rf_netbsdkintf.c revision 1.348 1 1.348 jdolecek /* $NetBSD: rf_netbsdkintf.c,v 1.348 2017/04/05 19:40:26 jdolecek Exp $ */
2 1.281 rmind
3 1.1 oster /*-
4 1.295 erh * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 1.1 oster * All rights reserved.
6 1.1 oster *
7 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
8 1.1 oster * by Greg Oster; Jason R. Thorpe.
9 1.1 oster *
10 1.1 oster * Redistribution and use in source and binary forms, with or without
11 1.1 oster * modification, are permitted provided that the following conditions
12 1.1 oster * are met:
13 1.1 oster * 1. Redistributions of source code must retain the above copyright
14 1.1 oster * notice, this list of conditions and the following disclaimer.
15 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 oster * notice, this list of conditions and the following disclaimer in the
17 1.1 oster * documentation and/or other materials provided with the distribution.
18 1.1 oster *
19 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
30 1.1 oster */
31 1.1 oster
32 1.1 oster /*
33 1.281 rmind * Copyright (c) 1988 University of Utah.
34 1.1 oster * Copyright (c) 1990, 1993
35 1.1 oster * The Regents of the University of California. All rights reserved.
36 1.1 oster *
37 1.1 oster * This code is derived from software contributed to Berkeley by
38 1.1 oster * the Systems Programming Group of the University of Utah Computer
39 1.1 oster * Science Department.
40 1.1 oster *
41 1.1 oster * Redistribution and use in source and binary forms, with or without
42 1.1 oster * modification, are permitted provided that the following conditions
43 1.1 oster * are met:
44 1.1 oster * 1. Redistributions of source code must retain the above copyright
45 1.1 oster * notice, this list of conditions and the following disclaimer.
46 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 oster * notice, this list of conditions and the following disclaimer in the
48 1.1 oster * documentation and/or other materials provided with the distribution.
49 1.162 agc * 3. Neither the name of the University nor the names of its contributors
50 1.162 agc * may be used to endorse or promote products derived from this software
51 1.162 agc * without specific prior written permission.
52 1.162 agc *
53 1.162 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.162 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.162 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.162 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.162 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.162 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.162 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.162 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.162 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.162 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.162 agc * SUCH DAMAGE.
64 1.162 agc *
65 1.162 agc * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 1.162 agc *
67 1.162 agc * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 1.162 agc */
69 1.162 agc
70 1.162 agc /*
71 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
72 1.1 oster * All rights reserved.
73 1.1 oster *
74 1.1 oster * Authors: Mark Holland, Jim Zelenka
75 1.1 oster *
76 1.1 oster * Permission to use, copy, modify and distribute this software and
77 1.1 oster * its documentation is hereby granted, provided that both the copyright
78 1.1 oster * notice and this permission notice appear in all copies of the
79 1.1 oster * software, derivative works or modified versions, and any portions
80 1.1 oster * thereof, and that both notices appear in supporting documentation.
81 1.1 oster *
82 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 1.1 oster *
86 1.1 oster * Carnegie Mellon requests users of this software to return to
87 1.1 oster *
88 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 1.1 oster * School of Computer Science
90 1.1 oster * Carnegie Mellon University
91 1.1 oster * Pittsburgh PA 15213-3890
92 1.1 oster *
93 1.1 oster * any improvements or extensions that they make and grant Carnegie the
94 1.1 oster * rights to redistribute these changes.
95 1.1 oster */
96 1.1 oster
97 1.1 oster /***********************************************************
98 1.1 oster *
99 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
100 1.1 oster *
101 1.1 oster ***********************************************************/
102 1.112 lukem
103 1.112 lukem #include <sys/cdefs.h>
104 1.348 jdolecek __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.348 2017/04/05 19:40:26 jdolecek Exp $");
105 1.251 ad
106 1.251 ad #ifdef _KERNEL_OPT
107 1.254 christos #include "opt_compat_netbsd.h"
108 1.251 ad #include "opt_raid_autoconfig.h"
109 1.251 ad #endif
110 1.1 oster
111 1.113 lukem #include <sys/param.h>
112 1.1 oster #include <sys/errno.h>
113 1.1 oster #include <sys/pool.h>
114 1.152 thorpej #include <sys/proc.h>
115 1.1 oster #include <sys/queue.h>
116 1.1 oster #include <sys/disk.h>
117 1.1 oster #include <sys/device.h>
118 1.1 oster #include <sys/stat.h>
119 1.1 oster #include <sys/ioctl.h>
120 1.1 oster #include <sys/fcntl.h>
121 1.1 oster #include <sys/systm.h>
122 1.1 oster #include <sys/vnode.h>
123 1.1 oster #include <sys/disklabel.h>
124 1.1 oster #include <sys/conf.h>
125 1.1 oster #include <sys/buf.h>
126 1.182 yamt #include <sys/bufq.h>
127 1.65 oster #include <sys/reboot.h>
128 1.208 elad #include <sys/kauth.h>
129 1.327 pgoyette #include <sys/module.h>
130 1.8 oster
131 1.234 oster #include <prop/proplib.h>
132 1.234 oster
133 1.110 oster #include <dev/raidframe/raidframevar.h>
134 1.110 oster #include <dev/raidframe/raidframeio.h>
135 1.269 jld #include <dev/raidframe/rf_paritymap.h>
136 1.251 ad
137 1.1 oster #include "rf_raid.h"
138 1.44 oster #include "rf_copyback.h"
139 1.1 oster #include "rf_dag.h"
140 1.1 oster #include "rf_dagflags.h"
141 1.99 oster #include "rf_desc.h"
142 1.1 oster #include "rf_diskqueue.h"
143 1.1 oster #include "rf_etimer.h"
144 1.1 oster #include "rf_general.h"
145 1.1 oster #include "rf_kintf.h"
146 1.1 oster #include "rf_options.h"
147 1.1 oster #include "rf_driver.h"
148 1.1 oster #include "rf_parityscan.h"
149 1.1 oster #include "rf_threadstuff.h"
150 1.1 oster
151 1.254 christos #ifdef COMPAT_50
152 1.254 christos #include "rf_compat50.h"
153 1.254 christos #endif
154 1.254 christos
155 1.325 christos #include "ioconf.h"
156 1.325 christos
157 1.133 oster #ifdef DEBUG
158 1.9 oster int rf_kdebug_level = 0;
159 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
160 1.9 oster #else /* DEBUG */
161 1.1 oster #define db1_printf(a) { }
162 1.9 oster #endif /* DEBUG */
163 1.1 oster
164 1.344 christos #ifdef DEBUG_ROOT
165 1.344 christos #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
166 1.345 christos #else
167 1.345 christos #define DPRINTF(a, ...)
168 1.344 christos #endif
169 1.344 christos
170 1.249 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
171 1.289 mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
172 1.287 mrg static rf_declare_cond2(rf_sparet_wait_cv);
173 1.287 mrg static rf_declare_cond2(rf_sparet_resp_cv);
174 1.1 oster
175 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
176 1.10 oster * spare table */
177 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
178 1.10 oster * installation process */
179 1.249 oster #endif
180 1.153 thorpej
181 1.153 thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
182 1.10 oster
183 1.1 oster /* prototypes */
184 1.187 christos static void KernelWakeupFunc(struct buf *);
185 1.187 christos static void InitBP(struct buf *, struct vnode *, unsigned,
186 1.225 christos dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
187 1.187 christos void *, int, struct proc *);
188 1.300 christos struct raid_softc;
189 1.300 christos static void raidinit(struct raid_softc *);
190 1.335 mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
191 1.348 jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
192 1.1 oster
193 1.261 dyoung static int raid_match(device_t, cfdata_t, void *);
194 1.261 dyoung static void raid_attach(device_t, device_t, void *);
195 1.261 dyoung static int raid_detach(device_t, int);
196 1.130 gehenna
197 1.269 jld static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
198 1.269 jld daddr_t, daddr_t);
199 1.269 jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
200 1.269 jld daddr_t, daddr_t, int);
201 1.269 jld
202 1.276 mrg static int raidwrite_component_label(unsigned,
203 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
204 1.276 mrg static int raidread_component_label(unsigned,
205 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
206 1.269 jld
207 1.335 mlelstv static int raid_diskstart(device_t, struct buf *bp);
208 1.335 mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
209 1.335 mlelstv static int raid_lastclose(device_t);
210 1.269 jld
211 1.324 mrg static dev_type_open(raidopen);
212 1.324 mrg static dev_type_close(raidclose);
213 1.324 mrg static dev_type_read(raidread);
214 1.324 mrg static dev_type_write(raidwrite);
215 1.324 mrg static dev_type_ioctl(raidioctl);
216 1.324 mrg static dev_type_strategy(raidstrategy);
217 1.324 mrg static dev_type_dump(raiddump);
218 1.324 mrg static dev_type_size(raidsize);
219 1.130 gehenna
220 1.130 gehenna const struct bdevsw raid_bdevsw = {
221 1.305 dholland .d_open = raidopen,
222 1.305 dholland .d_close = raidclose,
223 1.305 dholland .d_strategy = raidstrategy,
224 1.305 dholland .d_ioctl = raidioctl,
225 1.305 dholland .d_dump = raiddump,
226 1.305 dholland .d_psize = raidsize,
227 1.311 dholland .d_discard = nodiscard,
228 1.305 dholland .d_flag = D_DISK
229 1.130 gehenna };
230 1.130 gehenna
231 1.130 gehenna const struct cdevsw raid_cdevsw = {
232 1.305 dholland .d_open = raidopen,
233 1.305 dholland .d_close = raidclose,
234 1.305 dholland .d_read = raidread,
235 1.305 dholland .d_write = raidwrite,
236 1.305 dholland .d_ioctl = raidioctl,
237 1.305 dholland .d_stop = nostop,
238 1.305 dholland .d_tty = notty,
239 1.305 dholland .d_poll = nopoll,
240 1.305 dholland .d_mmap = nommap,
241 1.305 dholland .d_kqfilter = nokqfilter,
242 1.312 dholland .d_discard = nodiscard,
243 1.305 dholland .d_flag = D_DISK
244 1.130 gehenna };
245 1.1 oster
246 1.323 mlelstv static struct dkdriver rf_dkdriver = {
247 1.335 mlelstv .d_open = raidopen,
248 1.335 mlelstv .d_close = raidclose,
249 1.323 mlelstv .d_strategy = raidstrategy,
250 1.335 mlelstv .d_diskstart = raid_diskstart,
251 1.335 mlelstv .d_dumpblocks = raid_dumpblocks,
252 1.335 mlelstv .d_lastclose = raid_lastclose,
253 1.323 mlelstv .d_minphys = minphys
254 1.323 mlelstv };
255 1.235 oster
256 1.10 oster struct raid_softc {
257 1.335 mlelstv struct dk_softc sc_dksc;
258 1.300 christos int sc_unit;
259 1.10 oster int sc_flags; /* flags */
260 1.10 oster int sc_cflags; /* configuration flags */
261 1.327 pgoyette kmutex_t sc_mutex; /* interlock mutex */
262 1.327 pgoyette kcondvar_t sc_cv; /* and the condvar */
263 1.212 oster uint64_t sc_size; /* size of the raid device */
264 1.10 oster char sc_xname[20]; /* XXX external name */
265 1.300 christos RF_Raid_t sc_r;
266 1.300 christos LIST_ENTRY(raid_softc) sc_link;
267 1.10 oster };
268 1.1 oster /* sc_flags */
269 1.343 christos #define RAIDF_INITED 0x01 /* unit has been initialized */
270 1.343 christos #define RAIDF_SHUTDOWN 0x02 /* unit is being shutdown */
271 1.343 christos #define RAIDF_DETACH 0x04 /* detach after final close */
272 1.343 christos #define RAIDF_WANTED 0x08 /* someone waiting to obtain a lock */
273 1.343 christos #define RAIDF_LOCKED 0x10 /* unit is locked */
274 1.343 christos #define RAIDF_UNIT_CHANGED 0x20 /* unit is being changed */
275 1.1 oster
276 1.1 oster #define raidunit(x) DISKUNIT(x)
277 1.335 mlelstv #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
278 1.1 oster
279 1.202 oster extern struct cfdriver raid_cd;
280 1.266 dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
281 1.266 dyoung raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
282 1.266 dyoung DVF_DETACH_SHUTDOWN);
283 1.202 oster
284 1.186 perry /*
285 1.186 perry * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
286 1.186 perry * Be aware that large numbers can allow the driver to consume a lot of
287 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
288 1.186 perry *
289 1.186 perry * For example: with a stripe width of 64 blocks (32k) and 5 disks,
290 1.186 perry * a single 64K write will typically require 64K for the old data,
291 1.186 perry * 64K for the old parity, and 64K for the new parity, for a total
292 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
293 1.110 oster * Even it if is used immediately, that's still 128K, which when multiplied
294 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
295 1.186 perry *
296 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
297 1.186 perry * require data reconstruction, which will require *all* of the 4 remaining
298 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
299 1.20 oster */
300 1.20 oster
301 1.20 oster #ifndef RAIDOUTSTANDING
302 1.28 oster #define RAIDOUTSTANDING 6
303 1.20 oster #endif
304 1.20 oster
305 1.1 oster #define RAIDLABELDEV(dev) \
306 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
307 1.1 oster
308 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
309 1.9 oster
310 1.104 oster static int raidlock(struct raid_softc *);
311 1.104 oster static void raidunlock(struct raid_softc *);
312 1.1 oster
313 1.266 dyoung static int raid_detach_unlocked(struct raid_softc *);
314 1.266 dyoung
315 1.104 oster static void rf_markalldirty(RF_Raid_t *);
316 1.304 christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
317 1.48 oster
318 1.104 oster void rf_ReconThread(struct rf_recon_req *);
319 1.104 oster void rf_RewriteParityThread(RF_Raid_t *raidPtr);
320 1.104 oster void rf_CopybackThread(RF_Raid_t *raidPtr);
321 1.104 oster void rf_ReconstructInPlaceThread(struct rf_recon_req *);
322 1.261 dyoung int rf_autoconfig(device_t);
323 1.142 thorpej void rf_buildroothack(RF_ConfigSet_t *);
324 1.104 oster
325 1.104 oster RF_AutoConfig_t *rf_find_raid_components(void);
326 1.104 oster RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
327 1.104 oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
328 1.292 oster int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
329 1.104 oster void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
330 1.104 oster int rf_set_autoconfig(RF_Raid_t *, int);
331 1.104 oster int rf_set_rootpartition(RF_Raid_t *, int);
332 1.104 oster void rf_release_all_vps(RF_ConfigSet_t *);
333 1.104 oster void rf_cleanup_config_set(RF_ConfigSet_t *);
334 1.104 oster int rf_have_enough_components(RF_ConfigSet_t *);
335 1.300 christos struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
336 1.278 mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
337 1.48 oster
338 1.295 erh /*
339 1.295 erh * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
340 1.295 erh * Note that this is overridden by having RAID_AUTOCONFIG as an option
341 1.295 erh * in the kernel config file.
342 1.295 erh */
343 1.295 erh #ifdef RAID_AUTOCONFIG
344 1.295 erh int raidautoconfig = 1;
345 1.295 erh #else
346 1.295 erh int raidautoconfig = 0;
347 1.295 erh #endif
348 1.295 erh static bool raidautoconfigdone = false;
349 1.37 oster
350 1.177 oster struct RF_Pools_s rf_pools;
351 1.177 oster
352 1.300 christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
353 1.300 christos static kmutex_t raid_lock;
354 1.1 oster
355 1.300 christos static struct raid_softc *
356 1.300 christos raidcreate(int unit) {
357 1.300 christos struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
358 1.300 christos if (sc == NULL) {
359 1.1 oster #ifdef DIAGNOSTIC
360 1.300 christos printf("%s: out of memory\n", __func__);
361 1.1 oster #endif
362 1.300 christos return NULL;
363 1.1 oster }
364 1.300 christos sc->sc_unit = unit;
365 1.327 pgoyette cv_init(&sc->sc_cv, "raidunit");
366 1.327 pgoyette mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
367 1.300 christos return sc;
368 1.300 christos }
369 1.1 oster
370 1.300 christos static void
371 1.300 christos raiddestroy(struct raid_softc *sc) {
372 1.327 pgoyette cv_destroy(&sc->sc_cv);
373 1.327 pgoyette mutex_destroy(&sc->sc_mutex);
374 1.300 christos kmem_free(sc, sizeof(*sc));
375 1.300 christos }
376 1.50 oster
377 1.300 christos static struct raid_softc *
378 1.327 pgoyette raidget(int unit, bool create) {
379 1.300 christos struct raid_softc *sc;
380 1.300 christos if (unit < 0) {
381 1.300 christos #ifdef DIAGNOSTIC
382 1.300 christos panic("%s: unit %d!", __func__, unit);
383 1.300 christos #endif
384 1.300 christos return NULL;
385 1.300 christos }
386 1.300 christos mutex_enter(&raid_lock);
387 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
388 1.300 christos if (sc->sc_unit == unit) {
389 1.300 christos mutex_exit(&raid_lock);
390 1.300 christos return sc;
391 1.300 christos }
392 1.300 christos }
393 1.300 christos mutex_exit(&raid_lock);
394 1.327 pgoyette if (!create)
395 1.327 pgoyette return NULL;
396 1.300 christos if ((sc = raidcreate(unit)) == NULL)
397 1.300 christos return NULL;
398 1.300 christos mutex_enter(&raid_lock);
399 1.300 christos LIST_INSERT_HEAD(&raids, sc, sc_link);
400 1.300 christos mutex_exit(&raid_lock);
401 1.300 christos return sc;
402 1.300 christos }
403 1.300 christos
404 1.300 christos static void
405 1.300 christos raidput(struct raid_softc *sc) {
406 1.300 christos mutex_enter(&raid_lock);
407 1.300 christos LIST_REMOVE(sc, sc_link);
408 1.300 christos mutex_exit(&raid_lock);
409 1.300 christos raiddestroy(sc);
410 1.300 christos }
411 1.1 oster
412 1.300 christos void
413 1.300 christos raidattach(int num)
414 1.300 christos {
415 1.62 oster
416 1.142 thorpej /*
417 1.327 pgoyette * Device attachment and associated initialization now occurs
418 1.327 pgoyette * as part of the module initialization.
419 1.142 thorpej */
420 1.142 thorpej }
421 1.142 thorpej
422 1.142 thorpej int
423 1.261 dyoung rf_autoconfig(device_t self)
424 1.142 thorpej {
425 1.142 thorpej RF_AutoConfig_t *ac_list;
426 1.142 thorpej RF_ConfigSet_t *config_sets;
427 1.142 thorpej
428 1.295 erh if (!raidautoconfig || raidautoconfigdone == true)
429 1.142 thorpej return (0);
430 1.142 thorpej
431 1.142 thorpej /* XXX This code can only be run once. */
432 1.295 erh raidautoconfigdone = true;
433 1.142 thorpej
434 1.307 christos #ifdef __HAVE_CPU_BOOTCONF
435 1.307 christos /*
436 1.307 christos * 0. find the boot device if needed first so we can use it later
437 1.307 christos * this needs to be done before we autoconfigure any raid sets,
438 1.307 christos * because if we use wedges we are not going to be able to open
439 1.307 christos * the boot device later
440 1.307 christos */
441 1.307 christos if (booted_device == NULL)
442 1.307 christos cpu_bootconf();
443 1.307 christos #endif
444 1.48 oster /* 1. locate all RAID components on the system */
445 1.258 ad aprint_debug("Searching for RAID components...\n");
446 1.48 oster ac_list = rf_find_raid_components();
447 1.48 oster
448 1.142 thorpej /* 2. Sort them into their respective sets. */
449 1.48 oster config_sets = rf_create_auto_sets(ac_list);
450 1.48 oster
451 1.142 thorpej /*
452 1.299 oster * 3. Evaluate each set and configure the valid ones.
453 1.142 thorpej * This gets done in rf_buildroothack().
454 1.142 thorpej */
455 1.142 thorpej rf_buildroothack(config_sets);
456 1.48 oster
457 1.213 christos return 1;
458 1.48 oster }
459 1.48 oster
460 1.306 christos static int
461 1.307 christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
462 1.307 christos const char *bootname = device_xname(bdv);
463 1.306 christos size_t len = strlen(bootname);
464 1.306 christos
465 1.306 christos for (int col = 0; col < r->numCol; col++) {
466 1.307 christos const char *devname = r->Disks[col].devname;
467 1.306 christos devname += sizeof("/dev/") - 1;
468 1.307 christos if (strncmp(devname, "dk", 2) == 0) {
469 1.307 christos const char *parent =
470 1.307 christos dkwedge_get_parent_name(r->Disks[col].dev);
471 1.307 christos if (parent != NULL)
472 1.307 christos devname = parent;
473 1.307 christos }
474 1.306 christos if (strncmp(devname, bootname, len) == 0) {
475 1.306 christos struct raid_softc *sc = r->softc;
476 1.306 christos aprint_debug("raid%d includes boot device %s\n",
477 1.306 christos sc->sc_unit, devname);
478 1.306 christos return 1;
479 1.306 christos }
480 1.306 christos }
481 1.306 christos return 0;
482 1.306 christos }
483 1.306 christos
484 1.48 oster void
485 1.142 thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
486 1.48 oster {
487 1.48 oster RF_ConfigSet_t *cset;
488 1.48 oster RF_ConfigSet_t *next_cset;
489 1.51 oster int num_root;
490 1.300 christos struct raid_softc *sc, *rsc;
491 1.335 mlelstv struct dk_softc *dksc;
492 1.48 oster
493 1.300 christos sc = rsc = NULL;
494 1.51 oster num_root = 0;
495 1.48 oster cset = config_sets;
496 1.271 dyoung while (cset != NULL) {
497 1.48 oster next_cset = cset->next;
498 1.186 perry if (rf_have_enough_components(cset) &&
499 1.300 christos cset->ac->clabel->autoconfigure == 1) {
500 1.300 christos sc = rf_auto_config_set(cset);
501 1.300 christos if (sc != NULL) {
502 1.300 christos aprint_debug("raid%d: configured ok\n",
503 1.300 christos sc->sc_unit);
504 1.51 oster if (cset->rootable) {
505 1.300 christos rsc = sc;
506 1.51 oster num_root++;
507 1.51 oster }
508 1.51 oster } else {
509 1.51 oster /* The autoconfig didn't work :( */
510 1.300 christos aprint_debug("Autoconfig failed\n");
511 1.51 oster rf_release_all_vps(cset);
512 1.48 oster }
513 1.48 oster } else {
514 1.186 perry /* we're not autoconfiguring this set...
515 1.48 oster release the associated resources */
516 1.49 oster rf_release_all_vps(cset);
517 1.48 oster }
518 1.48 oster /* cleanup */
519 1.49 oster rf_cleanup_config_set(cset);
520 1.48 oster cset = next_cset;
521 1.48 oster }
522 1.335 mlelstv dksc = &rsc->sc_dksc;
523 1.122 oster
524 1.223 oster /* if the user has specified what the root device should be
525 1.223 oster then we don't touch booted_device or boothowto... */
526 1.223 oster
527 1.223 oster if (rootspec != NULL)
528 1.223 oster return;
529 1.223 oster
530 1.122 oster /* we found something bootable... */
531 1.122 oster
532 1.310 christos /*
533 1.310 christos * XXX: The following code assumes that the root raid
534 1.310 christos * is the first ('a') partition. This is about the best
535 1.310 christos * we can do with a BSD disklabel, but we might be able
536 1.310 christos * to do better with a GPT label, by setting a specified
537 1.310 christos * attribute to indicate the root partition. We can then
538 1.310 christos * stash the partition number in the r->root_partition
539 1.310 christos * high bits (the bottom 2 bits are already used). For
540 1.310 christos * now we just set booted_partition to 0 when we override
541 1.310 christos * root.
542 1.310 christos */
543 1.122 oster if (num_root == 1) {
544 1.306 christos device_t candidate_root;
545 1.335 mlelstv if (dksc->sc_dkdev.dk_nwedges != 0) {
546 1.297 christos char cname[sizeof(cset->ac->devname)];
547 1.344 christos /* XXX: assume partition 'a' first */
548 1.297 christos snprintf(cname, sizeof(cname), "%s%c",
549 1.335 mlelstv device_xname(dksc->sc_dev), 'a');
550 1.306 christos candidate_root = dkwedge_find_by_wname(cname);
551 1.344 christos DPRINTF("%s: candidate wedge root=%s\n", __func__,
552 1.344 christos cname);
553 1.344 christos if (candidate_root == NULL) {
554 1.344 christos /*
555 1.344 christos * If that is not found, because we don't use
556 1.344 christos * disklabel, return the first dk child
557 1.344 christos * XXX: we can skip the 'a' check above
558 1.344 christos * and always do this...
559 1.344 christos */
560 1.344 christos size_t i = 0;
561 1.344 christos candidate_root = dkwedge_find_by_parent(
562 1.344 christos device_xname(dksc->sc_dev), &i);
563 1.344 christos }
564 1.344 christos DPRINTF("%s: candidate wedge root=%p\n", __func__,
565 1.344 christos candidate_root);
566 1.297 christos } else
567 1.335 mlelstv candidate_root = dksc->sc_dev;
568 1.344 christos DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
569 1.344 christos DPRINTF("%s: booted_device=%p root_partition=%d "
570 1.344 christos "contains_boot=%d\n", __func__, booted_device,
571 1.344 christos rsc->sc_r.root_partition,
572 1.344 christos rf_containsboot(&rsc->sc_r, booted_device));
573 1.308 christos if (booted_device == NULL ||
574 1.308 christos rsc->sc_r.root_partition == 1 ||
575 1.310 christos rf_containsboot(&rsc->sc_r, booted_device)) {
576 1.308 christos booted_device = candidate_root;
577 1.310 christos booted_partition = 0; /* XXX assume 'a' */
578 1.310 christos }
579 1.122 oster } else if (num_root > 1) {
580 1.344 christos DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
581 1.344 christos booted_device);
582 1.226 oster
583 1.226 oster /*
584 1.226 oster * Maybe the MD code can help. If it cannot, then
585 1.226 oster * setroot() will discover that we have no
586 1.226 oster * booted_device and will ask the user if nothing was
587 1.226 oster * hardwired in the kernel config file
588 1.226 oster */
589 1.226 oster if (booted_device == NULL)
590 1.226 oster return;
591 1.226 oster
592 1.226 oster num_root = 0;
593 1.300 christos mutex_enter(&raid_lock);
594 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
595 1.300 christos RF_Raid_t *r = &sc->sc_r;
596 1.300 christos if (r->valid == 0)
597 1.226 oster continue;
598 1.226 oster
599 1.300 christos if (r->root_partition == 0)
600 1.226 oster continue;
601 1.226 oster
602 1.306 christos if (rf_containsboot(r, booted_device)) {
603 1.226 oster num_root++;
604 1.300 christos rsc = sc;
605 1.335 mlelstv dksc = &rsc->sc_dksc;
606 1.226 oster }
607 1.226 oster }
608 1.300 christos mutex_exit(&raid_lock);
609 1.295 erh
610 1.226 oster if (num_root == 1) {
611 1.335 mlelstv booted_device = dksc->sc_dev;
612 1.310 christos booted_partition = 0; /* XXX assume 'a' */
613 1.226 oster } else {
614 1.226 oster /* we can't guess.. require the user to answer... */
615 1.226 oster boothowto |= RB_ASKNAME;
616 1.226 oster }
617 1.51 oster }
618 1.1 oster }
619 1.1 oster
620 1.324 mrg static int
621 1.169 oster raidsize(dev_t dev)
622 1.1 oster {
623 1.1 oster struct raid_softc *rs;
624 1.335 mlelstv struct dk_softc *dksc;
625 1.335 mlelstv unsigned int unit;
626 1.1 oster
627 1.1 oster unit = raidunit(dev);
628 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
629 1.336 mlelstv return -1;
630 1.335 mlelstv dksc = &rs->sc_dksc;
631 1.335 mlelstv
632 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
633 1.336 mlelstv return -1;
634 1.1 oster
635 1.335 mlelstv return dk_size(dksc, dev);
636 1.335 mlelstv }
637 1.1 oster
638 1.335 mlelstv static int
639 1.335 mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
640 1.335 mlelstv {
641 1.335 mlelstv unsigned int unit;
642 1.335 mlelstv struct raid_softc *rs;
643 1.335 mlelstv struct dk_softc *dksc;
644 1.1 oster
645 1.335 mlelstv unit = raidunit(dev);
646 1.335 mlelstv if ((rs = raidget(unit, false)) == NULL)
647 1.335 mlelstv return ENXIO;
648 1.335 mlelstv dksc = &rs->sc_dksc;
649 1.1 oster
650 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
651 1.335 mlelstv return ENODEV;
652 1.1 oster
653 1.336 mlelstv /*
654 1.336 mlelstv Note that blkno is relative to this particular partition.
655 1.336 mlelstv By adding adding RF_PROTECTED_SECTORS, we get a value that
656 1.336 mlelstv is relative to the partition used for the underlying component.
657 1.336 mlelstv */
658 1.336 mlelstv blkno += RF_PROTECTED_SECTORS;
659 1.336 mlelstv
660 1.335 mlelstv return dk_dump(dksc, dev, blkno, va, size);
661 1.1 oster }
662 1.1 oster
663 1.324 mrg static int
664 1.335 mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
665 1.1 oster {
666 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
667 1.231 oster const struct bdevsw *bdev;
668 1.231 oster RF_Raid_t *raidPtr;
669 1.335 mlelstv int c, sparecol, j, scol, dumpto;
670 1.231 oster int error = 0;
671 1.231 oster
672 1.300 christos raidPtr = &rs->sc_r;
673 1.231 oster
674 1.231 oster /* we only support dumping to RAID 1 sets */
675 1.231 oster if (raidPtr->Layout.numDataCol != 1 ||
676 1.231 oster raidPtr->Layout.numParityCol != 1)
677 1.231 oster return EINVAL;
678 1.231 oster
679 1.231 oster if ((error = raidlock(rs)) != 0)
680 1.231 oster return error;
681 1.231 oster
682 1.231 oster /* figure out what device is alive.. */
683 1.231 oster
684 1.231 oster /*
685 1.231 oster Look for a component to dump to. The preference for the
686 1.231 oster component to dump to is as follows:
687 1.231 oster 1) the master
688 1.231 oster 2) a used_spare of the master
689 1.231 oster 3) the slave
690 1.231 oster 4) a used_spare of the slave
691 1.231 oster */
692 1.231 oster
693 1.231 oster dumpto = -1;
694 1.231 oster for (c = 0; c < raidPtr->numCol; c++) {
695 1.231 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
696 1.231 oster /* this might be the one */
697 1.231 oster dumpto = c;
698 1.231 oster break;
699 1.231 oster }
700 1.231 oster }
701 1.231 oster
702 1.231 oster /*
703 1.231 oster At this point we have possibly selected a live master or a
704 1.231 oster live slave. We now check to see if there is a spared
705 1.231 oster master (or a spared slave), if we didn't find a live master
706 1.231 oster or a live slave.
707 1.231 oster */
708 1.231 oster
709 1.231 oster for (c = 0; c < raidPtr->numSpare; c++) {
710 1.231 oster sparecol = raidPtr->numCol + c;
711 1.231 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
712 1.231 oster /* How about this one? */
713 1.231 oster scol = -1;
714 1.231 oster for(j=0;j<raidPtr->numCol;j++) {
715 1.231 oster if (raidPtr->Disks[j].spareCol == sparecol) {
716 1.231 oster scol = j;
717 1.231 oster break;
718 1.231 oster }
719 1.231 oster }
720 1.231 oster if (scol == 0) {
721 1.231 oster /*
722 1.231 oster We must have found a spared master!
723 1.231 oster We'll take that over anything else
724 1.231 oster found so far. (We couldn't have
725 1.231 oster found a real master before, since
726 1.231 oster this is a used spare, and it's
727 1.231 oster saying that it's replacing the
728 1.231 oster master.) On reboot (with
729 1.231 oster autoconfiguration turned on)
730 1.231 oster sparecol will become the 1st
731 1.231 oster component (component0) of this set.
732 1.231 oster */
733 1.231 oster dumpto = sparecol;
734 1.231 oster break;
735 1.231 oster } else if (scol != -1) {
736 1.231 oster /*
737 1.231 oster Must be a spared slave. We'll dump
738 1.231 oster to that if we havn't found anything
739 1.231 oster else so far.
740 1.231 oster */
741 1.231 oster if (dumpto == -1)
742 1.231 oster dumpto = sparecol;
743 1.231 oster }
744 1.231 oster }
745 1.231 oster }
746 1.231 oster
747 1.231 oster if (dumpto == -1) {
748 1.231 oster /* we couldn't find any live components to dump to!?!?
749 1.231 oster */
750 1.231 oster error = EINVAL;
751 1.231 oster goto out;
752 1.231 oster }
753 1.231 oster
754 1.231 oster bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
755 1.342 mlelstv if (bdev == NULL) {
756 1.342 mlelstv error = ENXIO;
757 1.342 mlelstv goto out;
758 1.342 mlelstv }
759 1.231 oster
760 1.231 oster error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
761 1.336 mlelstv blkno, va, nblk * raidPtr->bytesPerSector);
762 1.231 oster
763 1.231 oster out:
764 1.231 oster raidunlock(rs);
765 1.231 oster
766 1.231 oster return error;
767 1.1 oster }
768 1.324 mrg
769 1.1 oster /* ARGSUSED */
770 1.324 mrg static int
771 1.222 christos raidopen(dev_t dev, int flags, int fmt,
772 1.222 christos struct lwp *l)
773 1.1 oster {
774 1.9 oster int unit = raidunit(dev);
775 1.1 oster struct raid_softc *rs;
776 1.335 mlelstv struct dk_softc *dksc;
777 1.335 mlelstv int error = 0;
778 1.9 oster int part, pmask;
779 1.9 oster
780 1.327 pgoyette if ((rs = raidget(unit, true)) == NULL)
781 1.300 christos return ENXIO;
782 1.1 oster if ((error = raidlock(rs)) != 0)
783 1.9 oster return (error);
784 1.266 dyoung
785 1.266 dyoung if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
786 1.266 dyoung error = EBUSY;
787 1.266 dyoung goto bad;
788 1.266 dyoung }
789 1.266 dyoung
790 1.335 mlelstv dksc = &rs->sc_dksc;
791 1.1 oster
792 1.1 oster part = DISKPART(dev);
793 1.1 oster pmask = (1 << part);
794 1.1 oster
795 1.335 mlelstv if (!DK_BUSY(dksc, pmask) &&
796 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
797 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
798 1.13 oster have done a configure before this. I DO NOT WANT TO BE
799 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
800 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
801 1.13 oster /* XXX should check to see if we're only open for reading
802 1.13 oster here... If so, we needn't do this, but then need some
803 1.13 oster other way of keeping track of what's happened.. */
804 1.13 oster
805 1.300 christos rf_markalldirty(&rs->sc_r);
806 1.13 oster }
807 1.13 oster
808 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0)
809 1.335 mlelstv error = dk_open(dksc, dev, flags, fmt, l);
810 1.1 oster
811 1.213 christos bad:
812 1.1 oster raidunlock(rs);
813 1.1 oster
814 1.9 oster return (error);
815 1.1 oster
816 1.1 oster
817 1.1 oster }
818 1.324 mrg
819 1.335 mlelstv static int
820 1.335 mlelstv raid_lastclose(device_t self)
821 1.335 mlelstv {
822 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
823 1.335 mlelstv
824 1.335 mlelstv /* Last one... device is not unconfigured yet.
825 1.335 mlelstv Device shutdown has taken care of setting the
826 1.335 mlelstv clean bits if RAIDF_INITED is not set
827 1.335 mlelstv mark things as clean... */
828 1.335 mlelstv
829 1.335 mlelstv rf_update_component_labels(&rs->sc_r,
830 1.335 mlelstv RF_FINAL_COMPONENT_UPDATE);
831 1.335 mlelstv
832 1.335 mlelstv /* pass to unlocked code */
833 1.335 mlelstv if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
834 1.335 mlelstv rs->sc_flags |= RAIDF_DETACH;
835 1.335 mlelstv
836 1.335 mlelstv return 0;
837 1.335 mlelstv }
838 1.335 mlelstv
839 1.1 oster /* ARGSUSED */
840 1.324 mrg static int
841 1.222 christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
842 1.1 oster {
843 1.9 oster int unit = raidunit(dev);
844 1.1 oster struct raid_softc *rs;
845 1.335 mlelstv struct dk_softc *dksc;
846 1.335 mlelstv cfdata_t cf;
847 1.335 mlelstv int error = 0, do_detach = 0, do_put = 0;
848 1.1 oster
849 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
850 1.300 christos return ENXIO;
851 1.335 mlelstv dksc = &rs->sc_dksc;
852 1.1 oster
853 1.1 oster if ((error = raidlock(rs)) != 0)
854 1.1 oster return (error);
855 1.1 oster
856 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) {
857 1.335 mlelstv error = dk_close(dksc, dev, flags, fmt, l);
858 1.335 mlelstv if ((rs->sc_flags & RAIDF_DETACH) != 0)
859 1.335 mlelstv do_detach = 1;
860 1.335 mlelstv } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
861 1.335 mlelstv do_put = 1;
862 1.1 oster
863 1.335 mlelstv raidunlock(rs);
864 1.1 oster
865 1.335 mlelstv if (do_detach) {
866 1.335 mlelstv /* free the pseudo device attach bits */
867 1.335 mlelstv cf = device_cfdata(dksc->sc_dev);
868 1.335 mlelstv error = config_detach(dksc->sc_dev, 0);
869 1.335 mlelstv if (error == 0)
870 1.335 mlelstv free(cf, M_RAIDFRAME);
871 1.335 mlelstv } else if (do_put) {
872 1.335 mlelstv raidput(rs);
873 1.1 oster }
874 1.186 perry
875 1.335 mlelstv return (error);
876 1.147 oster
877 1.335 mlelstv }
878 1.327 pgoyette
879 1.335 mlelstv static void
880 1.335 mlelstv raid_wakeup(RF_Raid_t *raidPtr)
881 1.335 mlelstv {
882 1.335 mlelstv rf_lock_mutex2(raidPtr->iodone_lock);
883 1.335 mlelstv rf_signal_cond2(raidPtr->iodone_cv);
884 1.335 mlelstv rf_unlock_mutex2(raidPtr->iodone_lock);
885 1.1 oster }
886 1.1 oster
887 1.324 mrg static void
888 1.169 oster raidstrategy(struct buf *bp)
889 1.1 oster {
890 1.335 mlelstv unsigned int unit;
891 1.335 mlelstv struct raid_softc *rs;
892 1.335 mlelstv struct dk_softc *dksc;
893 1.1 oster RF_Raid_t *raidPtr;
894 1.1 oster
895 1.335 mlelstv unit = raidunit(bp->b_dev);
896 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) {
897 1.30 oster bp->b_error = ENXIO;
898 1.335 mlelstv goto fail;
899 1.30 oster }
900 1.300 christos if ((rs->sc_flags & RAIDF_INITED) == 0) {
901 1.300 christos bp->b_error = ENXIO;
902 1.335 mlelstv goto fail;
903 1.1 oster }
904 1.335 mlelstv dksc = &rs->sc_dksc;
905 1.300 christos raidPtr = &rs->sc_r;
906 1.335 mlelstv
907 1.335 mlelstv /* Queue IO only */
908 1.335 mlelstv if (dk_strategy_defer(dksc, bp))
909 1.196 yamt goto done;
910 1.1 oster
911 1.335 mlelstv /* schedule the IO to happen at the next convenient time */
912 1.335 mlelstv raid_wakeup(raidPtr);
913 1.335 mlelstv
914 1.335 mlelstv done:
915 1.335 mlelstv return;
916 1.335 mlelstv
917 1.335 mlelstv fail:
918 1.335 mlelstv bp->b_resid = bp->b_bcount;
919 1.335 mlelstv biodone(bp);
920 1.335 mlelstv }
921 1.335 mlelstv
922 1.335 mlelstv static int
923 1.335 mlelstv raid_diskstart(device_t dev, struct buf *bp)
924 1.335 mlelstv {
925 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
926 1.335 mlelstv RF_Raid_t *raidPtr;
927 1.1 oster
928 1.335 mlelstv raidPtr = &rs->sc_r;
929 1.335 mlelstv if (!raidPtr->valid) {
930 1.335 mlelstv db1_printf(("raid is not valid..\n"));
931 1.335 mlelstv return ENODEV;
932 1.196 yamt }
933 1.285 mrg
934 1.335 mlelstv /* XXX */
935 1.335 mlelstv bp->b_resid = 0;
936 1.335 mlelstv
937 1.335 mlelstv return raiddoaccess(raidPtr, bp);
938 1.335 mlelstv }
939 1.1 oster
940 1.335 mlelstv void
941 1.335 mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
942 1.335 mlelstv {
943 1.335 mlelstv struct raid_softc *rs;
944 1.335 mlelstv struct dk_softc *dksc;
945 1.34 oster
946 1.335 mlelstv rs = raidPtr->softc;
947 1.335 mlelstv dksc = &rs->sc_dksc;
948 1.34 oster
949 1.335 mlelstv dk_done(dksc, bp);
950 1.34 oster
951 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
952 1.335 mlelstv raidPtr->openings++;
953 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
954 1.196 yamt
955 1.335 mlelstv /* schedule more IO */
956 1.335 mlelstv raid_wakeup(raidPtr);
957 1.1 oster }
958 1.324 mrg
959 1.1 oster /* ARGSUSED */
960 1.324 mrg static int
961 1.222 christos raidread(dev_t dev, struct uio *uio, int flags)
962 1.1 oster {
963 1.9 oster int unit = raidunit(dev);
964 1.1 oster struct raid_softc *rs;
965 1.1 oster
966 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
967 1.300 christos return ENXIO;
968 1.1 oster
969 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
970 1.1 oster return (ENXIO);
971 1.1 oster
972 1.1 oster return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
973 1.1 oster
974 1.1 oster }
975 1.324 mrg
976 1.1 oster /* ARGSUSED */
977 1.324 mrg static int
978 1.222 christos raidwrite(dev_t dev, struct uio *uio, int flags)
979 1.1 oster {
980 1.9 oster int unit = raidunit(dev);
981 1.1 oster struct raid_softc *rs;
982 1.1 oster
983 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
984 1.300 christos return ENXIO;
985 1.1 oster
986 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
987 1.1 oster return (ENXIO);
988 1.147 oster
989 1.1 oster return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
990 1.1 oster
991 1.1 oster }
992 1.1 oster
993 1.266 dyoung static int
994 1.266 dyoung raid_detach_unlocked(struct raid_softc *rs)
995 1.266 dyoung {
996 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
997 1.335 mlelstv RF_Raid_t *raidPtr;
998 1.266 dyoung int error;
999 1.266 dyoung
1000 1.300 christos raidPtr = &rs->sc_r;
1001 1.266 dyoung
1002 1.337 mlelstv if (DK_BUSY(dksc, 0) ||
1003 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1004 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1005 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1006 1.266 dyoung return EBUSY;
1007 1.266 dyoung
1008 1.266 dyoung if ((rs->sc_flags & RAIDF_INITED) == 0)
1009 1.333 mlelstv return 0;
1010 1.333 mlelstv
1011 1.333 mlelstv rs->sc_flags &= ~RAIDF_SHUTDOWN;
1012 1.333 mlelstv
1013 1.333 mlelstv if ((error = rf_Shutdown(raidPtr)) != 0)
1014 1.266 dyoung return error;
1015 1.266 dyoung
1016 1.335 mlelstv rs->sc_flags &= ~RAIDF_INITED;
1017 1.335 mlelstv
1018 1.335 mlelstv /* Kill off any queued buffers */
1019 1.335 mlelstv dk_drain(dksc);
1020 1.335 mlelstv bufq_free(dksc->sc_bufq);
1021 1.335 mlelstv
1022 1.266 dyoung /* Detach the disk. */
1023 1.335 mlelstv dkwedge_delall(&dksc->sc_dkdev);
1024 1.335 mlelstv disk_detach(&dksc->sc_dkdev);
1025 1.335 mlelstv disk_destroy(&dksc->sc_dkdev);
1026 1.335 mlelstv dk_detach(dksc);
1027 1.333 mlelstv
1028 1.266 dyoung return 0;
1029 1.266 dyoung }
1030 1.266 dyoung
1031 1.324 mrg static int
1032 1.225 christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1033 1.1 oster {
1034 1.9 oster int unit = raidunit(dev);
1035 1.9 oster int error = 0;
1036 1.335 mlelstv int part, pmask;
1037 1.1 oster struct raid_softc *rs;
1038 1.335 mlelstv struct dk_softc *dksc;
1039 1.1 oster RF_Config_t *k_cfg, *u_cfg;
1040 1.42 oster RF_Raid_t *raidPtr;
1041 1.48 oster RF_RaidDisk_t *diskPtr;
1042 1.41 oster RF_AccTotals_t *totals;
1043 1.41 oster RF_DeviceConfig_t *d_cfg, **ucfgp;
1044 1.1 oster u_char *specific_buf;
1045 1.11 oster int retcode = 0;
1046 1.11 oster int column;
1047 1.269 jld /* int raidid; */
1048 1.1 oster struct rf_recon_req *rrcopy, *rr;
1049 1.48 oster RF_ComponentLabel_t *clabel;
1050 1.209 oster RF_ComponentLabel_t *ci_label;
1051 1.48 oster RF_ComponentLabel_t **clabel_ptr;
1052 1.12 oster RF_SingleComponent_t *sparePtr,*componentPtr;
1053 1.12 oster RF_SingleComponent_t component;
1054 1.83 oster RF_ProgressInfo_t progressInfo, **progressInfoPtr;
1055 1.41 oster int i, j, d;
1056 1.1 oster
1057 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1058 1.300 christos return ENXIO;
1059 1.335 mlelstv dksc = &rs->sc_dksc;
1060 1.300 christos raidPtr = &rs->sc_r;
1061 1.1 oster
1062 1.276 mrg db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1063 1.276 mrg (int) DISKPART(dev), (int) unit, cmd));
1064 1.1 oster
1065 1.1 oster /* Must be initialized for these... */
1066 1.1 oster switch (cmd) {
1067 1.1 oster case RAIDFRAME_REWRITEPARITY:
1068 1.1 oster case RAIDFRAME_GET_INFO:
1069 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1070 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1071 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1072 1.1 oster case RAIDFRAME_GET_SIZE:
1073 1.1 oster case RAIDFRAME_FAIL_DISK:
1074 1.1 oster case RAIDFRAME_COPYBACK:
1075 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1076 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1077 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1078 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1079 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1080 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1081 1.11 oster case RAIDFRAME_INIT_LABELS:
1082 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1083 1.23 oster case RAIDFRAME_CHECK_PARITY:
1084 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1085 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1086 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1087 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1088 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1089 1.48 oster case RAIDFRAME_SET_ROOT:
1090 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1091 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1092 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1093 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1094 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1095 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1096 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
1097 1.1 oster return (ENXIO);
1098 1.1 oster }
1099 1.9 oster
1100 1.1 oster switch (cmd) {
1101 1.254 christos #ifdef COMPAT_50
1102 1.254 christos case RAIDFRAME_GET_INFO50:
1103 1.254 christos return rf_get_info50(raidPtr, data);
1104 1.254 christos
1105 1.254 christos case RAIDFRAME_CONFIGURE50:
1106 1.254 christos if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1107 1.254 christos return retcode;
1108 1.254 christos goto config;
1109 1.254 christos #endif
1110 1.1 oster /* configure the system */
1111 1.1 oster case RAIDFRAME_CONFIGURE:
1112 1.48 oster
1113 1.48 oster if (raidPtr->valid) {
1114 1.48 oster /* There is a valid RAID set running on this unit! */
1115 1.48 oster printf("raid%d: Device already configured!\n",unit);
1116 1.66 oster return(EINVAL);
1117 1.48 oster }
1118 1.48 oster
1119 1.1 oster /* copy-in the configuration information */
1120 1.1 oster /* data points to a pointer to the configuration structure */
1121 1.43 oster
1122 1.9 oster u_cfg = *((RF_Config_t **) data);
1123 1.9 oster RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1124 1.1 oster if (k_cfg == NULL) {
1125 1.9 oster return (ENOMEM);
1126 1.1 oster }
1127 1.156 dsl retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1128 1.1 oster if (retcode) {
1129 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1130 1.46 oster db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1131 1.9 oster retcode));
1132 1.327 pgoyette goto no_config;
1133 1.1 oster }
1134 1.254 christos goto config;
1135 1.254 christos config:
1136 1.327 pgoyette rs->sc_flags &= ~RAIDF_SHUTDOWN;
1137 1.327 pgoyette
1138 1.9 oster /* allocate a buffer for the layout-specific data, and copy it
1139 1.9 oster * in */
1140 1.1 oster if (k_cfg->layoutSpecificSize) {
1141 1.9 oster if (k_cfg->layoutSpecificSize > 10000) {
1142 1.1 oster /* sanity check */
1143 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1144 1.327 pgoyette retcode = EINVAL;
1145 1.327 pgoyette goto no_config;
1146 1.1 oster }
1147 1.9 oster RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1148 1.9 oster (u_char *));
1149 1.1 oster if (specific_buf == NULL) {
1150 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1151 1.327 pgoyette retcode = ENOMEM;
1152 1.327 pgoyette goto no_config;
1153 1.1 oster }
1154 1.156 dsl retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1155 1.9 oster k_cfg->layoutSpecificSize);
1156 1.1 oster if (retcode) {
1157 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1158 1.186 perry RF_Free(specific_buf,
1159 1.42 oster k_cfg->layoutSpecificSize);
1160 1.46 oster db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1161 1.9 oster retcode));
1162 1.327 pgoyette goto no_config;
1163 1.1 oster }
1164 1.9 oster } else
1165 1.9 oster specific_buf = NULL;
1166 1.1 oster k_cfg->layoutSpecific = specific_buf;
1167 1.9 oster
1168 1.9 oster /* should do some kind of sanity check on the configuration.
1169 1.9 oster * Store the sum of all the bytes in the last byte? */
1170 1.1 oster
1171 1.1 oster /* configure the system */
1172 1.1 oster
1173 1.48 oster /*
1174 1.48 oster * Clear the entire RAID descriptor, just to make sure
1175 1.186 perry * there is no stale data left in the case of a
1176 1.186 perry * reconfiguration
1177 1.48 oster */
1178 1.277 christos memset(raidPtr, 0, sizeof(*raidPtr));
1179 1.302 christos raidPtr->softc = rs;
1180 1.42 oster raidPtr->raidid = unit;
1181 1.20 oster
1182 1.48 oster retcode = rf_Configure(raidPtr, k_cfg, NULL);
1183 1.1 oster
1184 1.40 oster if (retcode == 0) {
1185 1.37 oster
1186 1.186 perry /* allow this many simultaneous IO's to
1187 1.40 oster this RAID device */
1188 1.42 oster raidPtr->openings = RAIDOUTSTANDING;
1189 1.186 perry
1190 1.300 christos raidinit(rs);
1191 1.335 mlelstv raid_wakeup(raidPtr);
1192 1.59 oster rf_markalldirty(raidPtr);
1193 1.9 oster }
1194 1.1 oster /* free the buffers. No return code here. */
1195 1.1 oster if (k_cfg->layoutSpecificSize) {
1196 1.9 oster RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1197 1.1 oster }
1198 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1199 1.9 oster
1200 1.327 pgoyette no_config:
1201 1.327 pgoyette /*
1202 1.327 pgoyette * If configuration failed, set sc_flags so that we
1203 1.327 pgoyette * will detach the device when we close it.
1204 1.327 pgoyette */
1205 1.327 pgoyette if (retcode != 0)
1206 1.327 pgoyette rs->sc_flags |= RAIDF_SHUTDOWN;
1207 1.9 oster return (retcode);
1208 1.9 oster
1209 1.9 oster /* shutdown the system */
1210 1.1 oster case RAIDFRAME_SHUTDOWN:
1211 1.9 oster
1212 1.266 dyoung part = DISKPART(dev);
1213 1.266 dyoung pmask = (1 << part);
1214 1.266 dyoung
1215 1.9 oster if ((error = raidlock(rs)) != 0)
1216 1.9 oster return (error);
1217 1.1 oster
1218 1.337 mlelstv if (DK_BUSY(dksc, pmask) ||
1219 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1220 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1221 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1222 1.266 dyoung retcode = EBUSY;
1223 1.266 dyoung else {
1224 1.335 mlelstv /* detach and free on close */
1225 1.266 dyoung rs->sc_flags |= RAIDF_SHUTDOWN;
1226 1.266 dyoung retcode = 0;
1227 1.9 oster }
1228 1.11 oster
1229 1.266 dyoung raidunlock(rs);
1230 1.1 oster
1231 1.9 oster return (retcode);
1232 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1233 1.48 oster clabel_ptr = (RF_ComponentLabel_t **) data;
1234 1.11 oster /* need to read the component label for the disk indicated
1235 1.48 oster by row,column in clabel */
1236 1.11 oster
1237 1.269 jld /*
1238 1.269 jld * Perhaps there should be an option to skip the in-core
1239 1.269 jld * copy and hit the disk, as with disklabel(8).
1240 1.269 jld */
1241 1.269 jld RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
1242 1.11 oster
1243 1.277 christos retcode = copyin(*clabel_ptr, clabel, sizeof(*clabel));
1244 1.11 oster
1245 1.11 oster if (retcode) {
1246 1.277 christos RF_Free(clabel, sizeof(*clabel));
1247 1.277 christos return retcode;
1248 1.11 oster }
1249 1.11 oster
1250 1.166 oster clabel->row = 0; /* Don't allow looking at anything else.*/
1251 1.166 oster
1252 1.48 oster column = clabel->column;
1253 1.26 oster
1254 1.166 oster if ((column < 0) || (column >= raidPtr->numCol +
1255 1.277 christos raidPtr->numSpare)) {
1256 1.277 christos RF_Free(clabel, sizeof(*clabel));
1257 1.277 christos return EINVAL;
1258 1.11 oster }
1259 1.11 oster
1260 1.269 jld RF_Free(clabel, sizeof(*clabel));
1261 1.269 jld
1262 1.269 jld clabel = raidget_component_label(raidPtr, column);
1263 1.11 oster
1264 1.277 christos return copyout(clabel, *clabel_ptr, sizeof(**clabel_ptr));
1265 1.11 oster
1266 1.269 jld #if 0
1267 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1268 1.48 oster clabel = (RF_ComponentLabel_t *) data;
1269 1.11 oster
1270 1.11 oster /* XXX check the label for valid stuff... */
1271 1.11 oster /* Note that some things *should not* get modified --
1272 1.186 perry the user should be re-initing the labels instead of
1273 1.11 oster trying to patch things.
1274 1.11 oster */
1275 1.11 oster
1276 1.123 oster raidid = raidPtr->raidid;
1277 1.224 oster #ifdef DEBUG
1278 1.123 oster printf("raid%d: Got component label:\n", raidid);
1279 1.123 oster printf("raid%d: Version: %d\n", raidid, clabel->version);
1280 1.123 oster printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1281 1.123 oster printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1282 1.123 oster printf("raid%d: Column: %d\n", raidid, clabel->column);
1283 1.123 oster printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1284 1.123 oster printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1285 1.123 oster printf("raid%d: Status: %d\n", raidid, clabel->status);
1286 1.174 oster #endif
1287 1.166 oster clabel->row = 0;
1288 1.48 oster column = clabel->column;
1289 1.12 oster
1290 1.166 oster if ((column < 0) || (column >= raidPtr->numCol)) {
1291 1.12 oster return(EINVAL);
1292 1.11 oster }
1293 1.12 oster
1294 1.12 oster /* XXX this isn't allowed to do anything for now :-) */
1295 1.48 oster
1296 1.48 oster /* XXX and before it is, we need to fill in the rest
1297 1.48 oster of the fields!?!?!?! */
1298 1.269 jld memcpy(raidget_component_label(raidPtr, column),
1299 1.269 jld clabel, sizeof(*clabel));
1300 1.269 jld raidflush_component_label(raidPtr, column);
1301 1.269 jld return (0);
1302 1.12 oster #endif
1303 1.11 oster
1304 1.186 perry case RAIDFRAME_INIT_LABELS:
1305 1.48 oster clabel = (RF_ComponentLabel_t *) data;
1306 1.186 perry /*
1307 1.11 oster we only want the serial number from
1308 1.11 oster the above. We get all the rest of the information
1309 1.11 oster from the config that was used to create this RAID
1310 1.186 perry set.
1311 1.11 oster */
1312 1.12 oster
1313 1.48 oster raidPtr->serial_number = clabel->serial_number;
1314 1.186 perry
1315 1.166 oster for(column=0;column<raidPtr->numCol;column++) {
1316 1.166 oster diskPtr = &raidPtr->Disks[column];
1317 1.166 oster if (!RF_DEAD_DISK(diskPtr->status)) {
1318 1.269 jld ci_label = raidget_component_label(raidPtr,
1319 1.269 jld column);
1320 1.269 jld /* Zeroing this is important. */
1321 1.269 jld memset(ci_label, 0, sizeof(*ci_label));
1322 1.269 jld raid_init_component_label(raidPtr, ci_label);
1323 1.269 jld ci_label->serial_number =
1324 1.269 jld raidPtr->serial_number;
1325 1.269 jld ci_label->row = 0; /* we dont' pretend to support more */
1326 1.282 enami rf_component_label_set_partitionsize(ci_label,
1327 1.282 enami diskPtr->partitionSize);
1328 1.209 oster ci_label->column = column;
1329 1.269 jld raidflush_component_label(raidPtr, column);
1330 1.11 oster }
1331 1.269 jld /* XXXjld what about the spares? */
1332 1.11 oster }
1333 1.209 oster
1334 1.11 oster return (retcode);
1335 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1336 1.78 minoura d = rf_set_autoconfig(raidPtr, *(int *) data);
1337 1.186 perry printf("raid%d: New autoconfig value is: %d\n",
1338 1.123 oster raidPtr->raidid, d);
1339 1.78 minoura *(int *) data = d;
1340 1.48 oster return (retcode);
1341 1.48 oster
1342 1.48 oster case RAIDFRAME_SET_ROOT:
1343 1.78 minoura d = rf_set_rootpartition(raidPtr, *(int *) data);
1344 1.186 perry printf("raid%d: New rootpartition value is: %d\n",
1345 1.123 oster raidPtr->raidid, d);
1346 1.78 minoura *(int *) data = d;
1347 1.48 oster return (retcode);
1348 1.9 oster
1349 1.1 oster /* initialize all parity */
1350 1.1 oster case RAIDFRAME_REWRITEPARITY:
1351 1.1 oster
1352 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1353 1.17 oster /* Parity for RAID 0 is trivially correct */
1354 1.42 oster raidPtr->parity_good = RF_RAID_CLEAN;
1355 1.17 oster return(0);
1356 1.17 oster }
1357 1.186 perry
1358 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1359 1.37 oster /* Re-write is already in progress! */
1360 1.37 oster return(EINVAL);
1361 1.37 oster }
1362 1.27 oster
1363 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1364 1.37 oster rf_RewriteParityThread,
1365 1.42 oster raidPtr,"raid_parity");
1366 1.9 oster return (retcode);
1367 1.9 oster
1368 1.11 oster
1369 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1370 1.12 oster sparePtr = (RF_SingleComponent_t *) data;
1371 1.209 oster memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1372 1.209 oster retcode = rf_add_hot_spare(raidPtr, &component);
1373 1.11 oster return(retcode);
1374 1.11 oster
1375 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1376 1.73 oster return(retcode);
1377 1.73 oster
1378 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1379 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1380 1.186 perry memcpy( &component, componentPtr,
1381 1.73 oster sizeof(RF_SingleComponent_t));
1382 1.73 oster retcode = rf_delete_component(raidPtr, &component);
1383 1.73 oster return(retcode);
1384 1.73 oster
1385 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1386 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1387 1.186 perry memcpy( &component, componentPtr,
1388 1.73 oster sizeof(RF_SingleComponent_t));
1389 1.73 oster retcode = rf_incorporate_hot_spare(raidPtr, &component);
1390 1.11 oster return(retcode);
1391 1.11 oster
1392 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1393 1.24 oster
1394 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1395 1.24 oster /* Can't do this on a RAID 0!! */
1396 1.24 oster return(EINVAL);
1397 1.24 oster }
1398 1.24 oster
1399 1.42 oster if (raidPtr->recon_in_progress == 1) {
1400 1.37 oster /* a reconstruct is already in progress! */
1401 1.37 oster return(EINVAL);
1402 1.37 oster }
1403 1.37 oster
1404 1.12 oster componentPtr = (RF_SingleComponent_t *) data;
1405 1.186 perry memcpy( &component, componentPtr,
1406 1.12 oster sizeof(RF_SingleComponent_t));
1407 1.166 oster component.row = 0; /* we don't support any more */
1408 1.12 oster column = component.column;
1409 1.147 oster
1410 1.166 oster if ((column < 0) || (column >= raidPtr->numCol)) {
1411 1.12 oster return(EINVAL);
1412 1.12 oster }
1413 1.37 oster
1414 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1415 1.166 oster if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1416 1.186 perry (raidPtr->numFailures > 0)) {
1417 1.149 oster /* XXX 0 above shouldn't be constant!!! */
1418 1.149 oster /* some component other than this has failed.
1419 1.149 oster Let's not make things worse than they already
1420 1.149 oster are... */
1421 1.149 oster printf("raid%d: Unable to reconstruct to disk at:\n",
1422 1.149 oster raidPtr->raidid);
1423 1.166 oster printf("raid%d: Col: %d Too many failures.\n",
1424 1.166 oster raidPtr->raidid, column);
1425 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1426 1.149 oster return (EINVAL);
1427 1.149 oster }
1428 1.186 perry if (raidPtr->Disks[column].status ==
1429 1.149 oster rf_ds_reconstructing) {
1430 1.149 oster printf("raid%d: Unable to reconstruct to disk at:\n",
1431 1.149 oster raidPtr->raidid);
1432 1.299 oster printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1433 1.186 perry
1434 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1435 1.149 oster return (EINVAL);
1436 1.149 oster }
1437 1.166 oster if (raidPtr->Disks[column].status == rf_ds_spared) {
1438 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1439 1.149 oster return (EINVAL);
1440 1.149 oster }
1441 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1442 1.149 oster
1443 1.37 oster RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1444 1.38 oster if (rrcopy == NULL)
1445 1.38 oster return(ENOMEM);
1446 1.37 oster
1447 1.42 oster rrcopy->raidPtr = (void *) raidPtr;
1448 1.37 oster rrcopy->col = column;
1449 1.37 oster
1450 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1451 1.37 oster rf_ReconstructInPlaceThread,
1452 1.37 oster rrcopy,"raid_reconip");
1453 1.12 oster return(retcode);
1454 1.12 oster
1455 1.1 oster case RAIDFRAME_GET_INFO:
1456 1.42 oster if (!raidPtr->valid)
1457 1.41 oster return (ENODEV);
1458 1.41 oster ucfgp = (RF_DeviceConfig_t **) data;
1459 1.41 oster RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1460 1.41 oster (RF_DeviceConfig_t *));
1461 1.41 oster if (d_cfg == NULL)
1462 1.41 oster return (ENOMEM);
1463 1.166 oster d_cfg->rows = 1; /* there is only 1 row now */
1464 1.42 oster d_cfg->cols = raidPtr->numCol;
1465 1.166 oster d_cfg->ndevs = raidPtr->numCol;
1466 1.41 oster if (d_cfg->ndevs >= RF_MAX_DISKS) {
1467 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1468 1.41 oster return (ENOMEM);
1469 1.41 oster }
1470 1.42 oster d_cfg->nspares = raidPtr->numSpare;
1471 1.41 oster if (d_cfg->nspares >= RF_MAX_DISKS) {
1472 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1473 1.41 oster return (ENOMEM);
1474 1.41 oster }
1475 1.42 oster d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1476 1.41 oster d = 0;
1477 1.166 oster for (j = 0; j < d_cfg->cols; j++) {
1478 1.166 oster d_cfg->devs[d] = raidPtr->Disks[j];
1479 1.166 oster d++;
1480 1.41 oster }
1481 1.41 oster for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1482 1.166 oster d_cfg->spares[i] = raidPtr->Disks[j];
1483 1.316 oster if (d_cfg->spares[i].status == rf_ds_rebuilding_spare) {
1484 1.316 oster /* XXX: raidctl(8) expects to see this as a used spare */
1485 1.316 oster d_cfg->spares[i].status = rf_ds_used_spare;
1486 1.316 oster }
1487 1.41 oster }
1488 1.156 dsl retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1489 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1490 1.41 oster
1491 1.41 oster return (retcode);
1492 1.9 oster
1493 1.22 oster case RAIDFRAME_CHECK_PARITY:
1494 1.42 oster *(int *) data = raidPtr->parity_good;
1495 1.22 oster return (0);
1496 1.41 oster
1497 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1498 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1499 1.273 jld return EINVAL;
1500 1.269 jld rf_paritymap_status(raidPtr->parity_map,
1501 1.269 jld (struct rf_pmstat *)data);
1502 1.269 jld return 0;
1503 1.269 jld
1504 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1505 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1506 1.273 jld return EINVAL;
1507 1.269 jld if (raidPtr->parity_map == NULL)
1508 1.269 jld return ENOENT; /* ??? */
1509 1.269 jld if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1510 1.269 jld (struct rf_pmparams *)data, 1))
1511 1.269 jld return EINVAL;
1512 1.269 jld return 0;
1513 1.269 jld
1514 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1515 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1516 1.273 jld return EINVAL;
1517 1.269 jld *(int *) data = rf_paritymap_get_disable(raidPtr);
1518 1.269 jld return 0;
1519 1.269 jld
1520 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1521 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1522 1.273 jld return EINVAL;
1523 1.269 jld rf_paritymap_set_disable(raidPtr, *(int *)data);
1524 1.269 jld /* XXX should errors be passed up? */
1525 1.269 jld return 0;
1526 1.269 jld
1527 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1528 1.108 thorpej memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1529 1.41 oster return (0);
1530 1.9 oster
1531 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1532 1.41 oster totals = (RF_AccTotals_t *) data;
1533 1.42 oster *totals = raidPtr->acc_totals;
1534 1.41 oster return (0);
1535 1.9 oster
1536 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1537 1.42 oster raidPtr->keep_acc_totals = *(int *)data;
1538 1.41 oster return (0);
1539 1.9 oster
1540 1.1 oster case RAIDFRAME_GET_SIZE:
1541 1.42 oster *(int *) data = raidPtr->totalSectors;
1542 1.9 oster return (0);
1543 1.1 oster
1544 1.1 oster /* fail a disk & optionally start reconstruction */
1545 1.1 oster case RAIDFRAME_FAIL_DISK:
1546 1.24 oster
1547 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1548 1.24 oster /* Can't do this on a RAID 0!! */
1549 1.24 oster return(EINVAL);
1550 1.24 oster }
1551 1.24 oster
1552 1.1 oster rr = (struct rf_recon_req *) data;
1553 1.166 oster rr->row = 0;
1554 1.166 oster if (rr->col < 0 || rr->col >= raidPtr->numCol)
1555 1.9 oster return (EINVAL);
1556 1.149 oster
1557 1.149 oster
1558 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1559 1.185 oster if (raidPtr->status == rf_rs_reconstructing) {
1560 1.185 oster /* you can't fail a disk while we're reconstructing! */
1561 1.185 oster /* XXX wrong for RAID6 */
1562 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1563 1.185 oster return (EINVAL);
1564 1.185 oster }
1565 1.186 perry if ((raidPtr->Disks[rr->col].status ==
1566 1.186 perry rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1567 1.149 oster /* some other component has failed. Let's not make
1568 1.149 oster things worse. XXX wrong for RAID6 */
1569 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1570 1.149 oster return (EINVAL);
1571 1.149 oster }
1572 1.166 oster if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1573 1.149 oster /* Can't fail a spared disk! */
1574 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1575 1.149 oster return (EINVAL);
1576 1.149 oster }
1577 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1578 1.1 oster
1579 1.9 oster /* make a copy of the recon request so that we don't rely on
1580 1.9 oster * the user's buffer */
1581 1.1 oster RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1582 1.38 oster if (rrcopy == NULL)
1583 1.38 oster return(ENOMEM);
1584 1.118 wiz memcpy(rrcopy, rr, sizeof(*rr));
1585 1.42 oster rrcopy->raidPtr = (void *) raidPtr;
1586 1.1 oster
1587 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1588 1.37 oster rf_ReconThread,
1589 1.37 oster rrcopy,"raid_recon");
1590 1.9 oster return (0);
1591 1.9 oster
1592 1.9 oster /* invoke a copyback operation after recon on whatever disk
1593 1.9 oster * needs it, if any */
1594 1.9 oster case RAIDFRAME_COPYBACK:
1595 1.24 oster
1596 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1597 1.24 oster /* This makes no sense on a RAID 0!! */
1598 1.24 oster return(EINVAL);
1599 1.24 oster }
1600 1.24 oster
1601 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1602 1.37 oster /* Copyback is already in progress! */
1603 1.37 oster return(EINVAL);
1604 1.37 oster }
1605 1.27 oster
1606 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1607 1.37 oster rf_CopybackThread,
1608 1.42 oster raidPtr,"raid_copyback");
1609 1.37 oster return (retcode);
1610 1.9 oster
1611 1.1 oster /* return the percentage completion of reconstruction */
1612 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1613 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1614 1.71 oster /* This makes no sense on a RAID 0, so tell the
1615 1.71 oster user it's done. */
1616 1.71 oster *(int *) data = 100;
1617 1.71 oster return(0);
1618 1.24 oster }
1619 1.166 oster if (raidPtr->status != rf_rs_reconstructing)
1620 1.1 oster *(int *) data = 100;
1621 1.171 oster else {
1622 1.171 oster if (raidPtr->reconControl->numRUsTotal > 0) {
1623 1.171 oster *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1624 1.171 oster } else {
1625 1.171 oster *(int *) data = 0;
1626 1.171 oster }
1627 1.171 oster }
1628 1.9 oster return (0);
1629 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1630 1.83 oster progressInfoPtr = (RF_ProgressInfo_t **) data;
1631 1.166 oster if (raidPtr->status != rf_rs_reconstructing) {
1632 1.83 oster progressInfo.remaining = 0;
1633 1.83 oster progressInfo.completed = 100;
1634 1.83 oster progressInfo.total = 100;
1635 1.83 oster } else {
1636 1.186 perry progressInfo.total =
1637 1.166 oster raidPtr->reconControl->numRUsTotal;
1638 1.186 perry progressInfo.completed =
1639 1.166 oster raidPtr->reconControl->numRUsComplete;
1640 1.83 oster progressInfo.remaining = progressInfo.total -
1641 1.83 oster progressInfo.completed;
1642 1.83 oster }
1643 1.156 dsl retcode = copyout(&progressInfo, *progressInfoPtr,
1644 1.83 oster sizeof(RF_ProgressInfo_t));
1645 1.83 oster return (retcode);
1646 1.9 oster
1647 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1648 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1649 1.80 oster /* This makes no sense on a RAID 0, so tell the
1650 1.80 oster user it's done. */
1651 1.80 oster *(int *) data = 100;
1652 1.80 oster return(0);
1653 1.37 oster }
1654 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1655 1.186 perry *(int *) data = 100 *
1656 1.186 perry raidPtr->parity_rewrite_stripes_done /
1657 1.83 oster raidPtr->Layout.numStripe;
1658 1.37 oster } else {
1659 1.37 oster *(int *) data = 100;
1660 1.37 oster }
1661 1.37 oster return (0);
1662 1.37 oster
1663 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1664 1.83 oster progressInfoPtr = (RF_ProgressInfo_t **) data;
1665 1.83 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1666 1.83 oster progressInfo.total = raidPtr->Layout.numStripe;
1667 1.186 perry progressInfo.completed =
1668 1.83 oster raidPtr->parity_rewrite_stripes_done;
1669 1.83 oster progressInfo.remaining = progressInfo.total -
1670 1.83 oster progressInfo.completed;
1671 1.83 oster } else {
1672 1.83 oster progressInfo.remaining = 0;
1673 1.83 oster progressInfo.completed = 100;
1674 1.83 oster progressInfo.total = 100;
1675 1.83 oster }
1676 1.156 dsl retcode = copyout(&progressInfo, *progressInfoPtr,
1677 1.83 oster sizeof(RF_ProgressInfo_t));
1678 1.83 oster return (retcode);
1679 1.83 oster
1680 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1681 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1682 1.37 oster /* This makes no sense on a RAID 0 */
1683 1.83 oster *(int *) data = 100;
1684 1.83 oster return(0);
1685 1.37 oster }
1686 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1687 1.42 oster *(int *) data = 100 * raidPtr->copyback_stripes_done /
1688 1.42 oster raidPtr->Layout.numStripe;
1689 1.37 oster } else {
1690 1.37 oster *(int *) data = 100;
1691 1.37 oster }
1692 1.37 oster return (0);
1693 1.37 oster
1694 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1695 1.93 oster progressInfoPtr = (RF_ProgressInfo_t **) data;
1696 1.83 oster if (raidPtr->copyback_in_progress == 1) {
1697 1.83 oster progressInfo.total = raidPtr->Layout.numStripe;
1698 1.186 perry progressInfo.completed =
1699 1.93 oster raidPtr->copyback_stripes_done;
1700 1.83 oster progressInfo.remaining = progressInfo.total -
1701 1.83 oster progressInfo.completed;
1702 1.83 oster } else {
1703 1.83 oster progressInfo.remaining = 0;
1704 1.83 oster progressInfo.completed = 100;
1705 1.83 oster progressInfo.total = 100;
1706 1.83 oster }
1707 1.156 dsl retcode = copyout(&progressInfo, *progressInfoPtr,
1708 1.83 oster sizeof(RF_ProgressInfo_t));
1709 1.83 oster return (retcode);
1710 1.37 oster
1711 1.341 christos case RAIDFRAME_SET_LAST_UNIT:
1712 1.341 christos for (column = 0; column < raidPtr->numCol; column++)
1713 1.341 christos if (raidPtr->Disks[column].status != rf_ds_optimal)
1714 1.341 christos return EBUSY;
1715 1.341 christos
1716 1.341 christos for (column = 0; column < raidPtr->numCol; column++) {
1717 1.341 christos clabel = raidget_component_label(raidPtr, column);
1718 1.341 christos clabel->last_unit = *(int *)data;
1719 1.341 christos raidflush_component_label(raidPtr, column);
1720 1.341 christos }
1721 1.341 christos rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1722 1.341 christos return 0;
1723 1.341 christos
1724 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1725 1.9 oster * need a spare table. this ioctl does not return until a
1726 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1727 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1728 1.9 oster * -- I should either compute the spare table in the kernel,
1729 1.9 oster * or have a different -- XXX XXX -- interface (a different
1730 1.42 oster * character device) for delivering the table -- XXX */
1731 1.250 oster #if 0
1732 1.1 oster case RAIDFRAME_SPARET_WAIT:
1733 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1734 1.9 oster while (!rf_sparet_wait_queue)
1735 1.287 mrg rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1736 1.1 oster waitreq = rf_sparet_wait_queue;
1737 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1738 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1739 1.9 oster
1740 1.42 oster /* structure assignment */
1741 1.186 perry *((RF_SparetWait_t *) data) = *waitreq;
1742 1.9 oster
1743 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1744 1.9 oster return (0);
1745 1.9 oster
1746 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1747 1.9 oster * code in it that will cause the dameon to exit */
1748 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1749 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1750 1.1 oster waitreq->fcol = -1;
1751 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1752 1.1 oster waitreq->next = rf_sparet_wait_queue;
1753 1.1 oster rf_sparet_wait_queue = waitreq;
1754 1.287 mrg rf_broadcast_conf2(rf_sparet_wait_cv);
1755 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1756 1.9 oster return (0);
1757 1.1 oster
1758 1.9 oster /* used by the spare table daemon to deliver a spare table
1759 1.9 oster * into the kernel */
1760 1.1 oster case RAIDFRAME_SEND_SPARET:
1761 1.9 oster
1762 1.1 oster /* install the spare table */
1763 1.42 oster retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1764 1.9 oster
1765 1.9 oster /* respond to the requestor. the return status of the spare
1766 1.9 oster * table installation is passed in the "fcol" field */
1767 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1768 1.1 oster waitreq->fcol = retcode;
1769 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1770 1.1 oster waitreq->next = rf_sparet_resp_queue;
1771 1.1 oster rf_sparet_resp_queue = waitreq;
1772 1.287 mrg rf_broadcast_cond2(rf_sparet_resp_cv);
1773 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1774 1.9 oster
1775 1.9 oster return (retcode);
1776 1.1 oster #endif
1777 1.1 oster
1778 1.9 oster default:
1779 1.36 oster break; /* fall through to the os-specific code below */
1780 1.1 oster
1781 1.1 oster }
1782 1.9 oster
1783 1.42 oster if (!raidPtr->valid)
1784 1.9 oster return (EINVAL);
1785 1.9 oster
1786 1.1 oster /*
1787 1.1 oster * Add support for "regular" device ioctls here.
1788 1.1 oster */
1789 1.263 haad
1790 1.1 oster switch (cmd) {
1791 1.348 jdolecek case DIOCGCACHE:
1792 1.348 jdolecek retcode = rf_get_component_caches(raidPtr, (int *)data);
1793 1.348 jdolecek break;
1794 1.348 jdolecek
1795 1.252 oster case DIOCCACHESYNC:
1796 1.346 jdolecek retcode = rf_sync_component_caches(raidPtr);
1797 1.347 jdolecek break;
1798 1.298 buhrow
1799 1.1 oster default:
1800 1.346 jdolecek retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1801 1.347 jdolecek break;
1802 1.1 oster }
1803 1.346 jdolecek
1804 1.9 oster return (retcode);
1805 1.1 oster
1806 1.1 oster }
1807 1.1 oster
1808 1.1 oster
1809 1.9 oster /* raidinit -- complete the rest of the initialization for the
1810 1.1 oster RAIDframe device. */
1811 1.1 oster
1812 1.1 oster
1813 1.59 oster static void
1814 1.300 christos raidinit(struct raid_softc *rs)
1815 1.1 oster {
1816 1.262 cegger cfdata_t cf;
1817 1.335 mlelstv unsigned int unit;
1818 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1819 1.300 christos RF_Raid_t *raidPtr = &rs->sc_r;
1820 1.335 mlelstv device_t dev;
1821 1.1 oster
1822 1.59 oster unit = raidPtr->raidid;
1823 1.1 oster
1824 1.179 itojun /* XXX doesn't check bounds. */
1825 1.335 mlelstv snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1826 1.1 oster
1827 1.217 oster /* attach the pseudo device */
1828 1.217 oster cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1829 1.217 oster cf->cf_name = raid_cd.cd_name;
1830 1.217 oster cf->cf_atname = raid_cd.cd_name;
1831 1.217 oster cf->cf_unit = unit;
1832 1.217 oster cf->cf_fstate = FSTATE_STAR;
1833 1.217 oster
1834 1.335 mlelstv dev = config_attach_pseudo(cf);
1835 1.335 mlelstv if (dev == NULL) {
1836 1.217 oster printf("raid%d: config_attach_pseudo failed\n",
1837 1.270 christos raidPtr->raidid);
1838 1.265 pooka free(cf, M_RAIDFRAME);
1839 1.265 pooka return;
1840 1.217 oster }
1841 1.217 oster
1842 1.335 mlelstv /* provide a backpointer to the real softc */
1843 1.335 mlelstv raidsoftc(dev) = rs;
1844 1.335 mlelstv
1845 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1846 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1847 1.9 oster * with disklabels. */
1848 1.335 mlelstv dk_init(dksc, dev, DKTYPE_RAID);
1849 1.335 mlelstv disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1850 1.1 oster
1851 1.1 oster /* XXX There may be a weird interaction here between this, and
1852 1.9 oster * protectedSectors, as used in RAIDframe. */
1853 1.11 oster
1854 1.9 oster rs->sc_size = raidPtr->totalSectors;
1855 1.234 oster
1856 1.335 mlelstv /* Attach dk and disk subsystems */
1857 1.335 mlelstv dk_attach(dksc);
1858 1.335 mlelstv disk_attach(&dksc->sc_dkdev);
1859 1.318 mlelstv rf_set_geometry(rs, raidPtr);
1860 1.318 mlelstv
1861 1.335 mlelstv bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1862 1.335 mlelstv
1863 1.335 mlelstv /* mark unit as usuable */
1864 1.335 mlelstv rs->sc_flags |= RAIDF_INITED;
1865 1.234 oster
1866 1.335 mlelstv dkwedge_discover(&dksc->sc_dkdev);
1867 1.1 oster }
1868 1.335 mlelstv
1869 1.150 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1870 1.1 oster /* wake up the daemon & tell it to get us a spare table
1871 1.1 oster * XXX
1872 1.9 oster * the entries in the queues should be tagged with the raidPtr
1873 1.186 perry * so that in the extremely rare case that two recons happen at once,
1874 1.11 oster * we know for which device were requesting a spare table
1875 1.1 oster * XXX
1876 1.186 perry *
1877 1.39 oster * XXX This code is not currently used. GO
1878 1.1 oster */
1879 1.186 perry int
1880 1.169 oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1881 1.9 oster {
1882 1.9 oster int retcode;
1883 1.9 oster
1884 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1885 1.9 oster req->next = rf_sparet_wait_queue;
1886 1.9 oster rf_sparet_wait_queue = req;
1887 1.289 mrg rf_broadcast_cond2(rf_sparet_wait_cv);
1888 1.9 oster
1889 1.9 oster /* mpsleep unlocks the mutex */
1890 1.9 oster while (!rf_sparet_resp_queue) {
1891 1.289 mrg rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1892 1.9 oster }
1893 1.9 oster req = rf_sparet_resp_queue;
1894 1.9 oster rf_sparet_resp_queue = req->next;
1895 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1896 1.9 oster
1897 1.9 oster retcode = req->fcol;
1898 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
1899 1.9 oster * alloc'd */
1900 1.9 oster return (retcode);
1901 1.1 oster }
1902 1.150 oster #endif
1903 1.39 oster
1904 1.186 perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
1905 1.11 oster * bp & passes it down.
1906 1.1 oster * any calls originating in the kernel must use non-blocking I/O
1907 1.1 oster * do some extra sanity checking to return "appropriate" error values for
1908 1.1 oster * certain conditions (to make some standard utilities work)
1909 1.186 perry *
1910 1.34 oster * Formerly known as: rf_DoAccessKernel
1911 1.1 oster */
1912 1.34 oster void
1913 1.169 oster raidstart(RF_Raid_t *raidPtr)
1914 1.1 oster {
1915 1.1 oster struct raid_softc *rs;
1916 1.335 mlelstv struct dk_softc *dksc;
1917 1.1 oster
1918 1.300 christos rs = raidPtr->softc;
1919 1.335 mlelstv dksc = &rs->sc_dksc;
1920 1.56 oster /* quick check to see if anything has died recently */
1921 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1922 1.56 oster if (raidPtr->numNewFailures > 0) {
1923 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1924 1.186 perry rf_update_component_labels(raidPtr,
1925 1.91 oster RF_NORMAL_COMPONENT_UPDATE);
1926 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1927 1.56 oster raidPtr->numNewFailures--;
1928 1.56 oster }
1929 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1930 1.56 oster
1931 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) {
1932 1.335 mlelstv printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1933 1.335 mlelstv return;
1934 1.335 mlelstv }
1935 1.34 oster
1936 1.335 mlelstv dk_start(dksc, NULL);
1937 1.335 mlelstv }
1938 1.34 oster
1939 1.335 mlelstv static int
1940 1.335 mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1941 1.335 mlelstv {
1942 1.335 mlelstv RF_SectorCount_t num_blocks, pb, sum;
1943 1.335 mlelstv RF_RaidAddr_t raid_addr;
1944 1.335 mlelstv daddr_t blocknum;
1945 1.335 mlelstv int do_async;
1946 1.335 mlelstv int rc;
1947 1.186 perry
1948 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1949 1.335 mlelstv if (raidPtr->openings == 0) {
1950 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1951 1.335 mlelstv return EAGAIN;
1952 1.335 mlelstv }
1953 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1954 1.186 perry
1955 1.335 mlelstv blocknum = bp->b_rawblkno;
1956 1.186 perry
1957 1.335 mlelstv db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1958 1.335 mlelstv (int) blocknum));
1959 1.1 oster
1960 1.335 mlelstv db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1961 1.335 mlelstv db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1962 1.1 oster
1963 1.335 mlelstv /* *THIS* is where we adjust what block we're going to...
1964 1.335 mlelstv * but DO NOT TOUCH bp->b_blkno!!! */
1965 1.335 mlelstv raid_addr = blocknum;
1966 1.335 mlelstv
1967 1.335 mlelstv num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1968 1.335 mlelstv pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1969 1.335 mlelstv sum = raid_addr + num_blocks + pb;
1970 1.335 mlelstv if (1 || rf_debugKernelAccess) {
1971 1.335 mlelstv db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1972 1.335 mlelstv (int) raid_addr, (int) sum, (int) num_blocks,
1973 1.335 mlelstv (int) pb, (int) bp->b_resid));
1974 1.335 mlelstv }
1975 1.335 mlelstv if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1976 1.335 mlelstv || (sum < num_blocks) || (sum < pb)) {
1977 1.335 mlelstv rc = ENOSPC;
1978 1.335 mlelstv goto done;
1979 1.335 mlelstv }
1980 1.335 mlelstv /*
1981 1.335 mlelstv * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1982 1.335 mlelstv */
1983 1.186 perry
1984 1.335 mlelstv if (bp->b_bcount & raidPtr->sectorMask) {
1985 1.335 mlelstv rc = ENOSPC;
1986 1.335 mlelstv goto done;
1987 1.335 mlelstv }
1988 1.335 mlelstv db1_printf(("Calling DoAccess..\n"));
1989 1.99 oster
1990 1.20 oster
1991 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1992 1.335 mlelstv raidPtr->openings--;
1993 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1994 1.20 oster
1995 1.335 mlelstv /*
1996 1.335 mlelstv * Everything is async.
1997 1.335 mlelstv */
1998 1.335 mlelstv do_async = 1;
1999 1.20 oster
2000 1.335 mlelstv /* don't ever condition on bp->b_flags & B_WRITE.
2001 1.335 mlelstv * always condition on B_READ instead */
2002 1.7 explorer
2003 1.335 mlelstv rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2004 1.335 mlelstv RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2005 1.335 mlelstv do_async, raid_addr, num_blocks,
2006 1.335 mlelstv bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2007 1.335 mlelstv
2008 1.335 mlelstv done:
2009 1.335 mlelstv return rc;
2010 1.335 mlelstv }
2011 1.7 explorer
2012 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2013 1.1 oster
2014 1.186 perry int
2015 1.169 oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2016 1.1 oster {
2017 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2018 1.1 oster struct buf *bp;
2019 1.9 oster
2020 1.1 oster req->queue = queue;
2021 1.1 oster bp = req->bp;
2022 1.1 oster
2023 1.1 oster switch (req->type) {
2024 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2025 1.1 oster /* XXX need to do something extra here.. */
2026 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
2027 1.9 oster * and I'd like folks to report it... GO */
2028 1.1 oster printf(("WAKEUP CALLED\n"));
2029 1.1 oster queue->numOutstanding++;
2030 1.1 oster
2031 1.197 oster bp->b_flags = 0;
2032 1.207 simonb bp->b_private = req;
2033 1.1 oster
2034 1.194 oster KernelWakeupFunc(bp);
2035 1.1 oster break;
2036 1.9 oster
2037 1.1 oster case RF_IO_TYPE_READ:
2038 1.1 oster case RF_IO_TYPE_WRITE:
2039 1.175 oster #if RF_ACC_TRACE > 0
2040 1.1 oster if (req->tracerec) {
2041 1.1 oster RF_ETIMER_START(req->tracerec->timer);
2042 1.1 oster }
2043 1.175 oster #endif
2044 1.194 oster InitBP(bp, queue->rf_cinfo->ci_vp,
2045 1.197 oster op, queue->rf_cinfo->ci_dev,
2046 1.9 oster req->sectorOffset, req->numSector,
2047 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
2048 1.9 oster queue->raidPtr->logBytesPerSector, req->b_proc);
2049 1.1 oster
2050 1.1 oster if (rf_debugKernelAccess) {
2051 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
2052 1.9 oster (long) bp->b_blkno));
2053 1.1 oster }
2054 1.1 oster queue->numOutstanding++;
2055 1.1 oster queue->last_deq_sector = req->sectorOffset;
2056 1.9 oster /* acc wouldn't have been let in if there were any pending
2057 1.9 oster * reqs at any other priority */
2058 1.1 oster queue->curPriority = req->priority;
2059 1.1 oster
2060 1.166 oster db1_printf(("Going for %c to unit %d col %d\n",
2061 1.186 perry req->type, queue->raidPtr->raidid,
2062 1.166 oster queue->col));
2063 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
2064 1.9 oster (int) req->sectorOffset, (int) req->numSector,
2065 1.9 oster (int) (req->numSector <<
2066 1.9 oster queue->raidPtr->logBytesPerSector),
2067 1.9 oster (int) queue->raidPtr->logBytesPerSector));
2068 1.256 oster
2069 1.256 oster /*
2070 1.256 oster * XXX: drop lock here since this can block at
2071 1.256 oster * least with backing SCSI devices. Retake it
2072 1.256 oster * to minimize fuss with calling interfaces.
2073 1.256 oster */
2074 1.256 oster
2075 1.256 oster RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2076 1.247 oster bdev_strategy(bp);
2077 1.256 oster RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2078 1.1 oster break;
2079 1.9 oster
2080 1.1 oster default:
2081 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
2082 1.1 oster }
2083 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
2084 1.134 oster
2085 1.9 oster return (0);
2086 1.1 oster }
2087 1.9 oster /* this is the callback function associated with a I/O invoked from
2088 1.1 oster kernel code.
2089 1.1 oster */
2090 1.186 perry static void
2091 1.194 oster KernelWakeupFunc(struct buf *bp)
2092 1.9 oster {
2093 1.9 oster RF_DiskQueueData_t *req = NULL;
2094 1.9 oster RF_DiskQueue_t *queue;
2095 1.9 oster
2096 1.9 oster db1_printf(("recovering the request queue:\n"));
2097 1.285 mrg
2098 1.207 simonb req = bp->b_private;
2099 1.1 oster
2100 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
2101 1.1 oster
2102 1.286 mrg rf_lock_mutex2(queue->raidPtr->iodone_lock);
2103 1.285 mrg
2104 1.175 oster #if RF_ACC_TRACE > 0
2105 1.9 oster if (req->tracerec) {
2106 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
2107 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
2108 1.288 mrg rf_lock_mutex2(rf_tracing_mutex);
2109 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2110 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2111 1.9 oster req->tracerec->num_phys_ios++;
2112 1.288 mrg rf_unlock_mutex2(rf_tracing_mutex);
2113 1.9 oster }
2114 1.175 oster #endif
2115 1.1 oster
2116 1.230 ad /* XXX Ok, let's get aggressive... If b_error is set, let's go
2117 1.9 oster * ballistic, and mark the component as hosed... */
2118 1.36 oster
2119 1.230 ad if (bp->b_error != 0) {
2120 1.9 oster /* Mark the disk as dead */
2121 1.9 oster /* but only mark it once... */
2122 1.186 perry /* and only if it wouldn't leave this RAID set
2123 1.183 oster completely broken */
2124 1.193 oster if (((queue->raidPtr->Disks[queue->col].status ==
2125 1.193 oster rf_ds_optimal) ||
2126 1.193 oster (queue->raidPtr->Disks[queue->col].status ==
2127 1.193 oster rf_ds_used_spare)) &&
2128 1.193 oster (queue->raidPtr->numFailures <
2129 1.204 simonb queue->raidPtr->Layout.map->faultsTolerated)) {
2130 1.322 prlw1 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2131 1.136 oster queue->raidPtr->raidid,
2132 1.322 prlw1 bp->b_error,
2133 1.166 oster queue->raidPtr->Disks[queue->col].devname);
2134 1.166 oster queue->raidPtr->Disks[queue->col].status =
2135 1.9 oster rf_ds_failed;
2136 1.166 oster queue->raidPtr->status = rf_rs_degraded;
2137 1.9 oster queue->raidPtr->numFailures++;
2138 1.56 oster queue->raidPtr->numNewFailures++;
2139 1.9 oster } else { /* Disk is already dead... */
2140 1.9 oster /* printf("Disk already marked as dead!\n"); */
2141 1.9 oster }
2142 1.4 oster
2143 1.9 oster }
2144 1.4 oster
2145 1.143 oster /* Fill in the error value */
2146 1.230 ad req->error = bp->b_error;
2147 1.143 oster
2148 1.143 oster /* Drop this one on the "finished" queue... */
2149 1.143 oster TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2150 1.143 oster
2151 1.143 oster /* Let the raidio thread know there is work to be done. */
2152 1.286 mrg rf_signal_cond2(queue->raidPtr->iodone_cv);
2153 1.143 oster
2154 1.286 mrg rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2155 1.1 oster }
2156 1.1 oster
2157 1.1 oster
2158 1.1 oster /*
2159 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
2160 1.1 oster */
2161 1.186 perry static void
2162 1.169 oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2163 1.225 christos RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2164 1.169 oster void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2165 1.169 oster struct proc *b_proc)
2166 1.9 oster {
2167 1.9 oster /* bp->b_flags = B_PHYS | rw_flag; */
2168 1.242 ad bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2169 1.242 ad bp->b_oflags = 0;
2170 1.242 ad bp->b_cflags = 0;
2171 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
2172 1.9 oster bp->b_bufsize = bp->b_bcount;
2173 1.9 oster bp->b_error = 0;
2174 1.9 oster bp->b_dev = dev;
2175 1.187 christos bp->b_data = bf;
2176 1.275 mrg bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2177 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2178 1.1 oster if (bp->b_bcount == 0) {
2179 1.141 provos panic("bp->b_bcount is zero in InitBP!!");
2180 1.1 oster }
2181 1.161 fvdl bp->b_proc = b_proc;
2182 1.9 oster bp->b_iodone = cbFunc;
2183 1.207 simonb bp->b_private = cbArg;
2184 1.1 oster }
2185 1.1 oster
2186 1.1 oster /*
2187 1.1 oster * Wait interruptibly for an exclusive lock.
2188 1.1 oster *
2189 1.1 oster * XXX
2190 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2191 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2192 1.1 oster */
2193 1.1 oster static int
2194 1.169 oster raidlock(struct raid_softc *rs)
2195 1.1 oster {
2196 1.9 oster int error;
2197 1.1 oster
2198 1.335 mlelstv error = 0;
2199 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2200 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2201 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2202 1.327 pgoyette error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2203 1.327 pgoyette if (error != 0)
2204 1.335 mlelstv goto done;
2205 1.1 oster }
2206 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2207 1.335 mlelstv done:
2208 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2209 1.335 mlelstv return (error);
2210 1.1 oster }
2211 1.1 oster /*
2212 1.1 oster * Unlock and wake up any waiters.
2213 1.1 oster */
2214 1.1 oster static void
2215 1.169 oster raidunlock(struct raid_softc *rs)
2216 1.1 oster {
2217 1.1 oster
2218 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2219 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2220 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2221 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2222 1.327 pgoyette cv_broadcast(&rs->sc_cv);
2223 1.1 oster }
2224 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2225 1.11 oster }
2226 1.186 perry
2227 1.11 oster
2228 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2229 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2230 1.269 jld #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2231 1.11 oster
2232 1.276 mrg static daddr_t
2233 1.276 mrg rf_component_info_offset(void)
2234 1.276 mrg {
2235 1.276 mrg
2236 1.276 mrg return RF_COMPONENT_INFO_OFFSET;
2237 1.276 mrg }
2238 1.276 mrg
2239 1.276 mrg static daddr_t
2240 1.276 mrg rf_component_info_size(unsigned secsize)
2241 1.276 mrg {
2242 1.276 mrg daddr_t info_size;
2243 1.276 mrg
2244 1.276 mrg KASSERT(secsize);
2245 1.276 mrg if (secsize > RF_COMPONENT_INFO_SIZE)
2246 1.276 mrg info_size = secsize;
2247 1.276 mrg else
2248 1.276 mrg info_size = RF_COMPONENT_INFO_SIZE;
2249 1.276 mrg
2250 1.276 mrg return info_size;
2251 1.276 mrg }
2252 1.276 mrg
2253 1.276 mrg static daddr_t
2254 1.276 mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
2255 1.276 mrg {
2256 1.276 mrg daddr_t map_offset;
2257 1.276 mrg
2258 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2259 1.276 mrg if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2260 1.276 mrg map_offset = raidPtr->bytesPerSector;
2261 1.276 mrg else
2262 1.276 mrg map_offset = RF_COMPONENT_INFO_SIZE;
2263 1.276 mrg map_offset += rf_component_info_offset();
2264 1.276 mrg
2265 1.276 mrg return map_offset;
2266 1.276 mrg }
2267 1.276 mrg
2268 1.276 mrg static daddr_t
2269 1.276 mrg rf_parity_map_size(RF_Raid_t *raidPtr)
2270 1.276 mrg {
2271 1.276 mrg daddr_t map_size;
2272 1.276 mrg
2273 1.276 mrg if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2274 1.276 mrg map_size = raidPtr->bytesPerSector;
2275 1.276 mrg else
2276 1.276 mrg map_size = RF_PARITY_MAP_SIZE;
2277 1.276 mrg
2278 1.276 mrg return map_size;
2279 1.276 mrg }
2280 1.276 mrg
2281 1.186 perry int
2282 1.269 jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2283 1.12 oster {
2284 1.269 jld RF_ComponentLabel_t *clabel;
2285 1.269 jld
2286 1.269 jld clabel = raidget_component_label(raidPtr, col);
2287 1.269 jld clabel->clean = RF_RAID_CLEAN;
2288 1.269 jld raidflush_component_label(raidPtr, col);
2289 1.12 oster return(0);
2290 1.12 oster }
2291 1.12 oster
2292 1.12 oster
2293 1.186 perry int
2294 1.269 jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2295 1.11 oster {
2296 1.269 jld RF_ComponentLabel_t *clabel;
2297 1.269 jld
2298 1.269 jld clabel = raidget_component_label(raidPtr, col);
2299 1.269 jld clabel->clean = RF_RAID_DIRTY;
2300 1.269 jld raidflush_component_label(raidPtr, col);
2301 1.11 oster return(0);
2302 1.11 oster }
2303 1.11 oster
2304 1.11 oster int
2305 1.269 jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2306 1.269 jld {
2307 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2308 1.276 mrg return raidread_component_label(raidPtr->bytesPerSector,
2309 1.276 mrg raidPtr->Disks[col].dev,
2310 1.269 jld raidPtr->raid_cinfo[col].ci_vp,
2311 1.269 jld &raidPtr->raid_cinfo[col].ci_label);
2312 1.269 jld }
2313 1.269 jld
2314 1.269 jld RF_ComponentLabel_t *
2315 1.269 jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2316 1.269 jld {
2317 1.269 jld return &raidPtr->raid_cinfo[col].ci_label;
2318 1.269 jld }
2319 1.269 jld
2320 1.269 jld int
2321 1.269 jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2322 1.269 jld {
2323 1.269 jld RF_ComponentLabel_t *label;
2324 1.269 jld
2325 1.269 jld label = &raidPtr->raid_cinfo[col].ci_label;
2326 1.269 jld label->mod_counter = raidPtr->mod_counter;
2327 1.269 jld #ifndef RF_NO_PARITY_MAP
2328 1.269 jld label->parity_map_modcount = label->mod_counter;
2329 1.269 jld #endif
2330 1.276 mrg return raidwrite_component_label(raidPtr->bytesPerSector,
2331 1.276 mrg raidPtr->Disks[col].dev,
2332 1.269 jld raidPtr->raid_cinfo[col].ci_vp, label);
2333 1.269 jld }
2334 1.269 jld
2335 1.269 jld
2336 1.269 jld static int
2337 1.276 mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2338 1.269 jld RF_ComponentLabel_t *clabel)
2339 1.269 jld {
2340 1.269 jld return raidread_component_area(dev, b_vp, clabel,
2341 1.269 jld sizeof(RF_ComponentLabel_t),
2342 1.276 mrg rf_component_info_offset(),
2343 1.276 mrg rf_component_info_size(secsize));
2344 1.269 jld }
2345 1.269 jld
2346 1.269 jld /* ARGSUSED */
2347 1.269 jld static int
2348 1.269 jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2349 1.269 jld size_t msize, daddr_t offset, daddr_t dsize)
2350 1.11 oster {
2351 1.11 oster struct buf *bp;
2352 1.11 oster int error;
2353 1.186 perry
2354 1.11 oster /* XXX should probably ensure that we don't try to do this if
2355 1.186 perry someone has changed rf_protected_sectors. */
2356 1.11 oster
2357 1.98 oster if (b_vp == NULL) {
2358 1.98 oster /* For whatever reason, this component is not valid.
2359 1.98 oster Don't try to read a component label from it. */
2360 1.98 oster return(EINVAL);
2361 1.98 oster }
2362 1.98 oster
2363 1.11 oster /* get a block of the appropriate size... */
2364 1.269 jld bp = geteblk((int)dsize);
2365 1.11 oster bp->b_dev = dev;
2366 1.11 oster
2367 1.11 oster /* get our ducks in a row for the read */
2368 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2369 1.269 jld bp->b_bcount = dsize;
2370 1.100 chs bp->b_flags |= B_READ;
2371 1.269 jld bp->b_resid = dsize;
2372 1.11 oster
2373 1.331 mlelstv bdev_strategy(bp);
2374 1.340 christos error = biowait(bp);
2375 1.11 oster
2376 1.11 oster if (!error) {
2377 1.269 jld memcpy(data, bp->b_data, msize);
2378 1.204 simonb }
2379 1.11 oster
2380 1.233 ad brelse(bp, 0);
2381 1.11 oster return(error);
2382 1.11 oster }
2383 1.269 jld
2384 1.269 jld
2385 1.269 jld static int
2386 1.276 mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2387 1.276 mrg RF_ComponentLabel_t *clabel)
2388 1.269 jld {
2389 1.269 jld return raidwrite_component_area(dev, b_vp, clabel,
2390 1.269 jld sizeof(RF_ComponentLabel_t),
2391 1.276 mrg rf_component_info_offset(),
2392 1.276 mrg rf_component_info_size(secsize), 0);
2393 1.269 jld }
2394 1.269 jld
2395 1.11 oster /* ARGSUSED */
2396 1.269 jld static int
2397 1.269 jld raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2398 1.269 jld size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2399 1.11 oster {
2400 1.11 oster struct buf *bp;
2401 1.11 oster int error;
2402 1.11 oster
2403 1.11 oster /* get a block of the appropriate size... */
2404 1.269 jld bp = geteblk((int)dsize);
2405 1.11 oster bp->b_dev = dev;
2406 1.11 oster
2407 1.11 oster /* get our ducks in a row for the write */
2408 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2409 1.269 jld bp->b_bcount = dsize;
2410 1.269 jld bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2411 1.269 jld bp->b_resid = dsize;
2412 1.11 oster
2413 1.269 jld memset(bp->b_data, 0, dsize);
2414 1.269 jld memcpy(bp->b_data, data, msize);
2415 1.11 oster
2416 1.331 mlelstv bdev_strategy(bp);
2417 1.269 jld if (asyncp)
2418 1.269 jld return 0;
2419 1.340 christos error = biowait(bp);
2420 1.233 ad brelse(bp, 0);
2421 1.11 oster if (error) {
2422 1.48 oster #if 1
2423 1.11 oster printf("Failed to write RAID component info!\n");
2424 1.48 oster #endif
2425 1.11 oster }
2426 1.11 oster
2427 1.11 oster return(error);
2428 1.1 oster }
2429 1.12 oster
2430 1.186 perry void
2431 1.269 jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2432 1.269 jld {
2433 1.269 jld int c;
2434 1.269 jld
2435 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2436 1.269 jld /* Skip dead disks. */
2437 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2438 1.269 jld continue;
2439 1.269 jld /* XXXjld: what if an error occurs here? */
2440 1.269 jld raidwrite_component_area(raidPtr->Disks[c].dev,
2441 1.269 jld raidPtr->raid_cinfo[c].ci_vp, map,
2442 1.269 jld RF_PARITYMAP_NBYTE,
2443 1.276 mrg rf_parity_map_offset(raidPtr),
2444 1.276 mrg rf_parity_map_size(raidPtr), 0);
2445 1.269 jld }
2446 1.269 jld }
2447 1.269 jld
2448 1.269 jld void
2449 1.269 jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2450 1.269 jld {
2451 1.269 jld struct rf_paritymap_ondisk tmp;
2452 1.272 oster int c,first;
2453 1.269 jld
2454 1.272 oster first=1;
2455 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2456 1.269 jld /* Skip dead disks. */
2457 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2458 1.269 jld continue;
2459 1.269 jld raidread_component_area(raidPtr->Disks[c].dev,
2460 1.269 jld raidPtr->raid_cinfo[c].ci_vp, &tmp,
2461 1.269 jld RF_PARITYMAP_NBYTE,
2462 1.276 mrg rf_parity_map_offset(raidPtr),
2463 1.276 mrg rf_parity_map_size(raidPtr));
2464 1.272 oster if (first) {
2465 1.269 jld memcpy(map, &tmp, sizeof(*map));
2466 1.272 oster first = 0;
2467 1.269 jld } else {
2468 1.269 jld rf_paritymap_merge(map, &tmp);
2469 1.269 jld }
2470 1.269 jld }
2471 1.269 jld }
2472 1.269 jld
2473 1.269 jld void
2474 1.169 oster rf_markalldirty(RF_Raid_t *raidPtr)
2475 1.12 oster {
2476 1.269 jld RF_ComponentLabel_t *clabel;
2477 1.146 oster int sparecol;
2478 1.166 oster int c;
2479 1.166 oster int j;
2480 1.166 oster int scol = -1;
2481 1.12 oster
2482 1.12 oster raidPtr->mod_counter++;
2483 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2484 1.166 oster /* we don't want to touch (at all) a disk that has
2485 1.166 oster failed */
2486 1.166 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2487 1.269 jld clabel = raidget_component_label(raidPtr, c);
2488 1.269 jld if (clabel->status == rf_ds_spared) {
2489 1.186 perry /* XXX do something special...
2490 1.186 perry but whatever you do, don't
2491 1.166 oster try to access it!! */
2492 1.166 oster } else {
2493 1.269 jld raidmarkdirty(raidPtr, c);
2494 1.12 oster }
2495 1.166 oster }
2496 1.186 perry }
2497 1.146 oster
2498 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2499 1.12 oster sparecol = raidPtr->numCol + c;
2500 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2501 1.186 perry /*
2502 1.186 perry
2503 1.186 perry we claim this disk is "optimal" if it's
2504 1.186 perry rf_ds_used_spare, as that means it should be
2505 1.186 perry directly substitutable for the disk it replaced.
2506 1.12 oster We note that too...
2507 1.12 oster
2508 1.12 oster */
2509 1.12 oster
2510 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2511 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2512 1.166 oster scol = j;
2513 1.166 oster break;
2514 1.12 oster }
2515 1.12 oster }
2516 1.186 perry
2517 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2518 1.12 oster /* make sure status is noted */
2519 1.146 oster
2520 1.269 jld raid_init_component_label(raidPtr, clabel);
2521 1.146 oster
2522 1.269 jld clabel->row = 0;
2523 1.269 jld clabel->column = scol;
2524 1.146 oster /* Note: we *don't* change status from rf_ds_used_spare
2525 1.146 oster to rf_ds_optimal */
2526 1.146 oster /* clabel.status = rf_ds_optimal; */
2527 1.186 perry
2528 1.269 jld raidmarkdirty(raidPtr, sparecol);
2529 1.12 oster }
2530 1.12 oster }
2531 1.12 oster }
2532 1.12 oster
2533 1.13 oster
2534 1.13 oster void
2535 1.169 oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2536 1.13 oster {
2537 1.269 jld RF_ComponentLabel_t *clabel;
2538 1.13 oster int sparecol;
2539 1.166 oster int c;
2540 1.166 oster int j;
2541 1.166 oster int scol;
2542 1.341 christos struct raid_softc *rs = raidPtr->softc;
2543 1.13 oster
2544 1.13 oster scol = -1;
2545 1.13 oster
2546 1.186 perry /* XXX should do extra checks to make sure things really are clean,
2547 1.13 oster rather than blindly setting the clean bit... */
2548 1.13 oster
2549 1.13 oster raidPtr->mod_counter++;
2550 1.13 oster
2551 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2552 1.166 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
2553 1.269 jld clabel = raidget_component_label(raidPtr, c);
2554 1.201 oster /* make sure status is noted */
2555 1.269 jld clabel->status = rf_ds_optimal;
2556 1.201 oster
2557 1.214 oster /* note what unit we are configured as */
2558 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2559 1.341 christos clabel->last_unit = raidPtr->raidid;
2560 1.214 oster
2561 1.269 jld raidflush_component_label(raidPtr, c);
2562 1.166 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2563 1.166 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2564 1.269 jld raidmarkclean(raidPtr, c);
2565 1.91 oster }
2566 1.166 oster }
2567 1.186 perry }
2568 1.166 oster /* else we don't touch it.. */
2569 1.186 perry }
2570 1.63 oster
2571 1.63 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2572 1.63 oster sparecol = raidPtr->numCol + c;
2573 1.110 oster /* Need to ensure that the reconstruct actually completed! */
2574 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2575 1.186 perry /*
2576 1.186 perry
2577 1.186 perry we claim this disk is "optimal" if it's
2578 1.186 perry rf_ds_used_spare, as that means it should be
2579 1.186 perry directly substitutable for the disk it replaced.
2580 1.63 oster We note that too...
2581 1.63 oster
2582 1.63 oster */
2583 1.63 oster
2584 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2585 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2586 1.166 oster scol = j;
2587 1.166 oster break;
2588 1.63 oster }
2589 1.63 oster }
2590 1.186 perry
2591 1.63 oster /* XXX shouldn't *really* need this... */
2592 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2593 1.63 oster /* make sure status is noted */
2594 1.63 oster
2595 1.269 jld raid_init_component_label(raidPtr, clabel);
2596 1.269 jld
2597 1.269 jld clabel->column = scol;
2598 1.269 jld clabel->status = rf_ds_optimal;
2599 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2600 1.341 christos clabel->last_unit = raidPtr->raidid;
2601 1.63 oster
2602 1.269 jld raidflush_component_label(raidPtr, sparecol);
2603 1.91 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2604 1.13 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2605 1.269 jld raidmarkclean(raidPtr, sparecol);
2606 1.13 oster }
2607 1.13 oster }
2608 1.13 oster }
2609 1.13 oster }
2610 1.68 oster }
2611 1.68 oster
2612 1.68 oster void
2613 1.169 oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2614 1.69 oster {
2615 1.69 oster
2616 1.69 oster if (vp != NULL) {
2617 1.69 oster if (auto_configured == 1) {
2618 1.96 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2619 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2620 1.69 oster vput(vp);
2621 1.186 perry
2622 1.186 perry } else {
2623 1.244 ad (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2624 1.69 oster }
2625 1.186 perry }
2626 1.69 oster }
2627 1.69 oster
2628 1.69 oster
2629 1.69 oster void
2630 1.169 oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2631 1.68 oster {
2632 1.186 perry int r,c;
2633 1.69 oster struct vnode *vp;
2634 1.69 oster int acd;
2635 1.68 oster
2636 1.68 oster
2637 1.68 oster /* We take this opportunity to close the vnodes like we should.. */
2638 1.68 oster
2639 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2640 1.166 oster vp = raidPtr->raid_cinfo[c].ci_vp;
2641 1.166 oster acd = raidPtr->Disks[c].auto_configured;
2642 1.166 oster rf_close_component(raidPtr, vp, acd);
2643 1.166 oster raidPtr->raid_cinfo[c].ci_vp = NULL;
2644 1.166 oster raidPtr->Disks[c].auto_configured = 0;
2645 1.68 oster }
2646 1.166 oster
2647 1.68 oster for (r = 0; r < raidPtr->numSpare; r++) {
2648 1.166 oster vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2649 1.166 oster acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2650 1.69 oster rf_close_component(raidPtr, vp, acd);
2651 1.166 oster raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2652 1.166 oster raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2653 1.68 oster }
2654 1.37 oster }
2655 1.63 oster
2656 1.37 oster
2657 1.186 perry void
2658 1.169 oster rf_ReconThread(struct rf_recon_req *req)
2659 1.37 oster {
2660 1.37 oster int s;
2661 1.37 oster RF_Raid_t *raidPtr;
2662 1.37 oster
2663 1.37 oster s = splbio();
2664 1.37 oster raidPtr = (RF_Raid_t *) req->raidPtr;
2665 1.37 oster raidPtr->recon_in_progress = 1;
2666 1.37 oster
2667 1.166 oster rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2668 1.37 oster ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2669 1.37 oster
2670 1.37 oster RF_Free(req, sizeof(*req));
2671 1.37 oster
2672 1.37 oster raidPtr->recon_in_progress = 0;
2673 1.37 oster splx(s);
2674 1.37 oster
2675 1.37 oster /* That's all... */
2676 1.204 simonb kthread_exit(0); /* does not return */
2677 1.37 oster }
2678 1.37 oster
2679 1.37 oster void
2680 1.169 oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
2681 1.37 oster {
2682 1.37 oster int retcode;
2683 1.37 oster int s;
2684 1.37 oster
2685 1.184 oster raidPtr->parity_rewrite_stripes_done = 0;
2686 1.37 oster raidPtr->parity_rewrite_in_progress = 1;
2687 1.37 oster s = splbio();
2688 1.37 oster retcode = rf_RewriteParity(raidPtr);
2689 1.37 oster splx(s);
2690 1.37 oster if (retcode) {
2691 1.279 christos printf("raid%d: Error re-writing parity (%d)!\n",
2692 1.279 christos raidPtr->raidid, retcode);
2693 1.37 oster } else {
2694 1.37 oster /* set the clean bit! If we shutdown correctly,
2695 1.37 oster the clean bit on each component label will get
2696 1.37 oster set */
2697 1.37 oster raidPtr->parity_good = RF_RAID_CLEAN;
2698 1.37 oster }
2699 1.37 oster raidPtr->parity_rewrite_in_progress = 0;
2700 1.85 oster
2701 1.85 oster /* Anyone waiting for us to stop? If so, inform them... */
2702 1.85 oster if (raidPtr->waitShutdown) {
2703 1.85 oster wakeup(&raidPtr->parity_rewrite_in_progress);
2704 1.85 oster }
2705 1.37 oster
2706 1.37 oster /* That's all... */
2707 1.204 simonb kthread_exit(0); /* does not return */
2708 1.37 oster }
2709 1.37 oster
2710 1.37 oster
2711 1.37 oster void
2712 1.169 oster rf_CopybackThread(RF_Raid_t *raidPtr)
2713 1.37 oster {
2714 1.37 oster int s;
2715 1.37 oster
2716 1.37 oster raidPtr->copyback_in_progress = 1;
2717 1.37 oster s = splbio();
2718 1.37 oster rf_CopybackReconstructedData(raidPtr);
2719 1.37 oster splx(s);
2720 1.37 oster raidPtr->copyback_in_progress = 0;
2721 1.37 oster
2722 1.37 oster /* That's all... */
2723 1.204 simonb kthread_exit(0); /* does not return */
2724 1.37 oster }
2725 1.37 oster
2726 1.37 oster
2727 1.37 oster void
2728 1.169 oster rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2729 1.37 oster {
2730 1.37 oster int s;
2731 1.37 oster RF_Raid_t *raidPtr;
2732 1.186 perry
2733 1.37 oster s = splbio();
2734 1.37 oster raidPtr = req->raidPtr;
2735 1.37 oster raidPtr->recon_in_progress = 1;
2736 1.166 oster rf_ReconstructInPlace(raidPtr, req->col);
2737 1.37 oster RF_Free(req, sizeof(*req));
2738 1.37 oster raidPtr->recon_in_progress = 0;
2739 1.37 oster splx(s);
2740 1.37 oster
2741 1.37 oster /* That's all... */
2742 1.204 simonb kthread_exit(0); /* does not return */
2743 1.48 oster }
2744 1.48 oster
2745 1.213 christos static RF_AutoConfig_t *
2746 1.213 christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2747 1.276 mrg const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2748 1.276 mrg unsigned secsize)
2749 1.213 christos {
2750 1.213 christos int good_one = 0;
2751 1.213 christos RF_ComponentLabel_t *clabel;
2752 1.213 christos RF_AutoConfig_t *ac;
2753 1.213 christos
2754 1.213 christos clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2755 1.213 christos if (clabel == NULL) {
2756 1.213 christos oomem:
2757 1.213 christos while(ac_list) {
2758 1.213 christos ac = ac_list;
2759 1.213 christos if (ac->clabel)
2760 1.213 christos free(ac->clabel, M_RAIDFRAME);
2761 1.213 christos ac_list = ac_list->next;
2762 1.213 christos free(ac, M_RAIDFRAME);
2763 1.213 christos }
2764 1.213 christos printf("RAID auto config: out of memory!\n");
2765 1.213 christos return NULL; /* XXX probably should panic? */
2766 1.213 christos }
2767 1.213 christos
2768 1.276 mrg if (!raidread_component_label(secsize, dev, vp, clabel)) {
2769 1.276 mrg /* Got the label. Does it look reasonable? */
2770 1.284 mrg if (rf_reasonable_label(clabel, numsecs) &&
2771 1.282 enami (rf_component_label_partitionsize(clabel) <= size)) {
2772 1.224 oster #ifdef DEBUG
2773 1.276 mrg printf("Component on: %s: %llu\n",
2774 1.213 christos cname, (unsigned long long)size);
2775 1.276 mrg rf_print_component_label(clabel);
2776 1.213 christos #endif
2777 1.276 mrg /* if it's reasonable, add it, else ignore it. */
2778 1.276 mrg ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2779 1.213 christos M_NOWAIT);
2780 1.276 mrg if (ac == NULL) {
2781 1.276 mrg free(clabel, M_RAIDFRAME);
2782 1.276 mrg goto oomem;
2783 1.276 mrg }
2784 1.276 mrg strlcpy(ac->devname, cname, sizeof(ac->devname));
2785 1.276 mrg ac->dev = dev;
2786 1.276 mrg ac->vp = vp;
2787 1.276 mrg ac->clabel = clabel;
2788 1.276 mrg ac->next = ac_list;
2789 1.276 mrg ac_list = ac;
2790 1.276 mrg good_one = 1;
2791 1.276 mrg }
2792 1.213 christos }
2793 1.213 christos if (!good_one) {
2794 1.213 christos /* cleanup */
2795 1.213 christos free(clabel, M_RAIDFRAME);
2796 1.213 christos vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2797 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2798 1.213 christos vput(vp);
2799 1.213 christos }
2800 1.213 christos return ac_list;
2801 1.213 christos }
2802 1.213 christos
2803 1.48 oster RF_AutoConfig_t *
2804 1.259 cegger rf_find_raid_components(void)
2805 1.48 oster {
2806 1.48 oster struct vnode *vp;
2807 1.48 oster struct disklabel label;
2808 1.261 dyoung device_t dv;
2809 1.268 dyoung deviter_t di;
2810 1.48 oster dev_t dev;
2811 1.296 buhrow int bmajor, bminor, wedge, rf_part_found;
2812 1.48 oster int error;
2813 1.48 oster int i;
2814 1.48 oster RF_AutoConfig_t *ac_list;
2815 1.276 mrg uint64_t numsecs;
2816 1.276 mrg unsigned secsize;
2817 1.335 mlelstv int dowedges;
2818 1.48 oster
2819 1.48 oster /* initialize the AutoConfig list */
2820 1.48 oster ac_list = NULL;
2821 1.48 oster
2822 1.335 mlelstv /*
2823 1.335 mlelstv * we begin by trolling through *all* the devices on the system *twice*
2824 1.335 mlelstv * first we scan for wedges, second for other devices. This avoids
2825 1.335 mlelstv * using a raw partition instead of a wedge that covers the whole disk
2826 1.335 mlelstv */
2827 1.48 oster
2828 1.335 mlelstv for (dowedges=1; dowedges>=0; --dowedges) {
2829 1.335 mlelstv for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2830 1.335 mlelstv dv = deviter_next(&di)) {
2831 1.48 oster
2832 1.335 mlelstv /* we are only interested in disks... */
2833 1.335 mlelstv if (device_class(dv) != DV_DISK)
2834 1.335 mlelstv continue;
2835 1.48 oster
2836 1.335 mlelstv /* we don't care about floppies... */
2837 1.335 mlelstv if (device_is_a(dv, "fd")) {
2838 1.335 mlelstv continue;
2839 1.335 mlelstv }
2840 1.129 oster
2841 1.335 mlelstv /* we don't care about CD's... */
2842 1.335 mlelstv if (device_is_a(dv, "cd")) {
2843 1.335 mlelstv continue;
2844 1.335 mlelstv }
2845 1.129 oster
2846 1.335 mlelstv /* we don't care about md's... */
2847 1.335 mlelstv if (device_is_a(dv, "md")) {
2848 1.335 mlelstv continue;
2849 1.335 mlelstv }
2850 1.248 oster
2851 1.335 mlelstv /* hdfd is the Atari/Hades floppy driver */
2852 1.335 mlelstv if (device_is_a(dv, "hdfd")) {
2853 1.335 mlelstv continue;
2854 1.335 mlelstv }
2855 1.206 thorpej
2856 1.335 mlelstv /* fdisa is the Atari/Milan floppy driver */
2857 1.335 mlelstv if (device_is_a(dv, "fdisa")) {
2858 1.335 mlelstv continue;
2859 1.335 mlelstv }
2860 1.186 perry
2861 1.335 mlelstv /* are we in the wedges pass ? */
2862 1.335 mlelstv wedge = device_is_a(dv, "dk");
2863 1.335 mlelstv if (wedge != dowedges) {
2864 1.335 mlelstv continue;
2865 1.335 mlelstv }
2866 1.48 oster
2867 1.335 mlelstv /* need to find the device_name_to_block_device_major stuff */
2868 1.335 mlelstv bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2869 1.296 buhrow
2870 1.335 mlelstv rf_part_found = 0; /*No raid partition as yet*/
2871 1.48 oster
2872 1.335 mlelstv /* get a vnode for the raw partition of this disk */
2873 1.335 mlelstv bminor = minor(device_unit(dv));
2874 1.335 mlelstv dev = wedge ? makedev(bmajor, bminor) :
2875 1.335 mlelstv MAKEDISKDEV(bmajor, bminor, RAW_PART);
2876 1.335 mlelstv if (bdevvp(dev, &vp))
2877 1.335 mlelstv panic("RAID can't alloc vnode");
2878 1.48 oster
2879 1.335 mlelstv error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2880 1.48 oster
2881 1.335 mlelstv if (error) {
2882 1.335 mlelstv /* "Who cares." Continue looking
2883 1.335 mlelstv for something that exists*/
2884 1.335 mlelstv vput(vp);
2885 1.335 mlelstv continue;
2886 1.335 mlelstv }
2887 1.48 oster
2888 1.335 mlelstv error = getdisksize(vp, &numsecs, &secsize);
2889 1.213 christos if (error) {
2890 1.339 mlelstv /*
2891 1.339 mlelstv * Pseudo devices like vnd and cgd can be
2892 1.339 mlelstv * opened but may still need some configuration.
2893 1.339 mlelstv * Ignore these quietly.
2894 1.339 mlelstv */
2895 1.339 mlelstv if (error != ENXIO)
2896 1.339 mlelstv printf("RAIDframe: can't get disk size"
2897 1.339 mlelstv " for dev %s (%d)\n",
2898 1.339 mlelstv device_xname(dv), error);
2899 1.241 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2900 1.241 oster VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2901 1.241 oster vput(vp);
2902 1.213 christos continue;
2903 1.213 christos }
2904 1.335 mlelstv if (wedge) {
2905 1.335 mlelstv struct dkwedge_info dkw;
2906 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2907 1.335 mlelstv NOCRED);
2908 1.335 mlelstv if (error) {
2909 1.335 mlelstv printf("RAIDframe: can't get wedge info for "
2910 1.335 mlelstv "dev %s (%d)\n", device_xname(dv), error);
2911 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2912 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2913 1.335 mlelstv vput(vp);
2914 1.335 mlelstv continue;
2915 1.335 mlelstv }
2916 1.213 christos
2917 1.335 mlelstv if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2918 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2919 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2920 1.335 mlelstv vput(vp);
2921 1.335 mlelstv continue;
2922 1.335 mlelstv }
2923 1.335 mlelstv
2924 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp,
2925 1.335 mlelstv device_xname(dv), dkw.dkw_size, numsecs, secsize);
2926 1.335 mlelstv rf_part_found = 1; /*There is a raid component on this disk*/
2927 1.228 christos continue;
2928 1.241 oster }
2929 1.213 christos
2930 1.335 mlelstv /* Ok, the disk exists. Go get the disklabel. */
2931 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2932 1.335 mlelstv if (error) {
2933 1.335 mlelstv /*
2934 1.335 mlelstv * XXX can't happen - open() would
2935 1.335 mlelstv * have errored out (or faked up one)
2936 1.335 mlelstv */
2937 1.335 mlelstv if (error != ENOTTY)
2938 1.335 mlelstv printf("RAIDframe: can't get label for dev "
2939 1.335 mlelstv "%s (%d)\n", device_xname(dv), error);
2940 1.335 mlelstv }
2941 1.48 oster
2942 1.335 mlelstv /* don't need this any more. We'll allocate it again
2943 1.335 mlelstv a little later if we really do... */
2944 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2945 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2946 1.335 mlelstv vput(vp);
2947 1.48 oster
2948 1.335 mlelstv if (error)
2949 1.48 oster continue;
2950 1.48 oster
2951 1.335 mlelstv rf_part_found = 0; /*No raid partitions yet*/
2952 1.335 mlelstv for (i = 0; i < label.d_npartitions; i++) {
2953 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2954 1.335 mlelstv
2955 1.335 mlelstv /* We only support partitions marked as RAID */
2956 1.335 mlelstv if (label.d_partitions[i].p_fstype != FS_RAID)
2957 1.335 mlelstv continue;
2958 1.335 mlelstv
2959 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2960 1.335 mlelstv if (bdevvp(dev, &vp))
2961 1.335 mlelstv panic("RAID can't alloc vnode");
2962 1.335 mlelstv
2963 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2964 1.335 mlelstv if (error) {
2965 1.335 mlelstv /* Whatever... */
2966 1.335 mlelstv vput(vp);
2967 1.335 mlelstv continue;
2968 1.335 mlelstv }
2969 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2970 1.335 mlelstv device_xname(dv), 'a' + i);
2971 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2972 1.335 mlelstv label.d_partitions[i].p_size, numsecs, secsize);
2973 1.335 mlelstv rf_part_found = 1; /*There is at least one raid partition on this disk*/
2974 1.48 oster }
2975 1.296 buhrow
2976 1.335 mlelstv /*
2977 1.335 mlelstv *If there is no raid component on this disk, either in a
2978 1.335 mlelstv *disklabel or inside a wedge, check the raw partition as well,
2979 1.335 mlelstv *as it is possible to configure raid components on raw disk
2980 1.335 mlelstv *devices.
2981 1.335 mlelstv */
2982 1.296 buhrow
2983 1.335 mlelstv if (!rf_part_found) {
2984 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2985 1.296 buhrow
2986 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2987 1.335 mlelstv if (bdevvp(dev, &vp))
2988 1.335 mlelstv panic("RAID can't alloc vnode");
2989 1.335 mlelstv
2990 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2991 1.335 mlelstv if (error) {
2992 1.335 mlelstv /* Whatever... */
2993 1.335 mlelstv vput(vp);
2994 1.335 mlelstv continue;
2995 1.335 mlelstv }
2996 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2997 1.335 mlelstv device_xname(dv), 'a' + RAW_PART);
2998 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2999 1.335 mlelstv label.d_partitions[RAW_PART].p_size, numsecs, secsize);
3000 1.296 buhrow }
3001 1.48 oster }
3002 1.335 mlelstv deviter_release(&di);
3003 1.48 oster }
3004 1.213 christos return ac_list;
3005 1.48 oster }
3006 1.186 perry
3007 1.213 christos
3008 1.292 oster int
3009 1.284 mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3010 1.48 oster {
3011 1.186 perry
3012 1.48 oster if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3013 1.48 oster (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3014 1.48 oster ((clabel->clean == RF_RAID_CLEAN) ||
3015 1.48 oster (clabel->clean == RF_RAID_DIRTY)) &&
3016 1.186 perry clabel->row >=0 &&
3017 1.186 perry clabel->column >= 0 &&
3018 1.48 oster clabel->num_rows > 0 &&
3019 1.48 oster clabel->num_columns > 0 &&
3020 1.186 perry clabel->row < clabel->num_rows &&
3021 1.48 oster clabel->column < clabel->num_columns &&
3022 1.48 oster clabel->blockSize > 0 &&
3023 1.282 enami /*
3024 1.282 enami * numBlocksHi may contain garbage, but it is ok since
3025 1.282 enami * the type is unsigned. If it is really garbage,
3026 1.282 enami * rf_fix_old_label_size() will fix it.
3027 1.282 enami */
3028 1.282 enami rf_component_label_numblocks(clabel) > 0) {
3029 1.284 mrg /*
3030 1.284 mrg * label looks reasonable enough...
3031 1.284 mrg * let's make sure it has no old garbage.
3032 1.284 mrg */
3033 1.292 oster if (numsecs)
3034 1.292 oster rf_fix_old_label_size(clabel, numsecs);
3035 1.48 oster return(1);
3036 1.48 oster }
3037 1.48 oster return(0);
3038 1.48 oster }
3039 1.48 oster
3040 1.48 oster
3041 1.278 mrg /*
3042 1.278 mrg * For reasons yet unknown, some old component labels have garbage in
3043 1.278 mrg * the newer numBlocksHi region, and this causes lossage. Since those
3044 1.278 mrg * disks will also have numsecs set to less than 32 bits of sectors,
3045 1.299 oster * we can determine when this corruption has occurred, and fix it.
3046 1.284 mrg *
3047 1.284 mrg * The exact same problem, with the same unknown reason, happens to
3048 1.284 mrg * the partitionSizeHi member as well.
3049 1.278 mrg */
3050 1.278 mrg static void
3051 1.278 mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3052 1.278 mrg {
3053 1.278 mrg
3054 1.284 mrg if (numsecs < ((uint64_t)1 << 32)) {
3055 1.284 mrg if (clabel->numBlocksHi) {
3056 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3057 1.284 mrg "numBlocksHi set\n"
3058 1.284 mrg "WARNING: resetting numBlocksHi to zero.\n");
3059 1.284 mrg clabel->numBlocksHi = 0;
3060 1.284 mrg }
3061 1.284 mrg
3062 1.284 mrg if (clabel->partitionSizeHi) {
3063 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3064 1.284 mrg "partitionSizeHi set\n"
3065 1.284 mrg "WARNING: resetting partitionSizeHi to zero.\n");
3066 1.284 mrg clabel->partitionSizeHi = 0;
3067 1.284 mrg }
3068 1.278 mrg }
3069 1.278 mrg }
3070 1.278 mrg
3071 1.278 mrg
3072 1.224 oster #ifdef DEBUG
3073 1.48 oster void
3074 1.169 oster rf_print_component_label(RF_ComponentLabel_t *clabel)
3075 1.48 oster {
3076 1.282 enami uint64_t numBlocks;
3077 1.308 christos static const char *rp[] = {
3078 1.308 christos "No", "Force", "Soft", "*invalid*"
3079 1.308 christos };
3080 1.308 christos
3081 1.275 mrg
3082 1.282 enami numBlocks = rf_component_label_numblocks(clabel);
3083 1.275 mrg
3084 1.48 oster printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3085 1.186 perry clabel->row, clabel->column,
3086 1.48 oster clabel->num_rows, clabel->num_columns);
3087 1.48 oster printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3088 1.48 oster clabel->version, clabel->serial_number,
3089 1.48 oster clabel->mod_counter);
3090 1.48 oster printf(" Clean: %s Status: %d\n",
3091 1.271 dyoung clabel->clean ? "Yes" : "No", clabel->status);
3092 1.48 oster printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3093 1.48 oster clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3094 1.275 mrg printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3095 1.275 mrg (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3096 1.271 dyoung printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3097 1.308 christos printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3098 1.271 dyoung printf(" Last configured as: raid%d\n", clabel->last_unit);
3099 1.51 oster #if 0
3100 1.51 oster printf(" Config order: %d\n", clabel->config_order);
3101 1.51 oster #endif
3102 1.186 perry
3103 1.48 oster }
3104 1.133 oster #endif
3105 1.48 oster
3106 1.48 oster RF_ConfigSet_t *
3107 1.169 oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3108 1.48 oster {
3109 1.48 oster RF_AutoConfig_t *ac;
3110 1.48 oster RF_ConfigSet_t *config_sets;
3111 1.48 oster RF_ConfigSet_t *cset;
3112 1.48 oster RF_AutoConfig_t *ac_next;
3113 1.48 oster
3114 1.48 oster
3115 1.48 oster config_sets = NULL;
3116 1.48 oster
3117 1.48 oster /* Go through the AutoConfig list, and figure out which components
3118 1.48 oster belong to what sets. */
3119 1.48 oster ac = ac_list;
3120 1.48 oster while(ac!=NULL) {
3121 1.48 oster /* we're going to putz with ac->next, so save it here
3122 1.48 oster for use at the end of the loop */
3123 1.48 oster ac_next = ac->next;
3124 1.48 oster
3125 1.48 oster if (config_sets == NULL) {
3126 1.48 oster /* will need at least this one... */
3127 1.48 oster config_sets = (RF_ConfigSet_t *)
3128 1.186 perry malloc(sizeof(RF_ConfigSet_t),
3129 1.48 oster M_RAIDFRAME, M_NOWAIT);
3130 1.48 oster if (config_sets == NULL) {
3131 1.141 provos panic("rf_create_auto_sets: No memory!");
3132 1.48 oster }
3133 1.48 oster /* this one is easy :) */
3134 1.48 oster config_sets->ac = ac;
3135 1.48 oster config_sets->next = NULL;
3136 1.51 oster config_sets->rootable = 0;
3137 1.48 oster ac->next = NULL;
3138 1.48 oster } else {
3139 1.48 oster /* which set does this component fit into? */
3140 1.48 oster cset = config_sets;
3141 1.48 oster while(cset!=NULL) {
3142 1.49 oster if (rf_does_it_fit(cset, ac)) {
3143 1.86 oster /* looks like it matches... */
3144 1.86 oster ac->next = cset->ac;
3145 1.86 oster cset->ac = ac;
3146 1.48 oster break;
3147 1.48 oster }
3148 1.48 oster cset = cset->next;
3149 1.48 oster }
3150 1.48 oster if (cset==NULL) {
3151 1.48 oster /* didn't find a match above... new set..*/
3152 1.48 oster cset = (RF_ConfigSet_t *)
3153 1.186 perry malloc(sizeof(RF_ConfigSet_t),
3154 1.48 oster M_RAIDFRAME, M_NOWAIT);
3155 1.48 oster if (cset == NULL) {
3156 1.141 provos panic("rf_create_auto_sets: No memory!");
3157 1.48 oster }
3158 1.48 oster cset->ac = ac;
3159 1.48 oster ac->next = NULL;
3160 1.48 oster cset->next = config_sets;
3161 1.51 oster cset->rootable = 0;
3162 1.48 oster config_sets = cset;
3163 1.48 oster }
3164 1.48 oster }
3165 1.48 oster ac = ac_next;
3166 1.48 oster }
3167 1.48 oster
3168 1.48 oster
3169 1.48 oster return(config_sets);
3170 1.48 oster }
3171 1.48 oster
3172 1.48 oster static int
3173 1.169 oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3174 1.48 oster {
3175 1.48 oster RF_ComponentLabel_t *clabel1, *clabel2;
3176 1.48 oster
3177 1.48 oster /* If this one matches the *first* one in the set, that's good
3178 1.48 oster enough, since the other members of the set would have been
3179 1.48 oster through here too... */
3180 1.60 oster /* note that we are not checking partitionSize here..
3181 1.60 oster
3182 1.60 oster Note that we are also not checking the mod_counters here.
3183 1.299 oster If everything else matches except the mod_counter, that's
3184 1.60 oster good enough for this test. We will deal with the mod_counters
3185 1.186 perry a little later in the autoconfiguration process.
3186 1.60 oster
3187 1.60 oster (clabel1->mod_counter == clabel2->mod_counter) &&
3188 1.81 oster
3189 1.81 oster The reason we don't check for this is that failed disks
3190 1.81 oster will have lower modification counts. If those disks are
3191 1.81 oster not added to the set they used to belong to, then they will
3192 1.81 oster form their own set, which may result in 2 different sets,
3193 1.81 oster for example, competing to be configured at raid0, and
3194 1.81 oster perhaps competing to be the root filesystem set. If the
3195 1.81 oster wrong ones get configured, or both attempt to become /,
3196 1.81 oster weird behaviour and or serious lossage will occur. Thus we
3197 1.81 oster need to bring them into the fold here, and kick them out at
3198 1.81 oster a later point.
3199 1.60 oster
3200 1.60 oster */
3201 1.48 oster
3202 1.48 oster clabel1 = cset->ac->clabel;
3203 1.48 oster clabel2 = ac->clabel;
3204 1.48 oster if ((clabel1->version == clabel2->version) &&
3205 1.48 oster (clabel1->serial_number == clabel2->serial_number) &&
3206 1.48 oster (clabel1->num_rows == clabel2->num_rows) &&
3207 1.48 oster (clabel1->num_columns == clabel2->num_columns) &&
3208 1.48 oster (clabel1->sectPerSU == clabel2->sectPerSU) &&
3209 1.48 oster (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3210 1.48 oster (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3211 1.48 oster (clabel1->parityConfig == clabel2->parityConfig) &&
3212 1.48 oster (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3213 1.48 oster (clabel1->blockSize == clabel2->blockSize) &&
3214 1.282 enami rf_component_label_numblocks(clabel1) ==
3215 1.282 enami rf_component_label_numblocks(clabel2) &&
3216 1.48 oster (clabel1->autoconfigure == clabel2->autoconfigure) &&
3217 1.48 oster (clabel1->root_partition == clabel2->root_partition) &&
3218 1.48 oster (clabel1->last_unit == clabel2->last_unit) &&
3219 1.48 oster (clabel1->config_order == clabel2->config_order)) {
3220 1.48 oster /* if it get's here, it almost *has* to be a match */
3221 1.48 oster } else {
3222 1.186 perry /* it's not consistent with somebody in the set..
3223 1.48 oster punt */
3224 1.48 oster return(0);
3225 1.48 oster }
3226 1.48 oster /* all was fine.. it must fit... */
3227 1.48 oster return(1);
3228 1.48 oster }
3229 1.48 oster
3230 1.48 oster int
3231 1.169 oster rf_have_enough_components(RF_ConfigSet_t *cset)
3232 1.48 oster {
3233 1.51 oster RF_AutoConfig_t *ac;
3234 1.51 oster RF_AutoConfig_t *auto_config;
3235 1.51 oster RF_ComponentLabel_t *clabel;
3236 1.166 oster int c;
3237 1.51 oster int num_cols;
3238 1.51 oster int num_missing;
3239 1.86 oster int mod_counter;
3240 1.87 oster int mod_counter_found;
3241 1.88 oster int even_pair_failed;
3242 1.88 oster char parity_type;
3243 1.186 perry
3244 1.51 oster
3245 1.48 oster /* check to see that we have enough 'live' components
3246 1.48 oster of this set. If so, we can configure it if necessary */
3247 1.48 oster
3248 1.51 oster num_cols = cset->ac->clabel->num_columns;
3249 1.88 oster parity_type = cset->ac->clabel->parityConfig;
3250 1.51 oster
3251 1.51 oster /* XXX Check for duplicate components!?!?!? */
3252 1.51 oster
3253 1.86 oster /* Determine what the mod_counter is supposed to be for this set. */
3254 1.86 oster
3255 1.87 oster mod_counter_found = 0;
3256 1.101 oster mod_counter = 0;
3257 1.86 oster ac = cset->ac;
3258 1.86 oster while(ac!=NULL) {
3259 1.87 oster if (mod_counter_found==0) {
3260 1.86 oster mod_counter = ac->clabel->mod_counter;
3261 1.87 oster mod_counter_found = 1;
3262 1.87 oster } else {
3263 1.87 oster if (ac->clabel->mod_counter > mod_counter) {
3264 1.87 oster mod_counter = ac->clabel->mod_counter;
3265 1.87 oster }
3266 1.86 oster }
3267 1.86 oster ac = ac->next;
3268 1.86 oster }
3269 1.86 oster
3270 1.51 oster num_missing = 0;
3271 1.51 oster auto_config = cset->ac;
3272 1.51 oster
3273 1.166 oster even_pair_failed = 0;
3274 1.166 oster for(c=0; c<num_cols; c++) {
3275 1.166 oster ac = auto_config;
3276 1.166 oster while(ac!=NULL) {
3277 1.186 perry if ((ac->clabel->column == c) &&
3278 1.166 oster (ac->clabel->mod_counter == mod_counter)) {
3279 1.166 oster /* it's this one... */
3280 1.224 oster #ifdef DEBUG
3281 1.166 oster printf("Found: %s at %d\n",
3282 1.166 oster ac->devname,c);
3283 1.51 oster #endif
3284 1.166 oster break;
3285 1.51 oster }
3286 1.166 oster ac=ac->next;
3287 1.166 oster }
3288 1.166 oster if (ac==NULL) {
3289 1.51 oster /* Didn't find one here! */
3290 1.88 oster /* special case for RAID 1, especially
3291 1.88 oster where there are more than 2
3292 1.88 oster components (where RAIDframe treats
3293 1.88 oster things a little differently :( ) */
3294 1.166 oster if (parity_type == '1') {
3295 1.166 oster if (c%2 == 0) { /* even component */
3296 1.166 oster even_pair_failed = 1;
3297 1.166 oster } else { /* odd component. If
3298 1.166 oster we're failed, and
3299 1.166 oster so is the even
3300 1.166 oster component, it's
3301 1.166 oster "Good Night, Charlie" */
3302 1.166 oster if (even_pair_failed == 1) {
3303 1.166 oster return(0);
3304 1.88 oster }
3305 1.88 oster }
3306 1.166 oster } else {
3307 1.166 oster /* normal accounting */
3308 1.166 oster num_missing++;
3309 1.88 oster }
3310 1.166 oster }
3311 1.166 oster if ((parity_type == '1') && (c%2 == 1)) {
3312 1.88 oster /* Just did an even component, and we didn't
3313 1.186 perry bail.. reset the even_pair_failed flag,
3314 1.88 oster and go on to the next component.... */
3315 1.166 oster even_pair_failed = 0;
3316 1.51 oster }
3317 1.51 oster }
3318 1.51 oster
3319 1.51 oster clabel = cset->ac->clabel;
3320 1.51 oster
3321 1.51 oster if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3322 1.51 oster ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3323 1.51 oster ((clabel->parityConfig == '5') && (num_missing > 1))) {
3324 1.51 oster /* XXX this needs to be made *much* more general */
3325 1.51 oster /* Too many failures */
3326 1.51 oster return(0);
3327 1.51 oster }
3328 1.51 oster /* otherwise, all is well, and we've got enough to take a kick
3329 1.51 oster at autoconfiguring this set */
3330 1.51 oster return(1);
3331 1.48 oster }
3332 1.48 oster
3333 1.48 oster void
3334 1.169 oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3335 1.222 christos RF_Raid_t *raidPtr)
3336 1.48 oster {
3337 1.48 oster RF_ComponentLabel_t *clabel;
3338 1.77 oster int i;
3339 1.48 oster
3340 1.48 oster clabel = ac->clabel;
3341 1.48 oster
3342 1.48 oster /* 1. Fill in the common stuff */
3343 1.166 oster config->numRow = clabel->num_rows = 1;
3344 1.48 oster config->numCol = clabel->num_columns;
3345 1.48 oster config->numSpare = 0; /* XXX should this be set here? */
3346 1.48 oster config->sectPerSU = clabel->sectPerSU;
3347 1.48 oster config->SUsPerPU = clabel->SUsPerPU;
3348 1.48 oster config->SUsPerRU = clabel->SUsPerRU;
3349 1.48 oster config->parityConfig = clabel->parityConfig;
3350 1.48 oster /* XXX... */
3351 1.48 oster strcpy(config->diskQueueType,"fifo");
3352 1.48 oster config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3353 1.48 oster config->layoutSpecificSize = 0; /* XXX ?? */
3354 1.48 oster
3355 1.48 oster while(ac!=NULL) {
3356 1.48 oster /* row/col values will be in range due to the checks
3357 1.48 oster in reasonable_label() */
3358 1.166 oster strcpy(config->devnames[0][ac->clabel->column],
3359 1.48 oster ac->devname);
3360 1.48 oster ac = ac->next;
3361 1.48 oster }
3362 1.48 oster
3363 1.77 oster for(i=0;i<RF_MAXDBGV;i++) {
3364 1.163 fvdl config->debugVars[i][0] = 0;
3365 1.77 oster }
3366 1.48 oster }
3367 1.48 oster
3368 1.48 oster int
3369 1.169 oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3370 1.48 oster {
3371 1.269 jld RF_ComponentLabel_t *clabel;
3372 1.166 oster int column;
3373 1.148 oster int sparecol;
3374 1.48 oster
3375 1.54 oster raidPtr->autoconfigure = new_value;
3376 1.166 oster
3377 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3378 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3379 1.269 jld clabel = raidget_component_label(raidPtr, column);
3380 1.269 jld clabel->autoconfigure = new_value;
3381 1.269 jld raidflush_component_label(raidPtr, column);
3382 1.48 oster }
3383 1.48 oster }
3384 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3385 1.148 oster sparecol = raidPtr->numCol + column;
3386 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3387 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3388 1.269 jld clabel->autoconfigure = new_value;
3389 1.269 jld raidflush_component_label(raidPtr, sparecol);
3390 1.148 oster }
3391 1.148 oster }
3392 1.48 oster return(new_value);
3393 1.48 oster }
3394 1.48 oster
3395 1.48 oster int
3396 1.169 oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3397 1.48 oster {
3398 1.269 jld RF_ComponentLabel_t *clabel;
3399 1.166 oster int column;
3400 1.148 oster int sparecol;
3401 1.48 oster
3402 1.54 oster raidPtr->root_partition = new_value;
3403 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3404 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3405 1.269 jld clabel = raidget_component_label(raidPtr, column);
3406 1.269 jld clabel->root_partition = new_value;
3407 1.269 jld raidflush_component_label(raidPtr, column);
3408 1.148 oster }
3409 1.148 oster }
3410 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3411 1.148 oster sparecol = raidPtr->numCol + column;
3412 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3413 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3414 1.269 jld clabel->root_partition = new_value;
3415 1.269 jld raidflush_component_label(raidPtr, sparecol);
3416 1.48 oster }
3417 1.48 oster }
3418 1.48 oster return(new_value);
3419 1.48 oster }
3420 1.48 oster
3421 1.48 oster void
3422 1.169 oster rf_release_all_vps(RF_ConfigSet_t *cset)
3423 1.48 oster {
3424 1.48 oster RF_AutoConfig_t *ac;
3425 1.186 perry
3426 1.48 oster ac = cset->ac;
3427 1.48 oster while(ac!=NULL) {
3428 1.48 oster /* Close the vp, and give it back */
3429 1.48 oster if (ac->vp) {
3430 1.96 oster vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3431 1.335 mlelstv VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3432 1.48 oster vput(ac->vp);
3433 1.86 oster ac->vp = NULL;
3434 1.48 oster }
3435 1.48 oster ac = ac->next;
3436 1.48 oster }
3437 1.48 oster }
3438 1.48 oster
3439 1.48 oster
3440 1.48 oster void
3441 1.169 oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
3442 1.48 oster {
3443 1.48 oster RF_AutoConfig_t *ac;
3444 1.48 oster RF_AutoConfig_t *next_ac;
3445 1.186 perry
3446 1.48 oster ac = cset->ac;
3447 1.48 oster while(ac!=NULL) {
3448 1.48 oster next_ac = ac->next;
3449 1.48 oster /* nuke the label */
3450 1.48 oster free(ac->clabel, M_RAIDFRAME);
3451 1.48 oster /* cleanup the config structure */
3452 1.48 oster free(ac, M_RAIDFRAME);
3453 1.48 oster /* "next.." */
3454 1.48 oster ac = next_ac;
3455 1.48 oster }
3456 1.48 oster /* and, finally, nuke the config set */
3457 1.48 oster free(cset, M_RAIDFRAME);
3458 1.48 oster }
3459 1.48 oster
3460 1.48 oster
3461 1.48 oster void
3462 1.169 oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3463 1.48 oster {
3464 1.48 oster /* current version number */
3465 1.186 perry clabel->version = RF_COMPONENT_LABEL_VERSION;
3466 1.57 oster clabel->serial_number = raidPtr->serial_number;
3467 1.48 oster clabel->mod_counter = raidPtr->mod_counter;
3468 1.269 jld
3469 1.166 oster clabel->num_rows = 1;
3470 1.48 oster clabel->num_columns = raidPtr->numCol;
3471 1.48 oster clabel->clean = RF_RAID_DIRTY; /* not clean */
3472 1.48 oster clabel->status = rf_ds_optimal; /* "It's good!" */
3473 1.186 perry
3474 1.48 oster clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3475 1.48 oster clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3476 1.48 oster clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3477 1.54 oster
3478 1.54 oster clabel->blockSize = raidPtr->bytesPerSector;
3479 1.282 enami rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3480 1.54 oster
3481 1.48 oster /* XXX not portable */
3482 1.48 oster clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3483 1.54 oster clabel->maxOutstanding = raidPtr->maxOutstanding;
3484 1.54 oster clabel->autoconfigure = raidPtr->autoconfigure;
3485 1.54 oster clabel->root_partition = raidPtr->root_partition;
3486 1.48 oster clabel->last_unit = raidPtr->raidid;
3487 1.54 oster clabel->config_order = raidPtr->config_order;
3488 1.269 jld
3489 1.269 jld #ifndef RF_NO_PARITY_MAP
3490 1.269 jld rf_paritymap_init_label(raidPtr->parity_map, clabel);
3491 1.269 jld #endif
3492 1.51 oster }
3493 1.51 oster
3494 1.300 christos struct raid_softc *
3495 1.300 christos rf_auto_config_set(RF_ConfigSet_t *cset)
3496 1.51 oster {
3497 1.51 oster RF_Raid_t *raidPtr;
3498 1.51 oster RF_Config_t *config;
3499 1.51 oster int raidID;
3500 1.300 christos struct raid_softc *sc;
3501 1.51 oster
3502 1.224 oster #ifdef DEBUG
3503 1.72 oster printf("RAID autoconfigure\n");
3504 1.127 oster #endif
3505 1.51 oster
3506 1.51 oster /* 1. Create a config structure */
3507 1.300 christos config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3508 1.300 christos if (config == NULL) {
3509 1.327 pgoyette printf("%s: Out of mem - config!?!?\n", __func__);
3510 1.51 oster /* XXX do something more intelligent here. */
3511 1.300 christos return NULL;
3512 1.51 oster }
3513 1.77 oster
3514 1.186 perry /*
3515 1.186 perry 2. Figure out what RAID ID this one is supposed to live at
3516 1.51 oster See if we can get the same RAID dev that it was configured
3517 1.186 perry on last time..
3518 1.51 oster */
3519 1.51 oster
3520 1.51 oster raidID = cset->ac->clabel->last_unit;
3521 1.327 pgoyette for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3522 1.327 pgoyette sc = raidget(++raidID, false))
3523 1.300 christos continue;
3524 1.224 oster #ifdef DEBUG
3525 1.72 oster printf("Configuring raid%d:\n",raidID);
3526 1.127 oster #endif
3527 1.127 oster
3528 1.327 pgoyette if (sc == NULL)
3529 1.327 pgoyette sc = raidget(raidID, true);
3530 1.327 pgoyette if (sc == NULL) {
3531 1.327 pgoyette printf("%s: Out of mem - softc!?!?\n", __func__);
3532 1.327 pgoyette /* XXX do something more intelligent here. */
3533 1.327 pgoyette free(config, M_RAIDFRAME);
3534 1.327 pgoyette return NULL;
3535 1.327 pgoyette }
3536 1.327 pgoyette
3537 1.300 christos raidPtr = &sc->sc_r;
3538 1.51 oster
3539 1.51 oster /* XXX all this stuff should be done SOMEWHERE ELSE! */
3540 1.302 christos raidPtr->softc = sc;
3541 1.51 oster raidPtr->raidid = raidID;
3542 1.51 oster raidPtr->openings = RAIDOUTSTANDING;
3543 1.51 oster
3544 1.51 oster /* 3. Build the configuration structure */
3545 1.51 oster rf_create_configuration(cset->ac, config, raidPtr);
3546 1.51 oster
3547 1.51 oster /* 4. Do the configuration */
3548 1.300 christos if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3549 1.300 christos raidinit(sc);
3550 1.186 perry
3551 1.300 christos rf_markalldirty(raidPtr);
3552 1.300 christos raidPtr->autoconfigure = 1; /* XXX do this here? */
3553 1.308 christos switch (cset->ac->clabel->root_partition) {
3554 1.308 christos case 1: /* Force Root */
3555 1.308 christos case 2: /* Soft Root: root when boot partition part of raid */
3556 1.308 christos /*
3557 1.308 christos * everything configured just fine. Make a note
3558 1.308 christos * that this set is eligible to be root,
3559 1.308 christos * or forced to be root
3560 1.308 christos */
3561 1.308 christos cset->rootable = cset->ac->clabel->root_partition;
3562 1.54 oster /* XXX do this here? */
3563 1.308 christos raidPtr->root_partition = cset->rootable;
3564 1.308 christos break;
3565 1.308 christos default:
3566 1.308 christos break;
3567 1.51 oster }
3568 1.300 christos } else {
3569 1.300 christos raidput(sc);
3570 1.300 christos sc = NULL;
3571 1.51 oster }
3572 1.51 oster
3573 1.51 oster /* 5. Cleanup */
3574 1.51 oster free(config, M_RAIDFRAME);
3575 1.300 christos return sc;
3576 1.99 oster }
3577 1.99 oster
3578 1.99 oster void
3579 1.187 christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3580 1.187 christos size_t xmin, size_t xmax)
3581 1.177 oster {
3582 1.227 ad pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3583 1.187 christos pool_sethiwat(p, xmax);
3584 1.187 christos pool_prime(p, xmin);
3585 1.187 christos pool_setlowat(p, xmin);
3586 1.177 oster }
3587 1.190 oster
3588 1.190 oster /*
3589 1.335 mlelstv * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3590 1.335 mlelstv * to see if there is IO pending and if that IO could possibly be done
3591 1.335 mlelstv * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3592 1.190 oster * otherwise.
3593 1.190 oster *
3594 1.190 oster */
3595 1.190 oster int
3596 1.300 christos rf_buf_queue_check(RF_Raid_t *raidPtr)
3597 1.190 oster {
3598 1.335 mlelstv struct raid_softc *rs;
3599 1.335 mlelstv struct dk_softc *dksc;
3600 1.335 mlelstv
3601 1.335 mlelstv rs = raidPtr->softc;
3602 1.335 mlelstv dksc = &rs->sc_dksc;
3603 1.335 mlelstv
3604 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
3605 1.335 mlelstv return 1;
3606 1.335 mlelstv
3607 1.335 mlelstv if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3608 1.190 oster /* there is work to do */
3609 1.190 oster return 0;
3610 1.335 mlelstv }
3611 1.190 oster /* default is nothing to do */
3612 1.190 oster return 1;
3613 1.190 oster }
3614 1.213 christos
3615 1.213 christos int
3616 1.294 oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3617 1.213 christos {
3618 1.275 mrg uint64_t numsecs;
3619 1.275 mrg unsigned secsize;
3620 1.213 christos int error;
3621 1.213 christos
3622 1.275 mrg error = getdisksize(vp, &numsecs, &secsize);
3623 1.213 christos if (error == 0) {
3624 1.275 mrg diskPtr->blockSize = secsize;
3625 1.275 mrg diskPtr->numBlocks = numsecs - rf_protectedSectors;
3626 1.275 mrg diskPtr->partitionSize = numsecs;
3627 1.213 christos return 0;
3628 1.213 christos }
3629 1.213 christos return error;
3630 1.213 christos }
3631 1.217 oster
3632 1.217 oster static int
3633 1.261 dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
3634 1.217 oster {
3635 1.217 oster return 1;
3636 1.217 oster }
3637 1.217 oster
3638 1.217 oster static void
3639 1.261 dyoung raid_attach(device_t parent, device_t self, void *aux)
3640 1.217 oster {
3641 1.217 oster }
3642 1.217 oster
3643 1.217 oster
3644 1.217 oster static int
3645 1.261 dyoung raid_detach(device_t self, int flags)
3646 1.217 oster {
3647 1.266 dyoung int error;
3648 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
3649 1.303 christos
3650 1.303 christos if (rs == NULL)
3651 1.303 christos return ENXIO;
3652 1.266 dyoung
3653 1.266 dyoung if ((error = raidlock(rs)) != 0)
3654 1.266 dyoung return (error);
3655 1.217 oster
3656 1.266 dyoung error = raid_detach_unlocked(rs);
3657 1.266 dyoung
3658 1.332 mlelstv raidunlock(rs);
3659 1.332 mlelstv
3660 1.332 mlelstv /* XXX raid can be referenced here */
3661 1.332 mlelstv
3662 1.332 mlelstv if (error)
3663 1.332 mlelstv return error;
3664 1.332 mlelstv
3665 1.332 mlelstv /* Free the softc */
3666 1.332 mlelstv raidput(rs);
3667 1.332 mlelstv
3668 1.332 mlelstv return 0;
3669 1.217 oster }
3670 1.217 oster
3671 1.234 oster static void
3672 1.304 christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3673 1.234 oster {
3674 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
3675 1.335 mlelstv struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3676 1.304 christos
3677 1.304 christos memset(dg, 0, sizeof(*dg));
3678 1.304 christos
3679 1.304 christos dg->dg_secperunit = raidPtr->totalSectors;
3680 1.304 christos dg->dg_secsize = raidPtr->bytesPerSector;
3681 1.304 christos dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3682 1.304 christos dg->dg_ntracks = 4 * raidPtr->numCol;
3683 1.304 christos
3684 1.335 mlelstv disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3685 1.234 oster }
3686 1.252 oster
3687 1.348 jdolecek /*
3688 1.348 jdolecek * Get cache info for all the components (including spares).
3689 1.348 jdolecek * Returns intersection of all the cache flags of all disks, or first
3690 1.348 jdolecek * error if any encountered.
3691 1.348 jdolecek * XXXfua feature flags can change as spares are added - lock down somehow
3692 1.348 jdolecek */
3693 1.348 jdolecek static int
3694 1.348 jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3695 1.348 jdolecek {
3696 1.348 jdolecek int c;
3697 1.348 jdolecek int error;
3698 1.348 jdolecek int dkwhole = 0, dkpart;
3699 1.348 jdolecek
3700 1.348 jdolecek for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3701 1.348 jdolecek /*
3702 1.348 jdolecek * Check any non-dead disk, even when currently being
3703 1.348 jdolecek * reconstructed.
3704 1.348 jdolecek */
3705 1.348 jdolecek if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3706 1.348 jdolecek || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3707 1.348 jdolecek error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3708 1.348 jdolecek DIOCGCACHE, &dkpart, FREAD, NOCRED);
3709 1.348 jdolecek if (error) {
3710 1.348 jdolecek if (error != ENODEV) {
3711 1.348 jdolecek printf("raid%d: get cache for component %s failed\n",
3712 1.348 jdolecek raidPtr->raidid,
3713 1.348 jdolecek raidPtr->Disks[c].devname);
3714 1.348 jdolecek }
3715 1.348 jdolecek
3716 1.348 jdolecek return error;
3717 1.348 jdolecek }
3718 1.348 jdolecek
3719 1.348 jdolecek if (c == 0)
3720 1.348 jdolecek dkwhole = dkpart;
3721 1.348 jdolecek else
3722 1.348 jdolecek dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3723 1.348 jdolecek }
3724 1.348 jdolecek }
3725 1.348 jdolecek
3726 1.348 jdolecek *data = (dkwhole >= 0) ? dkwhole : 0;
3727 1.348 jdolecek
3728 1.348 jdolecek return 0;
3729 1.348 jdolecek }
3730 1.348 jdolecek
3731 1.252 oster /*
3732 1.252 oster * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3733 1.252 oster * We end up returning whatever error was returned by the first cache flush
3734 1.252 oster * that fails.
3735 1.252 oster */
3736 1.252 oster
3737 1.269 jld int
3738 1.252 oster rf_sync_component_caches(RF_Raid_t *raidPtr)
3739 1.252 oster {
3740 1.252 oster int c, sparecol;
3741 1.252 oster int e,error;
3742 1.252 oster int force = 1;
3743 1.252 oster
3744 1.252 oster error = 0;
3745 1.252 oster for (c = 0; c < raidPtr->numCol; c++) {
3746 1.252 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
3747 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3748 1.252 oster &force, FWRITE, NOCRED);
3749 1.252 oster if (e) {
3750 1.255 oster if (e != ENODEV)
3751 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3752 1.255 oster raidPtr->raidid, raidPtr->Disks[c].devname);
3753 1.252 oster if (error == 0) {
3754 1.252 oster error = e;
3755 1.252 oster }
3756 1.252 oster }
3757 1.252 oster }
3758 1.252 oster }
3759 1.252 oster
3760 1.252 oster for( c = 0; c < raidPtr->numSpare ; c++) {
3761 1.252 oster sparecol = raidPtr->numCol + c;
3762 1.252 oster /* Need to ensure that the reconstruct actually completed! */
3763 1.252 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3764 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3765 1.252 oster DIOCCACHESYNC, &force, FWRITE, NOCRED);
3766 1.252 oster if (e) {
3767 1.255 oster if (e != ENODEV)
3768 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3769 1.255 oster raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3770 1.252 oster if (error == 0) {
3771 1.252 oster error = e;
3772 1.252 oster }
3773 1.252 oster }
3774 1.252 oster }
3775 1.252 oster }
3776 1.252 oster return error;
3777 1.252 oster }
3778 1.327 pgoyette
3779 1.327 pgoyette /*
3780 1.327 pgoyette * Module interface
3781 1.327 pgoyette */
3782 1.327 pgoyette
3783 1.327 pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr");
3784 1.327 pgoyette
3785 1.327 pgoyette #ifdef _MODULE
3786 1.327 pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
3787 1.327 pgoyette #endif
3788 1.327 pgoyette
3789 1.327 pgoyette static int raid_modcmd(modcmd_t, void *);
3790 1.327 pgoyette static int raid_modcmd_init(void);
3791 1.327 pgoyette static int raid_modcmd_fini(void);
3792 1.327 pgoyette
3793 1.327 pgoyette static int
3794 1.327 pgoyette raid_modcmd(modcmd_t cmd, void *data)
3795 1.327 pgoyette {
3796 1.327 pgoyette int error;
3797 1.327 pgoyette
3798 1.327 pgoyette error = 0;
3799 1.327 pgoyette switch (cmd) {
3800 1.327 pgoyette case MODULE_CMD_INIT:
3801 1.327 pgoyette error = raid_modcmd_init();
3802 1.327 pgoyette break;
3803 1.327 pgoyette case MODULE_CMD_FINI:
3804 1.327 pgoyette error = raid_modcmd_fini();
3805 1.327 pgoyette break;
3806 1.327 pgoyette default:
3807 1.327 pgoyette error = ENOTTY;
3808 1.327 pgoyette break;
3809 1.327 pgoyette }
3810 1.327 pgoyette return error;
3811 1.327 pgoyette }
3812 1.327 pgoyette
3813 1.327 pgoyette static int
3814 1.327 pgoyette raid_modcmd_init(void)
3815 1.327 pgoyette {
3816 1.327 pgoyette int error;
3817 1.327 pgoyette int bmajor, cmajor;
3818 1.327 pgoyette
3819 1.327 pgoyette mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3820 1.327 pgoyette mutex_enter(&raid_lock);
3821 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3822 1.327 pgoyette rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3823 1.327 pgoyette rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3824 1.327 pgoyette rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3825 1.327 pgoyette
3826 1.327 pgoyette rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3827 1.327 pgoyette #endif
3828 1.327 pgoyette
3829 1.327 pgoyette bmajor = cmajor = -1;
3830 1.327 pgoyette error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3831 1.327 pgoyette &raid_cdevsw, &cmajor);
3832 1.327 pgoyette if (error != 0 && error != EEXIST) {
3833 1.327 pgoyette aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3834 1.327 pgoyette mutex_exit(&raid_lock);
3835 1.327 pgoyette return error;
3836 1.327 pgoyette }
3837 1.327 pgoyette #ifdef _MODULE
3838 1.327 pgoyette error = config_cfdriver_attach(&raid_cd);
3839 1.327 pgoyette if (error != 0) {
3840 1.327 pgoyette aprint_error("%s: config_cfdriver_attach failed %d\n",
3841 1.327 pgoyette __func__, error);
3842 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3843 1.327 pgoyette mutex_exit(&raid_lock);
3844 1.327 pgoyette return error;
3845 1.327 pgoyette }
3846 1.327 pgoyette #endif
3847 1.327 pgoyette error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3848 1.327 pgoyette if (error != 0) {
3849 1.327 pgoyette aprint_error("%s: config_cfattach_attach failed %d\n",
3850 1.327 pgoyette __func__, error);
3851 1.327 pgoyette #ifdef _MODULE
3852 1.327 pgoyette config_cfdriver_detach(&raid_cd);
3853 1.327 pgoyette #endif
3854 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3855 1.327 pgoyette mutex_exit(&raid_lock);
3856 1.327 pgoyette return error;
3857 1.327 pgoyette }
3858 1.327 pgoyette
3859 1.327 pgoyette raidautoconfigdone = false;
3860 1.327 pgoyette
3861 1.327 pgoyette mutex_exit(&raid_lock);
3862 1.327 pgoyette
3863 1.327 pgoyette if (error == 0) {
3864 1.327 pgoyette if (rf_BootRaidframe(true) == 0)
3865 1.327 pgoyette aprint_verbose("Kernelized RAIDframe activated\n");
3866 1.327 pgoyette else
3867 1.327 pgoyette panic("Serious error activating RAID!!");
3868 1.327 pgoyette }
3869 1.327 pgoyette
3870 1.327 pgoyette /*
3871 1.327 pgoyette * Register a finalizer which will be used to auto-config RAID
3872 1.327 pgoyette * sets once all real hardware devices have been found.
3873 1.327 pgoyette */
3874 1.327 pgoyette error = config_finalize_register(NULL, rf_autoconfig);
3875 1.327 pgoyette if (error != 0) {
3876 1.327 pgoyette aprint_error("WARNING: unable to register RAIDframe "
3877 1.327 pgoyette "finalizer\n");
3878 1.329 pgoyette error = 0;
3879 1.327 pgoyette }
3880 1.327 pgoyette
3881 1.327 pgoyette return error;
3882 1.327 pgoyette }
3883 1.327 pgoyette
3884 1.327 pgoyette static int
3885 1.327 pgoyette raid_modcmd_fini(void)
3886 1.327 pgoyette {
3887 1.327 pgoyette int error;
3888 1.327 pgoyette
3889 1.327 pgoyette mutex_enter(&raid_lock);
3890 1.327 pgoyette
3891 1.327 pgoyette /* Don't allow unload if raid device(s) exist. */
3892 1.327 pgoyette if (!LIST_EMPTY(&raids)) {
3893 1.327 pgoyette mutex_exit(&raid_lock);
3894 1.327 pgoyette return EBUSY;
3895 1.327 pgoyette }
3896 1.327 pgoyette
3897 1.327 pgoyette error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3898 1.327 pgoyette if (error != 0) {
3899 1.335 mlelstv aprint_error("%s: cannot detach cfattach\n",__func__);
3900 1.327 pgoyette mutex_exit(&raid_lock);
3901 1.327 pgoyette return error;
3902 1.327 pgoyette }
3903 1.327 pgoyette #ifdef _MODULE
3904 1.327 pgoyette error = config_cfdriver_detach(&raid_cd);
3905 1.327 pgoyette if (error != 0) {
3906 1.335 mlelstv aprint_error("%s: cannot detach cfdriver\n",__func__);
3907 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3908 1.327 pgoyette mutex_exit(&raid_lock);
3909 1.327 pgoyette return error;
3910 1.327 pgoyette }
3911 1.327 pgoyette #endif
3912 1.327 pgoyette error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3913 1.327 pgoyette if (error != 0) {
3914 1.335 mlelstv aprint_error("%s: cannot detach devsw\n",__func__);
3915 1.327 pgoyette #ifdef _MODULE
3916 1.327 pgoyette config_cfdriver_attach(&raid_cd);
3917 1.327 pgoyette #endif
3918 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3919 1.327 pgoyette mutex_exit(&raid_lock);
3920 1.327 pgoyette return error;
3921 1.327 pgoyette }
3922 1.327 pgoyette rf_BootRaidframe(false);
3923 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3924 1.327 pgoyette rf_destroy_mutex2(rf_sparet_wait_mutex);
3925 1.327 pgoyette rf_destroy_cond2(rf_sparet_wait_cv);
3926 1.327 pgoyette rf_destroy_cond2(rf_sparet_resp_cv);
3927 1.327 pgoyette #endif
3928 1.327 pgoyette mutex_exit(&raid_lock);
3929 1.327 pgoyette mutex_destroy(&raid_lock);
3930 1.327 pgoyette
3931 1.327 pgoyette return error;
3932 1.327 pgoyette }
3933