rf_netbsdkintf.c revision 1.375 1 1.375 hannken /* $NetBSD: rf_netbsdkintf.c,v 1.375 2019/02/20 10:04:28 hannken Exp $ */
2 1.281 rmind
3 1.1 oster /*-
4 1.295 erh * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 1.1 oster * All rights reserved.
6 1.1 oster *
7 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
8 1.1 oster * by Greg Oster; Jason R. Thorpe.
9 1.1 oster *
10 1.1 oster * Redistribution and use in source and binary forms, with or without
11 1.1 oster * modification, are permitted provided that the following conditions
12 1.1 oster * are met:
13 1.1 oster * 1. Redistributions of source code must retain the above copyright
14 1.1 oster * notice, this list of conditions and the following disclaimer.
15 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 oster * notice, this list of conditions and the following disclaimer in the
17 1.1 oster * documentation and/or other materials provided with the distribution.
18 1.1 oster *
19 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
30 1.1 oster */
31 1.1 oster
32 1.1 oster /*
33 1.281 rmind * Copyright (c) 1988 University of Utah.
34 1.1 oster * Copyright (c) 1990, 1993
35 1.1 oster * The Regents of the University of California. All rights reserved.
36 1.1 oster *
37 1.1 oster * This code is derived from software contributed to Berkeley by
38 1.1 oster * the Systems Programming Group of the University of Utah Computer
39 1.1 oster * Science Department.
40 1.1 oster *
41 1.1 oster * Redistribution and use in source and binary forms, with or without
42 1.1 oster * modification, are permitted provided that the following conditions
43 1.1 oster * are met:
44 1.1 oster * 1. Redistributions of source code must retain the above copyright
45 1.1 oster * notice, this list of conditions and the following disclaimer.
46 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 oster * notice, this list of conditions and the following disclaimer in the
48 1.1 oster * documentation and/or other materials provided with the distribution.
49 1.162 agc * 3. Neither the name of the University nor the names of its contributors
50 1.162 agc * may be used to endorse or promote products derived from this software
51 1.162 agc * without specific prior written permission.
52 1.162 agc *
53 1.162 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.162 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.162 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.162 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.162 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.162 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.162 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.162 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.162 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.162 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.162 agc * SUCH DAMAGE.
64 1.162 agc *
65 1.162 agc * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 1.162 agc *
67 1.162 agc * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 1.162 agc */
69 1.162 agc
70 1.162 agc /*
71 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
72 1.1 oster * All rights reserved.
73 1.1 oster *
74 1.1 oster * Authors: Mark Holland, Jim Zelenka
75 1.1 oster *
76 1.1 oster * Permission to use, copy, modify and distribute this software and
77 1.1 oster * its documentation is hereby granted, provided that both the copyright
78 1.1 oster * notice and this permission notice appear in all copies of the
79 1.1 oster * software, derivative works or modified versions, and any portions
80 1.1 oster * thereof, and that both notices appear in supporting documentation.
81 1.1 oster *
82 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 1.1 oster *
86 1.1 oster * Carnegie Mellon requests users of this software to return to
87 1.1 oster *
88 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 1.1 oster * School of Computer Science
90 1.1 oster * Carnegie Mellon University
91 1.1 oster * Pittsburgh PA 15213-3890
92 1.1 oster *
93 1.1 oster * any improvements or extensions that they make and grant Carnegie the
94 1.1 oster * rights to redistribute these changes.
95 1.1 oster */
96 1.1 oster
97 1.1 oster /***********************************************************
98 1.1 oster *
99 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
100 1.1 oster *
101 1.1 oster ***********************************************************/
102 1.112 lukem
103 1.112 lukem #include <sys/cdefs.h>
104 1.375 hannken __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.375 2019/02/20 10:04:28 hannken Exp $");
105 1.251 ad
106 1.251 ad #ifdef _KERNEL_OPT
107 1.251 ad #include "opt_raid_autoconfig.h"
108 1.363 mrg #include "opt_compat_netbsd32.h"
109 1.251 ad #endif
110 1.1 oster
111 1.113 lukem #include <sys/param.h>
112 1.1 oster #include <sys/errno.h>
113 1.1 oster #include <sys/pool.h>
114 1.152 thorpej #include <sys/proc.h>
115 1.1 oster #include <sys/queue.h>
116 1.1 oster #include <sys/disk.h>
117 1.1 oster #include <sys/device.h>
118 1.1 oster #include <sys/stat.h>
119 1.1 oster #include <sys/ioctl.h>
120 1.1 oster #include <sys/fcntl.h>
121 1.1 oster #include <sys/systm.h>
122 1.1 oster #include <sys/vnode.h>
123 1.1 oster #include <sys/disklabel.h>
124 1.1 oster #include <sys/conf.h>
125 1.1 oster #include <sys/buf.h>
126 1.182 yamt #include <sys/bufq.h>
127 1.65 oster #include <sys/reboot.h>
128 1.208 elad #include <sys/kauth.h>
129 1.327 pgoyette #include <sys/module.h>
130 1.358 pgoyette #include <sys/compat_stub.h>
131 1.8 oster
132 1.234 oster #include <prop/proplib.h>
133 1.234 oster
134 1.110 oster #include <dev/raidframe/raidframevar.h>
135 1.110 oster #include <dev/raidframe/raidframeio.h>
136 1.269 jld #include <dev/raidframe/rf_paritymap.h>
137 1.251 ad
138 1.1 oster #include "rf_raid.h"
139 1.44 oster #include "rf_copyback.h"
140 1.1 oster #include "rf_dag.h"
141 1.1 oster #include "rf_dagflags.h"
142 1.99 oster #include "rf_desc.h"
143 1.1 oster #include "rf_diskqueue.h"
144 1.1 oster #include "rf_etimer.h"
145 1.1 oster #include "rf_general.h"
146 1.1 oster #include "rf_kintf.h"
147 1.1 oster #include "rf_options.h"
148 1.1 oster #include "rf_driver.h"
149 1.1 oster #include "rf_parityscan.h"
150 1.1 oster #include "rf_threadstuff.h"
151 1.1 oster
152 1.325 christos #include "ioconf.h"
153 1.325 christos
154 1.133 oster #ifdef DEBUG
155 1.9 oster int rf_kdebug_level = 0;
156 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 1.9 oster #else /* DEBUG */
158 1.1 oster #define db1_printf(a) { }
159 1.9 oster #endif /* DEBUG */
160 1.1 oster
161 1.344 christos #ifdef DEBUG_ROOT
162 1.344 christos #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
163 1.345 christos #else
164 1.345 christos #define DPRINTF(a, ...)
165 1.344 christos #endif
166 1.344 christos
167 1.249 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
168 1.289 mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
169 1.287 mrg static rf_declare_cond2(rf_sparet_wait_cv);
170 1.287 mrg static rf_declare_cond2(rf_sparet_resp_cv);
171 1.1 oster
172 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
173 1.10 oster * spare table */
174 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
175 1.10 oster * installation process */
176 1.249 oster #endif
177 1.153 thorpej
178 1.153 thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
179 1.10 oster
180 1.1 oster /* prototypes */
181 1.187 christos static void KernelWakeupFunc(struct buf *);
182 1.187 christos static void InitBP(struct buf *, struct vnode *, unsigned,
183 1.225 christos dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
184 1.187 christos void *, int, struct proc *);
185 1.300 christos static void raidinit(struct raid_softc *);
186 1.335 mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
187 1.348 jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
188 1.1 oster
189 1.261 dyoung static int raid_match(device_t, cfdata_t, void *);
190 1.261 dyoung static void raid_attach(device_t, device_t, void *);
191 1.261 dyoung static int raid_detach(device_t, int);
192 1.130 gehenna
193 1.269 jld static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
194 1.269 jld daddr_t, daddr_t);
195 1.269 jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
196 1.269 jld daddr_t, daddr_t, int);
197 1.269 jld
198 1.276 mrg static int raidwrite_component_label(unsigned,
199 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
200 1.276 mrg static int raidread_component_label(unsigned,
201 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
202 1.269 jld
203 1.335 mlelstv static int raid_diskstart(device_t, struct buf *bp);
204 1.335 mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
205 1.335 mlelstv static int raid_lastclose(device_t);
206 1.269 jld
207 1.324 mrg static dev_type_open(raidopen);
208 1.324 mrg static dev_type_close(raidclose);
209 1.324 mrg static dev_type_read(raidread);
210 1.324 mrg static dev_type_write(raidwrite);
211 1.324 mrg static dev_type_ioctl(raidioctl);
212 1.324 mrg static dev_type_strategy(raidstrategy);
213 1.324 mrg static dev_type_dump(raiddump);
214 1.324 mrg static dev_type_size(raidsize);
215 1.130 gehenna
216 1.130 gehenna const struct bdevsw raid_bdevsw = {
217 1.305 dholland .d_open = raidopen,
218 1.305 dholland .d_close = raidclose,
219 1.305 dholland .d_strategy = raidstrategy,
220 1.305 dholland .d_ioctl = raidioctl,
221 1.305 dholland .d_dump = raiddump,
222 1.305 dholland .d_psize = raidsize,
223 1.311 dholland .d_discard = nodiscard,
224 1.305 dholland .d_flag = D_DISK
225 1.130 gehenna };
226 1.130 gehenna
227 1.130 gehenna const struct cdevsw raid_cdevsw = {
228 1.305 dholland .d_open = raidopen,
229 1.305 dholland .d_close = raidclose,
230 1.305 dholland .d_read = raidread,
231 1.305 dholland .d_write = raidwrite,
232 1.305 dholland .d_ioctl = raidioctl,
233 1.305 dholland .d_stop = nostop,
234 1.305 dholland .d_tty = notty,
235 1.305 dholland .d_poll = nopoll,
236 1.305 dholland .d_mmap = nommap,
237 1.305 dholland .d_kqfilter = nokqfilter,
238 1.312 dholland .d_discard = nodiscard,
239 1.305 dholland .d_flag = D_DISK
240 1.130 gehenna };
241 1.1 oster
242 1.323 mlelstv static struct dkdriver rf_dkdriver = {
243 1.335 mlelstv .d_open = raidopen,
244 1.335 mlelstv .d_close = raidclose,
245 1.323 mlelstv .d_strategy = raidstrategy,
246 1.335 mlelstv .d_diskstart = raid_diskstart,
247 1.335 mlelstv .d_dumpblocks = raid_dumpblocks,
248 1.335 mlelstv .d_lastclose = raid_lastclose,
249 1.323 mlelstv .d_minphys = minphys
250 1.323 mlelstv };
251 1.235 oster
252 1.1 oster #define raidunit(x) DISKUNIT(x)
253 1.335 mlelstv #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
254 1.1 oster
255 1.202 oster extern struct cfdriver raid_cd;
256 1.266 dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
257 1.266 dyoung raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
258 1.266 dyoung DVF_DETACH_SHUTDOWN);
259 1.202 oster
260 1.353 mrg /* Internal representation of a rf_recon_req */
261 1.353 mrg struct rf_recon_req_internal {
262 1.353 mrg RF_RowCol_t col;
263 1.353 mrg RF_ReconReqFlags_t flags;
264 1.353 mrg void *raidPtr;
265 1.353 mrg };
266 1.353 mrg
267 1.186 perry /*
268 1.186 perry * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
269 1.186 perry * Be aware that large numbers can allow the driver to consume a lot of
270 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
271 1.186 perry *
272 1.186 perry * For example: with a stripe width of 64 blocks (32k) and 5 disks,
273 1.186 perry * a single 64K write will typically require 64K for the old data,
274 1.186 perry * 64K for the old parity, and 64K for the new parity, for a total
275 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
276 1.110 oster * Even it if is used immediately, that's still 128K, which when multiplied
277 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
278 1.186 perry *
279 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
280 1.186 perry * require data reconstruction, which will require *all* of the 4 remaining
281 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
282 1.20 oster */
283 1.20 oster
284 1.20 oster #ifndef RAIDOUTSTANDING
285 1.28 oster #define RAIDOUTSTANDING 6
286 1.20 oster #endif
287 1.20 oster
288 1.1 oster #define RAIDLABELDEV(dev) \
289 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
290 1.1 oster
291 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
292 1.9 oster
293 1.104 oster static int raidlock(struct raid_softc *);
294 1.104 oster static void raidunlock(struct raid_softc *);
295 1.1 oster
296 1.266 dyoung static int raid_detach_unlocked(struct raid_softc *);
297 1.266 dyoung
298 1.104 oster static void rf_markalldirty(RF_Raid_t *);
299 1.304 christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
300 1.48 oster
301 1.353 mrg void rf_ReconThread(struct rf_recon_req_internal *);
302 1.104 oster void rf_RewriteParityThread(RF_Raid_t *raidPtr);
303 1.104 oster void rf_CopybackThread(RF_Raid_t *raidPtr);
304 1.353 mrg void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
305 1.261 dyoung int rf_autoconfig(device_t);
306 1.142 thorpej void rf_buildroothack(RF_ConfigSet_t *);
307 1.104 oster
308 1.104 oster RF_AutoConfig_t *rf_find_raid_components(void);
309 1.104 oster RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
310 1.104 oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
311 1.292 oster int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
312 1.104 oster void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
313 1.104 oster int rf_set_autoconfig(RF_Raid_t *, int);
314 1.104 oster int rf_set_rootpartition(RF_Raid_t *, int);
315 1.104 oster void rf_release_all_vps(RF_ConfigSet_t *);
316 1.104 oster void rf_cleanup_config_set(RF_ConfigSet_t *);
317 1.104 oster int rf_have_enough_components(RF_ConfigSet_t *);
318 1.300 christos struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
319 1.278 mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
320 1.48 oster
321 1.295 erh /*
322 1.295 erh * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
323 1.295 erh * Note that this is overridden by having RAID_AUTOCONFIG as an option
324 1.295 erh * in the kernel config file.
325 1.295 erh */
326 1.295 erh #ifdef RAID_AUTOCONFIG
327 1.295 erh int raidautoconfig = 1;
328 1.295 erh #else
329 1.295 erh int raidautoconfig = 0;
330 1.295 erh #endif
331 1.295 erh static bool raidautoconfigdone = false;
332 1.37 oster
333 1.177 oster struct RF_Pools_s rf_pools;
334 1.177 oster
335 1.300 christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
336 1.300 christos static kmutex_t raid_lock;
337 1.1 oster
338 1.300 christos static struct raid_softc *
339 1.300 christos raidcreate(int unit) {
340 1.300 christos struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
341 1.300 christos sc->sc_unit = unit;
342 1.327 pgoyette cv_init(&sc->sc_cv, "raidunit");
343 1.327 pgoyette mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
344 1.300 christos return sc;
345 1.300 christos }
346 1.1 oster
347 1.300 christos static void
348 1.300 christos raiddestroy(struct raid_softc *sc) {
349 1.327 pgoyette cv_destroy(&sc->sc_cv);
350 1.327 pgoyette mutex_destroy(&sc->sc_mutex);
351 1.300 christos kmem_free(sc, sizeof(*sc));
352 1.300 christos }
353 1.50 oster
354 1.300 christos static struct raid_softc *
355 1.327 pgoyette raidget(int unit, bool create) {
356 1.300 christos struct raid_softc *sc;
357 1.300 christos if (unit < 0) {
358 1.300 christos #ifdef DIAGNOSTIC
359 1.300 christos panic("%s: unit %d!", __func__, unit);
360 1.300 christos #endif
361 1.300 christos return NULL;
362 1.300 christos }
363 1.300 christos mutex_enter(&raid_lock);
364 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
365 1.300 christos if (sc->sc_unit == unit) {
366 1.300 christos mutex_exit(&raid_lock);
367 1.300 christos return sc;
368 1.300 christos }
369 1.300 christos }
370 1.300 christos mutex_exit(&raid_lock);
371 1.327 pgoyette if (!create)
372 1.327 pgoyette return NULL;
373 1.300 christos if ((sc = raidcreate(unit)) == NULL)
374 1.300 christos return NULL;
375 1.300 christos mutex_enter(&raid_lock);
376 1.300 christos LIST_INSERT_HEAD(&raids, sc, sc_link);
377 1.300 christos mutex_exit(&raid_lock);
378 1.300 christos return sc;
379 1.300 christos }
380 1.300 christos
381 1.300 christos static void
382 1.300 christos raidput(struct raid_softc *sc) {
383 1.300 christos mutex_enter(&raid_lock);
384 1.300 christos LIST_REMOVE(sc, sc_link);
385 1.300 christos mutex_exit(&raid_lock);
386 1.300 christos raiddestroy(sc);
387 1.300 christos }
388 1.1 oster
389 1.300 christos void
390 1.300 christos raidattach(int num)
391 1.300 christos {
392 1.62 oster
393 1.142 thorpej /*
394 1.327 pgoyette * Device attachment and associated initialization now occurs
395 1.327 pgoyette * as part of the module initialization.
396 1.142 thorpej */
397 1.142 thorpej }
398 1.142 thorpej
399 1.142 thorpej int
400 1.261 dyoung rf_autoconfig(device_t self)
401 1.142 thorpej {
402 1.142 thorpej RF_AutoConfig_t *ac_list;
403 1.142 thorpej RF_ConfigSet_t *config_sets;
404 1.142 thorpej
405 1.295 erh if (!raidautoconfig || raidautoconfigdone == true)
406 1.142 thorpej return (0);
407 1.142 thorpej
408 1.142 thorpej /* XXX This code can only be run once. */
409 1.295 erh raidautoconfigdone = true;
410 1.142 thorpej
411 1.307 christos #ifdef __HAVE_CPU_BOOTCONF
412 1.307 christos /*
413 1.307 christos * 0. find the boot device if needed first so we can use it later
414 1.307 christos * this needs to be done before we autoconfigure any raid sets,
415 1.307 christos * because if we use wedges we are not going to be able to open
416 1.307 christos * the boot device later
417 1.307 christos */
418 1.307 christos if (booted_device == NULL)
419 1.307 christos cpu_bootconf();
420 1.307 christos #endif
421 1.48 oster /* 1. locate all RAID components on the system */
422 1.258 ad aprint_debug("Searching for RAID components...\n");
423 1.48 oster ac_list = rf_find_raid_components();
424 1.48 oster
425 1.142 thorpej /* 2. Sort them into their respective sets. */
426 1.48 oster config_sets = rf_create_auto_sets(ac_list);
427 1.48 oster
428 1.142 thorpej /*
429 1.299 oster * 3. Evaluate each set and configure the valid ones.
430 1.142 thorpej * This gets done in rf_buildroothack().
431 1.142 thorpej */
432 1.142 thorpej rf_buildroothack(config_sets);
433 1.48 oster
434 1.213 christos return 1;
435 1.48 oster }
436 1.48 oster
437 1.367 christos int
438 1.367 christos rf_inited(const struct raid_softc *rs) {
439 1.367 christos return (rs->sc_flags & RAIDF_INITED) != 0;
440 1.367 christos }
441 1.367 christos
442 1.368 oster RF_Raid_t *
443 1.368 oster rf_get_raid(struct raid_softc *rs) {
444 1.368 oster return &rs->sc_r;
445 1.368 oster }
446 1.368 oster
447 1.367 christos int
448 1.367 christos rf_get_unit(const struct raid_softc *rs) {
449 1.367 christos return rs->sc_unit;
450 1.367 christos }
451 1.367 christos
452 1.306 christos static int
453 1.307 christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
454 1.359 bad const char *bootname;
455 1.359 bad size_t len;
456 1.359 bad
457 1.359 bad /* if bdv is NULL, the set can't contain it. exit early. */
458 1.359 bad if (bdv == NULL)
459 1.359 bad return 0;
460 1.359 bad
461 1.359 bad bootname = device_xname(bdv);
462 1.359 bad len = strlen(bootname);
463 1.306 christos
464 1.306 christos for (int col = 0; col < r->numCol; col++) {
465 1.307 christos const char *devname = r->Disks[col].devname;
466 1.306 christos devname += sizeof("/dev/") - 1;
467 1.307 christos if (strncmp(devname, "dk", 2) == 0) {
468 1.307 christos const char *parent =
469 1.307 christos dkwedge_get_parent_name(r->Disks[col].dev);
470 1.307 christos if (parent != NULL)
471 1.307 christos devname = parent;
472 1.307 christos }
473 1.306 christos if (strncmp(devname, bootname, len) == 0) {
474 1.306 christos struct raid_softc *sc = r->softc;
475 1.306 christos aprint_debug("raid%d includes boot device %s\n",
476 1.306 christos sc->sc_unit, devname);
477 1.306 christos return 1;
478 1.306 christos }
479 1.306 christos }
480 1.306 christos return 0;
481 1.306 christos }
482 1.306 christos
483 1.48 oster void
484 1.142 thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
485 1.48 oster {
486 1.48 oster RF_ConfigSet_t *cset;
487 1.48 oster RF_ConfigSet_t *next_cset;
488 1.51 oster int num_root;
489 1.300 christos struct raid_softc *sc, *rsc;
490 1.335 mlelstv struct dk_softc *dksc;
491 1.48 oster
492 1.300 christos sc = rsc = NULL;
493 1.51 oster num_root = 0;
494 1.48 oster cset = config_sets;
495 1.271 dyoung while (cset != NULL) {
496 1.48 oster next_cset = cset->next;
497 1.186 perry if (rf_have_enough_components(cset) &&
498 1.300 christos cset->ac->clabel->autoconfigure == 1) {
499 1.300 christos sc = rf_auto_config_set(cset);
500 1.300 christos if (sc != NULL) {
501 1.359 bad aprint_debug("raid%d: configured ok, rootable %d\n",
502 1.359 bad sc->sc_unit, cset->rootable);
503 1.51 oster if (cset->rootable) {
504 1.300 christos rsc = sc;
505 1.51 oster num_root++;
506 1.51 oster }
507 1.51 oster } else {
508 1.51 oster /* The autoconfig didn't work :( */
509 1.300 christos aprint_debug("Autoconfig failed\n");
510 1.51 oster rf_release_all_vps(cset);
511 1.48 oster }
512 1.48 oster } else {
513 1.186 perry /* we're not autoconfiguring this set...
514 1.48 oster release the associated resources */
515 1.49 oster rf_release_all_vps(cset);
516 1.48 oster }
517 1.48 oster /* cleanup */
518 1.49 oster rf_cleanup_config_set(cset);
519 1.48 oster cset = next_cset;
520 1.48 oster }
521 1.335 mlelstv dksc = &rsc->sc_dksc;
522 1.122 oster
523 1.223 oster /* if the user has specified what the root device should be
524 1.223 oster then we don't touch booted_device or boothowto... */
525 1.223 oster
526 1.359 bad if (rootspec != NULL) {
527 1.359 bad DPRINTF("%s: rootspec %s\n", __func__, rootspec);
528 1.223 oster return;
529 1.359 bad }
530 1.223 oster
531 1.122 oster /* we found something bootable... */
532 1.122 oster
533 1.310 christos /*
534 1.310 christos * XXX: The following code assumes that the root raid
535 1.310 christos * is the first ('a') partition. This is about the best
536 1.310 christos * we can do with a BSD disklabel, but we might be able
537 1.310 christos * to do better with a GPT label, by setting a specified
538 1.310 christos * attribute to indicate the root partition. We can then
539 1.310 christos * stash the partition number in the r->root_partition
540 1.310 christos * high bits (the bottom 2 bits are already used). For
541 1.310 christos * now we just set booted_partition to 0 when we override
542 1.310 christos * root.
543 1.310 christos */
544 1.122 oster if (num_root == 1) {
545 1.306 christos device_t candidate_root;
546 1.335 mlelstv if (dksc->sc_dkdev.dk_nwedges != 0) {
547 1.297 christos char cname[sizeof(cset->ac->devname)];
548 1.344 christos /* XXX: assume partition 'a' first */
549 1.297 christos snprintf(cname, sizeof(cname), "%s%c",
550 1.335 mlelstv device_xname(dksc->sc_dev), 'a');
551 1.306 christos candidate_root = dkwedge_find_by_wname(cname);
552 1.344 christos DPRINTF("%s: candidate wedge root=%s\n", __func__,
553 1.344 christos cname);
554 1.344 christos if (candidate_root == NULL) {
555 1.344 christos /*
556 1.344 christos * If that is not found, because we don't use
557 1.344 christos * disklabel, return the first dk child
558 1.344 christos * XXX: we can skip the 'a' check above
559 1.344 christos * and always do this...
560 1.344 christos */
561 1.344 christos size_t i = 0;
562 1.344 christos candidate_root = dkwedge_find_by_parent(
563 1.344 christos device_xname(dksc->sc_dev), &i);
564 1.344 christos }
565 1.344 christos DPRINTF("%s: candidate wedge root=%p\n", __func__,
566 1.344 christos candidate_root);
567 1.297 christos } else
568 1.335 mlelstv candidate_root = dksc->sc_dev;
569 1.344 christos DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
570 1.344 christos DPRINTF("%s: booted_device=%p root_partition=%d "
571 1.359 bad "contains_boot=%d",
572 1.359 bad __func__, booted_device, rsc->sc_r.root_partition,
573 1.359 bad rf_containsboot(&rsc->sc_r, booted_device));
574 1.359 bad /* XXX the check for booted_device == NULL can probably be
575 1.359 bad * dropped, now that rf_containsboot handles that case.
576 1.359 bad */
577 1.308 christos if (booted_device == NULL ||
578 1.308 christos rsc->sc_r.root_partition == 1 ||
579 1.310 christos rf_containsboot(&rsc->sc_r, booted_device)) {
580 1.308 christos booted_device = candidate_root;
581 1.351 christos booted_method = "raidframe/single";
582 1.310 christos booted_partition = 0; /* XXX assume 'a' */
583 1.310 christos }
584 1.122 oster } else if (num_root > 1) {
585 1.344 christos DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
586 1.344 christos booted_device);
587 1.226 oster
588 1.226 oster /*
589 1.226 oster * Maybe the MD code can help. If it cannot, then
590 1.226 oster * setroot() will discover that we have no
591 1.226 oster * booted_device and will ask the user if nothing was
592 1.226 oster * hardwired in the kernel config file
593 1.226 oster */
594 1.226 oster if (booted_device == NULL)
595 1.226 oster return;
596 1.226 oster
597 1.226 oster num_root = 0;
598 1.300 christos mutex_enter(&raid_lock);
599 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
600 1.300 christos RF_Raid_t *r = &sc->sc_r;
601 1.300 christos if (r->valid == 0)
602 1.226 oster continue;
603 1.226 oster
604 1.300 christos if (r->root_partition == 0)
605 1.226 oster continue;
606 1.226 oster
607 1.306 christos if (rf_containsboot(r, booted_device)) {
608 1.226 oster num_root++;
609 1.300 christos rsc = sc;
610 1.335 mlelstv dksc = &rsc->sc_dksc;
611 1.226 oster }
612 1.226 oster }
613 1.300 christos mutex_exit(&raid_lock);
614 1.295 erh
615 1.226 oster if (num_root == 1) {
616 1.335 mlelstv booted_device = dksc->sc_dev;
617 1.351 christos booted_method = "raidframe/multi";
618 1.310 christos booted_partition = 0; /* XXX assume 'a' */
619 1.226 oster } else {
620 1.226 oster /* we can't guess.. require the user to answer... */
621 1.226 oster boothowto |= RB_ASKNAME;
622 1.226 oster }
623 1.51 oster }
624 1.1 oster }
625 1.1 oster
626 1.324 mrg static int
627 1.169 oster raidsize(dev_t dev)
628 1.1 oster {
629 1.1 oster struct raid_softc *rs;
630 1.335 mlelstv struct dk_softc *dksc;
631 1.335 mlelstv unsigned int unit;
632 1.1 oster
633 1.1 oster unit = raidunit(dev);
634 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
635 1.336 mlelstv return -1;
636 1.335 mlelstv dksc = &rs->sc_dksc;
637 1.335 mlelstv
638 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
639 1.336 mlelstv return -1;
640 1.1 oster
641 1.335 mlelstv return dk_size(dksc, dev);
642 1.335 mlelstv }
643 1.1 oster
644 1.335 mlelstv static int
645 1.335 mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
646 1.335 mlelstv {
647 1.335 mlelstv unsigned int unit;
648 1.335 mlelstv struct raid_softc *rs;
649 1.335 mlelstv struct dk_softc *dksc;
650 1.1 oster
651 1.335 mlelstv unit = raidunit(dev);
652 1.335 mlelstv if ((rs = raidget(unit, false)) == NULL)
653 1.335 mlelstv return ENXIO;
654 1.335 mlelstv dksc = &rs->sc_dksc;
655 1.1 oster
656 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
657 1.335 mlelstv return ENODEV;
658 1.1 oster
659 1.336 mlelstv /*
660 1.336 mlelstv Note that blkno is relative to this particular partition.
661 1.336 mlelstv By adding adding RF_PROTECTED_SECTORS, we get a value that
662 1.336 mlelstv is relative to the partition used for the underlying component.
663 1.336 mlelstv */
664 1.336 mlelstv blkno += RF_PROTECTED_SECTORS;
665 1.336 mlelstv
666 1.335 mlelstv return dk_dump(dksc, dev, blkno, va, size);
667 1.1 oster }
668 1.1 oster
669 1.324 mrg static int
670 1.335 mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
671 1.1 oster {
672 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
673 1.231 oster const struct bdevsw *bdev;
674 1.231 oster RF_Raid_t *raidPtr;
675 1.335 mlelstv int c, sparecol, j, scol, dumpto;
676 1.231 oster int error = 0;
677 1.231 oster
678 1.300 christos raidPtr = &rs->sc_r;
679 1.231 oster
680 1.231 oster /* we only support dumping to RAID 1 sets */
681 1.231 oster if (raidPtr->Layout.numDataCol != 1 ||
682 1.231 oster raidPtr->Layout.numParityCol != 1)
683 1.231 oster return EINVAL;
684 1.231 oster
685 1.231 oster if ((error = raidlock(rs)) != 0)
686 1.231 oster return error;
687 1.231 oster
688 1.231 oster /* figure out what device is alive.. */
689 1.231 oster
690 1.231 oster /*
691 1.231 oster Look for a component to dump to. The preference for the
692 1.231 oster component to dump to is as follows:
693 1.231 oster 1) the master
694 1.231 oster 2) a used_spare of the master
695 1.231 oster 3) the slave
696 1.231 oster 4) a used_spare of the slave
697 1.231 oster */
698 1.231 oster
699 1.231 oster dumpto = -1;
700 1.231 oster for (c = 0; c < raidPtr->numCol; c++) {
701 1.231 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
702 1.231 oster /* this might be the one */
703 1.231 oster dumpto = c;
704 1.231 oster break;
705 1.231 oster }
706 1.231 oster }
707 1.231 oster
708 1.231 oster /*
709 1.231 oster At this point we have possibly selected a live master or a
710 1.231 oster live slave. We now check to see if there is a spared
711 1.231 oster master (or a spared slave), if we didn't find a live master
712 1.231 oster or a live slave.
713 1.231 oster */
714 1.231 oster
715 1.231 oster for (c = 0; c < raidPtr->numSpare; c++) {
716 1.231 oster sparecol = raidPtr->numCol + c;
717 1.231 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
718 1.231 oster /* How about this one? */
719 1.231 oster scol = -1;
720 1.231 oster for(j=0;j<raidPtr->numCol;j++) {
721 1.231 oster if (raidPtr->Disks[j].spareCol == sparecol) {
722 1.231 oster scol = j;
723 1.231 oster break;
724 1.231 oster }
725 1.231 oster }
726 1.231 oster if (scol == 0) {
727 1.231 oster /*
728 1.231 oster We must have found a spared master!
729 1.231 oster We'll take that over anything else
730 1.231 oster found so far. (We couldn't have
731 1.231 oster found a real master before, since
732 1.231 oster this is a used spare, and it's
733 1.231 oster saying that it's replacing the
734 1.231 oster master.) On reboot (with
735 1.231 oster autoconfiguration turned on)
736 1.231 oster sparecol will become the 1st
737 1.231 oster component (component0) of this set.
738 1.231 oster */
739 1.231 oster dumpto = sparecol;
740 1.231 oster break;
741 1.231 oster } else if (scol != -1) {
742 1.231 oster /*
743 1.231 oster Must be a spared slave. We'll dump
744 1.231 oster to that if we havn't found anything
745 1.231 oster else so far.
746 1.231 oster */
747 1.231 oster if (dumpto == -1)
748 1.231 oster dumpto = sparecol;
749 1.231 oster }
750 1.231 oster }
751 1.231 oster }
752 1.231 oster
753 1.231 oster if (dumpto == -1) {
754 1.231 oster /* we couldn't find any live components to dump to!?!?
755 1.231 oster */
756 1.231 oster error = EINVAL;
757 1.231 oster goto out;
758 1.231 oster }
759 1.231 oster
760 1.231 oster bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
761 1.342 mlelstv if (bdev == NULL) {
762 1.342 mlelstv error = ENXIO;
763 1.342 mlelstv goto out;
764 1.342 mlelstv }
765 1.231 oster
766 1.231 oster error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
767 1.336 mlelstv blkno, va, nblk * raidPtr->bytesPerSector);
768 1.231 oster
769 1.231 oster out:
770 1.231 oster raidunlock(rs);
771 1.231 oster
772 1.231 oster return error;
773 1.1 oster }
774 1.324 mrg
775 1.1 oster /* ARGSUSED */
776 1.324 mrg static int
777 1.222 christos raidopen(dev_t dev, int flags, int fmt,
778 1.222 christos struct lwp *l)
779 1.1 oster {
780 1.9 oster int unit = raidunit(dev);
781 1.1 oster struct raid_softc *rs;
782 1.335 mlelstv struct dk_softc *dksc;
783 1.335 mlelstv int error = 0;
784 1.9 oster int part, pmask;
785 1.9 oster
786 1.327 pgoyette if ((rs = raidget(unit, true)) == NULL)
787 1.300 christos return ENXIO;
788 1.1 oster if ((error = raidlock(rs)) != 0)
789 1.9 oster return (error);
790 1.266 dyoung
791 1.266 dyoung if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
792 1.266 dyoung error = EBUSY;
793 1.266 dyoung goto bad;
794 1.266 dyoung }
795 1.266 dyoung
796 1.335 mlelstv dksc = &rs->sc_dksc;
797 1.1 oster
798 1.1 oster part = DISKPART(dev);
799 1.1 oster pmask = (1 << part);
800 1.1 oster
801 1.335 mlelstv if (!DK_BUSY(dksc, pmask) &&
802 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
803 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
804 1.13 oster have done a configure before this. I DO NOT WANT TO BE
805 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
806 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
807 1.13 oster /* XXX should check to see if we're only open for reading
808 1.13 oster here... If so, we needn't do this, but then need some
809 1.13 oster other way of keeping track of what's happened.. */
810 1.13 oster
811 1.300 christos rf_markalldirty(&rs->sc_r);
812 1.13 oster }
813 1.13 oster
814 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0)
815 1.335 mlelstv error = dk_open(dksc, dev, flags, fmt, l);
816 1.1 oster
817 1.213 christos bad:
818 1.1 oster raidunlock(rs);
819 1.1 oster
820 1.9 oster return (error);
821 1.1 oster
822 1.1 oster
823 1.1 oster }
824 1.324 mrg
825 1.335 mlelstv static int
826 1.335 mlelstv raid_lastclose(device_t self)
827 1.335 mlelstv {
828 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
829 1.335 mlelstv
830 1.335 mlelstv /* Last one... device is not unconfigured yet.
831 1.335 mlelstv Device shutdown has taken care of setting the
832 1.335 mlelstv clean bits if RAIDF_INITED is not set
833 1.335 mlelstv mark things as clean... */
834 1.335 mlelstv
835 1.335 mlelstv rf_update_component_labels(&rs->sc_r,
836 1.335 mlelstv RF_FINAL_COMPONENT_UPDATE);
837 1.335 mlelstv
838 1.335 mlelstv /* pass to unlocked code */
839 1.335 mlelstv if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
840 1.335 mlelstv rs->sc_flags |= RAIDF_DETACH;
841 1.335 mlelstv
842 1.335 mlelstv return 0;
843 1.335 mlelstv }
844 1.335 mlelstv
845 1.1 oster /* ARGSUSED */
846 1.324 mrg static int
847 1.222 christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
848 1.1 oster {
849 1.9 oster int unit = raidunit(dev);
850 1.1 oster struct raid_softc *rs;
851 1.335 mlelstv struct dk_softc *dksc;
852 1.335 mlelstv cfdata_t cf;
853 1.335 mlelstv int error = 0, do_detach = 0, do_put = 0;
854 1.1 oster
855 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
856 1.300 christos return ENXIO;
857 1.335 mlelstv dksc = &rs->sc_dksc;
858 1.1 oster
859 1.1 oster if ((error = raidlock(rs)) != 0)
860 1.1 oster return (error);
861 1.1 oster
862 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) {
863 1.335 mlelstv error = dk_close(dksc, dev, flags, fmt, l);
864 1.335 mlelstv if ((rs->sc_flags & RAIDF_DETACH) != 0)
865 1.335 mlelstv do_detach = 1;
866 1.335 mlelstv } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
867 1.335 mlelstv do_put = 1;
868 1.1 oster
869 1.335 mlelstv raidunlock(rs);
870 1.1 oster
871 1.335 mlelstv if (do_detach) {
872 1.335 mlelstv /* free the pseudo device attach bits */
873 1.335 mlelstv cf = device_cfdata(dksc->sc_dev);
874 1.335 mlelstv error = config_detach(dksc->sc_dev, 0);
875 1.335 mlelstv if (error == 0)
876 1.335 mlelstv free(cf, M_RAIDFRAME);
877 1.335 mlelstv } else if (do_put) {
878 1.335 mlelstv raidput(rs);
879 1.1 oster }
880 1.186 perry
881 1.335 mlelstv return (error);
882 1.147 oster
883 1.335 mlelstv }
884 1.327 pgoyette
885 1.335 mlelstv static void
886 1.335 mlelstv raid_wakeup(RF_Raid_t *raidPtr)
887 1.335 mlelstv {
888 1.335 mlelstv rf_lock_mutex2(raidPtr->iodone_lock);
889 1.335 mlelstv rf_signal_cond2(raidPtr->iodone_cv);
890 1.335 mlelstv rf_unlock_mutex2(raidPtr->iodone_lock);
891 1.1 oster }
892 1.1 oster
893 1.324 mrg static void
894 1.169 oster raidstrategy(struct buf *bp)
895 1.1 oster {
896 1.335 mlelstv unsigned int unit;
897 1.335 mlelstv struct raid_softc *rs;
898 1.335 mlelstv struct dk_softc *dksc;
899 1.1 oster RF_Raid_t *raidPtr;
900 1.1 oster
901 1.335 mlelstv unit = raidunit(bp->b_dev);
902 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) {
903 1.30 oster bp->b_error = ENXIO;
904 1.335 mlelstv goto fail;
905 1.30 oster }
906 1.300 christos if ((rs->sc_flags & RAIDF_INITED) == 0) {
907 1.300 christos bp->b_error = ENXIO;
908 1.335 mlelstv goto fail;
909 1.1 oster }
910 1.335 mlelstv dksc = &rs->sc_dksc;
911 1.300 christos raidPtr = &rs->sc_r;
912 1.335 mlelstv
913 1.335 mlelstv /* Queue IO only */
914 1.335 mlelstv if (dk_strategy_defer(dksc, bp))
915 1.196 yamt goto done;
916 1.1 oster
917 1.335 mlelstv /* schedule the IO to happen at the next convenient time */
918 1.335 mlelstv raid_wakeup(raidPtr);
919 1.335 mlelstv
920 1.335 mlelstv done:
921 1.335 mlelstv return;
922 1.335 mlelstv
923 1.335 mlelstv fail:
924 1.335 mlelstv bp->b_resid = bp->b_bcount;
925 1.335 mlelstv biodone(bp);
926 1.335 mlelstv }
927 1.335 mlelstv
928 1.335 mlelstv static int
929 1.335 mlelstv raid_diskstart(device_t dev, struct buf *bp)
930 1.335 mlelstv {
931 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
932 1.335 mlelstv RF_Raid_t *raidPtr;
933 1.1 oster
934 1.335 mlelstv raidPtr = &rs->sc_r;
935 1.335 mlelstv if (!raidPtr->valid) {
936 1.335 mlelstv db1_printf(("raid is not valid..\n"));
937 1.335 mlelstv return ENODEV;
938 1.196 yamt }
939 1.285 mrg
940 1.335 mlelstv /* XXX */
941 1.335 mlelstv bp->b_resid = 0;
942 1.335 mlelstv
943 1.335 mlelstv return raiddoaccess(raidPtr, bp);
944 1.335 mlelstv }
945 1.1 oster
946 1.335 mlelstv void
947 1.335 mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
948 1.335 mlelstv {
949 1.335 mlelstv struct raid_softc *rs;
950 1.335 mlelstv struct dk_softc *dksc;
951 1.34 oster
952 1.335 mlelstv rs = raidPtr->softc;
953 1.335 mlelstv dksc = &rs->sc_dksc;
954 1.34 oster
955 1.335 mlelstv dk_done(dksc, bp);
956 1.34 oster
957 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
958 1.335 mlelstv raidPtr->openings++;
959 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
960 1.196 yamt
961 1.335 mlelstv /* schedule more IO */
962 1.335 mlelstv raid_wakeup(raidPtr);
963 1.1 oster }
964 1.324 mrg
965 1.1 oster /* ARGSUSED */
966 1.324 mrg static int
967 1.222 christos raidread(dev_t dev, struct uio *uio, int flags)
968 1.1 oster {
969 1.9 oster int unit = raidunit(dev);
970 1.1 oster struct raid_softc *rs;
971 1.1 oster
972 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
973 1.300 christos return ENXIO;
974 1.1 oster
975 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
976 1.1 oster return (ENXIO);
977 1.1 oster
978 1.1 oster return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
979 1.1 oster
980 1.1 oster }
981 1.324 mrg
982 1.1 oster /* ARGSUSED */
983 1.324 mrg static int
984 1.222 christos raidwrite(dev_t dev, struct uio *uio, int flags)
985 1.1 oster {
986 1.9 oster int unit = raidunit(dev);
987 1.1 oster struct raid_softc *rs;
988 1.1 oster
989 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
990 1.300 christos return ENXIO;
991 1.1 oster
992 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
993 1.1 oster return (ENXIO);
994 1.147 oster
995 1.1 oster return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
996 1.1 oster
997 1.1 oster }
998 1.1 oster
999 1.266 dyoung static int
1000 1.266 dyoung raid_detach_unlocked(struct raid_softc *rs)
1001 1.266 dyoung {
1002 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1003 1.335 mlelstv RF_Raid_t *raidPtr;
1004 1.266 dyoung int error;
1005 1.266 dyoung
1006 1.300 christos raidPtr = &rs->sc_r;
1007 1.266 dyoung
1008 1.337 mlelstv if (DK_BUSY(dksc, 0) ||
1009 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1010 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1011 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1012 1.266 dyoung return EBUSY;
1013 1.266 dyoung
1014 1.266 dyoung if ((rs->sc_flags & RAIDF_INITED) == 0)
1015 1.333 mlelstv return 0;
1016 1.333 mlelstv
1017 1.333 mlelstv rs->sc_flags &= ~RAIDF_SHUTDOWN;
1018 1.333 mlelstv
1019 1.333 mlelstv if ((error = rf_Shutdown(raidPtr)) != 0)
1020 1.266 dyoung return error;
1021 1.266 dyoung
1022 1.335 mlelstv rs->sc_flags &= ~RAIDF_INITED;
1023 1.335 mlelstv
1024 1.335 mlelstv /* Kill off any queued buffers */
1025 1.335 mlelstv dk_drain(dksc);
1026 1.335 mlelstv bufq_free(dksc->sc_bufq);
1027 1.335 mlelstv
1028 1.266 dyoung /* Detach the disk. */
1029 1.335 mlelstv dkwedge_delall(&dksc->sc_dkdev);
1030 1.335 mlelstv disk_detach(&dksc->sc_dkdev);
1031 1.335 mlelstv disk_destroy(&dksc->sc_dkdev);
1032 1.335 mlelstv dk_detach(dksc);
1033 1.333 mlelstv
1034 1.266 dyoung return 0;
1035 1.266 dyoung }
1036 1.266 dyoung
1037 1.366 christos static bool
1038 1.366 christos rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
1039 1.366 christos {
1040 1.366 christos switch (cmd) {
1041 1.366 christos case RAIDFRAME_ADD_HOT_SPARE:
1042 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS:
1043 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1044 1.366 christos case RAIDFRAME_CHECK_PARITY:
1045 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1046 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1047 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS:
1048 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1049 1.366 christos case RAIDFRAME_COPYBACK:
1050 1.366 christos case RAIDFRAME_DELETE_COMPONENT:
1051 1.366 christos case RAIDFRAME_FAIL_DISK:
1052 1.366 christos case RAIDFRAME_GET_ACCTOTALS:
1053 1.366 christos case RAIDFRAME_GET_COMPONENT_LABEL:
1054 1.366 christos case RAIDFRAME_GET_INFO:
1055 1.366 christos case RAIDFRAME_GET_SIZE:
1056 1.366 christos case RAIDFRAME_INCORPORATE_HOT_SPARE:
1057 1.366 christos case RAIDFRAME_INIT_LABELS:
1058 1.366 christos case RAIDFRAME_KEEP_ACCTOTALS:
1059 1.366 christos case RAIDFRAME_PARITYMAP_GET_DISABLE:
1060 1.366 christos case RAIDFRAME_PARITYMAP_SET_DISABLE:
1061 1.366 christos case RAIDFRAME_PARITYMAP_SET_PARAMS:
1062 1.366 christos case RAIDFRAME_PARITYMAP_STATUS:
1063 1.366 christos case RAIDFRAME_REBUILD_IN_PLACE:
1064 1.366 christos case RAIDFRAME_REMOVE_HOT_SPARE:
1065 1.366 christos case RAIDFRAME_RESET_ACCTOTALS:
1066 1.366 christos case RAIDFRAME_REWRITEPARITY:
1067 1.366 christos case RAIDFRAME_SET_AUTOCONFIG:
1068 1.366 christos case RAIDFRAME_SET_COMPONENT_LABEL:
1069 1.366 christos case RAIDFRAME_SET_ROOT:
1070 1.369 oster return (rs->sc_flags & RAIDF_INITED) == 0;
1071 1.366 christos }
1072 1.366 christos return false;
1073 1.366 christos }
1074 1.366 christos
1075 1.366 christos int
1076 1.366 christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
1077 1.366 christos {
1078 1.366 christos struct rf_recon_req_internal *rrint;
1079 1.366 christos
1080 1.366 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1081 1.366 christos /* Can't do this on a RAID 0!! */
1082 1.366 christos return EINVAL;
1083 1.366 christos }
1084 1.366 christos
1085 1.366 christos if (rr->col < 0 || rr->col >= raidPtr->numCol) {
1086 1.366 christos /* bad column */
1087 1.366 christos return EINVAL;
1088 1.366 christos }
1089 1.366 christos
1090 1.366 christos rf_lock_mutex2(raidPtr->mutex);
1091 1.366 christos if (raidPtr->status == rf_rs_reconstructing) {
1092 1.366 christos /* you can't fail a disk while we're reconstructing! */
1093 1.366 christos /* XXX wrong for RAID6 */
1094 1.366 christos goto out;
1095 1.366 christos }
1096 1.366 christos if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
1097 1.366 christos (raidPtr->numFailures > 0)) {
1098 1.366 christos /* some other component has failed. Let's not make
1099 1.366 christos things worse. XXX wrong for RAID6 */
1100 1.366 christos goto out;
1101 1.366 christos }
1102 1.366 christos if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1103 1.366 christos /* Can't fail a spared disk! */
1104 1.366 christos goto out;
1105 1.366 christos }
1106 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1107 1.366 christos
1108 1.366 christos /* make a copy of the recon request so that we don't rely on
1109 1.366 christos * the user's buffer */
1110 1.374 christos rrint = RF_Malloc(sizeof(*rrint));
1111 1.366 christos if (rrint == NULL)
1112 1.366 christos return(ENOMEM);
1113 1.366 christos rrint->col = rr->col;
1114 1.366 christos rrint->flags = rr->flags;
1115 1.366 christos rrint->raidPtr = raidPtr;
1116 1.366 christos
1117 1.366 christos return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
1118 1.366 christos rrint, "raid_recon");
1119 1.366 christos out:
1120 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1121 1.366 christos return EINVAL;
1122 1.366 christos }
1123 1.366 christos
1124 1.324 mrg static int
1125 1.367 christos rf_copyinspecificbuf(RF_Config_t *k_cfg)
1126 1.367 christos {
1127 1.367 christos /* allocate a buffer for the layout-specific data, and copy it in */
1128 1.367 christos if (k_cfg->layoutSpecificSize == 0)
1129 1.367 christos return 0;
1130 1.367 christos
1131 1.367 christos if (k_cfg->layoutSpecificSize > 10000) {
1132 1.367 christos /* sanity check */
1133 1.367 christos return EINVAL;
1134 1.367 christos }
1135 1.367 christos
1136 1.367 christos u_char *specific_buf;
1137 1.374 christos specific_buf = RF_Malloc(k_cfg->layoutSpecificSize);
1138 1.367 christos if (specific_buf == NULL)
1139 1.367 christos return ENOMEM;
1140 1.367 christos
1141 1.367 christos int retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1142 1.367 christos k_cfg->layoutSpecificSize);
1143 1.367 christos if (retcode) {
1144 1.367 christos RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1145 1.367 christos db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode));
1146 1.367 christos return retcode;
1147 1.367 christos }
1148 1.367 christos
1149 1.367 christos k_cfg->layoutSpecific = specific_buf;
1150 1.367 christos return 0;
1151 1.367 christos }
1152 1.367 christos
1153 1.367 christos static int
1154 1.367 christos rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg)
1155 1.367 christos {
1156 1.372 christos RF_Config_t *u_cfg = *((RF_Config_t **) data);
1157 1.372 christos
1158 1.367 christos if (rs->sc_r.valid) {
1159 1.367 christos /* There is a valid RAID set running on this unit! */
1160 1.367 christos printf("raid%d: Device already configured!\n", rs->sc_unit);
1161 1.367 christos return EINVAL;
1162 1.367 christos }
1163 1.367 christos
1164 1.367 christos /* copy-in the configuration information */
1165 1.367 christos /* data points to a pointer to the configuration structure */
1166 1.374 christos *k_cfg = RF_Malloc(sizeof(**k_cfg));
1167 1.367 christos if (*k_cfg == NULL) {
1168 1.367 christos return ENOMEM;
1169 1.367 christos }
1170 1.373 christos int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t));
1171 1.367 christos if (retcode == 0)
1172 1.367 christos return 0;
1173 1.367 christos RF_Free(*k_cfg, sizeof(RF_Config_t));
1174 1.367 christos db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode));
1175 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN;
1176 1.367 christos return retcode;
1177 1.367 christos }
1178 1.367 christos
1179 1.367 christos int
1180 1.367 christos rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg)
1181 1.367 christos {
1182 1.367 christos int retcode;
1183 1.367 christos RF_Raid_t *raidPtr = &rs->sc_r;
1184 1.367 christos
1185 1.367 christos rs->sc_flags &= ~RAIDF_SHUTDOWN;
1186 1.367 christos
1187 1.367 christos if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0)
1188 1.367 christos goto out;
1189 1.367 christos
1190 1.367 christos /* should do some kind of sanity check on the configuration.
1191 1.367 christos * Store the sum of all the bytes in the last byte? */
1192 1.367 christos
1193 1.367 christos /* configure the system */
1194 1.367 christos
1195 1.367 christos /*
1196 1.367 christos * Clear the entire RAID descriptor, just to make sure
1197 1.367 christos * there is no stale data left in the case of a
1198 1.367 christos * reconfiguration
1199 1.367 christos */
1200 1.367 christos memset(raidPtr, 0, sizeof(*raidPtr));
1201 1.367 christos raidPtr->softc = rs;
1202 1.367 christos raidPtr->raidid = rs->sc_unit;
1203 1.367 christos
1204 1.367 christos retcode = rf_Configure(raidPtr, k_cfg, NULL);
1205 1.367 christos
1206 1.367 christos if (retcode == 0) {
1207 1.367 christos /* allow this many simultaneous IO's to
1208 1.367 christos this RAID device */
1209 1.367 christos raidPtr->openings = RAIDOUTSTANDING;
1210 1.367 christos
1211 1.367 christos raidinit(rs);
1212 1.367 christos raid_wakeup(raidPtr);
1213 1.367 christos rf_markalldirty(raidPtr);
1214 1.367 christos }
1215 1.367 christos
1216 1.367 christos /* free the buffers. No return code here. */
1217 1.367 christos if (k_cfg->layoutSpecificSize) {
1218 1.367 christos RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize);
1219 1.367 christos }
1220 1.367 christos out:
1221 1.367 christos RF_Free(k_cfg, sizeof(RF_Config_t));
1222 1.367 christos if (retcode) {
1223 1.367 christos /*
1224 1.367 christos * If configuration failed, set sc_flags so that we
1225 1.367 christos * will detach the device when we close it.
1226 1.367 christos */
1227 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN;
1228 1.367 christos }
1229 1.367 christos return retcode;
1230 1.367 christos }
1231 1.367 christos
1232 1.367 christos #if RF_DISABLED
1233 1.367 christos static int
1234 1.367 christos rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1235 1.367 christos {
1236 1.367 christos
1237 1.367 christos /* XXX check the label for valid stuff... */
1238 1.367 christos /* Note that some things *should not* get modified --
1239 1.367 christos the user should be re-initing the labels instead of
1240 1.367 christos trying to patch things.
1241 1.367 christos */
1242 1.367 christos #ifdef DEBUG
1243 1.367 christos int raidid = raidPtr->raidid;
1244 1.367 christos printf("raid%d: Got component label:\n", raidid);
1245 1.367 christos printf("raid%d: Version: %d\n", raidid, clabel->version);
1246 1.367 christos printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1247 1.367 christos printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1248 1.367 christos printf("raid%d: Column: %d\n", raidid, clabel->column);
1249 1.367 christos printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1250 1.367 christos printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1251 1.367 christos printf("raid%d: Status: %d\n", raidid, clabel->status);
1252 1.367 christos #endif /* DEBUG */
1253 1.367 christos clabel->row = 0;
1254 1.367 christos int column = clabel->column;
1255 1.367 christos
1256 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) {
1257 1.367 christos return(EINVAL);
1258 1.367 christos }
1259 1.367 christos
1260 1.367 christos /* XXX this isn't allowed to do anything for now :-) */
1261 1.367 christos
1262 1.367 christos /* XXX and before it is, we need to fill in the rest
1263 1.367 christos of the fields!?!?!?! */
1264 1.367 christos memcpy(raidget_component_label(raidPtr, column),
1265 1.367 christos clabel, sizeof(*clabel));
1266 1.367 christos raidflush_component_label(raidPtr, column);
1267 1.367 christos return 0;
1268 1.367 christos }
1269 1.367 christos #endif
1270 1.367 christos
1271 1.367 christos static int
1272 1.367 christos rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1273 1.367 christos {
1274 1.367 christos /*
1275 1.367 christos we only want the serial number from
1276 1.367 christos the above. We get all the rest of the information
1277 1.367 christos from the config that was used to create this RAID
1278 1.367 christos set.
1279 1.367 christos */
1280 1.367 christos
1281 1.367 christos raidPtr->serial_number = clabel->serial_number;
1282 1.367 christos
1283 1.367 christos for (int column = 0; column < raidPtr->numCol; column++) {
1284 1.367 christos RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column];
1285 1.367 christos if (RF_DEAD_DISK(diskPtr->status))
1286 1.367 christos continue;
1287 1.367 christos RF_ComponentLabel_t *ci_label = raidget_component_label(
1288 1.367 christos raidPtr, column);
1289 1.367 christos /* Zeroing this is important. */
1290 1.367 christos memset(ci_label, 0, sizeof(*ci_label));
1291 1.367 christos raid_init_component_label(raidPtr, ci_label);
1292 1.367 christos ci_label->serial_number = raidPtr->serial_number;
1293 1.367 christos ci_label->row = 0; /* we dont' pretend to support more */
1294 1.367 christos rf_component_label_set_partitionsize(ci_label,
1295 1.367 christos diskPtr->partitionSize);
1296 1.367 christos ci_label->column = column;
1297 1.367 christos raidflush_component_label(raidPtr, column);
1298 1.367 christos /* XXXjld what about the spares? */
1299 1.367 christos }
1300 1.367 christos
1301 1.367 christos return 0;
1302 1.367 christos }
1303 1.367 christos
1304 1.367 christos static int
1305 1.367 christos rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr)
1306 1.367 christos {
1307 1.367 christos
1308 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1309 1.367 christos /* Can't do this on a RAID 0!! */
1310 1.367 christos return EINVAL;
1311 1.367 christos }
1312 1.367 christos
1313 1.367 christos if (raidPtr->recon_in_progress == 1) {
1314 1.367 christos /* a reconstruct is already in progress! */
1315 1.367 christos return EINVAL;
1316 1.367 christos }
1317 1.367 christos
1318 1.367 christos RF_SingleComponent_t component;
1319 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1320 1.367 christos component.row = 0; /* we don't support any more */
1321 1.367 christos int column = component.column;
1322 1.367 christos
1323 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) {
1324 1.367 christos return EINVAL;
1325 1.367 christos }
1326 1.367 christos
1327 1.367 christos rf_lock_mutex2(raidPtr->mutex);
1328 1.367 christos if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1329 1.367 christos (raidPtr->numFailures > 0)) {
1330 1.367 christos /* XXX 0 above shouldn't be constant!!! */
1331 1.367 christos /* some component other than this has failed.
1332 1.367 christos Let's not make things worse than they already
1333 1.367 christos are... */
1334 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n",
1335 1.367 christos raidPtr->raidid);
1336 1.367 christos printf("raid%d: Col: %d Too many failures.\n",
1337 1.367 christos raidPtr->raidid, column);
1338 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1339 1.367 christos return EINVAL;
1340 1.367 christos }
1341 1.367 christos
1342 1.367 christos if (raidPtr->Disks[column].status == rf_ds_reconstructing) {
1343 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n",
1344 1.367 christos raidPtr->raidid);
1345 1.367 christos printf("raid%d: Col: %d "
1346 1.367 christos "Reconstruction already occurring!\n",
1347 1.367 christos raidPtr->raidid, column);
1348 1.367 christos
1349 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1350 1.367 christos return EINVAL;
1351 1.367 christos }
1352 1.367 christos
1353 1.367 christos if (raidPtr->Disks[column].status == rf_ds_spared) {
1354 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1355 1.367 christos return EINVAL;
1356 1.367 christos }
1357 1.367 christos
1358 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1359 1.367 christos
1360 1.367 christos struct rf_recon_req_internal *rrint;
1361 1.374 christos rrint = RF_Malloc(sizeof(*rrint));
1362 1.367 christos if (rrint == NULL)
1363 1.367 christos return ENOMEM;
1364 1.367 christos
1365 1.367 christos rrint->col = column;
1366 1.367 christos rrint->raidPtr = raidPtr;
1367 1.367 christos
1368 1.367 christos return RF_CREATE_THREAD(raidPtr->recon_thread,
1369 1.367 christos rf_ReconstructInPlaceThread, rrint, "raid_reconip");
1370 1.367 christos }
1371 1.367 christos
1372 1.367 christos static int
1373 1.367 christos rf_check_recon_status(RF_Raid_t *raidPtr, int *data)
1374 1.367 christos {
1375 1.367 christos /*
1376 1.367 christos * This makes no sense on a RAID 0, or if we are not reconstructing
1377 1.367 christos * so tell the user it's done.
1378 1.367 christos */
1379 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0 ||
1380 1.367 christos raidPtr->status != rf_rs_reconstructing) {
1381 1.367 christos *data = 100;
1382 1.367 christos return 0;
1383 1.367 christos }
1384 1.367 christos if (raidPtr->reconControl->numRUsTotal == 0) {
1385 1.367 christos *data = 0;
1386 1.367 christos return 0;
1387 1.367 christos }
1388 1.367 christos *data = (raidPtr->reconControl->numRUsComplete * 100
1389 1.367 christos / raidPtr->reconControl->numRUsTotal);
1390 1.367 christos return 0;
1391 1.367 christos }
1392 1.367 christos
1393 1.367 christos static int
1394 1.225 christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1395 1.1 oster {
1396 1.9 oster int unit = raidunit(dev);
1397 1.335 mlelstv int part, pmask;
1398 1.1 oster struct raid_softc *rs;
1399 1.335 mlelstv struct dk_softc *dksc;
1400 1.367 christos RF_Config_t *k_cfg;
1401 1.42 oster RF_Raid_t *raidPtr;
1402 1.41 oster RF_AccTotals_t *totals;
1403 1.367 christos RF_SingleComponent_t component;
1404 1.371 oster RF_DeviceConfig_t *d_cfg, *ucfgp;
1405 1.11 oster int retcode = 0;
1406 1.11 oster int column;
1407 1.48 oster RF_ComponentLabel_t *clabel;
1408 1.12 oster RF_SingleComponent_t *sparePtr,*componentPtr;
1409 1.353 mrg int d;
1410 1.1 oster
1411 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1412 1.300 christos return ENXIO;
1413 1.366 christos
1414 1.335 mlelstv dksc = &rs->sc_dksc;
1415 1.300 christos raidPtr = &rs->sc_r;
1416 1.1 oster
1417 1.276 mrg db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1418 1.366 christos (int) DISKPART(dev), (int) unit, cmd));
1419 1.1 oster
1420 1.1 oster /* Must be initialized for these... */
1421 1.366 christos if (rf_must_be_initialized(rs, cmd))
1422 1.366 christos return ENXIO;
1423 1.9 oster
1424 1.358 pgoyette switch (cmd) {
1425 1.1 oster /* configure the system */
1426 1.1 oster case RAIDFRAME_CONFIGURE:
1427 1.367 christos if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0)
1428 1.367 christos return retcode;
1429 1.367 christos return rf_construct(rs, k_cfg);
1430 1.9 oster
1431 1.9 oster /* shutdown the system */
1432 1.1 oster case RAIDFRAME_SHUTDOWN:
1433 1.9 oster
1434 1.266 dyoung part = DISKPART(dev);
1435 1.266 dyoung pmask = (1 << part);
1436 1.266 dyoung
1437 1.367 christos if ((retcode = raidlock(rs)) != 0)
1438 1.367 christos return retcode;
1439 1.1 oster
1440 1.337 mlelstv if (DK_BUSY(dksc, pmask) ||
1441 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1442 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1443 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1444 1.266 dyoung retcode = EBUSY;
1445 1.266 dyoung else {
1446 1.335 mlelstv /* detach and free on close */
1447 1.266 dyoung rs->sc_flags |= RAIDF_SHUTDOWN;
1448 1.266 dyoung retcode = 0;
1449 1.9 oster }
1450 1.11 oster
1451 1.266 dyoung raidunlock(rs);
1452 1.1 oster
1453 1.367 christos return retcode;
1454 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1455 1.353 mrg return rf_get_component_label(raidPtr, data);
1456 1.11 oster
1457 1.367 christos #if RF_DISABLED
1458 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1459 1.367 christos return rf_set_component_label(raidPtr, data);
1460 1.367 christos #endif
1461 1.11 oster
1462 1.367 christos case RAIDFRAME_INIT_LABELS:
1463 1.367 christos return rf_init_component_label(raidPtr, data);
1464 1.12 oster
1465 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1466 1.78 minoura d = rf_set_autoconfig(raidPtr, *(int *) data);
1467 1.186 perry printf("raid%d: New autoconfig value is: %d\n",
1468 1.123 oster raidPtr->raidid, d);
1469 1.78 minoura *(int *) data = d;
1470 1.367 christos return retcode;
1471 1.48 oster
1472 1.48 oster case RAIDFRAME_SET_ROOT:
1473 1.78 minoura d = rf_set_rootpartition(raidPtr, *(int *) data);
1474 1.186 perry printf("raid%d: New rootpartition value is: %d\n",
1475 1.123 oster raidPtr->raidid, d);
1476 1.78 minoura *(int *) data = d;
1477 1.367 christos return retcode;
1478 1.9 oster
1479 1.1 oster /* initialize all parity */
1480 1.1 oster case RAIDFRAME_REWRITEPARITY:
1481 1.1 oster
1482 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1483 1.17 oster /* Parity for RAID 0 is trivially correct */
1484 1.42 oster raidPtr->parity_good = RF_RAID_CLEAN;
1485 1.367 christos return 0;
1486 1.17 oster }
1487 1.186 perry
1488 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1489 1.37 oster /* Re-write is already in progress! */
1490 1.367 christos return EINVAL;
1491 1.37 oster }
1492 1.27 oster
1493 1.367 christos return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1494 1.367 christos rf_RewriteParityThread, raidPtr,"raid_parity");
1495 1.11 oster
1496 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1497 1.12 oster sparePtr = (RF_SingleComponent_t *) data;
1498 1.367 christos memcpy(&component, sparePtr, sizeof(RF_SingleComponent_t));
1499 1.367 christos return rf_add_hot_spare(raidPtr, &component);
1500 1.11 oster
1501 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1502 1.367 christos return retcode;
1503 1.73 oster
1504 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1505 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1506 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1507 1.367 christos return rf_delete_component(raidPtr, &component);
1508 1.73 oster
1509 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1510 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1511 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1512 1.367 christos return rf_incorporate_hot_spare(raidPtr, &component);
1513 1.11 oster
1514 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1515 1.367 christos return rf_rebuild_in_place(raidPtr, data);
1516 1.24 oster
1517 1.366 christos case RAIDFRAME_GET_INFO:
1518 1.371 oster ucfgp = *(RF_DeviceConfig_t **)data;
1519 1.374 christos d_cfg = RF_Malloc(sizeof(*d_cfg));
1520 1.41 oster if (d_cfg == NULL)
1521 1.366 christos return ENOMEM;
1522 1.353 mrg retcode = rf_get_info(raidPtr, d_cfg);
1523 1.353 mrg if (retcode == 0) {
1524 1.371 oster retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
1525 1.41 oster }
1526 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1527 1.366 christos return retcode;
1528 1.9 oster
1529 1.22 oster case RAIDFRAME_CHECK_PARITY:
1530 1.42 oster *(int *) data = raidPtr->parity_good;
1531 1.367 christos return 0;
1532 1.41 oster
1533 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1534 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1535 1.273 jld return EINVAL;
1536 1.367 christos rf_paritymap_status(raidPtr->parity_map, data);
1537 1.269 jld return 0;
1538 1.269 jld
1539 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1540 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1541 1.273 jld return EINVAL;
1542 1.269 jld if (raidPtr->parity_map == NULL)
1543 1.269 jld return ENOENT; /* ??? */
1544 1.367 christos if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0)
1545 1.269 jld return EINVAL;
1546 1.269 jld return 0;
1547 1.269 jld
1548 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1549 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1550 1.273 jld return EINVAL;
1551 1.269 jld *(int *) data = rf_paritymap_get_disable(raidPtr);
1552 1.269 jld return 0;
1553 1.269 jld
1554 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1555 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1556 1.273 jld return EINVAL;
1557 1.269 jld rf_paritymap_set_disable(raidPtr, *(int *)data);
1558 1.269 jld /* XXX should errors be passed up? */
1559 1.269 jld return 0;
1560 1.269 jld
1561 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1562 1.108 thorpej memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1563 1.367 christos return 0;
1564 1.9 oster
1565 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1566 1.41 oster totals = (RF_AccTotals_t *) data;
1567 1.42 oster *totals = raidPtr->acc_totals;
1568 1.366 christos return 0;
1569 1.9 oster
1570 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1571 1.42 oster raidPtr->keep_acc_totals = *(int *)data;
1572 1.366 christos return 0;
1573 1.9 oster
1574 1.1 oster case RAIDFRAME_GET_SIZE:
1575 1.42 oster *(int *) data = raidPtr->totalSectors;
1576 1.366 christos return 0;
1577 1.1 oster
1578 1.1 oster case RAIDFRAME_FAIL_DISK:
1579 1.366 christos return rf_fail_disk(raidPtr, data);
1580 1.9 oster
1581 1.9 oster /* invoke a copyback operation after recon on whatever disk
1582 1.9 oster * needs it, if any */
1583 1.9 oster case RAIDFRAME_COPYBACK:
1584 1.24 oster
1585 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1586 1.24 oster /* This makes no sense on a RAID 0!! */
1587 1.367 christos return EINVAL;
1588 1.24 oster }
1589 1.24 oster
1590 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1591 1.37 oster /* Copyback is already in progress! */
1592 1.367 christos return EINVAL;
1593 1.37 oster }
1594 1.27 oster
1595 1.367 christos return RF_CREATE_THREAD(raidPtr->copyback_thread,
1596 1.367 christos rf_CopybackThread, raidPtr, "raid_copyback");
1597 1.9 oster
1598 1.1 oster /* return the percentage completion of reconstruction */
1599 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1600 1.367 christos return rf_check_recon_status(raidPtr, data);
1601 1.367 christos
1602 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1603 1.353 mrg rf_check_recon_status_ext(raidPtr, data);
1604 1.367 christos return 0;
1605 1.9 oster
1606 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1607 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1608 1.80 oster /* This makes no sense on a RAID 0, so tell the
1609 1.80 oster user it's done. */
1610 1.80 oster *(int *) data = 100;
1611 1.367 christos return 0;
1612 1.37 oster }
1613 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1614 1.186 perry *(int *) data = 100 *
1615 1.186 perry raidPtr->parity_rewrite_stripes_done /
1616 1.83 oster raidPtr->Layout.numStripe;
1617 1.37 oster } else {
1618 1.37 oster *(int *) data = 100;
1619 1.37 oster }
1620 1.367 christos return 0;
1621 1.37 oster
1622 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1623 1.353 mrg rf_check_parityrewrite_status_ext(raidPtr, data);
1624 1.367 christos return 0;
1625 1.83 oster
1626 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1627 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1628 1.37 oster /* This makes no sense on a RAID 0 */
1629 1.83 oster *(int *) data = 100;
1630 1.367 christos return 0;
1631 1.37 oster }
1632 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1633 1.42 oster *(int *) data = 100 * raidPtr->copyback_stripes_done /
1634 1.42 oster raidPtr->Layout.numStripe;
1635 1.37 oster } else {
1636 1.37 oster *(int *) data = 100;
1637 1.37 oster }
1638 1.367 christos return 0;
1639 1.37 oster
1640 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1641 1.353 mrg rf_check_copyback_status_ext(raidPtr, data);
1642 1.353 mrg return 0;
1643 1.37 oster
1644 1.341 christos case RAIDFRAME_SET_LAST_UNIT:
1645 1.341 christos for (column = 0; column < raidPtr->numCol; column++)
1646 1.341 christos if (raidPtr->Disks[column].status != rf_ds_optimal)
1647 1.341 christos return EBUSY;
1648 1.341 christos
1649 1.341 christos for (column = 0; column < raidPtr->numCol; column++) {
1650 1.341 christos clabel = raidget_component_label(raidPtr, column);
1651 1.341 christos clabel->last_unit = *(int *)data;
1652 1.341 christos raidflush_component_label(raidPtr, column);
1653 1.341 christos }
1654 1.341 christos rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1655 1.341 christos return 0;
1656 1.341 christos
1657 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1658 1.9 oster * need a spare table. this ioctl does not return until a
1659 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1660 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1661 1.9 oster * -- I should either compute the spare table in the kernel,
1662 1.9 oster * or have a different -- XXX XXX -- interface (a different
1663 1.42 oster * character device) for delivering the table -- XXX */
1664 1.367 christos #if RF_DISABLED
1665 1.1 oster case RAIDFRAME_SPARET_WAIT:
1666 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1667 1.9 oster while (!rf_sparet_wait_queue)
1668 1.287 mrg rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1669 1.367 christos RF_SparetWait_t *waitreq = rf_sparet_wait_queue;
1670 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1671 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1672 1.9 oster
1673 1.42 oster /* structure assignment */
1674 1.186 perry *((RF_SparetWait_t *) data) = *waitreq;
1675 1.9 oster
1676 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1677 1.367 christos return 0;
1678 1.9 oster
1679 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1680 1.9 oster * code in it that will cause the dameon to exit */
1681 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1682 1.374 christos waitreq = RF_Malloc(sizeof(*waitreq));
1683 1.1 oster waitreq->fcol = -1;
1684 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1685 1.1 oster waitreq->next = rf_sparet_wait_queue;
1686 1.1 oster rf_sparet_wait_queue = waitreq;
1687 1.367 christos rf_broadcast_cond2(rf_sparet_wait_cv);
1688 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1689 1.367 christos return 0;
1690 1.1 oster
1691 1.9 oster /* used by the spare table daemon to deliver a spare table
1692 1.9 oster * into the kernel */
1693 1.1 oster case RAIDFRAME_SEND_SPARET:
1694 1.9 oster
1695 1.1 oster /* install the spare table */
1696 1.42 oster retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1697 1.9 oster
1698 1.9 oster /* respond to the requestor. the return status of the spare
1699 1.9 oster * table installation is passed in the "fcol" field */
1700 1.374 christos waitred = RF_Malloc(sizeof(*waitreq));
1701 1.1 oster waitreq->fcol = retcode;
1702 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1703 1.1 oster waitreq->next = rf_sparet_resp_queue;
1704 1.1 oster rf_sparet_resp_queue = waitreq;
1705 1.287 mrg rf_broadcast_cond2(rf_sparet_resp_cv);
1706 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1707 1.9 oster
1708 1.367 christos return retcode;
1709 1.367 christos #endif
1710 1.367 christos default:
1711 1.372 christos /*
1712 1.372 christos * Don't bother trying to load compat modules
1713 1.372 christos * if it is not our ioctl. This is more efficient
1714 1.372 christos * and makes rump tests not depend on compat code
1715 1.372 christos */
1716 1.372 christos if (IOCGROUP(cmd) != 'r')
1717 1.372 christos break;
1718 1.367 christos #ifdef _LP64
1719 1.367 christos if ((l->l_proc->p_flag & PK_32) != 0) {
1720 1.367 christos module_autoload("compat_netbsd32_raid",
1721 1.367 christos MODULE_CLASS_EXEC);
1722 1.367 christos MODULE_CALL_HOOK(raidframe_netbsd32_ioctl_hook,
1723 1.367 christos (rs, cmd, data), enosys(), retcode);
1724 1.367 christos if (retcode != EPASSTHROUGH)
1725 1.367 christos return retcode;
1726 1.367 christos }
1727 1.1 oster #endif
1728 1.367 christos module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
1729 1.367 christos MODULE_CALL_HOOK(raidframe_ioctl_80_hook,
1730 1.367 christos (rs, cmd, data), enosys(), retcode);
1731 1.367 christos if (retcode != EPASSTHROUGH)
1732 1.367 christos return retcode;
1733 1.1 oster
1734 1.367 christos module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
1735 1.367 christos MODULE_CALL_HOOK(raidframe_ioctl_50_hook,
1736 1.367 christos (rs, cmd, data), enosys(), retcode);
1737 1.367 christos if (retcode != EPASSTHROUGH)
1738 1.367 christos return retcode;
1739 1.36 oster break; /* fall through to the os-specific code below */
1740 1.1 oster
1741 1.1 oster }
1742 1.9 oster
1743 1.42 oster if (!raidPtr->valid)
1744 1.9 oster return (EINVAL);
1745 1.9 oster
1746 1.1 oster /*
1747 1.1 oster * Add support for "regular" device ioctls here.
1748 1.1 oster */
1749 1.263 haad
1750 1.1 oster switch (cmd) {
1751 1.348 jdolecek case DIOCGCACHE:
1752 1.348 jdolecek retcode = rf_get_component_caches(raidPtr, (int *)data);
1753 1.348 jdolecek break;
1754 1.348 jdolecek
1755 1.252 oster case DIOCCACHESYNC:
1756 1.346 jdolecek retcode = rf_sync_component_caches(raidPtr);
1757 1.347 jdolecek break;
1758 1.298 buhrow
1759 1.1 oster default:
1760 1.346 jdolecek retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1761 1.347 jdolecek break;
1762 1.1 oster }
1763 1.346 jdolecek
1764 1.9 oster return (retcode);
1765 1.1 oster
1766 1.1 oster }
1767 1.1 oster
1768 1.1 oster
1769 1.9 oster /* raidinit -- complete the rest of the initialization for the
1770 1.1 oster RAIDframe device. */
1771 1.1 oster
1772 1.1 oster
1773 1.59 oster static void
1774 1.300 christos raidinit(struct raid_softc *rs)
1775 1.1 oster {
1776 1.262 cegger cfdata_t cf;
1777 1.335 mlelstv unsigned int unit;
1778 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1779 1.300 christos RF_Raid_t *raidPtr = &rs->sc_r;
1780 1.335 mlelstv device_t dev;
1781 1.1 oster
1782 1.59 oster unit = raidPtr->raidid;
1783 1.1 oster
1784 1.179 itojun /* XXX doesn't check bounds. */
1785 1.335 mlelstv snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1786 1.1 oster
1787 1.217 oster /* attach the pseudo device */
1788 1.217 oster cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1789 1.217 oster cf->cf_name = raid_cd.cd_name;
1790 1.217 oster cf->cf_atname = raid_cd.cd_name;
1791 1.217 oster cf->cf_unit = unit;
1792 1.217 oster cf->cf_fstate = FSTATE_STAR;
1793 1.217 oster
1794 1.335 mlelstv dev = config_attach_pseudo(cf);
1795 1.335 mlelstv if (dev == NULL) {
1796 1.217 oster printf("raid%d: config_attach_pseudo failed\n",
1797 1.270 christos raidPtr->raidid);
1798 1.265 pooka free(cf, M_RAIDFRAME);
1799 1.265 pooka return;
1800 1.217 oster }
1801 1.217 oster
1802 1.335 mlelstv /* provide a backpointer to the real softc */
1803 1.335 mlelstv raidsoftc(dev) = rs;
1804 1.335 mlelstv
1805 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1806 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1807 1.9 oster * with disklabels. */
1808 1.335 mlelstv dk_init(dksc, dev, DKTYPE_RAID);
1809 1.335 mlelstv disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1810 1.1 oster
1811 1.1 oster /* XXX There may be a weird interaction here between this, and
1812 1.9 oster * protectedSectors, as used in RAIDframe. */
1813 1.11 oster
1814 1.9 oster rs->sc_size = raidPtr->totalSectors;
1815 1.234 oster
1816 1.335 mlelstv /* Attach dk and disk subsystems */
1817 1.335 mlelstv dk_attach(dksc);
1818 1.335 mlelstv disk_attach(&dksc->sc_dkdev);
1819 1.318 mlelstv rf_set_geometry(rs, raidPtr);
1820 1.318 mlelstv
1821 1.335 mlelstv bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1822 1.335 mlelstv
1823 1.335 mlelstv /* mark unit as usuable */
1824 1.335 mlelstv rs->sc_flags |= RAIDF_INITED;
1825 1.234 oster
1826 1.335 mlelstv dkwedge_discover(&dksc->sc_dkdev);
1827 1.1 oster }
1828 1.335 mlelstv
1829 1.150 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1830 1.1 oster /* wake up the daemon & tell it to get us a spare table
1831 1.1 oster * XXX
1832 1.9 oster * the entries in the queues should be tagged with the raidPtr
1833 1.186 perry * so that in the extremely rare case that two recons happen at once,
1834 1.11 oster * we know for which device were requesting a spare table
1835 1.1 oster * XXX
1836 1.186 perry *
1837 1.39 oster * XXX This code is not currently used. GO
1838 1.1 oster */
1839 1.186 perry int
1840 1.169 oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1841 1.9 oster {
1842 1.9 oster int retcode;
1843 1.9 oster
1844 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1845 1.9 oster req->next = rf_sparet_wait_queue;
1846 1.9 oster rf_sparet_wait_queue = req;
1847 1.289 mrg rf_broadcast_cond2(rf_sparet_wait_cv);
1848 1.9 oster
1849 1.9 oster /* mpsleep unlocks the mutex */
1850 1.9 oster while (!rf_sparet_resp_queue) {
1851 1.289 mrg rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1852 1.9 oster }
1853 1.9 oster req = rf_sparet_resp_queue;
1854 1.9 oster rf_sparet_resp_queue = req->next;
1855 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1856 1.9 oster
1857 1.9 oster retcode = req->fcol;
1858 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
1859 1.9 oster * alloc'd */
1860 1.9 oster return (retcode);
1861 1.1 oster }
1862 1.150 oster #endif
1863 1.39 oster
1864 1.186 perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
1865 1.11 oster * bp & passes it down.
1866 1.1 oster * any calls originating in the kernel must use non-blocking I/O
1867 1.1 oster * do some extra sanity checking to return "appropriate" error values for
1868 1.1 oster * certain conditions (to make some standard utilities work)
1869 1.186 perry *
1870 1.34 oster * Formerly known as: rf_DoAccessKernel
1871 1.1 oster */
1872 1.34 oster void
1873 1.169 oster raidstart(RF_Raid_t *raidPtr)
1874 1.1 oster {
1875 1.1 oster struct raid_softc *rs;
1876 1.335 mlelstv struct dk_softc *dksc;
1877 1.1 oster
1878 1.300 christos rs = raidPtr->softc;
1879 1.335 mlelstv dksc = &rs->sc_dksc;
1880 1.56 oster /* quick check to see if anything has died recently */
1881 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1882 1.56 oster if (raidPtr->numNewFailures > 0) {
1883 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1884 1.186 perry rf_update_component_labels(raidPtr,
1885 1.91 oster RF_NORMAL_COMPONENT_UPDATE);
1886 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1887 1.56 oster raidPtr->numNewFailures--;
1888 1.56 oster }
1889 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1890 1.56 oster
1891 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) {
1892 1.335 mlelstv printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1893 1.335 mlelstv return;
1894 1.335 mlelstv }
1895 1.34 oster
1896 1.335 mlelstv dk_start(dksc, NULL);
1897 1.335 mlelstv }
1898 1.34 oster
1899 1.335 mlelstv static int
1900 1.335 mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1901 1.335 mlelstv {
1902 1.335 mlelstv RF_SectorCount_t num_blocks, pb, sum;
1903 1.335 mlelstv RF_RaidAddr_t raid_addr;
1904 1.335 mlelstv daddr_t blocknum;
1905 1.335 mlelstv int do_async;
1906 1.335 mlelstv int rc;
1907 1.186 perry
1908 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1909 1.335 mlelstv if (raidPtr->openings == 0) {
1910 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1911 1.335 mlelstv return EAGAIN;
1912 1.335 mlelstv }
1913 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1914 1.186 perry
1915 1.335 mlelstv blocknum = bp->b_rawblkno;
1916 1.186 perry
1917 1.335 mlelstv db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1918 1.335 mlelstv (int) blocknum));
1919 1.1 oster
1920 1.335 mlelstv db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1921 1.335 mlelstv db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1922 1.1 oster
1923 1.335 mlelstv /* *THIS* is where we adjust what block we're going to...
1924 1.335 mlelstv * but DO NOT TOUCH bp->b_blkno!!! */
1925 1.335 mlelstv raid_addr = blocknum;
1926 1.335 mlelstv
1927 1.335 mlelstv num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1928 1.335 mlelstv pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1929 1.335 mlelstv sum = raid_addr + num_blocks + pb;
1930 1.335 mlelstv if (1 || rf_debugKernelAccess) {
1931 1.335 mlelstv db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1932 1.335 mlelstv (int) raid_addr, (int) sum, (int) num_blocks,
1933 1.335 mlelstv (int) pb, (int) bp->b_resid));
1934 1.335 mlelstv }
1935 1.335 mlelstv if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1936 1.335 mlelstv || (sum < num_blocks) || (sum < pb)) {
1937 1.335 mlelstv rc = ENOSPC;
1938 1.335 mlelstv goto done;
1939 1.335 mlelstv }
1940 1.335 mlelstv /*
1941 1.335 mlelstv * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1942 1.335 mlelstv */
1943 1.186 perry
1944 1.335 mlelstv if (bp->b_bcount & raidPtr->sectorMask) {
1945 1.335 mlelstv rc = ENOSPC;
1946 1.335 mlelstv goto done;
1947 1.335 mlelstv }
1948 1.335 mlelstv db1_printf(("Calling DoAccess..\n"));
1949 1.99 oster
1950 1.20 oster
1951 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1952 1.335 mlelstv raidPtr->openings--;
1953 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1954 1.20 oster
1955 1.335 mlelstv /*
1956 1.335 mlelstv * Everything is async.
1957 1.335 mlelstv */
1958 1.335 mlelstv do_async = 1;
1959 1.20 oster
1960 1.335 mlelstv /* don't ever condition on bp->b_flags & B_WRITE.
1961 1.335 mlelstv * always condition on B_READ instead */
1962 1.7 explorer
1963 1.335 mlelstv rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1964 1.335 mlelstv RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1965 1.335 mlelstv do_async, raid_addr, num_blocks,
1966 1.335 mlelstv bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1967 1.335 mlelstv
1968 1.335 mlelstv done:
1969 1.335 mlelstv return rc;
1970 1.335 mlelstv }
1971 1.7 explorer
1972 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1973 1.1 oster
1974 1.186 perry int
1975 1.169 oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1976 1.1 oster {
1977 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1978 1.1 oster struct buf *bp;
1979 1.9 oster
1980 1.1 oster req->queue = queue;
1981 1.1 oster bp = req->bp;
1982 1.1 oster
1983 1.1 oster switch (req->type) {
1984 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1985 1.1 oster /* XXX need to do something extra here.. */
1986 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
1987 1.9 oster * and I'd like folks to report it... GO */
1988 1.1 oster printf(("WAKEUP CALLED\n"));
1989 1.1 oster queue->numOutstanding++;
1990 1.1 oster
1991 1.197 oster bp->b_flags = 0;
1992 1.207 simonb bp->b_private = req;
1993 1.1 oster
1994 1.194 oster KernelWakeupFunc(bp);
1995 1.1 oster break;
1996 1.9 oster
1997 1.1 oster case RF_IO_TYPE_READ:
1998 1.1 oster case RF_IO_TYPE_WRITE:
1999 1.175 oster #if RF_ACC_TRACE > 0
2000 1.1 oster if (req->tracerec) {
2001 1.1 oster RF_ETIMER_START(req->tracerec->timer);
2002 1.1 oster }
2003 1.175 oster #endif
2004 1.194 oster InitBP(bp, queue->rf_cinfo->ci_vp,
2005 1.197 oster op, queue->rf_cinfo->ci_dev,
2006 1.9 oster req->sectorOffset, req->numSector,
2007 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
2008 1.9 oster queue->raidPtr->logBytesPerSector, req->b_proc);
2009 1.1 oster
2010 1.1 oster if (rf_debugKernelAccess) {
2011 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
2012 1.9 oster (long) bp->b_blkno));
2013 1.1 oster }
2014 1.1 oster queue->numOutstanding++;
2015 1.1 oster queue->last_deq_sector = req->sectorOffset;
2016 1.9 oster /* acc wouldn't have been let in if there were any pending
2017 1.9 oster * reqs at any other priority */
2018 1.1 oster queue->curPriority = req->priority;
2019 1.1 oster
2020 1.166 oster db1_printf(("Going for %c to unit %d col %d\n",
2021 1.186 perry req->type, queue->raidPtr->raidid,
2022 1.166 oster queue->col));
2023 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
2024 1.9 oster (int) req->sectorOffset, (int) req->numSector,
2025 1.9 oster (int) (req->numSector <<
2026 1.9 oster queue->raidPtr->logBytesPerSector),
2027 1.9 oster (int) queue->raidPtr->logBytesPerSector));
2028 1.256 oster
2029 1.256 oster /*
2030 1.256 oster * XXX: drop lock here since this can block at
2031 1.256 oster * least with backing SCSI devices. Retake it
2032 1.256 oster * to minimize fuss with calling interfaces.
2033 1.256 oster */
2034 1.256 oster
2035 1.256 oster RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2036 1.247 oster bdev_strategy(bp);
2037 1.256 oster RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2038 1.1 oster break;
2039 1.9 oster
2040 1.1 oster default:
2041 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
2042 1.1 oster }
2043 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
2044 1.134 oster
2045 1.9 oster return (0);
2046 1.1 oster }
2047 1.9 oster /* this is the callback function associated with a I/O invoked from
2048 1.1 oster kernel code.
2049 1.1 oster */
2050 1.186 perry static void
2051 1.194 oster KernelWakeupFunc(struct buf *bp)
2052 1.9 oster {
2053 1.9 oster RF_DiskQueueData_t *req = NULL;
2054 1.9 oster RF_DiskQueue_t *queue;
2055 1.9 oster
2056 1.9 oster db1_printf(("recovering the request queue:\n"));
2057 1.285 mrg
2058 1.207 simonb req = bp->b_private;
2059 1.1 oster
2060 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
2061 1.1 oster
2062 1.286 mrg rf_lock_mutex2(queue->raidPtr->iodone_lock);
2063 1.285 mrg
2064 1.175 oster #if RF_ACC_TRACE > 0
2065 1.9 oster if (req->tracerec) {
2066 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
2067 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
2068 1.288 mrg rf_lock_mutex2(rf_tracing_mutex);
2069 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2070 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2071 1.9 oster req->tracerec->num_phys_ios++;
2072 1.288 mrg rf_unlock_mutex2(rf_tracing_mutex);
2073 1.9 oster }
2074 1.175 oster #endif
2075 1.1 oster
2076 1.230 ad /* XXX Ok, let's get aggressive... If b_error is set, let's go
2077 1.9 oster * ballistic, and mark the component as hosed... */
2078 1.36 oster
2079 1.230 ad if (bp->b_error != 0) {
2080 1.9 oster /* Mark the disk as dead */
2081 1.9 oster /* but only mark it once... */
2082 1.186 perry /* and only if it wouldn't leave this RAID set
2083 1.183 oster completely broken */
2084 1.193 oster if (((queue->raidPtr->Disks[queue->col].status ==
2085 1.193 oster rf_ds_optimal) ||
2086 1.193 oster (queue->raidPtr->Disks[queue->col].status ==
2087 1.193 oster rf_ds_used_spare)) &&
2088 1.193 oster (queue->raidPtr->numFailures <
2089 1.204 simonb queue->raidPtr->Layout.map->faultsTolerated)) {
2090 1.322 prlw1 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2091 1.136 oster queue->raidPtr->raidid,
2092 1.322 prlw1 bp->b_error,
2093 1.166 oster queue->raidPtr->Disks[queue->col].devname);
2094 1.166 oster queue->raidPtr->Disks[queue->col].status =
2095 1.9 oster rf_ds_failed;
2096 1.166 oster queue->raidPtr->status = rf_rs_degraded;
2097 1.9 oster queue->raidPtr->numFailures++;
2098 1.56 oster queue->raidPtr->numNewFailures++;
2099 1.9 oster } else { /* Disk is already dead... */
2100 1.9 oster /* printf("Disk already marked as dead!\n"); */
2101 1.9 oster }
2102 1.4 oster
2103 1.9 oster }
2104 1.4 oster
2105 1.143 oster /* Fill in the error value */
2106 1.230 ad req->error = bp->b_error;
2107 1.143 oster
2108 1.143 oster /* Drop this one on the "finished" queue... */
2109 1.143 oster TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2110 1.143 oster
2111 1.143 oster /* Let the raidio thread know there is work to be done. */
2112 1.286 mrg rf_signal_cond2(queue->raidPtr->iodone_cv);
2113 1.143 oster
2114 1.286 mrg rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2115 1.1 oster }
2116 1.1 oster
2117 1.1 oster
2118 1.1 oster /*
2119 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
2120 1.1 oster */
2121 1.186 perry static void
2122 1.169 oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2123 1.225 christos RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2124 1.169 oster void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2125 1.169 oster struct proc *b_proc)
2126 1.9 oster {
2127 1.9 oster /* bp->b_flags = B_PHYS | rw_flag; */
2128 1.242 ad bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2129 1.242 ad bp->b_oflags = 0;
2130 1.242 ad bp->b_cflags = 0;
2131 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
2132 1.9 oster bp->b_bufsize = bp->b_bcount;
2133 1.9 oster bp->b_error = 0;
2134 1.9 oster bp->b_dev = dev;
2135 1.187 christos bp->b_data = bf;
2136 1.275 mrg bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2137 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2138 1.1 oster if (bp->b_bcount == 0) {
2139 1.141 provos panic("bp->b_bcount is zero in InitBP!!");
2140 1.1 oster }
2141 1.161 fvdl bp->b_proc = b_proc;
2142 1.9 oster bp->b_iodone = cbFunc;
2143 1.207 simonb bp->b_private = cbArg;
2144 1.1 oster }
2145 1.1 oster
2146 1.1 oster /*
2147 1.1 oster * Wait interruptibly for an exclusive lock.
2148 1.1 oster *
2149 1.1 oster * XXX
2150 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2151 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2152 1.1 oster */
2153 1.1 oster static int
2154 1.169 oster raidlock(struct raid_softc *rs)
2155 1.1 oster {
2156 1.9 oster int error;
2157 1.1 oster
2158 1.335 mlelstv error = 0;
2159 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2160 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2161 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2162 1.327 pgoyette error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2163 1.327 pgoyette if (error != 0)
2164 1.335 mlelstv goto done;
2165 1.1 oster }
2166 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2167 1.335 mlelstv done:
2168 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2169 1.335 mlelstv return (error);
2170 1.1 oster }
2171 1.1 oster /*
2172 1.1 oster * Unlock and wake up any waiters.
2173 1.1 oster */
2174 1.1 oster static void
2175 1.169 oster raidunlock(struct raid_softc *rs)
2176 1.1 oster {
2177 1.1 oster
2178 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2179 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2180 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2181 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2182 1.327 pgoyette cv_broadcast(&rs->sc_cv);
2183 1.1 oster }
2184 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2185 1.11 oster }
2186 1.186 perry
2187 1.11 oster
2188 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2189 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2190 1.269 jld #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2191 1.11 oster
2192 1.276 mrg static daddr_t
2193 1.276 mrg rf_component_info_offset(void)
2194 1.276 mrg {
2195 1.276 mrg
2196 1.276 mrg return RF_COMPONENT_INFO_OFFSET;
2197 1.276 mrg }
2198 1.276 mrg
2199 1.276 mrg static daddr_t
2200 1.276 mrg rf_component_info_size(unsigned secsize)
2201 1.276 mrg {
2202 1.276 mrg daddr_t info_size;
2203 1.276 mrg
2204 1.276 mrg KASSERT(secsize);
2205 1.276 mrg if (secsize > RF_COMPONENT_INFO_SIZE)
2206 1.276 mrg info_size = secsize;
2207 1.276 mrg else
2208 1.276 mrg info_size = RF_COMPONENT_INFO_SIZE;
2209 1.276 mrg
2210 1.276 mrg return info_size;
2211 1.276 mrg }
2212 1.276 mrg
2213 1.276 mrg static daddr_t
2214 1.276 mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
2215 1.276 mrg {
2216 1.276 mrg daddr_t map_offset;
2217 1.276 mrg
2218 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2219 1.276 mrg if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2220 1.276 mrg map_offset = raidPtr->bytesPerSector;
2221 1.276 mrg else
2222 1.276 mrg map_offset = RF_COMPONENT_INFO_SIZE;
2223 1.276 mrg map_offset += rf_component_info_offset();
2224 1.276 mrg
2225 1.276 mrg return map_offset;
2226 1.276 mrg }
2227 1.276 mrg
2228 1.276 mrg static daddr_t
2229 1.276 mrg rf_parity_map_size(RF_Raid_t *raidPtr)
2230 1.276 mrg {
2231 1.276 mrg daddr_t map_size;
2232 1.276 mrg
2233 1.276 mrg if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2234 1.276 mrg map_size = raidPtr->bytesPerSector;
2235 1.276 mrg else
2236 1.276 mrg map_size = RF_PARITY_MAP_SIZE;
2237 1.276 mrg
2238 1.276 mrg return map_size;
2239 1.276 mrg }
2240 1.276 mrg
2241 1.186 perry int
2242 1.269 jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2243 1.12 oster {
2244 1.269 jld RF_ComponentLabel_t *clabel;
2245 1.269 jld
2246 1.269 jld clabel = raidget_component_label(raidPtr, col);
2247 1.269 jld clabel->clean = RF_RAID_CLEAN;
2248 1.269 jld raidflush_component_label(raidPtr, col);
2249 1.12 oster return(0);
2250 1.12 oster }
2251 1.12 oster
2252 1.12 oster
2253 1.186 perry int
2254 1.269 jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2255 1.11 oster {
2256 1.269 jld RF_ComponentLabel_t *clabel;
2257 1.269 jld
2258 1.269 jld clabel = raidget_component_label(raidPtr, col);
2259 1.269 jld clabel->clean = RF_RAID_DIRTY;
2260 1.269 jld raidflush_component_label(raidPtr, col);
2261 1.11 oster return(0);
2262 1.11 oster }
2263 1.11 oster
2264 1.11 oster int
2265 1.269 jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2266 1.269 jld {
2267 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2268 1.276 mrg return raidread_component_label(raidPtr->bytesPerSector,
2269 1.276 mrg raidPtr->Disks[col].dev,
2270 1.269 jld raidPtr->raid_cinfo[col].ci_vp,
2271 1.269 jld &raidPtr->raid_cinfo[col].ci_label);
2272 1.269 jld }
2273 1.269 jld
2274 1.269 jld RF_ComponentLabel_t *
2275 1.269 jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2276 1.269 jld {
2277 1.269 jld return &raidPtr->raid_cinfo[col].ci_label;
2278 1.269 jld }
2279 1.269 jld
2280 1.269 jld int
2281 1.269 jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2282 1.269 jld {
2283 1.269 jld RF_ComponentLabel_t *label;
2284 1.269 jld
2285 1.269 jld label = &raidPtr->raid_cinfo[col].ci_label;
2286 1.269 jld label->mod_counter = raidPtr->mod_counter;
2287 1.269 jld #ifndef RF_NO_PARITY_MAP
2288 1.269 jld label->parity_map_modcount = label->mod_counter;
2289 1.269 jld #endif
2290 1.276 mrg return raidwrite_component_label(raidPtr->bytesPerSector,
2291 1.276 mrg raidPtr->Disks[col].dev,
2292 1.269 jld raidPtr->raid_cinfo[col].ci_vp, label);
2293 1.269 jld }
2294 1.269 jld
2295 1.269 jld
2296 1.269 jld static int
2297 1.276 mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2298 1.269 jld RF_ComponentLabel_t *clabel)
2299 1.269 jld {
2300 1.269 jld return raidread_component_area(dev, b_vp, clabel,
2301 1.269 jld sizeof(RF_ComponentLabel_t),
2302 1.276 mrg rf_component_info_offset(),
2303 1.276 mrg rf_component_info_size(secsize));
2304 1.269 jld }
2305 1.269 jld
2306 1.269 jld /* ARGSUSED */
2307 1.269 jld static int
2308 1.269 jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2309 1.269 jld size_t msize, daddr_t offset, daddr_t dsize)
2310 1.11 oster {
2311 1.11 oster struct buf *bp;
2312 1.11 oster int error;
2313 1.186 perry
2314 1.11 oster /* XXX should probably ensure that we don't try to do this if
2315 1.186 perry someone has changed rf_protected_sectors. */
2316 1.11 oster
2317 1.98 oster if (b_vp == NULL) {
2318 1.98 oster /* For whatever reason, this component is not valid.
2319 1.98 oster Don't try to read a component label from it. */
2320 1.98 oster return(EINVAL);
2321 1.98 oster }
2322 1.98 oster
2323 1.11 oster /* get a block of the appropriate size... */
2324 1.269 jld bp = geteblk((int)dsize);
2325 1.11 oster bp->b_dev = dev;
2326 1.11 oster
2327 1.11 oster /* get our ducks in a row for the read */
2328 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2329 1.269 jld bp->b_bcount = dsize;
2330 1.100 chs bp->b_flags |= B_READ;
2331 1.269 jld bp->b_resid = dsize;
2332 1.11 oster
2333 1.331 mlelstv bdev_strategy(bp);
2334 1.340 christos error = biowait(bp);
2335 1.11 oster
2336 1.11 oster if (!error) {
2337 1.269 jld memcpy(data, bp->b_data, msize);
2338 1.204 simonb }
2339 1.11 oster
2340 1.233 ad brelse(bp, 0);
2341 1.11 oster return(error);
2342 1.11 oster }
2343 1.269 jld
2344 1.269 jld
2345 1.269 jld static int
2346 1.276 mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2347 1.276 mrg RF_ComponentLabel_t *clabel)
2348 1.269 jld {
2349 1.269 jld return raidwrite_component_area(dev, b_vp, clabel,
2350 1.269 jld sizeof(RF_ComponentLabel_t),
2351 1.276 mrg rf_component_info_offset(),
2352 1.276 mrg rf_component_info_size(secsize), 0);
2353 1.269 jld }
2354 1.269 jld
2355 1.11 oster /* ARGSUSED */
2356 1.269 jld static int
2357 1.269 jld raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2358 1.269 jld size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2359 1.11 oster {
2360 1.11 oster struct buf *bp;
2361 1.11 oster int error;
2362 1.11 oster
2363 1.11 oster /* get a block of the appropriate size... */
2364 1.269 jld bp = geteblk((int)dsize);
2365 1.11 oster bp->b_dev = dev;
2366 1.11 oster
2367 1.11 oster /* get our ducks in a row for the write */
2368 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2369 1.269 jld bp->b_bcount = dsize;
2370 1.269 jld bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2371 1.269 jld bp->b_resid = dsize;
2372 1.11 oster
2373 1.269 jld memset(bp->b_data, 0, dsize);
2374 1.269 jld memcpy(bp->b_data, data, msize);
2375 1.11 oster
2376 1.331 mlelstv bdev_strategy(bp);
2377 1.269 jld if (asyncp)
2378 1.269 jld return 0;
2379 1.340 christos error = biowait(bp);
2380 1.233 ad brelse(bp, 0);
2381 1.11 oster if (error) {
2382 1.48 oster #if 1
2383 1.11 oster printf("Failed to write RAID component info!\n");
2384 1.48 oster #endif
2385 1.11 oster }
2386 1.11 oster
2387 1.11 oster return(error);
2388 1.1 oster }
2389 1.12 oster
2390 1.186 perry void
2391 1.269 jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2392 1.269 jld {
2393 1.269 jld int c;
2394 1.269 jld
2395 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2396 1.269 jld /* Skip dead disks. */
2397 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2398 1.269 jld continue;
2399 1.269 jld /* XXXjld: what if an error occurs here? */
2400 1.269 jld raidwrite_component_area(raidPtr->Disks[c].dev,
2401 1.269 jld raidPtr->raid_cinfo[c].ci_vp, map,
2402 1.269 jld RF_PARITYMAP_NBYTE,
2403 1.276 mrg rf_parity_map_offset(raidPtr),
2404 1.276 mrg rf_parity_map_size(raidPtr), 0);
2405 1.269 jld }
2406 1.269 jld }
2407 1.269 jld
2408 1.269 jld void
2409 1.269 jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2410 1.269 jld {
2411 1.269 jld struct rf_paritymap_ondisk tmp;
2412 1.272 oster int c,first;
2413 1.269 jld
2414 1.272 oster first=1;
2415 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2416 1.269 jld /* Skip dead disks. */
2417 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2418 1.269 jld continue;
2419 1.269 jld raidread_component_area(raidPtr->Disks[c].dev,
2420 1.269 jld raidPtr->raid_cinfo[c].ci_vp, &tmp,
2421 1.269 jld RF_PARITYMAP_NBYTE,
2422 1.276 mrg rf_parity_map_offset(raidPtr),
2423 1.276 mrg rf_parity_map_size(raidPtr));
2424 1.272 oster if (first) {
2425 1.269 jld memcpy(map, &tmp, sizeof(*map));
2426 1.272 oster first = 0;
2427 1.269 jld } else {
2428 1.269 jld rf_paritymap_merge(map, &tmp);
2429 1.269 jld }
2430 1.269 jld }
2431 1.269 jld }
2432 1.269 jld
2433 1.269 jld void
2434 1.169 oster rf_markalldirty(RF_Raid_t *raidPtr)
2435 1.12 oster {
2436 1.269 jld RF_ComponentLabel_t *clabel;
2437 1.146 oster int sparecol;
2438 1.166 oster int c;
2439 1.166 oster int j;
2440 1.166 oster int scol = -1;
2441 1.12 oster
2442 1.12 oster raidPtr->mod_counter++;
2443 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2444 1.166 oster /* we don't want to touch (at all) a disk that has
2445 1.166 oster failed */
2446 1.166 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2447 1.269 jld clabel = raidget_component_label(raidPtr, c);
2448 1.269 jld if (clabel->status == rf_ds_spared) {
2449 1.186 perry /* XXX do something special...
2450 1.186 perry but whatever you do, don't
2451 1.166 oster try to access it!! */
2452 1.166 oster } else {
2453 1.269 jld raidmarkdirty(raidPtr, c);
2454 1.12 oster }
2455 1.166 oster }
2456 1.186 perry }
2457 1.146 oster
2458 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2459 1.12 oster sparecol = raidPtr->numCol + c;
2460 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2461 1.186 perry /*
2462 1.186 perry
2463 1.186 perry we claim this disk is "optimal" if it's
2464 1.186 perry rf_ds_used_spare, as that means it should be
2465 1.186 perry directly substitutable for the disk it replaced.
2466 1.12 oster We note that too...
2467 1.12 oster
2468 1.12 oster */
2469 1.12 oster
2470 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2471 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2472 1.166 oster scol = j;
2473 1.166 oster break;
2474 1.12 oster }
2475 1.12 oster }
2476 1.186 perry
2477 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2478 1.12 oster /* make sure status is noted */
2479 1.146 oster
2480 1.269 jld raid_init_component_label(raidPtr, clabel);
2481 1.146 oster
2482 1.269 jld clabel->row = 0;
2483 1.269 jld clabel->column = scol;
2484 1.146 oster /* Note: we *don't* change status from rf_ds_used_spare
2485 1.146 oster to rf_ds_optimal */
2486 1.146 oster /* clabel.status = rf_ds_optimal; */
2487 1.186 perry
2488 1.269 jld raidmarkdirty(raidPtr, sparecol);
2489 1.12 oster }
2490 1.12 oster }
2491 1.12 oster }
2492 1.12 oster
2493 1.13 oster
2494 1.13 oster void
2495 1.169 oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2496 1.13 oster {
2497 1.269 jld RF_ComponentLabel_t *clabel;
2498 1.13 oster int sparecol;
2499 1.166 oster int c;
2500 1.166 oster int j;
2501 1.166 oster int scol;
2502 1.341 christos struct raid_softc *rs = raidPtr->softc;
2503 1.13 oster
2504 1.13 oster scol = -1;
2505 1.13 oster
2506 1.186 perry /* XXX should do extra checks to make sure things really are clean,
2507 1.13 oster rather than blindly setting the clean bit... */
2508 1.13 oster
2509 1.13 oster raidPtr->mod_counter++;
2510 1.13 oster
2511 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2512 1.166 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
2513 1.269 jld clabel = raidget_component_label(raidPtr, c);
2514 1.201 oster /* make sure status is noted */
2515 1.269 jld clabel->status = rf_ds_optimal;
2516 1.201 oster
2517 1.214 oster /* note what unit we are configured as */
2518 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2519 1.341 christos clabel->last_unit = raidPtr->raidid;
2520 1.214 oster
2521 1.269 jld raidflush_component_label(raidPtr, c);
2522 1.166 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2523 1.166 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2524 1.269 jld raidmarkclean(raidPtr, c);
2525 1.91 oster }
2526 1.166 oster }
2527 1.186 perry }
2528 1.166 oster /* else we don't touch it.. */
2529 1.186 perry }
2530 1.63 oster
2531 1.63 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2532 1.63 oster sparecol = raidPtr->numCol + c;
2533 1.110 oster /* Need to ensure that the reconstruct actually completed! */
2534 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2535 1.186 perry /*
2536 1.186 perry
2537 1.186 perry we claim this disk is "optimal" if it's
2538 1.186 perry rf_ds_used_spare, as that means it should be
2539 1.186 perry directly substitutable for the disk it replaced.
2540 1.63 oster We note that too...
2541 1.63 oster
2542 1.63 oster */
2543 1.63 oster
2544 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2545 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2546 1.166 oster scol = j;
2547 1.166 oster break;
2548 1.63 oster }
2549 1.63 oster }
2550 1.186 perry
2551 1.63 oster /* XXX shouldn't *really* need this... */
2552 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2553 1.63 oster /* make sure status is noted */
2554 1.63 oster
2555 1.269 jld raid_init_component_label(raidPtr, clabel);
2556 1.269 jld
2557 1.269 jld clabel->column = scol;
2558 1.269 jld clabel->status = rf_ds_optimal;
2559 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2560 1.341 christos clabel->last_unit = raidPtr->raidid;
2561 1.63 oster
2562 1.269 jld raidflush_component_label(raidPtr, sparecol);
2563 1.91 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2564 1.13 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2565 1.269 jld raidmarkclean(raidPtr, sparecol);
2566 1.13 oster }
2567 1.13 oster }
2568 1.13 oster }
2569 1.13 oster }
2570 1.68 oster }
2571 1.68 oster
2572 1.68 oster void
2573 1.169 oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2574 1.69 oster {
2575 1.69 oster
2576 1.69 oster if (vp != NULL) {
2577 1.69 oster if (auto_configured == 1) {
2578 1.96 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2579 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2580 1.69 oster vput(vp);
2581 1.186 perry
2582 1.186 perry } else {
2583 1.244 ad (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2584 1.69 oster }
2585 1.186 perry }
2586 1.69 oster }
2587 1.69 oster
2588 1.69 oster
2589 1.69 oster void
2590 1.169 oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2591 1.68 oster {
2592 1.186 perry int r,c;
2593 1.69 oster struct vnode *vp;
2594 1.69 oster int acd;
2595 1.68 oster
2596 1.68 oster
2597 1.68 oster /* We take this opportunity to close the vnodes like we should.. */
2598 1.68 oster
2599 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2600 1.166 oster vp = raidPtr->raid_cinfo[c].ci_vp;
2601 1.166 oster acd = raidPtr->Disks[c].auto_configured;
2602 1.166 oster rf_close_component(raidPtr, vp, acd);
2603 1.166 oster raidPtr->raid_cinfo[c].ci_vp = NULL;
2604 1.166 oster raidPtr->Disks[c].auto_configured = 0;
2605 1.68 oster }
2606 1.166 oster
2607 1.68 oster for (r = 0; r < raidPtr->numSpare; r++) {
2608 1.166 oster vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2609 1.166 oster acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2610 1.69 oster rf_close_component(raidPtr, vp, acd);
2611 1.166 oster raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2612 1.166 oster raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2613 1.68 oster }
2614 1.37 oster }
2615 1.63 oster
2616 1.37 oster
2617 1.186 perry void
2618 1.353 mrg rf_ReconThread(struct rf_recon_req_internal *req)
2619 1.37 oster {
2620 1.37 oster int s;
2621 1.37 oster RF_Raid_t *raidPtr;
2622 1.37 oster
2623 1.37 oster s = splbio();
2624 1.37 oster raidPtr = (RF_Raid_t *) req->raidPtr;
2625 1.37 oster raidPtr->recon_in_progress = 1;
2626 1.37 oster
2627 1.166 oster rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2628 1.37 oster ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2629 1.37 oster
2630 1.37 oster RF_Free(req, sizeof(*req));
2631 1.37 oster
2632 1.37 oster raidPtr->recon_in_progress = 0;
2633 1.37 oster splx(s);
2634 1.37 oster
2635 1.37 oster /* That's all... */
2636 1.204 simonb kthread_exit(0); /* does not return */
2637 1.37 oster }
2638 1.37 oster
2639 1.37 oster void
2640 1.169 oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
2641 1.37 oster {
2642 1.37 oster int retcode;
2643 1.37 oster int s;
2644 1.37 oster
2645 1.184 oster raidPtr->parity_rewrite_stripes_done = 0;
2646 1.37 oster raidPtr->parity_rewrite_in_progress = 1;
2647 1.37 oster s = splbio();
2648 1.37 oster retcode = rf_RewriteParity(raidPtr);
2649 1.37 oster splx(s);
2650 1.37 oster if (retcode) {
2651 1.279 christos printf("raid%d: Error re-writing parity (%d)!\n",
2652 1.279 christos raidPtr->raidid, retcode);
2653 1.37 oster } else {
2654 1.37 oster /* set the clean bit! If we shutdown correctly,
2655 1.37 oster the clean bit on each component label will get
2656 1.37 oster set */
2657 1.37 oster raidPtr->parity_good = RF_RAID_CLEAN;
2658 1.37 oster }
2659 1.37 oster raidPtr->parity_rewrite_in_progress = 0;
2660 1.85 oster
2661 1.85 oster /* Anyone waiting for us to stop? If so, inform them... */
2662 1.85 oster if (raidPtr->waitShutdown) {
2663 1.357 mrg rf_lock_mutex2(raidPtr->rad_lock);
2664 1.357 mrg cv_broadcast(&raidPtr->parity_rewrite_cv);
2665 1.357 mrg rf_unlock_mutex2(raidPtr->rad_lock);
2666 1.85 oster }
2667 1.37 oster
2668 1.37 oster /* That's all... */
2669 1.204 simonb kthread_exit(0); /* does not return */
2670 1.37 oster }
2671 1.37 oster
2672 1.37 oster
2673 1.37 oster void
2674 1.169 oster rf_CopybackThread(RF_Raid_t *raidPtr)
2675 1.37 oster {
2676 1.37 oster int s;
2677 1.37 oster
2678 1.37 oster raidPtr->copyback_in_progress = 1;
2679 1.37 oster s = splbio();
2680 1.37 oster rf_CopybackReconstructedData(raidPtr);
2681 1.37 oster splx(s);
2682 1.37 oster raidPtr->copyback_in_progress = 0;
2683 1.37 oster
2684 1.37 oster /* That's all... */
2685 1.204 simonb kthread_exit(0); /* does not return */
2686 1.37 oster }
2687 1.37 oster
2688 1.37 oster
2689 1.37 oster void
2690 1.353 mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
2691 1.37 oster {
2692 1.37 oster int s;
2693 1.37 oster RF_Raid_t *raidPtr;
2694 1.186 perry
2695 1.37 oster s = splbio();
2696 1.37 oster raidPtr = req->raidPtr;
2697 1.37 oster raidPtr->recon_in_progress = 1;
2698 1.166 oster rf_ReconstructInPlace(raidPtr, req->col);
2699 1.37 oster RF_Free(req, sizeof(*req));
2700 1.37 oster raidPtr->recon_in_progress = 0;
2701 1.37 oster splx(s);
2702 1.37 oster
2703 1.37 oster /* That's all... */
2704 1.204 simonb kthread_exit(0); /* does not return */
2705 1.48 oster }
2706 1.48 oster
2707 1.213 christos static RF_AutoConfig_t *
2708 1.213 christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2709 1.276 mrg const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2710 1.276 mrg unsigned secsize)
2711 1.213 christos {
2712 1.213 christos int good_one = 0;
2713 1.213 christos RF_ComponentLabel_t *clabel;
2714 1.213 christos RF_AutoConfig_t *ac;
2715 1.213 christos
2716 1.213 christos clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2717 1.213 christos if (clabel == NULL) {
2718 1.213 christos oomem:
2719 1.213 christos while(ac_list) {
2720 1.213 christos ac = ac_list;
2721 1.213 christos if (ac->clabel)
2722 1.213 christos free(ac->clabel, M_RAIDFRAME);
2723 1.213 christos ac_list = ac_list->next;
2724 1.213 christos free(ac, M_RAIDFRAME);
2725 1.213 christos }
2726 1.213 christos printf("RAID auto config: out of memory!\n");
2727 1.213 christos return NULL; /* XXX probably should panic? */
2728 1.213 christos }
2729 1.213 christos
2730 1.276 mrg if (!raidread_component_label(secsize, dev, vp, clabel)) {
2731 1.276 mrg /* Got the label. Does it look reasonable? */
2732 1.284 mrg if (rf_reasonable_label(clabel, numsecs) &&
2733 1.282 enami (rf_component_label_partitionsize(clabel) <= size)) {
2734 1.224 oster #ifdef DEBUG
2735 1.276 mrg printf("Component on: %s: %llu\n",
2736 1.213 christos cname, (unsigned long long)size);
2737 1.276 mrg rf_print_component_label(clabel);
2738 1.213 christos #endif
2739 1.276 mrg /* if it's reasonable, add it, else ignore it. */
2740 1.276 mrg ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2741 1.213 christos M_NOWAIT);
2742 1.276 mrg if (ac == NULL) {
2743 1.276 mrg free(clabel, M_RAIDFRAME);
2744 1.276 mrg goto oomem;
2745 1.276 mrg }
2746 1.276 mrg strlcpy(ac->devname, cname, sizeof(ac->devname));
2747 1.276 mrg ac->dev = dev;
2748 1.276 mrg ac->vp = vp;
2749 1.276 mrg ac->clabel = clabel;
2750 1.276 mrg ac->next = ac_list;
2751 1.276 mrg ac_list = ac;
2752 1.276 mrg good_one = 1;
2753 1.276 mrg }
2754 1.213 christos }
2755 1.213 christos if (!good_one) {
2756 1.213 christos /* cleanup */
2757 1.213 christos free(clabel, M_RAIDFRAME);
2758 1.213 christos vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2759 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2760 1.213 christos vput(vp);
2761 1.213 christos }
2762 1.213 christos return ac_list;
2763 1.213 christos }
2764 1.213 christos
2765 1.48 oster RF_AutoConfig_t *
2766 1.259 cegger rf_find_raid_components(void)
2767 1.48 oster {
2768 1.48 oster struct vnode *vp;
2769 1.48 oster struct disklabel label;
2770 1.261 dyoung device_t dv;
2771 1.268 dyoung deviter_t di;
2772 1.48 oster dev_t dev;
2773 1.296 buhrow int bmajor, bminor, wedge, rf_part_found;
2774 1.48 oster int error;
2775 1.48 oster int i;
2776 1.48 oster RF_AutoConfig_t *ac_list;
2777 1.276 mrg uint64_t numsecs;
2778 1.276 mrg unsigned secsize;
2779 1.335 mlelstv int dowedges;
2780 1.48 oster
2781 1.48 oster /* initialize the AutoConfig list */
2782 1.48 oster ac_list = NULL;
2783 1.48 oster
2784 1.335 mlelstv /*
2785 1.335 mlelstv * we begin by trolling through *all* the devices on the system *twice*
2786 1.335 mlelstv * first we scan for wedges, second for other devices. This avoids
2787 1.335 mlelstv * using a raw partition instead of a wedge that covers the whole disk
2788 1.335 mlelstv */
2789 1.48 oster
2790 1.335 mlelstv for (dowedges=1; dowedges>=0; --dowedges) {
2791 1.335 mlelstv for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2792 1.335 mlelstv dv = deviter_next(&di)) {
2793 1.48 oster
2794 1.335 mlelstv /* we are only interested in disks... */
2795 1.335 mlelstv if (device_class(dv) != DV_DISK)
2796 1.335 mlelstv continue;
2797 1.48 oster
2798 1.335 mlelstv /* we don't care about floppies... */
2799 1.335 mlelstv if (device_is_a(dv, "fd")) {
2800 1.335 mlelstv continue;
2801 1.335 mlelstv }
2802 1.129 oster
2803 1.335 mlelstv /* we don't care about CD's... */
2804 1.335 mlelstv if (device_is_a(dv, "cd")) {
2805 1.335 mlelstv continue;
2806 1.335 mlelstv }
2807 1.129 oster
2808 1.335 mlelstv /* we don't care about md's... */
2809 1.335 mlelstv if (device_is_a(dv, "md")) {
2810 1.335 mlelstv continue;
2811 1.335 mlelstv }
2812 1.248 oster
2813 1.335 mlelstv /* hdfd is the Atari/Hades floppy driver */
2814 1.335 mlelstv if (device_is_a(dv, "hdfd")) {
2815 1.335 mlelstv continue;
2816 1.335 mlelstv }
2817 1.206 thorpej
2818 1.335 mlelstv /* fdisa is the Atari/Milan floppy driver */
2819 1.335 mlelstv if (device_is_a(dv, "fdisa")) {
2820 1.335 mlelstv continue;
2821 1.335 mlelstv }
2822 1.186 perry
2823 1.335 mlelstv /* are we in the wedges pass ? */
2824 1.335 mlelstv wedge = device_is_a(dv, "dk");
2825 1.335 mlelstv if (wedge != dowedges) {
2826 1.335 mlelstv continue;
2827 1.335 mlelstv }
2828 1.48 oster
2829 1.335 mlelstv /* need to find the device_name_to_block_device_major stuff */
2830 1.335 mlelstv bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2831 1.296 buhrow
2832 1.335 mlelstv rf_part_found = 0; /*No raid partition as yet*/
2833 1.48 oster
2834 1.335 mlelstv /* get a vnode for the raw partition of this disk */
2835 1.335 mlelstv bminor = minor(device_unit(dv));
2836 1.335 mlelstv dev = wedge ? makedev(bmajor, bminor) :
2837 1.335 mlelstv MAKEDISKDEV(bmajor, bminor, RAW_PART);
2838 1.335 mlelstv if (bdevvp(dev, &vp))
2839 1.335 mlelstv panic("RAID can't alloc vnode");
2840 1.48 oster
2841 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2842 1.335 mlelstv error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2843 1.48 oster
2844 1.335 mlelstv if (error) {
2845 1.335 mlelstv /* "Who cares." Continue looking
2846 1.335 mlelstv for something that exists*/
2847 1.335 mlelstv vput(vp);
2848 1.335 mlelstv continue;
2849 1.335 mlelstv }
2850 1.48 oster
2851 1.335 mlelstv error = getdisksize(vp, &numsecs, &secsize);
2852 1.213 christos if (error) {
2853 1.339 mlelstv /*
2854 1.339 mlelstv * Pseudo devices like vnd and cgd can be
2855 1.339 mlelstv * opened but may still need some configuration.
2856 1.339 mlelstv * Ignore these quietly.
2857 1.339 mlelstv */
2858 1.339 mlelstv if (error != ENXIO)
2859 1.339 mlelstv printf("RAIDframe: can't get disk size"
2860 1.339 mlelstv " for dev %s (%d)\n",
2861 1.339 mlelstv device_xname(dv), error);
2862 1.241 oster VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2863 1.241 oster vput(vp);
2864 1.213 christos continue;
2865 1.213 christos }
2866 1.335 mlelstv if (wedge) {
2867 1.335 mlelstv struct dkwedge_info dkw;
2868 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2869 1.335 mlelstv NOCRED);
2870 1.335 mlelstv if (error) {
2871 1.335 mlelstv printf("RAIDframe: can't get wedge info for "
2872 1.335 mlelstv "dev %s (%d)\n", device_xname(dv), error);
2873 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2874 1.335 mlelstv vput(vp);
2875 1.335 mlelstv continue;
2876 1.335 mlelstv }
2877 1.213 christos
2878 1.335 mlelstv if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2879 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2880 1.335 mlelstv vput(vp);
2881 1.335 mlelstv continue;
2882 1.335 mlelstv }
2883 1.335 mlelstv
2884 1.375 hannken VOP_UNLOCK(vp);
2885 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp,
2886 1.335 mlelstv device_xname(dv), dkw.dkw_size, numsecs, secsize);
2887 1.335 mlelstv rf_part_found = 1; /*There is a raid component on this disk*/
2888 1.228 christos continue;
2889 1.241 oster }
2890 1.213 christos
2891 1.335 mlelstv /* Ok, the disk exists. Go get the disklabel. */
2892 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2893 1.335 mlelstv if (error) {
2894 1.335 mlelstv /*
2895 1.335 mlelstv * XXX can't happen - open() would
2896 1.335 mlelstv * have errored out (or faked up one)
2897 1.335 mlelstv */
2898 1.335 mlelstv if (error != ENOTTY)
2899 1.335 mlelstv printf("RAIDframe: can't get label for dev "
2900 1.335 mlelstv "%s (%d)\n", device_xname(dv), error);
2901 1.335 mlelstv }
2902 1.48 oster
2903 1.335 mlelstv /* don't need this any more. We'll allocate it again
2904 1.335 mlelstv a little later if we really do... */
2905 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2906 1.335 mlelstv vput(vp);
2907 1.48 oster
2908 1.335 mlelstv if (error)
2909 1.48 oster continue;
2910 1.48 oster
2911 1.335 mlelstv rf_part_found = 0; /*No raid partitions yet*/
2912 1.335 mlelstv for (i = 0; i < label.d_npartitions; i++) {
2913 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2914 1.335 mlelstv
2915 1.335 mlelstv /* We only support partitions marked as RAID */
2916 1.335 mlelstv if (label.d_partitions[i].p_fstype != FS_RAID)
2917 1.335 mlelstv continue;
2918 1.335 mlelstv
2919 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2920 1.335 mlelstv if (bdevvp(dev, &vp))
2921 1.335 mlelstv panic("RAID can't alloc vnode");
2922 1.335 mlelstv
2923 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2924 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2925 1.335 mlelstv if (error) {
2926 1.335 mlelstv /* Whatever... */
2927 1.335 mlelstv vput(vp);
2928 1.335 mlelstv continue;
2929 1.335 mlelstv }
2930 1.375 hannken VOP_UNLOCK(vp);
2931 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2932 1.335 mlelstv device_xname(dv), 'a' + i);
2933 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2934 1.335 mlelstv label.d_partitions[i].p_size, numsecs, secsize);
2935 1.335 mlelstv rf_part_found = 1; /*There is at least one raid partition on this disk*/
2936 1.48 oster }
2937 1.296 buhrow
2938 1.335 mlelstv /*
2939 1.335 mlelstv *If there is no raid component on this disk, either in a
2940 1.335 mlelstv *disklabel or inside a wedge, check the raw partition as well,
2941 1.335 mlelstv *as it is possible to configure raid components on raw disk
2942 1.335 mlelstv *devices.
2943 1.335 mlelstv */
2944 1.296 buhrow
2945 1.335 mlelstv if (!rf_part_found) {
2946 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2947 1.296 buhrow
2948 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2949 1.335 mlelstv if (bdevvp(dev, &vp))
2950 1.335 mlelstv panic("RAID can't alloc vnode");
2951 1.335 mlelstv
2952 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2953 1.375 hannken
2954 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2955 1.335 mlelstv if (error) {
2956 1.335 mlelstv /* Whatever... */
2957 1.335 mlelstv vput(vp);
2958 1.335 mlelstv continue;
2959 1.335 mlelstv }
2960 1.375 hannken VOP_UNLOCK(vp);
2961 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2962 1.335 mlelstv device_xname(dv), 'a' + RAW_PART);
2963 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2964 1.335 mlelstv label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2965 1.296 buhrow }
2966 1.48 oster }
2967 1.335 mlelstv deviter_release(&di);
2968 1.48 oster }
2969 1.213 christos return ac_list;
2970 1.48 oster }
2971 1.186 perry
2972 1.213 christos
2973 1.292 oster int
2974 1.284 mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
2975 1.48 oster {
2976 1.186 perry
2977 1.48 oster if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2978 1.48 oster (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2979 1.48 oster ((clabel->clean == RF_RAID_CLEAN) ||
2980 1.48 oster (clabel->clean == RF_RAID_DIRTY)) &&
2981 1.186 perry clabel->row >=0 &&
2982 1.186 perry clabel->column >= 0 &&
2983 1.48 oster clabel->num_rows > 0 &&
2984 1.48 oster clabel->num_columns > 0 &&
2985 1.186 perry clabel->row < clabel->num_rows &&
2986 1.48 oster clabel->column < clabel->num_columns &&
2987 1.48 oster clabel->blockSize > 0 &&
2988 1.282 enami /*
2989 1.282 enami * numBlocksHi may contain garbage, but it is ok since
2990 1.282 enami * the type is unsigned. If it is really garbage,
2991 1.282 enami * rf_fix_old_label_size() will fix it.
2992 1.282 enami */
2993 1.282 enami rf_component_label_numblocks(clabel) > 0) {
2994 1.284 mrg /*
2995 1.284 mrg * label looks reasonable enough...
2996 1.284 mrg * let's make sure it has no old garbage.
2997 1.284 mrg */
2998 1.292 oster if (numsecs)
2999 1.292 oster rf_fix_old_label_size(clabel, numsecs);
3000 1.48 oster return(1);
3001 1.48 oster }
3002 1.48 oster return(0);
3003 1.48 oster }
3004 1.48 oster
3005 1.48 oster
3006 1.278 mrg /*
3007 1.278 mrg * For reasons yet unknown, some old component labels have garbage in
3008 1.278 mrg * the newer numBlocksHi region, and this causes lossage. Since those
3009 1.278 mrg * disks will also have numsecs set to less than 32 bits of sectors,
3010 1.299 oster * we can determine when this corruption has occurred, and fix it.
3011 1.284 mrg *
3012 1.284 mrg * The exact same problem, with the same unknown reason, happens to
3013 1.284 mrg * the partitionSizeHi member as well.
3014 1.278 mrg */
3015 1.278 mrg static void
3016 1.278 mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3017 1.278 mrg {
3018 1.278 mrg
3019 1.284 mrg if (numsecs < ((uint64_t)1 << 32)) {
3020 1.284 mrg if (clabel->numBlocksHi) {
3021 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3022 1.284 mrg "numBlocksHi set\n"
3023 1.284 mrg "WARNING: resetting numBlocksHi to zero.\n");
3024 1.284 mrg clabel->numBlocksHi = 0;
3025 1.284 mrg }
3026 1.284 mrg
3027 1.284 mrg if (clabel->partitionSizeHi) {
3028 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3029 1.284 mrg "partitionSizeHi set\n"
3030 1.284 mrg "WARNING: resetting partitionSizeHi to zero.\n");
3031 1.284 mrg clabel->partitionSizeHi = 0;
3032 1.284 mrg }
3033 1.278 mrg }
3034 1.278 mrg }
3035 1.278 mrg
3036 1.278 mrg
3037 1.224 oster #ifdef DEBUG
3038 1.48 oster void
3039 1.169 oster rf_print_component_label(RF_ComponentLabel_t *clabel)
3040 1.48 oster {
3041 1.282 enami uint64_t numBlocks;
3042 1.308 christos static const char *rp[] = {
3043 1.308 christos "No", "Force", "Soft", "*invalid*"
3044 1.308 christos };
3045 1.308 christos
3046 1.275 mrg
3047 1.282 enami numBlocks = rf_component_label_numblocks(clabel);
3048 1.275 mrg
3049 1.48 oster printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3050 1.186 perry clabel->row, clabel->column,
3051 1.48 oster clabel->num_rows, clabel->num_columns);
3052 1.48 oster printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3053 1.48 oster clabel->version, clabel->serial_number,
3054 1.48 oster clabel->mod_counter);
3055 1.48 oster printf(" Clean: %s Status: %d\n",
3056 1.271 dyoung clabel->clean ? "Yes" : "No", clabel->status);
3057 1.48 oster printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3058 1.48 oster clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3059 1.275 mrg printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3060 1.275 mrg (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3061 1.271 dyoung printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3062 1.308 christos printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3063 1.271 dyoung printf(" Last configured as: raid%d\n", clabel->last_unit);
3064 1.51 oster #if 0
3065 1.51 oster printf(" Config order: %d\n", clabel->config_order);
3066 1.51 oster #endif
3067 1.186 perry
3068 1.48 oster }
3069 1.133 oster #endif
3070 1.48 oster
3071 1.48 oster RF_ConfigSet_t *
3072 1.169 oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3073 1.48 oster {
3074 1.48 oster RF_AutoConfig_t *ac;
3075 1.48 oster RF_ConfigSet_t *config_sets;
3076 1.48 oster RF_ConfigSet_t *cset;
3077 1.48 oster RF_AutoConfig_t *ac_next;
3078 1.48 oster
3079 1.48 oster
3080 1.48 oster config_sets = NULL;
3081 1.48 oster
3082 1.48 oster /* Go through the AutoConfig list, and figure out which components
3083 1.48 oster belong to what sets. */
3084 1.48 oster ac = ac_list;
3085 1.48 oster while(ac!=NULL) {
3086 1.48 oster /* we're going to putz with ac->next, so save it here
3087 1.48 oster for use at the end of the loop */
3088 1.48 oster ac_next = ac->next;
3089 1.48 oster
3090 1.48 oster if (config_sets == NULL) {
3091 1.48 oster /* will need at least this one... */
3092 1.48 oster config_sets = (RF_ConfigSet_t *)
3093 1.186 perry malloc(sizeof(RF_ConfigSet_t),
3094 1.48 oster M_RAIDFRAME, M_NOWAIT);
3095 1.48 oster if (config_sets == NULL) {
3096 1.141 provos panic("rf_create_auto_sets: No memory!");
3097 1.48 oster }
3098 1.48 oster /* this one is easy :) */
3099 1.48 oster config_sets->ac = ac;
3100 1.48 oster config_sets->next = NULL;
3101 1.51 oster config_sets->rootable = 0;
3102 1.48 oster ac->next = NULL;
3103 1.48 oster } else {
3104 1.48 oster /* which set does this component fit into? */
3105 1.48 oster cset = config_sets;
3106 1.48 oster while(cset!=NULL) {
3107 1.49 oster if (rf_does_it_fit(cset, ac)) {
3108 1.86 oster /* looks like it matches... */
3109 1.86 oster ac->next = cset->ac;
3110 1.86 oster cset->ac = ac;
3111 1.48 oster break;
3112 1.48 oster }
3113 1.48 oster cset = cset->next;
3114 1.48 oster }
3115 1.48 oster if (cset==NULL) {
3116 1.48 oster /* didn't find a match above... new set..*/
3117 1.48 oster cset = (RF_ConfigSet_t *)
3118 1.186 perry malloc(sizeof(RF_ConfigSet_t),
3119 1.48 oster M_RAIDFRAME, M_NOWAIT);
3120 1.48 oster if (cset == NULL) {
3121 1.141 provos panic("rf_create_auto_sets: No memory!");
3122 1.48 oster }
3123 1.48 oster cset->ac = ac;
3124 1.48 oster ac->next = NULL;
3125 1.48 oster cset->next = config_sets;
3126 1.51 oster cset->rootable = 0;
3127 1.48 oster config_sets = cset;
3128 1.48 oster }
3129 1.48 oster }
3130 1.48 oster ac = ac_next;
3131 1.48 oster }
3132 1.48 oster
3133 1.48 oster
3134 1.48 oster return(config_sets);
3135 1.48 oster }
3136 1.48 oster
3137 1.48 oster static int
3138 1.169 oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3139 1.48 oster {
3140 1.48 oster RF_ComponentLabel_t *clabel1, *clabel2;
3141 1.48 oster
3142 1.48 oster /* If this one matches the *first* one in the set, that's good
3143 1.48 oster enough, since the other members of the set would have been
3144 1.48 oster through here too... */
3145 1.60 oster /* note that we are not checking partitionSize here..
3146 1.60 oster
3147 1.60 oster Note that we are also not checking the mod_counters here.
3148 1.299 oster If everything else matches except the mod_counter, that's
3149 1.60 oster good enough for this test. We will deal with the mod_counters
3150 1.186 perry a little later in the autoconfiguration process.
3151 1.60 oster
3152 1.60 oster (clabel1->mod_counter == clabel2->mod_counter) &&
3153 1.81 oster
3154 1.81 oster The reason we don't check for this is that failed disks
3155 1.81 oster will have lower modification counts. If those disks are
3156 1.81 oster not added to the set they used to belong to, then they will
3157 1.81 oster form their own set, which may result in 2 different sets,
3158 1.81 oster for example, competing to be configured at raid0, and
3159 1.81 oster perhaps competing to be the root filesystem set. If the
3160 1.81 oster wrong ones get configured, or both attempt to become /,
3161 1.81 oster weird behaviour and or serious lossage will occur. Thus we
3162 1.81 oster need to bring them into the fold here, and kick them out at
3163 1.81 oster a later point.
3164 1.60 oster
3165 1.60 oster */
3166 1.48 oster
3167 1.48 oster clabel1 = cset->ac->clabel;
3168 1.48 oster clabel2 = ac->clabel;
3169 1.48 oster if ((clabel1->version == clabel2->version) &&
3170 1.48 oster (clabel1->serial_number == clabel2->serial_number) &&
3171 1.48 oster (clabel1->num_rows == clabel2->num_rows) &&
3172 1.48 oster (clabel1->num_columns == clabel2->num_columns) &&
3173 1.48 oster (clabel1->sectPerSU == clabel2->sectPerSU) &&
3174 1.48 oster (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3175 1.48 oster (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3176 1.48 oster (clabel1->parityConfig == clabel2->parityConfig) &&
3177 1.48 oster (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3178 1.48 oster (clabel1->blockSize == clabel2->blockSize) &&
3179 1.282 enami rf_component_label_numblocks(clabel1) ==
3180 1.282 enami rf_component_label_numblocks(clabel2) &&
3181 1.48 oster (clabel1->autoconfigure == clabel2->autoconfigure) &&
3182 1.48 oster (clabel1->root_partition == clabel2->root_partition) &&
3183 1.48 oster (clabel1->last_unit == clabel2->last_unit) &&
3184 1.48 oster (clabel1->config_order == clabel2->config_order)) {
3185 1.48 oster /* if it get's here, it almost *has* to be a match */
3186 1.48 oster } else {
3187 1.186 perry /* it's not consistent with somebody in the set..
3188 1.48 oster punt */
3189 1.48 oster return(0);
3190 1.48 oster }
3191 1.48 oster /* all was fine.. it must fit... */
3192 1.48 oster return(1);
3193 1.48 oster }
3194 1.48 oster
3195 1.48 oster int
3196 1.169 oster rf_have_enough_components(RF_ConfigSet_t *cset)
3197 1.48 oster {
3198 1.51 oster RF_AutoConfig_t *ac;
3199 1.51 oster RF_AutoConfig_t *auto_config;
3200 1.51 oster RF_ComponentLabel_t *clabel;
3201 1.166 oster int c;
3202 1.51 oster int num_cols;
3203 1.51 oster int num_missing;
3204 1.86 oster int mod_counter;
3205 1.87 oster int mod_counter_found;
3206 1.88 oster int even_pair_failed;
3207 1.88 oster char parity_type;
3208 1.186 perry
3209 1.51 oster
3210 1.48 oster /* check to see that we have enough 'live' components
3211 1.48 oster of this set. If so, we can configure it if necessary */
3212 1.48 oster
3213 1.51 oster num_cols = cset->ac->clabel->num_columns;
3214 1.88 oster parity_type = cset->ac->clabel->parityConfig;
3215 1.51 oster
3216 1.51 oster /* XXX Check for duplicate components!?!?!? */
3217 1.51 oster
3218 1.86 oster /* Determine what the mod_counter is supposed to be for this set. */
3219 1.86 oster
3220 1.87 oster mod_counter_found = 0;
3221 1.101 oster mod_counter = 0;
3222 1.86 oster ac = cset->ac;
3223 1.86 oster while(ac!=NULL) {
3224 1.87 oster if (mod_counter_found==0) {
3225 1.86 oster mod_counter = ac->clabel->mod_counter;
3226 1.87 oster mod_counter_found = 1;
3227 1.87 oster } else {
3228 1.87 oster if (ac->clabel->mod_counter > mod_counter) {
3229 1.87 oster mod_counter = ac->clabel->mod_counter;
3230 1.87 oster }
3231 1.86 oster }
3232 1.86 oster ac = ac->next;
3233 1.86 oster }
3234 1.86 oster
3235 1.51 oster num_missing = 0;
3236 1.51 oster auto_config = cset->ac;
3237 1.51 oster
3238 1.166 oster even_pair_failed = 0;
3239 1.166 oster for(c=0; c<num_cols; c++) {
3240 1.166 oster ac = auto_config;
3241 1.166 oster while(ac!=NULL) {
3242 1.186 perry if ((ac->clabel->column == c) &&
3243 1.166 oster (ac->clabel->mod_counter == mod_counter)) {
3244 1.166 oster /* it's this one... */
3245 1.224 oster #ifdef DEBUG
3246 1.166 oster printf("Found: %s at %d\n",
3247 1.166 oster ac->devname,c);
3248 1.51 oster #endif
3249 1.166 oster break;
3250 1.51 oster }
3251 1.166 oster ac=ac->next;
3252 1.166 oster }
3253 1.166 oster if (ac==NULL) {
3254 1.51 oster /* Didn't find one here! */
3255 1.88 oster /* special case for RAID 1, especially
3256 1.88 oster where there are more than 2
3257 1.88 oster components (where RAIDframe treats
3258 1.88 oster things a little differently :( ) */
3259 1.166 oster if (parity_type == '1') {
3260 1.166 oster if (c%2 == 0) { /* even component */
3261 1.166 oster even_pair_failed = 1;
3262 1.166 oster } else { /* odd component. If
3263 1.166 oster we're failed, and
3264 1.166 oster so is the even
3265 1.166 oster component, it's
3266 1.166 oster "Good Night, Charlie" */
3267 1.166 oster if (even_pair_failed == 1) {
3268 1.166 oster return(0);
3269 1.88 oster }
3270 1.88 oster }
3271 1.166 oster } else {
3272 1.166 oster /* normal accounting */
3273 1.166 oster num_missing++;
3274 1.88 oster }
3275 1.166 oster }
3276 1.166 oster if ((parity_type == '1') && (c%2 == 1)) {
3277 1.88 oster /* Just did an even component, and we didn't
3278 1.186 perry bail.. reset the even_pair_failed flag,
3279 1.88 oster and go on to the next component.... */
3280 1.166 oster even_pair_failed = 0;
3281 1.51 oster }
3282 1.51 oster }
3283 1.51 oster
3284 1.51 oster clabel = cset->ac->clabel;
3285 1.51 oster
3286 1.51 oster if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3287 1.51 oster ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3288 1.51 oster ((clabel->parityConfig == '5') && (num_missing > 1))) {
3289 1.51 oster /* XXX this needs to be made *much* more general */
3290 1.51 oster /* Too many failures */
3291 1.51 oster return(0);
3292 1.51 oster }
3293 1.51 oster /* otherwise, all is well, and we've got enough to take a kick
3294 1.51 oster at autoconfiguring this set */
3295 1.51 oster return(1);
3296 1.48 oster }
3297 1.48 oster
3298 1.48 oster void
3299 1.169 oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3300 1.222 christos RF_Raid_t *raidPtr)
3301 1.48 oster {
3302 1.48 oster RF_ComponentLabel_t *clabel;
3303 1.77 oster int i;
3304 1.48 oster
3305 1.48 oster clabel = ac->clabel;
3306 1.48 oster
3307 1.48 oster /* 1. Fill in the common stuff */
3308 1.48 oster config->numCol = clabel->num_columns;
3309 1.48 oster config->numSpare = 0; /* XXX should this be set here? */
3310 1.48 oster config->sectPerSU = clabel->sectPerSU;
3311 1.48 oster config->SUsPerPU = clabel->SUsPerPU;
3312 1.48 oster config->SUsPerRU = clabel->SUsPerRU;
3313 1.48 oster config->parityConfig = clabel->parityConfig;
3314 1.48 oster /* XXX... */
3315 1.48 oster strcpy(config->diskQueueType,"fifo");
3316 1.48 oster config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3317 1.48 oster config->layoutSpecificSize = 0; /* XXX ?? */
3318 1.48 oster
3319 1.48 oster while(ac!=NULL) {
3320 1.48 oster /* row/col values will be in range due to the checks
3321 1.48 oster in reasonable_label() */
3322 1.166 oster strcpy(config->devnames[0][ac->clabel->column],
3323 1.48 oster ac->devname);
3324 1.48 oster ac = ac->next;
3325 1.48 oster }
3326 1.48 oster
3327 1.77 oster for(i=0;i<RF_MAXDBGV;i++) {
3328 1.163 fvdl config->debugVars[i][0] = 0;
3329 1.77 oster }
3330 1.48 oster }
3331 1.48 oster
3332 1.48 oster int
3333 1.169 oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3334 1.48 oster {
3335 1.269 jld RF_ComponentLabel_t *clabel;
3336 1.166 oster int column;
3337 1.148 oster int sparecol;
3338 1.48 oster
3339 1.54 oster raidPtr->autoconfigure = new_value;
3340 1.166 oster
3341 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3342 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3343 1.269 jld clabel = raidget_component_label(raidPtr, column);
3344 1.269 jld clabel->autoconfigure = new_value;
3345 1.269 jld raidflush_component_label(raidPtr, column);
3346 1.48 oster }
3347 1.48 oster }
3348 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3349 1.148 oster sparecol = raidPtr->numCol + column;
3350 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3351 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3352 1.269 jld clabel->autoconfigure = new_value;
3353 1.269 jld raidflush_component_label(raidPtr, sparecol);
3354 1.148 oster }
3355 1.148 oster }
3356 1.48 oster return(new_value);
3357 1.48 oster }
3358 1.48 oster
3359 1.48 oster int
3360 1.169 oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3361 1.48 oster {
3362 1.269 jld RF_ComponentLabel_t *clabel;
3363 1.166 oster int column;
3364 1.148 oster int sparecol;
3365 1.48 oster
3366 1.54 oster raidPtr->root_partition = new_value;
3367 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3368 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3369 1.269 jld clabel = raidget_component_label(raidPtr, column);
3370 1.269 jld clabel->root_partition = new_value;
3371 1.269 jld raidflush_component_label(raidPtr, column);
3372 1.148 oster }
3373 1.148 oster }
3374 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3375 1.148 oster sparecol = raidPtr->numCol + column;
3376 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3377 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3378 1.269 jld clabel->root_partition = new_value;
3379 1.269 jld raidflush_component_label(raidPtr, sparecol);
3380 1.48 oster }
3381 1.48 oster }
3382 1.48 oster return(new_value);
3383 1.48 oster }
3384 1.48 oster
3385 1.48 oster void
3386 1.169 oster rf_release_all_vps(RF_ConfigSet_t *cset)
3387 1.48 oster {
3388 1.48 oster RF_AutoConfig_t *ac;
3389 1.186 perry
3390 1.48 oster ac = cset->ac;
3391 1.48 oster while(ac!=NULL) {
3392 1.48 oster /* Close the vp, and give it back */
3393 1.48 oster if (ac->vp) {
3394 1.96 oster vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3395 1.335 mlelstv VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3396 1.48 oster vput(ac->vp);
3397 1.86 oster ac->vp = NULL;
3398 1.48 oster }
3399 1.48 oster ac = ac->next;
3400 1.48 oster }
3401 1.48 oster }
3402 1.48 oster
3403 1.48 oster
3404 1.48 oster void
3405 1.169 oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
3406 1.48 oster {
3407 1.48 oster RF_AutoConfig_t *ac;
3408 1.48 oster RF_AutoConfig_t *next_ac;
3409 1.186 perry
3410 1.48 oster ac = cset->ac;
3411 1.48 oster while(ac!=NULL) {
3412 1.48 oster next_ac = ac->next;
3413 1.48 oster /* nuke the label */
3414 1.48 oster free(ac->clabel, M_RAIDFRAME);
3415 1.48 oster /* cleanup the config structure */
3416 1.48 oster free(ac, M_RAIDFRAME);
3417 1.48 oster /* "next.." */
3418 1.48 oster ac = next_ac;
3419 1.48 oster }
3420 1.48 oster /* and, finally, nuke the config set */
3421 1.48 oster free(cset, M_RAIDFRAME);
3422 1.48 oster }
3423 1.48 oster
3424 1.48 oster
3425 1.48 oster void
3426 1.169 oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3427 1.48 oster {
3428 1.48 oster /* current version number */
3429 1.186 perry clabel->version = RF_COMPONENT_LABEL_VERSION;
3430 1.57 oster clabel->serial_number = raidPtr->serial_number;
3431 1.48 oster clabel->mod_counter = raidPtr->mod_counter;
3432 1.269 jld
3433 1.166 oster clabel->num_rows = 1;
3434 1.48 oster clabel->num_columns = raidPtr->numCol;
3435 1.48 oster clabel->clean = RF_RAID_DIRTY; /* not clean */
3436 1.48 oster clabel->status = rf_ds_optimal; /* "It's good!" */
3437 1.186 perry
3438 1.48 oster clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3439 1.48 oster clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3440 1.48 oster clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3441 1.54 oster
3442 1.54 oster clabel->blockSize = raidPtr->bytesPerSector;
3443 1.282 enami rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3444 1.54 oster
3445 1.48 oster /* XXX not portable */
3446 1.48 oster clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3447 1.54 oster clabel->maxOutstanding = raidPtr->maxOutstanding;
3448 1.54 oster clabel->autoconfigure = raidPtr->autoconfigure;
3449 1.54 oster clabel->root_partition = raidPtr->root_partition;
3450 1.48 oster clabel->last_unit = raidPtr->raidid;
3451 1.54 oster clabel->config_order = raidPtr->config_order;
3452 1.269 jld
3453 1.269 jld #ifndef RF_NO_PARITY_MAP
3454 1.269 jld rf_paritymap_init_label(raidPtr->parity_map, clabel);
3455 1.269 jld #endif
3456 1.51 oster }
3457 1.51 oster
3458 1.300 christos struct raid_softc *
3459 1.300 christos rf_auto_config_set(RF_ConfigSet_t *cset)
3460 1.51 oster {
3461 1.51 oster RF_Raid_t *raidPtr;
3462 1.51 oster RF_Config_t *config;
3463 1.51 oster int raidID;
3464 1.300 christos struct raid_softc *sc;
3465 1.51 oster
3466 1.224 oster #ifdef DEBUG
3467 1.72 oster printf("RAID autoconfigure\n");
3468 1.127 oster #endif
3469 1.51 oster
3470 1.51 oster /* 1. Create a config structure */
3471 1.300 christos config = malloc(sizeof(*config), M_RAIDFRAME, M_NOWAIT|M_ZERO);
3472 1.300 christos if (config == NULL) {
3473 1.327 pgoyette printf("%s: Out of mem - config!?!?\n", __func__);
3474 1.51 oster /* XXX do something more intelligent here. */
3475 1.300 christos return NULL;
3476 1.51 oster }
3477 1.77 oster
3478 1.186 perry /*
3479 1.186 perry 2. Figure out what RAID ID this one is supposed to live at
3480 1.51 oster See if we can get the same RAID dev that it was configured
3481 1.186 perry on last time..
3482 1.51 oster */
3483 1.51 oster
3484 1.51 oster raidID = cset->ac->clabel->last_unit;
3485 1.327 pgoyette for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3486 1.327 pgoyette sc = raidget(++raidID, false))
3487 1.300 christos continue;
3488 1.224 oster #ifdef DEBUG
3489 1.72 oster printf("Configuring raid%d:\n",raidID);
3490 1.127 oster #endif
3491 1.127 oster
3492 1.327 pgoyette if (sc == NULL)
3493 1.327 pgoyette sc = raidget(raidID, true);
3494 1.327 pgoyette if (sc == NULL) {
3495 1.327 pgoyette printf("%s: Out of mem - softc!?!?\n", __func__);
3496 1.327 pgoyette /* XXX do something more intelligent here. */
3497 1.327 pgoyette free(config, M_RAIDFRAME);
3498 1.327 pgoyette return NULL;
3499 1.327 pgoyette }
3500 1.327 pgoyette
3501 1.300 christos raidPtr = &sc->sc_r;
3502 1.51 oster
3503 1.51 oster /* XXX all this stuff should be done SOMEWHERE ELSE! */
3504 1.302 christos raidPtr->softc = sc;
3505 1.51 oster raidPtr->raidid = raidID;
3506 1.51 oster raidPtr->openings = RAIDOUTSTANDING;
3507 1.51 oster
3508 1.51 oster /* 3. Build the configuration structure */
3509 1.51 oster rf_create_configuration(cset->ac, config, raidPtr);
3510 1.51 oster
3511 1.51 oster /* 4. Do the configuration */
3512 1.300 christos if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3513 1.300 christos raidinit(sc);
3514 1.186 perry
3515 1.300 christos rf_markalldirty(raidPtr);
3516 1.300 christos raidPtr->autoconfigure = 1; /* XXX do this here? */
3517 1.308 christos switch (cset->ac->clabel->root_partition) {
3518 1.308 christos case 1: /* Force Root */
3519 1.308 christos case 2: /* Soft Root: root when boot partition part of raid */
3520 1.308 christos /*
3521 1.308 christos * everything configured just fine. Make a note
3522 1.308 christos * that this set is eligible to be root,
3523 1.308 christos * or forced to be root
3524 1.308 christos */
3525 1.308 christos cset->rootable = cset->ac->clabel->root_partition;
3526 1.54 oster /* XXX do this here? */
3527 1.308 christos raidPtr->root_partition = cset->rootable;
3528 1.308 christos break;
3529 1.308 christos default:
3530 1.308 christos break;
3531 1.51 oster }
3532 1.300 christos } else {
3533 1.300 christos raidput(sc);
3534 1.300 christos sc = NULL;
3535 1.51 oster }
3536 1.51 oster
3537 1.51 oster /* 5. Cleanup */
3538 1.51 oster free(config, M_RAIDFRAME);
3539 1.300 christos return sc;
3540 1.99 oster }
3541 1.99 oster
3542 1.99 oster void
3543 1.187 christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3544 1.187 christos size_t xmin, size_t xmax)
3545 1.177 oster {
3546 1.352 christos int error;
3547 1.352 christos
3548 1.227 ad pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3549 1.187 christos pool_sethiwat(p, xmax);
3550 1.352 christos if ((error = pool_prime(p, xmin)) != 0)
3551 1.352 christos panic("%s: failed to prime pool: %d", __func__, error);
3552 1.187 christos pool_setlowat(p, xmin);
3553 1.177 oster }
3554 1.190 oster
3555 1.190 oster /*
3556 1.335 mlelstv * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3557 1.335 mlelstv * to see if there is IO pending and if that IO could possibly be done
3558 1.335 mlelstv * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3559 1.190 oster * otherwise.
3560 1.190 oster *
3561 1.190 oster */
3562 1.190 oster int
3563 1.300 christos rf_buf_queue_check(RF_Raid_t *raidPtr)
3564 1.190 oster {
3565 1.335 mlelstv struct raid_softc *rs;
3566 1.335 mlelstv struct dk_softc *dksc;
3567 1.335 mlelstv
3568 1.335 mlelstv rs = raidPtr->softc;
3569 1.335 mlelstv dksc = &rs->sc_dksc;
3570 1.335 mlelstv
3571 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
3572 1.335 mlelstv return 1;
3573 1.335 mlelstv
3574 1.335 mlelstv if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3575 1.190 oster /* there is work to do */
3576 1.190 oster return 0;
3577 1.335 mlelstv }
3578 1.190 oster /* default is nothing to do */
3579 1.190 oster return 1;
3580 1.190 oster }
3581 1.213 christos
3582 1.213 christos int
3583 1.294 oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3584 1.213 christos {
3585 1.275 mrg uint64_t numsecs;
3586 1.275 mrg unsigned secsize;
3587 1.213 christos int error;
3588 1.213 christos
3589 1.275 mrg error = getdisksize(vp, &numsecs, &secsize);
3590 1.213 christos if (error == 0) {
3591 1.275 mrg diskPtr->blockSize = secsize;
3592 1.275 mrg diskPtr->numBlocks = numsecs - rf_protectedSectors;
3593 1.275 mrg diskPtr->partitionSize = numsecs;
3594 1.213 christos return 0;
3595 1.213 christos }
3596 1.213 christos return error;
3597 1.213 christos }
3598 1.217 oster
3599 1.217 oster static int
3600 1.261 dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
3601 1.217 oster {
3602 1.217 oster return 1;
3603 1.217 oster }
3604 1.217 oster
3605 1.217 oster static void
3606 1.261 dyoung raid_attach(device_t parent, device_t self, void *aux)
3607 1.217 oster {
3608 1.217 oster }
3609 1.217 oster
3610 1.217 oster
3611 1.217 oster static int
3612 1.261 dyoung raid_detach(device_t self, int flags)
3613 1.217 oster {
3614 1.266 dyoung int error;
3615 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
3616 1.303 christos
3617 1.303 christos if (rs == NULL)
3618 1.303 christos return ENXIO;
3619 1.266 dyoung
3620 1.266 dyoung if ((error = raidlock(rs)) != 0)
3621 1.266 dyoung return (error);
3622 1.217 oster
3623 1.266 dyoung error = raid_detach_unlocked(rs);
3624 1.266 dyoung
3625 1.332 mlelstv raidunlock(rs);
3626 1.332 mlelstv
3627 1.332 mlelstv /* XXX raid can be referenced here */
3628 1.332 mlelstv
3629 1.332 mlelstv if (error)
3630 1.332 mlelstv return error;
3631 1.332 mlelstv
3632 1.332 mlelstv /* Free the softc */
3633 1.332 mlelstv raidput(rs);
3634 1.332 mlelstv
3635 1.332 mlelstv return 0;
3636 1.217 oster }
3637 1.217 oster
3638 1.234 oster static void
3639 1.304 christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3640 1.234 oster {
3641 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
3642 1.335 mlelstv struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3643 1.304 christos
3644 1.304 christos memset(dg, 0, sizeof(*dg));
3645 1.304 christos
3646 1.304 christos dg->dg_secperunit = raidPtr->totalSectors;
3647 1.304 christos dg->dg_secsize = raidPtr->bytesPerSector;
3648 1.304 christos dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3649 1.304 christos dg->dg_ntracks = 4 * raidPtr->numCol;
3650 1.304 christos
3651 1.335 mlelstv disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3652 1.234 oster }
3653 1.252 oster
3654 1.348 jdolecek /*
3655 1.348 jdolecek * Get cache info for all the components (including spares).
3656 1.348 jdolecek * Returns intersection of all the cache flags of all disks, or first
3657 1.348 jdolecek * error if any encountered.
3658 1.348 jdolecek * XXXfua feature flags can change as spares are added - lock down somehow
3659 1.348 jdolecek */
3660 1.348 jdolecek static int
3661 1.348 jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3662 1.348 jdolecek {
3663 1.348 jdolecek int c;
3664 1.348 jdolecek int error;
3665 1.348 jdolecek int dkwhole = 0, dkpart;
3666 1.348 jdolecek
3667 1.348 jdolecek for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3668 1.348 jdolecek /*
3669 1.348 jdolecek * Check any non-dead disk, even when currently being
3670 1.348 jdolecek * reconstructed.
3671 1.348 jdolecek */
3672 1.348 jdolecek if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3673 1.348 jdolecek || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3674 1.348 jdolecek error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3675 1.348 jdolecek DIOCGCACHE, &dkpart, FREAD, NOCRED);
3676 1.348 jdolecek if (error) {
3677 1.348 jdolecek if (error != ENODEV) {
3678 1.348 jdolecek printf("raid%d: get cache for component %s failed\n",
3679 1.348 jdolecek raidPtr->raidid,
3680 1.348 jdolecek raidPtr->Disks[c].devname);
3681 1.348 jdolecek }
3682 1.348 jdolecek
3683 1.348 jdolecek return error;
3684 1.348 jdolecek }
3685 1.348 jdolecek
3686 1.348 jdolecek if (c == 0)
3687 1.348 jdolecek dkwhole = dkpart;
3688 1.348 jdolecek else
3689 1.348 jdolecek dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3690 1.348 jdolecek }
3691 1.348 jdolecek }
3692 1.348 jdolecek
3693 1.349 jdolecek *data = dkwhole;
3694 1.348 jdolecek
3695 1.348 jdolecek return 0;
3696 1.348 jdolecek }
3697 1.348 jdolecek
3698 1.252 oster /*
3699 1.252 oster * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3700 1.252 oster * We end up returning whatever error was returned by the first cache flush
3701 1.252 oster * that fails.
3702 1.252 oster */
3703 1.252 oster
3704 1.269 jld int
3705 1.252 oster rf_sync_component_caches(RF_Raid_t *raidPtr)
3706 1.252 oster {
3707 1.252 oster int c, sparecol;
3708 1.252 oster int e,error;
3709 1.252 oster int force = 1;
3710 1.252 oster
3711 1.252 oster error = 0;
3712 1.252 oster for (c = 0; c < raidPtr->numCol; c++) {
3713 1.252 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
3714 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3715 1.252 oster &force, FWRITE, NOCRED);
3716 1.252 oster if (e) {
3717 1.255 oster if (e != ENODEV)
3718 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3719 1.255 oster raidPtr->raidid, raidPtr->Disks[c].devname);
3720 1.252 oster if (error == 0) {
3721 1.252 oster error = e;
3722 1.252 oster }
3723 1.252 oster }
3724 1.252 oster }
3725 1.252 oster }
3726 1.252 oster
3727 1.252 oster for( c = 0; c < raidPtr->numSpare ; c++) {
3728 1.252 oster sparecol = raidPtr->numCol + c;
3729 1.252 oster /* Need to ensure that the reconstruct actually completed! */
3730 1.252 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3731 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3732 1.252 oster DIOCCACHESYNC, &force, FWRITE, NOCRED);
3733 1.252 oster if (e) {
3734 1.255 oster if (e != ENODEV)
3735 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3736 1.255 oster raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3737 1.252 oster if (error == 0) {
3738 1.252 oster error = e;
3739 1.252 oster }
3740 1.252 oster }
3741 1.252 oster }
3742 1.252 oster }
3743 1.252 oster return error;
3744 1.252 oster }
3745 1.327 pgoyette
3746 1.353 mrg /* Fill in info with the current status */
3747 1.353 mrg void
3748 1.353 mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3749 1.353 mrg {
3750 1.353 mrg
3751 1.353 mrg if (raidPtr->status != rf_rs_reconstructing) {
3752 1.353 mrg info->total = 100;
3753 1.353 mrg info->completed = 100;
3754 1.353 mrg } else {
3755 1.353 mrg info->total = raidPtr->reconControl->numRUsTotal;
3756 1.353 mrg info->completed = raidPtr->reconControl->numRUsComplete;
3757 1.353 mrg }
3758 1.353 mrg info->remaining = info->total - info->completed;
3759 1.353 mrg }
3760 1.353 mrg
3761 1.353 mrg /* Fill in info with the current status */
3762 1.353 mrg void
3763 1.353 mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3764 1.353 mrg {
3765 1.353 mrg
3766 1.353 mrg if (raidPtr->parity_rewrite_in_progress == 1) {
3767 1.353 mrg info->total = raidPtr->Layout.numStripe;
3768 1.353 mrg info->completed = raidPtr->parity_rewrite_stripes_done;
3769 1.353 mrg } else {
3770 1.353 mrg info->completed = 100;
3771 1.353 mrg info->total = 100;
3772 1.353 mrg }
3773 1.353 mrg info->remaining = info->total - info->completed;
3774 1.353 mrg }
3775 1.353 mrg
3776 1.353 mrg /* Fill in info with the current status */
3777 1.353 mrg void
3778 1.353 mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3779 1.353 mrg {
3780 1.353 mrg
3781 1.353 mrg if (raidPtr->copyback_in_progress == 1) {
3782 1.353 mrg info->total = raidPtr->Layout.numStripe;
3783 1.353 mrg info->completed = raidPtr->copyback_stripes_done;
3784 1.353 mrg info->remaining = info->total - info->completed;
3785 1.353 mrg } else {
3786 1.353 mrg info->remaining = 0;
3787 1.353 mrg info->completed = 100;
3788 1.353 mrg info->total = 100;
3789 1.353 mrg }
3790 1.353 mrg }
3791 1.353 mrg
3792 1.353 mrg /* Fill in config with the current info */
3793 1.353 mrg int
3794 1.353 mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
3795 1.353 mrg {
3796 1.353 mrg int d, i, j;
3797 1.353 mrg
3798 1.353 mrg if (!raidPtr->valid)
3799 1.353 mrg return (ENODEV);
3800 1.353 mrg config->cols = raidPtr->numCol;
3801 1.353 mrg config->ndevs = raidPtr->numCol;
3802 1.353 mrg if (config->ndevs >= RF_MAX_DISKS)
3803 1.353 mrg return (ENOMEM);
3804 1.353 mrg config->nspares = raidPtr->numSpare;
3805 1.353 mrg if (config->nspares >= RF_MAX_DISKS)
3806 1.353 mrg return (ENOMEM);
3807 1.353 mrg config->maxqdepth = raidPtr->maxQueueDepth;
3808 1.353 mrg d = 0;
3809 1.353 mrg for (j = 0; j < config->cols; j++) {
3810 1.353 mrg config->devs[d] = raidPtr->Disks[j];
3811 1.353 mrg d++;
3812 1.353 mrg }
3813 1.353 mrg for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
3814 1.353 mrg config->spares[i] = raidPtr->Disks[j];
3815 1.353 mrg if (config->spares[i].status == rf_ds_rebuilding_spare) {
3816 1.353 mrg /* XXX: raidctl(8) expects to see this as a used spare */
3817 1.353 mrg config->spares[i].status = rf_ds_used_spare;
3818 1.353 mrg }
3819 1.353 mrg }
3820 1.353 mrg return 0;
3821 1.353 mrg }
3822 1.353 mrg
3823 1.353 mrg int
3824 1.353 mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
3825 1.353 mrg {
3826 1.353 mrg RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
3827 1.353 mrg RF_ComponentLabel_t *raid_clabel;
3828 1.353 mrg int column = clabel->column;
3829 1.353 mrg
3830 1.353 mrg if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
3831 1.353 mrg return EINVAL;
3832 1.353 mrg raid_clabel = raidget_component_label(raidPtr, column);
3833 1.353 mrg memcpy(clabel, raid_clabel, sizeof *clabel);
3834 1.353 mrg
3835 1.353 mrg return 0;
3836 1.353 mrg }
3837 1.353 mrg
3838 1.327 pgoyette /*
3839 1.327 pgoyette * Module interface
3840 1.327 pgoyette */
3841 1.327 pgoyette
3842 1.356 pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
3843 1.327 pgoyette
3844 1.327 pgoyette #ifdef _MODULE
3845 1.327 pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
3846 1.327 pgoyette #endif
3847 1.327 pgoyette
3848 1.327 pgoyette static int raid_modcmd(modcmd_t, void *);
3849 1.327 pgoyette static int raid_modcmd_init(void);
3850 1.327 pgoyette static int raid_modcmd_fini(void);
3851 1.327 pgoyette
3852 1.327 pgoyette static int
3853 1.327 pgoyette raid_modcmd(modcmd_t cmd, void *data)
3854 1.327 pgoyette {
3855 1.327 pgoyette int error;
3856 1.327 pgoyette
3857 1.327 pgoyette error = 0;
3858 1.327 pgoyette switch (cmd) {
3859 1.327 pgoyette case MODULE_CMD_INIT:
3860 1.327 pgoyette error = raid_modcmd_init();
3861 1.327 pgoyette break;
3862 1.327 pgoyette case MODULE_CMD_FINI:
3863 1.327 pgoyette error = raid_modcmd_fini();
3864 1.327 pgoyette break;
3865 1.327 pgoyette default:
3866 1.327 pgoyette error = ENOTTY;
3867 1.327 pgoyette break;
3868 1.327 pgoyette }
3869 1.327 pgoyette return error;
3870 1.327 pgoyette }
3871 1.327 pgoyette
3872 1.327 pgoyette static int
3873 1.327 pgoyette raid_modcmd_init(void)
3874 1.327 pgoyette {
3875 1.327 pgoyette int error;
3876 1.327 pgoyette int bmajor, cmajor;
3877 1.327 pgoyette
3878 1.327 pgoyette mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3879 1.327 pgoyette mutex_enter(&raid_lock);
3880 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3881 1.327 pgoyette rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3882 1.327 pgoyette rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3883 1.327 pgoyette rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3884 1.327 pgoyette
3885 1.327 pgoyette rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3886 1.327 pgoyette #endif
3887 1.327 pgoyette
3888 1.327 pgoyette bmajor = cmajor = -1;
3889 1.327 pgoyette error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3890 1.327 pgoyette &raid_cdevsw, &cmajor);
3891 1.327 pgoyette if (error != 0 && error != EEXIST) {
3892 1.327 pgoyette aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3893 1.327 pgoyette mutex_exit(&raid_lock);
3894 1.327 pgoyette return error;
3895 1.327 pgoyette }
3896 1.327 pgoyette #ifdef _MODULE
3897 1.327 pgoyette error = config_cfdriver_attach(&raid_cd);
3898 1.327 pgoyette if (error != 0) {
3899 1.327 pgoyette aprint_error("%s: config_cfdriver_attach failed %d\n",
3900 1.327 pgoyette __func__, error);
3901 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3902 1.327 pgoyette mutex_exit(&raid_lock);
3903 1.327 pgoyette return error;
3904 1.327 pgoyette }
3905 1.327 pgoyette #endif
3906 1.327 pgoyette error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3907 1.327 pgoyette if (error != 0) {
3908 1.327 pgoyette aprint_error("%s: config_cfattach_attach failed %d\n",
3909 1.327 pgoyette __func__, error);
3910 1.327 pgoyette #ifdef _MODULE
3911 1.327 pgoyette config_cfdriver_detach(&raid_cd);
3912 1.327 pgoyette #endif
3913 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3914 1.327 pgoyette mutex_exit(&raid_lock);
3915 1.327 pgoyette return error;
3916 1.327 pgoyette }
3917 1.327 pgoyette
3918 1.327 pgoyette raidautoconfigdone = false;
3919 1.327 pgoyette
3920 1.327 pgoyette mutex_exit(&raid_lock);
3921 1.327 pgoyette
3922 1.327 pgoyette if (error == 0) {
3923 1.327 pgoyette if (rf_BootRaidframe(true) == 0)
3924 1.327 pgoyette aprint_verbose("Kernelized RAIDframe activated\n");
3925 1.327 pgoyette else
3926 1.327 pgoyette panic("Serious error activating RAID!!");
3927 1.327 pgoyette }
3928 1.327 pgoyette
3929 1.327 pgoyette /*
3930 1.327 pgoyette * Register a finalizer which will be used to auto-config RAID
3931 1.327 pgoyette * sets once all real hardware devices have been found.
3932 1.327 pgoyette */
3933 1.327 pgoyette error = config_finalize_register(NULL, rf_autoconfig);
3934 1.327 pgoyette if (error != 0) {
3935 1.327 pgoyette aprint_error("WARNING: unable to register RAIDframe "
3936 1.327 pgoyette "finalizer\n");
3937 1.329 pgoyette error = 0;
3938 1.327 pgoyette }
3939 1.327 pgoyette
3940 1.327 pgoyette return error;
3941 1.327 pgoyette }
3942 1.327 pgoyette
3943 1.327 pgoyette static int
3944 1.327 pgoyette raid_modcmd_fini(void)
3945 1.327 pgoyette {
3946 1.327 pgoyette int error;
3947 1.327 pgoyette
3948 1.327 pgoyette mutex_enter(&raid_lock);
3949 1.327 pgoyette
3950 1.327 pgoyette /* Don't allow unload if raid device(s) exist. */
3951 1.327 pgoyette if (!LIST_EMPTY(&raids)) {
3952 1.327 pgoyette mutex_exit(&raid_lock);
3953 1.327 pgoyette return EBUSY;
3954 1.327 pgoyette }
3955 1.327 pgoyette
3956 1.327 pgoyette error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3957 1.327 pgoyette if (error != 0) {
3958 1.335 mlelstv aprint_error("%s: cannot detach cfattach\n",__func__);
3959 1.327 pgoyette mutex_exit(&raid_lock);
3960 1.327 pgoyette return error;
3961 1.327 pgoyette }
3962 1.327 pgoyette #ifdef _MODULE
3963 1.327 pgoyette error = config_cfdriver_detach(&raid_cd);
3964 1.327 pgoyette if (error != 0) {
3965 1.335 mlelstv aprint_error("%s: cannot detach cfdriver\n",__func__);
3966 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3967 1.327 pgoyette mutex_exit(&raid_lock);
3968 1.327 pgoyette return error;
3969 1.327 pgoyette }
3970 1.327 pgoyette #endif
3971 1.327 pgoyette error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3972 1.327 pgoyette if (error != 0) {
3973 1.335 mlelstv aprint_error("%s: cannot detach devsw\n",__func__);
3974 1.327 pgoyette #ifdef _MODULE
3975 1.327 pgoyette config_cfdriver_attach(&raid_cd);
3976 1.327 pgoyette #endif
3977 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3978 1.327 pgoyette mutex_exit(&raid_lock);
3979 1.327 pgoyette return error;
3980 1.327 pgoyette }
3981 1.327 pgoyette rf_BootRaidframe(false);
3982 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3983 1.327 pgoyette rf_destroy_mutex2(rf_sparet_wait_mutex);
3984 1.327 pgoyette rf_destroy_cond2(rf_sparet_wait_cv);
3985 1.327 pgoyette rf_destroy_cond2(rf_sparet_resp_cv);
3986 1.327 pgoyette #endif
3987 1.327 pgoyette mutex_exit(&raid_lock);
3988 1.327 pgoyette mutex_destroy(&raid_lock);
3989 1.327 pgoyette
3990 1.327 pgoyette return error;
3991 1.327 pgoyette }
3992