rf_netbsdkintf.c revision 1.354 1 1.354 skrll /* $NetBSD: rf_netbsdkintf.c,v 1.354 2018/01/19 09:04:23 skrll Exp $ */
2 1.281 rmind
3 1.1 oster /*-
4 1.295 erh * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 1.1 oster * All rights reserved.
6 1.1 oster *
7 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
8 1.1 oster * by Greg Oster; Jason R. Thorpe.
9 1.1 oster *
10 1.1 oster * Redistribution and use in source and binary forms, with or without
11 1.1 oster * modification, are permitted provided that the following conditions
12 1.1 oster * are met:
13 1.1 oster * 1. Redistributions of source code must retain the above copyright
14 1.1 oster * notice, this list of conditions and the following disclaimer.
15 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 oster * notice, this list of conditions and the following disclaimer in the
17 1.1 oster * documentation and/or other materials provided with the distribution.
18 1.1 oster *
19 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
30 1.1 oster */
31 1.1 oster
32 1.1 oster /*
33 1.281 rmind * Copyright (c) 1988 University of Utah.
34 1.1 oster * Copyright (c) 1990, 1993
35 1.1 oster * The Regents of the University of California. All rights reserved.
36 1.1 oster *
37 1.1 oster * This code is derived from software contributed to Berkeley by
38 1.1 oster * the Systems Programming Group of the University of Utah Computer
39 1.1 oster * Science Department.
40 1.1 oster *
41 1.1 oster * Redistribution and use in source and binary forms, with or without
42 1.1 oster * modification, are permitted provided that the following conditions
43 1.1 oster * are met:
44 1.1 oster * 1. Redistributions of source code must retain the above copyright
45 1.1 oster * notice, this list of conditions and the following disclaimer.
46 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 oster * notice, this list of conditions and the following disclaimer in the
48 1.1 oster * documentation and/or other materials provided with the distribution.
49 1.162 agc * 3. Neither the name of the University nor the names of its contributors
50 1.162 agc * may be used to endorse or promote products derived from this software
51 1.162 agc * without specific prior written permission.
52 1.162 agc *
53 1.162 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.162 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.162 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.162 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.162 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.162 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.162 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.162 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.162 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.162 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.162 agc * SUCH DAMAGE.
64 1.162 agc *
65 1.162 agc * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 1.162 agc *
67 1.162 agc * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 1.162 agc */
69 1.162 agc
70 1.162 agc /*
71 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
72 1.1 oster * All rights reserved.
73 1.1 oster *
74 1.1 oster * Authors: Mark Holland, Jim Zelenka
75 1.1 oster *
76 1.1 oster * Permission to use, copy, modify and distribute this software and
77 1.1 oster * its documentation is hereby granted, provided that both the copyright
78 1.1 oster * notice and this permission notice appear in all copies of the
79 1.1 oster * software, derivative works or modified versions, and any portions
80 1.1 oster * thereof, and that both notices appear in supporting documentation.
81 1.1 oster *
82 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 1.1 oster *
86 1.1 oster * Carnegie Mellon requests users of this software to return to
87 1.1 oster *
88 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 1.1 oster * School of Computer Science
90 1.1 oster * Carnegie Mellon University
91 1.1 oster * Pittsburgh PA 15213-3890
92 1.1 oster *
93 1.1 oster * any improvements or extensions that they make and grant Carnegie the
94 1.1 oster * rights to redistribute these changes.
95 1.1 oster */
96 1.1 oster
97 1.1 oster /***********************************************************
98 1.1 oster *
99 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
100 1.1 oster *
101 1.1 oster ***********************************************************/
102 1.112 lukem
103 1.112 lukem #include <sys/cdefs.h>
104 1.354 skrll __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.354 2018/01/19 09:04:23 skrll Exp $");
105 1.251 ad
106 1.251 ad #ifdef _KERNEL_OPT
107 1.254 christos #include "opt_compat_netbsd.h"
108 1.353 mrg #include "opt_compat_netbsd32.h"
109 1.251 ad #include "opt_raid_autoconfig.h"
110 1.251 ad #endif
111 1.1 oster
112 1.113 lukem #include <sys/param.h>
113 1.1 oster #include <sys/errno.h>
114 1.1 oster #include <sys/pool.h>
115 1.152 thorpej #include <sys/proc.h>
116 1.1 oster #include <sys/queue.h>
117 1.1 oster #include <sys/disk.h>
118 1.1 oster #include <sys/device.h>
119 1.1 oster #include <sys/stat.h>
120 1.1 oster #include <sys/ioctl.h>
121 1.1 oster #include <sys/fcntl.h>
122 1.1 oster #include <sys/systm.h>
123 1.1 oster #include <sys/vnode.h>
124 1.1 oster #include <sys/disklabel.h>
125 1.1 oster #include <sys/conf.h>
126 1.1 oster #include <sys/buf.h>
127 1.182 yamt #include <sys/bufq.h>
128 1.65 oster #include <sys/reboot.h>
129 1.208 elad #include <sys/kauth.h>
130 1.327 pgoyette #include <sys/module.h>
131 1.8 oster
132 1.234 oster #include <prop/proplib.h>
133 1.234 oster
134 1.110 oster #include <dev/raidframe/raidframevar.h>
135 1.110 oster #include <dev/raidframe/raidframeio.h>
136 1.269 jld #include <dev/raidframe/rf_paritymap.h>
137 1.251 ad
138 1.1 oster #include "rf_raid.h"
139 1.44 oster #include "rf_copyback.h"
140 1.1 oster #include "rf_dag.h"
141 1.1 oster #include "rf_dagflags.h"
142 1.99 oster #include "rf_desc.h"
143 1.1 oster #include "rf_diskqueue.h"
144 1.1 oster #include "rf_etimer.h"
145 1.1 oster #include "rf_general.h"
146 1.1 oster #include "rf_kintf.h"
147 1.1 oster #include "rf_options.h"
148 1.1 oster #include "rf_driver.h"
149 1.1 oster #include "rf_parityscan.h"
150 1.1 oster #include "rf_threadstuff.h"
151 1.1 oster
152 1.254 christos #ifdef COMPAT_50
153 1.254 christos #include "rf_compat50.h"
154 1.254 christos #endif
155 1.254 christos
156 1.353 mrg #ifdef COMPAT_80
157 1.353 mrg #include "rf_compat80.h"
158 1.353 mrg #endif
159 1.353 mrg
160 1.353 mrg #ifdef COMPAT_NETBSD32
161 1.353 mrg #include "rf_compat32.h"
162 1.353 mrg #endif
163 1.353 mrg
164 1.325 christos #include "ioconf.h"
165 1.325 christos
166 1.133 oster #ifdef DEBUG
167 1.9 oster int rf_kdebug_level = 0;
168 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
169 1.9 oster #else /* DEBUG */
170 1.1 oster #define db1_printf(a) { }
171 1.9 oster #endif /* DEBUG */
172 1.1 oster
173 1.344 christos #ifdef DEBUG_ROOT
174 1.344 christos #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
175 1.345 christos #else
176 1.345 christos #define DPRINTF(a, ...)
177 1.344 christos #endif
178 1.344 christos
179 1.249 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
180 1.289 mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
181 1.287 mrg static rf_declare_cond2(rf_sparet_wait_cv);
182 1.287 mrg static rf_declare_cond2(rf_sparet_resp_cv);
183 1.1 oster
184 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
185 1.10 oster * spare table */
186 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
187 1.10 oster * installation process */
188 1.249 oster #endif
189 1.153 thorpej
190 1.153 thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
191 1.10 oster
192 1.1 oster /* prototypes */
193 1.187 christos static void KernelWakeupFunc(struct buf *);
194 1.187 christos static void InitBP(struct buf *, struct vnode *, unsigned,
195 1.225 christos dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
196 1.187 christos void *, int, struct proc *);
197 1.300 christos struct raid_softc;
198 1.300 christos static void raidinit(struct raid_softc *);
199 1.335 mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
200 1.348 jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
201 1.1 oster
202 1.261 dyoung static int raid_match(device_t, cfdata_t, void *);
203 1.261 dyoung static void raid_attach(device_t, device_t, void *);
204 1.261 dyoung static int raid_detach(device_t, int);
205 1.130 gehenna
206 1.269 jld static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
207 1.269 jld daddr_t, daddr_t);
208 1.269 jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
209 1.269 jld daddr_t, daddr_t, int);
210 1.269 jld
211 1.276 mrg static int raidwrite_component_label(unsigned,
212 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
213 1.276 mrg static int raidread_component_label(unsigned,
214 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
215 1.269 jld
216 1.335 mlelstv static int raid_diskstart(device_t, struct buf *bp);
217 1.335 mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
218 1.335 mlelstv static int raid_lastclose(device_t);
219 1.269 jld
220 1.324 mrg static dev_type_open(raidopen);
221 1.324 mrg static dev_type_close(raidclose);
222 1.324 mrg static dev_type_read(raidread);
223 1.324 mrg static dev_type_write(raidwrite);
224 1.324 mrg static dev_type_ioctl(raidioctl);
225 1.324 mrg static dev_type_strategy(raidstrategy);
226 1.324 mrg static dev_type_dump(raiddump);
227 1.324 mrg static dev_type_size(raidsize);
228 1.130 gehenna
229 1.130 gehenna const struct bdevsw raid_bdevsw = {
230 1.305 dholland .d_open = raidopen,
231 1.305 dholland .d_close = raidclose,
232 1.305 dholland .d_strategy = raidstrategy,
233 1.305 dholland .d_ioctl = raidioctl,
234 1.305 dholland .d_dump = raiddump,
235 1.305 dholland .d_psize = raidsize,
236 1.311 dholland .d_discard = nodiscard,
237 1.305 dholland .d_flag = D_DISK
238 1.130 gehenna };
239 1.130 gehenna
240 1.130 gehenna const struct cdevsw raid_cdevsw = {
241 1.305 dholland .d_open = raidopen,
242 1.305 dholland .d_close = raidclose,
243 1.305 dholland .d_read = raidread,
244 1.305 dholland .d_write = raidwrite,
245 1.305 dholland .d_ioctl = raidioctl,
246 1.305 dholland .d_stop = nostop,
247 1.305 dholland .d_tty = notty,
248 1.305 dholland .d_poll = nopoll,
249 1.305 dholland .d_mmap = nommap,
250 1.305 dholland .d_kqfilter = nokqfilter,
251 1.312 dholland .d_discard = nodiscard,
252 1.305 dholland .d_flag = D_DISK
253 1.130 gehenna };
254 1.1 oster
255 1.323 mlelstv static struct dkdriver rf_dkdriver = {
256 1.335 mlelstv .d_open = raidopen,
257 1.335 mlelstv .d_close = raidclose,
258 1.323 mlelstv .d_strategy = raidstrategy,
259 1.335 mlelstv .d_diskstart = raid_diskstart,
260 1.335 mlelstv .d_dumpblocks = raid_dumpblocks,
261 1.335 mlelstv .d_lastclose = raid_lastclose,
262 1.323 mlelstv .d_minphys = minphys
263 1.323 mlelstv };
264 1.235 oster
265 1.10 oster struct raid_softc {
266 1.335 mlelstv struct dk_softc sc_dksc;
267 1.300 christos int sc_unit;
268 1.10 oster int sc_flags; /* flags */
269 1.10 oster int sc_cflags; /* configuration flags */
270 1.327 pgoyette kmutex_t sc_mutex; /* interlock mutex */
271 1.327 pgoyette kcondvar_t sc_cv; /* and the condvar */
272 1.212 oster uint64_t sc_size; /* size of the raid device */
273 1.10 oster char sc_xname[20]; /* XXX external name */
274 1.300 christos RF_Raid_t sc_r;
275 1.300 christos LIST_ENTRY(raid_softc) sc_link;
276 1.10 oster };
277 1.1 oster /* sc_flags */
278 1.343 christos #define RAIDF_INITED 0x01 /* unit has been initialized */
279 1.343 christos #define RAIDF_SHUTDOWN 0x02 /* unit is being shutdown */
280 1.343 christos #define RAIDF_DETACH 0x04 /* detach after final close */
281 1.343 christos #define RAIDF_WANTED 0x08 /* someone waiting to obtain a lock */
282 1.343 christos #define RAIDF_LOCKED 0x10 /* unit is locked */
283 1.343 christos #define RAIDF_UNIT_CHANGED 0x20 /* unit is being changed */
284 1.1 oster
285 1.1 oster #define raidunit(x) DISKUNIT(x)
286 1.335 mlelstv #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
287 1.1 oster
288 1.202 oster extern struct cfdriver raid_cd;
289 1.266 dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
290 1.266 dyoung raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
291 1.266 dyoung DVF_DETACH_SHUTDOWN);
292 1.202 oster
293 1.353 mrg /* Internal representation of a rf_recon_req */
294 1.353 mrg struct rf_recon_req_internal {
295 1.353 mrg RF_RowCol_t col;
296 1.353 mrg RF_ReconReqFlags_t flags;
297 1.353 mrg void *raidPtr;
298 1.353 mrg };
299 1.353 mrg
300 1.186 perry /*
301 1.186 perry * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
302 1.186 perry * Be aware that large numbers can allow the driver to consume a lot of
303 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
304 1.186 perry *
305 1.186 perry * For example: with a stripe width of 64 blocks (32k) and 5 disks,
306 1.186 perry * a single 64K write will typically require 64K for the old data,
307 1.186 perry * 64K for the old parity, and 64K for the new parity, for a total
308 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
309 1.110 oster * Even it if is used immediately, that's still 128K, which when multiplied
310 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
311 1.186 perry *
312 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
313 1.186 perry * require data reconstruction, which will require *all* of the 4 remaining
314 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
315 1.20 oster */
316 1.20 oster
317 1.20 oster #ifndef RAIDOUTSTANDING
318 1.28 oster #define RAIDOUTSTANDING 6
319 1.20 oster #endif
320 1.20 oster
321 1.1 oster #define RAIDLABELDEV(dev) \
322 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
323 1.1 oster
324 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
325 1.9 oster
326 1.104 oster static int raidlock(struct raid_softc *);
327 1.104 oster static void raidunlock(struct raid_softc *);
328 1.1 oster
329 1.266 dyoung static int raid_detach_unlocked(struct raid_softc *);
330 1.266 dyoung
331 1.104 oster static void rf_markalldirty(RF_Raid_t *);
332 1.304 christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
333 1.48 oster
334 1.353 mrg void rf_ReconThread(struct rf_recon_req_internal *);
335 1.104 oster void rf_RewriteParityThread(RF_Raid_t *raidPtr);
336 1.104 oster void rf_CopybackThread(RF_Raid_t *raidPtr);
337 1.353 mrg void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
338 1.261 dyoung int rf_autoconfig(device_t);
339 1.142 thorpej void rf_buildroothack(RF_ConfigSet_t *);
340 1.104 oster
341 1.104 oster RF_AutoConfig_t *rf_find_raid_components(void);
342 1.104 oster RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
343 1.104 oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
344 1.292 oster int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
345 1.104 oster void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
346 1.104 oster int rf_set_autoconfig(RF_Raid_t *, int);
347 1.104 oster int rf_set_rootpartition(RF_Raid_t *, int);
348 1.104 oster void rf_release_all_vps(RF_ConfigSet_t *);
349 1.104 oster void rf_cleanup_config_set(RF_ConfigSet_t *);
350 1.104 oster int rf_have_enough_components(RF_ConfigSet_t *);
351 1.300 christos struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
352 1.278 mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
353 1.48 oster
354 1.295 erh /*
355 1.295 erh * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
356 1.295 erh * Note that this is overridden by having RAID_AUTOCONFIG as an option
357 1.295 erh * in the kernel config file.
358 1.295 erh */
359 1.295 erh #ifdef RAID_AUTOCONFIG
360 1.295 erh int raidautoconfig = 1;
361 1.295 erh #else
362 1.295 erh int raidautoconfig = 0;
363 1.295 erh #endif
364 1.295 erh static bool raidautoconfigdone = false;
365 1.37 oster
366 1.177 oster struct RF_Pools_s rf_pools;
367 1.177 oster
368 1.300 christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
369 1.300 christos static kmutex_t raid_lock;
370 1.1 oster
371 1.300 christos static struct raid_softc *
372 1.300 christos raidcreate(int unit) {
373 1.300 christos struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
374 1.300 christos sc->sc_unit = unit;
375 1.327 pgoyette cv_init(&sc->sc_cv, "raidunit");
376 1.327 pgoyette mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
377 1.300 christos return sc;
378 1.300 christos }
379 1.1 oster
380 1.300 christos static void
381 1.300 christos raiddestroy(struct raid_softc *sc) {
382 1.327 pgoyette cv_destroy(&sc->sc_cv);
383 1.327 pgoyette mutex_destroy(&sc->sc_mutex);
384 1.300 christos kmem_free(sc, sizeof(*sc));
385 1.300 christos }
386 1.50 oster
387 1.300 christos static struct raid_softc *
388 1.327 pgoyette raidget(int unit, bool create) {
389 1.300 christos struct raid_softc *sc;
390 1.300 christos if (unit < 0) {
391 1.300 christos #ifdef DIAGNOSTIC
392 1.300 christos panic("%s: unit %d!", __func__, unit);
393 1.300 christos #endif
394 1.300 christos return NULL;
395 1.300 christos }
396 1.300 christos mutex_enter(&raid_lock);
397 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
398 1.300 christos if (sc->sc_unit == unit) {
399 1.300 christos mutex_exit(&raid_lock);
400 1.300 christos return sc;
401 1.300 christos }
402 1.300 christos }
403 1.300 christos mutex_exit(&raid_lock);
404 1.327 pgoyette if (!create)
405 1.327 pgoyette return NULL;
406 1.300 christos if ((sc = raidcreate(unit)) == NULL)
407 1.300 christos return NULL;
408 1.300 christos mutex_enter(&raid_lock);
409 1.300 christos LIST_INSERT_HEAD(&raids, sc, sc_link);
410 1.300 christos mutex_exit(&raid_lock);
411 1.300 christos return sc;
412 1.300 christos }
413 1.300 christos
414 1.300 christos static void
415 1.300 christos raidput(struct raid_softc *sc) {
416 1.300 christos mutex_enter(&raid_lock);
417 1.300 christos LIST_REMOVE(sc, sc_link);
418 1.300 christos mutex_exit(&raid_lock);
419 1.300 christos raiddestroy(sc);
420 1.300 christos }
421 1.1 oster
422 1.300 christos void
423 1.300 christos raidattach(int num)
424 1.300 christos {
425 1.62 oster
426 1.142 thorpej /*
427 1.327 pgoyette * Device attachment and associated initialization now occurs
428 1.327 pgoyette * as part of the module initialization.
429 1.142 thorpej */
430 1.142 thorpej }
431 1.142 thorpej
432 1.142 thorpej int
433 1.261 dyoung rf_autoconfig(device_t self)
434 1.142 thorpej {
435 1.142 thorpej RF_AutoConfig_t *ac_list;
436 1.142 thorpej RF_ConfigSet_t *config_sets;
437 1.142 thorpej
438 1.295 erh if (!raidautoconfig || raidautoconfigdone == true)
439 1.142 thorpej return (0);
440 1.142 thorpej
441 1.142 thorpej /* XXX This code can only be run once. */
442 1.295 erh raidautoconfigdone = true;
443 1.142 thorpej
444 1.307 christos #ifdef __HAVE_CPU_BOOTCONF
445 1.307 christos /*
446 1.307 christos * 0. find the boot device if needed first so we can use it later
447 1.307 christos * this needs to be done before we autoconfigure any raid sets,
448 1.307 christos * because if we use wedges we are not going to be able to open
449 1.307 christos * the boot device later
450 1.307 christos */
451 1.307 christos if (booted_device == NULL)
452 1.307 christos cpu_bootconf();
453 1.307 christos #endif
454 1.48 oster /* 1. locate all RAID components on the system */
455 1.258 ad aprint_debug("Searching for RAID components...\n");
456 1.48 oster ac_list = rf_find_raid_components();
457 1.48 oster
458 1.142 thorpej /* 2. Sort them into their respective sets. */
459 1.48 oster config_sets = rf_create_auto_sets(ac_list);
460 1.48 oster
461 1.142 thorpej /*
462 1.299 oster * 3. Evaluate each set and configure the valid ones.
463 1.142 thorpej * This gets done in rf_buildroothack().
464 1.142 thorpej */
465 1.142 thorpej rf_buildroothack(config_sets);
466 1.48 oster
467 1.213 christos return 1;
468 1.48 oster }
469 1.48 oster
470 1.306 christos static int
471 1.307 christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
472 1.307 christos const char *bootname = device_xname(bdv);
473 1.306 christos size_t len = strlen(bootname);
474 1.306 christos
475 1.306 christos for (int col = 0; col < r->numCol; col++) {
476 1.307 christos const char *devname = r->Disks[col].devname;
477 1.306 christos devname += sizeof("/dev/") - 1;
478 1.307 christos if (strncmp(devname, "dk", 2) == 0) {
479 1.307 christos const char *parent =
480 1.307 christos dkwedge_get_parent_name(r->Disks[col].dev);
481 1.307 christos if (parent != NULL)
482 1.307 christos devname = parent;
483 1.307 christos }
484 1.306 christos if (strncmp(devname, bootname, len) == 0) {
485 1.306 christos struct raid_softc *sc = r->softc;
486 1.306 christos aprint_debug("raid%d includes boot device %s\n",
487 1.306 christos sc->sc_unit, devname);
488 1.306 christos return 1;
489 1.306 christos }
490 1.306 christos }
491 1.306 christos return 0;
492 1.306 christos }
493 1.306 christos
494 1.48 oster void
495 1.142 thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
496 1.48 oster {
497 1.48 oster RF_ConfigSet_t *cset;
498 1.48 oster RF_ConfigSet_t *next_cset;
499 1.51 oster int num_root;
500 1.300 christos struct raid_softc *sc, *rsc;
501 1.335 mlelstv struct dk_softc *dksc;
502 1.48 oster
503 1.300 christos sc = rsc = NULL;
504 1.51 oster num_root = 0;
505 1.48 oster cset = config_sets;
506 1.271 dyoung while (cset != NULL) {
507 1.48 oster next_cset = cset->next;
508 1.186 perry if (rf_have_enough_components(cset) &&
509 1.300 christos cset->ac->clabel->autoconfigure == 1) {
510 1.300 christos sc = rf_auto_config_set(cset);
511 1.300 christos if (sc != NULL) {
512 1.300 christos aprint_debug("raid%d: configured ok\n",
513 1.300 christos sc->sc_unit);
514 1.51 oster if (cset->rootable) {
515 1.300 christos rsc = sc;
516 1.51 oster num_root++;
517 1.51 oster }
518 1.51 oster } else {
519 1.51 oster /* The autoconfig didn't work :( */
520 1.300 christos aprint_debug("Autoconfig failed\n");
521 1.51 oster rf_release_all_vps(cset);
522 1.48 oster }
523 1.48 oster } else {
524 1.186 perry /* we're not autoconfiguring this set...
525 1.48 oster release the associated resources */
526 1.49 oster rf_release_all_vps(cset);
527 1.48 oster }
528 1.48 oster /* cleanup */
529 1.49 oster rf_cleanup_config_set(cset);
530 1.48 oster cset = next_cset;
531 1.48 oster }
532 1.335 mlelstv dksc = &rsc->sc_dksc;
533 1.122 oster
534 1.223 oster /* if the user has specified what the root device should be
535 1.223 oster then we don't touch booted_device or boothowto... */
536 1.223 oster
537 1.223 oster if (rootspec != NULL)
538 1.223 oster return;
539 1.223 oster
540 1.122 oster /* we found something bootable... */
541 1.122 oster
542 1.310 christos /*
543 1.310 christos * XXX: The following code assumes that the root raid
544 1.310 christos * is the first ('a') partition. This is about the best
545 1.310 christos * we can do with a BSD disklabel, but we might be able
546 1.310 christos * to do better with a GPT label, by setting a specified
547 1.310 christos * attribute to indicate the root partition. We can then
548 1.310 christos * stash the partition number in the r->root_partition
549 1.310 christos * high bits (the bottom 2 bits are already used). For
550 1.310 christos * now we just set booted_partition to 0 when we override
551 1.310 christos * root.
552 1.310 christos */
553 1.122 oster if (num_root == 1) {
554 1.306 christos device_t candidate_root;
555 1.335 mlelstv if (dksc->sc_dkdev.dk_nwedges != 0) {
556 1.297 christos char cname[sizeof(cset->ac->devname)];
557 1.344 christos /* XXX: assume partition 'a' first */
558 1.297 christos snprintf(cname, sizeof(cname), "%s%c",
559 1.335 mlelstv device_xname(dksc->sc_dev), 'a');
560 1.306 christos candidate_root = dkwedge_find_by_wname(cname);
561 1.344 christos DPRINTF("%s: candidate wedge root=%s\n", __func__,
562 1.344 christos cname);
563 1.344 christos if (candidate_root == NULL) {
564 1.344 christos /*
565 1.344 christos * If that is not found, because we don't use
566 1.344 christos * disklabel, return the first dk child
567 1.344 christos * XXX: we can skip the 'a' check above
568 1.344 christos * and always do this...
569 1.344 christos */
570 1.344 christos size_t i = 0;
571 1.344 christos candidate_root = dkwedge_find_by_parent(
572 1.344 christos device_xname(dksc->sc_dev), &i);
573 1.344 christos }
574 1.344 christos DPRINTF("%s: candidate wedge root=%p\n", __func__,
575 1.344 christos candidate_root);
576 1.297 christos } else
577 1.335 mlelstv candidate_root = dksc->sc_dev;
578 1.344 christos DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
579 1.344 christos DPRINTF("%s: booted_device=%p root_partition=%d "
580 1.344 christos "contains_boot=%d\n", __func__, booted_device,
581 1.344 christos rsc->sc_r.root_partition,
582 1.344 christos rf_containsboot(&rsc->sc_r, booted_device));
583 1.308 christos if (booted_device == NULL ||
584 1.308 christos rsc->sc_r.root_partition == 1 ||
585 1.310 christos rf_containsboot(&rsc->sc_r, booted_device)) {
586 1.308 christos booted_device = candidate_root;
587 1.351 christos booted_method = "raidframe/single";
588 1.310 christos booted_partition = 0; /* XXX assume 'a' */
589 1.310 christos }
590 1.122 oster } else if (num_root > 1) {
591 1.344 christos DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
592 1.344 christos booted_device);
593 1.226 oster
594 1.226 oster /*
595 1.226 oster * Maybe the MD code can help. If it cannot, then
596 1.226 oster * setroot() will discover that we have no
597 1.226 oster * booted_device and will ask the user if nothing was
598 1.226 oster * hardwired in the kernel config file
599 1.226 oster */
600 1.226 oster if (booted_device == NULL)
601 1.226 oster return;
602 1.226 oster
603 1.226 oster num_root = 0;
604 1.300 christos mutex_enter(&raid_lock);
605 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
606 1.300 christos RF_Raid_t *r = &sc->sc_r;
607 1.300 christos if (r->valid == 0)
608 1.226 oster continue;
609 1.226 oster
610 1.300 christos if (r->root_partition == 0)
611 1.226 oster continue;
612 1.226 oster
613 1.306 christos if (rf_containsboot(r, booted_device)) {
614 1.226 oster num_root++;
615 1.300 christos rsc = sc;
616 1.335 mlelstv dksc = &rsc->sc_dksc;
617 1.226 oster }
618 1.226 oster }
619 1.300 christos mutex_exit(&raid_lock);
620 1.295 erh
621 1.226 oster if (num_root == 1) {
622 1.335 mlelstv booted_device = dksc->sc_dev;
623 1.351 christos booted_method = "raidframe/multi";
624 1.310 christos booted_partition = 0; /* XXX assume 'a' */
625 1.226 oster } else {
626 1.226 oster /* we can't guess.. require the user to answer... */
627 1.226 oster boothowto |= RB_ASKNAME;
628 1.226 oster }
629 1.51 oster }
630 1.1 oster }
631 1.1 oster
632 1.324 mrg static int
633 1.169 oster raidsize(dev_t dev)
634 1.1 oster {
635 1.1 oster struct raid_softc *rs;
636 1.335 mlelstv struct dk_softc *dksc;
637 1.335 mlelstv unsigned int unit;
638 1.1 oster
639 1.1 oster unit = raidunit(dev);
640 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
641 1.336 mlelstv return -1;
642 1.335 mlelstv dksc = &rs->sc_dksc;
643 1.335 mlelstv
644 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
645 1.336 mlelstv return -1;
646 1.1 oster
647 1.335 mlelstv return dk_size(dksc, dev);
648 1.335 mlelstv }
649 1.1 oster
650 1.335 mlelstv static int
651 1.335 mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
652 1.335 mlelstv {
653 1.335 mlelstv unsigned int unit;
654 1.335 mlelstv struct raid_softc *rs;
655 1.335 mlelstv struct dk_softc *dksc;
656 1.1 oster
657 1.335 mlelstv unit = raidunit(dev);
658 1.335 mlelstv if ((rs = raidget(unit, false)) == NULL)
659 1.335 mlelstv return ENXIO;
660 1.335 mlelstv dksc = &rs->sc_dksc;
661 1.1 oster
662 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
663 1.335 mlelstv return ENODEV;
664 1.1 oster
665 1.336 mlelstv /*
666 1.336 mlelstv Note that blkno is relative to this particular partition.
667 1.336 mlelstv By adding adding RF_PROTECTED_SECTORS, we get a value that
668 1.336 mlelstv is relative to the partition used for the underlying component.
669 1.336 mlelstv */
670 1.336 mlelstv blkno += RF_PROTECTED_SECTORS;
671 1.336 mlelstv
672 1.335 mlelstv return dk_dump(dksc, dev, blkno, va, size);
673 1.1 oster }
674 1.1 oster
675 1.324 mrg static int
676 1.335 mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
677 1.1 oster {
678 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
679 1.231 oster const struct bdevsw *bdev;
680 1.231 oster RF_Raid_t *raidPtr;
681 1.335 mlelstv int c, sparecol, j, scol, dumpto;
682 1.231 oster int error = 0;
683 1.231 oster
684 1.300 christos raidPtr = &rs->sc_r;
685 1.231 oster
686 1.231 oster /* we only support dumping to RAID 1 sets */
687 1.231 oster if (raidPtr->Layout.numDataCol != 1 ||
688 1.231 oster raidPtr->Layout.numParityCol != 1)
689 1.231 oster return EINVAL;
690 1.231 oster
691 1.231 oster if ((error = raidlock(rs)) != 0)
692 1.231 oster return error;
693 1.231 oster
694 1.231 oster /* figure out what device is alive.. */
695 1.231 oster
696 1.231 oster /*
697 1.231 oster Look for a component to dump to. The preference for the
698 1.231 oster component to dump to is as follows:
699 1.231 oster 1) the master
700 1.231 oster 2) a used_spare of the master
701 1.231 oster 3) the slave
702 1.231 oster 4) a used_spare of the slave
703 1.231 oster */
704 1.231 oster
705 1.231 oster dumpto = -1;
706 1.231 oster for (c = 0; c < raidPtr->numCol; c++) {
707 1.231 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
708 1.231 oster /* this might be the one */
709 1.231 oster dumpto = c;
710 1.231 oster break;
711 1.231 oster }
712 1.231 oster }
713 1.231 oster
714 1.231 oster /*
715 1.231 oster At this point we have possibly selected a live master or a
716 1.231 oster live slave. We now check to see if there is a spared
717 1.231 oster master (or a spared slave), if we didn't find a live master
718 1.231 oster or a live slave.
719 1.231 oster */
720 1.231 oster
721 1.231 oster for (c = 0; c < raidPtr->numSpare; c++) {
722 1.231 oster sparecol = raidPtr->numCol + c;
723 1.231 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
724 1.231 oster /* How about this one? */
725 1.231 oster scol = -1;
726 1.231 oster for(j=0;j<raidPtr->numCol;j++) {
727 1.231 oster if (raidPtr->Disks[j].spareCol == sparecol) {
728 1.231 oster scol = j;
729 1.231 oster break;
730 1.231 oster }
731 1.231 oster }
732 1.231 oster if (scol == 0) {
733 1.231 oster /*
734 1.231 oster We must have found a spared master!
735 1.231 oster We'll take that over anything else
736 1.231 oster found so far. (We couldn't have
737 1.231 oster found a real master before, since
738 1.231 oster this is a used spare, and it's
739 1.231 oster saying that it's replacing the
740 1.231 oster master.) On reboot (with
741 1.231 oster autoconfiguration turned on)
742 1.231 oster sparecol will become the 1st
743 1.231 oster component (component0) of this set.
744 1.231 oster */
745 1.231 oster dumpto = sparecol;
746 1.231 oster break;
747 1.231 oster } else if (scol != -1) {
748 1.231 oster /*
749 1.231 oster Must be a spared slave. We'll dump
750 1.231 oster to that if we havn't found anything
751 1.231 oster else so far.
752 1.231 oster */
753 1.231 oster if (dumpto == -1)
754 1.231 oster dumpto = sparecol;
755 1.231 oster }
756 1.231 oster }
757 1.231 oster }
758 1.231 oster
759 1.231 oster if (dumpto == -1) {
760 1.231 oster /* we couldn't find any live components to dump to!?!?
761 1.231 oster */
762 1.231 oster error = EINVAL;
763 1.231 oster goto out;
764 1.231 oster }
765 1.231 oster
766 1.231 oster bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
767 1.342 mlelstv if (bdev == NULL) {
768 1.342 mlelstv error = ENXIO;
769 1.342 mlelstv goto out;
770 1.342 mlelstv }
771 1.231 oster
772 1.231 oster error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
773 1.336 mlelstv blkno, va, nblk * raidPtr->bytesPerSector);
774 1.231 oster
775 1.231 oster out:
776 1.231 oster raidunlock(rs);
777 1.231 oster
778 1.231 oster return error;
779 1.1 oster }
780 1.324 mrg
781 1.1 oster /* ARGSUSED */
782 1.324 mrg static int
783 1.222 christos raidopen(dev_t dev, int flags, int fmt,
784 1.222 christos struct lwp *l)
785 1.1 oster {
786 1.9 oster int unit = raidunit(dev);
787 1.1 oster struct raid_softc *rs;
788 1.335 mlelstv struct dk_softc *dksc;
789 1.335 mlelstv int error = 0;
790 1.9 oster int part, pmask;
791 1.9 oster
792 1.327 pgoyette if ((rs = raidget(unit, true)) == NULL)
793 1.300 christos return ENXIO;
794 1.1 oster if ((error = raidlock(rs)) != 0)
795 1.9 oster return (error);
796 1.266 dyoung
797 1.266 dyoung if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
798 1.266 dyoung error = EBUSY;
799 1.266 dyoung goto bad;
800 1.266 dyoung }
801 1.266 dyoung
802 1.335 mlelstv dksc = &rs->sc_dksc;
803 1.1 oster
804 1.1 oster part = DISKPART(dev);
805 1.1 oster pmask = (1 << part);
806 1.1 oster
807 1.335 mlelstv if (!DK_BUSY(dksc, pmask) &&
808 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
809 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
810 1.13 oster have done a configure before this. I DO NOT WANT TO BE
811 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
812 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
813 1.13 oster /* XXX should check to see if we're only open for reading
814 1.13 oster here... If so, we needn't do this, but then need some
815 1.13 oster other way of keeping track of what's happened.. */
816 1.13 oster
817 1.300 christos rf_markalldirty(&rs->sc_r);
818 1.13 oster }
819 1.13 oster
820 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0)
821 1.335 mlelstv error = dk_open(dksc, dev, flags, fmt, l);
822 1.1 oster
823 1.213 christos bad:
824 1.1 oster raidunlock(rs);
825 1.1 oster
826 1.9 oster return (error);
827 1.1 oster
828 1.1 oster
829 1.1 oster }
830 1.324 mrg
831 1.335 mlelstv static int
832 1.335 mlelstv raid_lastclose(device_t self)
833 1.335 mlelstv {
834 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
835 1.335 mlelstv
836 1.335 mlelstv /* Last one... device is not unconfigured yet.
837 1.335 mlelstv Device shutdown has taken care of setting the
838 1.335 mlelstv clean bits if RAIDF_INITED is not set
839 1.335 mlelstv mark things as clean... */
840 1.335 mlelstv
841 1.335 mlelstv rf_update_component_labels(&rs->sc_r,
842 1.335 mlelstv RF_FINAL_COMPONENT_UPDATE);
843 1.335 mlelstv
844 1.335 mlelstv /* pass to unlocked code */
845 1.335 mlelstv if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
846 1.335 mlelstv rs->sc_flags |= RAIDF_DETACH;
847 1.335 mlelstv
848 1.335 mlelstv return 0;
849 1.335 mlelstv }
850 1.335 mlelstv
851 1.1 oster /* ARGSUSED */
852 1.324 mrg static int
853 1.222 christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
854 1.1 oster {
855 1.9 oster int unit = raidunit(dev);
856 1.1 oster struct raid_softc *rs;
857 1.335 mlelstv struct dk_softc *dksc;
858 1.335 mlelstv cfdata_t cf;
859 1.335 mlelstv int error = 0, do_detach = 0, do_put = 0;
860 1.1 oster
861 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
862 1.300 christos return ENXIO;
863 1.335 mlelstv dksc = &rs->sc_dksc;
864 1.1 oster
865 1.1 oster if ((error = raidlock(rs)) != 0)
866 1.1 oster return (error);
867 1.1 oster
868 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) {
869 1.335 mlelstv error = dk_close(dksc, dev, flags, fmt, l);
870 1.335 mlelstv if ((rs->sc_flags & RAIDF_DETACH) != 0)
871 1.335 mlelstv do_detach = 1;
872 1.335 mlelstv } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
873 1.335 mlelstv do_put = 1;
874 1.1 oster
875 1.335 mlelstv raidunlock(rs);
876 1.1 oster
877 1.335 mlelstv if (do_detach) {
878 1.335 mlelstv /* free the pseudo device attach bits */
879 1.335 mlelstv cf = device_cfdata(dksc->sc_dev);
880 1.335 mlelstv error = config_detach(dksc->sc_dev, 0);
881 1.335 mlelstv if (error == 0)
882 1.335 mlelstv free(cf, M_RAIDFRAME);
883 1.335 mlelstv } else if (do_put) {
884 1.335 mlelstv raidput(rs);
885 1.1 oster }
886 1.186 perry
887 1.335 mlelstv return (error);
888 1.147 oster
889 1.335 mlelstv }
890 1.327 pgoyette
891 1.335 mlelstv static void
892 1.335 mlelstv raid_wakeup(RF_Raid_t *raidPtr)
893 1.335 mlelstv {
894 1.335 mlelstv rf_lock_mutex2(raidPtr->iodone_lock);
895 1.335 mlelstv rf_signal_cond2(raidPtr->iodone_cv);
896 1.335 mlelstv rf_unlock_mutex2(raidPtr->iodone_lock);
897 1.1 oster }
898 1.1 oster
899 1.324 mrg static void
900 1.169 oster raidstrategy(struct buf *bp)
901 1.1 oster {
902 1.335 mlelstv unsigned int unit;
903 1.335 mlelstv struct raid_softc *rs;
904 1.335 mlelstv struct dk_softc *dksc;
905 1.1 oster RF_Raid_t *raidPtr;
906 1.1 oster
907 1.335 mlelstv unit = raidunit(bp->b_dev);
908 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) {
909 1.30 oster bp->b_error = ENXIO;
910 1.335 mlelstv goto fail;
911 1.30 oster }
912 1.300 christos if ((rs->sc_flags & RAIDF_INITED) == 0) {
913 1.300 christos bp->b_error = ENXIO;
914 1.335 mlelstv goto fail;
915 1.1 oster }
916 1.335 mlelstv dksc = &rs->sc_dksc;
917 1.300 christos raidPtr = &rs->sc_r;
918 1.335 mlelstv
919 1.335 mlelstv /* Queue IO only */
920 1.335 mlelstv if (dk_strategy_defer(dksc, bp))
921 1.196 yamt goto done;
922 1.1 oster
923 1.335 mlelstv /* schedule the IO to happen at the next convenient time */
924 1.335 mlelstv raid_wakeup(raidPtr);
925 1.335 mlelstv
926 1.335 mlelstv done:
927 1.335 mlelstv return;
928 1.335 mlelstv
929 1.335 mlelstv fail:
930 1.335 mlelstv bp->b_resid = bp->b_bcount;
931 1.335 mlelstv biodone(bp);
932 1.335 mlelstv }
933 1.335 mlelstv
934 1.335 mlelstv static int
935 1.335 mlelstv raid_diskstart(device_t dev, struct buf *bp)
936 1.335 mlelstv {
937 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
938 1.335 mlelstv RF_Raid_t *raidPtr;
939 1.1 oster
940 1.335 mlelstv raidPtr = &rs->sc_r;
941 1.335 mlelstv if (!raidPtr->valid) {
942 1.335 mlelstv db1_printf(("raid is not valid..\n"));
943 1.335 mlelstv return ENODEV;
944 1.196 yamt }
945 1.285 mrg
946 1.335 mlelstv /* XXX */
947 1.335 mlelstv bp->b_resid = 0;
948 1.335 mlelstv
949 1.335 mlelstv return raiddoaccess(raidPtr, bp);
950 1.335 mlelstv }
951 1.1 oster
952 1.335 mlelstv void
953 1.335 mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
954 1.335 mlelstv {
955 1.335 mlelstv struct raid_softc *rs;
956 1.335 mlelstv struct dk_softc *dksc;
957 1.34 oster
958 1.335 mlelstv rs = raidPtr->softc;
959 1.335 mlelstv dksc = &rs->sc_dksc;
960 1.34 oster
961 1.335 mlelstv dk_done(dksc, bp);
962 1.34 oster
963 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
964 1.335 mlelstv raidPtr->openings++;
965 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
966 1.196 yamt
967 1.335 mlelstv /* schedule more IO */
968 1.335 mlelstv raid_wakeup(raidPtr);
969 1.1 oster }
970 1.324 mrg
971 1.1 oster /* ARGSUSED */
972 1.324 mrg static int
973 1.222 christos raidread(dev_t dev, struct uio *uio, int flags)
974 1.1 oster {
975 1.9 oster int unit = raidunit(dev);
976 1.1 oster struct raid_softc *rs;
977 1.1 oster
978 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
979 1.300 christos return ENXIO;
980 1.1 oster
981 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
982 1.1 oster return (ENXIO);
983 1.1 oster
984 1.1 oster return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
985 1.1 oster
986 1.1 oster }
987 1.324 mrg
988 1.1 oster /* ARGSUSED */
989 1.324 mrg static int
990 1.222 christos raidwrite(dev_t dev, struct uio *uio, int flags)
991 1.1 oster {
992 1.9 oster int unit = raidunit(dev);
993 1.1 oster struct raid_softc *rs;
994 1.1 oster
995 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
996 1.300 christos return ENXIO;
997 1.1 oster
998 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
999 1.1 oster return (ENXIO);
1000 1.147 oster
1001 1.1 oster return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
1002 1.1 oster
1003 1.1 oster }
1004 1.1 oster
1005 1.266 dyoung static int
1006 1.266 dyoung raid_detach_unlocked(struct raid_softc *rs)
1007 1.266 dyoung {
1008 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1009 1.335 mlelstv RF_Raid_t *raidPtr;
1010 1.266 dyoung int error;
1011 1.266 dyoung
1012 1.300 christos raidPtr = &rs->sc_r;
1013 1.266 dyoung
1014 1.337 mlelstv if (DK_BUSY(dksc, 0) ||
1015 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1016 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1017 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1018 1.266 dyoung return EBUSY;
1019 1.266 dyoung
1020 1.266 dyoung if ((rs->sc_flags & RAIDF_INITED) == 0)
1021 1.333 mlelstv return 0;
1022 1.333 mlelstv
1023 1.333 mlelstv rs->sc_flags &= ~RAIDF_SHUTDOWN;
1024 1.333 mlelstv
1025 1.333 mlelstv if ((error = rf_Shutdown(raidPtr)) != 0)
1026 1.266 dyoung return error;
1027 1.266 dyoung
1028 1.335 mlelstv rs->sc_flags &= ~RAIDF_INITED;
1029 1.335 mlelstv
1030 1.335 mlelstv /* Kill off any queued buffers */
1031 1.335 mlelstv dk_drain(dksc);
1032 1.335 mlelstv bufq_free(dksc->sc_bufq);
1033 1.335 mlelstv
1034 1.266 dyoung /* Detach the disk. */
1035 1.335 mlelstv dkwedge_delall(&dksc->sc_dkdev);
1036 1.335 mlelstv disk_detach(&dksc->sc_dkdev);
1037 1.335 mlelstv disk_destroy(&dksc->sc_dkdev);
1038 1.335 mlelstv dk_detach(dksc);
1039 1.333 mlelstv
1040 1.266 dyoung return 0;
1041 1.266 dyoung }
1042 1.266 dyoung
1043 1.324 mrg static int
1044 1.225 christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1045 1.1 oster {
1046 1.9 oster int unit = raidunit(dev);
1047 1.9 oster int error = 0;
1048 1.335 mlelstv int part, pmask;
1049 1.1 oster struct raid_softc *rs;
1050 1.335 mlelstv struct dk_softc *dksc;
1051 1.1 oster RF_Config_t *k_cfg, *u_cfg;
1052 1.42 oster RF_Raid_t *raidPtr;
1053 1.48 oster RF_RaidDisk_t *diskPtr;
1054 1.41 oster RF_AccTotals_t *totals;
1055 1.353 mrg RF_DeviceConfig_t *d_cfg, *ucfgp;
1056 1.1 oster u_char *specific_buf;
1057 1.11 oster int retcode = 0;
1058 1.11 oster int column;
1059 1.269 jld /* int raidid; */
1060 1.353 mrg struct rf_recon_req *rr;
1061 1.353 mrg struct rf_recon_req_internal *rrint;
1062 1.48 oster RF_ComponentLabel_t *clabel;
1063 1.209 oster RF_ComponentLabel_t *ci_label;
1064 1.12 oster RF_SingleComponent_t *sparePtr,*componentPtr;
1065 1.12 oster RF_SingleComponent_t component;
1066 1.353 mrg int d;
1067 1.1 oster
1068 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1069 1.300 christos return ENXIO;
1070 1.335 mlelstv dksc = &rs->sc_dksc;
1071 1.300 christos raidPtr = &rs->sc_r;
1072 1.1 oster
1073 1.276 mrg db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1074 1.276 mrg (int) DISKPART(dev), (int) unit, cmd));
1075 1.1 oster
1076 1.1 oster /* Must be initialized for these... */
1077 1.1 oster switch (cmd) {
1078 1.1 oster case RAIDFRAME_REWRITEPARITY:
1079 1.1 oster case RAIDFRAME_GET_INFO:
1080 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1081 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1082 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1083 1.1 oster case RAIDFRAME_GET_SIZE:
1084 1.1 oster case RAIDFRAME_FAIL_DISK:
1085 1.1 oster case RAIDFRAME_COPYBACK:
1086 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1087 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1088 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1089 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1090 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1091 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1092 1.11 oster case RAIDFRAME_INIT_LABELS:
1093 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1094 1.23 oster case RAIDFRAME_CHECK_PARITY:
1095 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1096 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1097 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1098 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1099 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1100 1.48 oster case RAIDFRAME_SET_ROOT:
1101 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1102 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1103 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1104 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1105 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1106 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1107 1.353 mrg #ifdef COMPAT_50
1108 1.353 mrg case RAIDFRAME_GET_INFO50:
1109 1.353 mrg #endif
1110 1.353 mrg #ifdef COMPAT_80
1111 1.353 mrg case RAIDFRAME_CHECK_RECON_STATUS_EXT80:
1112 1.353 mrg case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT80:
1113 1.353 mrg case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT80:
1114 1.353 mrg case RAIDFRAME_GET_INFO80:
1115 1.353 mrg case RAIDFRAME_GET_COMPONENT_LABEL80:
1116 1.353 mrg #endif
1117 1.353 mrg #ifdef COMPAT_NETBSD32
1118 1.354 skrll #ifdef _LP64
1119 1.353 mrg case RAIDFRAME_GET_INFO32:
1120 1.353 mrg #endif
1121 1.354 skrll #endif
1122 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
1123 1.1 oster return (ENXIO);
1124 1.1 oster }
1125 1.9 oster
1126 1.1 oster switch (cmd) {
1127 1.254 christos #ifdef COMPAT_50
1128 1.254 christos case RAIDFRAME_GET_INFO50:
1129 1.254 christos return rf_get_info50(raidPtr, data);
1130 1.254 christos
1131 1.254 christos case RAIDFRAME_CONFIGURE50:
1132 1.254 christos if ((retcode = rf_config50(raidPtr, unit, data, &k_cfg)) != 0)
1133 1.254 christos return retcode;
1134 1.254 christos goto config;
1135 1.254 christos #endif
1136 1.353 mrg
1137 1.353 mrg #ifdef COMPAT_80
1138 1.353 mrg case RAIDFRAME_CHECK_RECON_STATUS_EXT80:
1139 1.353 mrg return rf_check_recon_status_ext80(raidPtr, data);
1140 1.353 mrg
1141 1.353 mrg case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT80:
1142 1.353 mrg return rf_check_parityrewrite_status_ext80(raidPtr, data);
1143 1.353 mrg
1144 1.353 mrg case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT80:
1145 1.353 mrg return rf_check_copyback_status_ext80(raidPtr, data);
1146 1.353 mrg
1147 1.353 mrg case RAIDFRAME_GET_INFO80:
1148 1.353 mrg return rf_get_info80(raidPtr, data);
1149 1.353 mrg
1150 1.353 mrg case RAIDFRAME_GET_COMPONENT_LABEL80:
1151 1.353 mrg return rf_get_component_label80(raidPtr, data);
1152 1.353 mrg #endif
1153 1.353 mrg
1154 1.1 oster /* configure the system */
1155 1.1 oster case RAIDFRAME_CONFIGURE:
1156 1.353 mrg #ifdef COMPAT_NETBSD32
1157 1.354 skrll #ifdef _LP64
1158 1.353 mrg case RAIDFRAME_CONFIGURE32:
1159 1.353 mrg #endif
1160 1.354 skrll #endif
1161 1.48 oster
1162 1.48 oster if (raidPtr->valid) {
1163 1.48 oster /* There is a valid RAID set running on this unit! */
1164 1.48 oster printf("raid%d: Device already configured!\n",unit);
1165 1.66 oster return(EINVAL);
1166 1.48 oster }
1167 1.48 oster
1168 1.1 oster /* copy-in the configuration information */
1169 1.1 oster /* data points to a pointer to the configuration structure */
1170 1.43 oster
1171 1.9 oster RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1172 1.1 oster if (k_cfg == NULL) {
1173 1.9 oster return (ENOMEM);
1174 1.1 oster }
1175 1.353 mrg #ifdef COMPAT_NETBSD32
1176 1.354 skrll #ifdef _LP64
1177 1.353 mrg if (cmd == RAIDFRAME_CONFIGURE32 &&
1178 1.353 mrg (l->l_proc->p_flag & PK_32) != 0)
1179 1.353 mrg retcode = rf_config_netbsd32(data, k_cfg);
1180 1.353 mrg else
1181 1.353 mrg #endif
1182 1.354 skrll #endif
1183 1.353 mrg {
1184 1.353 mrg u_cfg = *((RF_Config_t **) data);
1185 1.353 mrg retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1186 1.353 mrg }
1187 1.1 oster if (retcode) {
1188 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1189 1.46 oster db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1190 1.9 oster retcode));
1191 1.327 pgoyette goto no_config;
1192 1.1 oster }
1193 1.254 christos goto config;
1194 1.254 christos config:
1195 1.327 pgoyette rs->sc_flags &= ~RAIDF_SHUTDOWN;
1196 1.327 pgoyette
1197 1.9 oster /* allocate a buffer for the layout-specific data, and copy it
1198 1.9 oster * in */
1199 1.1 oster if (k_cfg->layoutSpecificSize) {
1200 1.9 oster if (k_cfg->layoutSpecificSize > 10000) {
1201 1.1 oster /* sanity check */
1202 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1203 1.327 pgoyette retcode = EINVAL;
1204 1.327 pgoyette goto no_config;
1205 1.1 oster }
1206 1.9 oster RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1207 1.9 oster (u_char *));
1208 1.1 oster if (specific_buf == NULL) {
1209 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1210 1.327 pgoyette retcode = ENOMEM;
1211 1.327 pgoyette goto no_config;
1212 1.1 oster }
1213 1.156 dsl retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1214 1.9 oster k_cfg->layoutSpecificSize);
1215 1.1 oster if (retcode) {
1216 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1217 1.186 perry RF_Free(specific_buf,
1218 1.42 oster k_cfg->layoutSpecificSize);
1219 1.46 oster db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1220 1.9 oster retcode));
1221 1.327 pgoyette goto no_config;
1222 1.1 oster }
1223 1.9 oster } else
1224 1.9 oster specific_buf = NULL;
1225 1.1 oster k_cfg->layoutSpecific = specific_buf;
1226 1.9 oster
1227 1.9 oster /* should do some kind of sanity check on the configuration.
1228 1.9 oster * Store the sum of all the bytes in the last byte? */
1229 1.1 oster
1230 1.1 oster /* configure the system */
1231 1.1 oster
1232 1.48 oster /*
1233 1.48 oster * Clear the entire RAID descriptor, just to make sure
1234 1.186 perry * there is no stale data left in the case of a
1235 1.186 perry * reconfiguration
1236 1.48 oster */
1237 1.277 christos memset(raidPtr, 0, sizeof(*raidPtr));
1238 1.302 christos raidPtr->softc = rs;
1239 1.42 oster raidPtr->raidid = unit;
1240 1.20 oster
1241 1.48 oster retcode = rf_Configure(raidPtr, k_cfg, NULL);
1242 1.1 oster
1243 1.40 oster if (retcode == 0) {
1244 1.37 oster
1245 1.186 perry /* allow this many simultaneous IO's to
1246 1.40 oster this RAID device */
1247 1.42 oster raidPtr->openings = RAIDOUTSTANDING;
1248 1.186 perry
1249 1.300 christos raidinit(rs);
1250 1.335 mlelstv raid_wakeup(raidPtr);
1251 1.59 oster rf_markalldirty(raidPtr);
1252 1.9 oster }
1253 1.1 oster /* free the buffers. No return code here. */
1254 1.1 oster if (k_cfg->layoutSpecificSize) {
1255 1.9 oster RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1256 1.1 oster }
1257 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1258 1.9 oster
1259 1.327 pgoyette no_config:
1260 1.327 pgoyette /*
1261 1.327 pgoyette * If configuration failed, set sc_flags so that we
1262 1.327 pgoyette * will detach the device when we close it.
1263 1.327 pgoyette */
1264 1.327 pgoyette if (retcode != 0)
1265 1.327 pgoyette rs->sc_flags |= RAIDF_SHUTDOWN;
1266 1.9 oster return (retcode);
1267 1.9 oster
1268 1.9 oster /* shutdown the system */
1269 1.1 oster case RAIDFRAME_SHUTDOWN:
1270 1.9 oster
1271 1.266 dyoung part = DISKPART(dev);
1272 1.266 dyoung pmask = (1 << part);
1273 1.266 dyoung
1274 1.9 oster if ((error = raidlock(rs)) != 0)
1275 1.9 oster return (error);
1276 1.1 oster
1277 1.337 mlelstv if (DK_BUSY(dksc, pmask) ||
1278 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1279 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1280 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1281 1.266 dyoung retcode = EBUSY;
1282 1.266 dyoung else {
1283 1.335 mlelstv /* detach and free on close */
1284 1.266 dyoung rs->sc_flags |= RAIDF_SHUTDOWN;
1285 1.266 dyoung retcode = 0;
1286 1.9 oster }
1287 1.11 oster
1288 1.266 dyoung raidunlock(rs);
1289 1.1 oster
1290 1.9 oster return (retcode);
1291 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1292 1.353 mrg return rf_get_component_label(raidPtr, data);
1293 1.11 oster
1294 1.269 jld #if 0
1295 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1296 1.48 oster clabel = (RF_ComponentLabel_t *) data;
1297 1.11 oster
1298 1.11 oster /* XXX check the label for valid stuff... */
1299 1.11 oster /* Note that some things *should not* get modified --
1300 1.186 perry the user should be re-initing the labels instead of
1301 1.11 oster trying to patch things.
1302 1.11 oster */
1303 1.11 oster
1304 1.123 oster raidid = raidPtr->raidid;
1305 1.224 oster #ifdef DEBUG
1306 1.123 oster printf("raid%d: Got component label:\n", raidid);
1307 1.123 oster printf("raid%d: Version: %d\n", raidid, clabel->version);
1308 1.123 oster printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1309 1.123 oster printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1310 1.123 oster printf("raid%d: Column: %d\n", raidid, clabel->column);
1311 1.123 oster printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1312 1.123 oster printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1313 1.123 oster printf("raid%d: Status: %d\n", raidid, clabel->status);
1314 1.174 oster #endif
1315 1.166 oster clabel->row = 0;
1316 1.48 oster column = clabel->column;
1317 1.12 oster
1318 1.166 oster if ((column < 0) || (column >= raidPtr->numCol)) {
1319 1.12 oster return(EINVAL);
1320 1.11 oster }
1321 1.12 oster
1322 1.12 oster /* XXX this isn't allowed to do anything for now :-) */
1323 1.48 oster
1324 1.48 oster /* XXX and before it is, we need to fill in the rest
1325 1.48 oster of the fields!?!?!?! */
1326 1.269 jld memcpy(raidget_component_label(raidPtr, column),
1327 1.269 jld clabel, sizeof(*clabel));
1328 1.269 jld raidflush_component_label(raidPtr, column);
1329 1.269 jld return (0);
1330 1.12 oster #endif
1331 1.11 oster
1332 1.186 perry case RAIDFRAME_INIT_LABELS:
1333 1.48 oster clabel = (RF_ComponentLabel_t *) data;
1334 1.186 perry /*
1335 1.11 oster we only want the serial number from
1336 1.11 oster the above. We get all the rest of the information
1337 1.11 oster from the config that was used to create this RAID
1338 1.186 perry set.
1339 1.11 oster */
1340 1.12 oster
1341 1.48 oster raidPtr->serial_number = clabel->serial_number;
1342 1.186 perry
1343 1.166 oster for(column=0;column<raidPtr->numCol;column++) {
1344 1.166 oster diskPtr = &raidPtr->Disks[column];
1345 1.166 oster if (!RF_DEAD_DISK(diskPtr->status)) {
1346 1.269 jld ci_label = raidget_component_label(raidPtr,
1347 1.269 jld column);
1348 1.269 jld /* Zeroing this is important. */
1349 1.269 jld memset(ci_label, 0, sizeof(*ci_label));
1350 1.269 jld raid_init_component_label(raidPtr, ci_label);
1351 1.269 jld ci_label->serial_number =
1352 1.269 jld raidPtr->serial_number;
1353 1.269 jld ci_label->row = 0; /* we dont' pretend to support more */
1354 1.282 enami rf_component_label_set_partitionsize(ci_label,
1355 1.282 enami diskPtr->partitionSize);
1356 1.209 oster ci_label->column = column;
1357 1.269 jld raidflush_component_label(raidPtr, column);
1358 1.11 oster }
1359 1.269 jld /* XXXjld what about the spares? */
1360 1.11 oster }
1361 1.209 oster
1362 1.11 oster return (retcode);
1363 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1364 1.78 minoura d = rf_set_autoconfig(raidPtr, *(int *) data);
1365 1.186 perry printf("raid%d: New autoconfig value is: %d\n",
1366 1.123 oster raidPtr->raidid, d);
1367 1.78 minoura *(int *) data = d;
1368 1.48 oster return (retcode);
1369 1.48 oster
1370 1.48 oster case RAIDFRAME_SET_ROOT:
1371 1.78 minoura d = rf_set_rootpartition(raidPtr, *(int *) data);
1372 1.186 perry printf("raid%d: New rootpartition value is: %d\n",
1373 1.123 oster raidPtr->raidid, d);
1374 1.78 minoura *(int *) data = d;
1375 1.48 oster return (retcode);
1376 1.9 oster
1377 1.1 oster /* initialize all parity */
1378 1.1 oster case RAIDFRAME_REWRITEPARITY:
1379 1.1 oster
1380 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1381 1.17 oster /* Parity for RAID 0 is trivially correct */
1382 1.42 oster raidPtr->parity_good = RF_RAID_CLEAN;
1383 1.17 oster return(0);
1384 1.17 oster }
1385 1.186 perry
1386 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1387 1.37 oster /* Re-write is already in progress! */
1388 1.37 oster return(EINVAL);
1389 1.37 oster }
1390 1.27 oster
1391 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1392 1.37 oster rf_RewriteParityThread,
1393 1.42 oster raidPtr,"raid_parity");
1394 1.9 oster return (retcode);
1395 1.9 oster
1396 1.11 oster
1397 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1398 1.12 oster sparePtr = (RF_SingleComponent_t *) data;
1399 1.209 oster memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1400 1.209 oster retcode = rf_add_hot_spare(raidPtr, &component);
1401 1.11 oster return(retcode);
1402 1.11 oster
1403 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1404 1.73 oster return(retcode);
1405 1.73 oster
1406 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1407 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1408 1.186 perry memcpy( &component, componentPtr,
1409 1.73 oster sizeof(RF_SingleComponent_t));
1410 1.73 oster retcode = rf_delete_component(raidPtr, &component);
1411 1.73 oster return(retcode);
1412 1.73 oster
1413 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1414 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1415 1.186 perry memcpy( &component, componentPtr,
1416 1.73 oster sizeof(RF_SingleComponent_t));
1417 1.73 oster retcode = rf_incorporate_hot_spare(raidPtr, &component);
1418 1.11 oster return(retcode);
1419 1.11 oster
1420 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1421 1.24 oster
1422 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1423 1.24 oster /* Can't do this on a RAID 0!! */
1424 1.24 oster return(EINVAL);
1425 1.24 oster }
1426 1.24 oster
1427 1.42 oster if (raidPtr->recon_in_progress == 1) {
1428 1.37 oster /* a reconstruct is already in progress! */
1429 1.37 oster return(EINVAL);
1430 1.37 oster }
1431 1.37 oster
1432 1.12 oster componentPtr = (RF_SingleComponent_t *) data;
1433 1.186 perry memcpy( &component, componentPtr,
1434 1.12 oster sizeof(RF_SingleComponent_t));
1435 1.166 oster component.row = 0; /* we don't support any more */
1436 1.12 oster column = component.column;
1437 1.147 oster
1438 1.166 oster if ((column < 0) || (column >= raidPtr->numCol)) {
1439 1.12 oster return(EINVAL);
1440 1.12 oster }
1441 1.37 oster
1442 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1443 1.166 oster if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1444 1.186 perry (raidPtr->numFailures > 0)) {
1445 1.149 oster /* XXX 0 above shouldn't be constant!!! */
1446 1.149 oster /* some component other than this has failed.
1447 1.149 oster Let's not make things worse than they already
1448 1.149 oster are... */
1449 1.149 oster printf("raid%d: Unable to reconstruct to disk at:\n",
1450 1.149 oster raidPtr->raidid);
1451 1.166 oster printf("raid%d: Col: %d Too many failures.\n",
1452 1.166 oster raidPtr->raidid, column);
1453 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1454 1.149 oster return (EINVAL);
1455 1.149 oster }
1456 1.186 perry if (raidPtr->Disks[column].status ==
1457 1.149 oster rf_ds_reconstructing) {
1458 1.149 oster printf("raid%d: Unable to reconstruct to disk at:\n",
1459 1.149 oster raidPtr->raidid);
1460 1.299 oster printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1461 1.186 perry
1462 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1463 1.149 oster return (EINVAL);
1464 1.149 oster }
1465 1.166 oster if (raidPtr->Disks[column].status == rf_ds_spared) {
1466 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1467 1.149 oster return (EINVAL);
1468 1.149 oster }
1469 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1470 1.149 oster
1471 1.353 mrg RF_Malloc(rrint, sizeof(*rrint), (struct rf_recon_req_internal *));
1472 1.353 mrg if (rrint == NULL)
1473 1.38 oster return(ENOMEM);
1474 1.37 oster
1475 1.353 mrg rrint->col = column;
1476 1.353 mrg rrint->raidPtr = raidPtr;
1477 1.37 oster
1478 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1479 1.37 oster rf_ReconstructInPlaceThread,
1480 1.353 mrg rrint, "raid_reconip");
1481 1.12 oster return(retcode);
1482 1.12 oster
1483 1.1 oster case RAIDFRAME_GET_INFO:
1484 1.353 mrg #ifdef COMPAT_NETBSD32
1485 1.354 skrll #ifdef _LP64
1486 1.353 mrg case RAIDFRAME_GET_INFO32:
1487 1.353 mrg #endif
1488 1.354 skrll #endif
1489 1.41 oster RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1490 1.41 oster (RF_DeviceConfig_t *));
1491 1.41 oster if (d_cfg == NULL)
1492 1.41 oster return (ENOMEM);
1493 1.353 mrg retcode = rf_get_info(raidPtr, d_cfg);
1494 1.353 mrg if (retcode == 0) {
1495 1.353 mrg #ifdef COMPAT_NETBSD32
1496 1.354 skrll #ifdef _LP64
1497 1.353 mrg if (cmd == RAIDFRAME_GET_INFO32)
1498 1.353 mrg ucfgp = NETBSD32PTR64(*(netbsd32_pointer_t *)data);
1499 1.353 mrg else
1500 1.353 mrg #endif
1501 1.354 skrll #endif
1502 1.353 mrg ucfgp = *(RF_DeviceConfig_t **)data;
1503 1.353 mrg retcode = copyout(d_cfg, ucfgp, sizeof(RF_DeviceConfig_t));
1504 1.41 oster }
1505 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1506 1.41 oster
1507 1.41 oster return (retcode);
1508 1.9 oster
1509 1.22 oster case RAIDFRAME_CHECK_PARITY:
1510 1.42 oster *(int *) data = raidPtr->parity_good;
1511 1.22 oster return (0);
1512 1.41 oster
1513 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1514 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1515 1.273 jld return EINVAL;
1516 1.269 jld rf_paritymap_status(raidPtr->parity_map,
1517 1.269 jld (struct rf_pmstat *)data);
1518 1.269 jld return 0;
1519 1.269 jld
1520 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1521 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1522 1.273 jld return EINVAL;
1523 1.269 jld if (raidPtr->parity_map == NULL)
1524 1.269 jld return ENOENT; /* ??? */
1525 1.269 jld if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1526 1.269 jld (struct rf_pmparams *)data, 1))
1527 1.269 jld return EINVAL;
1528 1.269 jld return 0;
1529 1.269 jld
1530 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1531 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1532 1.273 jld return EINVAL;
1533 1.269 jld *(int *) data = rf_paritymap_get_disable(raidPtr);
1534 1.269 jld return 0;
1535 1.269 jld
1536 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1537 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1538 1.273 jld return EINVAL;
1539 1.269 jld rf_paritymap_set_disable(raidPtr, *(int *)data);
1540 1.269 jld /* XXX should errors be passed up? */
1541 1.269 jld return 0;
1542 1.269 jld
1543 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1544 1.108 thorpej memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1545 1.41 oster return (0);
1546 1.9 oster
1547 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1548 1.41 oster totals = (RF_AccTotals_t *) data;
1549 1.42 oster *totals = raidPtr->acc_totals;
1550 1.41 oster return (0);
1551 1.9 oster
1552 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1553 1.42 oster raidPtr->keep_acc_totals = *(int *)data;
1554 1.41 oster return (0);
1555 1.9 oster
1556 1.1 oster case RAIDFRAME_GET_SIZE:
1557 1.42 oster *(int *) data = raidPtr->totalSectors;
1558 1.9 oster return (0);
1559 1.1 oster
1560 1.1 oster /* fail a disk & optionally start reconstruction */
1561 1.1 oster case RAIDFRAME_FAIL_DISK:
1562 1.353 mrg #ifdef COMPAT_80
1563 1.353 mrg case RAIDFRAME_FAIL_DISK80:
1564 1.353 mrg #endif
1565 1.24 oster
1566 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1567 1.24 oster /* Can't do this on a RAID 0!! */
1568 1.24 oster return(EINVAL);
1569 1.24 oster }
1570 1.24 oster
1571 1.1 oster rr = (struct rf_recon_req *) data;
1572 1.166 oster if (rr->col < 0 || rr->col >= raidPtr->numCol)
1573 1.9 oster return (EINVAL);
1574 1.149 oster
1575 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1576 1.185 oster if (raidPtr->status == rf_rs_reconstructing) {
1577 1.185 oster /* you can't fail a disk while we're reconstructing! */
1578 1.185 oster /* XXX wrong for RAID6 */
1579 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1580 1.185 oster return (EINVAL);
1581 1.185 oster }
1582 1.186 perry if ((raidPtr->Disks[rr->col].status ==
1583 1.186 perry rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1584 1.149 oster /* some other component has failed. Let's not make
1585 1.149 oster things worse. XXX wrong for RAID6 */
1586 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1587 1.149 oster return (EINVAL);
1588 1.149 oster }
1589 1.166 oster if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1590 1.149 oster /* Can't fail a spared disk! */
1591 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1592 1.149 oster return (EINVAL);
1593 1.149 oster }
1594 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1595 1.1 oster
1596 1.9 oster /* make a copy of the recon request so that we don't rely on
1597 1.9 oster * the user's buffer */
1598 1.353 mrg RF_Malloc(rrint, sizeof(*rrint), (struct rf_recon_req_internal *));
1599 1.353 mrg if (rrint == NULL)
1600 1.38 oster return(ENOMEM);
1601 1.353 mrg rrint->col = rr->col;
1602 1.353 mrg rrint->flags = rr->flags;
1603 1.353 mrg rrint->raidPtr = raidPtr;
1604 1.1 oster
1605 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1606 1.37 oster rf_ReconThread,
1607 1.353 mrg rrint, "raid_recon");
1608 1.9 oster return (0);
1609 1.9 oster
1610 1.9 oster /* invoke a copyback operation after recon on whatever disk
1611 1.9 oster * needs it, if any */
1612 1.9 oster case RAIDFRAME_COPYBACK:
1613 1.24 oster
1614 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1615 1.24 oster /* This makes no sense on a RAID 0!! */
1616 1.24 oster return(EINVAL);
1617 1.24 oster }
1618 1.24 oster
1619 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1620 1.37 oster /* Copyback is already in progress! */
1621 1.37 oster return(EINVAL);
1622 1.37 oster }
1623 1.27 oster
1624 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1625 1.37 oster rf_CopybackThread,
1626 1.42 oster raidPtr,"raid_copyback");
1627 1.37 oster return (retcode);
1628 1.9 oster
1629 1.1 oster /* return the percentage completion of reconstruction */
1630 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1631 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1632 1.71 oster /* This makes no sense on a RAID 0, so tell the
1633 1.71 oster user it's done. */
1634 1.71 oster *(int *) data = 100;
1635 1.71 oster return(0);
1636 1.24 oster }
1637 1.166 oster if (raidPtr->status != rf_rs_reconstructing)
1638 1.1 oster *(int *) data = 100;
1639 1.171 oster else {
1640 1.171 oster if (raidPtr->reconControl->numRUsTotal > 0) {
1641 1.171 oster *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1642 1.171 oster } else {
1643 1.171 oster *(int *) data = 0;
1644 1.171 oster }
1645 1.171 oster }
1646 1.9 oster return (0);
1647 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1648 1.353 mrg rf_check_recon_status_ext(raidPtr, data);
1649 1.353 mrg return (0);
1650 1.9 oster
1651 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1652 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1653 1.80 oster /* This makes no sense on a RAID 0, so tell the
1654 1.80 oster user it's done. */
1655 1.80 oster *(int *) data = 100;
1656 1.80 oster return(0);
1657 1.37 oster }
1658 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1659 1.186 perry *(int *) data = 100 *
1660 1.186 perry raidPtr->parity_rewrite_stripes_done /
1661 1.83 oster raidPtr->Layout.numStripe;
1662 1.37 oster } else {
1663 1.37 oster *(int *) data = 100;
1664 1.37 oster }
1665 1.37 oster return (0);
1666 1.37 oster
1667 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1668 1.353 mrg rf_check_parityrewrite_status_ext(raidPtr, data);
1669 1.353 mrg return (0);
1670 1.83 oster
1671 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1672 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1673 1.37 oster /* This makes no sense on a RAID 0 */
1674 1.83 oster *(int *) data = 100;
1675 1.83 oster return(0);
1676 1.37 oster }
1677 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1678 1.42 oster *(int *) data = 100 * raidPtr->copyback_stripes_done /
1679 1.42 oster raidPtr->Layout.numStripe;
1680 1.37 oster } else {
1681 1.37 oster *(int *) data = 100;
1682 1.37 oster }
1683 1.37 oster return (0);
1684 1.37 oster
1685 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1686 1.353 mrg rf_check_copyback_status_ext(raidPtr, data);
1687 1.353 mrg return 0;
1688 1.37 oster
1689 1.341 christos case RAIDFRAME_SET_LAST_UNIT:
1690 1.341 christos for (column = 0; column < raidPtr->numCol; column++)
1691 1.341 christos if (raidPtr->Disks[column].status != rf_ds_optimal)
1692 1.341 christos return EBUSY;
1693 1.341 christos
1694 1.341 christos for (column = 0; column < raidPtr->numCol; column++) {
1695 1.341 christos clabel = raidget_component_label(raidPtr, column);
1696 1.341 christos clabel->last_unit = *(int *)data;
1697 1.341 christos raidflush_component_label(raidPtr, column);
1698 1.341 christos }
1699 1.341 christos rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1700 1.341 christos return 0;
1701 1.341 christos
1702 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1703 1.9 oster * need a spare table. this ioctl does not return until a
1704 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1705 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1706 1.9 oster * -- I should either compute the spare table in the kernel,
1707 1.9 oster * or have a different -- XXX XXX -- interface (a different
1708 1.42 oster * character device) for delivering the table -- XXX */
1709 1.250 oster #if 0
1710 1.1 oster case RAIDFRAME_SPARET_WAIT:
1711 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1712 1.9 oster while (!rf_sparet_wait_queue)
1713 1.287 mrg rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1714 1.1 oster waitreq = rf_sparet_wait_queue;
1715 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1716 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1717 1.9 oster
1718 1.42 oster /* structure assignment */
1719 1.186 perry *((RF_SparetWait_t *) data) = *waitreq;
1720 1.9 oster
1721 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1722 1.9 oster return (0);
1723 1.9 oster
1724 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1725 1.9 oster * code in it that will cause the dameon to exit */
1726 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1727 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1728 1.1 oster waitreq->fcol = -1;
1729 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1730 1.1 oster waitreq->next = rf_sparet_wait_queue;
1731 1.1 oster rf_sparet_wait_queue = waitreq;
1732 1.287 mrg rf_broadcast_conf2(rf_sparet_wait_cv);
1733 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1734 1.9 oster return (0);
1735 1.1 oster
1736 1.9 oster /* used by the spare table daemon to deliver a spare table
1737 1.9 oster * into the kernel */
1738 1.1 oster case RAIDFRAME_SEND_SPARET:
1739 1.9 oster
1740 1.1 oster /* install the spare table */
1741 1.42 oster retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1742 1.9 oster
1743 1.9 oster /* respond to the requestor. the return status of the spare
1744 1.9 oster * table installation is passed in the "fcol" field */
1745 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1746 1.1 oster waitreq->fcol = retcode;
1747 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1748 1.1 oster waitreq->next = rf_sparet_resp_queue;
1749 1.1 oster rf_sparet_resp_queue = waitreq;
1750 1.287 mrg rf_broadcast_cond2(rf_sparet_resp_cv);
1751 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1752 1.9 oster
1753 1.9 oster return (retcode);
1754 1.1 oster #endif
1755 1.1 oster
1756 1.9 oster default:
1757 1.36 oster break; /* fall through to the os-specific code below */
1758 1.1 oster
1759 1.1 oster }
1760 1.9 oster
1761 1.42 oster if (!raidPtr->valid)
1762 1.9 oster return (EINVAL);
1763 1.9 oster
1764 1.1 oster /*
1765 1.1 oster * Add support for "regular" device ioctls here.
1766 1.1 oster */
1767 1.263 haad
1768 1.1 oster switch (cmd) {
1769 1.348 jdolecek case DIOCGCACHE:
1770 1.348 jdolecek retcode = rf_get_component_caches(raidPtr, (int *)data);
1771 1.348 jdolecek break;
1772 1.348 jdolecek
1773 1.252 oster case DIOCCACHESYNC:
1774 1.346 jdolecek retcode = rf_sync_component_caches(raidPtr);
1775 1.347 jdolecek break;
1776 1.298 buhrow
1777 1.1 oster default:
1778 1.346 jdolecek retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1779 1.347 jdolecek break;
1780 1.1 oster }
1781 1.346 jdolecek
1782 1.9 oster return (retcode);
1783 1.1 oster
1784 1.1 oster }
1785 1.1 oster
1786 1.1 oster
1787 1.9 oster /* raidinit -- complete the rest of the initialization for the
1788 1.1 oster RAIDframe device. */
1789 1.1 oster
1790 1.1 oster
1791 1.59 oster static void
1792 1.300 christos raidinit(struct raid_softc *rs)
1793 1.1 oster {
1794 1.262 cegger cfdata_t cf;
1795 1.335 mlelstv unsigned int unit;
1796 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1797 1.300 christos RF_Raid_t *raidPtr = &rs->sc_r;
1798 1.335 mlelstv device_t dev;
1799 1.1 oster
1800 1.59 oster unit = raidPtr->raidid;
1801 1.1 oster
1802 1.179 itojun /* XXX doesn't check bounds. */
1803 1.335 mlelstv snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1804 1.1 oster
1805 1.217 oster /* attach the pseudo device */
1806 1.217 oster cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1807 1.217 oster cf->cf_name = raid_cd.cd_name;
1808 1.217 oster cf->cf_atname = raid_cd.cd_name;
1809 1.217 oster cf->cf_unit = unit;
1810 1.217 oster cf->cf_fstate = FSTATE_STAR;
1811 1.217 oster
1812 1.335 mlelstv dev = config_attach_pseudo(cf);
1813 1.335 mlelstv if (dev == NULL) {
1814 1.217 oster printf("raid%d: config_attach_pseudo failed\n",
1815 1.270 christos raidPtr->raidid);
1816 1.265 pooka free(cf, M_RAIDFRAME);
1817 1.265 pooka return;
1818 1.217 oster }
1819 1.217 oster
1820 1.335 mlelstv /* provide a backpointer to the real softc */
1821 1.335 mlelstv raidsoftc(dev) = rs;
1822 1.335 mlelstv
1823 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1824 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1825 1.9 oster * with disklabels. */
1826 1.335 mlelstv dk_init(dksc, dev, DKTYPE_RAID);
1827 1.335 mlelstv disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1828 1.1 oster
1829 1.1 oster /* XXX There may be a weird interaction here between this, and
1830 1.9 oster * protectedSectors, as used in RAIDframe. */
1831 1.11 oster
1832 1.9 oster rs->sc_size = raidPtr->totalSectors;
1833 1.234 oster
1834 1.335 mlelstv /* Attach dk and disk subsystems */
1835 1.335 mlelstv dk_attach(dksc);
1836 1.335 mlelstv disk_attach(&dksc->sc_dkdev);
1837 1.318 mlelstv rf_set_geometry(rs, raidPtr);
1838 1.318 mlelstv
1839 1.335 mlelstv bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1840 1.335 mlelstv
1841 1.335 mlelstv /* mark unit as usuable */
1842 1.335 mlelstv rs->sc_flags |= RAIDF_INITED;
1843 1.234 oster
1844 1.335 mlelstv dkwedge_discover(&dksc->sc_dkdev);
1845 1.1 oster }
1846 1.335 mlelstv
1847 1.150 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1848 1.1 oster /* wake up the daemon & tell it to get us a spare table
1849 1.1 oster * XXX
1850 1.9 oster * the entries in the queues should be tagged with the raidPtr
1851 1.186 perry * so that in the extremely rare case that two recons happen at once,
1852 1.11 oster * we know for which device were requesting a spare table
1853 1.1 oster * XXX
1854 1.186 perry *
1855 1.39 oster * XXX This code is not currently used. GO
1856 1.1 oster */
1857 1.186 perry int
1858 1.169 oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1859 1.9 oster {
1860 1.9 oster int retcode;
1861 1.9 oster
1862 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1863 1.9 oster req->next = rf_sparet_wait_queue;
1864 1.9 oster rf_sparet_wait_queue = req;
1865 1.289 mrg rf_broadcast_cond2(rf_sparet_wait_cv);
1866 1.9 oster
1867 1.9 oster /* mpsleep unlocks the mutex */
1868 1.9 oster while (!rf_sparet_resp_queue) {
1869 1.289 mrg rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1870 1.9 oster }
1871 1.9 oster req = rf_sparet_resp_queue;
1872 1.9 oster rf_sparet_resp_queue = req->next;
1873 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1874 1.9 oster
1875 1.9 oster retcode = req->fcol;
1876 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
1877 1.9 oster * alloc'd */
1878 1.9 oster return (retcode);
1879 1.1 oster }
1880 1.150 oster #endif
1881 1.39 oster
1882 1.186 perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
1883 1.11 oster * bp & passes it down.
1884 1.1 oster * any calls originating in the kernel must use non-blocking I/O
1885 1.1 oster * do some extra sanity checking to return "appropriate" error values for
1886 1.1 oster * certain conditions (to make some standard utilities work)
1887 1.186 perry *
1888 1.34 oster * Formerly known as: rf_DoAccessKernel
1889 1.1 oster */
1890 1.34 oster void
1891 1.169 oster raidstart(RF_Raid_t *raidPtr)
1892 1.1 oster {
1893 1.1 oster struct raid_softc *rs;
1894 1.335 mlelstv struct dk_softc *dksc;
1895 1.1 oster
1896 1.300 christos rs = raidPtr->softc;
1897 1.335 mlelstv dksc = &rs->sc_dksc;
1898 1.56 oster /* quick check to see if anything has died recently */
1899 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1900 1.56 oster if (raidPtr->numNewFailures > 0) {
1901 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1902 1.186 perry rf_update_component_labels(raidPtr,
1903 1.91 oster RF_NORMAL_COMPONENT_UPDATE);
1904 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1905 1.56 oster raidPtr->numNewFailures--;
1906 1.56 oster }
1907 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1908 1.56 oster
1909 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) {
1910 1.335 mlelstv printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1911 1.335 mlelstv return;
1912 1.335 mlelstv }
1913 1.34 oster
1914 1.335 mlelstv dk_start(dksc, NULL);
1915 1.335 mlelstv }
1916 1.34 oster
1917 1.335 mlelstv static int
1918 1.335 mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1919 1.335 mlelstv {
1920 1.335 mlelstv RF_SectorCount_t num_blocks, pb, sum;
1921 1.335 mlelstv RF_RaidAddr_t raid_addr;
1922 1.335 mlelstv daddr_t blocknum;
1923 1.335 mlelstv int do_async;
1924 1.335 mlelstv int rc;
1925 1.186 perry
1926 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1927 1.335 mlelstv if (raidPtr->openings == 0) {
1928 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1929 1.335 mlelstv return EAGAIN;
1930 1.335 mlelstv }
1931 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1932 1.186 perry
1933 1.335 mlelstv blocknum = bp->b_rawblkno;
1934 1.186 perry
1935 1.335 mlelstv db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1936 1.335 mlelstv (int) blocknum));
1937 1.1 oster
1938 1.335 mlelstv db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1939 1.335 mlelstv db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1940 1.1 oster
1941 1.335 mlelstv /* *THIS* is where we adjust what block we're going to...
1942 1.335 mlelstv * but DO NOT TOUCH bp->b_blkno!!! */
1943 1.335 mlelstv raid_addr = blocknum;
1944 1.335 mlelstv
1945 1.335 mlelstv num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1946 1.335 mlelstv pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1947 1.335 mlelstv sum = raid_addr + num_blocks + pb;
1948 1.335 mlelstv if (1 || rf_debugKernelAccess) {
1949 1.335 mlelstv db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1950 1.335 mlelstv (int) raid_addr, (int) sum, (int) num_blocks,
1951 1.335 mlelstv (int) pb, (int) bp->b_resid));
1952 1.335 mlelstv }
1953 1.335 mlelstv if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1954 1.335 mlelstv || (sum < num_blocks) || (sum < pb)) {
1955 1.335 mlelstv rc = ENOSPC;
1956 1.335 mlelstv goto done;
1957 1.335 mlelstv }
1958 1.335 mlelstv /*
1959 1.335 mlelstv * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1960 1.335 mlelstv */
1961 1.186 perry
1962 1.335 mlelstv if (bp->b_bcount & raidPtr->sectorMask) {
1963 1.335 mlelstv rc = ENOSPC;
1964 1.335 mlelstv goto done;
1965 1.335 mlelstv }
1966 1.335 mlelstv db1_printf(("Calling DoAccess..\n"));
1967 1.99 oster
1968 1.20 oster
1969 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1970 1.335 mlelstv raidPtr->openings--;
1971 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1972 1.20 oster
1973 1.335 mlelstv /*
1974 1.335 mlelstv * Everything is async.
1975 1.335 mlelstv */
1976 1.335 mlelstv do_async = 1;
1977 1.20 oster
1978 1.335 mlelstv /* don't ever condition on bp->b_flags & B_WRITE.
1979 1.335 mlelstv * always condition on B_READ instead */
1980 1.7 explorer
1981 1.335 mlelstv rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1982 1.335 mlelstv RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1983 1.335 mlelstv do_async, raid_addr, num_blocks,
1984 1.335 mlelstv bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1985 1.335 mlelstv
1986 1.335 mlelstv done:
1987 1.335 mlelstv return rc;
1988 1.335 mlelstv }
1989 1.7 explorer
1990 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1991 1.1 oster
1992 1.186 perry int
1993 1.169 oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1994 1.1 oster {
1995 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1996 1.1 oster struct buf *bp;
1997 1.9 oster
1998 1.1 oster req->queue = queue;
1999 1.1 oster bp = req->bp;
2000 1.1 oster
2001 1.1 oster switch (req->type) {
2002 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2003 1.1 oster /* XXX need to do something extra here.. */
2004 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
2005 1.9 oster * and I'd like folks to report it... GO */
2006 1.1 oster printf(("WAKEUP CALLED\n"));
2007 1.1 oster queue->numOutstanding++;
2008 1.1 oster
2009 1.197 oster bp->b_flags = 0;
2010 1.207 simonb bp->b_private = req;
2011 1.1 oster
2012 1.194 oster KernelWakeupFunc(bp);
2013 1.1 oster break;
2014 1.9 oster
2015 1.1 oster case RF_IO_TYPE_READ:
2016 1.1 oster case RF_IO_TYPE_WRITE:
2017 1.175 oster #if RF_ACC_TRACE > 0
2018 1.1 oster if (req->tracerec) {
2019 1.1 oster RF_ETIMER_START(req->tracerec->timer);
2020 1.1 oster }
2021 1.175 oster #endif
2022 1.194 oster InitBP(bp, queue->rf_cinfo->ci_vp,
2023 1.197 oster op, queue->rf_cinfo->ci_dev,
2024 1.9 oster req->sectorOffset, req->numSector,
2025 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
2026 1.9 oster queue->raidPtr->logBytesPerSector, req->b_proc);
2027 1.1 oster
2028 1.1 oster if (rf_debugKernelAccess) {
2029 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
2030 1.9 oster (long) bp->b_blkno));
2031 1.1 oster }
2032 1.1 oster queue->numOutstanding++;
2033 1.1 oster queue->last_deq_sector = req->sectorOffset;
2034 1.9 oster /* acc wouldn't have been let in if there were any pending
2035 1.9 oster * reqs at any other priority */
2036 1.1 oster queue->curPriority = req->priority;
2037 1.1 oster
2038 1.166 oster db1_printf(("Going for %c to unit %d col %d\n",
2039 1.186 perry req->type, queue->raidPtr->raidid,
2040 1.166 oster queue->col));
2041 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
2042 1.9 oster (int) req->sectorOffset, (int) req->numSector,
2043 1.9 oster (int) (req->numSector <<
2044 1.9 oster queue->raidPtr->logBytesPerSector),
2045 1.9 oster (int) queue->raidPtr->logBytesPerSector));
2046 1.256 oster
2047 1.256 oster /*
2048 1.256 oster * XXX: drop lock here since this can block at
2049 1.256 oster * least with backing SCSI devices. Retake it
2050 1.256 oster * to minimize fuss with calling interfaces.
2051 1.256 oster */
2052 1.256 oster
2053 1.256 oster RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2054 1.247 oster bdev_strategy(bp);
2055 1.256 oster RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2056 1.1 oster break;
2057 1.9 oster
2058 1.1 oster default:
2059 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
2060 1.1 oster }
2061 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
2062 1.134 oster
2063 1.9 oster return (0);
2064 1.1 oster }
2065 1.9 oster /* this is the callback function associated with a I/O invoked from
2066 1.1 oster kernel code.
2067 1.1 oster */
2068 1.186 perry static void
2069 1.194 oster KernelWakeupFunc(struct buf *bp)
2070 1.9 oster {
2071 1.9 oster RF_DiskQueueData_t *req = NULL;
2072 1.9 oster RF_DiskQueue_t *queue;
2073 1.9 oster
2074 1.9 oster db1_printf(("recovering the request queue:\n"));
2075 1.285 mrg
2076 1.207 simonb req = bp->b_private;
2077 1.1 oster
2078 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
2079 1.1 oster
2080 1.286 mrg rf_lock_mutex2(queue->raidPtr->iodone_lock);
2081 1.285 mrg
2082 1.175 oster #if RF_ACC_TRACE > 0
2083 1.9 oster if (req->tracerec) {
2084 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
2085 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
2086 1.288 mrg rf_lock_mutex2(rf_tracing_mutex);
2087 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2088 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2089 1.9 oster req->tracerec->num_phys_ios++;
2090 1.288 mrg rf_unlock_mutex2(rf_tracing_mutex);
2091 1.9 oster }
2092 1.175 oster #endif
2093 1.1 oster
2094 1.230 ad /* XXX Ok, let's get aggressive... If b_error is set, let's go
2095 1.9 oster * ballistic, and mark the component as hosed... */
2096 1.36 oster
2097 1.230 ad if (bp->b_error != 0) {
2098 1.9 oster /* Mark the disk as dead */
2099 1.9 oster /* but only mark it once... */
2100 1.186 perry /* and only if it wouldn't leave this RAID set
2101 1.183 oster completely broken */
2102 1.193 oster if (((queue->raidPtr->Disks[queue->col].status ==
2103 1.193 oster rf_ds_optimal) ||
2104 1.193 oster (queue->raidPtr->Disks[queue->col].status ==
2105 1.193 oster rf_ds_used_spare)) &&
2106 1.193 oster (queue->raidPtr->numFailures <
2107 1.204 simonb queue->raidPtr->Layout.map->faultsTolerated)) {
2108 1.322 prlw1 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2109 1.136 oster queue->raidPtr->raidid,
2110 1.322 prlw1 bp->b_error,
2111 1.166 oster queue->raidPtr->Disks[queue->col].devname);
2112 1.166 oster queue->raidPtr->Disks[queue->col].status =
2113 1.9 oster rf_ds_failed;
2114 1.166 oster queue->raidPtr->status = rf_rs_degraded;
2115 1.9 oster queue->raidPtr->numFailures++;
2116 1.56 oster queue->raidPtr->numNewFailures++;
2117 1.9 oster } else { /* Disk is already dead... */
2118 1.9 oster /* printf("Disk already marked as dead!\n"); */
2119 1.9 oster }
2120 1.4 oster
2121 1.9 oster }
2122 1.4 oster
2123 1.143 oster /* Fill in the error value */
2124 1.230 ad req->error = bp->b_error;
2125 1.143 oster
2126 1.143 oster /* Drop this one on the "finished" queue... */
2127 1.143 oster TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2128 1.143 oster
2129 1.143 oster /* Let the raidio thread know there is work to be done. */
2130 1.286 mrg rf_signal_cond2(queue->raidPtr->iodone_cv);
2131 1.143 oster
2132 1.286 mrg rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2133 1.1 oster }
2134 1.1 oster
2135 1.1 oster
2136 1.1 oster /*
2137 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
2138 1.1 oster */
2139 1.186 perry static void
2140 1.169 oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2141 1.225 christos RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2142 1.169 oster void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2143 1.169 oster struct proc *b_proc)
2144 1.9 oster {
2145 1.9 oster /* bp->b_flags = B_PHYS | rw_flag; */
2146 1.242 ad bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2147 1.242 ad bp->b_oflags = 0;
2148 1.242 ad bp->b_cflags = 0;
2149 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
2150 1.9 oster bp->b_bufsize = bp->b_bcount;
2151 1.9 oster bp->b_error = 0;
2152 1.9 oster bp->b_dev = dev;
2153 1.187 christos bp->b_data = bf;
2154 1.275 mrg bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2155 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2156 1.1 oster if (bp->b_bcount == 0) {
2157 1.141 provos panic("bp->b_bcount is zero in InitBP!!");
2158 1.1 oster }
2159 1.161 fvdl bp->b_proc = b_proc;
2160 1.9 oster bp->b_iodone = cbFunc;
2161 1.207 simonb bp->b_private = cbArg;
2162 1.1 oster }
2163 1.1 oster
2164 1.1 oster /*
2165 1.1 oster * Wait interruptibly for an exclusive lock.
2166 1.1 oster *
2167 1.1 oster * XXX
2168 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2169 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2170 1.1 oster */
2171 1.1 oster static int
2172 1.169 oster raidlock(struct raid_softc *rs)
2173 1.1 oster {
2174 1.9 oster int error;
2175 1.1 oster
2176 1.335 mlelstv error = 0;
2177 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2178 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2179 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2180 1.327 pgoyette error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2181 1.327 pgoyette if (error != 0)
2182 1.335 mlelstv goto done;
2183 1.1 oster }
2184 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2185 1.335 mlelstv done:
2186 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2187 1.335 mlelstv return (error);
2188 1.1 oster }
2189 1.1 oster /*
2190 1.1 oster * Unlock and wake up any waiters.
2191 1.1 oster */
2192 1.1 oster static void
2193 1.169 oster raidunlock(struct raid_softc *rs)
2194 1.1 oster {
2195 1.1 oster
2196 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2197 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2198 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2199 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2200 1.327 pgoyette cv_broadcast(&rs->sc_cv);
2201 1.1 oster }
2202 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2203 1.11 oster }
2204 1.186 perry
2205 1.11 oster
2206 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2207 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2208 1.269 jld #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2209 1.11 oster
2210 1.276 mrg static daddr_t
2211 1.276 mrg rf_component_info_offset(void)
2212 1.276 mrg {
2213 1.276 mrg
2214 1.276 mrg return RF_COMPONENT_INFO_OFFSET;
2215 1.276 mrg }
2216 1.276 mrg
2217 1.276 mrg static daddr_t
2218 1.276 mrg rf_component_info_size(unsigned secsize)
2219 1.276 mrg {
2220 1.276 mrg daddr_t info_size;
2221 1.276 mrg
2222 1.276 mrg KASSERT(secsize);
2223 1.276 mrg if (secsize > RF_COMPONENT_INFO_SIZE)
2224 1.276 mrg info_size = secsize;
2225 1.276 mrg else
2226 1.276 mrg info_size = RF_COMPONENT_INFO_SIZE;
2227 1.276 mrg
2228 1.276 mrg return info_size;
2229 1.276 mrg }
2230 1.276 mrg
2231 1.276 mrg static daddr_t
2232 1.276 mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
2233 1.276 mrg {
2234 1.276 mrg daddr_t map_offset;
2235 1.276 mrg
2236 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2237 1.276 mrg if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2238 1.276 mrg map_offset = raidPtr->bytesPerSector;
2239 1.276 mrg else
2240 1.276 mrg map_offset = RF_COMPONENT_INFO_SIZE;
2241 1.276 mrg map_offset += rf_component_info_offset();
2242 1.276 mrg
2243 1.276 mrg return map_offset;
2244 1.276 mrg }
2245 1.276 mrg
2246 1.276 mrg static daddr_t
2247 1.276 mrg rf_parity_map_size(RF_Raid_t *raidPtr)
2248 1.276 mrg {
2249 1.276 mrg daddr_t map_size;
2250 1.276 mrg
2251 1.276 mrg if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2252 1.276 mrg map_size = raidPtr->bytesPerSector;
2253 1.276 mrg else
2254 1.276 mrg map_size = RF_PARITY_MAP_SIZE;
2255 1.276 mrg
2256 1.276 mrg return map_size;
2257 1.276 mrg }
2258 1.276 mrg
2259 1.186 perry int
2260 1.269 jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2261 1.12 oster {
2262 1.269 jld RF_ComponentLabel_t *clabel;
2263 1.269 jld
2264 1.269 jld clabel = raidget_component_label(raidPtr, col);
2265 1.269 jld clabel->clean = RF_RAID_CLEAN;
2266 1.269 jld raidflush_component_label(raidPtr, col);
2267 1.12 oster return(0);
2268 1.12 oster }
2269 1.12 oster
2270 1.12 oster
2271 1.186 perry int
2272 1.269 jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2273 1.11 oster {
2274 1.269 jld RF_ComponentLabel_t *clabel;
2275 1.269 jld
2276 1.269 jld clabel = raidget_component_label(raidPtr, col);
2277 1.269 jld clabel->clean = RF_RAID_DIRTY;
2278 1.269 jld raidflush_component_label(raidPtr, col);
2279 1.11 oster return(0);
2280 1.11 oster }
2281 1.11 oster
2282 1.11 oster int
2283 1.269 jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2284 1.269 jld {
2285 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2286 1.276 mrg return raidread_component_label(raidPtr->bytesPerSector,
2287 1.276 mrg raidPtr->Disks[col].dev,
2288 1.269 jld raidPtr->raid_cinfo[col].ci_vp,
2289 1.269 jld &raidPtr->raid_cinfo[col].ci_label);
2290 1.269 jld }
2291 1.269 jld
2292 1.269 jld RF_ComponentLabel_t *
2293 1.269 jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2294 1.269 jld {
2295 1.269 jld return &raidPtr->raid_cinfo[col].ci_label;
2296 1.269 jld }
2297 1.269 jld
2298 1.269 jld int
2299 1.269 jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2300 1.269 jld {
2301 1.269 jld RF_ComponentLabel_t *label;
2302 1.269 jld
2303 1.269 jld label = &raidPtr->raid_cinfo[col].ci_label;
2304 1.269 jld label->mod_counter = raidPtr->mod_counter;
2305 1.269 jld #ifndef RF_NO_PARITY_MAP
2306 1.269 jld label->parity_map_modcount = label->mod_counter;
2307 1.269 jld #endif
2308 1.276 mrg return raidwrite_component_label(raidPtr->bytesPerSector,
2309 1.276 mrg raidPtr->Disks[col].dev,
2310 1.269 jld raidPtr->raid_cinfo[col].ci_vp, label);
2311 1.269 jld }
2312 1.269 jld
2313 1.269 jld
2314 1.269 jld static int
2315 1.276 mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2316 1.269 jld RF_ComponentLabel_t *clabel)
2317 1.269 jld {
2318 1.269 jld return raidread_component_area(dev, b_vp, clabel,
2319 1.269 jld sizeof(RF_ComponentLabel_t),
2320 1.276 mrg rf_component_info_offset(),
2321 1.276 mrg rf_component_info_size(secsize));
2322 1.269 jld }
2323 1.269 jld
2324 1.269 jld /* ARGSUSED */
2325 1.269 jld static int
2326 1.269 jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2327 1.269 jld size_t msize, daddr_t offset, daddr_t dsize)
2328 1.11 oster {
2329 1.11 oster struct buf *bp;
2330 1.11 oster int error;
2331 1.186 perry
2332 1.11 oster /* XXX should probably ensure that we don't try to do this if
2333 1.186 perry someone has changed rf_protected_sectors. */
2334 1.11 oster
2335 1.98 oster if (b_vp == NULL) {
2336 1.98 oster /* For whatever reason, this component is not valid.
2337 1.98 oster Don't try to read a component label from it. */
2338 1.98 oster return(EINVAL);
2339 1.98 oster }
2340 1.98 oster
2341 1.11 oster /* get a block of the appropriate size... */
2342 1.269 jld bp = geteblk((int)dsize);
2343 1.11 oster bp->b_dev = dev;
2344 1.11 oster
2345 1.11 oster /* get our ducks in a row for the read */
2346 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2347 1.269 jld bp->b_bcount = dsize;
2348 1.100 chs bp->b_flags |= B_READ;
2349 1.269 jld bp->b_resid = dsize;
2350 1.11 oster
2351 1.331 mlelstv bdev_strategy(bp);
2352 1.340 christos error = biowait(bp);
2353 1.11 oster
2354 1.11 oster if (!error) {
2355 1.269 jld memcpy(data, bp->b_data, msize);
2356 1.204 simonb }
2357 1.11 oster
2358 1.233 ad brelse(bp, 0);
2359 1.11 oster return(error);
2360 1.11 oster }
2361 1.269 jld
2362 1.269 jld
2363 1.269 jld static int
2364 1.276 mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2365 1.276 mrg RF_ComponentLabel_t *clabel)
2366 1.269 jld {
2367 1.269 jld return raidwrite_component_area(dev, b_vp, clabel,
2368 1.269 jld sizeof(RF_ComponentLabel_t),
2369 1.276 mrg rf_component_info_offset(),
2370 1.276 mrg rf_component_info_size(secsize), 0);
2371 1.269 jld }
2372 1.269 jld
2373 1.11 oster /* ARGSUSED */
2374 1.269 jld static int
2375 1.269 jld raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2376 1.269 jld size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2377 1.11 oster {
2378 1.11 oster struct buf *bp;
2379 1.11 oster int error;
2380 1.11 oster
2381 1.11 oster /* get a block of the appropriate size... */
2382 1.269 jld bp = geteblk((int)dsize);
2383 1.11 oster bp->b_dev = dev;
2384 1.11 oster
2385 1.11 oster /* get our ducks in a row for the write */
2386 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2387 1.269 jld bp->b_bcount = dsize;
2388 1.269 jld bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2389 1.269 jld bp->b_resid = dsize;
2390 1.11 oster
2391 1.269 jld memset(bp->b_data, 0, dsize);
2392 1.269 jld memcpy(bp->b_data, data, msize);
2393 1.11 oster
2394 1.331 mlelstv bdev_strategy(bp);
2395 1.269 jld if (asyncp)
2396 1.269 jld return 0;
2397 1.340 christos error = biowait(bp);
2398 1.233 ad brelse(bp, 0);
2399 1.11 oster if (error) {
2400 1.48 oster #if 1
2401 1.11 oster printf("Failed to write RAID component info!\n");
2402 1.48 oster #endif
2403 1.11 oster }
2404 1.11 oster
2405 1.11 oster return(error);
2406 1.1 oster }
2407 1.12 oster
2408 1.186 perry void
2409 1.269 jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2410 1.269 jld {
2411 1.269 jld int c;
2412 1.269 jld
2413 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2414 1.269 jld /* Skip dead disks. */
2415 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2416 1.269 jld continue;
2417 1.269 jld /* XXXjld: what if an error occurs here? */
2418 1.269 jld raidwrite_component_area(raidPtr->Disks[c].dev,
2419 1.269 jld raidPtr->raid_cinfo[c].ci_vp, map,
2420 1.269 jld RF_PARITYMAP_NBYTE,
2421 1.276 mrg rf_parity_map_offset(raidPtr),
2422 1.276 mrg rf_parity_map_size(raidPtr), 0);
2423 1.269 jld }
2424 1.269 jld }
2425 1.269 jld
2426 1.269 jld void
2427 1.269 jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2428 1.269 jld {
2429 1.269 jld struct rf_paritymap_ondisk tmp;
2430 1.272 oster int c,first;
2431 1.269 jld
2432 1.272 oster first=1;
2433 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2434 1.269 jld /* Skip dead disks. */
2435 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2436 1.269 jld continue;
2437 1.269 jld raidread_component_area(raidPtr->Disks[c].dev,
2438 1.269 jld raidPtr->raid_cinfo[c].ci_vp, &tmp,
2439 1.269 jld RF_PARITYMAP_NBYTE,
2440 1.276 mrg rf_parity_map_offset(raidPtr),
2441 1.276 mrg rf_parity_map_size(raidPtr));
2442 1.272 oster if (first) {
2443 1.269 jld memcpy(map, &tmp, sizeof(*map));
2444 1.272 oster first = 0;
2445 1.269 jld } else {
2446 1.269 jld rf_paritymap_merge(map, &tmp);
2447 1.269 jld }
2448 1.269 jld }
2449 1.269 jld }
2450 1.269 jld
2451 1.269 jld void
2452 1.169 oster rf_markalldirty(RF_Raid_t *raidPtr)
2453 1.12 oster {
2454 1.269 jld RF_ComponentLabel_t *clabel;
2455 1.146 oster int sparecol;
2456 1.166 oster int c;
2457 1.166 oster int j;
2458 1.166 oster int scol = -1;
2459 1.12 oster
2460 1.12 oster raidPtr->mod_counter++;
2461 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2462 1.166 oster /* we don't want to touch (at all) a disk that has
2463 1.166 oster failed */
2464 1.166 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2465 1.269 jld clabel = raidget_component_label(raidPtr, c);
2466 1.269 jld if (clabel->status == rf_ds_spared) {
2467 1.186 perry /* XXX do something special...
2468 1.186 perry but whatever you do, don't
2469 1.166 oster try to access it!! */
2470 1.166 oster } else {
2471 1.269 jld raidmarkdirty(raidPtr, c);
2472 1.12 oster }
2473 1.166 oster }
2474 1.186 perry }
2475 1.146 oster
2476 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2477 1.12 oster sparecol = raidPtr->numCol + c;
2478 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2479 1.186 perry /*
2480 1.186 perry
2481 1.186 perry we claim this disk is "optimal" if it's
2482 1.186 perry rf_ds_used_spare, as that means it should be
2483 1.186 perry directly substitutable for the disk it replaced.
2484 1.12 oster We note that too...
2485 1.12 oster
2486 1.12 oster */
2487 1.12 oster
2488 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2489 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2490 1.166 oster scol = j;
2491 1.166 oster break;
2492 1.12 oster }
2493 1.12 oster }
2494 1.186 perry
2495 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2496 1.12 oster /* make sure status is noted */
2497 1.146 oster
2498 1.269 jld raid_init_component_label(raidPtr, clabel);
2499 1.146 oster
2500 1.269 jld clabel->row = 0;
2501 1.269 jld clabel->column = scol;
2502 1.146 oster /* Note: we *don't* change status from rf_ds_used_spare
2503 1.146 oster to rf_ds_optimal */
2504 1.146 oster /* clabel.status = rf_ds_optimal; */
2505 1.186 perry
2506 1.269 jld raidmarkdirty(raidPtr, sparecol);
2507 1.12 oster }
2508 1.12 oster }
2509 1.12 oster }
2510 1.12 oster
2511 1.13 oster
2512 1.13 oster void
2513 1.169 oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2514 1.13 oster {
2515 1.269 jld RF_ComponentLabel_t *clabel;
2516 1.13 oster int sparecol;
2517 1.166 oster int c;
2518 1.166 oster int j;
2519 1.166 oster int scol;
2520 1.341 christos struct raid_softc *rs = raidPtr->softc;
2521 1.13 oster
2522 1.13 oster scol = -1;
2523 1.13 oster
2524 1.186 perry /* XXX should do extra checks to make sure things really are clean,
2525 1.13 oster rather than blindly setting the clean bit... */
2526 1.13 oster
2527 1.13 oster raidPtr->mod_counter++;
2528 1.13 oster
2529 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2530 1.166 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
2531 1.269 jld clabel = raidget_component_label(raidPtr, c);
2532 1.201 oster /* make sure status is noted */
2533 1.269 jld clabel->status = rf_ds_optimal;
2534 1.201 oster
2535 1.214 oster /* note what unit we are configured as */
2536 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2537 1.341 christos clabel->last_unit = raidPtr->raidid;
2538 1.214 oster
2539 1.269 jld raidflush_component_label(raidPtr, c);
2540 1.166 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2541 1.166 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2542 1.269 jld raidmarkclean(raidPtr, c);
2543 1.91 oster }
2544 1.166 oster }
2545 1.186 perry }
2546 1.166 oster /* else we don't touch it.. */
2547 1.186 perry }
2548 1.63 oster
2549 1.63 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2550 1.63 oster sparecol = raidPtr->numCol + c;
2551 1.110 oster /* Need to ensure that the reconstruct actually completed! */
2552 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2553 1.186 perry /*
2554 1.186 perry
2555 1.186 perry we claim this disk is "optimal" if it's
2556 1.186 perry rf_ds_used_spare, as that means it should be
2557 1.186 perry directly substitutable for the disk it replaced.
2558 1.63 oster We note that too...
2559 1.63 oster
2560 1.63 oster */
2561 1.63 oster
2562 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2563 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2564 1.166 oster scol = j;
2565 1.166 oster break;
2566 1.63 oster }
2567 1.63 oster }
2568 1.186 perry
2569 1.63 oster /* XXX shouldn't *really* need this... */
2570 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2571 1.63 oster /* make sure status is noted */
2572 1.63 oster
2573 1.269 jld raid_init_component_label(raidPtr, clabel);
2574 1.269 jld
2575 1.269 jld clabel->column = scol;
2576 1.269 jld clabel->status = rf_ds_optimal;
2577 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2578 1.341 christos clabel->last_unit = raidPtr->raidid;
2579 1.63 oster
2580 1.269 jld raidflush_component_label(raidPtr, sparecol);
2581 1.91 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2582 1.13 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2583 1.269 jld raidmarkclean(raidPtr, sparecol);
2584 1.13 oster }
2585 1.13 oster }
2586 1.13 oster }
2587 1.13 oster }
2588 1.68 oster }
2589 1.68 oster
2590 1.68 oster void
2591 1.169 oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2592 1.69 oster {
2593 1.69 oster
2594 1.69 oster if (vp != NULL) {
2595 1.69 oster if (auto_configured == 1) {
2596 1.96 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2597 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2598 1.69 oster vput(vp);
2599 1.186 perry
2600 1.186 perry } else {
2601 1.244 ad (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2602 1.69 oster }
2603 1.186 perry }
2604 1.69 oster }
2605 1.69 oster
2606 1.69 oster
2607 1.69 oster void
2608 1.169 oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2609 1.68 oster {
2610 1.186 perry int r,c;
2611 1.69 oster struct vnode *vp;
2612 1.69 oster int acd;
2613 1.68 oster
2614 1.68 oster
2615 1.68 oster /* We take this opportunity to close the vnodes like we should.. */
2616 1.68 oster
2617 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2618 1.166 oster vp = raidPtr->raid_cinfo[c].ci_vp;
2619 1.166 oster acd = raidPtr->Disks[c].auto_configured;
2620 1.166 oster rf_close_component(raidPtr, vp, acd);
2621 1.166 oster raidPtr->raid_cinfo[c].ci_vp = NULL;
2622 1.166 oster raidPtr->Disks[c].auto_configured = 0;
2623 1.68 oster }
2624 1.166 oster
2625 1.68 oster for (r = 0; r < raidPtr->numSpare; r++) {
2626 1.166 oster vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2627 1.166 oster acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2628 1.69 oster rf_close_component(raidPtr, vp, acd);
2629 1.166 oster raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2630 1.166 oster raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2631 1.68 oster }
2632 1.37 oster }
2633 1.63 oster
2634 1.37 oster
2635 1.186 perry void
2636 1.353 mrg rf_ReconThread(struct rf_recon_req_internal *req)
2637 1.37 oster {
2638 1.37 oster int s;
2639 1.37 oster RF_Raid_t *raidPtr;
2640 1.37 oster
2641 1.37 oster s = splbio();
2642 1.37 oster raidPtr = (RF_Raid_t *) req->raidPtr;
2643 1.37 oster raidPtr->recon_in_progress = 1;
2644 1.37 oster
2645 1.166 oster rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2646 1.37 oster ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2647 1.37 oster
2648 1.37 oster RF_Free(req, sizeof(*req));
2649 1.37 oster
2650 1.37 oster raidPtr->recon_in_progress = 0;
2651 1.37 oster splx(s);
2652 1.37 oster
2653 1.37 oster /* That's all... */
2654 1.204 simonb kthread_exit(0); /* does not return */
2655 1.37 oster }
2656 1.37 oster
2657 1.37 oster void
2658 1.169 oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
2659 1.37 oster {
2660 1.37 oster int retcode;
2661 1.37 oster int s;
2662 1.37 oster
2663 1.184 oster raidPtr->parity_rewrite_stripes_done = 0;
2664 1.37 oster raidPtr->parity_rewrite_in_progress = 1;
2665 1.37 oster s = splbio();
2666 1.37 oster retcode = rf_RewriteParity(raidPtr);
2667 1.37 oster splx(s);
2668 1.37 oster if (retcode) {
2669 1.279 christos printf("raid%d: Error re-writing parity (%d)!\n",
2670 1.279 christos raidPtr->raidid, retcode);
2671 1.37 oster } else {
2672 1.37 oster /* set the clean bit! If we shutdown correctly,
2673 1.37 oster the clean bit on each component label will get
2674 1.37 oster set */
2675 1.37 oster raidPtr->parity_good = RF_RAID_CLEAN;
2676 1.37 oster }
2677 1.37 oster raidPtr->parity_rewrite_in_progress = 0;
2678 1.85 oster
2679 1.85 oster /* Anyone waiting for us to stop? If so, inform them... */
2680 1.85 oster if (raidPtr->waitShutdown) {
2681 1.85 oster wakeup(&raidPtr->parity_rewrite_in_progress);
2682 1.85 oster }
2683 1.37 oster
2684 1.37 oster /* That's all... */
2685 1.204 simonb kthread_exit(0); /* does not return */
2686 1.37 oster }
2687 1.37 oster
2688 1.37 oster
2689 1.37 oster void
2690 1.169 oster rf_CopybackThread(RF_Raid_t *raidPtr)
2691 1.37 oster {
2692 1.37 oster int s;
2693 1.37 oster
2694 1.37 oster raidPtr->copyback_in_progress = 1;
2695 1.37 oster s = splbio();
2696 1.37 oster rf_CopybackReconstructedData(raidPtr);
2697 1.37 oster splx(s);
2698 1.37 oster raidPtr->copyback_in_progress = 0;
2699 1.37 oster
2700 1.37 oster /* That's all... */
2701 1.204 simonb kthread_exit(0); /* does not return */
2702 1.37 oster }
2703 1.37 oster
2704 1.37 oster
2705 1.37 oster void
2706 1.353 mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
2707 1.37 oster {
2708 1.37 oster int s;
2709 1.37 oster RF_Raid_t *raidPtr;
2710 1.186 perry
2711 1.37 oster s = splbio();
2712 1.37 oster raidPtr = req->raidPtr;
2713 1.37 oster raidPtr->recon_in_progress = 1;
2714 1.166 oster rf_ReconstructInPlace(raidPtr, req->col);
2715 1.37 oster RF_Free(req, sizeof(*req));
2716 1.37 oster raidPtr->recon_in_progress = 0;
2717 1.37 oster splx(s);
2718 1.37 oster
2719 1.37 oster /* That's all... */
2720 1.204 simonb kthread_exit(0); /* does not return */
2721 1.48 oster }
2722 1.48 oster
2723 1.213 christos static RF_AutoConfig_t *
2724 1.213 christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2725 1.276 mrg const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2726 1.276 mrg unsigned secsize)
2727 1.213 christos {
2728 1.213 christos int good_one = 0;
2729 1.213 christos RF_ComponentLabel_t *clabel;
2730 1.213 christos RF_AutoConfig_t *ac;
2731 1.213 christos
2732 1.213 christos clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2733 1.213 christos if (clabel == NULL) {
2734 1.213 christos oomem:
2735 1.213 christos while(ac_list) {
2736 1.213 christos ac = ac_list;
2737 1.213 christos if (ac->clabel)
2738 1.213 christos free(ac->clabel, M_RAIDFRAME);
2739 1.213 christos ac_list = ac_list->next;
2740 1.213 christos free(ac, M_RAIDFRAME);
2741 1.213 christos }
2742 1.213 christos printf("RAID auto config: out of memory!\n");
2743 1.213 christos return NULL; /* XXX probably should panic? */
2744 1.213 christos }
2745 1.213 christos
2746 1.276 mrg if (!raidread_component_label(secsize, dev, vp, clabel)) {
2747 1.276 mrg /* Got the label. Does it look reasonable? */
2748 1.284 mrg if (rf_reasonable_label(clabel, numsecs) &&
2749 1.282 enami (rf_component_label_partitionsize(clabel) <= size)) {
2750 1.224 oster #ifdef DEBUG
2751 1.276 mrg printf("Component on: %s: %llu\n",
2752 1.213 christos cname, (unsigned long long)size);
2753 1.276 mrg rf_print_component_label(clabel);
2754 1.213 christos #endif
2755 1.276 mrg /* if it's reasonable, add it, else ignore it. */
2756 1.276 mrg ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2757 1.213 christos M_NOWAIT);
2758 1.276 mrg if (ac == NULL) {
2759 1.276 mrg free(clabel, M_RAIDFRAME);
2760 1.276 mrg goto oomem;
2761 1.276 mrg }
2762 1.276 mrg strlcpy(ac->devname, cname, sizeof(ac->devname));
2763 1.276 mrg ac->dev = dev;
2764 1.276 mrg ac->vp = vp;
2765 1.276 mrg ac->clabel = clabel;
2766 1.276 mrg ac->next = ac_list;
2767 1.276 mrg ac_list = ac;
2768 1.276 mrg good_one = 1;
2769 1.276 mrg }
2770 1.213 christos }
2771 1.213 christos if (!good_one) {
2772 1.213 christos /* cleanup */
2773 1.213 christos free(clabel, M_RAIDFRAME);
2774 1.213 christos vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2775 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2776 1.213 christos vput(vp);
2777 1.213 christos }
2778 1.213 christos return ac_list;
2779 1.213 christos }
2780 1.213 christos
2781 1.48 oster RF_AutoConfig_t *
2782 1.259 cegger rf_find_raid_components(void)
2783 1.48 oster {
2784 1.48 oster struct vnode *vp;
2785 1.48 oster struct disklabel label;
2786 1.261 dyoung device_t dv;
2787 1.268 dyoung deviter_t di;
2788 1.48 oster dev_t dev;
2789 1.296 buhrow int bmajor, bminor, wedge, rf_part_found;
2790 1.48 oster int error;
2791 1.48 oster int i;
2792 1.48 oster RF_AutoConfig_t *ac_list;
2793 1.276 mrg uint64_t numsecs;
2794 1.276 mrg unsigned secsize;
2795 1.335 mlelstv int dowedges;
2796 1.48 oster
2797 1.48 oster /* initialize the AutoConfig list */
2798 1.48 oster ac_list = NULL;
2799 1.48 oster
2800 1.335 mlelstv /*
2801 1.335 mlelstv * we begin by trolling through *all* the devices on the system *twice*
2802 1.335 mlelstv * first we scan for wedges, second for other devices. This avoids
2803 1.335 mlelstv * using a raw partition instead of a wedge that covers the whole disk
2804 1.335 mlelstv */
2805 1.48 oster
2806 1.335 mlelstv for (dowedges=1; dowedges>=0; --dowedges) {
2807 1.335 mlelstv for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2808 1.335 mlelstv dv = deviter_next(&di)) {
2809 1.48 oster
2810 1.335 mlelstv /* we are only interested in disks... */
2811 1.335 mlelstv if (device_class(dv) != DV_DISK)
2812 1.335 mlelstv continue;
2813 1.48 oster
2814 1.335 mlelstv /* we don't care about floppies... */
2815 1.335 mlelstv if (device_is_a(dv, "fd")) {
2816 1.335 mlelstv continue;
2817 1.335 mlelstv }
2818 1.129 oster
2819 1.335 mlelstv /* we don't care about CD's... */
2820 1.335 mlelstv if (device_is_a(dv, "cd")) {
2821 1.335 mlelstv continue;
2822 1.335 mlelstv }
2823 1.129 oster
2824 1.335 mlelstv /* we don't care about md's... */
2825 1.335 mlelstv if (device_is_a(dv, "md")) {
2826 1.335 mlelstv continue;
2827 1.335 mlelstv }
2828 1.248 oster
2829 1.335 mlelstv /* hdfd is the Atari/Hades floppy driver */
2830 1.335 mlelstv if (device_is_a(dv, "hdfd")) {
2831 1.335 mlelstv continue;
2832 1.335 mlelstv }
2833 1.206 thorpej
2834 1.335 mlelstv /* fdisa is the Atari/Milan floppy driver */
2835 1.335 mlelstv if (device_is_a(dv, "fdisa")) {
2836 1.335 mlelstv continue;
2837 1.335 mlelstv }
2838 1.186 perry
2839 1.335 mlelstv /* are we in the wedges pass ? */
2840 1.335 mlelstv wedge = device_is_a(dv, "dk");
2841 1.335 mlelstv if (wedge != dowedges) {
2842 1.335 mlelstv continue;
2843 1.335 mlelstv }
2844 1.48 oster
2845 1.335 mlelstv /* need to find the device_name_to_block_device_major stuff */
2846 1.335 mlelstv bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2847 1.296 buhrow
2848 1.335 mlelstv rf_part_found = 0; /*No raid partition as yet*/
2849 1.48 oster
2850 1.335 mlelstv /* get a vnode for the raw partition of this disk */
2851 1.335 mlelstv bminor = minor(device_unit(dv));
2852 1.335 mlelstv dev = wedge ? makedev(bmajor, bminor) :
2853 1.335 mlelstv MAKEDISKDEV(bmajor, bminor, RAW_PART);
2854 1.335 mlelstv if (bdevvp(dev, &vp))
2855 1.335 mlelstv panic("RAID can't alloc vnode");
2856 1.48 oster
2857 1.335 mlelstv error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2858 1.48 oster
2859 1.335 mlelstv if (error) {
2860 1.335 mlelstv /* "Who cares." Continue looking
2861 1.335 mlelstv for something that exists*/
2862 1.335 mlelstv vput(vp);
2863 1.335 mlelstv continue;
2864 1.335 mlelstv }
2865 1.48 oster
2866 1.335 mlelstv error = getdisksize(vp, &numsecs, &secsize);
2867 1.213 christos if (error) {
2868 1.339 mlelstv /*
2869 1.339 mlelstv * Pseudo devices like vnd and cgd can be
2870 1.339 mlelstv * opened but may still need some configuration.
2871 1.339 mlelstv * Ignore these quietly.
2872 1.339 mlelstv */
2873 1.339 mlelstv if (error != ENXIO)
2874 1.339 mlelstv printf("RAIDframe: can't get disk size"
2875 1.339 mlelstv " for dev %s (%d)\n",
2876 1.339 mlelstv device_xname(dv), error);
2877 1.241 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2878 1.241 oster VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2879 1.241 oster vput(vp);
2880 1.213 christos continue;
2881 1.213 christos }
2882 1.335 mlelstv if (wedge) {
2883 1.335 mlelstv struct dkwedge_info dkw;
2884 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2885 1.335 mlelstv NOCRED);
2886 1.335 mlelstv if (error) {
2887 1.335 mlelstv printf("RAIDframe: can't get wedge info for "
2888 1.335 mlelstv "dev %s (%d)\n", device_xname(dv), error);
2889 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2890 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2891 1.335 mlelstv vput(vp);
2892 1.335 mlelstv continue;
2893 1.335 mlelstv }
2894 1.213 christos
2895 1.335 mlelstv if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2896 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2897 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2898 1.335 mlelstv vput(vp);
2899 1.335 mlelstv continue;
2900 1.335 mlelstv }
2901 1.335 mlelstv
2902 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp,
2903 1.335 mlelstv device_xname(dv), dkw.dkw_size, numsecs, secsize);
2904 1.335 mlelstv rf_part_found = 1; /*There is a raid component on this disk*/
2905 1.228 christos continue;
2906 1.241 oster }
2907 1.213 christos
2908 1.335 mlelstv /* Ok, the disk exists. Go get the disklabel. */
2909 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2910 1.335 mlelstv if (error) {
2911 1.335 mlelstv /*
2912 1.335 mlelstv * XXX can't happen - open() would
2913 1.335 mlelstv * have errored out (or faked up one)
2914 1.335 mlelstv */
2915 1.335 mlelstv if (error != ENOTTY)
2916 1.335 mlelstv printf("RAIDframe: can't get label for dev "
2917 1.335 mlelstv "%s (%d)\n", device_xname(dv), error);
2918 1.335 mlelstv }
2919 1.48 oster
2920 1.335 mlelstv /* don't need this any more. We'll allocate it again
2921 1.335 mlelstv a little later if we really do... */
2922 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2923 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2924 1.335 mlelstv vput(vp);
2925 1.48 oster
2926 1.335 mlelstv if (error)
2927 1.48 oster continue;
2928 1.48 oster
2929 1.335 mlelstv rf_part_found = 0; /*No raid partitions yet*/
2930 1.335 mlelstv for (i = 0; i < label.d_npartitions; i++) {
2931 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2932 1.335 mlelstv
2933 1.335 mlelstv /* We only support partitions marked as RAID */
2934 1.335 mlelstv if (label.d_partitions[i].p_fstype != FS_RAID)
2935 1.335 mlelstv continue;
2936 1.335 mlelstv
2937 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2938 1.335 mlelstv if (bdevvp(dev, &vp))
2939 1.335 mlelstv panic("RAID can't alloc vnode");
2940 1.335 mlelstv
2941 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2942 1.335 mlelstv if (error) {
2943 1.335 mlelstv /* Whatever... */
2944 1.335 mlelstv vput(vp);
2945 1.335 mlelstv continue;
2946 1.335 mlelstv }
2947 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2948 1.335 mlelstv device_xname(dv), 'a' + i);
2949 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2950 1.335 mlelstv label.d_partitions[i].p_size, numsecs, secsize);
2951 1.335 mlelstv rf_part_found = 1; /*There is at least one raid partition on this disk*/
2952 1.48 oster }
2953 1.296 buhrow
2954 1.335 mlelstv /*
2955 1.335 mlelstv *If there is no raid component on this disk, either in a
2956 1.335 mlelstv *disklabel or inside a wedge, check the raw partition as well,
2957 1.335 mlelstv *as it is possible to configure raid components on raw disk
2958 1.335 mlelstv *devices.
2959 1.335 mlelstv */
2960 1.296 buhrow
2961 1.335 mlelstv if (!rf_part_found) {
2962 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2963 1.296 buhrow
2964 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2965 1.335 mlelstv if (bdevvp(dev, &vp))
2966 1.335 mlelstv panic("RAID can't alloc vnode");
2967 1.335 mlelstv
2968 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2969 1.335 mlelstv if (error) {
2970 1.335 mlelstv /* Whatever... */
2971 1.335 mlelstv vput(vp);
2972 1.335 mlelstv continue;
2973 1.335 mlelstv }
2974 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2975 1.335 mlelstv device_xname(dv), 'a' + RAW_PART);
2976 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2977 1.335 mlelstv label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2978 1.296 buhrow }
2979 1.48 oster }
2980 1.335 mlelstv deviter_release(&di);
2981 1.48 oster }
2982 1.213 christos return ac_list;
2983 1.48 oster }
2984 1.186 perry
2985 1.213 christos
2986 1.292 oster int
2987 1.284 mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
2988 1.48 oster {
2989 1.186 perry
2990 1.48 oster if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2991 1.48 oster (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2992 1.48 oster ((clabel->clean == RF_RAID_CLEAN) ||
2993 1.48 oster (clabel->clean == RF_RAID_DIRTY)) &&
2994 1.186 perry clabel->row >=0 &&
2995 1.186 perry clabel->column >= 0 &&
2996 1.48 oster clabel->num_rows > 0 &&
2997 1.48 oster clabel->num_columns > 0 &&
2998 1.186 perry clabel->row < clabel->num_rows &&
2999 1.48 oster clabel->column < clabel->num_columns &&
3000 1.48 oster clabel->blockSize > 0 &&
3001 1.282 enami /*
3002 1.282 enami * numBlocksHi may contain garbage, but it is ok since
3003 1.282 enami * the type is unsigned. If it is really garbage,
3004 1.282 enami * rf_fix_old_label_size() will fix it.
3005 1.282 enami */
3006 1.282 enami rf_component_label_numblocks(clabel) > 0) {
3007 1.284 mrg /*
3008 1.284 mrg * label looks reasonable enough...
3009 1.284 mrg * let's make sure it has no old garbage.
3010 1.284 mrg */
3011 1.292 oster if (numsecs)
3012 1.292 oster rf_fix_old_label_size(clabel, numsecs);
3013 1.48 oster return(1);
3014 1.48 oster }
3015 1.48 oster return(0);
3016 1.48 oster }
3017 1.48 oster
3018 1.48 oster
3019 1.278 mrg /*
3020 1.278 mrg * For reasons yet unknown, some old component labels have garbage in
3021 1.278 mrg * the newer numBlocksHi region, and this causes lossage. Since those
3022 1.278 mrg * disks will also have numsecs set to less than 32 bits of sectors,
3023 1.299 oster * we can determine when this corruption has occurred, and fix it.
3024 1.284 mrg *
3025 1.284 mrg * The exact same problem, with the same unknown reason, happens to
3026 1.284 mrg * the partitionSizeHi member as well.
3027 1.278 mrg */
3028 1.278 mrg static void
3029 1.278 mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3030 1.278 mrg {
3031 1.278 mrg
3032 1.284 mrg if (numsecs < ((uint64_t)1 << 32)) {
3033 1.284 mrg if (clabel->numBlocksHi) {
3034 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3035 1.284 mrg "numBlocksHi set\n"
3036 1.284 mrg "WARNING: resetting numBlocksHi to zero.\n");
3037 1.284 mrg clabel->numBlocksHi = 0;
3038 1.284 mrg }
3039 1.284 mrg
3040 1.284 mrg if (clabel->partitionSizeHi) {
3041 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3042 1.284 mrg "partitionSizeHi set\n"
3043 1.284 mrg "WARNING: resetting partitionSizeHi to zero.\n");
3044 1.284 mrg clabel->partitionSizeHi = 0;
3045 1.284 mrg }
3046 1.278 mrg }
3047 1.278 mrg }
3048 1.278 mrg
3049 1.278 mrg
3050 1.224 oster #ifdef DEBUG
3051 1.48 oster void
3052 1.169 oster rf_print_component_label(RF_ComponentLabel_t *clabel)
3053 1.48 oster {
3054 1.282 enami uint64_t numBlocks;
3055 1.308 christos static const char *rp[] = {
3056 1.308 christos "No", "Force", "Soft", "*invalid*"
3057 1.308 christos };
3058 1.308 christos
3059 1.275 mrg
3060 1.282 enami numBlocks = rf_component_label_numblocks(clabel);
3061 1.275 mrg
3062 1.48 oster printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3063 1.186 perry clabel->row, clabel->column,
3064 1.48 oster clabel->num_rows, clabel->num_columns);
3065 1.48 oster printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3066 1.48 oster clabel->version, clabel->serial_number,
3067 1.48 oster clabel->mod_counter);
3068 1.48 oster printf(" Clean: %s Status: %d\n",
3069 1.271 dyoung clabel->clean ? "Yes" : "No", clabel->status);
3070 1.48 oster printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3071 1.48 oster clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3072 1.275 mrg printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3073 1.275 mrg (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3074 1.271 dyoung printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3075 1.308 christos printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3076 1.271 dyoung printf(" Last configured as: raid%d\n", clabel->last_unit);
3077 1.51 oster #if 0
3078 1.51 oster printf(" Config order: %d\n", clabel->config_order);
3079 1.51 oster #endif
3080 1.186 perry
3081 1.48 oster }
3082 1.133 oster #endif
3083 1.48 oster
3084 1.48 oster RF_ConfigSet_t *
3085 1.169 oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3086 1.48 oster {
3087 1.48 oster RF_AutoConfig_t *ac;
3088 1.48 oster RF_ConfigSet_t *config_sets;
3089 1.48 oster RF_ConfigSet_t *cset;
3090 1.48 oster RF_AutoConfig_t *ac_next;
3091 1.48 oster
3092 1.48 oster
3093 1.48 oster config_sets = NULL;
3094 1.48 oster
3095 1.48 oster /* Go through the AutoConfig list, and figure out which components
3096 1.48 oster belong to what sets. */
3097 1.48 oster ac = ac_list;
3098 1.48 oster while(ac!=NULL) {
3099 1.48 oster /* we're going to putz with ac->next, so save it here
3100 1.48 oster for use at the end of the loop */
3101 1.48 oster ac_next = ac->next;
3102 1.48 oster
3103 1.48 oster if (config_sets == NULL) {
3104 1.48 oster /* will need at least this one... */
3105 1.48 oster config_sets = (RF_ConfigSet_t *)
3106 1.186 perry malloc(sizeof(RF_ConfigSet_t),
3107 1.48 oster M_RAIDFRAME, M_NOWAIT);
3108 1.48 oster if (config_sets == NULL) {
3109 1.141 provos panic("rf_create_auto_sets: No memory!");
3110 1.48 oster }
3111 1.48 oster /* this one is easy :) */
3112 1.48 oster config_sets->ac = ac;
3113 1.48 oster config_sets->next = NULL;
3114 1.51 oster config_sets->rootable = 0;
3115 1.48 oster ac->next = NULL;
3116 1.48 oster } else {
3117 1.48 oster /* which set does this component fit into? */
3118 1.48 oster cset = config_sets;
3119 1.48 oster while(cset!=NULL) {
3120 1.49 oster if (rf_does_it_fit(cset, ac)) {
3121 1.86 oster /* looks like it matches... */
3122 1.86 oster ac->next = cset->ac;
3123 1.86 oster cset->ac = ac;
3124 1.48 oster break;
3125 1.48 oster }
3126 1.48 oster cset = cset->next;
3127 1.48 oster }
3128 1.48 oster if (cset==NULL) {
3129 1.48 oster /* didn't find a match above... new set..*/
3130 1.48 oster cset = (RF_ConfigSet_t *)
3131 1.186 perry malloc(sizeof(RF_ConfigSet_t),
3132 1.48 oster M_RAIDFRAME, M_NOWAIT);
3133 1.48 oster if (cset == NULL) {
3134 1.141 provos panic("rf_create_auto_sets: No memory!");
3135 1.48 oster }
3136 1.48 oster cset->ac = ac;
3137 1.48 oster ac->next = NULL;
3138 1.48 oster cset->next = config_sets;
3139 1.51 oster cset->rootable = 0;
3140 1.48 oster config_sets = cset;
3141 1.48 oster }
3142 1.48 oster }
3143 1.48 oster ac = ac_next;
3144 1.48 oster }
3145 1.48 oster
3146 1.48 oster
3147 1.48 oster return(config_sets);
3148 1.48 oster }
3149 1.48 oster
3150 1.48 oster static int
3151 1.169 oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3152 1.48 oster {
3153 1.48 oster RF_ComponentLabel_t *clabel1, *clabel2;
3154 1.48 oster
3155 1.48 oster /* If this one matches the *first* one in the set, that's good
3156 1.48 oster enough, since the other members of the set would have been
3157 1.48 oster through here too... */
3158 1.60 oster /* note that we are not checking partitionSize here..
3159 1.60 oster
3160 1.60 oster Note that we are also not checking the mod_counters here.
3161 1.299 oster If everything else matches except the mod_counter, that's
3162 1.60 oster good enough for this test. We will deal with the mod_counters
3163 1.186 perry a little later in the autoconfiguration process.
3164 1.60 oster
3165 1.60 oster (clabel1->mod_counter == clabel2->mod_counter) &&
3166 1.81 oster
3167 1.81 oster The reason we don't check for this is that failed disks
3168 1.81 oster will have lower modification counts. If those disks are
3169 1.81 oster not added to the set they used to belong to, then they will
3170 1.81 oster form their own set, which may result in 2 different sets,
3171 1.81 oster for example, competing to be configured at raid0, and
3172 1.81 oster perhaps competing to be the root filesystem set. If the
3173 1.81 oster wrong ones get configured, or both attempt to become /,
3174 1.81 oster weird behaviour and or serious lossage will occur. Thus we
3175 1.81 oster need to bring them into the fold here, and kick them out at
3176 1.81 oster a later point.
3177 1.60 oster
3178 1.60 oster */
3179 1.48 oster
3180 1.48 oster clabel1 = cset->ac->clabel;
3181 1.48 oster clabel2 = ac->clabel;
3182 1.48 oster if ((clabel1->version == clabel2->version) &&
3183 1.48 oster (clabel1->serial_number == clabel2->serial_number) &&
3184 1.48 oster (clabel1->num_rows == clabel2->num_rows) &&
3185 1.48 oster (clabel1->num_columns == clabel2->num_columns) &&
3186 1.48 oster (clabel1->sectPerSU == clabel2->sectPerSU) &&
3187 1.48 oster (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3188 1.48 oster (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3189 1.48 oster (clabel1->parityConfig == clabel2->parityConfig) &&
3190 1.48 oster (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3191 1.48 oster (clabel1->blockSize == clabel2->blockSize) &&
3192 1.282 enami rf_component_label_numblocks(clabel1) ==
3193 1.282 enami rf_component_label_numblocks(clabel2) &&
3194 1.48 oster (clabel1->autoconfigure == clabel2->autoconfigure) &&
3195 1.48 oster (clabel1->root_partition == clabel2->root_partition) &&
3196 1.48 oster (clabel1->last_unit == clabel2->last_unit) &&
3197 1.48 oster (clabel1->config_order == clabel2->config_order)) {
3198 1.48 oster /* if it get's here, it almost *has* to be a match */
3199 1.48 oster } else {
3200 1.186 perry /* it's not consistent with somebody in the set..
3201 1.48 oster punt */
3202 1.48 oster return(0);
3203 1.48 oster }
3204 1.48 oster /* all was fine.. it must fit... */
3205 1.48 oster return(1);
3206 1.48 oster }
3207 1.48 oster
3208 1.48 oster int
3209 1.169 oster rf_have_enough_components(RF_ConfigSet_t *cset)
3210 1.48 oster {
3211 1.51 oster RF_AutoConfig_t *ac;
3212 1.51 oster RF_AutoConfig_t *auto_config;
3213 1.51 oster RF_ComponentLabel_t *clabel;
3214 1.166 oster int c;
3215 1.51 oster int num_cols;
3216 1.51 oster int num_missing;
3217 1.86 oster int mod_counter;
3218 1.87 oster int mod_counter_found;
3219 1.88 oster int even_pair_failed;
3220 1.88 oster char parity_type;
3221 1.186 perry
3222 1.51 oster
3223 1.48 oster /* check to see that we have enough 'live' components
3224 1.48 oster of this set. If so, we can configure it if necessary */
3225 1.48 oster
3226 1.51 oster num_cols = cset->ac->clabel->num_columns;
3227 1.88 oster parity_type = cset->ac->clabel->parityConfig;
3228 1.51 oster
3229 1.51 oster /* XXX Check for duplicate components!?!?!? */
3230 1.51 oster
3231 1.86 oster /* Determine what the mod_counter is supposed to be for this set. */
3232 1.86 oster
3233 1.87 oster mod_counter_found = 0;
3234 1.101 oster mod_counter = 0;
3235 1.86 oster ac = cset->ac;
3236 1.86 oster while(ac!=NULL) {
3237 1.87 oster if (mod_counter_found==0) {
3238 1.86 oster mod_counter = ac->clabel->mod_counter;
3239 1.87 oster mod_counter_found = 1;
3240 1.87 oster } else {
3241 1.87 oster if (ac->clabel->mod_counter > mod_counter) {
3242 1.87 oster mod_counter = ac->clabel->mod_counter;
3243 1.87 oster }
3244 1.86 oster }
3245 1.86 oster ac = ac->next;
3246 1.86 oster }
3247 1.86 oster
3248 1.51 oster num_missing = 0;
3249 1.51 oster auto_config = cset->ac;
3250 1.51 oster
3251 1.166 oster even_pair_failed = 0;
3252 1.166 oster for(c=0; c<num_cols; c++) {
3253 1.166 oster ac = auto_config;
3254 1.166 oster while(ac!=NULL) {
3255 1.186 perry if ((ac->clabel->column == c) &&
3256 1.166 oster (ac->clabel->mod_counter == mod_counter)) {
3257 1.166 oster /* it's this one... */
3258 1.224 oster #ifdef DEBUG
3259 1.166 oster printf("Found: %s at %d\n",
3260 1.166 oster ac->devname,c);
3261 1.51 oster #endif
3262 1.166 oster break;
3263 1.51 oster }
3264 1.166 oster ac=ac->next;
3265 1.166 oster }
3266 1.166 oster if (ac==NULL) {
3267 1.51 oster /* Didn't find one here! */
3268 1.88 oster /* special case for RAID 1, especially
3269 1.88 oster where there are more than 2
3270 1.88 oster components (where RAIDframe treats
3271 1.88 oster things a little differently :( ) */
3272 1.166 oster if (parity_type == '1') {
3273 1.166 oster if (c%2 == 0) { /* even component */
3274 1.166 oster even_pair_failed = 1;
3275 1.166 oster } else { /* odd component. If
3276 1.166 oster we're failed, and
3277 1.166 oster so is the even
3278 1.166 oster component, it's
3279 1.166 oster "Good Night, Charlie" */
3280 1.166 oster if (even_pair_failed == 1) {
3281 1.166 oster return(0);
3282 1.88 oster }
3283 1.88 oster }
3284 1.166 oster } else {
3285 1.166 oster /* normal accounting */
3286 1.166 oster num_missing++;
3287 1.88 oster }
3288 1.166 oster }
3289 1.166 oster if ((parity_type == '1') && (c%2 == 1)) {
3290 1.88 oster /* Just did an even component, and we didn't
3291 1.186 perry bail.. reset the even_pair_failed flag,
3292 1.88 oster and go on to the next component.... */
3293 1.166 oster even_pair_failed = 0;
3294 1.51 oster }
3295 1.51 oster }
3296 1.51 oster
3297 1.51 oster clabel = cset->ac->clabel;
3298 1.51 oster
3299 1.51 oster if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3300 1.51 oster ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3301 1.51 oster ((clabel->parityConfig == '5') && (num_missing > 1))) {
3302 1.51 oster /* XXX this needs to be made *much* more general */
3303 1.51 oster /* Too many failures */
3304 1.51 oster return(0);
3305 1.51 oster }
3306 1.51 oster /* otherwise, all is well, and we've got enough to take a kick
3307 1.51 oster at autoconfiguring this set */
3308 1.51 oster return(1);
3309 1.48 oster }
3310 1.48 oster
3311 1.48 oster void
3312 1.169 oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3313 1.222 christos RF_Raid_t *raidPtr)
3314 1.48 oster {
3315 1.48 oster RF_ComponentLabel_t *clabel;
3316 1.77 oster int i;
3317 1.48 oster
3318 1.48 oster clabel = ac->clabel;
3319 1.48 oster
3320 1.48 oster /* 1. Fill in the common stuff */
3321 1.48 oster config->numCol = clabel->num_columns;
3322 1.48 oster config->numSpare = 0; /* XXX should this be set here? */
3323 1.48 oster config->sectPerSU = clabel->sectPerSU;
3324 1.48 oster config->SUsPerPU = clabel->SUsPerPU;
3325 1.48 oster config->SUsPerRU = clabel->SUsPerRU;
3326 1.48 oster config->parityConfig = clabel->parityConfig;
3327 1.48 oster /* XXX... */
3328 1.48 oster strcpy(config->diskQueueType,"fifo");
3329 1.48 oster config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3330 1.48 oster config->layoutSpecificSize = 0; /* XXX ?? */
3331 1.48 oster
3332 1.48 oster while(ac!=NULL) {
3333 1.48 oster /* row/col values will be in range due to the checks
3334 1.48 oster in reasonable_label() */
3335 1.166 oster strcpy(config->devnames[0][ac->clabel->column],
3336 1.48 oster ac->devname);
3337 1.48 oster ac = ac->next;
3338 1.48 oster }
3339 1.48 oster
3340 1.77 oster for(i=0;i<RF_MAXDBGV;i++) {
3341 1.163 fvdl config->debugVars[i][0] = 0;
3342 1.77 oster }
3343 1.48 oster }
3344 1.48 oster
3345 1.48 oster int
3346 1.169 oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3347 1.48 oster {
3348 1.269 jld RF_ComponentLabel_t *clabel;
3349 1.166 oster int column;
3350 1.148 oster int sparecol;
3351 1.48 oster
3352 1.54 oster raidPtr->autoconfigure = new_value;
3353 1.166 oster
3354 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3355 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3356 1.269 jld clabel = raidget_component_label(raidPtr, column);
3357 1.269 jld clabel->autoconfigure = new_value;
3358 1.269 jld raidflush_component_label(raidPtr, column);
3359 1.48 oster }
3360 1.48 oster }
3361 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3362 1.148 oster sparecol = raidPtr->numCol + column;
3363 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3364 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3365 1.269 jld clabel->autoconfigure = new_value;
3366 1.269 jld raidflush_component_label(raidPtr, sparecol);
3367 1.148 oster }
3368 1.148 oster }
3369 1.48 oster return(new_value);
3370 1.48 oster }
3371 1.48 oster
3372 1.48 oster int
3373 1.169 oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3374 1.48 oster {
3375 1.269 jld RF_ComponentLabel_t *clabel;
3376 1.166 oster int column;
3377 1.148 oster int sparecol;
3378 1.48 oster
3379 1.54 oster raidPtr->root_partition = new_value;
3380 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3381 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3382 1.269 jld clabel = raidget_component_label(raidPtr, column);
3383 1.269 jld clabel->root_partition = new_value;
3384 1.269 jld raidflush_component_label(raidPtr, column);
3385 1.148 oster }
3386 1.148 oster }
3387 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3388 1.148 oster sparecol = raidPtr->numCol + column;
3389 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3390 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3391 1.269 jld clabel->root_partition = new_value;
3392 1.269 jld raidflush_component_label(raidPtr, sparecol);
3393 1.48 oster }
3394 1.48 oster }
3395 1.48 oster return(new_value);
3396 1.48 oster }
3397 1.48 oster
3398 1.48 oster void
3399 1.169 oster rf_release_all_vps(RF_ConfigSet_t *cset)
3400 1.48 oster {
3401 1.48 oster RF_AutoConfig_t *ac;
3402 1.186 perry
3403 1.48 oster ac = cset->ac;
3404 1.48 oster while(ac!=NULL) {
3405 1.48 oster /* Close the vp, and give it back */
3406 1.48 oster if (ac->vp) {
3407 1.96 oster vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3408 1.335 mlelstv VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3409 1.48 oster vput(ac->vp);
3410 1.86 oster ac->vp = NULL;
3411 1.48 oster }
3412 1.48 oster ac = ac->next;
3413 1.48 oster }
3414 1.48 oster }
3415 1.48 oster
3416 1.48 oster
3417 1.48 oster void
3418 1.169 oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
3419 1.48 oster {
3420 1.48 oster RF_AutoConfig_t *ac;
3421 1.48 oster RF_AutoConfig_t *next_ac;
3422 1.186 perry
3423 1.48 oster ac = cset->ac;
3424 1.48 oster while(ac!=NULL) {
3425 1.48 oster next_ac = ac->next;
3426 1.48 oster /* nuke the label */
3427 1.48 oster free(ac->clabel, M_RAIDFRAME);
3428 1.48 oster /* cleanup the config structure */
3429 1.48 oster free(ac, M_RAIDFRAME);
3430 1.48 oster /* "next.." */
3431 1.48 oster ac = next_ac;
3432 1.48 oster }
3433 1.48 oster /* and, finally, nuke the config set */
3434 1.48 oster free(cset, M_RAIDFRAME);
3435 1.48 oster }
3436 1.48 oster
3437 1.48 oster
3438 1.48 oster void
3439 1.169 oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3440 1.48 oster {
3441 1.48 oster /* current version number */
3442 1.186 perry clabel->version = RF_COMPONENT_LABEL_VERSION;
3443 1.57 oster clabel->serial_number = raidPtr->serial_number;
3444 1.48 oster clabel->mod_counter = raidPtr->mod_counter;
3445 1.269 jld
3446 1.166 oster clabel->num_rows = 1;
3447 1.48 oster clabel->num_columns = raidPtr->numCol;
3448 1.48 oster clabel->clean = RF_RAID_DIRTY; /* not clean */
3449 1.48 oster clabel->status = rf_ds_optimal; /* "It's good!" */
3450 1.186 perry
3451 1.48 oster clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3452 1.48 oster clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3453 1.48 oster clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3454 1.54 oster
3455 1.54 oster clabel->blockSize = raidPtr->bytesPerSector;
3456 1.282 enami rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3457 1.54 oster
3458 1.48 oster /* XXX not portable */
3459 1.48 oster clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3460 1.54 oster clabel->maxOutstanding = raidPtr->maxOutstanding;
3461 1.54 oster clabel->autoconfigure = raidPtr->autoconfigure;
3462 1.54 oster clabel->root_partition = raidPtr->root_partition;
3463 1.48 oster clabel->last_unit = raidPtr->raidid;
3464 1.54 oster clabel->config_order = raidPtr->config_order;
3465 1.269 jld
3466 1.269 jld #ifndef RF_NO_PARITY_MAP
3467 1.269 jld rf_paritymap_init_label(raidPtr->parity_map, clabel);
3468 1.269 jld #endif
3469 1.51 oster }
3470 1.51 oster
3471 1.300 christos struct raid_softc *
3472 1.300 christos rf_auto_config_set(RF_ConfigSet_t *cset)
3473 1.51 oster {
3474 1.51 oster RF_Raid_t *raidPtr;
3475 1.51 oster RF_Config_t *config;
3476 1.51 oster int raidID;
3477 1.300 christos struct raid_softc *sc;
3478 1.51 oster
3479 1.224 oster #ifdef DEBUG
3480 1.72 oster printf("RAID autoconfigure\n");
3481 1.127 oster #endif
3482 1.51 oster
3483 1.51 oster /* 1. Create a config structure */
3484 1.300 christos config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3485 1.300 christos if (config == NULL) {
3486 1.327 pgoyette printf("%s: Out of mem - config!?!?\n", __func__);
3487 1.51 oster /* XXX do something more intelligent here. */
3488 1.300 christos return NULL;
3489 1.51 oster }
3490 1.77 oster
3491 1.186 perry /*
3492 1.186 perry 2. Figure out what RAID ID this one is supposed to live at
3493 1.51 oster See if we can get the same RAID dev that it was configured
3494 1.186 perry on last time..
3495 1.51 oster */
3496 1.51 oster
3497 1.51 oster raidID = cset->ac->clabel->last_unit;
3498 1.327 pgoyette for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3499 1.327 pgoyette sc = raidget(++raidID, false))
3500 1.300 christos continue;
3501 1.224 oster #ifdef DEBUG
3502 1.72 oster printf("Configuring raid%d:\n",raidID);
3503 1.127 oster #endif
3504 1.127 oster
3505 1.327 pgoyette if (sc == NULL)
3506 1.327 pgoyette sc = raidget(raidID, true);
3507 1.327 pgoyette if (sc == NULL) {
3508 1.327 pgoyette printf("%s: Out of mem - softc!?!?\n", __func__);
3509 1.327 pgoyette /* XXX do something more intelligent here. */
3510 1.327 pgoyette free(config, M_RAIDFRAME);
3511 1.327 pgoyette return NULL;
3512 1.327 pgoyette }
3513 1.327 pgoyette
3514 1.300 christos raidPtr = &sc->sc_r;
3515 1.51 oster
3516 1.51 oster /* XXX all this stuff should be done SOMEWHERE ELSE! */
3517 1.302 christos raidPtr->softc = sc;
3518 1.51 oster raidPtr->raidid = raidID;
3519 1.51 oster raidPtr->openings = RAIDOUTSTANDING;
3520 1.51 oster
3521 1.51 oster /* 3. Build the configuration structure */
3522 1.51 oster rf_create_configuration(cset->ac, config, raidPtr);
3523 1.51 oster
3524 1.51 oster /* 4. Do the configuration */
3525 1.300 christos if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3526 1.300 christos raidinit(sc);
3527 1.186 perry
3528 1.300 christos rf_markalldirty(raidPtr);
3529 1.300 christos raidPtr->autoconfigure = 1; /* XXX do this here? */
3530 1.308 christos switch (cset->ac->clabel->root_partition) {
3531 1.308 christos case 1: /* Force Root */
3532 1.308 christos case 2: /* Soft Root: root when boot partition part of raid */
3533 1.308 christos /*
3534 1.308 christos * everything configured just fine. Make a note
3535 1.308 christos * that this set is eligible to be root,
3536 1.308 christos * or forced to be root
3537 1.308 christos */
3538 1.308 christos cset->rootable = cset->ac->clabel->root_partition;
3539 1.54 oster /* XXX do this here? */
3540 1.308 christos raidPtr->root_partition = cset->rootable;
3541 1.308 christos break;
3542 1.308 christos default:
3543 1.308 christos break;
3544 1.51 oster }
3545 1.300 christos } else {
3546 1.300 christos raidput(sc);
3547 1.300 christos sc = NULL;
3548 1.51 oster }
3549 1.51 oster
3550 1.51 oster /* 5. Cleanup */
3551 1.51 oster free(config, M_RAIDFRAME);
3552 1.300 christos return sc;
3553 1.99 oster }
3554 1.99 oster
3555 1.99 oster void
3556 1.187 christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3557 1.187 christos size_t xmin, size_t xmax)
3558 1.177 oster {
3559 1.352 christos int error;
3560 1.352 christos
3561 1.227 ad pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3562 1.187 christos pool_sethiwat(p, xmax);
3563 1.352 christos if ((error = pool_prime(p, xmin)) != 0)
3564 1.352 christos panic("%s: failed to prime pool: %d", __func__, error);
3565 1.187 christos pool_setlowat(p, xmin);
3566 1.177 oster }
3567 1.190 oster
3568 1.190 oster /*
3569 1.335 mlelstv * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3570 1.335 mlelstv * to see if there is IO pending and if that IO could possibly be done
3571 1.335 mlelstv * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3572 1.190 oster * otherwise.
3573 1.190 oster *
3574 1.190 oster */
3575 1.190 oster int
3576 1.300 christos rf_buf_queue_check(RF_Raid_t *raidPtr)
3577 1.190 oster {
3578 1.335 mlelstv struct raid_softc *rs;
3579 1.335 mlelstv struct dk_softc *dksc;
3580 1.335 mlelstv
3581 1.335 mlelstv rs = raidPtr->softc;
3582 1.335 mlelstv dksc = &rs->sc_dksc;
3583 1.335 mlelstv
3584 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
3585 1.335 mlelstv return 1;
3586 1.335 mlelstv
3587 1.335 mlelstv if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3588 1.190 oster /* there is work to do */
3589 1.190 oster return 0;
3590 1.335 mlelstv }
3591 1.190 oster /* default is nothing to do */
3592 1.190 oster return 1;
3593 1.190 oster }
3594 1.213 christos
3595 1.213 christos int
3596 1.294 oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3597 1.213 christos {
3598 1.275 mrg uint64_t numsecs;
3599 1.275 mrg unsigned secsize;
3600 1.213 christos int error;
3601 1.213 christos
3602 1.275 mrg error = getdisksize(vp, &numsecs, &secsize);
3603 1.213 christos if (error == 0) {
3604 1.275 mrg diskPtr->blockSize = secsize;
3605 1.275 mrg diskPtr->numBlocks = numsecs - rf_protectedSectors;
3606 1.275 mrg diskPtr->partitionSize = numsecs;
3607 1.213 christos return 0;
3608 1.213 christos }
3609 1.213 christos return error;
3610 1.213 christos }
3611 1.217 oster
3612 1.217 oster static int
3613 1.261 dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
3614 1.217 oster {
3615 1.217 oster return 1;
3616 1.217 oster }
3617 1.217 oster
3618 1.217 oster static void
3619 1.261 dyoung raid_attach(device_t parent, device_t self, void *aux)
3620 1.217 oster {
3621 1.217 oster }
3622 1.217 oster
3623 1.217 oster
3624 1.217 oster static int
3625 1.261 dyoung raid_detach(device_t self, int flags)
3626 1.217 oster {
3627 1.266 dyoung int error;
3628 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
3629 1.303 christos
3630 1.303 christos if (rs == NULL)
3631 1.303 christos return ENXIO;
3632 1.266 dyoung
3633 1.266 dyoung if ((error = raidlock(rs)) != 0)
3634 1.266 dyoung return (error);
3635 1.217 oster
3636 1.266 dyoung error = raid_detach_unlocked(rs);
3637 1.266 dyoung
3638 1.332 mlelstv raidunlock(rs);
3639 1.332 mlelstv
3640 1.332 mlelstv /* XXX raid can be referenced here */
3641 1.332 mlelstv
3642 1.332 mlelstv if (error)
3643 1.332 mlelstv return error;
3644 1.332 mlelstv
3645 1.332 mlelstv /* Free the softc */
3646 1.332 mlelstv raidput(rs);
3647 1.332 mlelstv
3648 1.332 mlelstv return 0;
3649 1.217 oster }
3650 1.217 oster
3651 1.234 oster static void
3652 1.304 christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3653 1.234 oster {
3654 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
3655 1.335 mlelstv struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3656 1.304 christos
3657 1.304 christos memset(dg, 0, sizeof(*dg));
3658 1.304 christos
3659 1.304 christos dg->dg_secperunit = raidPtr->totalSectors;
3660 1.304 christos dg->dg_secsize = raidPtr->bytesPerSector;
3661 1.304 christos dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3662 1.304 christos dg->dg_ntracks = 4 * raidPtr->numCol;
3663 1.304 christos
3664 1.335 mlelstv disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3665 1.234 oster }
3666 1.252 oster
3667 1.348 jdolecek /*
3668 1.348 jdolecek * Get cache info for all the components (including spares).
3669 1.348 jdolecek * Returns intersection of all the cache flags of all disks, or first
3670 1.348 jdolecek * error if any encountered.
3671 1.348 jdolecek * XXXfua feature flags can change as spares are added - lock down somehow
3672 1.348 jdolecek */
3673 1.348 jdolecek static int
3674 1.348 jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3675 1.348 jdolecek {
3676 1.348 jdolecek int c;
3677 1.348 jdolecek int error;
3678 1.348 jdolecek int dkwhole = 0, dkpart;
3679 1.348 jdolecek
3680 1.348 jdolecek for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3681 1.348 jdolecek /*
3682 1.348 jdolecek * Check any non-dead disk, even when currently being
3683 1.348 jdolecek * reconstructed.
3684 1.348 jdolecek */
3685 1.348 jdolecek if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3686 1.348 jdolecek || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3687 1.348 jdolecek error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3688 1.348 jdolecek DIOCGCACHE, &dkpart, FREAD, NOCRED);
3689 1.348 jdolecek if (error) {
3690 1.348 jdolecek if (error != ENODEV) {
3691 1.348 jdolecek printf("raid%d: get cache for component %s failed\n",
3692 1.348 jdolecek raidPtr->raidid,
3693 1.348 jdolecek raidPtr->Disks[c].devname);
3694 1.348 jdolecek }
3695 1.348 jdolecek
3696 1.348 jdolecek return error;
3697 1.348 jdolecek }
3698 1.348 jdolecek
3699 1.348 jdolecek if (c == 0)
3700 1.348 jdolecek dkwhole = dkpart;
3701 1.348 jdolecek else
3702 1.348 jdolecek dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3703 1.348 jdolecek }
3704 1.348 jdolecek }
3705 1.348 jdolecek
3706 1.349 jdolecek *data = dkwhole;
3707 1.348 jdolecek
3708 1.348 jdolecek return 0;
3709 1.348 jdolecek }
3710 1.348 jdolecek
3711 1.252 oster /*
3712 1.252 oster * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3713 1.252 oster * We end up returning whatever error was returned by the first cache flush
3714 1.252 oster * that fails.
3715 1.252 oster */
3716 1.252 oster
3717 1.269 jld int
3718 1.252 oster rf_sync_component_caches(RF_Raid_t *raidPtr)
3719 1.252 oster {
3720 1.252 oster int c, sparecol;
3721 1.252 oster int e,error;
3722 1.252 oster int force = 1;
3723 1.252 oster
3724 1.252 oster error = 0;
3725 1.252 oster for (c = 0; c < raidPtr->numCol; c++) {
3726 1.252 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
3727 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3728 1.252 oster &force, FWRITE, NOCRED);
3729 1.252 oster if (e) {
3730 1.255 oster if (e != ENODEV)
3731 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3732 1.255 oster raidPtr->raidid, raidPtr->Disks[c].devname);
3733 1.252 oster if (error == 0) {
3734 1.252 oster error = e;
3735 1.252 oster }
3736 1.252 oster }
3737 1.252 oster }
3738 1.252 oster }
3739 1.252 oster
3740 1.252 oster for( c = 0; c < raidPtr->numSpare ; c++) {
3741 1.252 oster sparecol = raidPtr->numCol + c;
3742 1.252 oster /* Need to ensure that the reconstruct actually completed! */
3743 1.252 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3744 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3745 1.252 oster DIOCCACHESYNC, &force, FWRITE, NOCRED);
3746 1.252 oster if (e) {
3747 1.255 oster if (e != ENODEV)
3748 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3749 1.255 oster raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3750 1.252 oster if (error == 0) {
3751 1.252 oster error = e;
3752 1.252 oster }
3753 1.252 oster }
3754 1.252 oster }
3755 1.252 oster }
3756 1.252 oster return error;
3757 1.252 oster }
3758 1.327 pgoyette
3759 1.353 mrg /* Fill in info with the current status */
3760 1.353 mrg void
3761 1.353 mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3762 1.353 mrg {
3763 1.353 mrg
3764 1.353 mrg if (raidPtr->status != rf_rs_reconstructing) {
3765 1.353 mrg info->total = 100;
3766 1.353 mrg info->completed = 100;
3767 1.353 mrg } else {
3768 1.353 mrg info->total = raidPtr->reconControl->numRUsTotal;
3769 1.353 mrg info->completed = raidPtr->reconControl->numRUsComplete;
3770 1.353 mrg }
3771 1.353 mrg info->remaining = info->total - info->completed;
3772 1.353 mrg }
3773 1.353 mrg
3774 1.353 mrg /* Fill in info with the current status */
3775 1.353 mrg void
3776 1.353 mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3777 1.353 mrg {
3778 1.353 mrg
3779 1.353 mrg if (raidPtr->parity_rewrite_in_progress == 1) {
3780 1.353 mrg info->total = raidPtr->Layout.numStripe;
3781 1.353 mrg info->completed = raidPtr->parity_rewrite_stripes_done;
3782 1.353 mrg } else {
3783 1.353 mrg info->completed = 100;
3784 1.353 mrg info->total = 100;
3785 1.353 mrg }
3786 1.353 mrg info->remaining = info->total - info->completed;
3787 1.353 mrg }
3788 1.353 mrg
3789 1.353 mrg /* Fill in info with the current status */
3790 1.353 mrg void
3791 1.353 mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3792 1.353 mrg {
3793 1.353 mrg
3794 1.353 mrg if (raidPtr->copyback_in_progress == 1) {
3795 1.353 mrg info->total = raidPtr->Layout.numStripe;
3796 1.353 mrg info->completed = raidPtr->copyback_stripes_done;
3797 1.353 mrg info->remaining = info->total - info->completed;
3798 1.353 mrg } else {
3799 1.353 mrg info->remaining = 0;
3800 1.353 mrg info->completed = 100;
3801 1.353 mrg info->total = 100;
3802 1.353 mrg }
3803 1.353 mrg }
3804 1.353 mrg
3805 1.353 mrg /* Fill in config with the current info */
3806 1.353 mrg int
3807 1.353 mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
3808 1.353 mrg {
3809 1.353 mrg int d, i, j;
3810 1.353 mrg
3811 1.353 mrg if (!raidPtr->valid)
3812 1.353 mrg return (ENODEV);
3813 1.353 mrg config->cols = raidPtr->numCol;
3814 1.353 mrg config->ndevs = raidPtr->numCol;
3815 1.353 mrg if (config->ndevs >= RF_MAX_DISKS)
3816 1.353 mrg return (ENOMEM);
3817 1.353 mrg config->nspares = raidPtr->numSpare;
3818 1.353 mrg if (config->nspares >= RF_MAX_DISKS)
3819 1.353 mrg return (ENOMEM);
3820 1.353 mrg config->maxqdepth = raidPtr->maxQueueDepth;
3821 1.353 mrg d = 0;
3822 1.353 mrg for (j = 0; j < config->cols; j++) {
3823 1.353 mrg config->devs[d] = raidPtr->Disks[j];
3824 1.353 mrg d++;
3825 1.353 mrg }
3826 1.353 mrg for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
3827 1.353 mrg config->spares[i] = raidPtr->Disks[j];
3828 1.353 mrg if (config->spares[i].status == rf_ds_rebuilding_spare) {
3829 1.353 mrg /* XXX: raidctl(8) expects to see this as a used spare */
3830 1.353 mrg config->spares[i].status = rf_ds_used_spare;
3831 1.353 mrg }
3832 1.353 mrg }
3833 1.353 mrg return 0;
3834 1.353 mrg }
3835 1.353 mrg
3836 1.353 mrg int
3837 1.353 mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
3838 1.353 mrg {
3839 1.353 mrg RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
3840 1.353 mrg RF_ComponentLabel_t *raid_clabel;
3841 1.353 mrg int column = clabel->column;
3842 1.353 mrg
3843 1.353 mrg if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
3844 1.353 mrg return EINVAL;
3845 1.353 mrg raid_clabel = raidget_component_label(raidPtr, column);
3846 1.353 mrg memcpy(clabel, raid_clabel, sizeof *clabel);
3847 1.353 mrg
3848 1.353 mrg return 0;
3849 1.353 mrg }
3850 1.353 mrg
3851 1.327 pgoyette /*
3852 1.327 pgoyette * Module interface
3853 1.327 pgoyette */
3854 1.327 pgoyette
3855 1.327 pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr");
3856 1.327 pgoyette
3857 1.327 pgoyette #ifdef _MODULE
3858 1.327 pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
3859 1.327 pgoyette #endif
3860 1.327 pgoyette
3861 1.327 pgoyette static int raid_modcmd(modcmd_t, void *);
3862 1.327 pgoyette static int raid_modcmd_init(void);
3863 1.327 pgoyette static int raid_modcmd_fini(void);
3864 1.327 pgoyette
3865 1.327 pgoyette static int
3866 1.327 pgoyette raid_modcmd(modcmd_t cmd, void *data)
3867 1.327 pgoyette {
3868 1.327 pgoyette int error;
3869 1.327 pgoyette
3870 1.327 pgoyette error = 0;
3871 1.327 pgoyette switch (cmd) {
3872 1.327 pgoyette case MODULE_CMD_INIT:
3873 1.327 pgoyette error = raid_modcmd_init();
3874 1.327 pgoyette break;
3875 1.327 pgoyette case MODULE_CMD_FINI:
3876 1.327 pgoyette error = raid_modcmd_fini();
3877 1.327 pgoyette break;
3878 1.327 pgoyette default:
3879 1.327 pgoyette error = ENOTTY;
3880 1.327 pgoyette break;
3881 1.327 pgoyette }
3882 1.327 pgoyette return error;
3883 1.327 pgoyette }
3884 1.327 pgoyette
3885 1.327 pgoyette static int
3886 1.327 pgoyette raid_modcmd_init(void)
3887 1.327 pgoyette {
3888 1.327 pgoyette int error;
3889 1.327 pgoyette int bmajor, cmajor;
3890 1.327 pgoyette
3891 1.327 pgoyette mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3892 1.327 pgoyette mutex_enter(&raid_lock);
3893 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3894 1.327 pgoyette rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3895 1.327 pgoyette rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3896 1.327 pgoyette rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3897 1.327 pgoyette
3898 1.327 pgoyette rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3899 1.327 pgoyette #endif
3900 1.327 pgoyette
3901 1.327 pgoyette bmajor = cmajor = -1;
3902 1.327 pgoyette error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3903 1.327 pgoyette &raid_cdevsw, &cmajor);
3904 1.327 pgoyette if (error != 0 && error != EEXIST) {
3905 1.327 pgoyette aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3906 1.327 pgoyette mutex_exit(&raid_lock);
3907 1.327 pgoyette return error;
3908 1.327 pgoyette }
3909 1.327 pgoyette #ifdef _MODULE
3910 1.327 pgoyette error = config_cfdriver_attach(&raid_cd);
3911 1.327 pgoyette if (error != 0) {
3912 1.327 pgoyette aprint_error("%s: config_cfdriver_attach failed %d\n",
3913 1.327 pgoyette __func__, error);
3914 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3915 1.327 pgoyette mutex_exit(&raid_lock);
3916 1.327 pgoyette return error;
3917 1.327 pgoyette }
3918 1.327 pgoyette #endif
3919 1.327 pgoyette error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3920 1.327 pgoyette if (error != 0) {
3921 1.327 pgoyette aprint_error("%s: config_cfattach_attach failed %d\n",
3922 1.327 pgoyette __func__, error);
3923 1.327 pgoyette #ifdef _MODULE
3924 1.327 pgoyette config_cfdriver_detach(&raid_cd);
3925 1.327 pgoyette #endif
3926 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3927 1.327 pgoyette mutex_exit(&raid_lock);
3928 1.327 pgoyette return error;
3929 1.327 pgoyette }
3930 1.327 pgoyette
3931 1.327 pgoyette raidautoconfigdone = false;
3932 1.327 pgoyette
3933 1.327 pgoyette mutex_exit(&raid_lock);
3934 1.327 pgoyette
3935 1.327 pgoyette if (error == 0) {
3936 1.327 pgoyette if (rf_BootRaidframe(true) == 0)
3937 1.327 pgoyette aprint_verbose("Kernelized RAIDframe activated\n");
3938 1.327 pgoyette else
3939 1.327 pgoyette panic("Serious error activating RAID!!");
3940 1.327 pgoyette }
3941 1.327 pgoyette
3942 1.327 pgoyette /*
3943 1.327 pgoyette * Register a finalizer which will be used to auto-config RAID
3944 1.327 pgoyette * sets once all real hardware devices have been found.
3945 1.327 pgoyette */
3946 1.327 pgoyette error = config_finalize_register(NULL, rf_autoconfig);
3947 1.327 pgoyette if (error != 0) {
3948 1.327 pgoyette aprint_error("WARNING: unable to register RAIDframe "
3949 1.327 pgoyette "finalizer\n");
3950 1.329 pgoyette error = 0;
3951 1.327 pgoyette }
3952 1.327 pgoyette
3953 1.327 pgoyette return error;
3954 1.327 pgoyette }
3955 1.327 pgoyette
3956 1.327 pgoyette static int
3957 1.327 pgoyette raid_modcmd_fini(void)
3958 1.327 pgoyette {
3959 1.327 pgoyette int error;
3960 1.327 pgoyette
3961 1.327 pgoyette mutex_enter(&raid_lock);
3962 1.327 pgoyette
3963 1.327 pgoyette /* Don't allow unload if raid device(s) exist. */
3964 1.327 pgoyette if (!LIST_EMPTY(&raids)) {
3965 1.327 pgoyette mutex_exit(&raid_lock);
3966 1.327 pgoyette return EBUSY;
3967 1.327 pgoyette }
3968 1.327 pgoyette
3969 1.327 pgoyette error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3970 1.327 pgoyette if (error != 0) {
3971 1.335 mlelstv aprint_error("%s: cannot detach cfattach\n",__func__);
3972 1.327 pgoyette mutex_exit(&raid_lock);
3973 1.327 pgoyette return error;
3974 1.327 pgoyette }
3975 1.327 pgoyette #ifdef _MODULE
3976 1.327 pgoyette error = config_cfdriver_detach(&raid_cd);
3977 1.327 pgoyette if (error != 0) {
3978 1.335 mlelstv aprint_error("%s: cannot detach cfdriver\n",__func__);
3979 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3980 1.327 pgoyette mutex_exit(&raid_lock);
3981 1.327 pgoyette return error;
3982 1.327 pgoyette }
3983 1.327 pgoyette #endif
3984 1.327 pgoyette error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3985 1.327 pgoyette if (error != 0) {
3986 1.335 mlelstv aprint_error("%s: cannot detach devsw\n",__func__);
3987 1.327 pgoyette #ifdef _MODULE
3988 1.327 pgoyette config_cfdriver_attach(&raid_cd);
3989 1.327 pgoyette #endif
3990 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3991 1.327 pgoyette mutex_exit(&raid_lock);
3992 1.327 pgoyette return error;
3993 1.327 pgoyette }
3994 1.327 pgoyette rf_BootRaidframe(false);
3995 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3996 1.327 pgoyette rf_destroy_mutex2(rf_sparet_wait_mutex);
3997 1.327 pgoyette rf_destroy_cond2(rf_sparet_wait_cv);
3998 1.327 pgoyette rf_destroy_cond2(rf_sparet_resp_cv);
3999 1.327 pgoyette #endif
4000 1.327 pgoyette mutex_exit(&raid_lock);
4001 1.327 pgoyette mutex_destroy(&raid_lock);
4002 1.327 pgoyette
4003 1.327 pgoyette return error;
4004 1.327 pgoyette }
4005