rf_netbsdkintf.c revision 1.366 1 1.366 christos /* $NetBSD: rf_netbsdkintf.c,v 1.366 2019/02/05 17:13:37 christos Exp $ */
2 1.281 rmind
3 1.1 oster /*-
4 1.295 erh * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 1.1 oster * All rights reserved.
6 1.1 oster *
7 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
8 1.1 oster * by Greg Oster; Jason R. Thorpe.
9 1.1 oster *
10 1.1 oster * Redistribution and use in source and binary forms, with or without
11 1.1 oster * modification, are permitted provided that the following conditions
12 1.1 oster * are met:
13 1.1 oster * 1. Redistributions of source code must retain the above copyright
14 1.1 oster * notice, this list of conditions and the following disclaimer.
15 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 oster * notice, this list of conditions and the following disclaimer in the
17 1.1 oster * documentation and/or other materials provided with the distribution.
18 1.1 oster *
19 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
30 1.1 oster */
31 1.1 oster
32 1.1 oster /*
33 1.281 rmind * Copyright (c) 1988 University of Utah.
34 1.1 oster * Copyright (c) 1990, 1993
35 1.1 oster * The Regents of the University of California. All rights reserved.
36 1.1 oster *
37 1.1 oster * This code is derived from software contributed to Berkeley by
38 1.1 oster * the Systems Programming Group of the University of Utah Computer
39 1.1 oster * Science Department.
40 1.1 oster *
41 1.1 oster * Redistribution and use in source and binary forms, with or without
42 1.1 oster * modification, are permitted provided that the following conditions
43 1.1 oster * are met:
44 1.1 oster * 1. Redistributions of source code must retain the above copyright
45 1.1 oster * notice, this list of conditions and the following disclaimer.
46 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 oster * notice, this list of conditions and the following disclaimer in the
48 1.1 oster * documentation and/or other materials provided with the distribution.
49 1.162 agc * 3. Neither the name of the University nor the names of its contributors
50 1.162 agc * may be used to endorse or promote products derived from this software
51 1.162 agc * without specific prior written permission.
52 1.162 agc *
53 1.162 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.162 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.162 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.162 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.162 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.162 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.162 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.162 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.162 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.162 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.162 agc * SUCH DAMAGE.
64 1.162 agc *
65 1.162 agc * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 1.162 agc *
67 1.162 agc * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 1.162 agc */
69 1.162 agc
70 1.162 agc /*
71 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
72 1.1 oster * All rights reserved.
73 1.1 oster *
74 1.1 oster * Authors: Mark Holland, Jim Zelenka
75 1.1 oster *
76 1.1 oster * Permission to use, copy, modify and distribute this software and
77 1.1 oster * its documentation is hereby granted, provided that both the copyright
78 1.1 oster * notice and this permission notice appear in all copies of the
79 1.1 oster * software, derivative works or modified versions, and any portions
80 1.1 oster * thereof, and that both notices appear in supporting documentation.
81 1.1 oster *
82 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 1.1 oster *
86 1.1 oster * Carnegie Mellon requests users of this software to return to
87 1.1 oster *
88 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 1.1 oster * School of Computer Science
90 1.1 oster * Carnegie Mellon University
91 1.1 oster * Pittsburgh PA 15213-3890
92 1.1 oster *
93 1.1 oster * any improvements or extensions that they make and grant Carnegie the
94 1.1 oster * rights to redistribute these changes.
95 1.1 oster */
96 1.1 oster
97 1.1 oster /***********************************************************
98 1.1 oster *
99 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
100 1.1 oster *
101 1.1 oster ***********************************************************/
102 1.112 lukem
103 1.112 lukem #include <sys/cdefs.h>
104 1.366 christos __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.366 2019/02/05 17:13:37 christos Exp $");
105 1.251 ad
106 1.251 ad #ifdef _KERNEL_OPT
107 1.251 ad #include "opt_raid_autoconfig.h"
108 1.363 mrg #include "opt_compat_netbsd32.h"
109 1.251 ad #endif
110 1.1 oster
111 1.113 lukem #include <sys/param.h>
112 1.1 oster #include <sys/errno.h>
113 1.1 oster #include <sys/pool.h>
114 1.152 thorpej #include <sys/proc.h>
115 1.1 oster #include <sys/queue.h>
116 1.1 oster #include <sys/disk.h>
117 1.1 oster #include <sys/device.h>
118 1.1 oster #include <sys/stat.h>
119 1.1 oster #include <sys/ioctl.h>
120 1.1 oster #include <sys/fcntl.h>
121 1.1 oster #include <sys/systm.h>
122 1.1 oster #include <sys/vnode.h>
123 1.1 oster #include <sys/disklabel.h>
124 1.1 oster #include <sys/conf.h>
125 1.1 oster #include <sys/buf.h>
126 1.182 yamt #include <sys/bufq.h>
127 1.65 oster #include <sys/reboot.h>
128 1.208 elad #include <sys/kauth.h>
129 1.327 pgoyette #include <sys/module.h>
130 1.358 pgoyette #include <sys/compat_stub.h>
131 1.8 oster
132 1.234 oster #include <prop/proplib.h>
133 1.234 oster
134 1.110 oster #include <dev/raidframe/raidframevar.h>
135 1.110 oster #include <dev/raidframe/raidframeio.h>
136 1.269 jld #include <dev/raidframe/rf_paritymap.h>
137 1.251 ad
138 1.1 oster #include "rf_raid.h"
139 1.44 oster #include "rf_copyback.h"
140 1.1 oster #include "rf_dag.h"
141 1.1 oster #include "rf_dagflags.h"
142 1.99 oster #include "rf_desc.h"
143 1.1 oster #include "rf_diskqueue.h"
144 1.1 oster #include "rf_etimer.h"
145 1.1 oster #include "rf_general.h"
146 1.1 oster #include "rf_kintf.h"
147 1.1 oster #include "rf_options.h"
148 1.1 oster #include "rf_driver.h"
149 1.1 oster #include "rf_parityscan.h"
150 1.1 oster #include "rf_threadstuff.h"
151 1.1 oster
152 1.366 christos #include "rf_compat50.h"
153 1.353 mrg #include "rf_compat80.h"
154 1.353 mrg
155 1.363 mrg #ifdef COMPAT_NETBSD32
156 1.364 mrg #ifdef _LP64
157 1.353 mrg #include "rf_compat32.h"
158 1.364 mrg #define RAID_COMPAT32
159 1.364 mrg #endif
160 1.353 mrg #endif
161 1.353 mrg
162 1.325 christos #include "ioconf.h"
163 1.325 christos
164 1.133 oster #ifdef DEBUG
165 1.9 oster int rf_kdebug_level = 0;
166 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
167 1.9 oster #else /* DEBUG */
168 1.1 oster #define db1_printf(a) { }
169 1.9 oster #endif /* DEBUG */
170 1.1 oster
171 1.344 christos #ifdef DEBUG_ROOT
172 1.344 christos #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
173 1.345 christos #else
174 1.345 christos #define DPRINTF(a, ...)
175 1.344 christos #endif
176 1.344 christos
177 1.249 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
178 1.289 mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
179 1.287 mrg static rf_declare_cond2(rf_sparet_wait_cv);
180 1.287 mrg static rf_declare_cond2(rf_sparet_resp_cv);
181 1.1 oster
182 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
183 1.10 oster * spare table */
184 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
185 1.10 oster * installation process */
186 1.249 oster #endif
187 1.153 thorpej
188 1.153 thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
189 1.10 oster
190 1.1 oster /* prototypes */
191 1.187 christos static void KernelWakeupFunc(struct buf *);
192 1.187 christos static void InitBP(struct buf *, struct vnode *, unsigned,
193 1.225 christos dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
194 1.187 christos void *, int, struct proc *);
195 1.300 christos struct raid_softc;
196 1.300 christos static void raidinit(struct raid_softc *);
197 1.335 mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
198 1.348 jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
199 1.1 oster
200 1.261 dyoung static int raid_match(device_t, cfdata_t, void *);
201 1.261 dyoung static void raid_attach(device_t, device_t, void *);
202 1.261 dyoung static int raid_detach(device_t, int);
203 1.130 gehenna
204 1.269 jld static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
205 1.269 jld daddr_t, daddr_t);
206 1.269 jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
207 1.269 jld daddr_t, daddr_t, int);
208 1.269 jld
209 1.276 mrg static int raidwrite_component_label(unsigned,
210 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
211 1.276 mrg static int raidread_component_label(unsigned,
212 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
213 1.269 jld
214 1.335 mlelstv static int raid_diskstart(device_t, struct buf *bp);
215 1.335 mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
216 1.335 mlelstv static int raid_lastclose(device_t);
217 1.269 jld
218 1.324 mrg static dev_type_open(raidopen);
219 1.324 mrg static dev_type_close(raidclose);
220 1.324 mrg static dev_type_read(raidread);
221 1.324 mrg static dev_type_write(raidwrite);
222 1.324 mrg static dev_type_ioctl(raidioctl);
223 1.324 mrg static dev_type_strategy(raidstrategy);
224 1.324 mrg static dev_type_dump(raiddump);
225 1.324 mrg static dev_type_size(raidsize);
226 1.130 gehenna
227 1.130 gehenna const struct bdevsw raid_bdevsw = {
228 1.305 dholland .d_open = raidopen,
229 1.305 dholland .d_close = raidclose,
230 1.305 dholland .d_strategy = raidstrategy,
231 1.305 dholland .d_ioctl = raidioctl,
232 1.305 dholland .d_dump = raiddump,
233 1.305 dholland .d_psize = raidsize,
234 1.311 dholland .d_discard = nodiscard,
235 1.305 dholland .d_flag = D_DISK
236 1.130 gehenna };
237 1.130 gehenna
238 1.130 gehenna const struct cdevsw raid_cdevsw = {
239 1.305 dholland .d_open = raidopen,
240 1.305 dholland .d_close = raidclose,
241 1.305 dholland .d_read = raidread,
242 1.305 dholland .d_write = raidwrite,
243 1.305 dholland .d_ioctl = raidioctl,
244 1.305 dholland .d_stop = nostop,
245 1.305 dholland .d_tty = notty,
246 1.305 dholland .d_poll = nopoll,
247 1.305 dholland .d_mmap = nommap,
248 1.305 dholland .d_kqfilter = nokqfilter,
249 1.312 dholland .d_discard = nodiscard,
250 1.305 dholland .d_flag = D_DISK
251 1.130 gehenna };
252 1.1 oster
253 1.323 mlelstv static struct dkdriver rf_dkdriver = {
254 1.335 mlelstv .d_open = raidopen,
255 1.335 mlelstv .d_close = raidclose,
256 1.323 mlelstv .d_strategy = raidstrategy,
257 1.335 mlelstv .d_diskstart = raid_diskstart,
258 1.335 mlelstv .d_dumpblocks = raid_dumpblocks,
259 1.335 mlelstv .d_lastclose = raid_lastclose,
260 1.323 mlelstv .d_minphys = minphys
261 1.323 mlelstv };
262 1.235 oster
263 1.10 oster struct raid_softc {
264 1.335 mlelstv struct dk_softc sc_dksc;
265 1.300 christos int sc_unit;
266 1.10 oster int sc_flags; /* flags */
267 1.10 oster int sc_cflags; /* configuration flags */
268 1.327 pgoyette kmutex_t sc_mutex; /* interlock mutex */
269 1.327 pgoyette kcondvar_t sc_cv; /* and the condvar */
270 1.212 oster uint64_t sc_size; /* size of the raid device */
271 1.10 oster char sc_xname[20]; /* XXX external name */
272 1.300 christos RF_Raid_t sc_r;
273 1.300 christos LIST_ENTRY(raid_softc) sc_link;
274 1.10 oster };
275 1.1 oster /* sc_flags */
276 1.343 christos #define RAIDF_INITED 0x01 /* unit has been initialized */
277 1.343 christos #define RAIDF_SHUTDOWN 0x02 /* unit is being shutdown */
278 1.343 christos #define RAIDF_DETACH 0x04 /* detach after final close */
279 1.343 christos #define RAIDF_WANTED 0x08 /* someone waiting to obtain a lock */
280 1.343 christos #define RAIDF_LOCKED 0x10 /* unit is locked */
281 1.343 christos #define RAIDF_UNIT_CHANGED 0x20 /* unit is being changed */
282 1.1 oster
283 1.1 oster #define raidunit(x) DISKUNIT(x)
284 1.335 mlelstv #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
285 1.1 oster
286 1.202 oster extern struct cfdriver raid_cd;
287 1.266 dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
288 1.266 dyoung raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
289 1.266 dyoung DVF_DETACH_SHUTDOWN);
290 1.202 oster
291 1.353 mrg /* Internal representation of a rf_recon_req */
292 1.353 mrg struct rf_recon_req_internal {
293 1.353 mrg RF_RowCol_t col;
294 1.353 mrg RF_ReconReqFlags_t flags;
295 1.353 mrg void *raidPtr;
296 1.353 mrg };
297 1.353 mrg
298 1.186 perry /*
299 1.186 perry * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
300 1.186 perry * Be aware that large numbers can allow the driver to consume a lot of
301 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
302 1.186 perry *
303 1.186 perry * For example: with a stripe width of 64 blocks (32k) and 5 disks,
304 1.186 perry * a single 64K write will typically require 64K for the old data,
305 1.186 perry * 64K for the old parity, and 64K for the new parity, for a total
306 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
307 1.110 oster * Even it if is used immediately, that's still 128K, which when multiplied
308 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
309 1.186 perry *
310 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
311 1.186 perry * require data reconstruction, which will require *all* of the 4 remaining
312 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
313 1.20 oster */
314 1.20 oster
315 1.20 oster #ifndef RAIDOUTSTANDING
316 1.28 oster #define RAIDOUTSTANDING 6
317 1.20 oster #endif
318 1.20 oster
319 1.1 oster #define RAIDLABELDEV(dev) \
320 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
321 1.1 oster
322 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
323 1.9 oster
324 1.104 oster static int raidlock(struct raid_softc *);
325 1.104 oster static void raidunlock(struct raid_softc *);
326 1.1 oster
327 1.266 dyoung static int raid_detach_unlocked(struct raid_softc *);
328 1.266 dyoung
329 1.104 oster static void rf_markalldirty(RF_Raid_t *);
330 1.304 christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
331 1.48 oster
332 1.353 mrg void rf_ReconThread(struct rf_recon_req_internal *);
333 1.104 oster void rf_RewriteParityThread(RF_Raid_t *raidPtr);
334 1.104 oster void rf_CopybackThread(RF_Raid_t *raidPtr);
335 1.353 mrg void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
336 1.261 dyoung int rf_autoconfig(device_t);
337 1.142 thorpej void rf_buildroothack(RF_ConfigSet_t *);
338 1.104 oster
339 1.104 oster RF_AutoConfig_t *rf_find_raid_components(void);
340 1.104 oster RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
341 1.104 oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
342 1.292 oster int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
343 1.104 oster void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
344 1.104 oster int rf_set_autoconfig(RF_Raid_t *, int);
345 1.104 oster int rf_set_rootpartition(RF_Raid_t *, int);
346 1.104 oster void rf_release_all_vps(RF_ConfigSet_t *);
347 1.104 oster void rf_cleanup_config_set(RF_ConfigSet_t *);
348 1.104 oster int rf_have_enough_components(RF_ConfigSet_t *);
349 1.300 christos struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
350 1.278 mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
351 1.48 oster
352 1.295 erh /*
353 1.295 erh * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
354 1.295 erh * Note that this is overridden by having RAID_AUTOCONFIG as an option
355 1.295 erh * in the kernel config file.
356 1.295 erh */
357 1.295 erh #ifdef RAID_AUTOCONFIG
358 1.295 erh int raidautoconfig = 1;
359 1.295 erh #else
360 1.295 erh int raidautoconfig = 0;
361 1.295 erh #endif
362 1.295 erh static bool raidautoconfigdone = false;
363 1.37 oster
364 1.177 oster struct RF_Pools_s rf_pools;
365 1.177 oster
366 1.300 christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
367 1.300 christos static kmutex_t raid_lock;
368 1.1 oster
369 1.300 christos static struct raid_softc *
370 1.300 christos raidcreate(int unit) {
371 1.300 christos struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
372 1.300 christos sc->sc_unit = unit;
373 1.327 pgoyette cv_init(&sc->sc_cv, "raidunit");
374 1.327 pgoyette mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
375 1.300 christos return sc;
376 1.300 christos }
377 1.1 oster
378 1.300 christos static void
379 1.300 christos raiddestroy(struct raid_softc *sc) {
380 1.327 pgoyette cv_destroy(&sc->sc_cv);
381 1.327 pgoyette mutex_destroy(&sc->sc_mutex);
382 1.300 christos kmem_free(sc, sizeof(*sc));
383 1.300 christos }
384 1.50 oster
385 1.300 christos static struct raid_softc *
386 1.327 pgoyette raidget(int unit, bool create) {
387 1.300 christos struct raid_softc *sc;
388 1.300 christos if (unit < 0) {
389 1.300 christos #ifdef DIAGNOSTIC
390 1.300 christos panic("%s: unit %d!", __func__, unit);
391 1.300 christos #endif
392 1.300 christos return NULL;
393 1.300 christos }
394 1.300 christos mutex_enter(&raid_lock);
395 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
396 1.300 christos if (sc->sc_unit == unit) {
397 1.300 christos mutex_exit(&raid_lock);
398 1.300 christos return sc;
399 1.300 christos }
400 1.300 christos }
401 1.300 christos mutex_exit(&raid_lock);
402 1.327 pgoyette if (!create)
403 1.327 pgoyette return NULL;
404 1.300 christos if ((sc = raidcreate(unit)) == NULL)
405 1.300 christos return NULL;
406 1.300 christos mutex_enter(&raid_lock);
407 1.300 christos LIST_INSERT_HEAD(&raids, sc, sc_link);
408 1.300 christos mutex_exit(&raid_lock);
409 1.300 christos return sc;
410 1.300 christos }
411 1.300 christos
412 1.300 christos static void
413 1.300 christos raidput(struct raid_softc *sc) {
414 1.300 christos mutex_enter(&raid_lock);
415 1.300 christos LIST_REMOVE(sc, sc_link);
416 1.300 christos mutex_exit(&raid_lock);
417 1.300 christos raiddestroy(sc);
418 1.300 christos }
419 1.1 oster
420 1.300 christos void
421 1.300 christos raidattach(int num)
422 1.300 christos {
423 1.62 oster
424 1.142 thorpej /*
425 1.327 pgoyette * Device attachment and associated initialization now occurs
426 1.327 pgoyette * as part of the module initialization.
427 1.142 thorpej */
428 1.142 thorpej }
429 1.142 thorpej
430 1.142 thorpej int
431 1.261 dyoung rf_autoconfig(device_t self)
432 1.142 thorpej {
433 1.142 thorpej RF_AutoConfig_t *ac_list;
434 1.142 thorpej RF_ConfigSet_t *config_sets;
435 1.142 thorpej
436 1.295 erh if (!raidautoconfig || raidautoconfigdone == true)
437 1.142 thorpej return (0);
438 1.142 thorpej
439 1.142 thorpej /* XXX This code can only be run once. */
440 1.295 erh raidautoconfigdone = true;
441 1.142 thorpej
442 1.307 christos #ifdef __HAVE_CPU_BOOTCONF
443 1.307 christos /*
444 1.307 christos * 0. find the boot device if needed first so we can use it later
445 1.307 christos * this needs to be done before we autoconfigure any raid sets,
446 1.307 christos * because if we use wedges we are not going to be able to open
447 1.307 christos * the boot device later
448 1.307 christos */
449 1.307 christos if (booted_device == NULL)
450 1.307 christos cpu_bootconf();
451 1.307 christos #endif
452 1.48 oster /* 1. locate all RAID components on the system */
453 1.258 ad aprint_debug("Searching for RAID components...\n");
454 1.48 oster ac_list = rf_find_raid_components();
455 1.48 oster
456 1.142 thorpej /* 2. Sort them into their respective sets. */
457 1.48 oster config_sets = rf_create_auto_sets(ac_list);
458 1.48 oster
459 1.142 thorpej /*
460 1.299 oster * 3. Evaluate each set and configure the valid ones.
461 1.142 thorpej * This gets done in rf_buildroothack().
462 1.142 thorpej */
463 1.142 thorpej rf_buildroothack(config_sets);
464 1.48 oster
465 1.213 christos return 1;
466 1.48 oster }
467 1.48 oster
468 1.306 christos static int
469 1.307 christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
470 1.359 bad const char *bootname;
471 1.359 bad size_t len;
472 1.359 bad
473 1.359 bad /* if bdv is NULL, the set can't contain it. exit early. */
474 1.359 bad if (bdv == NULL)
475 1.359 bad return 0;
476 1.359 bad
477 1.359 bad bootname = device_xname(bdv);
478 1.359 bad len = strlen(bootname);
479 1.306 christos
480 1.306 christos for (int col = 0; col < r->numCol; col++) {
481 1.307 christos const char *devname = r->Disks[col].devname;
482 1.306 christos devname += sizeof("/dev/") - 1;
483 1.307 christos if (strncmp(devname, "dk", 2) == 0) {
484 1.307 christos const char *parent =
485 1.307 christos dkwedge_get_parent_name(r->Disks[col].dev);
486 1.307 christos if (parent != NULL)
487 1.307 christos devname = parent;
488 1.307 christos }
489 1.306 christos if (strncmp(devname, bootname, len) == 0) {
490 1.306 christos struct raid_softc *sc = r->softc;
491 1.306 christos aprint_debug("raid%d includes boot device %s\n",
492 1.306 christos sc->sc_unit, devname);
493 1.306 christos return 1;
494 1.306 christos }
495 1.306 christos }
496 1.306 christos return 0;
497 1.306 christos }
498 1.306 christos
499 1.48 oster void
500 1.142 thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
501 1.48 oster {
502 1.48 oster RF_ConfigSet_t *cset;
503 1.48 oster RF_ConfigSet_t *next_cset;
504 1.51 oster int num_root;
505 1.300 christos struct raid_softc *sc, *rsc;
506 1.335 mlelstv struct dk_softc *dksc;
507 1.48 oster
508 1.300 christos sc = rsc = NULL;
509 1.51 oster num_root = 0;
510 1.48 oster cset = config_sets;
511 1.271 dyoung while (cset != NULL) {
512 1.48 oster next_cset = cset->next;
513 1.186 perry if (rf_have_enough_components(cset) &&
514 1.300 christos cset->ac->clabel->autoconfigure == 1) {
515 1.300 christos sc = rf_auto_config_set(cset);
516 1.300 christos if (sc != NULL) {
517 1.359 bad aprint_debug("raid%d: configured ok, rootable %d\n",
518 1.359 bad sc->sc_unit, cset->rootable);
519 1.51 oster if (cset->rootable) {
520 1.300 christos rsc = sc;
521 1.51 oster num_root++;
522 1.51 oster }
523 1.51 oster } else {
524 1.51 oster /* The autoconfig didn't work :( */
525 1.300 christos aprint_debug("Autoconfig failed\n");
526 1.51 oster rf_release_all_vps(cset);
527 1.48 oster }
528 1.48 oster } else {
529 1.186 perry /* we're not autoconfiguring this set...
530 1.48 oster release the associated resources */
531 1.49 oster rf_release_all_vps(cset);
532 1.48 oster }
533 1.48 oster /* cleanup */
534 1.49 oster rf_cleanup_config_set(cset);
535 1.48 oster cset = next_cset;
536 1.48 oster }
537 1.335 mlelstv dksc = &rsc->sc_dksc;
538 1.122 oster
539 1.223 oster /* if the user has specified what the root device should be
540 1.223 oster then we don't touch booted_device or boothowto... */
541 1.223 oster
542 1.359 bad if (rootspec != NULL) {
543 1.359 bad DPRINTF("%s: rootspec %s\n", __func__, rootspec);
544 1.223 oster return;
545 1.359 bad }
546 1.223 oster
547 1.122 oster /* we found something bootable... */
548 1.122 oster
549 1.310 christos /*
550 1.310 christos * XXX: The following code assumes that the root raid
551 1.310 christos * is the first ('a') partition. This is about the best
552 1.310 christos * we can do with a BSD disklabel, but we might be able
553 1.310 christos * to do better with a GPT label, by setting a specified
554 1.310 christos * attribute to indicate the root partition. We can then
555 1.310 christos * stash the partition number in the r->root_partition
556 1.310 christos * high bits (the bottom 2 bits are already used). For
557 1.310 christos * now we just set booted_partition to 0 when we override
558 1.310 christos * root.
559 1.310 christos */
560 1.122 oster if (num_root == 1) {
561 1.306 christos device_t candidate_root;
562 1.335 mlelstv if (dksc->sc_dkdev.dk_nwedges != 0) {
563 1.297 christos char cname[sizeof(cset->ac->devname)];
564 1.344 christos /* XXX: assume partition 'a' first */
565 1.297 christos snprintf(cname, sizeof(cname), "%s%c",
566 1.335 mlelstv device_xname(dksc->sc_dev), 'a');
567 1.306 christos candidate_root = dkwedge_find_by_wname(cname);
568 1.344 christos DPRINTF("%s: candidate wedge root=%s\n", __func__,
569 1.344 christos cname);
570 1.344 christos if (candidate_root == NULL) {
571 1.344 christos /*
572 1.344 christos * If that is not found, because we don't use
573 1.344 christos * disklabel, return the first dk child
574 1.344 christos * XXX: we can skip the 'a' check above
575 1.344 christos * and always do this...
576 1.344 christos */
577 1.344 christos size_t i = 0;
578 1.344 christos candidate_root = dkwedge_find_by_parent(
579 1.344 christos device_xname(dksc->sc_dev), &i);
580 1.344 christos }
581 1.344 christos DPRINTF("%s: candidate wedge root=%p\n", __func__,
582 1.344 christos candidate_root);
583 1.297 christos } else
584 1.335 mlelstv candidate_root = dksc->sc_dev;
585 1.344 christos DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
586 1.344 christos DPRINTF("%s: booted_device=%p root_partition=%d "
587 1.359 bad "contains_boot=%d",
588 1.359 bad __func__, booted_device, rsc->sc_r.root_partition,
589 1.359 bad rf_containsboot(&rsc->sc_r, booted_device));
590 1.359 bad /* XXX the check for booted_device == NULL can probably be
591 1.359 bad * dropped, now that rf_containsboot handles that case.
592 1.359 bad */
593 1.308 christos if (booted_device == NULL ||
594 1.308 christos rsc->sc_r.root_partition == 1 ||
595 1.310 christos rf_containsboot(&rsc->sc_r, booted_device)) {
596 1.308 christos booted_device = candidate_root;
597 1.351 christos booted_method = "raidframe/single";
598 1.310 christos booted_partition = 0; /* XXX assume 'a' */
599 1.310 christos }
600 1.122 oster } else if (num_root > 1) {
601 1.344 christos DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
602 1.344 christos booted_device);
603 1.226 oster
604 1.226 oster /*
605 1.226 oster * Maybe the MD code can help. If it cannot, then
606 1.226 oster * setroot() will discover that we have no
607 1.226 oster * booted_device and will ask the user if nothing was
608 1.226 oster * hardwired in the kernel config file
609 1.226 oster */
610 1.226 oster if (booted_device == NULL)
611 1.226 oster return;
612 1.226 oster
613 1.226 oster num_root = 0;
614 1.300 christos mutex_enter(&raid_lock);
615 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
616 1.300 christos RF_Raid_t *r = &sc->sc_r;
617 1.300 christos if (r->valid == 0)
618 1.226 oster continue;
619 1.226 oster
620 1.300 christos if (r->root_partition == 0)
621 1.226 oster continue;
622 1.226 oster
623 1.306 christos if (rf_containsboot(r, booted_device)) {
624 1.226 oster num_root++;
625 1.300 christos rsc = sc;
626 1.335 mlelstv dksc = &rsc->sc_dksc;
627 1.226 oster }
628 1.226 oster }
629 1.300 christos mutex_exit(&raid_lock);
630 1.295 erh
631 1.226 oster if (num_root == 1) {
632 1.335 mlelstv booted_device = dksc->sc_dev;
633 1.351 christos booted_method = "raidframe/multi";
634 1.310 christos booted_partition = 0; /* XXX assume 'a' */
635 1.226 oster } else {
636 1.226 oster /* we can't guess.. require the user to answer... */
637 1.226 oster boothowto |= RB_ASKNAME;
638 1.226 oster }
639 1.51 oster }
640 1.1 oster }
641 1.1 oster
642 1.324 mrg static int
643 1.169 oster raidsize(dev_t dev)
644 1.1 oster {
645 1.1 oster struct raid_softc *rs;
646 1.335 mlelstv struct dk_softc *dksc;
647 1.335 mlelstv unsigned int unit;
648 1.1 oster
649 1.1 oster unit = raidunit(dev);
650 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
651 1.336 mlelstv return -1;
652 1.335 mlelstv dksc = &rs->sc_dksc;
653 1.335 mlelstv
654 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
655 1.336 mlelstv return -1;
656 1.1 oster
657 1.335 mlelstv return dk_size(dksc, dev);
658 1.335 mlelstv }
659 1.1 oster
660 1.335 mlelstv static int
661 1.335 mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
662 1.335 mlelstv {
663 1.335 mlelstv unsigned int unit;
664 1.335 mlelstv struct raid_softc *rs;
665 1.335 mlelstv struct dk_softc *dksc;
666 1.1 oster
667 1.335 mlelstv unit = raidunit(dev);
668 1.335 mlelstv if ((rs = raidget(unit, false)) == NULL)
669 1.335 mlelstv return ENXIO;
670 1.335 mlelstv dksc = &rs->sc_dksc;
671 1.1 oster
672 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
673 1.335 mlelstv return ENODEV;
674 1.1 oster
675 1.336 mlelstv /*
676 1.336 mlelstv Note that blkno is relative to this particular partition.
677 1.336 mlelstv By adding adding RF_PROTECTED_SECTORS, we get a value that
678 1.336 mlelstv is relative to the partition used for the underlying component.
679 1.336 mlelstv */
680 1.336 mlelstv blkno += RF_PROTECTED_SECTORS;
681 1.336 mlelstv
682 1.335 mlelstv return dk_dump(dksc, dev, blkno, va, size);
683 1.1 oster }
684 1.1 oster
685 1.324 mrg static int
686 1.335 mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
687 1.1 oster {
688 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
689 1.231 oster const struct bdevsw *bdev;
690 1.231 oster RF_Raid_t *raidPtr;
691 1.335 mlelstv int c, sparecol, j, scol, dumpto;
692 1.231 oster int error = 0;
693 1.231 oster
694 1.300 christos raidPtr = &rs->sc_r;
695 1.231 oster
696 1.231 oster /* we only support dumping to RAID 1 sets */
697 1.231 oster if (raidPtr->Layout.numDataCol != 1 ||
698 1.231 oster raidPtr->Layout.numParityCol != 1)
699 1.231 oster return EINVAL;
700 1.231 oster
701 1.231 oster if ((error = raidlock(rs)) != 0)
702 1.231 oster return error;
703 1.231 oster
704 1.231 oster /* figure out what device is alive.. */
705 1.231 oster
706 1.231 oster /*
707 1.231 oster Look for a component to dump to. The preference for the
708 1.231 oster component to dump to is as follows:
709 1.231 oster 1) the master
710 1.231 oster 2) a used_spare of the master
711 1.231 oster 3) the slave
712 1.231 oster 4) a used_spare of the slave
713 1.231 oster */
714 1.231 oster
715 1.231 oster dumpto = -1;
716 1.231 oster for (c = 0; c < raidPtr->numCol; c++) {
717 1.231 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
718 1.231 oster /* this might be the one */
719 1.231 oster dumpto = c;
720 1.231 oster break;
721 1.231 oster }
722 1.231 oster }
723 1.231 oster
724 1.231 oster /*
725 1.231 oster At this point we have possibly selected a live master or a
726 1.231 oster live slave. We now check to see if there is a spared
727 1.231 oster master (or a spared slave), if we didn't find a live master
728 1.231 oster or a live slave.
729 1.231 oster */
730 1.231 oster
731 1.231 oster for (c = 0; c < raidPtr->numSpare; c++) {
732 1.231 oster sparecol = raidPtr->numCol + c;
733 1.231 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
734 1.231 oster /* How about this one? */
735 1.231 oster scol = -1;
736 1.231 oster for(j=0;j<raidPtr->numCol;j++) {
737 1.231 oster if (raidPtr->Disks[j].spareCol == sparecol) {
738 1.231 oster scol = j;
739 1.231 oster break;
740 1.231 oster }
741 1.231 oster }
742 1.231 oster if (scol == 0) {
743 1.231 oster /*
744 1.231 oster We must have found a spared master!
745 1.231 oster We'll take that over anything else
746 1.231 oster found so far. (We couldn't have
747 1.231 oster found a real master before, since
748 1.231 oster this is a used spare, and it's
749 1.231 oster saying that it's replacing the
750 1.231 oster master.) On reboot (with
751 1.231 oster autoconfiguration turned on)
752 1.231 oster sparecol will become the 1st
753 1.231 oster component (component0) of this set.
754 1.231 oster */
755 1.231 oster dumpto = sparecol;
756 1.231 oster break;
757 1.231 oster } else if (scol != -1) {
758 1.231 oster /*
759 1.231 oster Must be a spared slave. We'll dump
760 1.231 oster to that if we havn't found anything
761 1.231 oster else so far.
762 1.231 oster */
763 1.231 oster if (dumpto == -1)
764 1.231 oster dumpto = sparecol;
765 1.231 oster }
766 1.231 oster }
767 1.231 oster }
768 1.231 oster
769 1.231 oster if (dumpto == -1) {
770 1.231 oster /* we couldn't find any live components to dump to!?!?
771 1.231 oster */
772 1.231 oster error = EINVAL;
773 1.231 oster goto out;
774 1.231 oster }
775 1.231 oster
776 1.231 oster bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
777 1.342 mlelstv if (bdev == NULL) {
778 1.342 mlelstv error = ENXIO;
779 1.342 mlelstv goto out;
780 1.342 mlelstv }
781 1.231 oster
782 1.231 oster error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
783 1.336 mlelstv blkno, va, nblk * raidPtr->bytesPerSector);
784 1.231 oster
785 1.231 oster out:
786 1.231 oster raidunlock(rs);
787 1.231 oster
788 1.231 oster return error;
789 1.1 oster }
790 1.324 mrg
791 1.1 oster /* ARGSUSED */
792 1.324 mrg static int
793 1.222 christos raidopen(dev_t dev, int flags, int fmt,
794 1.222 christos struct lwp *l)
795 1.1 oster {
796 1.9 oster int unit = raidunit(dev);
797 1.1 oster struct raid_softc *rs;
798 1.335 mlelstv struct dk_softc *dksc;
799 1.335 mlelstv int error = 0;
800 1.9 oster int part, pmask;
801 1.9 oster
802 1.327 pgoyette if ((rs = raidget(unit, true)) == NULL)
803 1.300 christos return ENXIO;
804 1.1 oster if ((error = raidlock(rs)) != 0)
805 1.9 oster return (error);
806 1.266 dyoung
807 1.266 dyoung if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
808 1.266 dyoung error = EBUSY;
809 1.266 dyoung goto bad;
810 1.266 dyoung }
811 1.266 dyoung
812 1.335 mlelstv dksc = &rs->sc_dksc;
813 1.1 oster
814 1.1 oster part = DISKPART(dev);
815 1.1 oster pmask = (1 << part);
816 1.1 oster
817 1.335 mlelstv if (!DK_BUSY(dksc, pmask) &&
818 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
819 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
820 1.13 oster have done a configure before this. I DO NOT WANT TO BE
821 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
822 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
823 1.13 oster /* XXX should check to see if we're only open for reading
824 1.13 oster here... If so, we needn't do this, but then need some
825 1.13 oster other way of keeping track of what's happened.. */
826 1.13 oster
827 1.300 christos rf_markalldirty(&rs->sc_r);
828 1.13 oster }
829 1.13 oster
830 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0)
831 1.335 mlelstv error = dk_open(dksc, dev, flags, fmt, l);
832 1.1 oster
833 1.213 christos bad:
834 1.1 oster raidunlock(rs);
835 1.1 oster
836 1.9 oster return (error);
837 1.1 oster
838 1.1 oster
839 1.1 oster }
840 1.324 mrg
841 1.335 mlelstv static int
842 1.335 mlelstv raid_lastclose(device_t self)
843 1.335 mlelstv {
844 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
845 1.335 mlelstv
846 1.335 mlelstv /* Last one... device is not unconfigured yet.
847 1.335 mlelstv Device shutdown has taken care of setting the
848 1.335 mlelstv clean bits if RAIDF_INITED is not set
849 1.335 mlelstv mark things as clean... */
850 1.335 mlelstv
851 1.335 mlelstv rf_update_component_labels(&rs->sc_r,
852 1.335 mlelstv RF_FINAL_COMPONENT_UPDATE);
853 1.335 mlelstv
854 1.335 mlelstv /* pass to unlocked code */
855 1.335 mlelstv if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
856 1.335 mlelstv rs->sc_flags |= RAIDF_DETACH;
857 1.335 mlelstv
858 1.335 mlelstv return 0;
859 1.335 mlelstv }
860 1.335 mlelstv
861 1.1 oster /* ARGSUSED */
862 1.324 mrg static int
863 1.222 christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
864 1.1 oster {
865 1.9 oster int unit = raidunit(dev);
866 1.1 oster struct raid_softc *rs;
867 1.335 mlelstv struct dk_softc *dksc;
868 1.335 mlelstv cfdata_t cf;
869 1.335 mlelstv int error = 0, do_detach = 0, do_put = 0;
870 1.1 oster
871 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
872 1.300 christos return ENXIO;
873 1.335 mlelstv dksc = &rs->sc_dksc;
874 1.1 oster
875 1.1 oster if ((error = raidlock(rs)) != 0)
876 1.1 oster return (error);
877 1.1 oster
878 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) {
879 1.335 mlelstv error = dk_close(dksc, dev, flags, fmt, l);
880 1.335 mlelstv if ((rs->sc_flags & RAIDF_DETACH) != 0)
881 1.335 mlelstv do_detach = 1;
882 1.335 mlelstv } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
883 1.335 mlelstv do_put = 1;
884 1.1 oster
885 1.335 mlelstv raidunlock(rs);
886 1.1 oster
887 1.335 mlelstv if (do_detach) {
888 1.335 mlelstv /* free the pseudo device attach bits */
889 1.335 mlelstv cf = device_cfdata(dksc->sc_dev);
890 1.335 mlelstv error = config_detach(dksc->sc_dev, 0);
891 1.335 mlelstv if (error == 0)
892 1.335 mlelstv free(cf, M_RAIDFRAME);
893 1.335 mlelstv } else if (do_put) {
894 1.335 mlelstv raidput(rs);
895 1.1 oster }
896 1.186 perry
897 1.335 mlelstv return (error);
898 1.147 oster
899 1.335 mlelstv }
900 1.327 pgoyette
901 1.335 mlelstv static void
902 1.335 mlelstv raid_wakeup(RF_Raid_t *raidPtr)
903 1.335 mlelstv {
904 1.335 mlelstv rf_lock_mutex2(raidPtr->iodone_lock);
905 1.335 mlelstv rf_signal_cond2(raidPtr->iodone_cv);
906 1.335 mlelstv rf_unlock_mutex2(raidPtr->iodone_lock);
907 1.1 oster }
908 1.1 oster
909 1.324 mrg static void
910 1.169 oster raidstrategy(struct buf *bp)
911 1.1 oster {
912 1.335 mlelstv unsigned int unit;
913 1.335 mlelstv struct raid_softc *rs;
914 1.335 mlelstv struct dk_softc *dksc;
915 1.1 oster RF_Raid_t *raidPtr;
916 1.1 oster
917 1.335 mlelstv unit = raidunit(bp->b_dev);
918 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) {
919 1.30 oster bp->b_error = ENXIO;
920 1.335 mlelstv goto fail;
921 1.30 oster }
922 1.300 christos if ((rs->sc_flags & RAIDF_INITED) == 0) {
923 1.300 christos bp->b_error = ENXIO;
924 1.335 mlelstv goto fail;
925 1.1 oster }
926 1.335 mlelstv dksc = &rs->sc_dksc;
927 1.300 christos raidPtr = &rs->sc_r;
928 1.335 mlelstv
929 1.335 mlelstv /* Queue IO only */
930 1.335 mlelstv if (dk_strategy_defer(dksc, bp))
931 1.196 yamt goto done;
932 1.1 oster
933 1.335 mlelstv /* schedule the IO to happen at the next convenient time */
934 1.335 mlelstv raid_wakeup(raidPtr);
935 1.335 mlelstv
936 1.335 mlelstv done:
937 1.335 mlelstv return;
938 1.335 mlelstv
939 1.335 mlelstv fail:
940 1.335 mlelstv bp->b_resid = bp->b_bcount;
941 1.335 mlelstv biodone(bp);
942 1.335 mlelstv }
943 1.335 mlelstv
944 1.335 mlelstv static int
945 1.335 mlelstv raid_diskstart(device_t dev, struct buf *bp)
946 1.335 mlelstv {
947 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
948 1.335 mlelstv RF_Raid_t *raidPtr;
949 1.1 oster
950 1.335 mlelstv raidPtr = &rs->sc_r;
951 1.335 mlelstv if (!raidPtr->valid) {
952 1.335 mlelstv db1_printf(("raid is not valid..\n"));
953 1.335 mlelstv return ENODEV;
954 1.196 yamt }
955 1.285 mrg
956 1.335 mlelstv /* XXX */
957 1.335 mlelstv bp->b_resid = 0;
958 1.335 mlelstv
959 1.335 mlelstv return raiddoaccess(raidPtr, bp);
960 1.335 mlelstv }
961 1.1 oster
962 1.335 mlelstv void
963 1.335 mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
964 1.335 mlelstv {
965 1.335 mlelstv struct raid_softc *rs;
966 1.335 mlelstv struct dk_softc *dksc;
967 1.34 oster
968 1.335 mlelstv rs = raidPtr->softc;
969 1.335 mlelstv dksc = &rs->sc_dksc;
970 1.34 oster
971 1.335 mlelstv dk_done(dksc, bp);
972 1.34 oster
973 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
974 1.335 mlelstv raidPtr->openings++;
975 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
976 1.196 yamt
977 1.335 mlelstv /* schedule more IO */
978 1.335 mlelstv raid_wakeup(raidPtr);
979 1.1 oster }
980 1.324 mrg
981 1.1 oster /* ARGSUSED */
982 1.324 mrg static int
983 1.222 christos raidread(dev_t dev, struct uio *uio, int flags)
984 1.1 oster {
985 1.9 oster int unit = raidunit(dev);
986 1.1 oster struct raid_softc *rs;
987 1.1 oster
988 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
989 1.300 christos return ENXIO;
990 1.1 oster
991 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
992 1.1 oster return (ENXIO);
993 1.1 oster
994 1.1 oster return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
995 1.1 oster
996 1.1 oster }
997 1.324 mrg
998 1.1 oster /* ARGSUSED */
999 1.324 mrg static int
1000 1.222 christos raidwrite(dev_t dev, struct uio *uio, int flags)
1001 1.1 oster {
1002 1.9 oster int unit = raidunit(dev);
1003 1.1 oster struct raid_softc *rs;
1004 1.1 oster
1005 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1006 1.300 christos return ENXIO;
1007 1.1 oster
1008 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
1009 1.1 oster return (ENXIO);
1010 1.147 oster
1011 1.1 oster return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
1012 1.1 oster
1013 1.1 oster }
1014 1.1 oster
1015 1.266 dyoung static int
1016 1.266 dyoung raid_detach_unlocked(struct raid_softc *rs)
1017 1.266 dyoung {
1018 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1019 1.335 mlelstv RF_Raid_t *raidPtr;
1020 1.266 dyoung int error;
1021 1.266 dyoung
1022 1.300 christos raidPtr = &rs->sc_r;
1023 1.266 dyoung
1024 1.337 mlelstv if (DK_BUSY(dksc, 0) ||
1025 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1026 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1027 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1028 1.266 dyoung return EBUSY;
1029 1.266 dyoung
1030 1.266 dyoung if ((rs->sc_flags & RAIDF_INITED) == 0)
1031 1.333 mlelstv return 0;
1032 1.333 mlelstv
1033 1.333 mlelstv rs->sc_flags &= ~RAIDF_SHUTDOWN;
1034 1.333 mlelstv
1035 1.333 mlelstv if ((error = rf_Shutdown(raidPtr)) != 0)
1036 1.266 dyoung return error;
1037 1.266 dyoung
1038 1.335 mlelstv rs->sc_flags &= ~RAIDF_INITED;
1039 1.335 mlelstv
1040 1.335 mlelstv /* Kill off any queued buffers */
1041 1.335 mlelstv dk_drain(dksc);
1042 1.335 mlelstv bufq_free(dksc->sc_bufq);
1043 1.335 mlelstv
1044 1.266 dyoung /* Detach the disk. */
1045 1.335 mlelstv dkwedge_delall(&dksc->sc_dkdev);
1046 1.335 mlelstv disk_detach(&dksc->sc_dkdev);
1047 1.335 mlelstv disk_destroy(&dksc->sc_dkdev);
1048 1.335 mlelstv dk_detach(dksc);
1049 1.333 mlelstv
1050 1.266 dyoung return 0;
1051 1.266 dyoung }
1052 1.266 dyoung
1053 1.366 christos static bool
1054 1.366 christos rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
1055 1.366 christos {
1056 1.366 christos switch (cmd) {
1057 1.366 christos case RAIDFRAME_ADD_HOT_SPARE:
1058 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS:
1059 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1060 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT80:
1061 1.366 christos case RAIDFRAME_CHECK_PARITY:
1062 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1063 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1064 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT80:
1065 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS:
1066 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1067 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS_EXT80:
1068 1.366 christos case RAIDFRAME_COPYBACK:
1069 1.366 christos case RAIDFRAME_DELETE_COMPONENT:
1070 1.366 christos case RAIDFRAME_FAIL_DISK:
1071 1.366 christos case RAIDFRAME_FAIL_DISK80:
1072 1.366 christos case RAIDFRAME_GET_ACCTOTALS:
1073 1.366 christos case RAIDFRAME_GET_COMPONENT_LABEL:
1074 1.366 christos case RAIDFRAME_GET_COMPONENT_LABEL80:
1075 1.366 christos case RAIDFRAME_GET_INFO:
1076 1.366 christos #ifdef RAID_COMPAT32
1077 1.366 christos case RAIDFRAME_GET_INFO32:
1078 1.366 christos #endif
1079 1.366 christos case RAIDFRAME_GET_INFO50:
1080 1.366 christos case RAIDFRAME_GET_INFO80:
1081 1.366 christos case RAIDFRAME_GET_SIZE:
1082 1.366 christos case RAIDFRAME_INCORPORATE_HOT_SPARE:
1083 1.366 christos case RAIDFRAME_INIT_LABELS:
1084 1.366 christos case RAIDFRAME_KEEP_ACCTOTALS:
1085 1.366 christos case RAIDFRAME_PARITYMAP_GET_DISABLE:
1086 1.366 christos case RAIDFRAME_PARITYMAP_SET_DISABLE:
1087 1.366 christos case RAIDFRAME_PARITYMAP_SET_PARAMS:
1088 1.366 christos case RAIDFRAME_PARITYMAP_STATUS:
1089 1.366 christos case RAIDFRAME_REBUILD_IN_PLACE:
1090 1.366 christos case RAIDFRAME_REMOVE_HOT_SPARE:
1091 1.366 christos case RAIDFRAME_RESET_ACCTOTALS:
1092 1.366 christos case RAIDFRAME_REWRITEPARITY:
1093 1.366 christos case RAIDFRAME_SET_AUTOCONFIG:
1094 1.366 christos case RAIDFRAME_SET_COMPONENT_LABEL:
1095 1.366 christos case RAIDFRAME_SET_ROOT:
1096 1.366 christos return (rs->sc_flags & RAIDF_INITED) != 0;
1097 1.366 christos }
1098 1.366 christos return false;
1099 1.366 christos }
1100 1.366 christos
1101 1.366 christos /*
1102 1.366 christos * Really this should be done as part of the default in the ioctl
1103 1.366 christos * switch like other compat code, but it is too messy to do that
1104 1.366 christos * right now, so we list all the compat ioctls we know about,
1105 1.366 christos * and load appropriately.
1106 1.366 christos *
1107 1.366 christos * XXX[1] what about combinations of compat32 and compat80 ioctls?
1108 1.366 christos * XXX[2] what about autoloading the compat32 code? Is there a compat32
1109 1.366 christos * ioctl module? Should there be one?
1110 1.366 christos */
1111 1.366 christos static int
1112 1.366 christos rf_handle_compat(struct raid_softc *rs, int unit, u_long cmd, void *data,
1113 1.366 christos RF_Config_t **k_cfg)
1114 1.366 christos {
1115 1.366 christos RF_Raid_t *raidPtr = &rs->sc_r;
1116 1.366 christos int retcode = EPASSTHROUGH;
1117 1.366 christos switch (cmd) {
1118 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT80:
1119 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT80:
1120 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS_EXT80:
1121 1.366 christos case RAIDFRAME_CONFIGURE80:
1122 1.366 christos case RAIDFRAME_FAIL_DISK80:
1123 1.366 christos case RAIDFRAME_GET_COMPONENT_LABEL80:
1124 1.366 christos case RAIDFRAME_GET_INFO80:
1125 1.366 christos module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
1126 1.366 christos MODULE_CALL_HOOK(raidframe_ioctl_80_hook, (cmd,
1127 1.366 christos (rs->sc_flags & RAIDF_INITED), raidPtr, unit, data, k_cfg),
1128 1.366 christos enosys(), retcode);
1129 1.366 christos break;
1130 1.366 christos case RAIDFRAME_CONFIGURE50:
1131 1.366 christos case RAIDFRAME_GET_INFO50:
1132 1.366 christos module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
1133 1.366 christos MODULE_CALL_HOOK(raidframe_ioctl_50_hook, (cmd,
1134 1.366 christos (rs->sc_flags & RAIDF_INITED), raidPtr, unit, data, k_cfg),
1135 1.366 christos enosys(), retcode);
1136 1.366 christos break;
1137 1.366 christos default:
1138 1.366 christos break;
1139 1.366 christos }
1140 1.366 christos return retcode;
1141 1.366 christos }
1142 1.366 christos
1143 1.366 christos int
1144 1.366 christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
1145 1.366 christos {
1146 1.366 christos struct rf_recon_req_internal *rrint;
1147 1.366 christos
1148 1.366 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1149 1.366 christos /* Can't do this on a RAID 0!! */
1150 1.366 christos return EINVAL;
1151 1.366 christos }
1152 1.366 christos
1153 1.366 christos if (rr->col < 0 || rr->col >= raidPtr->numCol) {
1154 1.366 christos /* bad column */
1155 1.366 christos return EINVAL;
1156 1.366 christos }
1157 1.366 christos
1158 1.366 christos rf_lock_mutex2(raidPtr->mutex);
1159 1.366 christos if (raidPtr->status == rf_rs_reconstructing) {
1160 1.366 christos /* you can't fail a disk while we're reconstructing! */
1161 1.366 christos /* XXX wrong for RAID6 */
1162 1.366 christos goto out;
1163 1.366 christos }
1164 1.366 christos if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
1165 1.366 christos (raidPtr->numFailures > 0)) {
1166 1.366 christos /* some other component has failed. Let's not make
1167 1.366 christos things worse. XXX wrong for RAID6 */
1168 1.366 christos goto out;
1169 1.366 christos }
1170 1.366 christos if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1171 1.366 christos /* Can't fail a spared disk! */
1172 1.366 christos goto out;
1173 1.366 christos }
1174 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1175 1.366 christos
1176 1.366 christos /* make a copy of the recon request so that we don't rely on
1177 1.366 christos * the user's buffer */
1178 1.366 christos RF_Malloc(rrint, sizeof(*rrint), (struct rf_recon_req_internal *));
1179 1.366 christos if (rrint == NULL)
1180 1.366 christos return(ENOMEM);
1181 1.366 christos rrint->col = rr->col;
1182 1.366 christos rrint->flags = rr->flags;
1183 1.366 christos rrint->raidPtr = raidPtr;
1184 1.366 christos
1185 1.366 christos return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
1186 1.366 christos rrint, "raid_recon");
1187 1.366 christos out:
1188 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1189 1.366 christos return EINVAL;
1190 1.366 christos }
1191 1.366 christos
1192 1.324 mrg static int
1193 1.225 christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1194 1.1 oster {
1195 1.9 oster int unit = raidunit(dev);
1196 1.9 oster int error = 0;
1197 1.335 mlelstv int part, pmask;
1198 1.1 oster struct raid_softc *rs;
1199 1.335 mlelstv struct dk_softc *dksc;
1200 1.1 oster RF_Config_t *k_cfg, *u_cfg;
1201 1.42 oster RF_Raid_t *raidPtr;
1202 1.48 oster RF_RaidDisk_t *diskPtr;
1203 1.41 oster RF_AccTotals_t *totals;
1204 1.366 christos RF_DeviceConfig_t *d_cfg, *ucfgp = data;
1205 1.1 oster u_char *specific_buf;
1206 1.11 oster int retcode = 0;
1207 1.11 oster int column;
1208 1.269 jld /* int raidid; */
1209 1.353 mrg struct rf_recon_req_internal *rrint;
1210 1.48 oster RF_ComponentLabel_t *clabel;
1211 1.209 oster RF_ComponentLabel_t *ci_label;
1212 1.12 oster RF_SingleComponent_t *sparePtr,*componentPtr;
1213 1.12 oster RF_SingleComponent_t component;
1214 1.353 mrg int d;
1215 1.1 oster
1216 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1217 1.300 christos return ENXIO;
1218 1.366 christos
1219 1.335 mlelstv dksc = &rs->sc_dksc;
1220 1.300 christos raidPtr = &rs->sc_r;
1221 1.1 oster
1222 1.276 mrg db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1223 1.366 christos (int) DISKPART(dev), (int) unit, cmd));
1224 1.1 oster
1225 1.1 oster /* Must be initialized for these... */
1226 1.366 christos if (rf_must_be_initialized(rs, cmd))
1227 1.366 christos return ENXIO;
1228 1.9 oster
1229 1.366 christos switch (retcode = rf_handle_compat(rs, unit, cmd, data, &k_cfg)) {
1230 1.366 christos case EPASSTHROUGH:
1231 1.366 christos /* Not compat, keep going */
1232 1.358 pgoyette retcode = 0;
1233 1.366 christos break;
1234 1.366 christos case EAGAIN:
1235 1.254 christos goto config;
1236 1.366 christos default:
1237 1.366 christos /* compat but could not handle it or load the module */
1238 1.358 pgoyette return retcode;
1239 1.366 christos }
1240 1.366 christos
1241 1.358 pgoyette switch (cmd) {
1242 1.1 oster /* configure the system */
1243 1.1 oster case RAIDFRAME_CONFIGURE:
1244 1.364 mrg #ifdef RAID_COMPAT32
1245 1.353 mrg case RAIDFRAME_CONFIGURE32:
1246 1.353 mrg #endif
1247 1.48 oster if (raidPtr->valid) {
1248 1.48 oster /* There is a valid RAID set running on this unit! */
1249 1.366 christos printf("raid%d: Device already configured!\n", unit);
1250 1.66 oster return(EINVAL);
1251 1.48 oster }
1252 1.48 oster
1253 1.1 oster /* copy-in the configuration information */
1254 1.1 oster /* data points to a pointer to the configuration structure */
1255 1.43 oster
1256 1.9 oster RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1257 1.1 oster if (k_cfg == NULL) {
1258 1.9 oster return (ENOMEM);
1259 1.1 oster }
1260 1.364 mrg #ifdef RAID_COMPAT32
1261 1.353 mrg if (cmd == RAIDFRAME_CONFIGURE32 &&
1262 1.353 mrg (l->l_proc->p_flag & PK_32) != 0)
1263 1.361 pgoyette MODULE_CALL_HOOK(raidframe_netbsd32_config_hook,
1264 1.361 pgoyette (data, k_cfg), enosys(), retcode);
1265 1.353 mrg else
1266 1.353 mrg #endif
1267 1.353 mrg {
1268 1.353 mrg u_cfg = *((RF_Config_t **) data);
1269 1.353 mrg retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1270 1.353 mrg }
1271 1.1 oster if (retcode) {
1272 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1273 1.46 oster db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1274 1.9 oster retcode));
1275 1.327 pgoyette goto no_config;
1276 1.1 oster }
1277 1.254 christos goto config;
1278 1.254 christos config:
1279 1.327 pgoyette rs->sc_flags &= ~RAIDF_SHUTDOWN;
1280 1.327 pgoyette
1281 1.9 oster /* allocate a buffer for the layout-specific data, and copy it
1282 1.9 oster * in */
1283 1.1 oster if (k_cfg->layoutSpecificSize) {
1284 1.9 oster if (k_cfg->layoutSpecificSize > 10000) {
1285 1.1 oster /* sanity check */
1286 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1287 1.327 pgoyette retcode = EINVAL;
1288 1.327 pgoyette goto no_config;
1289 1.1 oster }
1290 1.9 oster RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1291 1.9 oster (u_char *));
1292 1.1 oster if (specific_buf == NULL) {
1293 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1294 1.327 pgoyette retcode = ENOMEM;
1295 1.327 pgoyette goto no_config;
1296 1.1 oster }
1297 1.156 dsl retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1298 1.9 oster k_cfg->layoutSpecificSize);
1299 1.1 oster if (retcode) {
1300 1.33 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1301 1.186 perry RF_Free(specific_buf,
1302 1.42 oster k_cfg->layoutSpecificSize);
1303 1.46 oster db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1304 1.9 oster retcode));
1305 1.327 pgoyette goto no_config;
1306 1.1 oster }
1307 1.9 oster } else
1308 1.9 oster specific_buf = NULL;
1309 1.1 oster k_cfg->layoutSpecific = specific_buf;
1310 1.9 oster
1311 1.9 oster /* should do some kind of sanity check on the configuration.
1312 1.9 oster * Store the sum of all the bytes in the last byte? */
1313 1.1 oster
1314 1.1 oster /* configure the system */
1315 1.1 oster
1316 1.48 oster /*
1317 1.48 oster * Clear the entire RAID descriptor, just to make sure
1318 1.186 perry * there is no stale data left in the case of a
1319 1.186 perry * reconfiguration
1320 1.48 oster */
1321 1.277 christos memset(raidPtr, 0, sizeof(*raidPtr));
1322 1.302 christos raidPtr->softc = rs;
1323 1.42 oster raidPtr->raidid = unit;
1324 1.20 oster
1325 1.48 oster retcode = rf_Configure(raidPtr, k_cfg, NULL);
1326 1.1 oster
1327 1.40 oster if (retcode == 0) {
1328 1.37 oster
1329 1.186 perry /* allow this many simultaneous IO's to
1330 1.40 oster this RAID device */
1331 1.42 oster raidPtr->openings = RAIDOUTSTANDING;
1332 1.186 perry
1333 1.300 christos raidinit(rs);
1334 1.335 mlelstv raid_wakeup(raidPtr);
1335 1.59 oster rf_markalldirty(raidPtr);
1336 1.9 oster }
1337 1.1 oster /* free the buffers. No return code here. */
1338 1.1 oster if (k_cfg->layoutSpecificSize) {
1339 1.9 oster RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1340 1.1 oster }
1341 1.9 oster RF_Free(k_cfg, sizeof(RF_Config_t));
1342 1.9 oster
1343 1.327 pgoyette no_config:
1344 1.327 pgoyette /*
1345 1.327 pgoyette * If configuration failed, set sc_flags so that we
1346 1.327 pgoyette * will detach the device when we close it.
1347 1.327 pgoyette */
1348 1.327 pgoyette if (retcode != 0)
1349 1.327 pgoyette rs->sc_flags |= RAIDF_SHUTDOWN;
1350 1.9 oster return (retcode);
1351 1.9 oster
1352 1.9 oster /* shutdown the system */
1353 1.1 oster case RAIDFRAME_SHUTDOWN:
1354 1.9 oster
1355 1.266 dyoung part = DISKPART(dev);
1356 1.266 dyoung pmask = (1 << part);
1357 1.266 dyoung
1358 1.9 oster if ((error = raidlock(rs)) != 0)
1359 1.9 oster return (error);
1360 1.1 oster
1361 1.337 mlelstv if (DK_BUSY(dksc, pmask) ||
1362 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1363 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1364 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1365 1.266 dyoung retcode = EBUSY;
1366 1.266 dyoung else {
1367 1.335 mlelstv /* detach and free on close */
1368 1.266 dyoung rs->sc_flags |= RAIDF_SHUTDOWN;
1369 1.266 dyoung retcode = 0;
1370 1.9 oster }
1371 1.11 oster
1372 1.266 dyoung raidunlock(rs);
1373 1.1 oster
1374 1.9 oster return (retcode);
1375 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1376 1.353 mrg return rf_get_component_label(raidPtr, data);
1377 1.11 oster
1378 1.269 jld #if 0
1379 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1380 1.48 oster clabel = (RF_ComponentLabel_t *) data;
1381 1.11 oster
1382 1.11 oster /* XXX check the label for valid stuff... */
1383 1.11 oster /* Note that some things *should not* get modified --
1384 1.186 perry the user should be re-initing the labels instead of
1385 1.11 oster trying to patch things.
1386 1.11 oster */
1387 1.11 oster
1388 1.123 oster raidid = raidPtr->raidid;
1389 1.224 oster #ifdef DEBUG
1390 1.123 oster printf("raid%d: Got component label:\n", raidid);
1391 1.123 oster printf("raid%d: Version: %d\n", raidid, clabel->version);
1392 1.123 oster printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1393 1.123 oster printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1394 1.123 oster printf("raid%d: Column: %d\n", raidid, clabel->column);
1395 1.123 oster printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1396 1.123 oster printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1397 1.123 oster printf("raid%d: Status: %d\n", raidid, clabel->status);
1398 1.361 pgoyette #endif /* DEBUG */
1399 1.166 oster clabel->row = 0;
1400 1.48 oster column = clabel->column;
1401 1.12 oster
1402 1.166 oster if ((column < 0) || (column >= raidPtr->numCol)) {
1403 1.12 oster return(EINVAL);
1404 1.11 oster }
1405 1.12 oster
1406 1.12 oster /* XXX this isn't allowed to do anything for now :-) */
1407 1.48 oster
1408 1.48 oster /* XXX and before it is, we need to fill in the rest
1409 1.48 oster of the fields!?!?!?! */
1410 1.269 jld memcpy(raidget_component_label(raidPtr, column),
1411 1.269 jld clabel, sizeof(*clabel));
1412 1.269 jld raidflush_component_label(raidPtr, column);
1413 1.269 jld return (0);
1414 1.361 pgoyette #endif /* 0 */
1415 1.11 oster
1416 1.186 perry case RAIDFRAME_INIT_LABELS:
1417 1.48 oster clabel = (RF_ComponentLabel_t *) data;
1418 1.186 perry /*
1419 1.11 oster we only want the serial number from
1420 1.11 oster the above. We get all the rest of the information
1421 1.11 oster from the config that was used to create this RAID
1422 1.186 perry set.
1423 1.11 oster */
1424 1.12 oster
1425 1.48 oster raidPtr->serial_number = clabel->serial_number;
1426 1.186 perry
1427 1.166 oster for(column=0;column<raidPtr->numCol;column++) {
1428 1.166 oster diskPtr = &raidPtr->Disks[column];
1429 1.166 oster if (!RF_DEAD_DISK(diskPtr->status)) {
1430 1.269 jld ci_label = raidget_component_label(raidPtr,
1431 1.269 jld column);
1432 1.269 jld /* Zeroing this is important. */
1433 1.269 jld memset(ci_label, 0, sizeof(*ci_label));
1434 1.269 jld raid_init_component_label(raidPtr, ci_label);
1435 1.269 jld ci_label->serial_number =
1436 1.269 jld raidPtr->serial_number;
1437 1.269 jld ci_label->row = 0; /* we dont' pretend to support more */
1438 1.282 enami rf_component_label_set_partitionsize(ci_label,
1439 1.282 enami diskPtr->partitionSize);
1440 1.209 oster ci_label->column = column;
1441 1.269 jld raidflush_component_label(raidPtr, column);
1442 1.11 oster }
1443 1.269 jld /* XXXjld what about the spares? */
1444 1.11 oster }
1445 1.209 oster
1446 1.11 oster return (retcode);
1447 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1448 1.78 minoura d = rf_set_autoconfig(raidPtr, *(int *) data);
1449 1.186 perry printf("raid%d: New autoconfig value is: %d\n",
1450 1.123 oster raidPtr->raidid, d);
1451 1.78 minoura *(int *) data = d;
1452 1.48 oster return (retcode);
1453 1.48 oster
1454 1.48 oster case RAIDFRAME_SET_ROOT:
1455 1.78 minoura d = rf_set_rootpartition(raidPtr, *(int *) data);
1456 1.186 perry printf("raid%d: New rootpartition value is: %d\n",
1457 1.123 oster raidPtr->raidid, d);
1458 1.78 minoura *(int *) data = d;
1459 1.48 oster return (retcode);
1460 1.9 oster
1461 1.1 oster /* initialize all parity */
1462 1.1 oster case RAIDFRAME_REWRITEPARITY:
1463 1.1 oster
1464 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1465 1.17 oster /* Parity for RAID 0 is trivially correct */
1466 1.42 oster raidPtr->parity_good = RF_RAID_CLEAN;
1467 1.17 oster return(0);
1468 1.17 oster }
1469 1.186 perry
1470 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1471 1.37 oster /* Re-write is already in progress! */
1472 1.37 oster return(EINVAL);
1473 1.37 oster }
1474 1.27 oster
1475 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1476 1.37 oster rf_RewriteParityThread,
1477 1.42 oster raidPtr,"raid_parity");
1478 1.9 oster return (retcode);
1479 1.9 oster
1480 1.11 oster
1481 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1482 1.12 oster sparePtr = (RF_SingleComponent_t *) data;
1483 1.209 oster memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1484 1.209 oster retcode = rf_add_hot_spare(raidPtr, &component);
1485 1.11 oster return(retcode);
1486 1.11 oster
1487 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1488 1.73 oster return(retcode);
1489 1.73 oster
1490 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1491 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1492 1.186 perry memcpy( &component, componentPtr,
1493 1.73 oster sizeof(RF_SingleComponent_t));
1494 1.73 oster retcode = rf_delete_component(raidPtr, &component);
1495 1.73 oster return(retcode);
1496 1.73 oster
1497 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1498 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1499 1.186 perry memcpy( &component, componentPtr,
1500 1.73 oster sizeof(RF_SingleComponent_t));
1501 1.73 oster retcode = rf_incorporate_hot_spare(raidPtr, &component);
1502 1.11 oster return(retcode);
1503 1.11 oster
1504 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1505 1.24 oster
1506 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1507 1.24 oster /* Can't do this on a RAID 0!! */
1508 1.24 oster return(EINVAL);
1509 1.24 oster }
1510 1.24 oster
1511 1.42 oster if (raidPtr->recon_in_progress == 1) {
1512 1.37 oster /* a reconstruct is already in progress! */
1513 1.37 oster return(EINVAL);
1514 1.37 oster }
1515 1.37 oster
1516 1.12 oster componentPtr = (RF_SingleComponent_t *) data;
1517 1.186 perry memcpy( &component, componentPtr,
1518 1.12 oster sizeof(RF_SingleComponent_t));
1519 1.166 oster component.row = 0; /* we don't support any more */
1520 1.12 oster column = component.column;
1521 1.147 oster
1522 1.166 oster if ((column < 0) || (column >= raidPtr->numCol)) {
1523 1.12 oster return(EINVAL);
1524 1.12 oster }
1525 1.37 oster
1526 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1527 1.166 oster if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1528 1.186 perry (raidPtr->numFailures > 0)) {
1529 1.149 oster /* XXX 0 above shouldn't be constant!!! */
1530 1.149 oster /* some component other than this has failed.
1531 1.149 oster Let's not make things worse than they already
1532 1.149 oster are... */
1533 1.149 oster printf("raid%d: Unable to reconstruct to disk at:\n",
1534 1.149 oster raidPtr->raidid);
1535 1.166 oster printf("raid%d: Col: %d Too many failures.\n",
1536 1.166 oster raidPtr->raidid, column);
1537 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1538 1.149 oster return (EINVAL);
1539 1.149 oster }
1540 1.186 perry if (raidPtr->Disks[column].status ==
1541 1.149 oster rf_ds_reconstructing) {
1542 1.149 oster printf("raid%d: Unable to reconstruct to disk at:\n",
1543 1.149 oster raidPtr->raidid);
1544 1.299 oster printf("raid%d: Col: %d Reconstruction already occurring!\n", raidPtr->raidid, column);
1545 1.186 perry
1546 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1547 1.149 oster return (EINVAL);
1548 1.149 oster }
1549 1.166 oster if (raidPtr->Disks[column].status == rf_ds_spared) {
1550 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1551 1.149 oster return (EINVAL);
1552 1.149 oster }
1553 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1554 1.149 oster
1555 1.353 mrg RF_Malloc(rrint, sizeof(*rrint), (struct rf_recon_req_internal *));
1556 1.353 mrg if (rrint == NULL)
1557 1.38 oster return(ENOMEM);
1558 1.37 oster
1559 1.353 mrg rrint->col = column;
1560 1.353 mrg rrint->raidPtr = raidPtr;
1561 1.37 oster
1562 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1563 1.37 oster rf_ReconstructInPlaceThread,
1564 1.353 mrg rrint, "raid_reconip");
1565 1.12 oster return(retcode);
1566 1.12 oster
1567 1.364 mrg #ifdef RAID_COMPAT32
1568 1.353 mrg case RAIDFRAME_GET_INFO32:
1569 1.366 christos if (!raidframe_netbsd32_config_hook.hooked)
1570 1.366 christos return ENOSYS;
1571 1.366 christos ucfgp = NETBSD32PTR64(*(netbsd32_pointer_t *)data);
1572 1.366 christos /*FALLTHROUGH*/
1573 1.363 mrg #endif
1574 1.366 christos case RAIDFRAME_GET_INFO:
1575 1.41 oster RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1576 1.41 oster (RF_DeviceConfig_t *));
1577 1.41 oster if (d_cfg == NULL)
1578 1.366 christos return ENOMEM;
1579 1.353 mrg retcode = rf_get_info(raidPtr, d_cfg);
1580 1.353 mrg if (retcode == 0) {
1581 1.366 christos retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
1582 1.41 oster }
1583 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1584 1.41 oster
1585 1.366 christos return retcode;
1586 1.9 oster
1587 1.22 oster case RAIDFRAME_CHECK_PARITY:
1588 1.42 oster *(int *) data = raidPtr->parity_good;
1589 1.22 oster return (0);
1590 1.41 oster
1591 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1592 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1593 1.273 jld return EINVAL;
1594 1.269 jld rf_paritymap_status(raidPtr->parity_map,
1595 1.269 jld (struct rf_pmstat *)data);
1596 1.269 jld return 0;
1597 1.269 jld
1598 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1599 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1600 1.273 jld return EINVAL;
1601 1.269 jld if (raidPtr->parity_map == NULL)
1602 1.269 jld return ENOENT; /* ??? */
1603 1.269 jld if (0 != rf_paritymap_set_params(raidPtr->parity_map,
1604 1.269 jld (struct rf_pmparams *)data, 1))
1605 1.269 jld return EINVAL;
1606 1.269 jld return 0;
1607 1.269 jld
1608 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1609 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1610 1.273 jld return EINVAL;
1611 1.269 jld *(int *) data = rf_paritymap_get_disable(raidPtr);
1612 1.269 jld return 0;
1613 1.269 jld
1614 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1615 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1616 1.273 jld return EINVAL;
1617 1.269 jld rf_paritymap_set_disable(raidPtr, *(int *)data);
1618 1.269 jld /* XXX should errors be passed up? */
1619 1.269 jld return 0;
1620 1.269 jld
1621 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1622 1.108 thorpej memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1623 1.41 oster return (0);
1624 1.9 oster
1625 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1626 1.41 oster totals = (RF_AccTotals_t *) data;
1627 1.42 oster *totals = raidPtr->acc_totals;
1628 1.366 christos return 0;
1629 1.9 oster
1630 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1631 1.42 oster raidPtr->keep_acc_totals = *(int *)data;
1632 1.366 christos return 0;
1633 1.9 oster
1634 1.1 oster case RAIDFRAME_GET_SIZE:
1635 1.42 oster *(int *) data = raidPtr->totalSectors;
1636 1.366 christos return 0;
1637 1.1 oster
1638 1.1 oster case RAIDFRAME_FAIL_DISK:
1639 1.366 christos return rf_fail_disk(raidPtr, data);
1640 1.9 oster
1641 1.9 oster /* invoke a copyback operation after recon on whatever disk
1642 1.9 oster * needs it, if any */
1643 1.9 oster case RAIDFRAME_COPYBACK:
1644 1.24 oster
1645 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1646 1.24 oster /* This makes no sense on a RAID 0!! */
1647 1.24 oster return(EINVAL);
1648 1.24 oster }
1649 1.24 oster
1650 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1651 1.37 oster /* Copyback is already in progress! */
1652 1.37 oster return(EINVAL);
1653 1.37 oster }
1654 1.27 oster
1655 1.42 oster retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1656 1.37 oster rf_CopybackThread,
1657 1.42 oster raidPtr,"raid_copyback");
1658 1.37 oster return (retcode);
1659 1.9 oster
1660 1.1 oster /* return the percentage completion of reconstruction */
1661 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1662 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1663 1.71 oster /* This makes no sense on a RAID 0, so tell the
1664 1.71 oster user it's done. */
1665 1.71 oster *(int *) data = 100;
1666 1.71 oster return(0);
1667 1.24 oster }
1668 1.166 oster if (raidPtr->status != rf_rs_reconstructing)
1669 1.1 oster *(int *) data = 100;
1670 1.171 oster else {
1671 1.171 oster if (raidPtr->reconControl->numRUsTotal > 0) {
1672 1.171 oster *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1673 1.171 oster } else {
1674 1.171 oster *(int *) data = 0;
1675 1.171 oster }
1676 1.171 oster }
1677 1.9 oster return (0);
1678 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1679 1.353 mrg rf_check_recon_status_ext(raidPtr, data);
1680 1.353 mrg return (0);
1681 1.9 oster
1682 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1683 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1684 1.80 oster /* This makes no sense on a RAID 0, so tell the
1685 1.80 oster user it's done. */
1686 1.80 oster *(int *) data = 100;
1687 1.80 oster return(0);
1688 1.37 oster }
1689 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1690 1.186 perry *(int *) data = 100 *
1691 1.186 perry raidPtr->parity_rewrite_stripes_done /
1692 1.83 oster raidPtr->Layout.numStripe;
1693 1.37 oster } else {
1694 1.37 oster *(int *) data = 100;
1695 1.37 oster }
1696 1.37 oster return (0);
1697 1.37 oster
1698 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1699 1.353 mrg rf_check_parityrewrite_status_ext(raidPtr, data);
1700 1.353 mrg return (0);
1701 1.83 oster
1702 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1703 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1704 1.37 oster /* This makes no sense on a RAID 0 */
1705 1.83 oster *(int *) data = 100;
1706 1.83 oster return(0);
1707 1.37 oster }
1708 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1709 1.42 oster *(int *) data = 100 * raidPtr->copyback_stripes_done /
1710 1.42 oster raidPtr->Layout.numStripe;
1711 1.37 oster } else {
1712 1.37 oster *(int *) data = 100;
1713 1.37 oster }
1714 1.37 oster return (0);
1715 1.37 oster
1716 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1717 1.353 mrg rf_check_copyback_status_ext(raidPtr, data);
1718 1.353 mrg return 0;
1719 1.37 oster
1720 1.341 christos case RAIDFRAME_SET_LAST_UNIT:
1721 1.341 christos for (column = 0; column < raidPtr->numCol; column++)
1722 1.341 christos if (raidPtr->Disks[column].status != rf_ds_optimal)
1723 1.341 christos return EBUSY;
1724 1.341 christos
1725 1.341 christos for (column = 0; column < raidPtr->numCol; column++) {
1726 1.341 christos clabel = raidget_component_label(raidPtr, column);
1727 1.341 christos clabel->last_unit = *(int *)data;
1728 1.341 christos raidflush_component_label(raidPtr, column);
1729 1.341 christos }
1730 1.341 christos rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1731 1.341 christos return 0;
1732 1.341 christos
1733 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1734 1.9 oster * need a spare table. this ioctl does not return until a
1735 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1736 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1737 1.9 oster * -- I should either compute the spare table in the kernel,
1738 1.9 oster * or have a different -- XXX XXX -- interface (a different
1739 1.42 oster * character device) for delivering the table -- XXX */
1740 1.250 oster #if 0
1741 1.1 oster case RAIDFRAME_SPARET_WAIT:
1742 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1743 1.9 oster while (!rf_sparet_wait_queue)
1744 1.287 mrg rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1745 1.1 oster waitreq = rf_sparet_wait_queue;
1746 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1747 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1748 1.9 oster
1749 1.42 oster /* structure assignment */
1750 1.186 perry *((RF_SparetWait_t *) data) = *waitreq;
1751 1.9 oster
1752 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1753 1.9 oster return (0);
1754 1.9 oster
1755 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1756 1.9 oster * code in it that will cause the dameon to exit */
1757 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1758 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1759 1.1 oster waitreq->fcol = -1;
1760 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1761 1.1 oster waitreq->next = rf_sparet_wait_queue;
1762 1.1 oster rf_sparet_wait_queue = waitreq;
1763 1.287 mrg rf_broadcast_conf2(rf_sparet_wait_cv);
1764 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1765 1.9 oster return (0);
1766 1.1 oster
1767 1.9 oster /* used by the spare table daemon to deliver a spare table
1768 1.9 oster * into the kernel */
1769 1.1 oster case RAIDFRAME_SEND_SPARET:
1770 1.9 oster
1771 1.1 oster /* install the spare table */
1772 1.42 oster retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1773 1.9 oster
1774 1.9 oster /* respond to the requestor. the return status of the spare
1775 1.9 oster * table installation is passed in the "fcol" field */
1776 1.1 oster RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1777 1.1 oster waitreq->fcol = retcode;
1778 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1779 1.1 oster waitreq->next = rf_sparet_resp_queue;
1780 1.1 oster rf_sparet_resp_queue = waitreq;
1781 1.287 mrg rf_broadcast_cond2(rf_sparet_resp_cv);
1782 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1783 1.9 oster
1784 1.9 oster return (retcode);
1785 1.1 oster #endif
1786 1.1 oster
1787 1.9 oster default:
1788 1.36 oster break; /* fall through to the os-specific code below */
1789 1.1 oster
1790 1.1 oster }
1791 1.9 oster
1792 1.42 oster if (!raidPtr->valid)
1793 1.9 oster return (EINVAL);
1794 1.9 oster
1795 1.1 oster /*
1796 1.1 oster * Add support for "regular" device ioctls here.
1797 1.1 oster */
1798 1.263 haad
1799 1.1 oster switch (cmd) {
1800 1.348 jdolecek case DIOCGCACHE:
1801 1.348 jdolecek retcode = rf_get_component_caches(raidPtr, (int *)data);
1802 1.348 jdolecek break;
1803 1.348 jdolecek
1804 1.252 oster case DIOCCACHESYNC:
1805 1.346 jdolecek retcode = rf_sync_component_caches(raidPtr);
1806 1.347 jdolecek break;
1807 1.298 buhrow
1808 1.1 oster default:
1809 1.346 jdolecek retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1810 1.347 jdolecek break;
1811 1.1 oster }
1812 1.346 jdolecek
1813 1.9 oster return (retcode);
1814 1.1 oster
1815 1.1 oster }
1816 1.1 oster
1817 1.1 oster
1818 1.9 oster /* raidinit -- complete the rest of the initialization for the
1819 1.1 oster RAIDframe device. */
1820 1.1 oster
1821 1.1 oster
1822 1.59 oster static void
1823 1.300 christos raidinit(struct raid_softc *rs)
1824 1.1 oster {
1825 1.262 cegger cfdata_t cf;
1826 1.335 mlelstv unsigned int unit;
1827 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1828 1.300 christos RF_Raid_t *raidPtr = &rs->sc_r;
1829 1.335 mlelstv device_t dev;
1830 1.1 oster
1831 1.59 oster unit = raidPtr->raidid;
1832 1.1 oster
1833 1.179 itojun /* XXX doesn't check bounds. */
1834 1.335 mlelstv snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1835 1.1 oster
1836 1.217 oster /* attach the pseudo device */
1837 1.217 oster cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1838 1.217 oster cf->cf_name = raid_cd.cd_name;
1839 1.217 oster cf->cf_atname = raid_cd.cd_name;
1840 1.217 oster cf->cf_unit = unit;
1841 1.217 oster cf->cf_fstate = FSTATE_STAR;
1842 1.217 oster
1843 1.335 mlelstv dev = config_attach_pseudo(cf);
1844 1.335 mlelstv if (dev == NULL) {
1845 1.217 oster printf("raid%d: config_attach_pseudo failed\n",
1846 1.270 christos raidPtr->raidid);
1847 1.265 pooka free(cf, M_RAIDFRAME);
1848 1.265 pooka return;
1849 1.217 oster }
1850 1.217 oster
1851 1.335 mlelstv /* provide a backpointer to the real softc */
1852 1.335 mlelstv raidsoftc(dev) = rs;
1853 1.335 mlelstv
1854 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1855 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1856 1.9 oster * with disklabels. */
1857 1.335 mlelstv dk_init(dksc, dev, DKTYPE_RAID);
1858 1.335 mlelstv disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1859 1.1 oster
1860 1.1 oster /* XXX There may be a weird interaction here between this, and
1861 1.9 oster * protectedSectors, as used in RAIDframe. */
1862 1.11 oster
1863 1.9 oster rs->sc_size = raidPtr->totalSectors;
1864 1.234 oster
1865 1.335 mlelstv /* Attach dk and disk subsystems */
1866 1.335 mlelstv dk_attach(dksc);
1867 1.335 mlelstv disk_attach(&dksc->sc_dkdev);
1868 1.318 mlelstv rf_set_geometry(rs, raidPtr);
1869 1.318 mlelstv
1870 1.335 mlelstv bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1871 1.335 mlelstv
1872 1.335 mlelstv /* mark unit as usuable */
1873 1.335 mlelstv rs->sc_flags |= RAIDF_INITED;
1874 1.234 oster
1875 1.335 mlelstv dkwedge_discover(&dksc->sc_dkdev);
1876 1.1 oster }
1877 1.335 mlelstv
1878 1.150 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1879 1.1 oster /* wake up the daemon & tell it to get us a spare table
1880 1.1 oster * XXX
1881 1.9 oster * the entries in the queues should be tagged with the raidPtr
1882 1.186 perry * so that in the extremely rare case that two recons happen at once,
1883 1.11 oster * we know for which device were requesting a spare table
1884 1.1 oster * XXX
1885 1.186 perry *
1886 1.39 oster * XXX This code is not currently used. GO
1887 1.1 oster */
1888 1.186 perry int
1889 1.169 oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1890 1.9 oster {
1891 1.9 oster int retcode;
1892 1.9 oster
1893 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1894 1.9 oster req->next = rf_sparet_wait_queue;
1895 1.9 oster rf_sparet_wait_queue = req;
1896 1.289 mrg rf_broadcast_cond2(rf_sparet_wait_cv);
1897 1.9 oster
1898 1.9 oster /* mpsleep unlocks the mutex */
1899 1.9 oster while (!rf_sparet_resp_queue) {
1900 1.289 mrg rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1901 1.9 oster }
1902 1.9 oster req = rf_sparet_resp_queue;
1903 1.9 oster rf_sparet_resp_queue = req->next;
1904 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1905 1.9 oster
1906 1.9 oster retcode = req->fcol;
1907 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
1908 1.9 oster * alloc'd */
1909 1.9 oster return (retcode);
1910 1.1 oster }
1911 1.150 oster #endif
1912 1.39 oster
1913 1.186 perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
1914 1.11 oster * bp & passes it down.
1915 1.1 oster * any calls originating in the kernel must use non-blocking I/O
1916 1.1 oster * do some extra sanity checking to return "appropriate" error values for
1917 1.1 oster * certain conditions (to make some standard utilities work)
1918 1.186 perry *
1919 1.34 oster * Formerly known as: rf_DoAccessKernel
1920 1.1 oster */
1921 1.34 oster void
1922 1.169 oster raidstart(RF_Raid_t *raidPtr)
1923 1.1 oster {
1924 1.1 oster struct raid_softc *rs;
1925 1.335 mlelstv struct dk_softc *dksc;
1926 1.1 oster
1927 1.300 christos rs = raidPtr->softc;
1928 1.335 mlelstv dksc = &rs->sc_dksc;
1929 1.56 oster /* quick check to see if anything has died recently */
1930 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1931 1.56 oster if (raidPtr->numNewFailures > 0) {
1932 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1933 1.186 perry rf_update_component_labels(raidPtr,
1934 1.91 oster RF_NORMAL_COMPONENT_UPDATE);
1935 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1936 1.56 oster raidPtr->numNewFailures--;
1937 1.56 oster }
1938 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1939 1.56 oster
1940 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) {
1941 1.335 mlelstv printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1942 1.335 mlelstv return;
1943 1.335 mlelstv }
1944 1.34 oster
1945 1.335 mlelstv dk_start(dksc, NULL);
1946 1.335 mlelstv }
1947 1.34 oster
1948 1.335 mlelstv static int
1949 1.335 mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1950 1.335 mlelstv {
1951 1.335 mlelstv RF_SectorCount_t num_blocks, pb, sum;
1952 1.335 mlelstv RF_RaidAddr_t raid_addr;
1953 1.335 mlelstv daddr_t blocknum;
1954 1.335 mlelstv int do_async;
1955 1.335 mlelstv int rc;
1956 1.186 perry
1957 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1958 1.335 mlelstv if (raidPtr->openings == 0) {
1959 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1960 1.335 mlelstv return EAGAIN;
1961 1.335 mlelstv }
1962 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1963 1.186 perry
1964 1.335 mlelstv blocknum = bp->b_rawblkno;
1965 1.186 perry
1966 1.335 mlelstv db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1967 1.335 mlelstv (int) blocknum));
1968 1.1 oster
1969 1.335 mlelstv db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1970 1.335 mlelstv db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1971 1.1 oster
1972 1.335 mlelstv /* *THIS* is where we adjust what block we're going to...
1973 1.335 mlelstv * but DO NOT TOUCH bp->b_blkno!!! */
1974 1.335 mlelstv raid_addr = blocknum;
1975 1.335 mlelstv
1976 1.335 mlelstv num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1977 1.335 mlelstv pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1978 1.335 mlelstv sum = raid_addr + num_blocks + pb;
1979 1.335 mlelstv if (1 || rf_debugKernelAccess) {
1980 1.335 mlelstv db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1981 1.335 mlelstv (int) raid_addr, (int) sum, (int) num_blocks,
1982 1.335 mlelstv (int) pb, (int) bp->b_resid));
1983 1.335 mlelstv }
1984 1.335 mlelstv if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1985 1.335 mlelstv || (sum < num_blocks) || (sum < pb)) {
1986 1.335 mlelstv rc = ENOSPC;
1987 1.335 mlelstv goto done;
1988 1.335 mlelstv }
1989 1.335 mlelstv /*
1990 1.335 mlelstv * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1991 1.335 mlelstv */
1992 1.186 perry
1993 1.335 mlelstv if (bp->b_bcount & raidPtr->sectorMask) {
1994 1.335 mlelstv rc = ENOSPC;
1995 1.335 mlelstv goto done;
1996 1.335 mlelstv }
1997 1.335 mlelstv db1_printf(("Calling DoAccess..\n"));
1998 1.99 oster
1999 1.20 oster
2000 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
2001 1.335 mlelstv raidPtr->openings--;
2002 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
2003 1.20 oster
2004 1.335 mlelstv /*
2005 1.335 mlelstv * Everything is async.
2006 1.335 mlelstv */
2007 1.335 mlelstv do_async = 1;
2008 1.20 oster
2009 1.335 mlelstv /* don't ever condition on bp->b_flags & B_WRITE.
2010 1.335 mlelstv * always condition on B_READ instead */
2011 1.7 explorer
2012 1.335 mlelstv rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2013 1.335 mlelstv RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2014 1.335 mlelstv do_async, raid_addr, num_blocks,
2015 1.335 mlelstv bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2016 1.335 mlelstv
2017 1.335 mlelstv done:
2018 1.335 mlelstv return rc;
2019 1.335 mlelstv }
2020 1.7 explorer
2021 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2022 1.1 oster
2023 1.186 perry int
2024 1.169 oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2025 1.1 oster {
2026 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2027 1.1 oster struct buf *bp;
2028 1.9 oster
2029 1.1 oster req->queue = queue;
2030 1.1 oster bp = req->bp;
2031 1.1 oster
2032 1.1 oster switch (req->type) {
2033 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2034 1.1 oster /* XXX need to do something extra here.. */
2035 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
2036 1.9 oster * and I'd like folks to report it... GO */
2037 1.1 oster printf(("WAKEUP CALLED\n"));
2038 1.1 oster queue->numOutstanding++;
2039 1.1 oster
2040 1.197 oster bp->b_flags = 0;
2041 1.207 simonb bp->b_private = req;
2042 1.1 oster
2043 1.194 oster KernelWakeupFunc(bp);
2044 1.1 oster break;
2045 1.9 oster
2046 1.1 oster case RF_IO_TYPE_READ:
2047 1.1 oster case RF_IO_TYPE_WRITE:
2048 1.175 oster #if RF_ACC_TRACE > 0
2049 1.1 oster if (req->tracerec) {
2050 1.1 oster RF_ETIMER_START(req->tracerec->timer);
2051 1.1 oster }
2052 1.175 oster #endif
2053 1.194 oster InitBP(bp, queue->rf_cinfo->ci_vp,
2054 1.197 oster op, queue->rf_cinfo->ci_dev,
2055 1.9 oster req->sectorOffset, req->numSector,
2056 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
2057 1.9 oster queue->raidPtr->logBytesPerSector, req->b_proc);
2058 1.1 oster
2059 1.1 oster if (rf_debugKernelAccess) {
2060 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
2061 1.9 oster (long) bp->b_blkno));
2062 1.1 oster }
2063 1.1 oster queue->numOutstanding++;
2064 1.1 oster queue->last_deq_sector = req->sectorOffset;
2065 1.9 oster /* acc wouldn't have been let in if there were any pending
2066 1.9 oster * reqs at any other priority */
2067 1.1 oster queue->curPriority = req->priority;
2068 1.1 oster
2069 1.166 oster db1_printf(("Going for %c to unit %d col %d\n",
2070 1.186 perry req->type, queue->raidPtr->raidid,
2071 1.166 oster queue->col));
2072 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
2073 1.9 oster (int) req->sectorOffset, (int) req->numSector,
2074 1.9 oster (int) (req->numSector <<
2075 1.9 oster queue->raidPtr->logBytesPerSector),
2076 1.9 oster (int) queue->raidPtr->logBytesPerSector));
2077 1.256 oster
2078 1.256 oster /*
2079 1.256 oster * XXX: drop lock here since this can block at
2080 1.256 oster * least with backing SCSI devices. Retake it
2081 1.256 oster * to minimize fuss with calling interfaces.
2082 1.256 oster */
2083 1.256 oster
2084 1.256 oster RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2085 1.247 oster bdev_strategy(bp);
2086 1.256 oster RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2087 1.1 oster break;
2088 1.9 oster
2089 1.1 oster default:
2090 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
2091 1.1 oster }
2092 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
2093 1.134 oster
2094 1.9 oster return (0);
2095 1.1 oster }
2096 1.9 oster /* this is the callback function associated with a I/O invoked from
2097 1.1 oster kernel code.
2098 1.1 oster */
2099 1.186 perry static void
2100 1.194 oster KernelWakeupFunc(struct buf *bp)
2101 1.9 oster {
2102 1.9 oster RF_DiskQueueData_t *req = NULL;
2103 1.9 oster RF_DiskQueue_t *queue;
2104 1.9 oster
2105 1.9 oster db1_printf(("recovering the request queue:\n"));
2106 1.285 mrg
2107 1.207 simonb req = bp->b_private;
2108 1.1 oster
2109 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
2110 1.1 oster
2111 1.286 mrg rf_lock_mutex2(queue->raidPtr->iodone_lock);
2112 1.285 mrg
2113 1.175 oster #if RF_ACC_TRACE > 0
2114 1.9 oster if (req->tracerec) {
2115 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
2116 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
2117 1.288 mrg rf_lock_mutex2(rf_tracing_mutex);
2118 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2119 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2120 1.9 oster req->tracerec->num_phys_ios++;
2121 1.288 mrg rf_unlock_mutex2(rf_tracing_mutex);
2122 1.9 oster }
2123 1.175 oster #endif
2124 1.1 oster
2125 1.230 ad /* XXX Ok, let's get aggressive... If b_error is set, let's go
2126 1.9 oster * ballistic, and mark the component as hosed... */
2127 1.36 oster
2128 1.230 ad if (bp->b_error != 0) {
2129 1.9 oster /* Mark the disk as dead */
2130 1.9 oster /* but only mark it once... */
2131 1.186 perry /* and only if it wouldn't leave this RAID set
2132 1.183 oster completely broken */
2133 1.193 oster if (((queue->raidPtr->Disks[queue->col].status ==
2134 1.193 oster rf_ds_optimal) ||
2135 1.193 oster (queue->raidPtr->Disks[queue->col].status ==
2136 1.193 oster rf_ds_used_spare)) &&
2137 1.193 oster (queue->raidPtr->numFailures <
2138 1.204 simonb queue->raidPtr->Layout.map->faultsTolerated)) {
2139 1.322 prlw1 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2140 1.136 oster queue->raidPtr->raidid,
2141 1.322 prlw1 bp->b_error,
2142 1.166 oster queue->raidPtr->Disks[queue->col].devname);
2143 1.166 oster queue->raidPtr->Disks[queue->col].status =
2144 1.9 oster rf_ds_failed;
2145 1.166 oster queue->raidPtr->status = rf_rs_degraded;
2146 1.9 oster queue->raidPtr->numFailures++;
2147 1.56 oster queue->raidPtr->numNewFailures++;
2148 1.9 oster } else { /* Disk is already dead... */
2149 1.9 oster /* printf("Disk already marked as dead!\n"); */
2150 1.9 oster }
2151 1.4 oster
2152 1.9 oster }
2153 1.4 oster
2154 1.143 oster /* Fill in the error value */
2155 1.230 ad req->error = bp->b_error;
2156 1.143 oster
2157 1.143 oster /* Drop this one on the "finished" queue... */
2158 1.143 oster TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2159 1.143 oster
2160 1.143 oster /* Let the raidio thread know there is work to be done. */
2161 1.286 mrg rf_signal_cond2(queue->raidPtr->iodone_cv);
2162 1.143 oster
2163 1.286 mrg rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2164 1.1 oster }
2165 1.1 oster
2166 1.1 oster
2167 1.1 oster /*
2168 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
2169 1.1 oster */
2170 1.186 perry static void
2171 1.169 oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2172 1.225 christos RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2173 1.169 oster void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2174 1.169 oster struct proc *b_proc)
2175 1.9 oster {
2176 1.9 oster /* bp->b_flags = B_PHYS | rw_flag; */
2177 1.242 ad bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2178 1.242 ad bp->b_oflags = 0;
2179 1.242 ad bp->b_cflags = 0;
2180 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
2181 1.9 oster bp->b_bufsize = bp->b_bcount;
2182 1.9 oster bp->b_error = 0;
2183 1.9 oster bp->b_dev = dev;
2184 1.187 christos bp->b_data = bf;
2185 1.275 mrg bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2186 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2187 1.1 oster if (bp->b_bcount == 0) {
2188 1.141 provos panic("bp->b_bcount is zero in InitBP!!");
2189 1.1 oster }
2190 1.161 fvdl bp->b_proc = b_proc;
2191 1.9 oster bp->b_iodone = cbFunc;
2192 1.207 simonb bp->b_private = cbArg;
2193 1.1 oster }
2194 1.1 oster
2195 1.1 oster /*
2196 1.1 oster * Wait interruptibly for an exclusive lock.
2197 1.1 oster *
2198 1.1 oster * XXX
2199 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2200 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2201 1.1 oster */
2202 1.1 oster static int
2203 1.169 oster raidlock(struct raid_softc *rs)
2204 1.1 oster {
2205 1.9 oster int error;
2206 1.1 oster
2207 1.335 mlelstv error = 0;
2208 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2209 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2210 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2211 1.327 pgoyette error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2212 1.327 pgoyette if (error != 0)
2213 1.335 mlelstv goto done;
2214 1.1 oster }
2215 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2216 1.335 mlelstv done:
2217 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2218 1.335 mlelstv return (error);
2219 1.1 oster }
2220 1.1 oster /*
2221 1.1 oster * Unlock and wake up any waiters.
2222 1.1 oster */
2223 1.1 oster static void
2224 1.169 oster raidunlock(struct raid_softc *rs)
2225 1.1 oster {
2226 1.1 oster
2227 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2228 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2229 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2230 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2231 1.327 pgoyette cv_broadcast(&rs->sc_cv);
2232 1.1 oster }
2233 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2234 1.11 oster }
2235 1.186 perry
2236 1.11 oster
2237 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2238 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2239 1.269 jld #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2240 1.11 oster
2241 1.276 mrg static daddr_t
2242 1.276 mrg rf_component_info_offset(void)
2243 1.276 mrg {
2244 1.276 mrg
2245 1.276 mrg return RF_COMPONENT_INFO_OFFSET;
2246 1.276 mrg }
2247 1.276 mrg
2248 1.276 mrg static daddr_t
2249 1.276 mrg rf_component_info_size(unsigned secsize)
2250 1.276 mrg {
2251 1.276 mrg daddr_t info_size;
2252 1.276 mrg
2253 1.276 mrg KASSERT(secsize);
2254 1.276 mrg if (secsize > RF_COMPONENT_INFO_SIZE)
2255 1.276 mrg info_size = secsize;
2256 1.276 mrg else
2257 1.276 mrg info_size = RF_COMPONENT_INFO_SIZE;
2258 1.276 mrg
2259 1.276 mrg return info_size;
2260 1.276 mrg }
2261 1.276 mrg
2262 1.276 mrg static daddr_t
2263 1.276 mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
2264 1.276 mrg {
2265 1.276 mrg daddr_t map_offset;
2266 1.276 mrg
2267 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2268 1.276 mrg if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2269 1.276 mrg map_offset = raidPtr->bytesPerSector;
2270 1.276 mrg else
2271 1.276 mrg map_offset = RF_COMPONENT_INFO_SIZE;
2272 1.276 mrg map_offset += rf_component_info_offset();
2273 1.276 mrg
2274 1.276 mrg return map_offset;
2275 1.276 mrg }
2276 1.276 mrg
2277 1.276 mrg static daddr_t
2278 1.276 mrg rf_parity_map_size(RF_Raid_t *raidPtr)
2279 1.276 mrg {
2280 1.276 mrg daddr_t map_size;
2281 1.276 mrg
2282 1.276 mrg if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2283 1.276 mrg map_size = raidPtr->bytesPerSector;
2284 1.276 mrg else
2285 1.276 mrg map_size = RF_PARITY_MAP_SIZE;
2286 1.276 mrg
2287 1.276 mrg return map_size;
2288 1.276 mrg }
2289 1.276 mrg
2290 1.186 perry int
2291 1.269 jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2292 1.12 oster {
2293 1.269 jld RF_ComponentLabel_t *clabel;
2294 1.269 jld
2295 1.269 jld clabel = raidget_component_label(raidPtr, col);
2296 1.269 jld clabel->clean = RF_RAID_CLEAN;
2297 1.269 jld raidflush_component_label(raidPtr, col);
2298 1.12 oster return(0);
2299 1.12 oster }
2300 1.12 oster
2301 1.12 oster
2302 1.186 perry int
2303 1.269 jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2304 1.11 oster {
2305 1.269 jld RF_ComponentLabel_t *clabel;
2306 1.269 jld
2307 1.269 jld clabel = raidget_component_label(raidPtr, col);
2308 1.269 jld clabel->clean = RF_RAID_DIRTY;
2309 1.269 jld raidflush_component_label(raidPtr, col);
2310 1.11 oster return(0);
2311 1.11 oster }
2312 1.11 oster
2313 1.11 oster int
2314 1.269 jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2315 1.269 jld {
2316 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2317 1.276 mrg return raidread_component_label(raidPtr->bytesPerSector,
2318 1.276 mrg raidPtr->Disks[col].dev,
2319 1.269 jld raidPtr->raid_cinfo[col].ci_vp,
2320 1.269 jld &raidPtr->raid_cinfo[col].ci_label);
2321 1.269 jld }
2322 1.269 jld
2323 1.269 jld RF_ComponentLabel_t *
2324 1.269 jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2325 1.269 jld {
2326 1.269 jld return &raidPtr->raid_cinfo[col].ci_label;
2327 1.269 jld }
2328 1.269 jld
2329 1.269 jld int
2330 1.269 jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2331 1.269 jld {
2332 1.269 jld RF_ComponentLabel_t *label;
2333 1.269 jld
2334 1.269 jld label = &raidPtr->raid_cinfo[col].ci_label;
2335 1.269 jld label->mod_counter = raidPtr->mod_counter;
2336 1.269 jld #ifndef RF_NO_PARITY_MAP
2337 1.269 jld label->parity_map_modcount = label->mod_counter;
2338 1.269 jld #endif
2339 1.276 mrg return raidwrite_component_label(raidPtr->bytesPerSector,
2340 1.276 mrg raidPtr->Disks[col].dev,
2341 1.269 jld raidPtr->raid_cinfo[col].ci_vp, label);
2342 1.269 jld }
2343 1.269 jld
2344 1.269 jld
2345 1.269 jld static int
2346 1.276 mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2347 1.269 jld RF_ComponentLabel_t *clabel)
2348 1.269 jld {
2349 1.269 jld return raidread_component_area(dev, b_vp, clabel,
2350 1.269 jld sizeof(RF_ComponentLabel_t),
2351 1.276 mrg rf_component_info_offset(),
2352 1.276 mrg rf_component_info_size(secsize));
2353 1.269 jld }
2354 1.269 jld
2355 1.269 jld /* ARGSUSED */
2356 1.269 jld static int
2357 1.269 jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2358 1.269 jld size_t msize, daddr_t offset, daddr_t dsize)
2359 1.11 oster {
2360 1.11 oster struct buf *bp;
2361 1.11 oster int error;
2362 1.186 perry
2363 1.11 oster /* XXX should probably ensure that we don't try to do this if
2364 1.186 perry someone has changed rf_protected_sectors. */
2365 1.11 oster
2366 1.98 oster if (b_vp == NULL) {
2367 1.98 oster /* For whatever reason, this component is not valid.
2368 1.98 oster Don't try to read a component label from it. */
2369 1.98 oster return(EINVAL);
2370 1.98 oster }
2371 1.98 oster
2372 1.11 oster /* get a block of the appropriate size... */
2373 1.269 jld bp = geteblk((int)dsize);
2374 1.11 oster bp->b_dev = dev;
2375 1.11 oster
2376 1.11 oster /* get our ducks in a row for the read */
2377 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2378 1.269 jld bp->b_bcount = dsize;
2379 1.100 chs bp->b_flags |= B_READ;
2380 1.269 jld bp->b_resid = dsize;
2381 1.11 oster
2382 1.331 mlelstv bdev_strategy(bp);
2383 1.340 christos error = biowait(bp);
2384 1.11 oster
2385 1.11 oster if (!error) {
2386 1.269 jld memcpy(data, bp->b_data, msize);
2387 1.204 simonb }
2388 1.11 oster
2389 1.233 ad brelse(bp, 0);
2390 1.11 oster return(error);
2391 1.11 oster }
2392 1.269 jld
2393 1.269 jld
2394 1.269 jld static int
2395 1.276 mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2396 1.276 mrg RF_ComponentLabel_t *clabel)
2397 1.269 jld {
2398 1.269 jld return raidwrite_component_area(dev, b_vp, clabel,
2399 1.269 jld sizeof(RF_ComponentLabel_t),
2400 1.276 mrg rf_component_info_offset(),
2401 1.276 mrg rf_component_info_size(secsize), 0);
2402 1.269 jld }
2403 1.269 jld
2404 1.11 oster /* ARGSUSED */
2405 1.269 jld static int
2406 1.269 jld raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2407 1.269 jld size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2408 1.11 oster {
2409 1.11 oster struct buf *bp;
2410 1.11 oster int error;
2411 1.11 oster
2412 1.11 oster /* get a block of the appropriate size... */
2413 1.269 jld bp = geteblk((int)dsize);
2414 1.11 oster bp->b_dev = dev;
2415 1.11 oster
2416 1.11 oster /* get our ducks in a row for the write */
2417 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2418 1.269 jld bp->b_bcount = dsize;
2419 1.269 jld bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2420 1.269 jld bp->b_resid = dsize;
2421 1.11 oster
2422 1.269 jld memset(bp->b_data, 0, dsize);
2423 1.269 jld memcpy(bp->b_data, data, msize);
2424 1.11 oster
2425 1.331 mlelstv bdev_strategy(bp);
2426 1.269 jld if (asyncp)
2427 1.269 jld return 0;
2428 1.340 christos error = biowait(bp);
2429 1.233 ad brelse(bp, 0);
2430 1.11 oster if (error) {
2431 1.48 oster #if 1
2432 1.11 oster printf("Failed to write RAID component info!\n");
2433 1.48 oster #endif
2434 1.11 oster }
2435 1.11 oster
2436 1.11 oster return(error);
2437 1.1 oster }
2438 1.12 oster
2439 1.186 perry void
2440 1.269 jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2441 1.269 jld {
2442 1.269 jld int c;
2443 1.269 jld
2444 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2445 1.269 jld /* Skip dead disks. */
2446 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2447 1.269 jld continue;
2448 1.269 jld /* XXXjld: what if an error occurs here? */
2449 1.269 jld raidwrite_component_area(raidPtr->Disks[c].dev,
2450 1.269 jld raidPtr->raid_cinfo[c].ci_vp, map,
2451 1.269 jld RF_PARITYMAP_NBYTE,
2452 1.276 mrg rf_parity_map_offset(raidPtr),
2453 1.276 mrg rf_parity_map_size(raidPtr), 0);
2454 1.269 jld }
2455 1.269 jld }
2456 1.269 jld
2457 1.269 jld void
2458 1.269 jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2459 1.269 jld {
2460 1.269 jld struct rf_paritymap_ondisk tmp;
2461 1.272 oster int c,first;
2462 1.269 jld
2463 1.272 oster first=1;
2464 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2465 1.269 jld /* Skip dead disks. */
2466 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2467 1.269 jld continue;
2468 1.269 jld raidread_component_area(raidPtr->Disks[c].dev,
2469 1.269 jld raidPtr->raid_cinfo[c].ci_vp, &tmp,
2470 1.269 jld RF_PARITYMAP_NBYTE,
2471 1.276 mrg rf_parity_map_offset(raidPtr),
2472 1.276 mrg rf_parity_map_size(raidPtr));
2473 1.272 oster if (first) {
2474 1.269 jld memcpy(map, &tmp, sizeof(*map));
2475 1.272 oster first = 0;
2476 1.269 jld } else {
2477 1.269 jld rf_paritymap_merge(map, &tmp);
2478 1.269 jld }
2479 1.269 jld }
2480 1.269 jld }
2481 1.269 jld
2482 1.269 jld void
2483 1.169 oster rf_markalldirty(RF_Raid_t *raidPtr)
2484 1.12 oster {
2485 1.269 jld RF_ComponentLabel_t *clabel;
2486 1.146 oster int sparecol;
2487 1.166 oster int c;
2488 1.166 oster int j;
2489 1.166 oster int scol = -1;
2490 1.12 oster
2491 1.12 oster raidPtr->mod_counter++;
2492 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2493 1.166 oster /* we don't want to touch (at all) a disk that has
2494 1.166 oster failed */
2495 1.166 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2496 1.269 jld clabel = raidget_component_label(raidPtr, c);
2497 1.269 jld if (clabel->status == rf_ds_spared) {
2498 1.186 perry /* XXX do something special...
2499 1.186 perry but whatever you do, don't
2500 1.166 oster try to access it!! */
2501 1.166 oster } else {
2502 1.269 jld raidmarkdirty(raidPtr, c);
2503 1.12 oster }
2504 1.166 oster }
2505 1.186 perry }
2506 1.146 oster
2507 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2508 1.12 oster sparecol = raidPtr->numCol + c;
2509 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2510 1.186 perry /*
2511 1.186 perry
2512 1.186 perry we claim this disk is "optimal" if it's
2513 1.186 perry rf_ds_used_spare, as that means it should be
2514 1.186 perry directly substitutable for the disk it replaced.
2515 1.12 oster We note that too...
2516 1.12 oster
2517 1.12 oster */
2518 1.12 oster
2519 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2520 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2521 1.166 oster scol = j;
2522 1.166 oster break;
2523 1.12 oster }
2524 1.12 oster }
2525 1.186 perry
2526 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2527 1.12 oster /* make sure status is noted */
2528 1.146 oster
2529 1.269 jld raid_init_component_label(raidPtr, clabel);
2530 1.146 oster
2531 1.269 jld clabel->row = 0;
2532 1.269 jld clabel->column = scol;
2533 1.146 oster /* Note: we *don't* change status from rf_ds_used_spare
2534 1.146 oster to rf_ds_optimal */
2535 1.146 oster /* clabel.status = rf_ds_optimal; */
2536 1.186 perry
2537 1.269 jld raidmarkdirty(raidPtr, sparecol);
2538 1.12 oster }
2539 1.12 oster }
2540 1.12 oster }
2541 1.12 oster
2542 1.13 oster
2543 1.13 oster void
2544 1.169 oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2545 1.13 oster {
2546 1.269 jld RF_ComponentLabel_t *clabel;
2547 1.13 oster int sparecol;
2548 1.166 oster int c;
2549 1.166 oster int j;
2550 1.166 oster int scol;
2551 1.341 christos struct raid_softc *rs = raidPtr->softc;
2552 1.13 oster
2553 1.13 oster scol = -1;
2554 1.13 oster
2555 1.186 perry /* XXX should do extra checks to make sure things really are clean,
2556 1.13 oster rather than blindly setting the clean bit... */
2557 1.13 oster
2558 1.13 oster raidPtr->mod_counter++;
2559 1.13 oster
2560 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2561 1.166 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
2562 1.269 jld clabel = raidget_component_label(raidPtr, c);
2563 1.201 oster /* make sure status is noted */
2564 1.269 jld clabel->status = rf_ds_optimal;
2565 1.201 oster
2566 1.214 oster /* note what unit we are configured as */
2567 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2568 1.341 christos clabel->last_unit = raidPtr->raidid;
2569 1.214 oster
2570 1.269 jld raidflush_component_label(raidPtr, c);
2571 1.166 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2572 1.166 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2573 1.269 jld raidmarkclean(raidPtr, c);
2574 1.91 oster }
2575 1.166 oster }
2576 1.186 perry }
2577 1.166 oster /* else we don't touch it.. */
2578 1.186 perry }
2579 1.63 oster
2580 1.63 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2581 1.63 oster sparecol = raidPtr->numCol + c;
2582 1.110 oster /* Need to ensure that the reconstruct actually completed! */
2583 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2584 1.186 perry /*
2585 1.186 perry
2586 1.186 perry we claim this disk is "optimal" if it's
2587 1.186 perry rf_ds_used_spare, as that means it should be
2588 1.186 perry directly substitutable for the disk it replaced.
2589 1.63 oster We note that too...
2590 1.63 oster
2591 1.63 oster */
2592 1.63 oster
2593 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2594 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2595 1.166 oster scol = j;
2596 1.166 oster break;
2597 1.63 oster }
2598 1.63 oster }
2599 1.186 perry
2600 1.63 oster /* XXX shouldn't *really* need this... */
2601 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2602 1.63 oster /* make sure status is noted */
2603 1.63 oster
2604 1.269 jld raid_init_component_label(raidPtr, clabel);
2605 1.269 jld
2606 1.269 jld clabel->column = scol;
2607 1.269 jld clabel->status = rf_ds_optimal;
2608 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2609 1.341 christos clabel->last_unit = raidPtr->raidid;
2610 1.63 oster
2611 1.269 jld raidflush_component_label(raidPtr, sparecol);
2612 1.91 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2613 1.13 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2614 1.269 jld raidmarkclean(raidPtr, sparecol);
2615 1.13 oster }
2616 1.13 oster }
2617 1.13 oster }
2618 1.13 oster }
2619 1.68 oster }
2620 1.68 oster
2621 1.68 oster void
2622 1.169 oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2623 1.69 oster {
2624 1.69 oster
2625 1.69 oster if (vp != NULL) {
2626 1.69 oster if (auto_configured == 1) {
2627 1.96 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2628 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2629 1.69 oster vput(vp);
2630 1.186 perry
2631 1.186 perry } else {
2632 1.244 ad (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2633 1.69 oster }
2634 1.186 perry }
2635 1.69 oster }
2636 1.69 oster
2637 1.69 oster
2638 1.69 oster void
2639 1.169 oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2640 1.68 oster {
2641 1.186 perry int r,c;
2642 1.69 oster struct vnode *vp;
2643 1.69 oster int acd;
2644 1.68 oster
2645 1.68 oster
2646 1.68 oster /* We take this opportunity to close the vnodes like we should.. */
2647 1.68 oster
2648 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2649 1.166 oster vp = raidPtr->raid_cinfo[c].ci_vp;
2650 1.166 oster acd = raidPtr->Disks[c].auto_configured;
2651 1.166 oster rf_close_component(raidPtr, vp, acd);
2652 1.166 oster raidPtr->raid_cinfo[c].ci_vp = NULL;
2653 1.166 oster raidPtr->Disks[c].auto_configured = 0;
2654 1.68 oster }
2655 1.166 oster
2656 1.68 oster for (r = 0; r < raidPtr->numSpare; r++) {
2657 1.166 oster vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2658 1.166 oster acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2659 1.69 oster rf_close_component(raidPtr, vp, acd);
2660 1.166 oster raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2661 1.166 oster raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2662 1.68 oster }
2663 1.37 oster }
2664 1.63 oster
2665 1.37 oster
2666 1.186 perry void
2667 1.353 mrg rf_ReconThread(struct rf_recon_req_internal *req)
2668 1.37 oster {
2669 1.37 oster int s;
2670 1.37 oster RF_Raid_t *raidPtr;
2671 1.37 oster
2672 1.37 oster s = splbio();
2673 1.37 oster raidPtr = (RF_Raid_t *) req->raidPtr;
2674 1.37 oster raidPtr->recon_in_progress = 1;
2675 1.37 oster
2676 1.166 oster rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2677 1.37 oster ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2678 1.37 oster
2679 1.37 oster RF_Free(req, sizeof(*req));
2680 1.37 oster
2681 1.37 oster raidPtr->recon_in_progress = 0;
2682 1.37 oster splx(s);
2683 1.37 oster
2684 1.37 oster /* That's all... */
2685 1.204 simonb kthread_exit(0); /* does not return */
2686 1.37 oster }
2687 1.37 oster
2688 1.37 oster void
2689 1.169 oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
2690 1.37 oster {
2691 1.37 oster int retcode;
2692 1.37 oster int s;
2693 1.37 oster
2694 1.184 oster raidPtr->parity_rewrite_stripes_done = 0;
2695 1.37 oster raidPtr->parity_rewrite_in_progress = 1;
2696 1.37 oster s = splbio();
2697 1.37 oster retcode = rf_RewriteParity(raidPtr);
2698 1.37 oster splx(s);
2699 1.37 oster if (retcode) {
2700 1.279 christos printf("raid%d: Error re-writing parity (%d)!\n",
2701 1.279 christos raidPtr->raidid, retcode);
2702 1.37 oster } else {
2703 1.37 oster /* set the clean bit! If we shutdown correctly,
2704 1.37 oster the clean bit on each component label will get
2705 1.37 oster set */
2706 1.37 oster raidPtr->parity_good = RF_RAID_CLEAN;
2707 1.37 oster }
2708 1.37 oster raidPtr->parity_rewrite_in_progress = 0;
2709 1.85 oster
2710 1.85 oster /* Anyone waiting for us to stop? If so, inform them... */
2711 1.85 oster if (raidPtr->waitShutdown) {
2712 1.357 mrg rf_lock_mutex2(raidPtr->rad_lock);
2713 1.357 mrg cv_broadcast(&raidPtr->parity_rewrite_cv);
2714 1.357 mrg rf_unlock_mutex2(raidPtr->rad_lock);
2715 1.85 oster }
2716 1.37 oster
2717 1.37 oster /* That's all... */
2718 1.204 simonb kthread_exit(0); /* does not return */
2719 1.37 oster }
2720 1.37 oster
2721 1.37 oster
2722 1.37 oster void
2723 1.169 oster rf_CopybackThread(RF_Raid_t *raidPtr)
2724 1.37 oster {
2725 1.37 oster int s;
2726 1.37 oster
2727 1.37 oster raidPtr->copyback_in_progress = 1;
2728 1.37 oster s = splbio();
2729 1.37 oster rf_CopybackReconstructedData(raidPtr);
2730 1.37 oster splx(s);
2731 1.37 oster raidPtr->copyback_in_progress = 0;
2732 1.37 oster
2733 1.37 oster /* That's all... */
2734 1.204 simonb kthread_exit(0); /* does not return */
2735 1.37 oster }
2736 1.37 oster
2737 1.37 oster
2738 1.37 oster void
2739 1.353 mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
2740 1.37 oster {
2741 1.37 oster int s;
2742 1.37 oster RF_Raid_t *raidPtr;
2743 1.186 perry
2744 1.37 oster s = splbio();
2745 1.37 oster raidPtr = req->raidPtr;
2746 1.37 oster raidPtr->recon_in_progress = 1;
2747 1.166 oster rf_ReconstructInPlace(raidPtr, req->col);
2748 1.37 oster RF_Free(req, sizeof(*req));
2749 1.37 oster raidPtr->recon_in_progress = 0;
2750 1.37 oster splx(s);
2751 1.37 oster
2752 1.37 oster /* That's all... */
2753 1.204 simonb kthread_exit(0); /* does not return */
2754 1.48 oster }
2755 1.48 oster
2756 1.213 christos static RF_AutoConfig_t *
2757 1.213 christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2758 1.276 mrg const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2759 1.276 mrg unsigned secsize)
2760 1.213 christos {
2761 1.213 christos int good_one = 0;
2762 1.213 christos RF_ComponentLabel_t *clabel;
2763 1.213 christos RF_AutoConfig_t *ac;
2764 1.213 christos
2765 1.213 christos clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2766 1.213 christos if (clabel == NULL) {
2767 1.213 christos oomem:
2768 1.213 christos while(ac_list) {
2769 1.213 christos ac = ac_list;
2770 1.213 christos if (ac->clabel)
2771 1.213 christos free(ac->clabel, M_RAIDFRAME);
2772 1.213 christos ac_list = ac_list->next;
2773 1.213 christos free(ac, M_RAIDFRAME);
2774 1.213 christos }
2775 1.213 christos printf("RAID auto config: out of memory!\n");
2776 1.213 christos return NULL; /* XXX probably should panic? */
2777 1.213 christos }
2778 1.213 christos
2779 1.276 mrg if (!raidread_component_label(secsize, dev, vp, clabel)) {
2780 1.276 mrg /* Got the label. Does it look reasonable? */
2781 1.284 mrg if (rf_reasonable_label(clabel, numsecs) &&
2782 1.282 enami (rf_component_label_partitionsize(clabel) <= size)) {
2783 1.224 oster #ifdef DEBUG
2784 1.276 mrg printf("Component on: %s: %llu\n",
2785 1.213 christos cname, (unsigned long long)size);
2786 1.276 mrg rf_print_component_label(clabel);
2787 1.213 christos #endif
2788 1.276 mrg /* if it's reasonable, add it, else ignore it. */
2789 1.276 mrg ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2790 1.213 christos M_NOWAIT);
2791 1.276 mrg if (ac == NULL) {
2792 1.276 mrg free(clabel, M_RAIDFRAME);
2793 1.276 mrg goto oomem;
2794 1.276 mrg }
2795 1.276 mrg strlcpy(ac->devname, cname, sizeof(ac->devname));
2796 1.276 mrg ac->dev = dev;
2797 1.276 mrg ac->vp = vp;
2798 1.276 mrg ac->clabel = clabel;
2799 1.276 mrg ac->next = ac_list;
2800 1.276 mrg ac_list = ac;
2801 1.276 mrg good_one = 1;
2802 1.276 mrg }
2803 1.213 christos }
2804 1.213 christos if (!good_one) {
2805 1.213 christos /* cleanup */
2806 1.213 christos free(clabel, M_RAIDFRAME);
2807 1.213 christos vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2808 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2809 1.213 christos vput(vp);
2810 1.213 christos }
2811 1.213 christos return ac_list;
2812 1.213 christos }
2813 1.213 christos
2814 1.48 oster RF_AutoConfig_t *
2815 1.259 cegger rf_find_raid_components(void)
2816 1.48 oster {
2817 1.48 oster struct vnode *vp;
2818 1.48 oster struct disklabel label;
2819 1.261 dyoung device_t dv;
2820 1.268 dyoung deviter_t di;
2821 1.48 oster dev_t dev;
2822 1.296 buhrow int bmajor, bminor, wedge, rf_part_found;
2823 1.48 oster int error;
2824 1.48 oster int i;
2825 1.48 oster RF_AutoConfig_t *ac_list;
2826 1.276 mrg uint64_t numsecs;
2827 1.276 mrg unsigned secsize;
2828 1.335 mlelstv int dowedges;
2829 1.48 oster
2830 1.48 oster /* initialize the AutoConfig list */
2831 1.48 oster ac_list = NULL;
2832 1.48 oster
2833 1.335 mlelstv /*
2834 1.335 mlelstv * we begin by trolling through *all* the devices on the system *twice*
2835 1.335 mlelstv * first we scan for wedges, second for other devices. This avoids
2836 1.335 mlelstv * using a raw partition instead of a wedge that covers the whole disk
2837 1.335 mlelstv */
2838 1.48 oster
2839 1.335 mlelstv for (dowedges=1; dowedges>=0; --dowedges) {
2840 1.335 mlelstv for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2841 1.335 mlelstv dv = deviter_next(&di)) {
2842 1.48 oster
2843 1.335 mlelstv /* we are only interested in disks... */
2844 1.335 mlelstv if (device_class(dv) != DV_DISK)
2845 1.335 mlelstv continue;
2846 1.48 oster
2847 1.335 mlelstv /* we don't care about floppies... */
2848 1.335 mlelstv if (device_is_a(dv, "fd")) {
2849 1.335 mlelstv continue;
2850 1.335 mlelstv }
2851 1.129 oster
2852 1.335 mlelstv /* we don't care about CD's... */
2853 1.335 mlelstv if (device_is_a(dv, "cd")) {
2854 1.335 mlelstv continue;
2855 1.335 mlelstv }
2856 1.129 oster
2857 1.335 mlelstv /* we don't care about md's... */
2858 1.335 mlelstv if (device_is_a(dv, "md")) {
2859 1.335 mlelstv continue;
2860 1.335 mlelstv }
2861 1.248 oster
2862 1.335 mlelstv /* hdfd is the Atari/Hades floppy driver */
2863 1.335 mlelstv if (device_is_a(dv, "hdfd")) {
2864 1.335 mlelstv continue;
2865 1.335 mlelstv }
2866 1.206 thorpej
2867 1.335 mlelstv /* fdisa is the Atari/Milan floppy driver */
2868 1.335 mlelstv if (device_is_a(dv, "fdisa")) {
2869 1.335 mlelstv continue;
2870 1.335 mlelstv }
2871 1.186 perry
2872 1.335 mlelstv /* are we in the wedges pass ? */
2873 1.335 mlelstv wedge = device_is_a(dv, "dk");
2874 1.335 mlelstv if (wedge != dowedges) {
2875 1.335 mlelstv continue;
2876 1.335 mlelstv }
2877 1.48 oster
2878 1.335 mlelstv /* need to find the device_name_to_block_device_major stuff */
2879 1.335 mlelstv bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2880 1.296 buhrow
2881 1.335 mlelstv rf_part_found = 0; /*No raid partition as yet*/
2882 1.48 oster
2883 1.335 mlelstv /* get a vnode for the raw partition of this disk */
2884 1.335 mlelstv bminor = minor(device_unit(dv));
2885 1.335 mlelstv dev = wedge ? makedev(bmajor, bminor) :
2886 1.335 mlelstv MAKEDISKDEV(bmajor, bminor, RAW_PART);
2887 1.335 mlelstv if (bdevvp(dev, &vp))
2888 1.335 mlelstv panic("RAID can't alloc vnode");
2889 1.48 oster
2890 1.335 mlelstv error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2891 1.48 oster
2892 1.335 mlelstv if (error) {
2893 1.335 mlelstv /* "Who cares." Continue looking
2894 1.335 mlelstv for something that exists*/
2895 1.335 mlelstv vput(vp);
2896 1.335 mlelstv continue;
2897 1.335 mlelstv }
2898 1.48 oster
2899 1.335 mlelstv error = getdisksize(vp, &numsecs, &secsize);
2900 1.213 christos if (error) {
2901 1.339 mlelstv /*
2902 1.339 mlelstv * Pseudo devices like vnd and cgd can be
2903 1.339 mlelstv * opened but may still need some configuration.
2904 1.339 mlelstv * Ignore these quietly.
2905 1.339 mlelstv */
2906 1.339 mlelstv if (error != ENXIO)
2907 1.339 mlelstv printf("RAIDframe: can't get disk size"
2908 1.339 mlelstv " for dev %s (%d)\n",
2909 1.339 mlelstv device_xname(dv), error);
2910 1.241 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2911 1.241 oster VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2912 1.241 oster vput(vp);
2913 1.213 christos continue;
2914 1.213 christos }
2915 1.335 mlelstv if (wedge) {
2916 1.335 mlelstv struct dkwedge_info dkw;
2917 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2918 1.335 mlelstv NOCRED);
2919 1.335 mlelstv if (error) {
2920 1.335 mlelstv printf("RAIDframe: can't get wedge info for "
2921 1.335 mlelstv "dev %s (%d)\n", device_xname(dv), error);
2922 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2923 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2924 1.335 mlelstv vput(vp);
2925 1.335 mlelstv continue;
2926 1.335 mlelstv }
2927 1.213 christos
2928 1.335 mlelstv if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2929 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2930 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2931 1.335 mlelstv vput(vp);
2932 1.335 mlelstv continue;
2933 1.335 mlelstv }
2934 1.335 mlelstv
2935 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp,
2936 1.335 mlelstv device_xname(dv), dkw.dkw_size, numsecs, secsize);
2937 1.335 mlelstv rf_part_found = 1; /*There is a raid component on this disk*/
2938 1.228 christos continue;
2939 1.241 oster }
2940 1.213 christos
2941 1.335 mlelstv /* Ok, the disk exists. Go get the disklabel. */
2942 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2943 1.335 mlelstv if (error) {
2944 1.335 mlelstv /*
2945 1.335 mlelstv * XXX can't happen - open() would
2946 1.335 mlelstv * have errored out (or faked up one)
2947 1.335 mlelstv */
2948 1.335 mlelstv if (error != ENOTTY)
2949 1.335 mlelstv printf("RAIDframe: can't get label for dev "
2950 1.335 mlelstv "%s (%d)\n", device_xname(dv), error);
2951 1.335 mlelstv }
2952 1.48 oster
2953 1.335 mlelstv /* don't need this any more. We'll allocate it again
2954 1.335 mlelstv a little later if we really do... */
2955 1.335 mlelstv vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2956 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2957 1.335 mlelstv vput(vp);
2958 1.48 oster
2959 1.335 mlelstv if (error)
2960 1.48 oster continue;
2961 1.48 oster
2962 1.335 mlelstv rf_part_found = 0; /*No raid partitions yet*/
2963 1.335 mlelstv for (i = 0; i < label.d_npartitions; i++) {
2964 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2965 1.335 mlelstv
2966 1.335 mlelstv /* We only support partitions marked as RAID */
2967 1.335 mlelstv if (label.d_partitions[i].p_fstype != FS_RAID)
2968 1.335 mlelstv continue;
2969 1.335 mlelstv
2970 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2971 1.335 mlelstv if (bdevvp(dev, &vp))
2972 1.335 mlelstv panic("RAID can't alloc vnode");
2973 1.335 mlelstv
2974 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2975 1.335 mlelstv if (error) {
2976 1.335 mlelstv /* Whatever... */
2977 1.335 mlelstv vput(vp);
2978 1.335 mlelstv continue;
2979 1.335 mlelstv }
2980 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2981 1.335 mlelstv device_xname(dv), 'a' + i);
2982 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2983 1.335 mlelstv label.d_partitions[i].p_size, numsecs, secsize);
2984 1.335 mlelstv rf_part_found = 1; /*There is at least one raid partition on this disk*/
2985 1.48 oster }
2986 1.296 buhrow
2987 1.335 mlelstv /*
2988 1.335 mlelstv *If there is no raid component on this disk, either in a
2989 1.335 mlelstv *disklabel or inside a wedge, check the raw partition as well,
2990 1.335 mlelstv *as it is possible to configure raid components on raw disk
2991 1.335 mlelstv *devices.
2992 1.335 mlelstv */
2993 1.296 buhrow
2994 1.335 mlelstv if (!rf_part_found) {
2995 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2996 1.296 buhrow
2997 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2998 1.335 mlelstv if (bdevvp(dev, &vp))
2999 1.335 mlelstv panic("RAID can't alloc vnode");
3000 1.335 mlelstv
3001 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
3002 1.335 mlelstv if (error) {
3003 1.335 mlelstv /* Whatever... */
3004 1.335 mlelstv vput(vp);
3005 1.335 mlelstv continue;
3006 1.335 mlelstv }
3007 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
3008 1.335 mlelstv device_xname(dv), 'a' + RAW_PART);
3009 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
3010 1.335 mlelstv label.d_partitions[RAW_PART].p_size, numsecs, secsize);
3011 1.296 buhrow }
3012 1.48 oster }
3013 1.335 mlelstv deviter_release(&di);
3014 1.48 oster }
3015 1.213 christos return ac_list;
3016 1.48 oster }
3017 1.186 perry
3018 1.213 christos
3019 1.292 oster int
3020 1.284 mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3021 1.48 oster {
3022 1.186 perry
3023 1.48 oster if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3024 1.48 oster (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3025 1.48 oster ((clabel->clean == RF_RAID_CLEAN) ||
3026 1.48 oster (clabel->clean == RF_RAID_DIRTY)) &&
3027 1.186 perry clabel->row >=0 &&
3028 1.186 perry clabel->column >= 0 &&
3029 1.48 oster clabel->num_rows > 0 &&
3030 1.48 oster clabel->num_columns > 0 &&
3031 1.186 perry clabel->row < clabel->num_rows &&
3032 1.48 oster clabel->column < clabel->num_columns &&
3033 1.48 oster clabel->blockSize > 0 &&
3034 1.282 enami /*
3035 1.282 enami * numBlocksHi may contain garbage, but it is ok since
3036 1.282 enami * the type is unsigned. If it is really garbage,
3037 1.282 enami * rf_fix_old_label_size() will fix it.
3038 1.282 enami */
3039 1.282 enami rf_component_label_numblocks(clabel) > 0) {
3040 1.284 mrg /*
3041 1.284 mrg * label looks reasonable enough...
3042 1.284 mrg * let's make sure it has no old garbage.
3043 1.284 mrg */
3044 1.292 oster if (numsecs)
3045 1.292 oster rf_fix_old_label_size(clabel, numsecs);
3046 1.48 oster return(1);
3047 1.48 oster }
3048 1.48 oster return(0);
3049 1.48 oster }
3050 1.48 oster
3051 1.48 oster
3052 1.278 mrg /*
3053 1.278 mrg * For reasons yet unknown, some old component labels have garbage in
3054 1.278 mrg * the newer numBlocksHi region, and this causes lossage. Since those
3055 1.278 mrg * disks will also have numsecs set to less than 32 bits of sectors,
3056 1.299 oster * we can determine when this corruption has occurred, and fix it.
3057 1.284 mrg *
3058 1.284 mrg * The exact same problem, with the same unknown reason, happens to
3059 1.284 mrg * the partitionSizeHi member as well.
3060 1.278 mrg */
3061 1.278 mrg static void
3062 1.278 mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3063 1.278 mrg {
3064 1.278 mrg
3065 1.284 mrg if (numsecs < ((uint64_t)1 << 32)) {
3066 1.284 mrg if (clabel->numBlocksHi) {
3067 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3068 1.284 mrg "numBlocksHi set\n"
3069 1.284 mrg "WARNING: resetting numBlocksHi to zero.\n");
3070 1.284 mrg clabel->numBlocksHi = 0;
3071 1.284 mrg }
3072 1.284 mrg
3073 1.284 mrg if (clabel->partitionSizeHi) {
3074 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3075 1.284 mrg "partitionSizeHi set\n"
3076 1.284 mrg "WARNING: resetting partitionSizeHi to zero.\n");
3077 1.284 mrg clabel->partitionSizeHi = 0;
3078 1.284 mrg }
3079 1.278 mrg }
3080 1.278 mrg }
3081 1.278 mrg
3082 1.278 mrg
3083 1.224 oster #ifdef DEBUG
3084 1.48 oster void
3085 1.169 oster rf_print_component_label(RF_ComponentLabel_t *clabel)
3086 1.48 oster {
3087 1.282 enami uint64_t numBlocks;
3088 1.308 christos static const char *rp[] = {
3089 1.308 christos "No", "Force", "Soft", "*invalid*"
3090 1.308 christos };
3091 1.308 christos
3092 1.275 mrg
3093 1.282 enami numBlocks = rf_component_label_numblocks(clabel);
3094 1.275 mrg
3095 1.48 oster printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3096 1.186 perry clabel->row, clabel->column,
3097 1.48 oster clabel->num_rows, clabel->num_columns);
3098 1.48 oster printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3099 1.48 oster clabel->version, clabel->serial_number,
3100 1.48 oster clabel->mod_counter);
3101 1.48 oster printf(" Clean: %s Status: %d\n",
3102 1.271 dyoung clabel->clean ? "Yes" : "No", clabel->status);
3103 1.48 oster printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3104 1.48 oster clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3105 1.275 mrg printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3106 1.275 mrg (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3107 1.271 dyoung printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3108 1.308 christos printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3109 1.271 dyoung printf(" Last configured as: raid%d\n", clabel->last_unit);
3110 1.51 oster #if 0
3111 1.51 oster printf(" Config order: %d\n", clabel->config_order);
3112 1.51 oster #endif
3113 1.186 perry
3114 1.48 oster }
3115 1.133 oster #endif
3116 1.48 oster
3117 1.48 oster RF_ConfigSet_t *
3118 1.169 oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3119 1.48 oster {
3120 1.48 oster RF_AutoConfig_t *ac;
3121 1.48 oster RF_ConfigSet_t *config_sets;
3122 1.48 oster RF_ConfigSet_t *cset;
3123 1.48 oster RF_AutoConfig_t *ac_next;
3124 1.48 oster
3125 1.48 oster
3126 1.48 oster config_sets = NULL;
3127 1.48 oster
3128 1.48 oster /* Go through the AutoConfig list, and figure out which components
3129 1.48 oster belong to what sets. */
3130 1.48 oster ac = ac_list;
3131 1.48 oster while(ac!=NULL) {
3132 1.48 oster /* we're going to putz with ac->next, so save it here
3133 1.48 oster for use at the end of the loop */
3134 1.48 oster ac_next = ac->next;
3135 1.48 oster
3136 1.48 oster if (config_sets == NULL) {
3137 1.48 oster /* will need at least this one... */
3138 1.48 oster config_sets = (RF_ConfigSet_t *)
3139 1.186 perry malloc(sizeof(RF_ConfigSet_t),
3140 1.48 oster M_RAIDFRAME, M_NOWAIT);
3141 1.48 oster if (config_sets == NULL) {
3142 1.141 provos panic("rf_create_auto_sets: No memory!");
3143 1.48 oster }
3144 1.48 oster /* this one is easy :) */
3145 1.48 oster config_sets->ac = ac;
3146 1.48 oster config_sets->next = NULL;
3147 1.51 oster config_sets->rootable = 0;
3148 1.48 oster ac->next = NULL;
3149 1.48 oster } else {
3150 1.48 oster /* which set does this component fit into? */
3151 1.48 oster cset = config_sets;
3152 1.48 oster while(cset!=NULL) {
3153 1.49 oster if (rf_does_it_fit(cset, ac)) {
3154 1.86 oster /* looks like it matches... */
3155 1.86 oster ac->next = cset->ac;
3156 1.86 oster cset->ac = ac;
3157 1.48 oster break;
3158 1.48 oster }
3159 1.48 oster cset = cset->next;
3160 1.48 oster }
3161 1.48 oster if (cset==NULL) {
3162 1.48 oster /* didn't find a match above... new set..*/
3163 1.48 oster cset = (RF_ConfigSet_t *)
3164 1.186 perry malloc(sizeof(RF_ConfigSet_t),
3165 1.48 oster M_RAIDFRAME, M_NOWAIT);
3166 1.48 oster if (cset == NULL) {
3167 1.141 provos panic("rf_create_auto_sets: No memory!");
3168 1.48 oster }
3169 1.48 oster cset->ac = ac;
3170 1.48 oster ac->next = NULL;
3171 1.48 oster cset->next = config_sets;
3172 1.51 oster cset->rootable = 0;
3173 1.48 oster config_sets = cset;
3174 1.48 oster }
3175 1.48 oster }
3176 1.48 oster ac = ac_next;
3177 1.48 oster }
3178 1.48 oster
3179 1.48 oster
3180 1.48 oster return(config_sets);
3181 1.48 oster }
3182 1.48 oster
3183 1.48 oster static int
3184 1.169 oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3185 1.48 oster {
3186 1.48 oster RF_ComponentLabel_t *clabel1, *clabel2;
3187 1.48 oster
3188 1.48 oster /* If this one matches the *first* one in the set, that's good
3189 1.48 oster enough, since the other members of the set would have been
3190 1.48 oster through here too... */
3191 1.60 oster /* note that we are not checking partitionSize here..
3192 1.60 oster
3193 1.60 oster Note that we are also not checking the mod_counters here.
3194 1.299 oster If everything else matches except the mod_counter, that's
3195 1.60 oster good enough for this test. We will deal with the mod_counters
3196 1.186 perry a little later in the autoconfiguration process.
3197 1.60 oster
3198 1.60 oster (clabel1->mod_counter == clabel2->mod_counter) &&
3199 1.81 oster
3200 1.81 oster The reason we don't check for this is that failed disks
3201 1.81 oster will have lower modification counts. If those disks are
3202 1.81 oster not added to the set they used to belong to, then they will
3203 1.81 oster form their own set, which may result in 2 different sets,
3204 1.81 oster for example, competing to be configured at raid0, and
3205 1.81 oster perhaps competing to be the root filesystem set. If the
3206 1.81 oster wrong ones get configured, or both attempt to become /,
3207 1.81 oster weird behaviour and or serious lossage will occur. Thus we
3208 1.81 oster need to bring them into the fold here, and kick them out at
3209 1.81 oster a later point.
3210 1.60 oster
3211 1.60 oster */
3212 1.48 oster
3213 1.48 oster clabel1 = cset->ac->clabel;
3214 1.48 oster clabel2 = ac->clabel;
3215 1.48 oster if ((clabel1->version == clabel2->version) &&
3216 1.48 oster (clabel1->serial_number == clabel2->serial_number) &&
3217 1.48 oster (clabel1->num_rows == clabel2->num_rows) &&
3218 1.48 oster (clabel1->num_columns == clabel2->num_columns) &&
3219 1.48 oster (clabel1->sectPerSU == clabel2->sectPerSU) &&
3220 1.48 oster (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3221 1.48 oster (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3222 1.48 oster (clabel1->parityConfig == clabel2->parityConfig) &&
3223 1.48 oster (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3224 1.48 oster (clabel1->blockSize == clabel2->blockSize) &&
3225 1.282 enami rf_component_label_numblocks(clabel1) ==
3226 1.282 enami rf_component_label_numblocks(clabel2) &&
3227 1.48 oster (clabel1->autoconfigure == clabel2->autoconfigure) &&
3228 1.48 oster (clabel1->root_partition == clabel2->root_partition) &&
3229 1.48 oster (clabel1->last_unit == clabel2->last_unit) &&
3230 1.48 oster (clabel1->config_order == clabel2->config_order)) {
3231 1.48 oster /* if it get's here, it almost *has* to be a match */
3232 1.48 oster } else {
3233 1.186 perry /* it's not consistent with somebody in the set..
3234 1.48 oster punt */
3235 1.48 oster return(0);
3236 1.48 oster }
3237 1.48 oster /* all was fine.. it must fit... */
3238 1.48 oster return(1);
3239 1.48 oster }
3240 1.48 oster
3241 1.48 oster int
3242 1.169 oster rf_have_enough_components(RF_ConfigSet_t *cset)
3243 1.48 oster {
3244 1.51 oster RF_AutoConfig_t *ac;
3245 1.51 oster RF_AutoConfig_t *auto_config;
3246 1.51 oster RF_ComponentLabel_t *clabel;
3247 1.166 oster int c;
3248 1.51 oster int num_cols;
3249 1.51 oster int num_missing;
3250 1.86 oster int mod_counter;
3251 1.87 oster int mod_counter_found;
3252 1.88 oster int even_pair_failed;
3253 1.88 oster char parity_type;
3254 1.186 perry
3255 1.51 oster
3256 1.48 oster /* check to see that we have enough 'live' components
3257 1.48 oster of this set. If so, we can configure it if necessary */
3258 1.48 oster
3259 1.51 oster num_cols = cset->ac->clabel->num_columns;
3260 1.88 oster parity_type = cset->ac->clabel->parityConfig;
3261 1.51 oster
3262 1.51 oster /* XXX Check for duplicate components!?!?!? */
3263 1.51 oster
3264 1.86 oster /* Determine what the mod_counter is supposed to be for this set. */
3265 1.86 oster
3266 1.87 oster mod_counter_found = 0;
3267 1.101 oster mod_counter = 0;
3268 1.86 oster ac = cset->ac;
3269 1.86 oster while(ac!=NULL) {
3270 1.87 oster if (mod_counter_found==0) {
3271 1.86 oster mod_counter = ac->clabel->mod_counter;
3272 1.87 oster mod_counter_found = 1;
3273 1.87 oster } else {
3274 1.87 oster if (ac->clabel->mod_counter > mod_counter) {
3275 1.87 oster mod_counter = ac->clabel->mod_counter;
3276 1.87 oster }
3277 1.86 oster }
3278 1.86 oster ac = ac->next;
3279 1.86 oster }
3280 1.86 oster
3281 1.51 oster num_missing = 0;
3282 1.51 oster auto_config = cset->ac;
3283 1.51 oster
3284 1.166 oster even_pair_failed = 0;
3285 1.166 oster for(c=0; c<num_cols; c++) {
3286 1.166 oster ac = auto_config;
3287 1.166 oster while(ac!=NULL) {
3288 1.186 perry if ((ac->clabel->column == c) &&
3289 1.166 oster (ac->clabel->mod_counter == mod_counter)) {
3290 1.166 oster /* it's this one... */
3291 1.224 oster #ifdef DEBUG
3292 1.166 oster printf("Found: %s at %d\n",
3293 1.166 oster ac->devname,c);
3294 1.51 oster #endif
3295 1.166 oster break;
3296 1.51 oster }
3297 1.166 oster ac=ac->next;
3298 1.166 oster }
3299 1.166 oster if (ac==NULL) {
3300 1.51 oster /* Didn't find one here! */
3301 1.88 oster /* special case for RAID 1, especially
3302 1.88 oster where there are more than 2
3303 1.88 oster components (where RAIDframe treats
3304 1.88 oster things a little differently :( ) */
3305 1.166 oster if (parity_type == '1') {
3306 1.166 oster if (c%2 == 0) { /* even component */
3307 1.166 oster even_pair_failed = 1;
3308 1.166 oster } else { /* odd component. If
3309 1.166 oster we're failed, and
3310 1.166 oster so is the even
3311 1.166 oster component, it's
3312 1.166 oster "Good Night, Charlie" */
3313 1.166 oster if (even_pair_failed == 1) {
3314 1.166 oster return(0);
3315 1.88 oster }
3316 1.88 oster }
3317 1.166 oster } else {
3318 1.166 oster /* normal accounting */
3319 1.166 oster num_missing++;
3320 1.88 oster }
3321 1.166 oster }
3322 1.166 oster if ((parity_type == '1') && (c%2 == 1)) {
3323 1.88 oster /* Just did an even component, and we didn't
3324 1.186 perry bail.. reset the even_pair_failed flag,
3325 1.88 oster and go on to the next component.... */
3326 1.166 oster even_pair_failed = 0;
3327 1.51 oster }
3328 1.51 oster }
3329 1.51 oster
3330 1.51 oster clabel = cset->ac->clabel;
3331 1.51 oster
3332 1.51 oster if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3333 1.51 oster ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3334 1.51 oster ((clabel->parityConfig == '5') && (num_missing > 1))) {
3335 1.51 oster /* XXX this needs to be made *much* more general */
3336 1.51 oster /* Too many failures */
3337 1.51 oster return(0);
3338 1.51 oster }
3339 1.51 oster /* otherwise, all is well, and we've got enough to take a kick
3340 1.51 oster at autoconfiguring this set */
3341 1.51 oster return(1);
3342 1.48 oster }
3343 1.48 oster
3344 1.48 oster void
3345 1.169 oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3346 1.222 christos RF_Raid_t *raidPtr)
3347 1.48 oster {
3348 1.48 oster RF_ComponentLabel_t *clabel;
3349 1.77 oster int i;
3350 1.48 oster
3351 1.48 oster clabel = ac->clabel;
3352 1.48 oster
3353 1.48 oster /* 1. Fill in the common stuff */
3354 1.48 oster config->numCol = clabel->num_columns;
3355 1.48 oster config->numSpare = 0; /* XXX should this be set here? */
3356 1.48 oster config->sectPerSU = clabel->sectPerSU;
3357 1.48 oster config->SUsPerPU = clabel->SUsPerPU;
3358 1.48 oster config->SUsPerRU = clabel->SUsPerRU;
3359 1.48 oster config->parityConfig = clabel->parityConfig;
3360 1.48 oster /* XXX... */
3361 1.48 oster strcpy(config->diskQueueType,"fifo");
3362 1.48 oster config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3363 1.48 oster config->layoutSpecificSize = 0; /* XXX ?? */
3364 1.48 oster
3365 1.48 oster while(ac!=NULL) {
3366 1.48 oster /* row/col values will be in range due to the checks
3367 1.48 oster in reasonable_label() */
3368 1.166 oster strcpy(config->devnames[0][ac->clabel->column],
3369 1.48 oster ac->devname);
3370 1.48 oster ac = ac->next;
3371 1.48 oster }
3372 1.48 oster
3373 1.77 oster for(i=0;i<RF_MAXDBGV;i++) {
3374 1.163 fvdl config->debugVars[i][0] = 0;
3375 1.77 oster }
3376 1.48 oster }
3377 1.48 oster
3378 1.48 oster int
3379 1.169 oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3380 1.48 oster {
3381 1.269 jld RF_ComponentLabel_t *clabel;
3382 1.166 oster int column;
3383 1.148 oster int sparecol;
3384 1.48 oster
3385 1.54 oster raidPtr->autoconfigure = new_value;
3386 1.166 oster
3387 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3388 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3389 1.269 jld clabel = raidget_component_label(raidPtr, column);
3390 1.269 jld clabel->autoconfigure = new_value;
3391 1.269 jld raidflush_component_label(raidPtr, column);
3392 1.48 oster }
3393 1.48 oster }
3394 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3395 1.148 oster sparecol = raidPtr->numCol + column;
3396 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3397 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3398 1.269 jld clabel->autoconfigure = new_value;
3399 1.269 jld raidflush_component_label(raidPtr, sparecol);
3400 1.148 oster }
3401 1.148 oster }
3402 1.48 oster return(new_value);
3403 1.48 oster }
3404 1.48 oster
3405 1.48 oster int
3406 1.169 oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3407 1.48 oster {
3408 1.269 jld RF_ComponentLabel_t *clabel;
3409 1.166 oster int column;
3410 1.148 oster int sparecol;
3411 1.48 oster
3412 1.54 oster raidPtr->root_partition = new_value;
3413 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3414 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3415 1.269 jld clabel = raidget_component_label(raidPtr, column);
3416 1.269 jld clabel->root_partition = new_value;
3417 1.269 jld raidflush_component_label(raidPtr, column);
3418 1.148 oster }
3419 1.148 oster }
3420 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3421 1.148 oster sparecol = raidPtr->numCol + column;
3422 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3423 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3424 1.269 jld clabel->root_partition = new_value;
3425 1.269 jld raidflush_component_label(raidPtr, sparecol);
3426 1.48 oster }
3427 1.48 oster }
3428 1.48 oster return(new_value);
3429 1.48 oster }
3430 1.48 oster
3431 1.48 oster void
3432 1.169 oster rf_release_all_vps(RF_ConfigSet_t *cset)
3433 1.48 oster {
3434 1.48 oster RF_AutoConfig_t *ac;
3435 1.186 perry
3436 1.48 oster ac = cset->ac;
3437 1.48 oster while(ac!=NULL) {
3438 1.48 oster /* Close the vp, and give it back */
3439 1.48 oster if (ac->vp) {
3440 1.96 oster vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3441 1.335 mlelstv VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3442 1.48 oster vput(ac->vp);
3443 1.86 oster ac->vp = NULL;
3444 1.48 oster }
3445 1.48 oster ac = ac->next;
3446 1.48 oster }
3447 1.48 oster }
3448 1.48 oster
3449 1.48 oster
3450 1.48 oster void
3451 1.169 oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
3452 1.48 oster {
3453 1.48 oster RF_AutoConfig_t *ac;
3454 1.48 oster RF_AutoConfig_t *next_ac;
3455 1.186 perry
3456 1.48 oster ac = cset->ac;
3457 1.48 oster while(ac!=NULL) {
3458 1.48 oster next_ac = ac->next;
3459 1.48 oster /* nuke the label */
3460 1.48 oster free(ac->clabel, M_RAIDFRAME);
3461 1.48 oster /* cleanup the config structure */
3462 1.48 oster free(ac, M_RAIDFRAME);
3463 1.48 oster /* "next.." */
3464 1.48 oster ac = next_ac;
3465 1.48 oster }
3466 1.48 oster /* and, finally, nuke the config set */
3467 1.48 oster free(cset, M_RAIDFRAME);
3468 1.48 oster }
3469 1.48 oster
3470 1.48 oster
3471 1.48 oster void
3472 1.169 oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3473 1.48 oster {
3474 1.48 oster /* current version number */
3475 1.186 perry clabel->version = RF_COMPONENT_LABEL_VERSION;
3476 1.57 oster clabel->serial_number = raidPtr->serial_number;
3477 1.48 oster clabel->mod_counter = raidPtr->mod_counter;
3478 1.269 jld
3479 1.166 oster clabel->num_rows = 1;
3480 1.48 oster clabel->num_columns = raidPtr->numCol;
3481 1.48 oster clabel->clean = RF_RAID_DIRTY; /* not clean */
3482 1.48 oster clabel->status = rf_ds_optimal; /* "It's good!" */
3483 1.186 perry
3484 1.48 oster clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3485 1.48 oster clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3486 1.48 oster clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3487 1.54 oster
3488 1.54 oster clabel->blockSize = raidPtr->bytesPerSector;
3489 1.282 enami rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3490 1.54 oster
3491 1.48 oster /* XXX not portable */
3492 1.48 oster clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3493 1.54 oster clabel->maxOutstanding = raidPtr->maxOutstanding;
3494 1.54 oster clabel->autoconfigure = raidPtr->autoconfigure;
3495 1.54 oster clabel->root_partition = raidPtr->root_partition;
3496 1.48 oster clabel->last_unit = raidPtr->raidid;
3497 1.54 oster clabel->config_order = raidPtr->config_order;
3498 1.269 jld
3499 1.269 jld #ifndef RF_NO_PARITY_MAP
3500 1.269 jld rf_paritymap_init_label(raidPtr->parity_map, clabel);
3501 1.269 jld #endif
3502 1.51 oster }
3503 1.51 oster
3504 1.300 christos struct raid_softc *
3505 1.300 christos rf_auto_config_set(RF_ConfigSet_t *cset)
3506 1.51 oster {
3507 1.51 oster RF_Raid_t *raidPtr;
3508 1.51 oster RF_Config_t *config;
3509 1.51 oster int raidID;
3510 1.300 christos struct raid_softc *sc;
3511 1.51 oster
3512 1.224 oster #ifdef DEBUG
3513 1.72 oster printf("RAID autoconfigure\n");
3514 1.127 oster #endif
3515 1.51 oster
3516 1.51 oster /* 1. Create a config structure */
3517 1.300 christos config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3518 1.300 christos if (config == NULL) {
3519 1.327 pgoyette printf("%s: Out of mem - config!?!?\n", __func__);
3520 1.51 oster /* XXX do something more intelligent here. */
3521 1.300 christos return NULL;
3522 1.51 oster }
3523 1.77 oster
3524 1.186 perry /*
3525 1.186 perry 2. Figure out what RAID ID this one is supposed to live at
3526 1.51 oster See if we can get the same RAID dev that it was configured
3527 1.186 perry on last time..
3528 1.51 oster */
3529 1.51 oster
3530 1.51 oster raidID = cset->ac->clabel->last_unit;
3531 1.327 pgoyette for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3532 1.327 pgoyette sc = raidget(++raidID, false))
3533 1.300 christos continue;
3534 1.224 oster #ifdef DEBUG
3535 1.72 oster printf("Configuring raid%d:\n",raidID);
3536 1.127 oster #endif
3537 1.127 oster
3538 1.327 pgoyette if (sc == NULL)
3539 1.327 pgoyette sc = raidget(raidID, true);
3540 1.327 pgoyette if (sc == NULL) {
3541 1.327 pgoyette printf("%s: Out of mem - softc!?!?\n", __func__);
3542 1.327 pgoyette /* XXX do something more intelligent here. */
3543 1.327 pgoyette free(config, M_RAIDFRAME);
3544 1.327 pgoyette return NULL;
3545 1.327 pgoyette }
3546 1.327 pgoyette
3547 1.300 christos raidPtr = &sc->sc_r;
3548 1.51 oster
3549 1.51 oster /* XXX all this stuff should be done SOMEWHERE ELSE! */
3550 1.302 christos raidPtr->softc = sc;
3551 1.51 oster raidPtr->raidid = raidID;
3552 1.51 oster raidPtr->openings = RAIDOUTSTANDING;
3553 1.51 oster
3554 1.51 oster /* 3. Build the configuration structure */
3555 1.51 oster rf_create_configuration(cset->ac, config, raidPtr);
3556 1.51 oster
3557 1.51 oster /* 4. Do the configuration */
3558 1.300 christos if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3559 1.300 christos raidinit(sc);
3560 1.186 perry
3561 1.300 christos rf_markalldirty(raidPtr);
3562 1.300 christos raidPtr->autoconfigure = 1; /* XXX do this here? */
3563 1.308 christos switch (cset->ac->clabel->root_partition) {
3564 1.308 christos case 1: /* Force Root */
3565 1.308 christos case 2: /* Soft Root: root when boot partition part of raid */
3566 1.308 christos /*
3567 1.308 christos * everything configured just fine. Make a note
3568 1.308 christos * that this set is eligible to be root,
3569 1.308 christos * or forced to be root
3570 1.308 christos */
3571 1.308 christos cset->rootable = cset->ac->clabel->root_partition;
3572 1.54 oster /* XXX do this here? */
3573 1.308 christos raidPtr->root_partition = cset->rootable;
3574 1.308 christos break;
3575 1.308 christos default:
3576 1.308 christos break;
3577 1.51 oster }
3578 1.300 christos } else {
3579 1.300 christos raidput(sc);
3580 1.300 christos sc = NULL;
3581 1.51 oster }
3582 1.51 oster
3583 1.51 oster /* 5. Cleanup */
3584 1.51 oster free(config, M_RAIDFRAME);
3585 1.300 christos return sc;
3586 1.99 oster }
3587 1.99 oster
3588 1.99 oster void
3589 1.187 christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3590 1.187 christos size_t xmin, size_t xmax)
3591 1.177 oster {
3592 1.352 christos int error;
3593 1.352 christos
3594 1.227 ad pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3595 1.187 christos pool_sethiwat(p, xmax);
3596 1.352 christos if ((error = pool_prime(p, xmin)) != 0)
3597 1.352 christos panic("%s: failed to prime pool: %d", __func__, error);
3598 1.187 christos pool_setlowat(p, xmin);
3599 1.177 oster }
3600 1.190 oster
3601 1.190 oster /*
3602 1.335 mlelstv * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3603 1.335 mlelstv * to see if there is IO pending and if that IO could possibly be done
3604 1.335 mlelstv * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3605 1.190 oster * otherwise.
3606 1.190 oster *
3607 1.190 oster */
3608 1.190 oster int
3609 1.300 christos rf_buf_queue_check(RF_Raid_t *raidPtr)
3610 1.190 oster {
3611 1.335 mlelstv struct raid_softc *rs;
3612 1.335 mlelstv struct dk_softc *dksc;
3613 1.335 mlelstv
3614 1.335 mlelstv rs = raidPtr->softc;
3615 1.335 mlelstv dksc = &rs->sc_dksc;
3616 1.335 mlelstv
3617 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
3618 1.335 mlelstv return 1;
3619 1.335 mlelstv
3620 1.335 mlelstv if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3621 1.190 oster /* there is work to do */
3622 1.190 oster return 0;
3623 1.335 mlelstv }
3624 1.190 oster /* default is nothing to do */
3625 1.190 oster return 1;
3626 1.190 oster }
3627 1.213 christos
3628 1.213 christos int
3629 1.294 oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3630 1.213 christos {
3631 1.275 mrg uint64_t numsecs;
3632 1.275 mrg unsigned secsize;
3633 1.213 christos int error;
3634 1.213 christos
3635 1.275 mrg error = getdisksize(vp, &numsecs, &secsize);
3636 1.213 christos if (error == 0) {
3637 1.275 mrg diskPtr->blockSize = secsize;
3638 1.275 mrg diskPtr->numBlocks = numsecs - rf_protectedSectors;
3639 1.275 mrg diskPtr->partitionSize = numsecs;
3640 1.213 christos return 0;
3641 1.213 christos }
3642 1.213 christos return error;
3643 1.213 christos }
3644 1.217 oster
3645 1.217 oster static int
3646 1.261 dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
3647 1.217 oster {
3648 1.217 oster return 1;
3649 1.217 oster }
3650 1.217 oster
3651 1.217 oster static void
3652 1.261 dyoung raid_attach(device_t parent, device_t self, void *aux)
3653 1.217 oster {
3654 1.217 oster }
3655 1.217 oster
3656 1.217 oster
3657 1.217 oster static int
3658 1.261 dyoung raid_detach(device_t self, int flags)
3659 1.217 oster {
3660 1.266 dyoung int error;
3661 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
3662 1.303 christos
3663 1.303 christos if (rs == NULL)
3664 1.303 christos return ENXIO;
3665 1.266 dyoung
3666 1.266 dyoung if ((error = raidlock(rs)) != 0)
3667 1.266 dyoung return (error);
3668 1.217 oster
3669 1.266 dyoung error = raid_detach_unlocked(rs);
3670 1.266 dyoung
3671 1.332 mlelstv raidunlock(rs);
3672 1.332 mlelstv
3673 1.332 mlelstv /* XXX raid can be referenced here */
3674 1.332 mlelstv
3675 1.332 mlelstv if (error)
3676 1.332 mlelstv return error;
3677 1.332 mlelstv
3678 1.332 mlelstv /* Free the softc */
3679 1.332 mlelstv raidput(rs);
3680 1.332 mlelstv
3681 1.332 mlelstv return 0;
3682 1.217 oster }
3683 1.217 oster
3684 1.234 oster static void
3685 1.304 christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3686 1.234 oster {
3687 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
3688 1.335 mlelstv struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3689 1.304 christos
3690 1.304 christos memset(dg, 0, sizeof(*dg));
3691 1.304 christos
3692 1.304 christos dg->dg_secperunit = raidPtr->totalSectors;
3693 1.304 christos dg->dg_secsize = raidPtr->bytesPerSector;
3694 1.304 christos dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3695 1.304 christos dg->dg_ntracks = 4 * raidPtr->numCol;
3696 1.304 christos
3697 1.335 mlelstv disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3698 1.234 oster }
3699 1.252 oster
3700 1.348 jdolecek /*
3701 1.348 jdolecek * Get cache info for all the components (including spares).
3702 1.348 jdolecek * Returns intersection of all the cache flags of all disks, or first
3703 1.348 jdolecek * error if any encountered.
3704 1.348 jdolecek * XXXfua feature flags can change as spares are added - lock down somehow
3705 1.348 jdolecek */
3706 1.348 jdolecek static int
3707 1.348 jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3708 1.348 jdolecek {
3709 1.348 jdolecek int c;
3710 1.348 jdolecek int error;
3711 1.348 jdolecek int dkwhole = 0, dkpart;
3712 1.348 jdolecek
3713 1.348 jdolecek for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3714 1.348 jdolecek /*
3715 1.348 jdolecek * Check any non-dead disk, even when currently being
3716 1.348 jdolecek * reconstructed.
3717 1.348 jdolecek */
3718 1.348 jdolecek if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3719 1.348 jdolecek || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3720 1.348 jdolecek error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3721 1.348 jdolecek DIOCGCACHE, &dkpart, FREAD, NOCRED);
3722 1.348 jdolecek if (error) {
3723 1.348 jdolecek if (error != ENODEV) {
3724 1.348 jdolecek printf("raid%d: get cache for component %s failed\n",
3725 1.348 jdolecek raidPtr->raidid,
3726 1.348 jdolecek raidPtr->Disks[c].devname);
3727 1.348 jdolecek }
3728 1.348 jdolecek
3729 1.348 jdolecek return error;
3730 1.348 jdolecek }
3731 1.348 jdolecek
3732 1.348 jdolecek if (c == 0)
3733 1.348 jdolecek dkwhole = dkpart;
3734 1.348 jdolecek else
3735 1.348 jdolecek dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3736 1.348 jdolecek }
3737 1.348 jdolecek }
3738 1.348 jdolecek
3739 1.349 jdolecek *data = dkwhole;
3740 1.348 jdolecek
3741 1.348 jdolecek return 0;
3742 1.348 jdolecek }
3743 1.348 jdolecek
3744 1.252 oster /*
3745 1.252 oster * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3746 1.252 oster * We end up returning whatever error was returned by the first cache flush
3747 1.252 oster * that fails.
3748 1.252 oster */
3749 1.252 oster
3750 1.269 jld int
3751 1.252 oster rf_sync_component_caches(RF_Raid_t *raidPtr)
3752 1.252 oster {
3753 1.252 oster int c, sparecol;
3754 1.252 oster int e,error;
3755 1.252 oster int force = 1;
3756 1.252 oster
3757 1.252 oster error = 0;
3758 1.252 oster for (c = 0; c < raidPtr->numCol; c++) {
3759 1.252 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
3760 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3761 1.252 oster &force, FWRITE, NOCRED);
3762 1.252 oster if (e) {
3763 1.255 oster if (e != ENODEV)
3764 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3765 1.255 oster raidPtr->raidid, raidPtr->Disks[c].devname);
3766 1.252 oster if (error == 0) {
3767 1.252 oster error = e;
3768 1.252 oster }
3769 1.252 oster }
3770 1.252 oster }
3771 1.252 oster }
3772 1.252 oster
3773 1.252 oster for( c = 0; c < raidPtr->numSpare ; c++) {
3774 1.252 oster sparecol = raidPtr->numCol + c;
3775 1.252 oster /* Need to ensure that the reconstruct actually completed! */
3776 1.252 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3777 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3778 1.252 oster DIOCCACHESYNC, &force, FWRITE, NOCRED);
3779 1.252 oster if (e) {
3780 1.255 oster if (e != ENODEV)
3781 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3782 1.255 oster raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3783 1.252 oster if (error == 0) {
3784 1.252 oster error = e;
3785 1.252 oster }
3786 1.252 oster }
3787 1.252 oster }
3788 1.252 oster }
3789 1.252 oster return error;
3790 1.252 oster }
3791 1.327 pgoyette
3792 1.353 mrg /* Fill in info with the current status */
3793 1.353 mrg void
3794 1.353 mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3795 1.353 mrg {
3796 1.353 mrg
3797 1.353 mrg if (raidPtr->status != rf_rs_reconstructing) {
3798 1.353 mrg info->total = 100;
3799 1.353 mrg info->completed = 100;
3800 1.353 mrg } else {
3801 1.353 mrg info->total = raidPtr->reconControl->numRUsTotal;
3802 1.353 mrg info->completed = raidPtr->reconControl->numRUsComplete;
3803 1.353 mrg }
3804 1.353 mrg info->remaining = info->total - info->completed;
3805 1.353 mrg }
3806 1.353 mrg
3807 1.353 mrg /* Fill in info with the current status */
3808 1.353 mrg void
3809 1.353 mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3810 1.353 mrg {
3811 1.353 mrg
3812 1.353 mrg if (raidPtr->parity_rewrite_in_progress == 1) {
3813 1.353 mrg info->total = raidPtr->Layout.numStripe;
3814 1.353 mrg info->completed = raidPtr->parity_rewrite_stripes_done;
3815 1.353 mrg } else {
3816 1.353 mrg info->completed = 100;
3817 1.353 mrg info->total = 100;
3818 1.353 mrg }
3819 1.353 mrg info->remaining = info->total - info->completed;
3820 1.353 mrg }
3821 1.353 mrg
3822 1.353 mrg /* Fill in info with the current status */
3823 1.353 mrg void
3824 1.353 mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3825 1.353 mrg {
3826 1.353 mrg
3827 1.353 mrg if (raidPtr->copyback_in_progress == 1) {
3828 1.353 mrg info->total = raidPtr->Layout.numStripe;
3829 1.353 mrg info->completed = raidPtr->copyback_stripes_done;
3830 1.353 mrg info->remaining = info->total - info->completed;
3831 1.353 mrg } else {
3832 1.353 mrg info->remaining = 0;
3833 1.353 mrg info->completed = 100;
3834 1.353 mrg info->total = 100;
3835 1.353 mrg }
3836 1.353 mrg }
3837 1.353 mrg
3838 1.353 mrg /* Fill in config with the current info */
3839 1.353 mrg int
3840 1.353 mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
3841 1.353 mrg {
3842 1.353 mrg int d, i, j;
3843 1.353 mrg
3844 1.353 mrg if (!raidPtr->valid)
3845 1.353 mrg return (ENODEV);
3846 1.353 mrg config->cols = raidPtr->numCol;
3847 1.353 mrg config->ndevs = raidPtr->numCol;
3848 1.353 mrg if (config->ndevs >= RF_MAX_DISKS)
3849 1.353 mrg return (ENOMEM);
3850 1.353 mrg config->nspares = raidPtr->numSpare;
3851 1.353 mrg if (config->nspares >= RF_MAX_DISKS)
3852 1.353 mrg return (ENOMEM);
3853 1.353 mrg config->maxqdepth = raidPtr->maxQueueDepth;
3854 1.353 mrg d = 0;
3855 1.353 mrg for (j = 0; j < config->cols; j++) {
3856 1.353 mrg config->devs[d] = raidPtr->Disks[j];
3857 1.353 mrg d++;
3858 1.353 mrg }
3859 1.353 mrg for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
3860 1.353 mrg config->spares[i] = raidPtr->Disks[j];
3861 1.353 mrg if (config->spares[i].status == rf_ds_rebuilding_spare) {
3862 1.353 mrg /* XXX: raidctl(8) expects to see this as a used spare */
3863 1.353 mrg config->spares[i].status = rf_ds_used_spare;
3864 1.353 mrg }
3865 1.353 mrg }
3866 1.353 mrg return 0;
3867 1.353 mrg }
3868 1.353 mrg
3869 1.353 mrg int
3870 1.353 mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
3871 1.353 mrg {
3872 1.353 mrg RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
3873 1.353 mrg RF_ComponentLabel_t *raid_clabel;
3874 1.353 mrg int column = clabel->column;
3875 1.353 mrg
3876 1.353 mrg if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
3877 1.353 mrg return EINVAL;
3878 1.353 mrg raid_clabel = raidget_component_label(raidPtr, column);
3879 1.353 mrg memcpy(clabel, raid_clabel, sizeof *clabel);
3880 1.353 mrg
3881 1.353 mrg return 0;
3882 1.353 mrg }
3883 1.353 mrg
3884 1.327 pgoyette /*
3885 1.327 pgoyette * Module interface
3886 1.327 pgoyette */
3887 1.327 pgoyette
3888 1.356 pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
3889 1.327 pgoyette
3890 1.327 pgoyette #ifdef _MODULE
3891 1.327 pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
3892 1.327 pgoyette #endif
3893 1.327 pgoyette
3894 1.327 pgoyette static int raid_modcmd(modcmd_t, void *);
3895 1.327 pgoyette static int raid_modcmd_init(void);
3896 1.327 pgoyette static int raid_modcmd_fini(void);
3897 1.327 pgoyette
3898 1.327 pgoyette static int
3899 1.327 pgoyette raid_modcmd(modcmd_t cmd, void *data)
3900 1.327 pgoyette {
3901 1.327 pgoyette int error;
3902 1.327 pgoyette
3903 1.327 pgoyette error = 0;
3904 1.327 pgoyette switch (cmd) {
3905 1.327 pgoyette case MODULE_CMD_INIT:
3906 1.327 pgoyette error = raid_modcmd_init();
3907 1.327 pgoyette break;
3908 1.327 pgoyette case MODULE_CMD_FINI:
3909 1.327 pgoyette error = raid_modcmd_fini();
3910 1.327 pgoyette break;
3911 1.327 pgoyette default:
3912 1.327 pgoyette error = ENOTTY;
3913 1.327 pgoyette break;
3914 1.327 pgoyette }
3915 1.327 pgoyette return error;
3916 1.327 pgoyette }
3917 1.327 pgoyette
3918 1.327 pgoyette static int
3919 1.327 pgoyette raid_modcmd_init(void)
3920 1.327 pgoyette {
3921 1.327 pgoyette int error;
3922 1.327 pgoyette int bmajor, cmajor;
3923 1.327 pgoyette
3924 1.327 pgoyette mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3925 1.327 pgoyette mutex_enter(&raid_lock);
3926 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3927 1.327 pgoyette rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3928 1.327 pgoyette rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3929 1.327 pgoyette rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3930 1.327 pgoyette
3931 1.327 pgoyette rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3932 1.327 pgoyette #endif
3933 1.327 pgoyette
3934 1.327 pgoyette bmajor = cmajor = -1;
3935 1.327 pgoyette error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3936 1.327 pgoyette &raid_cdevsw, &cmajor);
3937 1.327 pgoyette if (error != 0 && error != EEXIST) {
3938 1.327 pgoyette aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3939 1.327 pgoyette mutex_exit(&raid_lock);
3940 1.327 pgoyette return error;
3941 1.327 pgoyette }
3942 1.327 pgoyette #ifdef _MODULE
3943 1.327 pgoyette error = config_cfdriver_attach(&raid_cd);
3944 1.327 pgoyette if (error != 0) {
3945 1.327 pgoyette aprint_error("%s: config_cfdriver_attach failed %d\n",
3946 1.327 pgoyette __func__, error);
3947 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3948 1.327 pgoyette mutex_exit(&raid_lock);
3949 1.327 pgoyette return error;
3950 1.327 pgoyette }
3951 1.327 pgoyette #endif
3952 1.327 pgoyette error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3953 1.327 pgoyette if (error != 0) {
3954 1.327 pgoyette aprint_error("%s: config_cfattach_attach failed %d\n",
3955 1.327 pgoyette __func__, error);
3956 1.327 pgoyette #ifdef _MODULE
3957 1.327 pgoyette config_cfdriver_detach(&raid_cd);
3958 1.327 pgoyette #endif
3959 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3960 1.327 pgoyette mutex_exit(&raid_lock);
3961 1.327 pgoyette return error;
3962 1.327 pgoyette }
3963 1.327 pgoyette
3964 1.327 pgoyette raidautoconfigdone = false;
3965 1.327 pgoyette
3966 1.327 pgoyette mutex_exit(&raid_lock);
3967 1.327 pgoyette
3968 1.327 pgoyette if (error == 0) {
3969 1.327 pgoyette if (rf_BootRaidframe(true) == 0)
3970 1.327 pgoyette aprint_verbose("Kernelized RAIDframe activated\n");
3971 1.327 pgoyette else
3972 1.327 pgoyette panic("Serious error activating RAID!!");
3973 1.327 pgoyette }
3974 1.327 pgoyette
3975 1.327 pgoyette /*
3976 1.327 pgoyette * Register a finalizer which will be used to auto-config RAID
3977 1.327 pgoyette * sets once all real hardware devices have been found.
3978 1.327 pgoyette */
3979 1.327 pgoyette error = config_finalize_register(NULL, rf_autoconfig);
3980 1.327 pgoyette if (error != 0) {
3981 1.327 pgoyette aprint_error("WARNING: unable to register RAIDframe "
3982 1.327 pgoyette "finalizer\n");
3983 1.329 pgoyette error = 0;
3984 1.327 pgoyette }
3985 1.327 pgoyette
3986 1.327 pgoyette return error;
3987 1.327 pgoyette }
3988 1.327 pgoyette
3989 1.327 pgoyette static int
3990 1.327 pgoyette raid_modcmd_fini(void)
3991 1.327 pgoyette {
3992 1.327 pgoyette int error;
3993 1.327 pgoyette
3994 1.327 pgoyette mutex_enter(&raid_lock);
3995 1.327 pgoyette
3996 1.327 pgoyette /* Don't allow unload if raid device(s) exist. */
3997 1.327 pgoyette if (!LIST_EMPTY(&raids)) {
3998 1.327 pgoyette mutex_exit(&raid_lock);
3999 1.327 pgoyette return EBUSY;
4000 1.327 pgoyette }
4001 1.327 pgoyette
4002 1.327 pgoyette error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
4003 1.327 pgoyette if (error != 0) {
4004 1.335 mlelstv aprint_error("%s: cannot detach cfattach\n",__func__);
4005 1.327 pgoyette mutex_exit(&raid_lock);
4006 1.327 pgoyette return error;
4007 1.327 pgoyette }
4008 1.327 pgoyette #ifdef _MODULE
4009 1.327 pgoyette error = config_cfdriver_detach(&raid_cd);
4010 1.327 pgoyette if (error != 0) {
4011 1.335 mlelstv aprint_error("%s: cannot detach cfdriver\n",__func__);
4012 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
4013 1.327 pgoyette mutex_exit(&raid_lock);
4014 1.327 pgoyette return error;
4015 1.327 pgoyette }
4016 1.327 pgoyette #endif
4017 1.327 pgoyette error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
4018 1.327 pgoyette if (error != 0) {
4019 1.335 mlelstv aprint_error("%s: cannot detach devsw\n",__func__);
4020 1.327 pgoyette #ifdef _MODULE
4021 1.327 pgoyette config_cfdriver_attach(&raid_cd);
4022 1.327 pgoyette #endif
4023 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
4024 1.327 pgoyette mutex_exit(&raid_lock);
4025 1.327 pgoyette return error;
4026 1.327 pgoyette }
4027 1.327 pgoyette rf_BootRaidframe(false);
4028 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
4029 1.327 pgoyette rf_destroy_mutex2(rf_sparet_wait_mutex);
4030 1.327 pgoyette rf_destroy_cond2(rf_sparet_wait_cv);
4031 1.327 pgoyette rf_destroy_cond2(rf_sparet_resp_cv);
4032 1.327 pgoyette #endif
4033 1.327 pgoyette mutex_exit(&raid_lock);
4034 1.327 pgoyette mutex_destroy(&raid_lock);
4035 1.327 pgoyette
4036 1.327 pgoyette return error;
4037 1.327 pgoyette }
4038