262       1.9     oster 
   1263  1.29.2.1    bouyer 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1264  1.29.2.1    bouyer 					   rf_ReconThread,
   1265  1.29.2.1    bouyer 					   rrcopy,"raid_recon");
   1266       1.9     oster 		return (0);
   1267       1.9     oster 
   1268       1.9     oster 		/* invoke a copyback operation after recon on whatever disk
   1269       1.9     oster 		 * needs it, if any */
   1270       1.9     oster 	case RAIDFRAME_COPYBACK:
   1271      1.24     oster 
   1272  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1273      1.24     oster 			/* This makes no sense on a RAID 0!! */
   1274      1.24     oster 			return(EINVAL);
   1275      1.24     oster 		}
   1276      1.24     oster 
   1277  1.29.2.1    bouyer 		if (raidPtr->copyback_in_progress == 1) {
   1278  1.29.2.1    bouyer 			/* Copyback is already in progress! */
   1279  1.29.2.1    bouyer 			return(EINVAL);
   1280  1.29.2.1    bouyer 		}
   1281      1.27     oster 
   1282  1.29.2.1    bouyer 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1283  1.29.2.1    bouyer 					   rf_CopybackThread,
   1284  1.29.2.1    bouyer 					   raidPtr,"raid_copyback");
   1285  1.29.2.1    bouyer 		return (retcode);
   1286       1.9     oster 
   1287       1.1     oster 		/* return the percentage completion of reconstruction */
   1288  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_RECON_STATUS:
   1289  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1290  1.29.2.1    bouyer 			/* This makes no sense on a RAID 0, so tell the
   1291  1.29.2.1    bouyer 			   user it's done. */
   1292  1.29.2.1    bouyer 			*(int *) data = 100;
   1293  1.29.2.1    bouyer 			return(0);
   1294      1.24     oster 		}
   1295  1.29.2.1    bouyer 		row = 0; /* XXX we only consider a single row... */
   1296  1.29.2.1    bouyer 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1297       1.1     oster 			*(int *) data = 100;
   1298       1.9     oster 		else
   1299  1.29.2.1    bouyer 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1300  1.29.2.1    bouyer 		return (0);
   1301  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1302  1.29.2.1    bouyer 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1303  1.29.2.1    bouyer 		row = 0; /* XXX we only consider a single row... */
   1304  1.29.2.1    bouyer 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1305  1.29.2.1    bouyer 			progressInfo.remaining = 0;
   1306  1.29.2.1    bouyer 			progressInfo.completed = 100;
   1307  1.29.2.1    bouyer 			progressInfo.total = 100;
   1308  1.29.2.1    bouyer 		} else {
   1309  1.29.2.1    bouyer 			progressInfo.total =
   1310  1.29.2.1    bouyer 				raidPtr->reconControl[row]->numRUsTotal;
   1311  1.29.2.1    bouyer 			progressInfo.completed =
   1312  1.29.2.1    bouyer 				raidPtr->reconControl[row]->numRUsComplete;
   1313  1.29.2.1    bouyer 			progressInfo.remaining = progressInfo.total -
   1314  1.29.2.1    bouyer 				progressInfo.completed;
   1315  1.29.2.1    bouyer 		}
   1316  1.29.2.1    bouyer 		retcode = copyout((caddr_t) &progressInfo,
   1317  1.29.2.1    bouyer 				  (caddr_t) *progressInfoPtr,
   1318  1.29.2.1    bouyer 				  sizeof(RF_ProgressInfo_t));
   1319  1.29.2.1    bouyer 		return (retcode);
   1320  1.29.2.1    bouyer 
   1321  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1322  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1323  1.29.2.1    bouyer 			/* This makes no sense on a RAID 0, so tell the
   1324  1.29.2.1    bouyer 			   user it's done. */
   1325  1.29.2.1    bouyer 			*(int *) data = 100;
   1326  1.29.2.1    bouyer 			return(0);
   1327  1.29.2.1    bouyer 		}
   1328  1.29.2.1    bouyer 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1329  1.29.2.1    bouyer 			*(int *) data = 100 *
   1330  1.29.2.1    bouyer 				raidPtr->parity_rewrite_stripes_done /
   1331  1.29.2.1    bouyer 				raidPtr->Layout.numStripe;
   1332  1.29.2.1    bouyer 		} else {
   1333  1.29.2.1    bouyer 			*(int *) data = 100;
   1334  1.29.2.1    bouyer 		}
   1335  1.29.2.1    bouyer 		return (0);
   1336  1.29.2.1    bouyer 
   1337  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1338  1.29.2.1    bouyer 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1339  1.29.2.1    bouyer 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1340  1.29.2.1    bouyer 			progressInfo.total = raidPtr->Layout.numStripe;
   1341  1.29.2.1    bouyer 			progressInfo.completed =
   1342  1.29.2.1    bouyer 				raidPtr->parity_rewrite_stripes_done;
   1343  1.29.2.1    bouyer 			progressInfo.remaining = progressInfo.total -
   1344  1.29.2.1    bouyer 				progressInfo.completed;
   1345  1.29.2.1    bouyer 		} else {
   1346  1.29.2.1    bouyer 			progressInfo.remaining = 0;
   1347  1.29.2.1    bouyer 			progressInfo.completed = 100;
   1348  1.29.2.1    bouyer 			progressInfo.total = 100;
   1349  1.29.2.1    bouyer 		}
   1350  1.29.2.1    bouyer 		retcode = copyout((caddr_t) &progressInfo,
   1351  1.29.2.1    bouyer 				  (caddr_t) *progressInfoPtr,
   1352  1.29.2.1    bouyer 				  sizeof(RF_ProgressInfo_t));
   1353  1.29.2.1    bouyer 		return (retcode);
   1354  1.29.2.1    bouyer 
   1355  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1356  1.29.2.1    bouyer 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1357  1.29.2.1    bouyer 			/* This makes no sense on a RAID 0 */
   1358  1.29.2.1    bouyer 			*(int *) data = 100;
   1359  1.29.2.1    bouyer 			return(0);
   1360  1.29.2.1    bouyer 		}
   1361  1.29.2.1    bouyer 		if (raidPtr->copyback_in_progress == 1) {
   1362  1.29.2.1    bouyer 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1363  1.29.2.1    bouyer 				raidPtr->Layout.numStripe;
   1364  1.29.2.1    bouyer 		} else {
   1365  1.29.2.1    bouyer 			*(int *) data = 100;
   1366  1.29.2.1    bouyer 		}
   1367       1.9     oster 		return (0);
   1368       1.9     oster 
   1369  1.29.2.1    bouyer 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1370  1.29.2.1    bouyer 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1371  1.29.2.1    bouyer 		if (raidPtr->copyback_in_progress == 1) {
   1372  1.29.2.1    bouyer 			progressInfo.total = raidPtr->Layout.numStripe;
   1373  1.29.2.1    bouyer 			progressInfo.completed =
   1374  1.29.2.1    bouyer 				raidPtr->copyback_stripes_done;
   1375  1.29.2.1    bouyer 			progressInfo.remaining = progressInfo.total -
   1376  1.29.2.1    bouyer 				progressInfo.completed;
   1377  1.29.2.1    bouyer 		} else {
   1378  1.29.2.1    bouyer 			progressInfo.remaining = 0;
   1379  1.29.2.1    bouyer 			progressInfo.completed = 100;
   1380  1.29.2.1    bouyer 			progressInfo.total = 100;
   1381  1.29.2.1    bouyer 		}
   1382  1.29.2.1    bouyer 		retcode = copyout((caddr_t) &progressInfo,
   1383  1.29.2.1    bouyer 				  (caddr_t) *progressInfoPtr,
   1384  1.29.2.1    bouyer 				  sizeof(RF_ProgressInfo_t));
   1385  1.29.2.1    bouyer 		return (retcode);
   1386  1.29.2.1    bouyer 
   1387       1.9     oster 		/* the sparetable daemon calls this to wait for the kernel to
   1388       1.9     oster 		 * need a spare table. this ioctl does not return until a
   1389       1.9     oster 		 * spare table is needed. XXX -- calling mpsleep here in the
   1390       1.9     oster 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1391       1.9     oster 		 * -- I should either compute the spare table in the kernel,
   1392       1.9     oster 		 * or have a different -- XXX XXX -- interface (a different
   1393  1.29.2.1    bouyer 		 * character device) for delivering the table     -- XXX */
   1394       1.1     oster #if 0
   1395       1.1     oster 	case RAIDFRAME_SPARET_WAIT:
   1396       1.1     oster 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1397       1.9     oster 		while (!rf_sparet_wait_queue)
   1398       1.9     oster 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1399       1.1     oster 		waitreq = rf_sparet_wait_queue;
   1400       1.1     oster 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1401       1.1     oster 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1402       1.9     oster 
   1403  1.29.2.1    bouyer 		/* structure assignment */
   1404  1.29.2.1    bouyer 		*((RF_SparetWait_t *) data) = *waitreq;
   1405       1.9     oster 
   1406       1.1     oster 		RF_Free(waitreq, sizeof(*waitreq));
   1407       1.9     oster 		return (0);
   1408       1.9     oster 
   1409       1.9     oster 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1410       1.9     oster 		 * code in it that will cause the dameon to exit */
   1411       1.1     oster 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1412       1.1     oster 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1413       1.1     oster 		waitreq->fcol = -1;
   1414       1.1     oster 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1415       1.1     oster 		waitreq->next = rf_sparet_wait_queue;
   1416       1.1     oster 		rf_sparet_wait_queue = waitreq;
   1417       1.1     oster 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1418       1.1     oster 		wakeup(&rf_sparet_wait_queue);
   1419       1.9     oster 		return (0);
   1420       1.1     oster 
   1421       1.9     oster 		/* used by the spare table daemon to deliver a spare table
   1422       1.9     oster 		 * into the kernel */
   1423       1.1     oster 	case RAIDFRAME_SEND_SPARET:
   1424       1.9     oster 
   1425       1.1     oster 		/* install the spare table */
   1426  1.29.2.1    bouyer 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1427       1.9     oster 
   1428       1.9     oster 		/* respond to the requestor.  the return status of the spare
   1429       1.9     oster 		 * table installation is passed in the "fcol" field */
   1430       1.1     oster 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1431       1.1     oster 		waitreq->fcol = retcode;
   1432       1.1     oster 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1433       1.1     oster 		waitreq->next = rf_sparet_resp_queue;
   1434       1.1     oster 		rf_sparet_resp_queue = waitreq;
   1435       1.1     oster 		wakeup(&rf_sparet_resp_queue);
   1436       1.1     oster 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1437       1.9     oster 
   1438       1.9     oster 		return (retcode);
   1439       1.1     oster #endif
   1440       1.1     oster 
   1441       1.9     oster 	default:
   1442  1.29.2.1    bouyer 		break; /* fall through to the os-specific code below */
   1443       1.1     oster 
   1444       1.1     oster 	}
   1445       1.9     oster 
   1446  1.29.2.1    bouyer 	if (!raidPtr->valid)
   1447       1.9     oster 		return (EINVAL);
   1448       1.9     oster 
   1449       1.1     oster 	/*
   1450       1.1     oster 	 * Add support for "regular" device ioctls here.
   1451       1.1     oster 	 */
   1452       1.9     oster 
   1453       1.1     oster 	switch (cmd) {
   1454       1.1     oster 	case DIOCGDINFO:
   1455       1.9     oster 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1456       1.1     oster 		break;
   1457  1.29.2.4    bouyer #ifdef __HAVE_OLD_DISKLABEL
   1458  1.29.2.4    bouyer 	case ODIOCGDINFO:
   1459  1.29.2.4    bouyer 		newlabel = *(rs->sc_dkdev.dk_label);
   1460  1.29.2.4    bouyer 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1461  1.29.2.4    bouyer 			return ENOTTY;
   1462  1.29.2.4    bouyer 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1463  1.29.2.4    bouyer 		break;
   1464  1.29.2.4    bouyer #endif
   1465       1.1     oster 
   1466       1.1     oster 	case DIOCGPART:
   1467       1.9     oster 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1468       1.9     oster 		((struct partinfo *) data)->part =
   1469       1.1     oster 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1470       1.1     oster 		break;
   1471       1.1     oster 
   1472       1.1     oster 	case DIOCWDINFO:
   1473       1.1     oster 	case DIOCSDINFO:
   1474  1.29.2.4    bouyer #ifdef __HAVE_OLD_DISKLABEL
   1475  1.29.2.4    bouyer 	case ODIOCWDINFO:
   1476  1.29.2.4    bouyer 	case ODIOCSDINFO:
   1477  1.29.2.4    bouyer #endif
   1478  1.29.2.4    bouyer 	{
   1479  1.29.2.4    bouyer 		struct disklabel *lp;
   1480  1.29.2.4    bouyer #ifdef __HAVE_OLD_DISKLABEL
   1481  1.29.2.4    bouyer 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1482  1.29.2.4    bouyer 			memset(&newlabel, 0, sizeof newlabel);
   1483  1.29.2.4    bouyer 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1484  1.29.2.4    bouyer 			lp = &newlabel;
   1485  1.29.2.4    bouyer 		} else
   1486  1.29.2.4    bouyer #endif
   1487  1.29.2.4    bouyer 		lp = (struct disklabel *)data;
   1488  1.29.2.4    bouyer 
   1489       1.1     oster 		if ((error = raidlock(rs)) != 0)
   1490       1.1     oster 			return (error);
   1491       1.1     oster 
   1492       1.1     oster 		rs->sc_flags |= RAIDF_LABELLING;
   1493       1.1     oster 
   1494       1.1     oster 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1495  1.29.2.4    bouyer 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1496       1.1     oster 		if (error == 0) {
   1497  1.29.2.4    bouyer 			if (cmd == DIOCWDINFO
   1498  1.29.2.4    bouyer #ifdef __HAVE_OLD_DISKLABEL
   1499  1.29.2.4    bouyer 			    || cmd == ODIOCWDINFO
   1500  1.29.2.4    bouyer #endif
   1501  1.29.2.4    bouyer 			   )
   1502       1.1     oster 				error = writedisklabel(RAIDLABELDEV(dev),
   1503       1.1     oster 				    raidstrategy, rs->sc_dkdev.dk_label,
   1504       1.1     oster 				    rs->sc_dkdev.dk_cpulabel);
   1505       1.1     oster 		}
   1506       1.1     oster 		rs->sc_flags &= ~RAIDF_LABELLING;
   1507       1.1     oster 
   1508       1.1     oster 		raidunlock(rs);
   1509       1.1     oster 
   1510       1.1     oster 		if (error)
   1511       1.1     oster 			return (error);
   1512       1.1     oster 		break;
   1513  1.29.2.4    bouyer 	}
   1514       1.1     oster 
   1515       1.1     oster 	case DIOCWLABEL:
   1516       1.9     oster 		if (*(int *) data != 0)
   1517       1.1     oster 			rs->sc_flags |= RAIDF_WLABEL;
   1518       1.1     oster 		else
   1519       1.1     oster 			rs->sc_flags &= ~RAIDF_WLABEL;
   1520       1.1     oster 		break;
   1521       1.1     oster 
   1522       1.1     oster 	case DIOCGDEFLABEL:
   1523  1.29.2.4    bouyer 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1524       1.1     oster 		break;
   1525  1.29.2.4    bouyer 
   1526  1.29.2.4    bouyer #ifdef __HAVE_OLD_DISKLABEL
   1527  1.29.2.4    bouyer 	case ODIOCGDEFLABEL:
   1528  1.29.2.4    bouyer 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1529  1.29.2.4    bouyer 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1530  1.29.2.4    bouyer 			return ENOTTY;
   1531  1.29.2.4    bouyer 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1532  1.29.2.4    bouyer 		break;
   1533  1.29.2.4    bouyer #endif
   1534       1.1     oster 
   1535       1.1     oster 	default:
   1536  1.29.2.1    bouyer 		retcode = ENOTTY;
   1537       1.1     oster 	}
   1538       1.9     oster 	return (retcode);
   1539       1.1     oster 
   1540       1.1     oster }
   1541       1.1     oster 
   1542       1.1     oster 
   1543       1.9     oster /* raidinit -- complete the rest of the initialization for the
   1544       1.1     oster    RAIDframe device.  */
   1545       1.1     oster 
   1546       1.1     oster 
   1547  1.29.2.1    bouyer static void
   1548  1.29.2.1    bouyer raidinit(raidPtr)
   1549       1.1     oster 	RF_Raid_t *raidPtr;
   1550       1.1     oster {
   1551       1.1     oster 	struct raid_softc *rs;
   1552  1.29.2.1    bouyer 	int     unit;
   1553       1.1     oster 
   1554  1.29.2.1    bouyer 	unit = raidPtr->raidid;
   1555       1.1     oster 
   1556       1.1     oster 	rs = &raid_softc[unit];
   1557       1.1     oster 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1558      1.11     oster 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1559       1.9     oster 
   1560       1.1     oster 
   1561       1.1     oster 	/* XXX should check return code first... */
   1562       1.1     oster 	rs->sc_flags |= RAIDF_INITED;
   1563       1.1     oster 
   1564       1.9     oster 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1565       1.1     oster 
   1566       1.9     oster 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1567      1.11     oster 
   1568       1.1     oster 	/* disk_attach actually creates space for the CPU disklabel, among
   1569       1.9     oster 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1570       1.9     oster 	 * with disklabels. */
   1571      1.11     oster 
   1572       1.1     oster 	disk_attach(&rs->sc_dkdev);
   1573       1.1     oster 
   1574       1.1     oster 	/* XXX There may be a weird interaction here between this, and
   1575       1.9     oster 	 * protectedSectors, as used in RAIDframe.  */
   1576      1.11     oster 
   1577       1.9     oster 	rs->sc_size = raidPtr->totalSectors;
   1578      1.11     oster 
   1579       1.1     oster }
   1580       1.1     oster 
   1581       1.1     oster /* wake up the daemon & tell it to get us a spare table
   1582       1.1     oster  * XXX
   1583       1.9     oster  * the entries in the queues should be tagged with the raidPtr
   1584      1.11     oster  * so that in the extremely rare case that two recons happen at once,
   1585      1.11     oster  * we know for which device were requesting a spare table
   1586       1.1     oster  * XXX
   1587  1.29.2.1    bouyer  *
   1588  1.29.2.1    bouyer  * XXX This code is not currently used. GO
   1589       1.1     oster  */
   1590       1.9     oster int
   1591       1.9     oster rf_GetSpareTableFromDaemon(req)
   1592       1.9     oster 	RF_SparetWait_t *req;
   1593       1.9     oster {
   1594       1.9     oster 	int     retcode;
   1595       1.9     oster 
   1596       1.9     oster 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1597       1.9     oster 	req->next = rf_sparet_wait_queue;
   1598       1.9     oster 	rf_sparet_wait_queue = req;
   1599       1.9     oster 	wakeup(&rf_sparet_wait_queue);
   1600       1.9     oster 
   1601       1.9     oster 	/* mpsleep unlocks the mutex */
   1602       1.9     oster 	while (!rf_sparet_resp_queue) {
   1603      1.15     oster 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1604       1.9     oster 		    "raidframe getsparetable", 0);
   1605       1.9     oster 	}
   1606       1.9     oster 	req = rf_sparet_resp_queue;
   1607       1.9     oster 	rf_sparet_resp_queue = req->next;
   1608       1.9     oster 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1609       1.9     oster 
   1610       1.9     oster 	retcode = req->fcol;
   1611       1.9     oster 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1612       1.9     oster 					 * alloc'd */
   1613       1.9     oster 	return (retcode);
   1614       1.1     oster }
   1615  1.29.2.1    bouyer 
   1616      1.11     oster /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1617      1.11     oster  * bp & passes it down.
   1618       1.1     oster  * any calls originating in the kernel must use non-blocking I/O
   1619       1.1     oster  * do some extra sanity checking to return "appropriate" error values for
   1620       1.1     oster  * certain conditions (to make some standard utilities work)
   1621  1.29.2.1    bouyer  *
   1622  1.29.2.1    bouyer  * Formerly known as: rf_DoAccessKernel
   1623       1.1     oster  */
   1624  1.29.2.1    bouyer void
   1625  1.29.2.1    bouyer raidstart(raidPtr)
   1626       1.9     oster 	RF_Raid_t *raidPtr;
   1627       1.1     oster {
   1628       1.1     oster 	RF_SectorCount_t num_blocks, pb, sum;
   1629       1.1     oster 	RF_RaidAddr_t raid_addr;
   1630       1.9     oster 	int     retcode;
   1631       1.1     oster 	struct partition *pp;
   1632       1.9     oster 	daddr_t blocknum;
   1633       1.9     oster 	int     unit;
   1634       1.1     oster 	struct raid_softc *rs;
   1635       1.9     oster 	int     do_async;
   1636  1.29.2.1    bouyer 	struct buf *bp;
   1637       1.1     oster 
   1638       1.1     oster 	unit = raidPtr->raidid;
   1639       1.1     oster 	rs = &raid_softc[unit];
   1640  1.29.2.1    bouyer 
   1641  1.29.2.1    bouyer 	/* quick check to see if anything has died recently */
   1642  1.29.2.1    bouyer 	RF_LOCK_MUTEX(raidPtr->mutex);
   1643  1.29.2.1    bouyer 	if (raidPtr->numNewFailures > 0) {
   1644  1.29.2.1    bouyer 		rf_update_component_labels(raidPtr,
   1645  1.29.2.1    bouyer 					   RF_NORMAL_COMPONENT_UPDATE);
   1646  1.29.2.1    bouyer 		raidPtr->numNewFailures--;
   1647       1.1     oster 	}
   1648  1.29.2.1    bouyer 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1649      1.20     oster 
   1650  1.29.2.1    bouyer 	/* Check to see if we're at the limit... */
   1651      1.20     oster 	RF_LOCK_MUTEX(raidPtr->mutex);
   1652  1.29.2.1    bouyer 	while (raidPtr->openings > 0) {
   1653      1.20     oster 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1654      1.20     oster 
   1655  1.29.2.1    bouyer 		/* get the next item, if any, from the queue */
   1656  1.29.2.1    bouyer 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1657  1.29.2.1    bouyer 			/* nothing more to do */
   1658  1.29.2.1    bouyer 			return;
   1659  1.29.2.1    bouyer 		}
   1660  1.29.2.1    bouyer 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1661      1.20     oster 
   1662  1.29.2.1    bouyer 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1663  1.29.2.1    bouyer 		 * partition.. Need to make it absolute to the underlying
   1664  1.29.2.1    bouyer 		 * device.. */
   1665       1.7  explorer 
   1666  1.29.2.1    bouyer 		blocknum = bp->b_blkno;
   1667  1.29.2.1    bouyer 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1668  1.29.2.1    bouyer 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1669  1.29.2.1    bouyer 			blocknum += pp->p_offset;
   1670  1.29.2.1    bouyer 		}
   1671       1.7  explorer 
   1672  1.29.2.1    bouyer 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1673  1.29.2.1    bouyer 			    (int) blocknum));
   1674  1.29.2.1    bouyer 
   1675  1.29.2.1    bouyer 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1676  1.29.2.1    bouyer 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1677  1.29.2.1    bouyer 
   1678  1.29.2.1    bouyer 		/* *THIS* is where we adjust what block we're going to...
   1679  1.29.2.1    bouyer 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1680  1.29.2.1    bouyer 		raid_addr = blocknum;
   1681  1.29.2.1    bouyer 
   1682  1.29.2.1    bouyer 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1683  1.29.2.1    bouyer 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1684  1.29.2.1    bouyer 		sum = raid_addr + num_blocks + pb;
   1685  1.29.2.1    bouyer 		if (1 || rf_debugKernelAccess) {
   1686  1.29.2.1    bouyer 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1687  1.29.2.1    bouyer 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1688  1.29.2.1    bouyer 				    (int) pb, (int) bp->b_resid));
   1689  1.29.2.1    bouyer 		}
   1690  1.29.2.1    bouyer 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1691  1.29.2.1    bouyer 		    || (sum < num_blocks) || (sum < pb)) {
   1692  1.29.2.1    bouyer 			bp->b_error = ENOSPC;
   1693  1.29.2.1    bouyer 			bp->b_flags |= B_ERROR;
   1694  1.29.2.1    bouyer 			bp->b_resid = bp->b_bcount;
   1695  1.29.2.1    bouyer 			biodone(bp);
   1696  1.29.2.1    bouyer 			RF_LOCK_MUTEX(raidPtr->mutex);
   1697  1.29.2.1    bouyer 			continue;
   1698  1.29.2.1    bouyer 		}
   1699  1.29.2.1    bouyer 		/*
   1700  1.29.2.1    bouyer 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1701  1.29.2.1    bouyer 		 */
   1702  1.29.2.1    bouyer 
   1703  1.29.2.1    bouyer 		if (bp->b_bcount & raidPtr->sectorMask) {
   1704  1.29.2.1    bouyer 			bp->b_error = EINVAL;
   1705  1.29.2.1    bouyer 			bp->b_flags |= B_ERROR;
   1706  1.29.2.1    bouyer 			bp->b_resid = bp->b_bcount;
   1707  1.29.2.1    bouyer 			biodone(bp);
   1708  1.29.2.1    bouyer 			RF_LOCK_MUTEX(raidPtr->mutex);
   1709  1.29.2.1    bouyer 			continue;
   1710  1.29.2.1    bouyer 
   1711  1.29.2.1    bouyer 		}
   1712  1.29.2.1    bouyer 		db1_printf(("Calling DoAccess..\n"));
   1713  1.29.2.1    bouyer 
   1714  1.29.2.1    bouyer 
   1715  1.29.2.1    bouyer 		RF_LOCK_MUTEX(raidPtr->mutex);
   1716  1.29.2.1    bouyer 		raidPtr->openings--;
   1717  1.29.2.1    bouyer 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1718  1.29.2.1    bouyer 
   1719  1.29.2.1    bouyer 		/*
   1720  1.29.2.1    bouyer 		 * Everything is async.
   1721  1.29.2.1    bouyer 		 */
   1722  1.29.2.1    bouyer 		do_async = 1;
   1723  1.29.2.1    bouyer 
   1724  1.29.2.1    bouyer 		disk_busy(&rs->sc_dkdev);
   1725  1.29.2.1    bouyer 
   1726  1.29.2.1    bouyer 		/* XXX we're still at splbio() here... do we *really*
   1727  1.29.2.1    bouyer 		   need to be? */
   1728  1.29.2.1    bouyer 
   1729  1.29.2.1    bouyer 		/* don't ever condition on bp->b_flags & B_WRITE.
   1730  1.29.2.1    bouyer 		 * always condition on B_READ instead */
   1731  1.29.2.1    bouyer 
   1732  1.29.2.1    bouyer 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1733  1.29.2.1    bouyer 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1734  1.29.2.1    bouyer 				      do_async, raid_addr, num_blocks,
   1735  1.29.2.1    bouyer 				      bp->b_data, bp, NULL, NULL,
   1736  1.29.2.1    bouyer 				      RF_DAG_NONBLOCKING_IO, NULL, NULL, NULL);
   1737  1.29.2.1    bouyer 
   1738  1.29.2.1    bouyer 
   1739  1.29.2.1    bouyer 		RF_LOCK_MUTEX(raidPtr->mutex);
   1740  1.29.2.1    bouyer 	}
   1741  1.29.2.1    bouyer 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1742       1.1     oster }
   1743  1.29.2.1    bouyer 
   1744  1.29.2.1    bouyer 
   1745  1.29.2.1    bouyer 
   1746  1.29.2.1    bouyer 
   1747       1.1     oster /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1748       1.1     oster 
   1749       1.9     oster int
   1750       1.9     oster rf_DispatchKernelIO(queue, req)
   1751       1.9     oster 	RF_DiskQueue_t *queue;
   1752       1.9     oster 	RF_DiskQueueData_t *req;
   1753       1.1     oster {
   1754       1.9     oster 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1755       1.1     oster 	struct buf *bp;
   1756       1.9     oster 	struct raidbuf *raidbp = NULL;
   1757       1.1     oster 	struct raid_softc *rs;
   1758       1.9     oster 	int     unit;
   1759  1.29.2.1    bouyer 	int s;
   1760       1.9     oster 
   1761  1.29.2.1    bouyer 	s=0;
   1762  1.29.2.1    bouyer 	/* s = splbio();*/ /* want to test this */
   1763       1.1     oster 	/* XXX along with the vnode, we also need the softc associated with
   1764       1.9     oster 	 * this device.. */
   1765       1.9     oster 
   1766       1.1     oster 	req->queue = queue;
   1767       1.9     oster 
   1768       1.1     oster 	unit = queue->raidPtr->raidid;
   1769       1.1     oster 
   1770       1.9     oster 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1771       1.1     oster 
   1772       1.9     oster 	if (unit >= numraid) {
   1773       1.9     oster 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1774       1.1     oster 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1775       1.1     oster 	}
   1776       1.1     oster 	rs = &raid_softc[unit];
   1777       1.1     oster 
   1778       1.1     oster 	bp = req->bp;
   1779      1.16     oster #if 1
   1780       1.9     oster 	/* XXX when there is a physical disk failure, someone is passing us a
   1781       1.9     oster 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1782       1.9     oster 	 * without taking a performance hit... (not sure where the real bug
   1783       1.9     oster 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1784       1.4     oster 
   1785       1.4     oster 	if (bp->b_flags & B_ERROR) {
   1786       1.4     oster 		bp->b_flags &= ~B_ERROR;
   1787       1.4     oster 	}
   1788       1.9     oster 	if (bp->b_error != 0) {
   1789       1.4     oster 		bp->b_error = 0;
   1790       1.4     oster 	}
   1791      1.16     oster #endif
   1792       1.1     oster 	raidbp = RAIDGETBUF(rs);
   1793       1.1     oster 
   1794       1.9     oster 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1795       1.1     oster 
   1796       1.1     oster 	/*
   1797       1.1     oster 	 * context for raidiodone
   1798       1.1     oster 	 */
   1799       1.1     oster 	raidbp->rf_obp = bp;
   1800       1.1     oster 	raidbp->req = req;
   1801       1.1     oster 
   1802  1.29.2.1    bouyer 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1803  1.29.2.1    bouyer 
   1804       1.1     oster 	switch (req->type) {
   1805       1.9     oster 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1806       1.1     oster 		/* XXX need to do something extra here.. */
   1807       1.9     oster 		/* I'm leaving this in, as I've never actually seen it used,
   1808       1.9     oster 		 * and I'd like folks to report it... GO */
   1809       1.1     oster 		printf(("WAKEUP CALLED\n"));
   1810       1.1     oster 		queue->numOutstanding++;
   1811       1.1     oster 
   1812       1.1     oster 		/* XXX need to glue the original buffer into this??  */
   1813       1.1     oster 
   1814       1.1     oster 		KernelWakeupFunc(&raidbp->rf_buf);
   1815       1.1     oster 		break;
   1816       1.9     oster 
   1817       1.1     oster 	case RF_IO_TYPE_READ:
   1818       1.1     oster 	case RF_IO_TYPE_WRITE:
   1819       1.9     oster 
   1820       1.1     oster 		if (req->tracerec) {
   1821       1.1     oster 			RF_ETIMER_START(req->tracerec->timer);
   1822       1.1     oster 		}
   1823       1.9     oster 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1824       1.9     oster 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1825       1.9     oster 		    req->sectorOffset, req->numSector,
   1826       1.9     oster 		    req->buf, KernelWakeupFunc, (void *) req,
   1827       1.9     oster 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1828       1.1     oster 
   1829       1.1     oster 		if (rf_debugKernelAccess) {
   1830       1.9     oster 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1831       1.9     oster 				(long) bp->b_blkno));
   1832       1.1     oster 		}
   1833       1.1     oster 		queue->numOutstanding++;
   1834       1.1     oster 		queue->last_deq_sector = req->sectorOffset;
   1835       1.9     oster 		/* acc wouldn't have been let in if there were any pending
   1836       1.9     oster 		 * reqs at any other priority */
   1837       1.1     oster 		queue->curPriority = req->priority;
   1838       1.1     oster 
   1839       1.1     oster 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1840       1.9     oster 			req->type, unit, queue->row, queue->col));
   1841       1.1     oster 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1842       1.9     oster 			(int) req->sectorOffset, (int) req->numSector,
   1843       1.9     oster 			(int) (req->numSector <<
   1844       1.9     oster 			    queue->raidPtr->logBytesPerSector),
   1845       1.9     oster 			(int) queue->raidPtr->logBytesPerSector));
   1846       1.1     oster 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1847       1.1     oster 			raidbp->rf_buf.b_vp->v_numoutput++;
   1848       1.1     oster 		}
   1849       1.9     oster 		VOP_STRATEGY(&raidbp->rf_buf);
   1850       1.1     oster 
   1851       1.1     oster 		break;
   1852       1.9     oster 
   1853       1.1     oster 	default:
   1854       1.1     oster 		panic("bad req->type in rf_DispatchKernelIO");
   1855       1.1     oster 	}
   1856       1.1     oster 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1857  1.29.2.1    bouyer 	/* splx(s); */ /* want to test this */
   1858       1.9     oster 	return (0);
   1859       1.1     oster }
   1860       1.9     oster /* this is the callback function associated with a I/O invoked from
   1861       1.1     oster    kernel code.
   1862       1.1     oster  */
   1863       1.9     oster static void
   1864       1.9     oster KernelWakeupFunc(vbp)
   1865       1.9     oster 	struct buf *vbp;
   1866       1.9     oster {
   1867       1.9     oster 	RF_DiskQueueData_t *req = NULL;
   1868       1.9     oster 	RF_DiskQueue_t *queue;
   1869       1.9     oster 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1870       1.9     oster 	struct buf *bp;
   1871       1.9     oster 	struct raid_softc *rs;
   1872       1.9     oster 	int     unit;
   1873  1.29.2.1    bouyer 	int s;
   1874       1.9     oster 
   1875  1.29.2.1    bouyer 	s = splbio();
   1876       1.9     oster 	db1_printf(("recovering the request queue:\n"));
   1877       1.9     oster 	req = raidbp->req;
   1878       1.1     oster 
   1879       1.9     oster 	bp = raidbp->rf_obp;
   1880       1.1     oster 
   1881       1.9     oster 	queue = (RF_DiskQueue_t *) req->queue;
   1882       1.1     oster 
   1883       1.9     oster 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1884       1.9     oster 		bp->b_flags |= B_ERROR;
   1885       1.9     oster 		bp->b_error = raidbp->rf_buf.b_error ?
   1886       1.9     oster 		    raidbp->rf_buf.b_error : EIO;
   1887       1.9     oster 	}
   1888       1.1     oster 
   1889       1.9     oster 	/* XXX methinks this could be wrong... */
   1890       1.1     oster #if 1
   1891       1.9     oster 	bp->b_resid = raidbp->rf_buf.b_resid;
   1892       1.1     oster #endif
   1893       1.1     oster 
   1894       1.9     oster 	if (req->tracerec) {
   1895       1.9     oster 		RF_ETIMER_STOP(req->tracerec->timer);
   1896       1.9     oster 		RF_ETIMER_EVAL(req->tracerec->timer);
   1897       1.9     oster 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1898       1.9     oster 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1899       1.9     oster 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1900       1.9     oster 		req->tracerec->num_phys_ios++;
   1901       1.9     oster 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1902       1.9     oster 	}
   1903       1.9     oster 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1904       1.1     oster 
   1905       1.9     oster 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1906       1.1     oster 
   1907       1.1     oster 
   1908       1.9     oster 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1909       1.9     oster 	 * ballistic, and mark the component as hosed... */
   1910  1.29.2.1    bouyer 
   1911       1.9     oster 	if (bp->b_flags & B_ERROR) {
   1912       1.9     oster 		/* Mark the disk as dead */
   1913       1.9     oster 		/* but only mark it once... */
   1914       1.9     oster 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1915       1.9     oster 		    rf_ds_optimal) {
   1916       1.9     oster 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1917       1.9     oster 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1918       1.9     oster 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1919       1.9     oster 			    rf_ds_failed;
   1920       1.9     oster 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1921       1.9     oster 			queue->raidPtr->numFailures++;
   1922  1.29.2.1    bouyer 			queue->raidPtr->numNewFailures++;
   1923       1.9     oster 		} else {	/* Disk is already dead... */
   1924       1.9     oster 			/* printf("Disk already marked as dead!\n"); */
   1925       1.9     oster 		}
   1926       1.4     oster 
   1927       1.9     oster 	}
   1928       1.4     oster 
   1929       1.9     oster 	rs = &raid_softc[unit];
   1930       1.9     oster 	RAIDPUTBUF(rs, raidbp);
   1931       1.9     oster 
   1932       1.9     oster 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1933       1.9     oster 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1934       1.1     oster 
   1935  1.29.2.1    bouyer 	splx(s);
   1936       1.1     oster }
   1937       1.1     oster 
   1938       1.1     oster 
   1939       1.1     oster 
   1940       1.1     oster /*
   1941       1.1     oster  * initialize a buf structure for doing an I/O in the kernel.
   1942       1.1     oster  */
   1943       1.9     oster static void
   1944  1.29.2.1    bouyer InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1945  1.29.2.1    bouyer        logBytesPerSector, b_proc)
   1946  1.29.2.1    bouyer 	struct buf *bp;
   1947  1.29.2.1    bouyer 	struct vnode *b_vp;
   1948  1.29.2.1    bouyer 	unsigned rw_flag;
   1949  1.29.2.1    bouyer 	dev_t dev;
   1950  1.29.2.1    bouyer 	RF_SectorNum_t startSect;
   1951  1.29.2.1    bouyer 	RF_SectorCount_t numSect;
   1952  1.29.2.1    bouyer 	caddr_t buf;
   1953  1.29.2.1    bouyer 	void (*cbFunc) (struct buf *);
   1954  1.29.2.1    bouyer 	void *cbArg;
   1955  1.29.2.1    bouyer 	int logBytesPerSector;
   1956  1.29.2.1    bouyer 	struct proc *b_proc;
   1957       1.9     oster {
   1958       1.9     oster 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1959       1.9     oster 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1960       1.9     oster 	bp->b_bcount = numSect << logBytesPerSector;
   1961       1.9     oster 	bp->b_bufsize = bp->b_bcount;
   1962       1.9     oster 	bp->b_error = 0;
   1963       1.9     oster 	bp->b_dev = dev;
   1964  1.29.2.1    bouyer 	bp->b_data = buf;
   1965       1.9     oster 	bp->b_blkno = startSect;
   1966       1.9     oster 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1967       1.1     oster 	if (bp->b_bcount == 0) {
   1968       1.1     oster 		panic("bp->b_bcount is zero in InitBP!!\n");
   1969       1.1     oster 	}
   1970       1.9     oster 	bp->b_proc = b_proc;
   1971       1.9     oster 	bp->b_iodone = cbFunc;
   1972       1.9     oster 	bp->b_vp = b_vp;
   1973       1.9     oster 
   1974       1.1     oster }
   1975       1.1     oster 
   1976       1.1     oster static void
   1977       1.1     oster raidgetdefaultlabel(raidPtr, rs, lp)
   1978       1.1     oster 	RF_Raid_t *raidPtr;
   1979       1.1     oster 	struct raid_softc *rs;
   1980       1.1     oster 	struct disklabel *lp;
   1981       1.1     oster {
   1982       1.1     oster 	db1_printf(("Building a default label...\n"));
   1983       1.1     oster 	bzero(lp, sizeof(*lp));
   1984       1.1     oster 
   1985       1.1     oster 	/* fabricate a label... */
   1986       1.1     oster 	lp->d_secperunit = raidPtr->totalSectors;
   1987       1.1     oster 	lp->d_secsize = raidPtr->bytesPerSector;
   1988  1.29.2.1    bouyer 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1989  1.29.2.6    bouyer 	lp->d_ntracks = 4 * raidPtr->numCol;
   1990  1.29.2.1    bouyer 	lp->d_ncylinders = raidPtr->totalSectors /
   1991  1.29.2.1    bouyer 		(lp->d_nsectors * lp->d_ntracks);
   1992       1.1     oster 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1993       1.1     oster 
   1994       1.1     oster 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1995       1.9     oster 	lp->d_type = DTYPE_RAID;
   1996       1.1     oster 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1997       1.1     oster 	lp->d_rpm = 3600;
   1998       1.1     oster 	lp->d_interleave = 1;
   1999       1.1     oster 	lp->d_flags = 0;
   2000       1.1     oster 
   2001       1.1     oster 	lp->d_partitions[RAW_PART].p_offset = 0;
   2002       1.1     oster 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2003       1.1     oster 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2004       1.1     oster 	lp->d_npartitions = RAW_PART + 1;
   2005       1.1     oster 
   2006       1.1     oster 	lp->d_magic = DISKMAGIC;
   2007       1.1     oster 	lp->d_magic2 = DISKMAGIC;
   2008       1.1     oster 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2009       1.1     oster 
   2010       1.1     oster }
   2011       1.1     oster /*
   2012       1.1     oster  * Read the disklabel from the raid device.  If one is not present, fake one
   2013       1.1     oster  * up.
   2014       1.1     oster  */
   2015       1.1     oster static void
   2016       1.1     oster raidgetdisklabel(dev)
   2017       1.9     oster 	dev_t   dev;
   2018       1.1     oster {
   2019       1.9     oster 	int     unit = raidunit(dev);
   2020       1.1     oster 	struct raid_softc *rs = &raid_softc[unit];
   2021       1.9     oster 	char   *errstring;
   2022       1.1     oster 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2023       1.1     oster 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2024       1.1     oster 	RF_Raid_t *raidPtr;
   2025       1.1     oster 
   2026       1.1     oster 	db1_printf(("Getting the disklabel...\n"));
   2027       1.1     oster 
   2028       1.1     oster 	bzero(clp, sizeof(*clp));
   2029       1.1     oster 
   2030       1.1     oster 	raidPtr = raidPtrs[unit];
   2031       1.1     oster 
   2032       1.1     oster 	raidgetdefaultlabel(raidPtr, rs, lp);
   2033       1.1     oster 
   2034       1.1     oster 	/*
   2035       1.1     oster 	 * Call the generic disklabel extraction routine.
   2036       1.1     oster 	 */
   2037       1.1     oster 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2038       1.1     oster 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2039       1.9     oster 	if (errstring)
   2040       1.1     oster 		raidmakedisklabel(rs);
   2041       1.1     oster 	else {
   2042       1.9     oster 		int     i;
   2043       1.1     oster 		struct partition *pp;
   2044       1.1     oster 
   2045       1.1     oster 		/*
   2046       1.1     oster 		 * Sanity check whether the found disklabel is valid.
   2047       1.1     oster 		 *
   2048       1.1     oster 		 * This is necessary since total size of the raid device
   2049       1.1     oster 		 * may vary when an interleave is changed even though exactly
   2050       1.1     oster 		 * same componets are used, and old disklabel may used
   2051       1.1     oster 		 * if that is found.
   2052       1.1     oster 		 */
   2053       1.1     oster 		if (lp->d_secperunit != rs->sc_size)
   2054       1.1     oster 			printf("WARNING: %s: "
   2055       1.1     oster 			    "total sector size in disklabel (%d) != "
   2056      1.18     oster 			    "the size of raid (%ld)\n", rs->sc_xname,
   2057      1.18     oster 			    lp->d_secperunit, (long) rs->sc_size);
   2058       1.1     oster 		for (i = 0; i < lp->d_npartitions; i++) {
   2059       1.1     oster 			pp = &lp->d_partitions[i];
   2060       1.1     oster 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2061       1.1     oster 				printf("WARNING: %s: end of partition `%c' "
   2062      1.18     oster 				    "exceeds the size of raid (%ld)\n",
   2063      1.18     oster 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2064       1.1     oster 		}
   2065       1.1     oster 	}
   2066       1.1     oster 
   2067       1.1     oster }
   2068       1.1     oster /*
   2069       1.1     oster  * Take care of things one might want to take care of in the event
   2070       1.1     oster  * that a disklabel isn't present.
   2071       1.1     oster  */
   2072       1.1     oster static void
   2073       1.1     oster raidmakedisklabel(rs)
   2074       1.1     oster 	struct raid_softc *rs;
   2075       1.1     oster {
   2076       1.1     oster 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2077       1.1     oster 	db1_printf(("Making a label..\n"));
   2078       1.1     oster 
   2079       1.1     oster 	/*
   2080       1.1     oster 	 * For historical reasons, if there's no disklabel present
   2081       1.1     oster 	 * the raw partition must be marked FS_BSDFFS.
   2082       1.1     oster 	 */
   2083       1.1     oster 
   2084       1.1     oster 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2085       1.1     oster 
   2086       1.1     oster 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2087       1.1     oster 
   2088       1.1     oster 	lp->d_checksum = dkcksum(lp);
   2089       1.1     oster }
   2090       1.1     oster /*
   2091       1.1     oster  * Lookup the provided name in the filesystem.  If the file exists,
   2092       1.1     oster  * is a valid block device, and isn't being used by anyone else,
   2093       1.1     oster  * set *vpp to the file's vnode.
   2094       1.9     oster  * You'll find the original of this in ccd.c
   2095       1.1     oster  */
   2096       1.1     oster int
   2097       1.1     oster raidlookup(path, p, vpp)
   2098       1.9     oster 	char   *path;
   2099       1.1     oster 	struct proc *p;
   2100       1.1     oster 	struct vnode **vpp;	/* result */
   2101       1.1     oster {
   2102       1.1     oster 	struct nameidata nd;
   2103       1.1     oster 	struct vnode *vp;
   2104       1.1     oster 	struct vattr va;
   2105       1.9     oster 	int     error;
   2106       1.1     oster 
   2107       1.1     oster 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2108       1.9     oster 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2109       1.1     oster #ifdef DEBUG
   2110       1.9     oster 		printf("RAIDframe: vn_open returned %d\n", error);
   2111       1.1     oster #endif
   2112       1.1     oster 		return (error);
   2113       1.1     oster 	}
   2114       1.1     oster 	vp = nd.ni_vp;
   2115       1.1     oster 	if (vp->v_usecount > 1) {
   2116       1.1     oster 		VOP_UNLOCK(vp, 0);
   2117       1.9     oster 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2118       1.1     oster 		return (EBUSY);
   2119       1.1     oster 	}
   2120       1.1     oster 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2121       1.1     oster 		VOP_UNLOCK(vp, 0);
   2122       1.9     oster 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2123       1.1     oster 		return (error);
   2124       1.1     oster 	}
   2125       1.1     oster 	/* XXX: eventually we should handle VREG, too. */
   2126       1.1     oster 	if (va.va_type != VBLK) {
   2127       1.1     oster 		VOP_UNLOCK(vp, 0);
   2128       1.9     oster 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2129       1.1     oster 		return (ENOTBLK);
   2130       1.1     oster 	}
   2131       1.1     oster 	VOP_UNLOCK(vp, 0);
   2132       1.1     oster 	*vpp = vp;
   2133       1.1     oster 	return (0);
   2134       1.1     oster }
   2135       1.1     oster /*
   2136       1.1     oster  * Wait interruptibly for an exclusive lock.
   2137       1.1     oster  *
   2138       1.1     oster  * XXX
   2139       1.1     oster  * Several drivers do this; it should be abstracted and made MP-safe.
   2140       1.1     oster  * (Hmm... where have we seen this warning before :->  GO )
   2141       1.1     oster  */
   2142       1.1     oster static int
   2143       1.1     oster raidlock(rs)
   2144       1.1     oster 	struct raid_softc *rs;
   2145       1.1     oster {
   2146       1.9     oster 	int     error;
   2147       1.1     oster 
   2148       1.1     oster 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2149       1.1     oster 		rs->sc_flags |= RAIDF_WANTED;
   2150       1.9     oster 		if ((error =
   2151       1.9     oster 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2152       1.1     oster 			return (error);
   2153       1.1     oster 	}
   2154       1.1     oster 	rs->sc_flags |= RAIDF_LOCKED;
   2155       1.1     oster 	return (0);
   2156       1.1     oster }
   2157       1.1     oster /*
   2158       1.1     oster  * Unlock and wake up any waiters.
   2159       1.1     oster  */
   2160       1.1     oster static void
   2161       1.1     oster raidunlock(rs)
   2162       1.1     oster 	struct raid_softc *rs;
   2163       1.1     oster {
   2164       1.1     oster 
   2165       1.1     oster 	rs->sc_flags &= ~RAIDF_LOCKED;
   2166       1.1     oster 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2167       1.1     oster 		rs->sc_flags &= ~RAIDF_WANTED;
   2168       1.1     oster 		wakeup(rs);
   2169       1.1     oster 	}
   2170      1.11     oster }
   2171      1.11     oster 
   2172      1.11     oster 
   2173      1.11     oster #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2174      1.11     oster #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2175      1.11     oster 
   2176      1.11     oster int
   2177      1.12     oster raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2178      1.12     oster {
   2179  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   2180  1.29.2.1    bouyer 	raidread_component_label(dev, b_vp, &clabel);
   2181  1.29.2.1    bouyer 	clabel.mod_counter = mod_counter;
   2182  1.29.2.1    bouyer 	clabel.clean = RF_RAID_CLEAN;
   2183  1.29.2.1    bouyer 	raidwrite_component_label(dev, b_vp, &clabel);
   2184      1.12     oster 	return(0);
   2185      1.12     oster }
   2186      1.12     oster 
   2187      1.12     oster 
   2188      1.12     oster int
   2189      1.12     oster raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2190      1.11     oster {
   2191  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   2192  1.29.2.1    bouyer 	raidread_component_label(dev, b_vp, &clabel);
   2193  1.29.2.1    bouyer 	clabel.mod_counter = mod_counter;
   2194  1.29.2.1    bouyer 	clabel.clean = RF_RAID_DIRTY;
   2195  1.29.2.1    bouyer 	raidwrite_component_label(dev, b_vp, &clabel);
   2196      1.11     oster 	return(0);
   2197      1.11     oster }
   2198      1.11     oster 
   2199      1.11     oster /* ARGSUSED */
   2200      1.11     oster int
   2201  1.29.2.1    bouyer raidread_component_label(dev, b_vp, clabel)
   2202      1.11     oster 	dev_t dev;
   2203      1.11     oster 	struct vnode *b_vp;
   2204  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2205      1.11     oster {
   2206      1.11     oster 	struct buf *bp;
   2207      1.11     oster 	int error;
   2208      1.11     oster 
   2209      1.11     oster 	/* XXX should probably ensure that we don't try to do this if
   2210      1.11     oster 	   someone has changed rf_protected_sectors. */
   2211      1.11     oster 
   2212  1.29.2.1    bouyer 	if (b_vp == NULL) {
   2213  1.29.2.1    bouyer 		/* For whatever reason, this component is not valid.
   2214  1.29.2.1    bouyer 		   Don't try to read a component label from it. */
   2215  1.29.2.1    bouyer 		return(EINVAL);
   2216  1.29.2.1    bouyer 	}
   2217  1.29.2.1    bouyer 
   2218      1.11     oster 	/* get a block of the appropriate size... */
   2219      1.11     oster 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2220      1.11     oster 	bp->b_dev = dev;
   2221      1.11     oster 
   2222      1.11     oster 	/* get our ducks in a row for the read */
   2223      1.11     oster 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2224      1.11     oster 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2225  1.29.2.2    bouyer 	bp->b_flags |= B_READ;
   2226      1.11     oster  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2227      1.11     oster 
   2228      1.11     oster 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2229      1.11     oster 
   2230      1.11     oster 	error = biowait(bp);
   2231      1.11     oster 
   2232      1.11     oster 	if (!error) {
   2233  1.29.2.1    bouyer 		memcpy(clabel, bp->b_data,
   2234      1.11     oster 		       sizeof(RF_ComponentLabel_t));
   2235      1.12     oster #if 0
   2236  1.29.2.1    bouyer 		rf_print_component_label( clabel );
   2237      1.11     oster #endif
   2238      1.11     oster         } else {
   2239  1.29.2.1    bouyer #if 0
   2240      1.11     oster 		printf("Failed to read RAID component label!\n");
   2241  1.29.2.1    bouyer #endif
   2242      1.11     oster 	}
   2243      1.11     oster 
   2244      1.11     oster 	brelse(bp);
   2245      1.11     oster 	return(error);
   2246      1.11     oster }
   2247      1.11     oster /* ARGSUSED */
   2248      1.11     oster int
   2249  1.29.2.1    bouyer raidwrite_component_label(dev, b_vp, clabel)
   2250      1.11     oster 	dev_t dev;
   2251      1.11     oster 	struct vnode *b_vp;
   2252  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2253      1.11     oster {
   2254      1.11     oster 	struct buf *bp;
   2255      1.11     oster 	int error;
   2256      1.11     oster 
   2257      1.11     oster 	/* get a block of the appropriate size... */
   2258      1.11     oster 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2259      1.11     oster 	bp->b_dev = dev;
   2260      1.11     oster 
   2261      1.11     oster 	/* get our ducks in a row for the write */
   2262      1.11     oster 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2263      1.11     oster 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2264  1.29.2.2    bouyer 	bp->b_flags |= B_WRITE;
   2265      1.11     oster  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2266      1.11     oster 
   2267  1.29.2.1    bouyer 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2268      1.11     oster 
   2269  1.29.2.1    bouyer 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2270      1.11     oster 
   2271      1.11     oster 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2272      1.11     oster 	error = biowait(bp);
   2273      1.11     oster 	brelse(bp);
   2274      1.11     oster 	if (error) {
   2275  1.29.2.1    bouyer #if 1
   2276      1.11     oster 		printf("Failed to write RAID component info!\n");
   2277  1.29.2.1    bouyer #endif
   2278      1.11     oster 	}
   2279      1.11     oster 
   2280      1.11     oster 	return(error);
   2281       1.1     oster }
   2282      1.12     oster 
   2283      1.12     oster void
   2284  1.29.2.1    bouyer rf_markalldirty(raidPtr)
   2285      1.12     oster 	RF_Raid_t *raidPtr;
   2286      1.12     oster {
   2287  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   2288      1.12     oster 	int r,c;
   2289      1.12     oster 
   2290      1.12     oster 	raidPtr->mod_counter++;
   2291      1.12     oster 	for (r = 0; r < raidPtr->numRow; r++) {
   2292      1.12     oster 		for (c = 0; c < raidPtr->numCol; c++) {
   2293  1.29.2.1    bouyer 			/* we don't want to touch (at all) a disk that has
   2294  1.29.2.1    bouyer 			   failed */
   2295  1.29.2.1    bouyer 			if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
   2296      1.12     oster 				raidread_component_label(
   2297      1.12     oster 					raidPtr->Disks[r][c].dev,
   2298      1.12     oster 					raidPtr->raid_cinfo[r][c].ci_vp,
   2299  1.29.2.1    bouyer 					&clabel);
   2300  1.29.2.1    bouyer 				if (clabel.status == rf_ds_spared) {
   2301      1.12     oster 					/* XXX do something special...
   2302      1.12     oster 					 but whatever you do, don't
   2303      1.12     oster 					 try to access it!! */
   2304      1.12     oster 				} else {
   2305      1.12     oster #if 0
   2306  1.29.2.1    bouyer 				clabel.status =
   2307      1.12     oster 					raidPtr->Disks[r][c].status;
   2308      1.12     oster 				raidwrite_component_label(
   2309      1.12     oster 					raidPtr->Disks[r][c].dev,
   2310      1.12     oster 					raidPtr->raid_cinfo[r][c].ci_vp,
   2311  1.29.2.1    bouyer 					&clabel);
   2312      1.12     oster #endif
   2313      1.12     oster 				raidmarkdirty(
   2314      1.12     oster 				       raidPtr->Disks[r][c].dev,
   2315      1.12     oster 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2316      1.12     oster 				       raidPtr->mod_counter);
   2317      1.12     oster 				}
   2318      1.12     oster 			}
   2319      1.12     oster 		}
   2320      1.12     oster 	}
   2321      1.13     oster 	/* printf("Component labels marked dirty.\n"); */
   2322      1.12     oster #if 0
   2323      1.12     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2324      1.12     oster 		sparecol = raidPtr->numCol + c;
   2325      1.12     oster 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2326      1.12     oster 			/*
   2327      1.12     oster 
   2328      1.12     oster 			   XXX this is where we get fancy and map this spare
   2329      1.12     oster 			   into it's correct spot in the array.
   2330      1.12     oster 
   2331      1.12     oster 			 */
   2332      1.12     oster 			/*
   2333      1.12     oster 
   2334      1.12     oster 			   we claim this disk is "optimal" if it's
   2335      1.12     oster 			   rf_ds_used_spare, as that means it should be
   2336      1.12     oster 			   directly substitutable for the disk it replaced.
   2337      1.12     oster 			   We note that too...
   2338      1.12     oster 
   2339      1.12     oster 			 */
   2340      1.12     oster 
   2341      1.12     oster 			for(i=0;i<raidPtr->numRow;i++) {
   2342      1.12     oster 				for(j=0;j<raidPtr->numCol;j++) {
   2343      1.12     oster 					if ((raidPtr->Disks[i][j].spareRow ==
   2344      1.12     oster 					     r) &&
   2345      1.12     oster 					    (raidPtr->Disks[i][j].spareCol ==
   2346      1.12     oster 					     sparecol)) {
   2347      1.12     oster 						srow = r;
   2348      1.12     oster 						scol = sparecol;
   2349      1.12     oster 						break;
   2350      1.12     oster 					}
   2351      1.12     oster 				}
   2352      1.12     oster 			}
   2353      1.12     oster 
   2354      1.12     oster 			raidread_component_label(
   2355      1.12     oster 				      raidPtr->Disks[r][sparecol].dev,
   2356      1.12     oster 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2357  1.29.2.1    bouyer 				      &clabel);
   2358      1.12     oster 			/* make sure status is noted */
   2359  1.29.2.1    bouyer 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2360  1.29.2.1    bouyer 			clabel.mod_counter = raidPtr->mod_counter;
   2361  1.29.2.1    bouyer 			clabel.serial_number = raidPtr->serial_number;
   2362  1.29.2.1    bouyer 			clabel.row = srow;
   2363  1.29.2.1    bouyer 			clabel.column = scol;
   2364  1.29.2.1    bouyer 			clabel.num_rows = raidPtr->numRow;
   2365  1.29.2.1    bouyer 			clabel.num_columns = raidPtr->numCol;
   2366  1.29.2.1    bouyer 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2367  1.29.2.1    bouyer 			clabel.status = rf_ds_optimal;
   2368      1.12     oster 			raidwrite_component_label(
   2369      1.12     oster 				      raidPtr->Disks[r][sparecol].dev,
   2370      1.12     oster 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2371  1.29.2.1    bouyer 				      &clabel);
   2372      1.12     oster 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2373      1.12     oster 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2374      1.12     oster 		}
   2375      1.12     oster 	}
   2376      1.12     oster 
   2377      1.12     oster #endif
   2378      1.12     oster }
   2379      1.12     oster 
   2380      1.13     oster 
   2381      1.13     oster void
   2382  1.29.2.1    bouyer rf_update_component_labels(raidPtr, final)
   2383      1.13     oster 	RF_Raid_t *raidPtr;
   2384  1.29.2.1    bouyer 	int final;
   2385      1.13     oster {
   2386  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   2387      1.13     oster 	int sparecol;
   2388      1.13     oster 	int r,c;
   2389      1.13     oster 	int i,j;
   2390      1.13     oster 	int srow, scol;
   2391      1.13     oster 
   2392      1.13     oster 	srow = -1;
   2393      1.13     oster 	scol = -1;
   2394      1.13     oster 
   2395      1.13     oster 	/* XXX should do extra checks to make sure things really are clean,
   2396      1.13     oster 	   rather than blindly setting the clean bit... */
   2397      1.13     oster 
   2398      1.13     oster 	raidPtr->mod_counter++;
   2399      1.13     oster 
   2400      1.13     oster 	for (r = 0; r < raidPtr->numRow; r++) {
   2401      1.13     oster 		for (c = 0; c < raidPtr->numCol; c++) {
   2402      1.13     oster 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2403      1.13     oster 				raidread_component_label(
   2404      1.13     oster 					raidPtr->Disks[r][c].dev,
   2405      1.13     oster 					raidPtr->raid_cinfo[r][c].ci_vp,
   2406  1.29.2.1    bouyer 					&clabel);
   2407      1.13     oster 				/* make sure status is noted */
   2408  1.29.2.1    bouyer 				clabel.status = rf_ds_optimal;
   2409  1.29.2.1    bouyer 				/* bump the counter */
   2410  1.29.2.1    bouyer 				clabel.mod_counter = raidPtr->mod_counter;
   2411  1.29.2.1    bouyer 
   2412      1.13     oster 				raidwrite_component_label(
   2413      1.13     oster 					raidPtr->Disks[r][c].dev,
   2414      1.13     oster 					raidPtr->raid_cinfo[r][c].ci_vp,
   2415  1.29.2.1    bouyer 					&clabel);
   2416  1.29.2.1    bouyer 				if (final == RF_FINAL_COMPONENT_UPDATE) {
   2417  1.29.2.1    bouyer 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2418  1.29.2.1    bouyer 						raidmarkclean(
   2419  1.29.2.1    bouyer 							      raidPtr->Disks[r][c].dev,
   2420  1.29.2.1    bouyer 							      raidPtr->raid_cinfo[r][c].ci_vp,
   2421  1.29.2.1    bouyer 							      raidPtr->mod_counter);
   2422  1.29.2.1    bouyer 					}
   2423      1.13     oster 				}
   2424      1.13     oster 			}
   2425      1.13     oster 			/* else we don't touch it.. */
   2426      1.13     oster 		}
   2427      1.13     oster 	}
   2428      1.13     oster 
   2429      1.13     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2430      1.13     oster 		sparecol = raidPtr->numCol + c;
   2431      1.13     oster 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2432      1.13     oster 			/*
   2433      1.13     oster 
   2434      1.13     oster 			   we claim this disk is "optimal" if it's
   2435      1.13     oster 			   rf_ds_used_spare, as that means it should be
   2436      1.13     oster 			   directly substitutable for the disk it replaced.
   2437      1.13     oster 			   We note that too...
   2438      1.13     oster 
   2439      1.13     oster 			 */
   2440      1.13     oster 
   2441      1.13     oster 			for(i=0;i<raidPtr->numRow;i++) {
   2442      1.13     oster 				for(j=0;j<raidPtr->numCol;j++) {
   2443      1.13     oster 					if ((raidPtr->Disks[i][j].spareRow ==
   2444      1.13     oster 					     0) &&
   2445      1.13     oster 					    (raidPtr->Disks[i][j].spareCol ==
   2446      1.13     oster 					     sparecol)) {
   2447      1.13     oster 						srow = i;
   2448      1.13     oster 						scol = j;
   2449      1.13     oster 						break;
   2450      1.13     oster 					}
   2451      1.13     oster 				}
   2452      1.13     oster 			}
   2453      1.13     oster 
   2454  1.29.2.1    bouyer 			/* XXX shouldn't *really* need this... */
   2455      1.13     oster 			raidread_component_label(
   2456      1.13     oster 				      raidPtr->Disks[0][sparecol].dev,
   2457      1.13     oster 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2458  1.29.2.1    bouyer 				      &clabel);
   2459      1.13     oster 			/* make sure status is noted */
   2460  1.29.2.1    bouyer 
   2461  1.29.2.1    bouyer 			raid_init_component_label(raidPtr, &clabel);
   2462  1.29.2.1    bouyer 
   2463  1.29.2.1    bouyer 			clabel.mod_counter = raidPtr->mod_counter;
   2464  1.29.2.1    bouyer 			clabel.row = srow;
   2465  1.29.2.1    bouyer 			clabel.column = scol;
   2466  1.29.2.1    bouyer 			clabel.status = rf_ds_optimal;
   2467  1.29.2.1    bouyer 
   2468      1.13     oster 			raidwrite_component_label(
   2469      1.13     oster 				      raidPtr->Disks[0][sparecol].dev,
   2470      1.13     oster 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2471  1.29.2.1    bouyer 				      &clabel);
   2472  1.29.2.1    bouyer 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2473  1.29.2.1    bouyer 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2474  1.29.2.1    bouyer 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2475  1.29.2.1    bouyer 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2476  1.29.2.1    bouyer 						       raidPtr->mod_counter);
   2477  1.29.2.1    bouyer 				}
   2478      1.13     oster 			}
   2479      1.13     oster 		}
   2480      1.13     oster 	}
   2481      1.13     oster 	/* 	printf("Component labels updated\n"); */
   2482  1.29.2.1    bouyer }
   2483  1.29.2.1    bouyer 
   2484  1.29.2.1    bouyer void
   2485  1.29.2.1    bouyer rf_close_component(raidPtr, vp, auto_configured)
   2486  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2487  1.29.2.1    bouyer 	struct vnode *vp;
   2488  1.29.2.1    bouyer 	int auto_configured;
   2489  1.29.2.1    bouyer {
   2490  1.29.2.1    bouyer 	struct proc *p;
   2491  1.29.2.1    bouyer 
   2492  1.29.2.1    bouyer 	p = raidPtr->engine_thread;
   2493  1.29.2.1    bouyer 
   2494  1.29.2.1    bouyer 	if (vp != NULL) {
   2495  1.29.2.1    bouyer 		if (auto_configured == 1) {
   2496  1.29.2.1    bouyer 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2497  1.29.2.1    bouyer 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2498  1.29.2.1    bouyer 			vput(vp);
   2499  1.29.2.1    bouyer 
   2500  1.29.2.1    bouyer 		} else {
   2501  1.29.2.1    bouyer 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2502  1.29.2.1    bouyer 		}
   2503  1.29.2.1    bouyer 	} else {
   2504  1.29.2.1    bouyer 		printf("vnode was NULL\n");
   2505  1.29.2.1    bouyer 	}
   2506  1.29.2.1    bouyer }
   2507  1.29.2.1    bouyer 
   2508  1.29.2.1    bouyer 
   2509  1.29.2.1    bouyer void
   2510  1.29.2.1    bouyer rf_UnconfigureVnodes(raidPtr)
   2511  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2512  1.29.2.1    bouyer {
   2513  1.29.2.1    bouyer 	int r,c;
   2514  1.29.2.1    bouyer 	struct proc *p;
   2515  1.29.2.1    bouyer 	struct vnode *vp;
   2516  1.29.2.1    bouyer 	int acd;
   2517  1.29.2.1    bouyer 
   2518  1.29.2.1    bouyer 
   2519  1.29.2.1    bouyer 	/* We take this opportunity to close the vnodes like we should.. */
   2520  1.29.2.1    bouyer 
   2521  1.29.2.1    bouyer 	p = raidPtr->engine_thread;
   2522  1.29.2.1    bouyer 
   2523  1.29.2.1    bouyer 	for (r = 0; r < raidPtr->numRow; r++) {
   2524  1.29.2.1    bouyer 		for (c = 0; c < raidPtr->numCol; c++) {
   2525  1.29.2.1    bouyer 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2526  1.29.2.1    bouyer 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2527  1.29.2.1    bouyer 			acd = raidPtr->Disks[r][c].auto_configured;
   2528  1.29.2.1    bouyer 			rf_close_component(raidPtr, vp, acd);
   2529  1.29.2.1    bouyer 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2530  1.29.2.1    bouyer 			raidPtr->Disks[r][c].auto_configured = 0;
   2531  1.29.2.1    bouyer 		}
   2532  1.29.2.1    bouyer 	}
   2533  1.29.2.1    bouyer 	for (r = 0; r < raidPtr->numSpare; r++) {
   2534  1.29.2.1    bouyer 		printf("Closing vnode for spare: %d\n", r);
   2535  1.29.2.1    bouyer 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2536  1.29.2.1    bouyer 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2537  1.29.2.1    bouyer 		rf_close_component(raidPtr, vp, acd);
   2538  1.29.2.1    bouyer 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2539  1.29.2.1    bouyer 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2540  1.29.2.1    bouyer 	}
   2541  1.29.2.1    bouyer }
   2542  1.29.2.1    bouyer 
   2543  1.29.2.1    bouyer 
   2544  1.29.2.1    bouyer void
   2545  1.29.2.1    bouyer rf_ReconThread(req)
   2546  1.29.2.1    bouyer 	struct rf_recon_req *req;
   2547  1.29.2.1    bouyer {
   2548  1.29.2.1    bouyer 	int     s;
   2549  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2550  1.29.2.1    bouyer 
   2551  1.29.2.1    bouyer 	s = splbio();
   2552  1.29.2.1    bouyer 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2553  1.29.2.1    bouyer 	raidPtr->recon_in_progress = 1;
   2554  1.29.2.1    bouyer 
   2555  1.29.2.1    bouyer 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2556  1.29.2.1    bouyer 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2557  1.29.2.1    bouyer 
   2558  1.29.2.1    bouyer 	/* XXX get rid of this! we don't need it at all.. */
   2559  1.29.2.1    bouyer 	RF_Free(req, sizeof(*req));
   2560  1.29.2.1    bouyer 
   2561  1.29.2.1    bouyer 	raidPtr->recon_in_progress = 0;
   2562  1.29.2.1    bouyer 	splx(s);
   2563  1.29.2.1    bouyer 
   2564  1.29.2.1    bouyer 	/* That's all... */
   2565  1.29.2.1    bouyer 	kthread_exit(0);        /* does not return */
   2566  1.29.2.1    bouyer }
   2567  1.29.2.1    bouyer 
   2568  1.29.2.1    bouyer void
   2569  1.29.2.1    bouyer rf_RewriteParityThread(raidPtr)
   2570  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2571  1.29.2.1    bouyer {
   2572  1.29.2.1    bouyer 	int retcode;
   2573  1.29.2.1    bouyer 	int s;
   2574  1.29.2.1    bouyer 
   2575  1.29.2.1    bouyer 	raidPtr->parity_rewrite_in_progress = 1;
   2576  1.29.2.1    bouyer 	s = splbio();
   2577  1.29.2.1    bouyer 	retcode = rf_RewriteParity(raidPtr);
   2578  1.29.2.1    bouyer 	splx(s);
   2579  1.29.2.1    bouyer 	if (retcode) {
   2580  1.29.2.1    bouyer 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2581  1.29.2.1    bouyer 	} else {
   2582  1.29.2.1    bouyer 		/* set the clean bit!  If we shutdown correctly,
   2583  1.29.2.1    bouyer 		   the clean bit on each component label will get
   2584  1.29.2.1    bouyer 		   set */
   2585  1.29.2.1    bouyer 		raidPtr->parity_good = RF_RAID_CLEAN;
   2586  1.29.2.1    bouyer 	}
   2587  1.29.2.1    bouyer 	raidPtr->parity_rewrite_in_progress = 0;
   2588  1.29.2.1    bouyer 
   2589  1.29.2.1    bouyer 	/* Anyone waiting for us to stop?  If so, inform them... */
   2590  1.29.2.1    bouyer 	if (raidPtr->waitShutdown) {
   2591  1.29.2.1    bouyer 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2592  1.29.2.1    bouyer 	}
   2593  1.29.2.1    bouyer 
   2594  1.29.2.1    bouyer 	/* That's all... */
   2595  1.29.2.1    bouyer 	kthread_exit(0);        /* does not return */
   2596  1.29.2.1    bouyer }
   2597  1.29.2.1    bouyer 
   2598  1.29.2.1    bouyer 
   2599  1.29.2.1    bouyer void
   2600  1.29.2.1    bouyer rf_CopybackThread(raidPtr)
   2601  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2602  1.29.2.1    bouyer {
   2603  1.29.2.1    bouyer 	int s;
   2604  1.29.2.1    bouyer 
   2605  1.29.2.1    bouyer 	raidPtr->copyback_in_progress = 1;
   2606  1.29.2.1    bouyer 	s = splbio();
   2607  1.29.2.1    bouyer 	rf_CopybackReconstructedData(raidPtr);
   2608  1.29.2.1    bouyer 	splx(s);
   2609  1.29.2.1    bouyer 	raidPtr->copyback_in_progress = 0;
   2610  1.29.2.1    bouyer 
   2611  1.29.2.1    bouyer 	/* That's all... */
   2612  1.29.2.1    bouyer 	kthread_exit(0);        /* does not return */
   2613  1.29.2.1    bouyer }
   2614  1.29.2.1    bouyer 
   2615  1.29.2.1    bouyer 
   2616  1.29.2.1    bouyer void
   2617  1.29.2.1    bouyer rf_ReconstructInPlaceThread(req)
   2618  1.29.2.1    bouyer 	struct rf_recon_req *req;
   2619  1.29.2.1    bouyer {
   2620  1.29.2.1    bouyer 	int retcode;
   2621  1.29.2.1    bouyer 	int s;
   2622  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   2623  1.29.2.1    bouyer 
   2624  1.29.2.1    bouyer 	s = splbio();
   2625  1.29.2.1    bouyer 	raidPtr = req->raidPtr;
   2626  1.29.2.1    bouyer 	raidPtr->recon_in_progress = 1;
   2627  1.29.2.1    bouyer 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2628  1.29.2.1    bouyer 	RF_Free(req, sizeof(*req));
   2629  1.29.2.1    bouyer 	raidPtr->recon_in_progress = 0;
   2630  1.29.2.1    bouyer 	splx(s);
   2631  1.29.2.1    bouyer 
   2632  1.29.2.1    bouyer 	/* That's all... */
   2633  1.29.2.1    bouyer 	kthread_exit(0);        /* does not return */
   2634  1.29.2.1    bouyer }
   2635  1.29.2.1    bouyer 
   2636  1.29.2.1    bouyer void
   2637  1.29.2.1    bouyer rf_mountroot_hook(dev)
   2638  1.29.2.1    bouyer 	struct device *dev;
   2639  1.29.2.1    bouyer {
   2640  1.29.2.1    bouyer 
   2641  1.29.2.1    bouyer }
   2642  1.29.2.1    bouyer 
   2643  1.29.2.1    bouyer 
   2644  1.29.2.1    bouyer RF_AutoConfig_t *
   2645  1.29.2.1    bouyer rf_find_raid_components()
   2646  1.29.2.1    bouyer {
   2647  1.29.2.1    bouyer 	struct devnametobdevmaj *dtobdm;
   2648  1.29.2.1    bouyer 	struct vnode *vp;
   2649  1.29.2.1    bouyer 	struct disklabel label;
   2650  1.29.2.1    bouyer 	struct device *dv;
   2651  1.29.2.1    bouyer 	char *cd_name;
   2652  1.29.2.1    bouyer 	dev_t dev;
   2653  1.29.2.1    bouyer 	int error;
   2654  1.29.2.1    bouyer 	int i;
   2655  1.29.2.1    bouyer 	int good_one;
   2656  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2657  1.29.2.1    bouyer 	RF_AutoConfig_t *ac_list;
   2658  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   2659  1.29.2.1    bouyer 
   2660  1.29.2.1    bouyer 
   2661  1.29.2.1    bouyer 	/* initialize the AutoConfig list */
   2662  1.29.2.1    bouyer 	ac_list = NULL;
   2663  1.29.2.1    bouyer 
   2664  1.29.2.1    bouyer if (raidautoconfig) {
   2665  1.29.2.1    bouyer 
   2666  1.29.2.1    bouyer 	/* we begin by trolling through *all* the devices on the system */
   2667  1.29.2.1    bouyer 
   2668  1.29.2.1    bouyer 	for (dv = alldevs.tqh_first; dv != NULL;
   2669  1.29.2.1    bouyer 	     dv = dv->dv_list.tqe_next) {
   2670  1.29.2.1    bouyer 
   2671  1.29.2.1    bouyer 		/* we are only interested in disks... */
   2672  1.29.2.1    bouyer 		if (dv->dv_class != DV_DISK)
   2673  1.29.2.1    bouyer 			continue;
   2674  1.29.2.1    bouyer 
   2675  1.29.2.1    bouyer 		/* we don't care about floppies... */
   2676  1.29.2.1    bouyer 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2677  1.29.2.1    bouyer 			continue;
   2678  1.29.2.1    bouyer 		}
   2679  1.29.2.1    bouyer 
   2680  1.29.2.1    bouyer 		/* need to find the device_name_to_block_device_major stuff */
   2681  1.29.2.1    bouyer 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2682  1.29.2.1    bouyer 		dtobdm = dev_name2blk;
   2683  1.29.2.1    bouyer 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2684  1.29.2.1    bouyer 			dtobdm++;
   2685  1.29.2.1    bouyer 		}
   2686  1.29.2.1    bouyer 
   2687  1.29.2.1    bouyer 		/* get a vnode for the raw partition of this disk */
   2688  1.29.2.1    bouyer 
   2689  1.29.2.1    bouyer 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2690  1.29.2.1    bouyer 		if (bdevvp(dev, &vp))
   2691  1.29.2.1    bouyer 			panic("RAID can't alloc vnode");
   2692  1.29.2.1    bouyer 
   2693  1.29.2.1    bouyer 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2694  1.29.2.1    bouyer 
   2695  1.29.2.1    bouyer 		if (error) {
   2696  1.29.2.1    bouyer 			/* "Who cares."  Continue looking
   2697  1.29.2.1    bouyer 			   for something that exists*/
   2698  1.29.2.1    bouyer 			vput(vp);
   2699  1.29.2.1    bouyer 			continue;
   2700  1.29.2.1    bouyer 		}
   2701  1.29.2.1    bouyer 
   2702  1.29.2.1    bouyer 		/* Ok, the disk exists.  Go get the disklabel. */
   2703  1.29.2.1    bouyer 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2704  1.29.2.1    bouyer 				  FREAD, NOCRED, 0);
   2705  1.29.2.1    bouyer 		if (error) {
   2706  1.29.2.1    bouyer 			/*
   2707  1.29.2.1    bouyer 			 * XXX can't happen - open() would
   2708  1.29.2.1    bouyer 			 * have errored out (or faked up one)
   2709  1.29.2.1    bouyer 			 */
   2710  1.29.2.1    bouyer 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2711  1.29.2.1    bouyer 			       dv->dv_xname, 'a' + RAW_PART, error);
   2712  1.29.2.1    bouyer 		}
   2713  1.29.2.1    bouyer 
   2714  1.29.2.1    bouyer 		/* don't need this any more.  We'll allocate it again
   2715  1.29.2.1    bouyer 		   a little later if we really do... */
   2716  1.29.2.1    bouyer 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2717  1.29.2.1    bouyer 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2718  1.29.2.1    bouyer 		vput(vp);
   2719  1.29.2.1    bouyer 
   2720  1.29.2.1    bouyer 		for (i=0; i < label.d_npartitions; i++) {
   2721  1.29.2.1    bouyer 			/* We only support partitions marked as RAID */
   2722  1.29.2.1    bouyer 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2723  1.29.2.1    bouyer 				continue;
   2724  1.29.2.1    bouyer 
   2725  1.29.2.1    bouyer 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2726  1.29.2.1    bouyer 			if (bdevvp(dev, &vp))
   2727  1.29.2.1    bouyer 				panic("RAID can't alloc vnode");
   2728  1.29.2.1    bouyer 
   2729  1.29.2.1    bouyer 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2730  1.29.2.1    bouyer 			if (error) {
   2731  1.29.2.1    bouyer 				/* Whatever... */
   2732  1.29.2.1    bouyer 				vput(vp);
   2733  1.29.2.1    bouyer 				continue;
   2734  1.29.2.1    bouyer 			}
   2735  1.29.2.1    bouyer 
   2736  1.29.2.1    bouyer 			good_one = 0;
   2737  1.29.2.1    bouyer 
   2738  1.29.2.1    bouyer 			clabel = (RF_ComponentLabel_t *)
   2739  1.29.2.1    bouyer 				malloc(sizeof(RF_ComponentLabel_t),
   2740  1.29.2.1    bouyer 				       M_RAIDFRAME, M_NOWAIT);
   2741  1.29.2.1    bouyer 			if (clabel == NULL) {
   2742  1.29.2.1    bouyer 				/* XXX CLEANUP HERE */
   2743  1.29.2.1    bouyer 				printf("RAID auto config: out of memory!\n");
   2744  1.29.2.1    bouyer 				return(NULL); /* XXX probably should panic? */
   2745  1.29.2.1    bouyer 			}
   2746  1.29.2.1    bouyer 
   2747  1.29.2.1    bouyer 			if (!raidread_component_label(dev, vp, clabel)) {
   2748  1.29.2.1    bouyer 				/* Got the label.  Does it look reasonable? */
   2749  1.29.2.1    bouyer 				if (rf_reasonable_label(clabel) &&
   2750  1.29.2.1    bouyer 				    (clabel->partitionSize <=
   2751  1.29.2.1    bouyer 				     label.d_partitions[i].p_size)) {
   2752  1.29.2.1    bouyer #if DEBUG
   2753  1.29.2.1    bouyer 					printf("Component on: %s%c: %d\n",
   2754  1.29.2.1    bouyer 					       dv->dv_xname, 'a'+i,
   2755  1.29.2.1    bouyer 					       label.d_partitions[i].p_size);
   2756  1.29.2.1    bouyer 					rf_print_component_label(clabel);
   2757  1.29.2.1    bouyer #endif
   2758  1.29.2.1    bouyer 					/* if it's reasonable, add it,
   2759  1.29.2.1    bouyer 					   else ignore it. */
   2760  1.29.2.1    bouyer 					ac = (RF_AutoConfig_t *)
   2761  1.29.2.1    bouyer 						malloc(sizeof(RF_AutoConfig_t),
   2762  1.29.2.1    bouyer 						       M_RAIDFRAME,
   2763  1.29.2.1    bouyer 						       M_NOWAIT);
   2764  1.29.2.1    bouyer 					if (ac == NULL) {
   2765  1.29.2.1    bouyer 						/* XXX should panic?? */
   2766  1.29.2.1    bouyer 						return(NULL);
   2767  1.29.2.1    bouyer 					}
   2768  1.29.2.1    bouyer 
   2769  1.29.2.1    bouyer 					sprintf(ac->devname, "%s%c",
   2770  1.29.2.1    bouyer 						dv->dv_xname, 'a'+i);
   2771  1.29.2.1    bouyer 					ac->dev = dev;
   2772  1.29.2.1    bouyer 					ac->vp = vp;
   2773  1.29.2.1    bouyer 					ac->clabel = clabel;
   2774  1.29.2.1    bouyer 					ac->next = ac_list;
   2775  1.29.2.1    bouyer 					ac_list = ac;
   2776  1.29.2.1    bouyer 					good_one = 1;
   2777  1.29.2.1    bouyer 				}
   2778  1.29.2.1    bouyer 			}
   2779  1.29.2.1    bouyer 			if (!good_one) {
   2780  1.29.2.1    bouyer 				/* cleanup */
   2781  1.29.2.1    bouyer 				free(clabel, M_RAIDFRAME);
   2782  1.29.2.1    bouyer 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2783  1.29.2.1    bouyer 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2784  1.29.2.1    bouyer 				vput(vp);
   2785  1.29.2.1    bouyer 			}
   2786  1.29.2.1    bouyer 		}
   2787  1.29.2.1    bouyer 	}
   2788  1.29.2.1    bouyer }
   2789  1.29.2.1    bouyer return(ac_list);
   2790  1.29.2.1    bouyer }
   2791  1.29.2.1    bouyer 
   2792  1.29.2.1    bouyer static int
   2793  1.29.2.1    bouyer rf_reasonable_label(clabel)
   2794  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2795  1.29.2.1    bouyer {
   2796  1.29.2.1    bouyer 
   2797  1.29.2.1    bouyer 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2798  1.29.2.1    bouyer 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2799  1.29.2.1    bouyer 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2800  1.29.2.1    bouyer 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2801  1.29.2.1    bouyer 	    clabel->row >=0 &&
   2802  1.29.2.1    bouyer 	    clabel->column >= 0 &&
   2803  1.29.2.1    bouyer 	    clabel->num_rows > 0 &&
   2804  1.29.2.1    bouyer 	    clabel->num_columns > 0 &&
   2805  1.29.2.1    bouyer 	    clabel->row < clabel->num_rows &&
   2806  1.29.2.1    bouyer 	    clabel->column < clabel->num_columns &&
   2807  1.29.2.1    bouyer 	    clabel->blockSize > 0 &&
   2808  1.29.2.1    bouyer 	    clabel->numBlocks > 0) {
   2809  1.29.2.1    bouyer 		/* label looks reasonable enough... */
   2810  1.29.2.1    bouyer 		return(1);
   2811  1.29.2.1    bouyer 	}
   2812  1.29.2.1    bouyer 	return(0);
   2813  1.29.2.1    bouyer }
   2814  1.29.2.1    bouyer 
   2815  1.29.2.1    bouyer 
   2816  1.29.2.1    bouyer void
   2817  1.29.2.1    bouyer rf_print_component_label(clabel)
   2818  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2819  1.29.2.1    bouyer {
   2820  1.29.2.1    bouyer 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2821  1.29.2.1    bouyer 	       clabel->row, clabel->column,
   2822  1.29.2.1    bouyer 	       clabel->num_rows, clabel->num_columns);
   2823  1.29.2.1    bouyer 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2824  1.29.2.1    bouyer 	       clabel->version, clabel->serial_number,
   2825  1.29.2.1    bouyer 	       clabel->mod_counter);
   2826  1.29.2.1    bouyer 	printf("   Clean: %s Status: %d\n",
   2827  1.29.2.1    bouyer 	       clabel->clean ? "Yes" : "No", clabel->status );
   2828  1.29.2.1    bouyer 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2829  1.29.2.1    bouyer 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2830  1.29.2.1    bouyer 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2831  1.29.2.1    bouyer 	       (char) clabel->parityConfig, clabel->blockSize,
   2832  1.29.2.1    bouyer 	       clabel->numBlocks);
   2833  1.29.2.1    bouyer 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2834  1.29.2.1    bouyer 	printf("   Contains root partition: %s\n",
   2835  1.29.2.1    bouyer 	       clabel->root_partition ? "Yes" : "No" );
   2836  1.29.2.1    bouyer 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2837  1.29.2.1    bouyer #if 0
   2838  1.29.2.1    bouyer 	   printf("   Config order: %d\n", clabel->config_order);
   2839  1.29.2.1    bouyer #endif
   2840  1.29.2.1    bouyer 
   2841  1.29.2.1    bouyer }
   2842  1.29.2.1    bouyer 
   2843  1.29.2.1    bouyer RF_ConfigSet_t *
   2844  1.29.2.1    bouyer rf_create_auto_sets(ac_list)
   2845  1.29.2.1    bouyer 	RF_AutoConfig_t *ac_list;
   2846  1.29.2.1    bouyer {
   2847  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   2848  1.29.2.1    bouyer 	RF_ConfigSet_t *config_sets;
   2849  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   2850  1.29.2.1    bouyer 	RF_AutoConfig_t *ac_next;
   2851  1.29.2.1    bouyer 
   2852  1.29.2.1    bouyer 
   2853  1.29.2.1    bouyer 	config_sets = NULL;
   2854  1.29.2.1    bouyer 
   2855  1.29.2.1    bouyer 	/* Go through the AutoConfig list, and figure out which components
   2856  1.29.2.1    bouyer 	   belong to what sets.  */
   2857  1.29.2.1    bouyer 	ac = ac_list;
   2858  1.29.2.1    bouyer 	while(ac!=NULL) {
   2859  1.29.2.1    bouyer 		/* we're going to putz with ac->next, so save it here
   2860  1.29.2.1    bouyer 		   for use at the end of the loop */
   2861  1.29.2.1    bouyer 		ac_next = ac->next;
   2862  1.29.2.1    bouyer 
   2863  1.29.2.1    bouyer 		if (config_sets == NULL) {
   2864  1.29.2.1    bouyer 			/* will need at least this one... */
   2865  1.29.2.1    bouyer 			config_sets = (RF_ConfigSet_t *)
   2866  1.29.2.1    bouyer 				malloc(sizeof(RF_ConfigSet_t),
   2867  1.29.2.1    bouyer 				       M_RAIDFRAME, M_NOWAIT);
   2868  1.29.2.1    bouyer 			if (config_sets == NULL) {
   2869  1.29.2.1    bouyer 				panic("rf_create_auto_sets: No memory!\n");
   2870  1.29.2.1    bouyer 			}
   2871  1.29.2.1    bouyer 			/* this one is easy :) */
   2872  1.29.2.1    bouyer 			config_sets->ac = ac;
   2873  1.29.2.1    bouyer 			config_sets->next = NULL;
   2874  1.29.2.1    bouyer 			config_sets->rootable = 0;
   2875  1.29.2.1    bouyer 			ac->next = NULL;
   2876  1.29.2.1    bouyer 		} else {
   2877  1.29.2.1    bouyer 			/* which set does this component fit into? */
   2878  1.29.2.1    bouyer 			cset = config_sets;
   2879  1.29.2.1    bouyer 			while(cset!=NULL) {
   2880  1.29.2.1    bouyer 				if (rf_does_it_fit(cset, ac)) {
   2881  1.29.2.1    bouyer 					/* looks like it matches... */
   2882  1.29.2.1    bouyer 					ac->next = cset->ac;
   2883  1.29.2.1    bouyer 					cset->ac = ac;
   2884  1.29.2.1    bouyer 					break;
   2885  1.29.2.1    bouyer 				}
   2886  1.29.2.1    bouyer 				cset = cset->next;
   2887  1.29.2.1    bouyer 			}
   2888  1.29.2.1    bouyer 			if (cset==NULL) {
   2889  1.29.2.1    bouyer 				/* didn't find a match above... new set..*/
   2890  1.29.2.1    bouyer 				cset = (RF_ConfigSet_t *)
   2891  1.29.2.1    bouyer 					malloc(sizeof(RF_ConfigSet_t),
   2892  1.29.2.1    bouyer 					       M_RAIDFRAME, M_NOWAIT);
   2893  1.29.2.1    bouyer 				if (cset == NULL) {
   2894  1.29.2.1    bouyer 					panic("rf_create_auto_sets: No memory!\n");
   2895  1.29.2.1    bouyer 				}
   2896  1.29.2.1    bouyer 				cset->ac = ac;
   2897  1.29.2.1    bouyer 				ac->next = NULL;
   2898  1.29.2.1    bouyer 				cset->next = config_sets;
   2899  1.29.2.1    bouyer 				cset->rootable = 0;
   2900  1.29.2.1    bouyer 				config_sets = cset;
   2901  1.29.2.1    bouyer 			}
   2902  1.29.2.1    bouyer 		}
   2903  1.29.2.1    bouyer 		ac = ac_next;
   2904  1.29.2.1    bouyer 	}
   2905  1.29.2.1    bouyer 
   2906  1.29.2.1    bouyer 
   2907  1.29.2.1    bouyer 	return(config_sets);
   2908  1.29.2.1    bouyer }
   2909  1.29.2.1    bouyer 
   2910  1.29.2.1    bouyer static int
   2911  1.29.2.1    bouyer rf_does_it_fit(cset, ac)
   2912  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   2913  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   2914  1.29.2.1    bouyer {
   2915  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel1, *clabel2;
   2916  1.29.2.1    bouyer 
   2917  1.29.2.1    bouyer 	/* If this one matches the *first* one in the set, that's good
   2918  1.29.2.1    bouyer 	   enough, since the other members of the set would have been
   2919  1.29.2.1    bouyer 	   through here too... */
   2920  1.29.2.1    bouyer 	/* note that we are not checking partitionSize here..
   2921  1.29.2.1    bouyer 
   2922  1.29.2.1    bouyer 	   Note that we are also not checking the mod_counters here.
   2923  1.29.2.1    bouyer 	   If everything else matches execpt the mod_counter, that's
   2924  1.29.2.1    bouyer 	   good enough for this test.  We will deal with the mod_counters
   2925  1.29.2.1    bouyer 	   a little later in the autoconfiguration process.
   2926  1.29.2.1    bouyer 
   2927  1.29.2.1    bouyer 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2928  1.29.2.1    bouyer 
   2929  1.29.2.1    bouyer 	   The reason we don't check for this is that failed disks
   2930  1.29.2.1    bouyer 	   will have lower modification counts.  If those disks are
   2931  1.29.2.1    bouyer 	   not added to the set they used to belong to, then they will
   2932  1.29.2.1    bouyer 	   form their own set, which may result in 2 different sets,
   2933  1.29.2.1    bouyer 	   for example, competing to be configured at raid0, and
   2934  1.29.2.1    bouyer 	   perhaps competing to be the root filesystem set.  If the
   2935  1.29.2.1    bouyer 	   wrong ones get configured, or both attempt to become /,
   2936  1.29.2.1    bouyer 	   weird behaviour and or serious lossage will occur.  Thus we
   2937  1.29.2.1    bouyer 	   need to bring them into the fold here, and kick them out at
   2938  1.29.2.1    bouyer 	   a later point.
   2939  1.29.2.1    bouyer 
   2940  1.29.2.1    bouyer 	*/
   2941  1.29.2.1    bouyer 
   2942  1.29.2.1    bouyer 	clabel1 = cset->ac->clabel;
   2943  1.29.2.1    bouyer 	clabel2 = ac->clabel;
   2944  1.29.2.1    bouyer 	if ((clabel1->version == clabel2->version) &&
   2945  1.29.2.1    bouyer 	    (clabel1->serial_number == clabel2->serial_number) &&
   2946  1.29.2.1    bouyer 	    (clabel1->num_rows == clabel2->num_rows) &&
   2947  1.29.2.1    bouyer 	    (clabel1->num_columns == clabel2->num_columns) &&
   2948  1.29.2.1    bouyer 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2949  1.29.2.1    bouyer 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2950  1.29.2.1    bouyer 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2951  1.29.2.1    bouyer 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2952  1.29.2.1    bouyer 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2953  1.29.2.1    bouyer 	    (clabel1->blockSize == clabel2->blockSize) &&
   2954  1.29.2.1    bouyer 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2955  1.29.2.1    bouyer 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2956  1.29.2.1    bouyer 	    (clabel1->root_partition == clabel2->root_partition) &&
   2957  1.29.2.1    bouyer 	    (clabel1->last_unit == clabel2->last_unit) &&
   2958  1.29.2.1    bouyer 	    (clabel1->config_order == clabel2->config_order)) {
   2959  1.29.2.1    bouyer 		/* if it get's here, it almost *has* to be a match */
   2960  1.29.2.1    bouyer 	} else {
   2961  1.29.2.1    bouyer 		/* it's not consistent with somebody in the set..
   2962  1.29.2.1    bouyer 		   punt */
   2963  1.29.2.1    bouyer 		return(0);
   2964  1.29.2.1    bouyer 	}
   2965  1.29.2.1    bouyer 	/* all was fine.. it must fit... */
   2966  1.29.2.1    bouyer 	return(1);
   2967  1.29.2.1    bouyer }
   2968  1.29.2.1    bouyer 
   2969  1.29.2.1    bouyer int
   2970  1.29.2.1    bouyer rf_have_enough_components(cset)
   2971  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   2972  1.29.2.1    bouyer {
   2973  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   2974  1.29.2.1    bouyer 	RF_AutoConfig_t *auto_config;
   2975  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   2976  1.29.2.1    bouyer 	int r,c;
   2977  1.29.2.1    bouyer 	int num_rows;
   2978  1.29.2.1    bouyer 	int num_cols;
   2979  1.29.2.1    bouyer 	int num_missing;
   2980  1.29.2.1    bouyer 	int mod_counter;
   2981  1.29.2.1    bouyer 	int mod_counter_found;
   2982  1.29.2.1    bouyer 	int even_pair_failed;
   2983  1.29.2.1    bouyer 	char parity_type;
   2984  1.29.2.1    bouyer 
   2985  1.29.2.1    bouyer 
   2986  1.29.2.1    bouyer 	/* check to see that we have enough 'live' components
   2987  1.29.2.1    bouyer 	   of this set.  If so, we can configure it if necessary */
   2988  1.29.2.1    bouyer 
   2989  1.29.2.1    bouyer 	num_rows = cset->ac->clabel->num_rows;
   2990  1.29.2.1    bouyer 	num_cols = cset->ac->clabel->num_columns;
   2991  1.29.2.1    bouyer 	parity_type = cset->ac->clabel->parityConfig;
   2992  1.29.2.1    bouyer 
   2993  1.29.2.1    bouyer 	/* XXX Check for duplicate components!?!?!? */
   2994  1.29.2.1    bouyer 
   2995  1.29.2.1    bouyer 	/* Determine what the mod_counter is supposed to be for this set. */
   2996  1.29.2.1    bouyer 
   2997  1.29.2.1    bouyer 	mod_counter_found = 0;
   2998  1.29.2.3    bouyer 	mod_counter = 0;
   2999  1.29.2.1    bouyer 	ac = cset->ac;
   3000  1.29.2.1    bouyer 	while(ac!=NULL) {
   3001  1.29.2.1    bouyer 		if (mod_counter_found==0) {
   3002  1.29.2.1    bouyer 			mod_counter = ac->clabel->mod_counter;
   3003  1.29.2.1    bouyer 			mod_counter_found = 1;
   3004  1.29.2.1    bouyer 		} else {
   3005  1.29.2.1    bouyer 			if (ac->clabel->mod_counter > mod_counter) {
   3006  1.29.2.1    bouyer 				mod_counter = ac->clabel->mod_counter;
   3007  1.29.2.1    bouyer 			}
   3008  1.29.2.1    bouyer 		}
   3009  1.29.2.1    bouyer 		ac = ac->next;
   3010  1.29.2.1    bouyer 	}
   3011  1.29.2.1    bouyer 
   3012  1.29.2.1    bouyer 	num_missing = 0;
   3013  1.29.2.1    bouyer 	auto_config = cset->ac;
   3014  1.29.2.1    bouyer 
   3015  1.29.2.1    bouyer 	for(r=0; r<num_rows; r++) {
   3016  1.29.2.1    bouyer 		even_pair_failed = 0;
   3017  1.29.2.1    bouyer 		for(c=0; c<num_cols; c++) {
   3018  1.29.2.1    bouyer 			ac = auto_config;
   3019  1.29.2.1    bouyer 			while(ac!=NULL) {
   3020  1.29.2.1    bouyer 				if ((ac->clabel->row == r) &&
   3021  1.29.2.1    bouyer 				    (ac->clabel->column == c) &&
   3022  1.29.2.1    bouyer 				    (ac->clabel->mod_counter == mod_counter)) {
   3023  1.29.2.1    bouyer 					/* it's this one... */
   3024  1.29.2.1    bouyer #if DEBUG
   3025  1.29.2.1    bouyer 					printf("Found: %s at %d,%d\n",
   3026  1.29.2.1    bouyer 					       ac->devname,r,c);
   3027  1.29.2.1    bouyer #endif
   3028  1.29.2.1    bouyer 					break;
   3029  1.29.2.1    bouyer 				}
   3030  1.29.2.1    bouyer 				ac=ac->next;
   3031  1.29.2.1    bouyer 			}
   3032  1.29.2.1    bouyer 			if (ac==NULL) {
   3033  1.29.2.1    bouyer 				/* Didn't find one here! */
   3034  1.29.2.1    bouyer 				/* special case for RAID 1, especially
   3035  1.29.2.1    bouyer 				   where there are more than 2
   3036  1.29.2.1    bouyer 				   components (where RAIDframe treats
   3037  1.29.2.1    bouyer 				   things a little differently :( ) */
   3038  1.29.2.1    bouyer 				if (parity_type == '1') {
   3039  1.29.2.1    bouyer 					if (c%2 == 0) { /* even component */
   3040  1.29.2.1    bouyer 						even_pair_failed = 1;
   3041  1.29.2.1    bouyer 					} else { /* odd component.  If
   3042  1.29.2.1    bouyer                                                     we're failed, and
   3043  1.29.2.1    bouyer                                                     so is the even
   3044  1.29.2.1    bouyer                                                     component, it's
   3045  1.29.2.1    bouyer                                                     "Good Night, Charlie" */
   3046  1.29.2.1    bouyer 						if (even_pair_failed == 1) {
   3047  1.29.2.1    bouyer 							return(0);
   3048  1.29.2.1    bouyer 						}
   3049  1.29.2.1    bouyer 					}
   3050  1.29.2.1    bouyer 				} else {
   3051  1.29.2.1    bouyer 					/* normal accounting */
   3052  1.29.2.1    bouyer 					num_missing++;
   3053  1.29.2.1    bouyer 				}
   3054  1.29.2.1    bouyer 			}
   3055  1.29.2.1    bouyer 			if ((parity_type == '1') && (c%2 == 1)) {
   3056  1.29.2.1    bouyer 				/* Just did an even component, and we didn't
   3057  1.29.2.1    bouyer 				   bail.. reset the even_pair_failed flag,
   3058  1.29.2.1    bouyer 				   and go on to the next component.... */
   3059  1.29.2.1    bouyer 				even_pair_failed = 0;
   3060  1.29.2.1    bouyer 			}
   3061  1.29.2.1    bouyer 		}
   3062  1.29.2.1    bouyer 	}
   3063  1.29.2.1    bouyer 
   3064  1.29.2.1    bouyer 	clabel = cset->ac->clabel;
   3065  1.29.2.1    bouyer 
   3066  1.29.2.1    bouyer 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3067  1.29.2.1    bouyer 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3068  1.29.2.1    bouyer 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3069  1.29.2.1    bouyer 		/* XXX this needs to be made *much* more general */
   3070  1.29.2.1    bouyer 		/* Too many failures */
   3071  1.29.2.1    bouyer 		return(0);
   3072  1.29.2.1    bouyer 	}
   3073  1.29.2.1    bouyer 	/* otherwise, all is well, and we've got enough to take a kick
   3074  1.29.2.1    bouyer 	   at autoconfiguring this set */
   3075  1.29.2.1    bouyer 	return(1);
   3076  1.29.2.1    bouyer }
   3077  1.29.2.1    bouyer 
   3078  1.29.2.1    bouyer void
   3079  1.29.2.1    bouyer rf_create_configuration(ac,config,raidPtr)
   3080  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   3081  1.29.2.1    bouyer 	RF_Config_t *config;
   3082  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3083  1.29.2.1    bouyer {
   3084  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   3085  1.29.2.1    bouyer 	int i;
   3086  1.29.2.1    bouyer 
   3087  1.29.2.1    bouyer 	clabel = ac->clabel;
   3088  1.29.2.1    bouyer 
   3089  1.29.2.1    bouyer 	/* 1. Fill in the common stuff */
   3090  1.29.2.1    bouyer 	config->numRow = clabel->num_rows;
   3091  1.29.2.1    bouyer 	config->numCol = clabel->num_columns;
   3092  1.29.2.1    bouyer 	config->numSpare = 0; /* XXX should this be set here? */
   3093  1.29.2.1    bouyer 	config->sectPerSU = clabel->sectPerSU;
   3094  1.29.2.1    bouyer 	config->SUsPerPU = clabel->SUsPerPU;
   3095  1.29.2.1    bouyer 	config->SUsPerRU = clabel->SUsPerRU;
   3096  1.29.2.1    bouyer 	config->parityConfig = clabel->parityConfig;
   3097  1.29.2.1    bouyer 	/* XXX... */
   3098  1.29.2.1    bouyer 	strcpy(config->diskQueueType,"fifo");
   3099  1.29.2.1    bouyer 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3100  1.29.2.1    bouyer 	config->layoutSpecificSize = 0; /* XXX ?? */
   3101  1.29.2.1    bouyer 
   3102  1.29.2.1    bouyer 	while(ac!=NULL) {
   3103  1.29.2.1    bouyer 		/* row/col values will be in range due to the checks
   3104  1.29.2.1    bouyer 		   in reasonable_label() */
   3105  1.29.2.1    bouyer 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3106  1.29.2.1    bouyer 		       ac->devname);
   3107  1.29.2.1    bouyer 		ac = ac->next;
   3108  1.29.2.1    bouyer 	}
   3109  1.29.2.1    bouyer 
   3110  1.29.2.1    bouyer 	for(i=0;i<RF_MAXDBGV;i++) {
   3111  1.29.2.1    bouyer 		config->debugVars[i][0] = NULL;
   3112  1.29.2.1    bouyer 	}
   3113  1.29.2.1    bouyer }
   3114  1.29.2.1    bouyer 
   3115  1.29.2.1    bouyer int
   3116  1.29.2.1    bouyer rf_set_autoconfig(raidPtr, new_value)
   3117  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3118  1.29.2.1    bouyer 	int new_value;
   3119  1.29.2.1    bouyer {
   3120  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   3121  1.29.2.1    bouyer 	struct vnode *vp;
   3122  1.29.2.1    bouyer 	dev_t dev;
   3123  1.29.2.1    bouyer 	int row, column;
   3124  1.29.2.1    bouyer 
   3125  1.29.2.1    bouyer 	raidPtr->autoconfigure = new_value;
   3126  1.29.2.1    bouyer 	for(row=0; row<raidPtr->numRow; row++) {
   3127  1.29.2.1    bouyer 		for(column=0; column<raidPtr->numCol; column++) {
   3128  1.29.2.1    bouyer 			if (raidPtr->Disks[row][column].status ==
   3129  1.29.2.1    bouyer 			    rf_ds_optimal) {
   3130  1.29.2.1    bouyer 				dev = raidPtr->Disks[row][column].dev;
   3131  1.29.2.1    bouyer 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3132  1.29.2.1    bouyer 				raidread_component_label(dev, vp, &clabel);
   3133  1.29.2.1    bouyer 				clabel.autoconfigure = new_value;
   3134  1.29.2.1    bouyer 				raidwrite_component_label(dev, vp, &clabel);
   3135  1.29.2.1    bouyer 			}
   3136  1.29.2.1    bouyer 		}
   3137  1.29.2.1    bouyer 	}
   3138  1.29.2.1    bouyer 	return(new_value);
   3139  1.29.2.1    bouyer }
   3140  1.29.2.1    bouyer 
   3141  1.29.2.1    bouyer int
   3142  1.29.2.1    bouyer rf_set_rootpartition(raidPtr, new_value)
   3143  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3144  1.29.2.1    bouyer 	int new_value;
   3145  1.29.2.1    bouyer {
   3146  1.29.2.1    bouyer 	RF_ComponentLabel_t clabel;
   3147  1.29.2.1    bouyer 	struct vnode *vp;
   3148  1.29.2.1    bouyer 	dev_t dev;
   3149  1.29.2.1    bouyer 	int row, column;
   3150  1.29.2.1    bouyer 
   3151  1.29.2.1    bouyer 	raidPtr->root_partition = new_value;
   3152  1.29.2.1    bouyer 	for(row=0; row<raidPtr->numRow; row++) {
   3153  1.29.2.1    bouyer 		for(column=0; column<raidPtr->numCol; column++) {
   3154  1.29.2.1    bouyer 			if (raidPtr->Disks[row][column].status ==
   3155  1.29.2.1    bouyer 			    rf_ds_optimal) {
   3156  1.29.2.1    bouyer 				dev = raidPtr->Disks[row][column].dev;
   3157  1.29.2.1    bouyer 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3158  1.29.2.1    bouyer 				raidread_component_label(dev, vp, &clabel);
   3159  1.29.2.1    bouyer 				clabel.root_partition = new_value;
   3160  1.29.2.1    bouyer 				raidwrite_component_label(dev, vp, &clabel);
   3161  1.29.2.1    bouyer 			}
   3162  1.29.2.1    bouyer 		}
   3163  1.29.2.1    bouyer 	}
   3164  1.29.2.1    bouyer 	return(new_value);
   3165  1.29.2.1    bouyer }
   3166  1.29.2.1    bouyer 
   3167  1.29.2.1    bouyer void
   3168  1.29.2.1    bouyer rf_release_all_vps(cset)
   3169  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   3170  1.29.2.1    bouyer {
   3171  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   3172  1.29.2.1    bouyer 
   3173  1.29.2.1    bouyer 	ac = cset->ac;
   3174  1.29.2.1    bouyer 	while(ac!=NULL) {
   3175  1.29.2.1    bouyer 		/* Close the vp, and give it back */
   3176  1.29.2.1    bouyer 		if (ac->vp) {
   3177  1.29.2.1    bouyer 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3178  1.29.2.1    bouyer 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3179  1.29.2.1    bouyer 			vput(ac->vp);
   3180  1.29.2.1    bouyer 			ac->vp = NULL;
   3181  1.29.2.1    bouyer 		}
   3182  1.29.2.1    bouyer 		ac = ac->next;
   3183  1.29.2.1    bouyer 	}
   3184  1.29.2.1    bouyer }
   3185  1.29.2.1    bouyer 
   3186  1.29.2.1    bouyer 
   3187  1.29.2.1    bouyer void
   3188  1.29.2.1    bouyer rf_cleanup_config_set(cset)
   3189  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   3190  1.29.2.1    bouyer {
   3191  1.29.2.1    bouyer 	RF_AutoConfig_t *ac;
   3192  1.29.2.1    bouyer 	RF_AutoConfig_t *next_ac;
   3193  1.29.2.1    bouyer 
   3194  1.29.2.1    bouyer 	ac = cset->ac;
   3195  1.29.2.1    bouyer 	while(ac!=NULL) {
   3196  1.29.2.1    bouyer 		next_ac = ac->next;
   3197  1.29.2.1    bouyer 		/* nuke the label */
   3198  1.29.2.1    bouyer 		free(ac->clabel, M_RAIDFRAME);
   3199  1.29.2.1    bouyer 		/* cleanup the config structure */
   3200  1.29.2.1    bouyer 		free(ac, M_RAIDFRAME);
   3201  1.29.2.1    bouyer 		/* "next.." */
   3202  1.29.2.1    bouyer 		ac = next_ac;
   3203  1.29.2.1    bouyer 	}
   3204  1.29.2.1    bouyer 	/* and, finally, nuke the config set */
   3205  1.29.2.1    bouyer 	free(cset, M_RAIDFRAME);
   3206  1.29.2.1    bouyer }
   3207  1.29.2.1    bouyer 
   3208  1.29.2.1    bouyer 
   3209  1.29.2.1    bouyer void
   3210  1.29.2.1    bouyer raid_init_component_label(raidPtr, clabel)
   3211  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3212  1.29.2.1    bouyer 	RF_ComponentLabel_t *clabel;
   3213  1.29.2.1    bouyer {
   3214  1.29.2.1    bouyer 	/* current version number */
   3215  1.29.2.1    bouyer 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3216  1.29.2.1    bouyer 	clabel->serial_number = raidPtr->serial_number;
   3217  1.29.2.1    bouyer 	clabel->mod_counter = raidPtr->mod_counter;
   3218  1.29.2.1    bouyer 	clabel->num_rows = raidPtr->numRow;
   3219  1.29.2.1    bouyer 	clabel->num_columns = raidPtr->numCol;
   3220  1.29.2.1    bouyer 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3221  1.29.2.1    bouyer 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3222  1.29.2.1    bouyer 
   3223  1.29.2.1    bouyer 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3224  1.29.2.1    bouyer 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3225  1.29.2.1    bouyer 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3226  1.29.2.1    bouyer 
   3227  1.29.2.1    bouyer 	clabel->blockSize = raidPtr->bytesPerSector;
   3228  1.29.2.1    bouyer 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3229  1.29.2.1    bouyer 
   3230  1.29.2.1    bouyer 	/* XXX not portable */
   3231  1.29.2.1    bouyer 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3232  1.29.2.1    bouyer 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3233  1.29.2.1    bouyer 	clabel->autoconfigure = raidPtr->autoconfigure;
   3234  1.29.2.1    bouyer 	clabel->root_partition = raidPtr->root_partition;
   3235  1.29.2.1    bouyer 	clabel->last_unit = raidPtr->raidid;
   3236  1.29.2.1    bouyer 	clabel->config_order = raidPtr->config_order;
   3237  1.29.2.1    bouyer }
   3238  1.29.2.1    bouyer 
   3239  1.29.2.1    bouyer int
   3240  1.29.2.1    bouyer rf_auto_config_set(cset,unit)
   3241  1.29.2.1    bouyer 	RF_ConfigSet_t *cset;
   3242  1.29.2.1    bouyer 	int *unit;
   3243  1.29.2.1    bouyer {
   3244  1.29.2.1    bouyer 	RF_Raid_t *raidPtr;
   3245  1.29.2.1    bouyer 	RF_Config_t *config;
   3246  1.29.2.1    bouyer 	int raidID;
   3247  1.29.2.1    bouyer 	int retcode;
   3248  1.29.2.1    bouyer 
   3249  1.29.2.1    bouyer 	printf("RAID autoconfigure\n");
   3250  1.29.2.1    bouyer 
   3251  1.29.2.1    bouyer 	retcode = 0;
   3252  1.29.2.1    bouyer 	*unit = -1;
   3253  1.29.2.1    bouyer 
   3254  1.29.2.1    bouyer 	/* 1. Create a config structure */
   3255  1.29.2.1    bouyer 
   3256  1.29.2.1    bouyer 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3257  1.29.2.1    bouyer 				       M_RAIDFRAME,
   3258  1.29.2.1    bouyer 				       M_NOWAIT);
   3259  1.29.2.1    bouyer 	if (config==NULL) {
   3260  1.29.2.1    bouyer 		printf("Out of mem!?!?\n");
   3261  1.29.2.1    bouyer 				/* XXX do something more intelligent here. */
   3262  1.29.2.1    bouyer 		return(1);
   3263  1.29.2.1    bouyer 	}
   3264  1.29.2.1    bouyer 
   3265  1.29.2.1    bouyer 	memset(config, 0, sizeof(RF_Config_t));
   3266  1.29.2.1    bouyer 
   3267  1.29.2.1    bouyer 	/* XXX raidID needs to be set correctly.. */
   3268  1.29.2.1    bouyer 
   3269  1.29.2.1    bouyer 	/*
   3270  1.29.2.1    bouyer 	   2. Figure out what RAID ID this one is supposed to live at
   3271  1.29.2.1    bouyer 	   See if we can get the same RAID dev that it was configured
   3272  1.29.2.1    bouyer 	   on last time..
   3273  1.29.2.1    bouyer 	*/
   3274  1.29.2.1    bouyer 
   3275  1.29.2.1    bouyer 	raidID = cset->ac->clabel->last_unit;
   3276  1.29.2.1    bouyer 	if ((raidID < 0) || (raidID >= numraid)) {
   3277  1.29.2.1    bouyer 		/* let's not wander off into lala land. */
   3278  1.29.2.1    bouyer 		raidID = numraid - 1;
   3279  1.29.2.1    bouyer 	}
   3280  1.29.2.1    bouyer 	if (raidPtrs[raidID]->valid != 0) {
   3281  1.29.2.1    bouyer 
   3282  1.29.2.1    bouyer 		/*
   3283  1.29.2.1    bouyer 		   Nope... Go looking for an alternative...
   3284  1.29.2.1    bouyer 		   Start high so we don't immediately use raid0 if that's
   3285  1.29.2.1    bouyer 		   not taken.
   3286  1.29.2.1    bouyer 		*/
   3287  1.29.2.1    bouyer 
   3288  1.29.2.1    bouyer 		for(raidID = numraid; raidID >= 0; raidID--) {
   3289  1.29.2.1    bouyer 			if (raidPtrs[raidID]->valid == 0) {
   3290  1.29.2.1    bouyer 				/* can use this one! */
   3291  1.29.2.1    bouyer 				break;
   3292  1.29.2.1    bouyer 			}
   3293  1.29.2.1    bouyer 		}
   3294  1.29.2.1    bouyer 	}
   3295  1.29.2.1    bouyer 
   3296  1.29.2.1    bouyer 	if (raidID < 0) {
   3297  1.29.2.1    bouyer 		/* punt... */
   3298  1.29.2.1    bouyer 		printf("Unable to auto configure this set!\n");
   3299  1.29.2.1    bouyer 		printf("(Out of RAID devs!)\n");
   3300  1.29.2.1    bouyer 		return(1);
   3301  1.29.2.1    bouyer 	}
   3302  1.29.2.1    bouyer 	printf("Configuring raid%d:\n",raidID);
   3303  1.29.2.1    bouyer 	raidPtr = raidPtrs[raidID];
   3304  1.29.2.1    bouyer 
   3305  1.29.2.1    bouyer 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3306  1.29.2.1    bouyer 	raidPtr->raidid = raidID;
   3307  1.29.2.1    bouyer 	raidPtr->openings = RAIDOUTSTANDING;
   3308  1.29.2.1    bouyer 
   3309  1.29.2.1    bouyer 	/* 3. Build the configuration structure */
   3310  1.29.2.1    bouyer 	rf_create_configuration(cset->ac, config, raidPtr);
   3311  1.29.2.1    bouyer 
   3312  1.29.2.1    bouyer 	/* 4. Do the configuration */
   3313  1.29.2.1    bouyer 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3314  1.29.2.1    bouyer 
   3315  1.29.2.1    bouyer 	if (retcode == 0) {
   3316  1.29.2.1    bouyer 
   3317  1.29.2.1    bouyer 		raidinit(raidPtrs[raidID]);
   3318  1.29.2.1    bouyer 
   3319  1.29.2.1    bouyer 		rf_markalldirty(raidPtrs[raidID]);
   3320  1.29.2.1    bouyer 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3321  1.29.2.1    bouyer 		if (cset->ac->clabel->root_partition==1) {
   3322  1.29.2.1    bouyer 			/* everything configured just fine.  Make a note
   3323  1.29.2.1    bouyer 			   that this set is eligible to be root. */
   3324  1.29.2.1    bouyer 			cset->rootable = 1;
   3325  1.29.2.1    bouyer 			/* XXX do this here? */
   3326  1.29.2.1    bouyer 			raidPtrs[raidID]->root_partition = 1;
   3327  1.29.2.1    bouyer 		}
   3328  1.29.2.1    bouyer 	}
   3329  1.29.2.1    bouyer 
   3330  1.29.2.1    bouyer 	/* 5. Cleanup */
   3331  1.29.2.1    bouyer 	free(config, M_RAIDFRAME);
   3332  1.29.2.1    bouyer 
   3333  1.29.2.1    bouyer 	*unit = raidID;
   3334  1.29.2.1    bouyer 	return(retcode);
   3335  1.29.2.1    bouyer }
   3336  1.29.2.1    bouyer 
   3337  1.29.2.1    bouyer void
   3338  1.29.2.1    bouyer rf_disk_unbusy(desc)
   3339  1.29.2.1    bouyer 	RF_RaidAccessDesc_t *desc;
   3340  1.29.2.1    bouyer {
   3341  1.29.2.1    bouyer 	struct buf *bp;
   3342  1.29.2.1    bouyer 
   3343  1.29.2.1    bouyer 	bp = (struct buf *)desc->bp;
   3344  1.29.2.1    bouyer 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3345  1.29.2.1    bouyer 			    (bp->b_bcount - bp->b_resid));
   3346      1.13     oster }
   3347