rf_netbsdkintf.c revision 1.376.4.6 1 1.376.4.6 martin /* $NetBSD: rf_netbsdkintf.c,v 1.376.4.6 2023/10/18 12:11:52 martin Exp $ */
2 1.281 rmind
3 1.1 oster /*-
4 1.295 erh * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 1.1 oster * All rights reserved.
6 1.1 oster *
7 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
8 1.1 oster * by Greg Oster; Jason R. Thorpe.
9 1.1 oster *
10 1.1 oster * Redistribution and use in source and binary forms, with or without
11 1.1 oster * modification, are permitted provided that the following conditions
12 1.1 oster * are met:
13 1.1 oster * 1. Redistributions of source code must retain the above copyright
14 1.1 oster * notice, this list of conditions and the following disclaimer.
15 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 oster * notice, this list of conditions and the following disclaimer in the
17 1.1 oster * documentation and/or other materials provided with the distribution.
18 1.1 oster *
19 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
30 1.1 oster */
31 1.1 oster
32 1.1 oster /*
33 1.281 rmind * Copyright (c) 1988 University of Utah.
34 1.1 oster * Copyright (c) 1990, 1993
35 1.1 oster * The Regents of the University of California. All rights reserved.
36 1.1 oster *
37 1.1 oster * This code is derived from software contributed to Berkeley by
38 1.1 oster * the Systems Programming Group of the University of Utah Computer
39 1.1 oster * Science Department.
40 1.1 oster *
41 1.1 oster * Redistribution and use in source and binary forms, with or without
42 1.1 oster * modification, are permitted provided that the following conditions
43 1.1 oster * are met:
44 1.1 oster * 1. Redistributions of source code must retain the above copyright
45 1.1 oster * notice, this list of conditions and the following disclaimer.
46 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 oster * notice, this list of conditions and the following disclaimer in the
48 1.1 oster * documentation and/or other materials provided with the distribution.
49 1.162 agc * 3. Neither the name of the University nor the names of its contributors
50 1.162 agc * may be used to endorse or promote products derived from this software
51 1.162 agc * without specific prior written permission.
52 1.162 agc *
53 1.162 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.162 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.162 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.162 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.162 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.162 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.162 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.162 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.162 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.162 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.162 agc * SUCH DAMAGE.
64 1.162 agc *
65 1.376.4.1 martin * from: Utah $Hdr$
66 1.162 agc *
67 1.162 agc * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 1.162 agc */
69 1.162 agc
70 1.162 agc /*
71 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
72 1.1 oster * All rights reserved.
73 1.1 oster *
74 1.1 oster * Authors: Mark Holland, Jim Zelenka
75 1.1 oster *
76 1.1 oster * Permission to use, copy, modify and distribute this software and
77 1.1 oster * its documentation is hereby granted, provided that both the copyright
78 1.1 oster * notice and this permission notice appear in all copies of the
79 1.1 oster * software, derivative works or modified versions, and any portions
80 1.1 oster * thereof, and that both notices appear in supporting documentation.
81 1.1 oster *
82 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 1.1 oster *
86 1.1 oster * Carnegie Mellon requests users of this software to return to
87 1.1 oster *
88 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 1.1 oster * School of Computer Science
90 1.1 oster * Carnegie Mellon University
91 1.1 oster * Pittsburgh PA 15213-3890
92 1.1 oster *
93 1.1 oster * any improvements or extensions that they make and grant Carnegie the
94 1.1 oster * rights to redistribute these changes.
95 1.1 oster */
96 1.1 oster
97 1.1 oster /***********************************************************
98 1.1 oster *
99 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
100 1.1 oster *
101 1.1 oster ***********************************************************/
102 1.112 lukem
103 1.112 lukem #include <sys/cdefs.h>
104 1.376.4.6 martin __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.376.4.6 2023/10/18 12:11:52 martin Exp $");
105 1.251 ad
106 1.251 ad #ifdef _KERNEL_OPT
107 1.251 ad #include "opt_raid_autoconfig.h"
108 1.363 mrg #include "opt_compat_netbsd32.h"
109 1.251 ad #endif
110 1.1 oster
111 1.113 lukem #include <sys/param.h>
112 1.1 oster #include <sys/errno.h>
113 1.1 oster #include <sys/pool.h>
114 1.152 thorpej #include <sys/proc.h>
115 1.1 oster #include <sys/queue.h>
116 1.1 oster #include <sys/disk.h>
117 1.1 oster #include <sys/device.h>
118 1.1 oster #include <sys/stat.h>
119 1.1 oster #include <sys/ioctl.h>
120 1.1 oster #include <sys/fcntl.h>
121 1.1 oster #include <sys/systm.h>
122 1.1 oster #include <sys/vnode.h>
123 1.1 oster #include <sys/disklabel.h>
124 1.1 oster #include <sys/conf.h>
125 1.1 oster #include <sys/buf.h>
126 1.182 yamt #include <sys/bufq.h>
127 1.65 oster #include <sys/reboot.h>
128 1.208 elad #include <sys/kauth.h>
129 1.327 pgoyette #include <sys/module.h>
130 1.358 pgoyette #include <sys/compat_stub.h>
131 1.8 oster
132 1.234 oster #include <prop/proplib.h>
133 1.234 oster
134 1.110 oster #include <dev/raidframe/raidframevar.h>
135 1.110 oster #include <dev/raidframe/raidframeio.h>
136 1.269 jld #include <dev/raidframe/rf_paritymap.h>
137 1.251 ad
138 1.1 oster #include "rf_raid.h"
139 1.44 oster #include "rf_copyback.h"
140 1.1 oster #include "rf_dag.h"
141 1.1 oster #include "rf_dagflags.h"
142 1.99 oster #include "rf_desc.h"
143 1.1 oster #include "rf_diskqueue.h"
144 1.1 oster #include "rf_etimer.h"
145 1.1 oster #include "rf_general.h"
146 1.1 oster #include "rf_kintf.h"
147 1.1 oster #include "rf_options.h"
148 1.1 oster #include "rf_driver.h"
149 1.1 oster #include "rf_parityscan.h"
150 1.1 oster #include "rf_threadstuff.h"
151 1.1 oster
152 1.325 christos #include "ioconf.h"
153 1.325 christos
154 1.133 oster #ifdef DEBUG
155 1.9 oster int rf_kdebug_level = 0;
156 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 1.9 oster #else /* DEBUG */
158 1.1 oster #define db1_printf(a) { }
159 1.9 oster #endif /* DEBUG */
160 1.1 oster
161 1.376.4.6 martin #define DEVICE_XNAME(dev) dev ? device_xname(dev) : "null"
162 1.344 christos
163 1.249 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
164 1.289 mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
165 1.287 mrg static rf_declare_cond2(rf_sparet_wait_cv);
166 1.287 mrg static rf_declare_cond2(rf_sparet_resp_cv);
167 1.1 oster
168 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
169 1.10 oster * spare table */
170 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
171 1.10 oster * installation process */
172 1.249 oster #endif
173 1.153 thorpej
174 1.153 thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
175 1.10 oster
176 1.1 oster /* prototypes */
177 1.187 christos static void KernelWakeupFunc(struct buf *);
178 1.187 christos static void InitBP(struct buf *, struct vnode *, unsigned,
179 1.225 christos dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
180 1.187 christos void *, int, struct proc *);
181 1.300 christos static void raidinit(struct raid_softc *);
182 1.335 mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
183 1.348 jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
184 1.1 oster
185 1.261 dyoung static int raid_match(device_t, cfdata_t, void *);
186 1.261 dyoung static void raid_attach(device_t, device_t, void *);
187 1.261 dyoung static int raid_detach(device_t, int);
188 1.130 gehenna
189 1.376.4.6 martin static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
190 1.269 jld daddr_t, daddr_t);
191 1.269 jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
192 1.269 jld daddr_t, daddr_t, int);
193 1.269 jld
194 1.276 mrg static int raidwrite_component_label(unsigned,
195 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
196 1.276 mrg static int raidread_component_label(unsigned,
197 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
198 1.269 jld
199 1.335 mlelstv static int raid_diskstart(device_t, struct buf *bp);
200 1.335 mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
201 1.335 mlelstv static int raid_lastclose(device_t);
202 1.269 jld
203 1.324 mrg static dev_type_open(raidopen);
204 1.324 mrg static dev_type_close(raidclose);
205 1.324 mrg static dev_type_read(raidread);
206 1.324 mrg static dev_type_write(raidwrite);
207 1.324 mrg static dev_type_ioctl(raidioctl);
208 1.324 mrg static dev_type_strategy(raidstrategy);
209 1.324 mrg static dev_type_dump(raiddump);
210 1.324 mrg static dev_type_size(raidsize);
211 1.130 gehenna
212 1.130 gehenna const struct bdevsw raid_bdevsw = {
213 1.305 dholland .d_open = raidopen,
214 1.305 dholland .d_close = raidclose,
215 1.305 dholland .d_strategy = raidstrategy,
216 1.305 dholland .d_ioctl = raidioctl,
217 1.305 dholland .d_dump = raiddump,
218 1.305 dholland .d_psize = raidsize,
219 1.311 dholland .d_discard = nodiscard,
220 1.305 dholland .d_flag = D_DISK
221 1.130 gehenna };
222 1.130 gehenna
223 1.130 gehenna const struct cdevsw raid_cdevsw = {
224 1.305 dholland .d_open = raidopen,
225 1.305 dholland .d_close = raidclose,
226 1.305 dholland .d_read = raidread,
227 1.305 dholland .d_write = raidwrite,
228 1.305 dholland .d_ioctl = raidioctl,
229 1.305 dholland .d_stop = nostop,
230 1.305 dholland .d_tty = notty,
231 1.305 dholland .d_poll = nopoll,
232 1.305 dholland .d_mmap = nommap,
233 1.305 dholland .d_kqfilter = nokqfilter,
234 1.312 dholland .d_discard = nodiscard,
235 1.305 dholland .d_flag = D_DISK
236 1.130 gehenna };
237 1.1 oster
238 1.323 mlelstv static struct dkdriver rf_dkdriver = {
239 1.335 mlelstv .d_open = raidopen,
240 1.335 mlelstv .d_close = raidclose,
241 1.323 mlelstv .d_strategy = raidstrategy,
242 1.335 mlelstv .d_diskstart = raid_diskstart,
243 1.335 mlelstv .d_dumpblocks = raid_dumpblocks,
244 1.335 mlelstv .d_lastclose = raid_lastclose,
245 1.323 mlelstv .d_minphys = minphys
246 1.323 mlelstv };
247 1.235 oster
248 1.1 oster #define raidunit(x) DISKUNIT(x)
249 1.335 mlelstv #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
250 1.1 oster
251 1.202 oster extern struct cfdriver raid_cd;
252 1.266 dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
253 1.266 dyoung raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
254 1.266 dyoung DVF_DETACH_SHUTDOWN);
255 1.202 oster
256 1.353 mrg /* Internal representation of a rf_recon_req */
257 1.353 mrg struct rf_recon_req_internal {
258 1.353 mrg RF_RowCol_t col;
259 1.353 mrg RF_ReconReqFlags_t flags;
260 1.353 mrg void *raidPtr;
261 1.353 mrg };
262 1.353 mrg
263 1.186 perry /*
264 1.186 perry * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
265 1.186 perry * Be aware that large numbers can allow the driver to consume a lot of
266 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
267 1.186 perry *
268 1.186 perry * For example: with a stripe width of 64 blocks (32k) and 5 disks,
269 1.186 perry * a single 64K write will typically require 64K for the old data,
270 1.186 perry * 64K for the old parity, and 64K for the new parity, for a total
271 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
272 1.110 oster * Even it if is used immediately, that's still 128K, which when multiplied
273 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
274 1.186 perry *
275 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
276 1.186 perry * require data reconstruction, which will require *all* of the 4 remaining
277 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
278 1.20 oster */
279 1.20 oster
280 1.20 oster #ifndef RAIDOUTSTANDING
281 1.28 oster #define RAIDOUTSTANDING 6
282 1.20 oster #endif
283 1.20 oster
284 1.1 oster #define RAIDLABELDEV(dev) \
285 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
286 1.1 oster
287 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
288 1.9 oster
289 1.104 oster static int raidlock(struct raid_softc *);
290 1.104 oster static void raidunlock(struct raid_softc *);
291 1.1 oster
292 1.266 dyoung static int raid_detach_unlocked(struct raid_softc *);
293 1.266 dyoung
294 1.104 oster static void rf_markalldirty(RF_Raid_t *);
295 1.304 christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
296 1.48 oster
297 1.353 mrg void rf_ReconThread(struct rf_recon_req_internal *);
298 1.104 oster void rf_RewriteParityThread(RF_Raid_t *raidPtr);
299 1.104 oster void rf_CopybackThread(RF_Raid_t *raidPtr);
300 1.353 mrg void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
301 1.261 dyoung int rf_autoconfig(device_t);
302 1.142 thorpej void rf_buildroothack(RF_ConfigSet_t *);
303 1.104 oster
304 1.104 oster RF_AutoConfig_t *rf_find_raid_components(void);
305 1.104 oster RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
306 1.104 oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
307 1.292 oster int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
308 1.104 oster void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
309 1.104 oster int rf_set_autoconfig(RF_Raid_t *, int);
310 1.104 oster int rf_set_rootpartition(RF_Raid_t *, int);
311 1.104 oster void rf_release_all_vps(RF_ConfigSet_t *);
312 1.104 oster void rf_cleanup_config_set(RF_ConfigSet_t *);
313 1.104 oster int rf_have_enough_components(RF_ConfigSet_t *);
314 1.300 christos struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
315 1.278 mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
316 1.48 oster
317 1.295 erh /*
318 1.295 erh * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
319 1.295 erh * Note that this is overridden by having RAID_AUTOCONFIG as an option
320 1.295 erh * in the kernel config file.
321 1.295 erh */
322 1.295 erh #ifdef RAID_AUTOCONFIG
323 1.295 erh int raidautoconfig = 1;
324 1.295 erh #else
325 1.295 erh int raidautoconfig = 0;
326 1.295 erh #endif
327 1.295 erh static bool raidautoconfigdone = false;
328 1.37 oster
329 1.177 oster struct RF_Pools_s rf_pools;
330 1.177 oster
331 1.300 christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
332 1.300 christos static kmutex_t raid_lock;
333 1.1 oster
334 1.300 christos static struct raid_softc *
335 1.300 christos raidcreate(int unit) {
336 1.300 christos struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
337 1.300 christos sc->sc_unit = unit;
338 1.327 pgoyette cv_init(&sc->sc_cv, "raidunit");
339 1.327 pgoyette mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
340 1.300 christos return sc;
341 1.300 christos }
342 1.1 oster
343 1.300 christos static void
344 1.300 christos raiddestroy(struct raid_softc *sc) {
345 1.327 pgoyette cv_destroy(&sc->sc_cv);
346 1.327 pgoyette mutex_destroy(&sc->sc_mutex);
347 1.300 christos kmem_free(sc, sizeof(*sc));
348 1.300 christos }
349 1.50 oster
350 1.300 christos static struct raid_softc *
351 1.327 pgoyette raidget(int unit, bool create) {
352 1.300 christos struct raid_softc *sc;
353 1.300 christos if (unit < 0) {
354 1.300 christos #ifdef DIAGNOSTIC
355 1.300 christos panic("%s: unit %d!", __func__, unit);
356 1.300 christos #endif
357 1.300 christos return NULL;
358 1.300 christos }
359 1.300 christos mutex_enter(&raid_lock);
360 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
361 1.300 christos if (sc->sc_unit == unit) {
362 1.300 christos mutex_exit(&raid_lock);
363 1.300 christos return sc;
364 1.300 christos }
365 1.300 christos }
366 1.300 christos mutex_exit(&raid_lock);
367 1.327 pgoyette if (!create)
368 1.327 pgoyette return NULL;
369 1.376.4.6 martin sc = raidcreate(unit);
370 1.300 christos mutex_enter(&raid_lock);
371 1.300 christos LIST_INSERT_HEAD(&raids, sc, sc_link);
372 1.300 christos mutex_exit(&raid_lock);
373 1.300 christos return sc;
374 1.300 christos }
375 1.300 christos
376 1.376.4.6 martin static void
377 1.300 christos raidput(struct raid_softc *sc) {
378 1.300 christos mutex_enter(&raid_lock);
379 1.300 christos LIST_REMOVE(sc, sc_link);
380 1.300 christos mutex_exit(&raid_lock);
381 1.300 christos raiddestroy(sc);
382 1.300 christos }
383 1.1 oster
384 1.300 christos void
385 1.300 christos raidattach(int num)
386 1.300 christos {
387 1.62 oster
388 1.142 thorpej /*
389 1.327 pgoyette * Device attachment and associated initialization now occurs
390 1.327 pgoyette * as part of the module initialization.
391 1.142 thorpej */
392 1.142 thorpej }
393 1.142 thorpej
394 1.142 thorpej int
395 1.261 dyoung rf_autoconfig(device_t self)
396 1.142 thorpej {
397 1.142 thorpej RF_AutoConfig_t *ac_list;
398 1.142 thorpej RF_ConfigSet_t *config_sets;
399 1.142 thorpej
400 1.295 erh if (!raidautoconfig || raidautoconfigdone == true)
401 1.142 thorpej return (0);
402 1.142 thorpej
403 1.142 thorpej /* XXX This code can only be run once. */
404 1.295 erh raidautoconfigdone = true;
405 1.142 thorpej
406 1.307 christos #ifdef __HAVE_CPU_BOOTCONF
407 1.307 christos /*
408 1.307 christos * 0. find the boot device if needed first so we can use it later
409 1.307 christos * this needs to be done before we autoconfigure any raid sets,
410 1.307 christos * because if we use wedges we are not going to be able to open
411 1.307 christos * the boot device later
412 1.307 christos */
413 1.307 christos if (booted_device == NULL)
414 1.307 christos cpu_bootconf();
415 1.307 christos #endif
416 1.48 oster /* 1. locate all RAID components on the system */
417 1.258 ad aprint_debug("Searching for RAID components...\n");
418 1.48 oster ac_list = rf_find_raid_components();
419 1.48 oster
420 1.142 thorpej /* 2. Sort them into their respective sets. */
421 1.48 oster config_sets = rf_create_auto_sets(ac_list);
422 1.48 oster
423 1.142 thorpej /*
424 1.299 oster * 3. Evaluate each set and configure the valid ones.
425 1.142 thorpej * This gets done in rf_buildroothack().
426 1.142 thorpej */
427 1.142 thorpej rf_buildroothack(config_sets);
428 1.48 oster
429 1.213 christos return 1;
430 1.48 oster }
431 1.48 oster
432 1.367 christos int
433 1.367 christos rf_inited(const struct raid_softc *rs) {
434 1.367 christos return (rs->sc_flags & RAIDF_INITED) != 0;
435 1.367 christos }
436 1.367 christos
437 1.368 oster RF_Raid_t *
438 1.368 oster rf_get_raid(struct raid_softc *rs) {
439 1.368 oster return &rs->sc_r;
440 1.368 oster }
441 1.368 oster
442 1.367 christos int
443 1.367 christos rf_get_unit(const struct raid_softc *rs) {
444 1.367 christos return rs->sc_unit;
445 1.367 christos }
446 1.367 christos
447 1.306 christos static int
448 1.307 christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
449 1.359 bad const char *bootname;
450 1.359 bad size_t len;
451 1.359 bad
452 1.359 bad /* if bdv is NULL, the set can't contain it. exit early. */
453 1.359 bad if (bdv == NULL)
454 1.359 bad return 0;
455 1.359 bad
456 1.359 bad bootname = device_xname(bdv);
457 1.359 bad len = strlen(bootname);
458 1.306 christos
459 1.306 christos for (int col = 0; col < r->numCol; col++) {
460 1.307 christos const char *devname = r->Disks[col].devname;
461 1.306 christos devname += sizeof("/dev/") - 1;
462 1.307 christos if (strncmp(devname, "dk", 2) == 0) {
463 1.307 christos const char *parent =
464 1.307 christos dkwedge_get_parent_name(r->Disks[col].dev);
465 1.307 christos if (parent != NULL)
466 1.307 christos devname = parent;
467 1.307 christos }
468 1.306 christos if (strncmp(devname, bootname, len) == 0) {
469 1.306 christos struct raid_softc *sc = r->softc;
470 1.306 christos aprint_debug("raid%d includes boot device %s\n",
471 1.306 christos sc->sc_unit, devname);
472 1.306 christos return 1;
473 1.306 christos }
474 1.306 christos }
475 1.306 christos return 0;
476 1.306 christos }
477 1.306 christos
478 1.376.4.6 martin
479 1.376.4.6 martin /*
480 1.376.4.6 martin * Example setup:
481 1.376.4.6 martin * dk1 at wd0: "raid@wd0", 171965 blocks at 32802, type: raidframe
482 1.376.4.6 martin * dk3 at wd1: "raid@wd1", 171965 blocks at 32802, type: raidframz
483 1.376.4.6 martin * raid1: Components: /dev/dk1 /dev/dk3
484 1.376.4.6 martin * dk4 at raid1: "empty@raid1", 8192 blocks at 34, type: msdos
485 1.376.4.6 martin * dk5 at raid1: "root@raid1", 163517 blocks at 8226, type: ffs
486 1.376.4.6 martin *
487 1.376.4.6 martin * If booted from wd0, booted_device will be
488 1.376.4.6 martin * disk wd0, startblk = 41092, nblks = 163517
489 1.376.4.6 martin *
490 1.376.4.6 martin * That is, dk5 with startblk computed from the beginning of wd0
491 1.376.4.6 martin * instead of beginning of raid1:
492 1.376.4.6 martin * 32802 + 64 (RF_PROTECTED_SECTORS) + 8226 = 41092
493 1.376.4.6 martin *
494 1.376.4.6 martin * In order to find the boot wedge, we must iterate on each component,
495 1.376.4.6 martin * find its offset from disk beginning, abd look for the boot wedge with
496 1.376.4.6 martin * startblck adjusted.
497 1.376.4.6 martin */
498 1.376.4.6 martin static device_t
499 1.376.4.6 martin rf_find_bootwedge(struct raid_softc *rsc)
500 1.376.4.6 martin {
501 1.376.4.6 martin RF_Raid_t *r = &rsc->sc_r;
502 1.376.4.6 martin const char *bootname;
503 1.376.4.6 martin size_t len;
504 1.376.4.6 martin device_t rdev = NULL;
505 1.376.4.6 martin
506 1.376.4.6 martin if (booted_device == NULL)
507 1.376.4.6 martin goto out;
508 1.376.4.6 martin
509 1.376.4.6 martin bootname = device_xname(booted_device);
510 1.376.4.6 martin len = strlen(bootname);
511 1.376.4.6 martin
512 1.376.4.6 martin aprint_debug("%s: booted_device %s, startblk = %"PRId64", "
513 1.376.4.6 martin "nblks = %"PRId64"\n", __func__,
514 1.376.4.6 martin bootname, booted_startblk, booted_nblks);
515 1.376.4.6 martin
516 1.376.4.6 martin for (int col = 0; col < r->numCol; col++) {
517 1.376.4.6 martin const char *devname = r->Disks[col].devname;
518 1.376.4.6 martin const char *parent;
519 1.376.4.6 martin struct disk *dk;
520 1.376.4.6 martin u_int nwedges;
521 1.376.4.6 martin struct dkwedge_info *dkwi;
522 1.376.4.6 martin struct dkwedge_list dkwl;
523 1.376.4.6 martin size_t dkwi_len;
524 1.376.4.6 martin int i;
525 1.376.4.6 martin
526 1.376.4.6 martin devname += sizeof("/dev/") - 1;
527 1.376.4.6 martin if (strncmp(devname, "dk", 2) != 0)
528 1.376.4.6 martin continue;
529 1.376.4.6 martin
530 1.376.4.6 martin parent = dkwedge_get_parent_name(r->Disks[col].dev);
531 1.376.4.6 martin if (parent == NULL) {
532 1.376.4.6 martin aprint_debug("%s: cannot find parent for "
533 1.376.4.6 martin "component /dev/%s", __func__, devname);
534 1.376.4.6 martin continue;
535 1.376.4.6 martin }
536 1.376.4.6 martin
537 1.376.4.6 martin if (strncmp(parent, bootname, len) != 0)
538 1.376.4.6 martin continue;
539 1.376.4.6 martin
540 1.376.4.6 martin aprint_debug("%s: looking up wedge %s in device %s\n",
541 1.376.4.6 martin __func__, devname, parent);
542 1.376.4.6 martin
543 1.376.4.6 martin dk = disk_find(parent);
544 1.376.4.6 martin nwedges = dk->dk_nwedges;
545 1.376.4.6 martin dkwi_len = sizeof(*dkwi) * nwedges;
546 1.376.4.6 martin dkwi = RF_Malloc(dkwi_len);
547 1.376.4.6 martin
548 1.376.4.6 martin dkwl.dkwl_buf = dkwi;
549 1.376.4.6 martin dkwl.dkwl_bufsize = dkwi_len;
550 1.376.4.6 martin dkwl.dkwl_nwedges = 0;
551 1.376.4.6 martin dkwl.dkwl_ncopied = 0;
552 1.376.4.6 martin
553 1.376.4.6 martin if (dkwedge_list(dk, &dkwl, curlwp) == 0) {
554 1.376.4.6 martin daddr_t startblk;
555 1.376.4.6 martin
556 1.376.4.6 martin for (i = 0; i < dkwl.dkwl_ncopied; i++) {
557 1.376.4.6 martin if (strcmp(dkwi[i].dkw_devname, devname) == 0)
558 1.376.4.6 martin break;
559 1.376.4.6 martin }
560 1.376.4.6 martin
561 1.376.4.6 martin KASSERT(i < dkwl.dkwl_ncopied);
562 1.376.4.6 martin
563 1.376.4.6 martin aprint_debug("%s: wedge %s, "
564 1.376.4.6 martin "startblk = %"PRId64", "
565 1.376.4.6 martin "nblks = %"PRId64"\n",
566 1.376.4.6 martin __func__,
567 1.376.4.6 martin dkwi[i].dkw_devname,
568 1.376.4.6 martin dkwi[i].dkw_offset,
569 1.376.4.6 martin dkwi[i].dkw_size);
570 1.376.4.6 martin
571 1.376.4.6 martin startblk = booted_startblk
572 1.376.4.6 martin - dkwi[i].dkw_offset
573 1.376.4.6 martin - RF_PROTECTED_SECTORS;
574 1.376.4.6 martin
575 1.376.4.6 martin aprint_debug("%s: looking for wedge in %s, "
576 1.376.4.6 martin "startblk = %"PRId64", "
577 1.376.4.6 martin "nblks = %"PRId64"\n",
578 1.376.4.6 martin __func__,
579 1.376.4.6 martin DEVICE_XNAME(rsc->sc_dksc.sc_dev),
580 1.376.4.6 martin startblk, booted_nblks);
581 1.376.4.6 martin
582 1.376.4.6 martin rdev = dkwedge_find_partition(rsc->sc_dksc.sc_dev,
583 1.376.4.6 martin startblk,
584 1.376.4.6 martin booted_nblks);
585 1.376.4.6 martin if (rdev) {
586 1.376.4.6 martin aprint_debug("%s: root candidate wedge %s "
587 1.376.4.6 martin "shifted from %s\n", __func__,
588 1.376.4.6 martin device_xname(rdev),
589 1.376.4.6 martin dkwi[i].dkw_devname);
590 1.376.4.6 martin goto done;
591 1.376.4.6 martin } else {
592 1.376.4.6 martin aprint_debug("%s: not found\n", __func__);
593 1.376.4.6 martin }
594 1.376.4.6 martin }
595 1.376.4.6 martin
596 1.376.4.6 martin aprint_debug("%s: nothing found for col %d\n", __func__, col);
597 1.376.4.6 martin done:
598 1.376.4.6 martin RF_Free(dkwi, dkwi_len);
599 1.376.4.6 martin }
600 1.376.4.6 martin
601 1.376.4.6 martin out:
602 1.376.4.6 martin if (!rdev)
603 1.376.4.6 martin aprint_debug("%s: nothing found\n", __func__);
604 1.376.4.6 martin
605 1.376.4.6 martin return rdev;
606 1.376.4.6 martin }
607 1.376.4.6 martin
608 1.48 oster void
609 1.142 thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
610 1.48 oster {
611 1.48 oster RF_ConfigSet_t *cset;
612 1.48 oster RF_ConfigSet_t *next_cset;
613 1.51 oster int num_root;
614 1.300 christos struct raid_softc *sc, *rsc;
615 1.376.4.6 martin struct dk_softc *dksc = NULL; /* XXX gcc -Os: may be used uninit. */
616 1.48 oster
617 1.300 christos sc = rsc = NULL;
618 1.51 oster num_root = 0;
619 1.48 oster cset = config_sets;
620 1.271 dyoung while (cset != NULL) {
621 1.48 oster next_cset = cset->next;
622 1.186 perry if (rf_have_enough_components(cset) &&
623 1.300 christos cset->ac->clabel->autoconfigure == 1) {
624 1.300 christos sc = rf_auto_config_set(cset);
625 1.300 christos if (sc != NULL) {
626 1.359 bad aprint_debug("raid%d: configured ok, rootable %d\n",
627 1.359 bad sc->sc_unit, cset->rootable);
628 1.51 oster if (cset->rootable) {
629 1.300 christos rsc = sc;
630 1.51 oster num_root++;
631 1.51 oster }
632 1.51 oster } else {
633 1.51 oster /* The autoconfig didn't work :( */
634 1.300 christos aprint_debug("Autoconfig failed\n");
635 1.51 oster rf_release_all_vps(cset);
636 1.48 oster }
637 1.48 oster } else {
638 1.186 perry /* we're not autoconfiguring this set...
639 1.48 oster release the associated resources */
640 1.49 oster rf_release_all_vps(cset);
641 1.48 oster }
642 1.48 oster /* cleanup */
643 1.49 oster rf_cleanup_config_set(cset);
644 1.48 oster cset = next_cset;
645 1.48 oster }
646 1.122 oster
647 1.223 oster /* if the user has specified what the root device should be
648 1.223 oster then we don't touch booted_device or boothowto... */
649 1.223 oster
650 1.359 bad if (rootspec != NULL) {
651 1.376.4.6 martin aprint_debug("%s: rootspec %s\n", __func__, rootspec);
652 1.223 oster return;
653 1.359 bad }
654 1.223 oster
655 1.122 oster /* we found something bootable... */
656 1.122 oster if (num_root == 1) {
657 1.376.4.6 martin device_t candidate_root = NULL;
658 1.376.4.6 martin dksc = &rsc->sc_dksc;
659 1.376.4.6 martin
660 1.335 mlelstv if (dksc->sc_dkdev.dk_nwedges != 0) {
661 1.376.4.6 martin
662 1.376.4.6 martin /* Find the wedge we booted from */
663 1.376.4.6 martin candidate_root = rf_find_bootwedge(rsc);
664 1.376.4.6 martin
665 1.376.4.6 martin /* Try first partition */
666 1.344 christos if (candidate_root == NULL) {
667 1.344 christos size_t i = 0;
668 1.344 christos candidate_root = dkwedge_find_by_parent(
669 1.344 christos device_xname(dksc->sc_dev), &i);
670 1.344 christos }
671 1.376.4.6 martin aprint_debug("%s: candidate wedge root %s\n",
672 1.376.4.6 martin __func__, DEVICE_XNAME(candidate_root));
673 1.376.4.6 martin } else {
674 1.335 mlelstv candidate_root = dksc->sc_dev;
675 1.376.4.6 martin }
676 1.376.4.6 martin
677 1.376.4.6 martin aprint_debug("%s: candidate root = %s, booted_device = %s, "
678 1.376.4.6 martin "root_partition = %d, contains_boot=%d\n",
679 1.376.4.6 martin __func__, DEVICE_XNAME(candidate_root),
680 1.376.4.6 martin DEVICE_XNAME(booted_device), rsc->sc_r.root_partition,
681 1.376.4.6 martin rf_containsboot(&rsc->sc_r, booted_device));
682 1.376.4.6 martin
683 1.359 bad /* XXX the check for booted_device == NULL can probably be
684 1.359 bad * dropped, now that rf_containsboot handles that case.
685 1.359 bad */
686 1.308 christos if (booted_device == NULL ||
687 1.308 christos rsc->sc_r.root_partition == 1 ||
688 1.310 christos rf_containsboot(&rsc->sc_r, booted_device)) {
689 1.308 christos booted_device = candidate_root;
690 1.351 christos booted_method = "raidframe/single";
691 1.310 christos booted_partition = 0; /* XXX assume 'a' */
692 1.376.4.6 martin aprint_debug("%s: set booted_device = %s\n", __func__,
693 1.376.4.6 martin DEVICE_XNAME(booted_device));
694 1.310 christos }
695 1.122 oster } else if (num_root > 1) {
696 1.376.4.6 martin aprint_debug("%s: many roots=%d, %s\n", __func__, num_root,
697 1.376.4.6 martin DEVICE_XNAME(booted_device));
698 1.226 oster
699 1.376.4.6 martin /*
700 1.226 oster * Maybe the MD code can help. If it cannot, then
701 1.226 oster * setroot() will discover that we have no
702 1.226 oster * booted_device and will ask the user if nothing was
703 1.376.4.6 martin * hardwired in the kernel config file
704 1.226 oster */
705 1.376.4.6 martin if (booted_device == NULL)
706 1.226 oster return;
707 1.226 oster
708 1.226 oster num_root = 0;
709 1.300 christos mutex_enter(&raid_lock);
710 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
711 1.300 christos RF_Raid_t *r = &sc->sc_r;
712 1.300 christos if (r->valid == 0)
713 1.226 oster continue;
714 1.226 oster
715 1.300 christos if (r->root_partition == 0)
716 1.226 oster continue;
717 1.226 oster
718 1.306 christos if (rf_containsboot(r, booted_device)) {
719 1.226 oster num_root++;
720 1.300 christos rsc = sc;
721 1.335 mlelstv dksc = &rsc->sc_dksc;
722 1.226 oster }
723 1.226 oster }
724 1.300 christos mutex_exit(&raid_lock);
725 1.295 erh
726 1.226 oster if (num_root == 1) {
727 1.335 mlelstv booted_device = dksc->sc_dev;
728 1.351 christos booted_method = "raidframe/multi";
729 1.310 christos booted_partition = 0; /* XXX assume 'a' */
730 1.226 oster } else {
731 1.226 oster /* we can't guess.. require the user to answer... */
732 1.226 oster boothowto |= RB_ASKNAME;
733 1.226 oster }
734 1.51 oster }
735 1.1 oster }
736 1.1 oster
737 1.324 mrg static int
738 1.169 oster raidsize(dev_t dev)
739 1.1 oster {
740 1.1 oster struct raid_softc *rs;
741 1.335 mlelstv struct dk_softc *dksc;
742 1.335 mlelstv unsigned int unit;
743 1.1 oster
744 1.1 oster unit = raidunit(dev);
745 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
746 1.336 mlelstv return -1;
747 1.335 mlelstv dksc = &rs->sc_dksc;
748 1.335 mlelstv
749 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
750 1.336 mlelstv return -1;
751 1.1 oster
752 1.335 mlelstv return dk_size(dksc, dev);
753 1.335 mlelstv }
754 1.1 oster
755 1.335 mlelstv static int
756 1.335 mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
757 1.335 mlelstv {
758 1.335 mlelstv unsigned int unit;
759 1.335 mlelstv struct raid_softc *rs;
760 1.335 mlelstv struct dk_softc *dksc;
761 1.1 oster
762 1.335 mlelstv unit = raidunit(dev);
763 1.335 mlelstv if ((rs = raidget(unit, false)) == NULL)
764 1.335 mlelstv return ENXIO;
765 1.335 mlelstv dksc = &rs->sc_dksc;
766 1.1 oster
767 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
768 1.335 mlelstv return ENODEV;
769 1.1 oster
770 1.336 mlelstv /*
771 1.336 mlelstv Note that blkno is relative to this particular partition.
772 1.336 mlelstv By adding adding RF_PROTECTED_SECTORS, we get a value that
773 1.336 mlelstv is relative to the partition used for the underlying component.
774 1.336 mlelstv */
775 1.336 mlelstv blkno += RF_PROTECTED_SECTORS;
776 1.336 mlelstv
777 1.376.4.1 martin return dk_dump(dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE);
778 1.1 oster }
779 1.1 oster
780 1.324 mrg static int
781 1.335 mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
782 1.1 oster {
783 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
784 1.231 oster const struct bdevsw *bdev;
785 1.231 oster RF_Raid_t *raidPtr;
786 1.335 mlelstv int c, sparecol, j, scol, dumpto;
787 1.231 oster int error = 0;
788 1.231 oster
789 1.300 christos raidPtr = &rs->sc_r;
790 1.231 oster
791 1.231 oster /* we only support dumping to RAID 1 sets */
792 1.376.4.6 martin if (raidPtr->Layout.numDataCol != 1 ||
793 1.231 oster raidPtr->Layout.numParityCol != 1)
794 1.231 oster return EINVAL;
795 1.231 oster
796 1.231 oster if ((error = raidlock(rs)) != 0)
797 1.231 oster return error;
798 1.231 oster
799 1.231 oster /* figure out what device is alive.. */
800 1.231 oster
801 1.376.4.6 martin /*
802 1.231 oster Look for a component to dump to. The preference for the
803 1.231 oster component to dump to is as follows:
804 1.376.4.6 martin 1) the first component
805 1.376.4.6 martin 2) a used_spare of the first component
806 1.376.4.6 martin 3) the second component
807 1.376.4.6 martin 4) a used_spare of the second component
808 1.231 oster */
809 1.231 oster
810 1.231 oster dumpto = -1;
811 1.231 oster for (c = 0; c < raidPtr->numCol; c++) {
812 1.231 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
813 1.231 oster /* this might be the one */
814 1.231 oster dumpto = c;
815 1.231 oster break;
816 1.231 oster }
817 1.231 oster }
818 1.376.4.6 martin
819 1.376.4.6 martin /*
820 1.376.4.6 martin At this point we have possibly selected a live component.
821 1.376.4.6 martin If we didn't find a live ocmponent, we now check to see
822 1.376.4.6 martin if there is a relevant spared component.
823 1.231 oster */
824 1.231 oster
825 1.231 oster for (c = 0; c < raidPtr->numSpare; c++) {
826 1.231 oster sparecol = raidPtr->numCol + c;
827 1.231 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
828 1.231 oster /* How about this one? */
829 1.231 oster scol = -1;
830 1.231 oster for(j=0;j<raidPtr->numCol;j++) {
831 1.231 oster if (raidPtr->Disks[j].spareCol == sparecol) {
832 1.231 oster scol = j;
833 1.231 oster break;
834 1.231 oster }
835 1.231 oster }
836 1.231 oster if (scol == 0) {
837 1.376.4.6 martin /*
838 1.376.4.6 martin We must have found a spared first
839 1.376.4.6 martin component! We'll take that over
840 1.376.4.6 martin anything else found so far. (We
841 1.376.4.6 martin couldn't have found a real first
842 1.376.4.6 martin component before, since this is a
843 1.376.4.6 martin used spare, and it's saying that
844 1.376.4.6 martin it's replacing the first
845 1.376.4.6 martin component.) On reboot (with
846 1.231 oster autoconfiguration turned on)
847 1.376.4.6 martin sparecol will become the first
848 1.376.4.6 martin component (component0) of this set.
849 1.231 oster */
850 1.231 oster dumpto = sparecol;
851 1.231 oster break;
852 1.231 oster } else if (scol != -1) {
853 1.376.4.6 martin /*
854 1.376.4.6 martin Must be a spared second component.
855 1.376.4.6 martin We'll dump to that if we havn't found
856 1.376.4.6 martin anything else so far.
857 1.231 oster */
858 1.231 oster if (dumpto == -1)
859 1.231 oster dumpto = sparecol;
860 1.231 oster }
861 1.231 oster }
862 1.231 oster }
863 1.376.4.6 martin
864 1.231 oster if (dumpto == -1) {
865 1.231 oster /* we couldn't find any live components to dump to!?!?
866 1.231 oster */
867 1.231 oster error = EINVAL;
868 1.231 oster goto out;
869 1.231 oster }
870 1.231 oster
871 1.231 oster bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
872 1.342 mlelstv if (bdev == NULL) {
873 1.342 mlelstv error = ENXIO;
874 1.342 mlelstv goto out;
875 1.342 mlelstv }
876 1.231 oster
877 1.376.4.6 martin error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
878 1.336 mlelstv blkno, va, nblk * raidPtr->bytesPerSector);
879 1.376.4.6 martin
880 1.231 oster out:
881 1.231 oster raidunlock(rs);
882 1.376.4.6 martin
883 1.231 oster return error;
884 1.1 oster }
885 1.324 mrg
886 1.1 oster /* ARGSUSED */
887 1.324 mrg static int
888 1.222 christos raidopen(dev_t dev, int flags, int fmt,
889 1.222 christos struct lwp *l)
890 1.1 oster {
891 1.9 oster int unit = raidunit(dev);
892 1.1 oster struct raid_softc *rs;
893 1.335 mlelstv struct dk_softc *dksc;
894 1.335 mlelstv int error = 0;
895 1.9 oster int part, pmask;
896 1.9 oster
897 1.327 pgoyette if ((rs = raidget(unit, true)) == NULL)
898 1.300 christos return ENXIO;
899 1.1 oster if ((error = raidlock(rs)) != 0)
900 1.9 oster return (error);
901 1.266 dyoung
902 1.266 dyoung if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
903 1.266 dyoung error = EBUSY;
904 1.266 dyoung goto bad;
905 1.266 dyoung }
906 1.266 dyoung
907 1.335 mlelstv dksc = &rs->sc_dksc;
908 1.1 oster
909 1.1 oster part = DISKPART(dev);
910 1.1 oster pmask = (1 << part);
911 1.1 oster
912 1.335 mlelstv if (!DK_BUSY(dksc, pmask) &&
913 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
914 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
915 1.13 oster have done a configure before this. I DO NOT WANT TO BE
916 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
917 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
918 1.13 oster /* XXX should check to see if we're only open for reading
919 1.13 oster here... If so, we needn't do this, but then need some
920 1.13 oster other way of keeping track of what's happened.. */
921 1.13 oster
922 1.300 christos rf_markalldirty(&rs->sc_r);
923 1.13 oster }
924 1.13 oster
925 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0)
926 1.335 mlelstv error = dk_open(dksc, dev, flags, fmt, l);
927 1.1 oster
928 1.213 christos bad:
929 1.1 oster raidunlock(rs);
930 1.1 oster
931 1.9 oster return (error);
932 1.1 oster
933 1.1 oster
934 1.1 oster }
935 1.324 mrg
936 1.335 mlelstv static int
937 1.335 mlelstv raid_lastclose(device_t self)
938 1.335 mlelstv {
939 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
940 1.335 mlelstv
941 1.335 mlelstv /* Last one... device is not unconfigured yet.
942 1.335 mlelstv Device shutdown has taken care of setting the
943 1.335 mlelstv clean bits if RAIDF_INITED is not set
944 1.335 mlelstv mark things as clean... */
945 1.335 mlelstv
946 1.335 mlelstv rf_update_component_labels(&rs->sc_r,
947 1.335 mlelstv RF_FINAL_COMPONENT_UPDATE);
948 1.335 mlelstv
949 1.335 mlelstv /* pass to unlocked code */
950 1.335 mlelstv if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
951 1.335 mlelstv rs->sc_flags |= RAIDF_DETACH;
952 1.335 mlelstv
953 1.335 mlelstv return 0;
954 1.335 mlelstv }
955 1.335 mlelstv
956 1.1 oster /* ARGSUSED */
957 1.324 mrg static int
958 1.222 christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
959 1.1 oster {
960 1.9 oster int unit = raidunit(dev);
961 1.1 oster struct raid_softc *rs;
962 1.335 mlelstv struct dk_softc *dksc;
963 1.335 mlelstv cfdata_t cf;
964 1.335 mlelstv int error = 0, do_detach = 0, do_put = 0;
965 1.1 oster
966 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
967 1.300 christos return ENXIO;
968 1.335 mlelstv dksc = &rs->sc_dksc;
969 1.1 oster
970 1.1 oster if ((error = raidlock(rs)) != 0)
971 1.1 oster return (error);
972 1.1 oster
973 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) {
974 1.335 mlelstv error = dk_close(dksc, dev, flags, fmt, l);
975 1.335 mlelstv if ((rs->sc_flags & RAIDF_DETACH) != 0)
976 1.335 mlelstv do_detach = 1;
977 1.335 mlelstv } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
978 1.335 mlelstv do_put = 1;
979 1.1 oster
980 1.335 mlelstv raidunlock(rs);
981 1.1 oster
982 1.335 mlelstv if (do_detach) {
983 1.335 mlelstv /* free the pseudo device attach bits */
984 1.335 mlelstv cf = device_cfdata(dksc->sc_dev);
985 1.335 mlelstv error = config_detach(dksc->sc_dev, 0);
986 1.376.4.6 martin if (error == 0)
987 1.335 mlelstv free(cf, M_RAIDFRAME);
988 1.335 mlelstv } else if (do_put) {
989 1.335 mlelstv raidput(rs);
990 1.1 oster }
991 1.186 perry
992 1.335 mlelstv return (error);
993 1.147 oster
994 1.335 mlelstv }
995 1.327 pgoyette
996 1.335 mlelstv static void
997 1.335 mlelstv raid_wakeup(RF_Raid_t *raidPtr)
998 1.335 mlelstv {
999 1.335 mlelstv rf_lock_mutex2(raidPtr->iodone_lock);
1000 1.335 mlelstv rf_signal_cond2(raidPtr->iodone_cv);
1001 1.335 mlelstv rf_unlock_mutex2(raidPtr->iodone_lock);
1002 1.1 oster }
1003 1.1 oster
1004 1.324 mrg static void
1005 1.169 oster raidstrategy(struct buf *bp)
1006 1.1 oster {
1007 1.335 mlelstv unsigned int unit;
1008 1.335 mlelstv struct raid_softc *rs;
1009 1.335 mlelstv struct dk_softc *dksc;
1010 1.1 oster RF_Raid_t *raidPtr;
1011 1.1 oster
1012 1.335 mlelstv unit = raidunit(bp->b_dev);
1013 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) {
1014 1.30 oster bp->b_error = ENXIO;
1015 1.335 mlelstv goto fail;
1016 1.30 oster }
1017 1.300 christos if ((rs->sc_flags & RAIDF_INITED) == 0) {
1018 1.300 christos bp->b_error = ENXIO;
1019 1.335 mlelstv goto fail;
1020 1.1 oster }
1021 1.335 mlelstv dksc = &rs->sc_dksc;
1022 1.300 christos raidPtr = &rs->sc_r;
1023 1.335 mlelstv
1024 1.335 mlelstv /* Queue IO only */
1025 1.335 mlelstv if (dk_strategy_defer(dksc, bp))
1026 1.196 yamt goto done;
1027 1.1 oster
1028 1.335 mlelstv /* schedule the IO to happen at the next convenient time */
1029 1.335 mlelstv raid_wakeup(raidPtr);
1030 1.335 mlelstv
1031 1.335 mlelstv done:
1032 1.335 mlelstv return;
1033 1.335 mlelstv
1034 1.335 mlelstv fail:
1035 1.335 mlelstv bp->b_resid = bp->b_bcount;
1036 1.335 mlelstv biodone(bp);
1037 1.335 mlelstv }
1038 1.335 mlelstv
1039 1.335 mlelstv static int
1040 1.335 mlelstv raid_diskstart(device_t dev, struct buf *bp)
1041 1.335 mlelstv {
1042 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
1043 1.335 mlelstv RF_Raid_t *raidPtr;
1044 1.1 oster
1045 1.335 mlelstv raidPtr = &rs->sc_r;
1046 1.335 mlelstv if (!raidPtr->valid) {
1047 1.335 mlelstv db1_printf(("raid is not valid..\n"));
1048 1.335 mlelstv return ENODEV;
1049 1.196 yamt }
1050 1.285 mrg
1051 1.335 mlelstv /* XXX */
1052 1.335 mlelstv bp->b_resid = 0;
1053 1.335 mlelstv
1054 1.335 mlelstv return raiddoaccess(raidPtr, bp);
1055 1.335 mlelstv }
1056 1.1 oster
1057 1.335 mlelstv void
1058 1.335 mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
1059 1.335 mlelstv {
1060 1.335 mlelstv struct raid_softc *rs;
1061 1.335 mlelstv struct dk_softc *dksc;
1062 1.34 oster
1063 1.335 mlelstv rs = raidPtr->softc;
1064 1.335 mlelstv dksc = &rs->sc_dksc;
1065 1.34 oster
1066 1.335 mlelstv dk_done(dksc, bp);
1067 1.34 oster
1068 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1069 1.335 mlelstv raidPtr->openings++;
1070 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1071 1.196 yamt
1072 1.335 mlelstv /* schedule more IO */
1073 1.335 mlelstv raid_wakeup(raidPtr);
1074 1.1 oster }
1075 1.324 mrg
1076 1.1 oster /* ARGSUSED */
1077 1.324 mrg static int
1078 1.222 christos raidread(dev_t dev, struct uio *uio, int flags)
1079 1.1 oster {
1080 1.9 oster int unit = raidunit(dev);
1081 1.1 oster struct raid_softc *rs;
1082 1.1 oster
1083 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1084 1.300 christos return ENXIO;
1085 1.1 oster
1086 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
1087 1.1 oster return (ENXIO);
1088 1.1 oster
1089 1.1 oster return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
1090 1.1 oster
1091 1.1 oster }
1092 1.324 mrg
1093 1.1 oster /* ARGSUSED */
1094 1.324 mrg static int
1095 1.222 christos raidwrite(dev_t dev, struct uio *uio, int flags)
1096 1.1 oster {
1097 1.9 oster int unit = raidunit(dev);
1098 1.1 oster struct raid_softc *rs;
1099 1.1 oster
1100 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1101 1.300 christos return ENXIO;
1102 1.1 oster
1103 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
1104 1.1 oster return (ENXIO);
1105 1.147 oster
1106 1.1 oster return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
1107 1.1 oster
1108 1.1 oster }
1109 1.1 oster
1110 1.266 dyoung static int
1111 1.266 dyoung raid_detach_unlocked(struct raid_softc *rs)
1112 1.266 dyoung {
1113 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1114 1.335 mlelstv RF_Raid_t *raidPtr;
1115 1.266 dyoung int error;
1116 1.266 dyoung
1117 1.300 christos raidPtr = &rs->sc_r;
1118 1.266 dyoung
1119 1.337 mlelstv if (DK_BUSY(dksc, 0) ||
1120 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1121 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1122 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1123 1.266 dyoung return EBUSY;
1124 1.266 dyoung
1125 1.266 dyoung if ((rs->sc_flags & RAIDF_INITED) == 0)
1126 1.333 mlelstv return 0;
1127 1.333 mlelstv
1128 1.333 mlelstv rs->sc_flags &= ~RAIDF_SHUTDOWN;
1129 1.333 mlelstv
1130 1.333 mlelstv if ((error = rf_Shutdown(raidPtr)) != 0)
1131 1.266 dyoung return error;
1132 1.266 dyoung
1133 1.335 mlelstv rs->sc_flags &= ~RAIDF_INITED;
1134 1.335 mlelstv
1135 1.335 mlelstv /* Kill off any queued buffers */
1136 1.335 mlelstv dk_drain(dksc);
1137 1.335 mlelstv bufq_free(dksc->sc_bufq);
1138 1.335 mlelstv
1139 1.266 dyoung /* Detach the disk. */
1140 1.335 mlelstv dkwedge_delall(&dksc->sc_dkdev);
1141 1.335 mlelstv disk_detach(&dksc->sc_dkdev);
1142 1.335 mlelstv disk_destroy(&dksc->sc_dkdev);
1143 1.335 mlelstv dk_detach(dksc);
1144 1.333 mlelstv
1145 1.266 dyoung return 0;
1146 1.266 dyoung }
1147 1.266 dyoung
1148 1.366 christos static bool
1149 1.366 christos rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
1150 1.366 christos {
1151 1.366 christos switch (cmd) {
1152 1.366 christos case RAIDFRAME_ADD_HOT_SPARE:
1153 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS:
1154 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1155 1.366 christos case RAIDFRAME_CHECK_PARITY:
1156 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1157 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1158 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS:
1159 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1160 1.366 christos case RAIDFRAME_COPYBACK:
1161 1.366 christos case RAIDFRAME_DELETE_COMPONENT:
1162 1.366 christos case RAIDFRAME_FAIL_DISK:
1163 1.366 christos case RAIDFRAME_GET_ACCTOTALS:
1164 1.366 christos case RAIDFRAME_GET_COMPONENT_LABEL:
1165 1.366 christos case RAIDFRAME_GET_INFO:
1166 1.366 christos case RAIDFRAME_GET_SIZE:
1167 1.366 christos case RAIDFRAME_INCORPORATE_HOT_SPARE:
1168 1.366 christos case RAIDFRAME_INIT_LABELS:
1169 1.366 christos case RAIDFRAME_KEEP_ACCTOTALS:
1170 1.366 christos case RAIDFRAME_PARITYMAP_GET_DISABLE:
1171 1.366 christos case RAIDFRAME_PARITYMAP_SET_DISABLE:
1172 1.366 christos case RAIDFRAME_PARITYMAP_SET_PARAMS:
1173 1.366 christos case RAIDFRAME_PARITYMAP_STATUS:
1174 1.366 christos case RAIDFRAME_REBUILD_IN_PLACE:
1175 1.366 christos case RAIDFRAME_REMOVE_HOT_SPARE:
1176 1.366 christos case RAIDFRAME_RESET_ACCTOTALS:
1177 1.366 christos case RAIDFRAME_REWRITEPARITY:
1178 1.366 christos case RAIDFRAME_SET_AUTOCONFIG:
1179 1.366 christos case RAIDFRAME_SET_COMPONENT_LABEL:
1180 1.376.4.4 martin case RAIDFRAME_SET_LAST_UNIT:
1181 1.366 christos case RAIDFRAME_SET_ROOT:
1182 1.376.4.4 martin case RAIDFRAME_SHUTDOWN:
1183 1.369 oster return (rs->sc_flags & RAIDF_INITED) == 0;
1184 1.366 christos }
1185 1.366 christos return false;
1186 1.366 christos }
1187 1.366 christos
1188 1.366 christos int
1189 1.366 christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
1190 1.366 christos {
1191 1.366 christos struct rf_recon_req_internal *rrint;
1192 1.366 christos
1193 1.366 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1194 1.366 christos /* Can't do this on a RAID 0!! */
1195 1.366 christos return EINVAL;
1196 1.366 christos }
1197 1.366 christos
1198 1.366 christos if (rr->col < 0 || rr->col >= raidPtr->numCol) {
1199 1.366 christos /* bad column */
1200 1.366 christos return EINVAL;
1201 1.366 christos }
1202 1.366 christos
1203 1.366 christos rf_lock_mutex2(raidPtr->mutex);
1204 1.366 christos if (raidPtr->status == rf_rs_reconstructing) {
1205 1.366 christos /* you can't fail a disk while we're reconstructing! */
1206 1.366 christos /* XXX wrong for RAID6 */
1207 1.366 christos goto out;
1208 1.366 christos }
1209 1.366 christos if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
1210 1.366 christos (raidPtr->numFailures > 0)) {
1211 1.366 christos /* some other component has failed. Let's not make
1212 1.366 christos things worse. XXX wrong for RAID6 */
1213 1.366 christos goto out;
1214 1.366 christos }
1215 1.366 christos if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1216 1.366 christos /* Can't fail a spared disk! */
1217 1.366 christos goto out;
1218 1.366 christos }
1219 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1220 1.366 christos
1221 1.366 christos /* make a copy of the recon request so that we don't rely on
1222 1.366 christos * the user's buffer */
1223 1.374 christos rrint = RF_Malloc(sizeof(*rrint));
1224 1.366 christos if (rrint == NULL)
1225 1.366 christos return(ENOMEM);
1226 1.366 christos rrint->col = rr->col;
1227 1.366 christos rrint->flags = rr->flags;
1228 1.366 christos rrint->raidPtr = raidPtr;
1229 1.366 christos
1230 1.366 christos return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
1231 1.366 christos rrint, "raid_recon");
1232 1.366 christos out:
1233 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1234 1.366 christos return EINVAL;
1235 1.366 christos }
1236 1.366 christos
1237 1.324 mrg static int
1238 1.367 christos rf_copyinspecificbuf(RF_Config_t *k_cfg)
1239 1.367 christos {
1240 1.367 christos /* allocate a buffer for the layout-specific data, and copy it in */
1241 1.367 christos if (k_cfg->layoutSpecificSize == 0)
1242 1.367 christos return 0;
1243 1.367 christos
1244 1.367 christos if (k_cfg->layoutSpecificSize > 10000) {
1245 1.367 christos /* sanity check */
1246 1.367 christos return EINVAL;
1247 1.367 christos }
1248 1.367 christos
1249 1.367 christos u_char *specific_buf;
1250 1.374 christos specific_buf = RF_Malloc(k_cfg->layoutSpecificSize);
1251 1.367 christos if (specific_buf == NULL)
1252 1.367 christos return ENOMEM;
1253 1.367 christos
1254 1.367 christos int retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1255 1.367 christos k_cfg->layoutSpecificSize);
1256 1.367 christos if (retcode) {
1257 1.367 christos RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1258 1.367 christos db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode));
1259 1.367 christos return retcode;
1260 1.367 christos }
1261 1.367 christos
1262 1.367 christos k_cfg->layoutSpecific = specific_buf;
1263 1.367 christos return 0;
1264 1.367 christos }
1265 1.367 christos
1266 1.367 christos static int
1267 1.367 christos rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg)
1268 1.367 christos {
1269 1.372 christos RF_Config_t *u_cfg = *((RF_Config_t **) data);
1270 1.372 christos
1271 1.367 christos if (rs->sc_r.valid) {
1272 1.367 christos /* There is a valid RAID set running on this unit! */
1273 1.367 christos printf("raid%d: Device already configured!\n", rs->sc_unit);
1274 1.367 christos return EINVAL;
1275 1.367 christos }
1276 1.367 christos
1277 1.367 christos /* copy-in the configuration information */
1278 1.367 christos /* data points to a pointer to the configuration structure */
1279 1.374 christos *k_cfg = RF_Malloc(sizeof(**k_cfg));
1280 1.367 christos if (*k_cfg == NULL) {
1281 1.367 christos return ENOMEM;
1282 1.367 christos }
1283 1.373 christos int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t));
1284 1.367 christos if (retcode == 0)
1285 1.367 christos return 0;
1286 1.367 christos RF_Free(*k_cfg, sizeof(RF_Config_t));
1287 1.367 christos db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode));
1288 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN;
1289 1.367 christos return retcode;
1290 1.367 christos }
1291 1.367 christos
1292 1.367 christos int
1293 1.367 christos rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg)
1294 1.367 christos {
1295 1.376.4.3 martin int retcode, i;
1296 1.367 christos RF_Raid_t *raidPtr = &rs->sc_r;
1297 1.367 christos
1298 1.367 christos rs->sc_flags &= ~RAIDF_SHUTDOWN;
1299 1.367 christos
1300 1.367 christos if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0)
1301 1.367 christos goto out;
1302 1.367 christos
1303 1.367 christos /* should do some kind of sanity check on the configuration.
1304 1.367 christos * Store the sum of all the bytes in the last byte? */
1305 1.367 christos
1306 1.376.4.3 martin /* Force nul-termination on all strings. */
1307 1.376.4.3 martin #define ZERO_FINAL(s) do { s[sizeof(s) - 1] = '\0'; } while (0)
1308 1.376.4.3 martin for (i = 0; i < RF_MAXCOL; i++) {
1309 1.376.4.3 martin ZERO_FINAL(k_cfg->devnames[0][i]);
1310 1.376.4.3 martin }
1311 1.376.4.3 martin for (i = 0; i < RF_MAXSPARE; i++) {
1312 1.376.4.3 martin ZERO_FINAL(k_cfg->spare_names[i]);
1313 1.376.4.3 martin }
1314 1.376.4.3 martin for (i = 0; i < RF_MAXDBGV; i++) {
1315 1.376.4.3 martin ZERO_FINAL(k_cfg->debugVars[i]);
1316 1.376.4.3 martin }
1317 1.376.4.3 martin #undef ZERO_FINAL
1318 1.376.4.3 martin
1319 1.376.4.3 martin /* Check some basic limits. */
1320 1.376.4.3 martin if (k_cfg->numCol >= RF_MAXCOL || k_cfg->numCol < 0) {
1321 1.376.4.3 martin retcode = EINVAL;
1322 1.376.4.3 martin goto out;
1323 1.376.4.3 martin }
1324 1.376.4.3 martin if (k_cfg->numSpare >= RF_MAXSPARE || k_cfg->numSpare < 0) {
1325 1.376.4.3 martin retcode = EINVAL;
1326 1.376.4.3 martin goto out;
1327 1.376.4.3 martin }
1328 1.376.4.3 martin
1329 1.367 christos /* configure the system */
1330 1.367 christos
1331 1.367 christos /*
1332 1.367 christos * Clear the entire RAID descriptor, just to make sure
1333 1.367 christos * there is no stale data left in the case of a
1334 1.367 christos * reconfiguration
1335 1.367 christos */
1336 1.367 christos memset(raidPtr, 0, sizeof(*raidPtr));
1337 1.367 christos raidPtr->softc = rs;
1338 1.367 christos raidPtr->raidid = rs->sc_unit;
1339 1.367 christos
1340 1.367 christos retcode = rf_Configure(raidPtr, k_cfg, NULL);
1341 1.367 christos
1342 1.367 christos if (retcode == 0) {
1343 1.367 christos /* allow this many simultaneous IO's to
1344 1.367 christos this RAID device */
1345 1.367 christos raidPtr->openings = RAIDOUTSTANDING;
1346 1.367 christos
1347 1.367 christos raidinit(rs);
1348 1.367 christos raid_wakeup(raidPtr);
1349 1.367 christos rf_markalldirty(raidPtr);
1350 1.367 christos }
1351 1.367 christos
1352 1.367 christos /* free the buffers. No return code here. */
1353 1.367 christos if (k_cfg->layoutSpecificSize) {
1354 1.367 christos RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize);
1355 1.367 christos }
1356 1.367 christos out:
1357 1.367 christos RF_Free(k_cfg, sizeof(RF_Config_t));
1358 1.367 christos if (retcode) {
1359 1.367 christos /*
1360 1.367 christos * If configuration failed, set sc_flags so that we
1361 1.367 christos * will detach the device when we close it.
1362 1.367 christos */
1363 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN;
1364 1.367 christos }
1365 1.367 christos return retcode;
1366 1.367 christos }
1367 1.367 christos
1368 1.367 christos #if RF_DISABLED
1369 1.367 christos static int
1370 1.367 christos rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1371 1.367 christos {
1372 1.367 christos
1373 1.367 christos /* XXX check the label for valid stuff... */
1374 1.367 christos /* Note that some things *should not* get modified --
1375 1.367 christos the user should be re-initing the labels instead of
1376 1.367 christos trying to patch things.
1377 1.367 christos */
1378 1.367 christos #ifdef DEBUG
1379 1.367 christos int raidid = raidPtr->raidid;
1380 1.367 christos printf("raid%d: Got component label:\n", raidid);
1381 1.367 christos printf("raid%d: Version: %d\n", raidid, clabel->version);
1382 1.367 christos printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1383 1.367 christos printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1384 1.367 christos printf("raid%d: Column: %d\n", raidid, clabel->column);
1385 1.367 christos printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1386 1.367 christos printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1387 1.367 christos printf("raid%d: Status: %d\n", raidid, clabel->status);
1388 1.367 christos #endif /* DEBUG */
1389 1.367 christos clabel->row = 0;
1390 1.367 christos int column = clabel->column;
1391 1.367 christos
1392 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) {
1393 1.367 christos return(EINVAL);
1394 1.367 christos }
1395 1.367 christos
1396 1.367 christos /* XXX this isn't allowed to do anything for now :-) */
1397 1.367 christos
1398 1.367 christos /* XXX and before it is, we need to fill in the rest
1399 1.367 christos of the fields!?!?!?! */
1400 1.367 christos memcpy(raidget_component_label(raidPtr, column),
1401 1.367 christos clabel, sizeof(*clabel));
1402 1.367 christos raidflush_component_label(raidPtr, column);
1403 1.367 christos return 0;
1404 1.367 christos }
1405 1.367 christos #endif
1406 1.367 christos
1407 1.367 christos static int
1408 1.367 christos rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1409 1.367 christos {
1410 1.367 christos /*
1411 1.367 christos we only want the serial number from
1412 1.367 christos the above. We get all the rest of the information
1413 1.367 christos from the config that was used to create this RAID
1414 1.367 christos set.
1415 1.367 christos */
1416 1.367 christos
1417 1.367 christos raidPtr->serial_number = clabel->serial_number;
1418 1.367 christos
1419 1.367 christos for (int column = 0; column < raidPtr->numCol; column++) {
1420 1.367 christos RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column];
1421 1.367 christos if (RF_DEAD_DISK(diskPtr->status))
1422 1.367 christos continue;
1423 1.367 christos RF_ComponentLabel_t *ci_label = raidget_component_label(
1424 1.367 christos raidPtr, column);
1425 1.367 christos /* Zeroing this is important. */
1426 1.367 christos memset(ci_label, 0, sizeof(*ci_label));
1427 1.367 christos raid_init_component_label(raidPtr, ci_label);
1428 1.367 christos ci_label->serial_number = raidPtr->serial_number;
1429 1.367 christos ci_label->row = 0; /* we dont' pretend to support more */
1430 1.367 christos rf_component_label_set_partitionsize(ci_label,
1431 1.367 christos diskPtr->partitionSize);
1432 1.367 christos ci_label->column = column;
1433 1.367 christos raidflush_component_label(raidPtr, column);
1434 1.367 christos /* XXXjld what about the spares? */
1435 1.367 christos }
1436 1.376.4.6 martin
1437 1.367 christos return 0;
1438 1.367 christos }
1439 1.367 christos
1440 1.367 christos static int
1441 1.367 christos rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr)
1442 1.367 christos {
1443 1.367 christos
1444 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1445 1.367 christos /* Can't do this on a RAID 0!! */
1446 1.367 christos return EINVAL;
1447 1.367 christos }
1448 1.367 christos
1449 1.367 christos if (raidPtr->recon_in_progress == 1) {
1450 1.367 christos /* a reconstruct is already in progress! */
1451 1.367 christos return EINVAL;
1452 1.367 christos }
1453 1.367 christos
1454 1.367 christos RF_SingleComponent_t component;
1455 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1456 1.367 christos component.row = 0; /* we don't support any more */
1457 1.367 christos int column = component.column;
1458 1.367 christos
1459 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) {
1460 1.367 christos return EINVAL;
1461 1.367 christos }
1462 1.367 christos
1463 1.367 christos rf_lock_mutex2(raidPtr->mutex);
1464 1.367 christos if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1465 1.367 christos (raidPtr->numFailures > 0)) {
1466 1.367 christos /* XXX 0 above shouldn't be constant!!! */
1467 1.367 christos /* some component other than this has failed.
1468 1.367 christos Let's not make things worse than they already
1469 1.367 christos are... */
1470 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n",
1471 1.367 christos raidPtr->raidid);
1472 1.367 christos printf("raid%d: Col: %d Too many failures.\n",
1473 1.367 christos raidPtr->raidid, column);
1474 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1475 1.367 christos return EINVAL;
1476 1.367 christos }
1477 1.367 christos
1478 1.367 christos if (raidPtr->Disks[column].status == rf_ds_reconstructing) {
1479 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n",
1480 1.367 christos raidPtr->raidid);
1481 1.367 christos printf("raid%d: Col: %d "
1482 1.367 christos "Reconstruction already occurring!\n",
1483 1.367 christos raidPtr->raidid, column);
1484 1.367 christos
1485 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1486 1.367 christos return EINVAL;
1487 1.367 christos }
1488 1.367 christos
1489 1.367 christos if (raidPtr->Disks[column].status == rf_ds_spared) {
1490 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1491 1.367 christos return EINVAL;
1492 1.367 christos }
1493 1.367 christos
1494 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1495 1.367 christos
1496 1.367 christos struct rf_recon_req_internal *rrint;
1497 1.374 christos rrint = RF_Malloc(sizeof(*rrint));
1498 1.367 christos if (rrint == NULL)
1499 1.367 christos return ENOMEM;
1500 1.367 christos
1501 1.367 christos rrint->col = column;
1502 1.367 christos rrint->raidPtr = raidPtr;
1503 1.367 christos
1504 1.367 christos return RF_CREATE_THREAD(raidPtr->recon_thread,
1505 1.367 christos rf_ReconstructInPlaceThread, rrint, "raid_reconip");
1506 1.367 christos }
1507 1.367 christos
1508 1.367 christos static int
1509 1.367 christos rf_check_recon_status(RF_Raid_t *raidPtr, int *data)
1510 1.367 christos {
1511 1.367 christos /*
1512 1.367 christos * This makes no sense on a RAID 0, or if we are not reconstructing
1513 1.367 christos * so tell the user it's done.
1514 1.367 christos */
1515 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0 ||
1516 1.367 christos raidPtr->status != rf_rs_reconstructing) {
1517 1.367 christos *data = 100;
1518 1.367 christos return 0;
1519 1.367 christos }
1520 1.367 christos if (raidPtr->reconControl->numRUsTotal == 0) {
1521 1.367 christos *data = 0;
1522 1.367 christos return 0;
1523 1.367 christos }
1524 1.367 christos *data = (raidPtr->reconControl->numRUsComplete * 100
1525 1.367 christos / raidPtr->reconControl->numRUsTotal);
1526 1.367 christos return 0;
1527 1.367 christos }
1528 1.367 christos
1529 1.376.4.3 martin /*
1530 1.376.4.3 martin * Copy a RF_SingleComponent_t from 'data', ensuring nul-termination
1531 1.376.4.3 martin * on the component_name[] array.
1532 1.376.4.3 martin */
1533 1.376.4.3 martin static void
1534 1.376.4.3 martin rf_copy_single_component(RF_SingleComponent_t *component, void *data)
1535 1.376.4.3 martin {
1536 1.376.4.3 martin
1537 1.376.4.3 martin memcpy(component, data, sizeof *component);
1538 1.376.4.3 martin component->component_name[sizeof(component->component_name) - 1] = '\0';
1539 1.376.4.3 martin }
1540 1.376.4.3 martin
1541 1.367 christos static int
1542 1.225 christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1543 1.1 oster {
1544 1.9 oster int unit = raidunit(dev);
1545 1.335 mlelstv int part, pmask;
1546 1.1 oster struct raid_softc *rs;
1547 1.335 mlelstv struct dk_softc *dksc;
1548 1.367 christos RF_Config_t *k_cfg;
1549 1.42 oster RF_Raid_t *raidPtr;
1550 1.41 oster RF_AccTotals_t *totals;
1551 1.367 christos RF_SingleComponent_t component;
1552 1.371 oster RF_DeviceConfig_t *d_cfg, *ucfgp;
1553 1.11 oster int retcode = 0;
1554 1.11 oster int column;
1555 1.48 oster RF_ComponentLabel_t *clabel;
1556 1.353 mrg int d;
1557 1.1 oster
1558 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1559 1.300 christos return ENXIO;
1560 1.366 christos
1561 1.335 mlelstv dksc = &rs->sc_dksc;
1562 1.300 christos raidPtr = &rs->sc_r;
1563 1.1 oster
1564 1.276 mrg db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1565 1.366 christos (int) DISKPART(dev), (int) unit, cmd));
1566 1.1 oster
1567 1.1 oster /* Must be initialized for these... */
1568 1.366 christos if (rf_must_be_initialized(rs, cmd))
1569 1.366 christos return ENXIO;
1570 1.9 oster
1571 1.358 pgoyette switch (cmd) {
1572 1.1 oster /* configure the system */
1573 1.1 oster case RAIDFRAME_CONFIGURE:
1574 1.367 christos if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0)
1575 1.367 christos return retcode;
1576 1.367 christos return rf_construct(rs, k_cfg);
1577 1.9 oster
1578 1.9 oster /* shutdown the system */
1579 1.1 oster case RAIDFRAME_SHUTDOWN:
1580 1.9 oster
1581 1.266 dyoung part = DISKPART(dev);
1582 1.266 dyoung pmask = (1 << part);
1583 1.266 dyoung
1584 1.367 christos if ((retcode = raidlock(rs)) != 0)
1585 1.367 christos return retcode;
1586 1.1 oster
1587 1.337 mlelstv if (DK_BUSY(dksc, pmask) ||
1588 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1589 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1590 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1591 1.266 dyoung retcode = EBUSY;
1592 1.266 dyoung else {
1593 1.335 mlelstv /* detach and free on close */
1594 1.266 dyoung rs->sc_flags |= RAIDF_SHUTDOWN;
1595 1.266 dyoung retcode = 0;
1596 1.9 oster }
1597 1.11 oster
1598 1.266 dyoung raidunlock(rs);
1599 1.1 oster
1600 1.367 christos return retcode;
1601 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1602 1.353 mrg return rf_get_component_label(raidPtr, data);
1603 1.11 oster
1604 1.367 christos #if RF_DISABLED
1605 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1606 1.367 christos return rf_set_component_label(raidPtr, data);
1607 1.367 christos #endif
1608 1.11 oster
1609 1.367 christos case RAIDFRAME_INIT_LABELS:
1610 1.367 christos return rf_init_component_label(raidPtr, data);
1611 1.12 oster
1612 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1613 1.78 minoura d = rf_set_autoconfig(raidPtr, *(int *) data);
1614 1.186 perry printf("raid%d: New autoconfig value is: %d\n",
1615 1.123 oster raidPtr->raidid, d);
1616 1.78 minoura *(int *) data = d;
1617 1.367 christos return retcode;
1618 1.48 oster
1619 1.48 oster case RAIDFRAME_SET_ROOT:
1620 1.78 minoura d = rf_set_rootpartition(raidPtr, *(int *) data);
1621 1.186 perry printf("raid%d: New rootpartition value is: %d\n",
1622 1.123 oster raidPtr->raidid, d);
1623 1.78 minoura *(int *) data = d;
1624 1.367 christos return retcode;
1625 1.9 oster
1626 1.1 oster /* initialize all parity */
1627 1.1 oster case RAIDFRAME_REWRITEPARITY:
1628 1.1 oster
1629 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1630 1.17 oster /* Parity for RAID 0 is trivially correct */
1631 1.42 oster raidPtr->parity_good = RF_RAID_CLEAN;
1632 1.367 christos return 0;
1633 1.17 oster }
1634 1.186 perry
1635 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1636 1.37 oster /* Re-write is already in progress! */
1637 1.367 christos return EINVAL;
1638 1.37 oster }
1639 1.27 oster
1640 1.367 christos return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1641 1.367 christos rf_RewriteParityThread, raidPtr,"raid_parity");
1642 1.11 oster
1643 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1644 1.376.4.3 martin rf_copy_single_component(&component, data);
1645 1.367 christos return rf_add_hot_spare(raidPtr, &component);
1646 1.11 oster
1647 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1648 1.367 christos return retcode;
1649 1.73 oster
1650 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1651 1.376.4.3 martin rf_copy_single_component(&component, data);
1652 1.367 christos return rf_delete_component(raidPtr, &component);
1653 1.73 oster
1654 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1655 1.376.4.3 martin rf_copy_single_component(&component, data);
1656 1.367 christos return rf_incorporate_hot_spare(raidPtr, &component);
1657 1.11 oster
1658 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1659 1.367 christos return rf_rebuild_in_place(raidPtr, data);
1660 1.24 oster
1661 1.366 christos case RAIDFRAME_GET_INFO:
1662 1.371 oster ucfgp = *(RF_DeviceConfig_t **)data;
1663 1.374 christos d_cfg = RF_Malloc(sizeof(*d_cfg));
1664 1.41 oster if (d_cfg == NULL)
1665 1.366 christos return ENOMEM;
1666 1.353 mrg retcode = rf_get_info(raidPtr, d_cfg);
1667 1.353 mrg if (retcode == 0) {
1668 1.371 oster retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
1669 1.41 oster }
1670 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1671 1.366 christos return retcode;
1672 1.9 oster
1673 1.22 oster case RAIDFRAME_CHECK_PARITY:
1674 1.42 oster *(int *) data = raidPtr->parity_good;
1675 1.367 christos return 0;
1676 1.41 oster
1677 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1678 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1679 1.273 jld return EINVAL;
1680 1.367 christos rf_paritymap_status(raidPtr->parity_map, data);
1681 1.269 jld return 0;
1682 1.269 jld
1683 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1684 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1685 1.273 jld return EINVAL;
1686 1.269 jld if (raidPtr->parity_map == NULL)
1687 1.269 jld return ENOENT; /* ??? */
1688 1.367 christos if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0)
1689 1.269 jld return EINVAL;
1690 1.269 jld return 0;
1691 1.269 jld
1692 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1693 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1694 1.273 jld return EINVAL;
1695 1.269 jld *(int *) data = rf_paritymap_get_disable(raidPtr);
1696 1.269 jld return 0;
1697 1.269 jld
1698 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1699 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1700 1.273 jld return EINVAL;
1701 1.269 jld rf_paritymap_set_disable(raidPtr, *(int *)data);
1702 1.269 jld /* XXX should errors be passed up? */
1703 1.269 jld return 0;
1704 1.269 jld
1705 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1706 1.108 thorpej memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1707 1.367 christos return 0;
1708 1.9 oster
1709 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1710 1.41 oster totals = (RF_AccTotals_t *) data;
1711 1.42 oster *totals = raidPtr->acc_totals;
1712 1.366 christos return 0;
1713 1.9 oster
1714 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1715 1.42 oster raidPtr->keep_acc_totals = *(int *)data;
1716 1.366 christos return 0;
1717 1.9 oster
1718 1.1 oster case RAIDFRAME_GET_SIZE:
1719 1.42 oster *(int *) data = raidPtr->totalSectors;
1720 1.366 christos return 0;
1721 1.1 oster
1722 1.1 oster case RAIDFRAME_FAIL_DISK:
1723 1.366 christos return rf_fail_disk(raidPtr, data);
1724 1.9 oster
1725 1.9 oster /* invoke a copyback operation after recon on whatever disk
1726 1.9 oster * needs it, if any */
1727 1.9 oster case RAIDFRAME_COPYBACK:
1728 1.24 oster
1729 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1730 1.24 oster /* This makes no sense on a RAID 0!! */
1731 1.367 christos return EINVAL;
1732 1.24 oster }
1733 1.24 oster
1734 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1735 1.37 oster /* Copyback is already in progress! */
1736 1.367 christos return EINVAL;
1737 1.37 oster }
1738 1.27 oster
1739 1.367 christos return RF_CREATE_THREAD(raidPtr->copyback_thread,
1740 1.367 christos rf_CopybackThread, raidPtr, "raid_copyback");
1741 1.9 oster
1742 1.1 oster /* return the percentage completion of reconstruction */
1743 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1744 1.367 christos return rf_check_recon_status(raidPtr, data);
1745 1.367 christos
1746 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1747 1.353 mrg rf_check_recon_status_ext(raidPtr, data);
1748 1.367 christos return 0;
1749 1.9 oster
1750 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1751 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1752 1.80 oster /* This makes no sense on a RAID 0, so tell the
1753 1.80 oster user it's done. */
1754 1.80 oster *(int *) data = 100;
1755 1.367 christos return 0;
1756 1.37 oster }
1757 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1758 1.186 perry *(int *) data = 100 *
1759 1.186 perry raidPtr->parity_rewrite_stripes_done /
1760 1.83 oster raidPtr->Layout.numStripe;
1761 1.37 oster } else {
1762 1.37 oster *(int *) data = 100;
1763 1.37 oster }
1764 1.367 christos return 0;
1765 1.37 oster
1766 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1767 1.353 mrg rf_check_parityrewrite_status_ext(raidPtr, data);
1768 1.367 christos return 0;
1769 1.83 oster
1770 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1771 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1772 1.37 oster /* This makes no sense on a RAID 0 */
1773 1.83 oster *(int *) data = 100;
1774 1.367 christos return 0;
1775 1.37 oster }
1776 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1777 1.42 oster *(int *) data = 100 * raidPtr->copyback_stripes_done /
1778 1.42 oster raidPtr->Layout.numStripe;
1779 1.37 oster } else {
1780 1.37 oster *(int *) data = 100;
1781 1.37 oster }
1782 1.367 christos return 0;
1783 1.37 oster
1784 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1785 1.353 mrg rf_check_copyback_status_ext(raidPtr, data);
1786 1.353 mrg return 0;
1787 1.37 oster
1788 1.341 christos case RAIDFRAME_SET_LAST_UNIT:
1789 1.341 christos for (column = 0; column < raidPtr->numCol; column++)
1790 1.341 christos if (raidPtr->Disks[column].status != rf_ds_optimal)
1791 1.341 christos return EBUSY;
1792 1.341 christos
1793 1.341 christos for (column = 0; column < raidPtr->numCol; column++) {
1794 1.341 christos clabel = raidget_component_label(raidPtr, column);
1795 1.341 christos clabel->last_unit = *(int *)data;
1796 1.341 christos raidflush_component_label(raidPtr, column);
1797 1.341 christos }
1798 1.341 christos rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1799 1.341 christos return 0;
1800 1.341 christos
1801 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1802 1.9 oster * need a spare table. this ioctl does not return until a
1803 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1804 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1805 1.9 oster * -- I should either compute the spare table in the kernel,
1806 1.9 oster * or have a different -- XXX XXX -- interface (a different
1807 1.42 oster * character device) for delivering the table -- XXX */
1808 1.367 christos #if RF_DISABLED
1809 1.1 oster case RAIDFRAME_SPARET_WAIT:
1810 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1811 1.9 oster while (!rf_sparet_wait_queue)
1812 1.287 mrg rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1813 1.367 christos RF_SparetWait_t *waitreq = rf_sparet_wait_queue;
1814 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1815 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1816 1.9 oster
1817 1.42 oster /* structure assignment */
1818 1.186 perry *((RF_SparetWait_t *) data) = *waitreq;
1819 1.9 oster
1820 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1821 1.367 christos return 0;
1822 1.9 oster
1823 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1824 1.9 oster * code in it that will cause the dameon to exit */
1825 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1826 1.374 christos waitreq = RF_Malloc(sizeof(*waitreq));
1827 1.1 oster waitreq->fcol = -1;
1828 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1829 1.1 oster waitreq->next = rf_sparet_wait_queue;
1830 1.1 oster rf_sparet_wait_queue = waitreq;
1831 1.367 christos rf_broadcast_cond2(rf_sparet_wait_cv);
1832 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1833 1.367 christos return 0;
1834 1.1 oster
1835 1.9 oster /* used by the spare table daemon to deliver a spare table
1836 1.9 oster * into the kernel */
1837 1.1 oster case RAIDFRAME_SEND_SPARET:
1838 1.9 oster
1839 1.1 oster /* install the spare table */
1840 1.42 oster retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1841 1.9 oster
1842 1.9 oster /* respond to the requestor. the return status of the spare
1843 1.9 oster * table installation is passed in the "fcol" field */
1844 1.374 christos waitred = RF_Malloc(sizeof(*waitreq));
1845 1.1 oster waitreq->fcol = retcode;
1846 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1847 1.1 oster waitreq->next = rf_sparet_resp_queue;
1848 1.1 oster rf_sparet_resp_queue = waitreq;
1849 1.287 mrg rf_broadcast_cond2(rf_sparet_resp_cv);
1850 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1851 1.9 oster
1852 1.367 christos return retcode;
1853 1.367 christos #endif
1854 1.367 christos default:
1855 1.372 christos /*
1856 1.372 christos * Don't bother trying to load compat modules
1857 1.372 christos * if it is not our ioctl. This is more efficient
1858 1.372 christos * and makes rump tests not depend on compat code
1859 1.372 christos */
1860 1.372 christos if (IOCGROUP(cmd) != 'r')
1861 1.372 christos break;
1862 1.367 christos #ifdef _LP64
1863 1.367 christos if ((l->l_proc->p_flag & PK_32) != 0) {
1864 1.367 christos module_autoload("compat_netbsd32_raid",
1865 1.367 christos MODULE_CLASS_EXEC);
1866 1.376 pgoyette MODULE_HOOK_CALL(raidframe_netbsd32_ioctl_hook,
1867 1.367 christos (rs, cmd, data), enosys(), retcode);
1868 1.367 christos if (retcode != EPASSTHROUGH)
1869 1.367 christos return retcode;
1870 1.367 christos }
1871 1.1 oster #endif
1872 1.367 christos module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
1873 1.376 pgoyette MODULE_HOOK_CALL(raidframe_ioctl_80_hook,
1874 1.367 christos (rs, cmd, data), enosys(), retcode);
1875 1.367 christos if (retcode != EPASSTHROUGH)
1876 1.367 christos return retcode;
1877 1.1 oster
1878 1.367 christos module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
1879 1.376 pgoyette MODULE_HOOK_CALL(raidframe_ioctl_50_hook,
1880 1.367 christos (rs, cmd, data), enosys(), retcode);
1881 1.367 christos if (retcode != EPASSTHROUGH)
1882 1.367 christos return retcode;
1883 1.36 oster break; /* fall through to the os-specific code below */
1884 1.1 oster
1885 1.1 oster }
1886 1.9 oster
1887 1.42 oster if (!raidPtr->valid)
1888 1.9 oster return (EINVAL);
1889 1.9 oster
1890 1.1 oster /*
1891 1.1 oster * Add support for "regular" device ioctls here.
1892 1.1 oster */
1893 1.376.4.6 martin
1894 1.1 oster switch (cmd) {
1895 1.348 jdolecek case DIOCGCACHE:
1896 1.348 jdolecek retcode = rf_get_component_caches(raidPtr, (int *)data);
1897 1.348 jdolecek break;
1898 1.348 jdolecek
1899 1.252 oster case DIOCCACHESYNC:
1900 1.346 jdolecek retcode = rf_sync_component_caches(raidPtr);
1901 1.347 jdolecek break;
1902 1.298 buhrow
1903 1.1 oster default:
1904 1.346 jdolecek retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1905 1.347 jdolecek break;
1906 1.1 oster }
1907 1.346 jdolecek
1908 1.9 oster return (retcode);
1909 1.1 oster
1910 1.1 oster }
1911 1.1 oster
1912 1.1 oster
1913 1.9 oster /* raidinit -- complete the rest of the initialization for the
1914 1.1 oster RAIDframe device. */
1915 1.1 oster
1916 1.1 oster
1917 1.59 oster static void
1918 1.300 christos raidinit(struct raid_softc *rs)
1919 1.1 oster {
1920 1.262 cegger cfdata_t cf;
1921 1.335 mlelstv unsigned int unit;
1922 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1923 1.300 christos RF_Raid_t *raidPtr = &rs->sc_r;
1924 1.335 mlelstv device_t dev;
1925 1.1 oster
1926 1.59 oster unit = raidPtr->raidid;
1927 1.1 oster
1928 1.179 itojun /* XXX doesn't check bounds. */
1929 1.335 mlelstv snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1930 1.1 oster
1931 1.217 oster /* attach the pseudo device */
1932 1.217 oster cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1933 1.217 oster cf->cf_name = raid_cd.cd_name;
1934 1.217 oster cf->cf_atname = raid_cd.cd_name;
1935 1.217 oster cf->cf_unit = unit;
1936 1.217 oster cf->cf_fstate = FSTATE_STAR;
1937 1.217 oster
1938 1.335 mlelstv dev = config_attach_pseudo(cf);
1939 1.335 mlelstv if (dev == NULL) {
1940 1.217 oster printf("raid%d: config_attach_pseudo failed\n",
1941 1.270 christos raidPtr->raidid);
1942 1.265 pooka free(cf, M_RAIDFRAME);
1943 1.265 pooka return;
1944 1.217 oster }
1945 1.217 oster
1946 1.335 mlelstv /* provide a backpointer to the real softc */
1947 1.335 mlelstv raidsoftc(dev) = rs;
1948 1.335 mlelstv
1949 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1950 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1951 1.9 oster * with disklabels. */
1952 1.335 mlelstv dk_init(dksc, dev, DKTYPE_RAID);
1953 1.335 mlelstv disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1954 1.1 oster
1955 1.1 oster /* XXX There may be a weird interaction here between this, and
1956 1.9 oster * protectedSectors, as used in RAIDframe. */
1957 1.11 oster
1958 1.9 oster rs->sc_size = raidPtr->totalSectors;
1959 1.234 oster
1960 1.335 mlelstv /* Attach dk and disk subsystems */
1961 1.335 mlelstv dk_attach(dksc);
1962 1.335 mlelstv disk_attach(&dksc->sc_dkdev);
1963 1.318 mlelstv rf_set_geometry(rs, raidPtr);
1964 1.318 mlelstv
1965 1.335 mlelstv bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1966 1.335 mlelstv
1967 1.335 mlelstv /* mark unit as usuable */
1968 1.335 mlelstv rs->sc_flags |= RAIDF_INITED;
1969 1.234 oster
1970 1.335 mlelstv dkwedge_discover(&dksc->sc_dkdev);
1971 1.1 oster }
1972 1.335 mlelstv
1973 1.150 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1974 1.1 oster /* wake up the daemon & tell it to get us a spare table
1975 1.1 oster * XXX
1976 1.9 oster * the entries in the queues should be tagged with the raidPtr
1977 1.186 perry * so that in the extremely rare case that two recons happen at once,
1978 1.11 oster * we know for which device were requesting a spare table
1979 1.1 oster * XXX
1980 1.186 perry *
1981 1.39 oster * XXX This code is not currently used. GO
1982 1.1 oster */
1983 1.186 perry int
1984 1.169 oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1985 1.9 oster {
1986 1.9 oster int retcode;
1987 1.9 oster
1988 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1989 1.9 oster req->next = rf_sparet_wait_queue;
1990 1.9 oster rf_sparet_wait_queue = req;
1991 1.289 mrg rf_broadcast_cond2(rf_sparet_wait_cv);
1992 1.9 oster
1993 1.9 oster /* mpsleep unlocks the mutex */
1994 1.9 oster while (!rf_sparet_resp_queue) {
1995 1.289 mrg rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1996 1.9 oster }
1997 1.9 oster req = rf_sparet_resp_queue;
1998 1.9 oster rf_sparet_resp_queue = req->next;
1999 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
2000 1.9 oster
2001 1.9 oster retcode = req->fcol;
2002 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
2003 1.9 oster * alloc'd */
2004 1.9 oster return (retcode);
2005 1.1 oster }
2006 1.150 oster #endif
2007 1.39 oster
2008 1.186 perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
2009 1.11 oster * bp & passes it down.
2010 1.1 oster * any calls originating in the kernel must use non-blocking I/O
2011 1.1 oster * do some extra sanity checking to return "appropriate" error values for
2012 1.1 oster * certain conditions (to make some standard utilities work)
2013 1.186 perry *
2014 1.34 oster * Formerly known as: rf_DoAccessKernel
2015 1.1 oster */
2016 1.34 oster void
2017 1.169 oster raidstart(RF_Raid_t *raidPtr)
2018 1.1 oster {
2019 1.1 oster struct raid_softc *rs;
2020 1.335 mlelstv struct dk_softc *dksc;
2021 1.1 oster
2022 1.300 christos rs = raidPtr->softc;
2023 1.335 mlelstv dksc = &rs->sc_dksc;
2024 1.56 oster /* quick check to see if anything has died recently */
2025 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
2026 1.56 oster if (raidPtr->numNewFailures > 0) {
2027 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
2028 1.186 perry rf_update_component_labels(raidPtr,
2029 1.91 oster RF_NORMAL_COMPONENT_UPDATE);
2030 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
2031 1.56 oster raidPtr->numNewFailures--;
2032 1.56 oster }
2033 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
2034 1.56 oster
2035 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) {
2036 1.335 mlelstv printf("raid%d: raidstart not ready\n", raidPtr->raidid);
2037 1.335 mlelstv return;
2038 1.335 mlelstv }
2039 1.34 oster
2040 1.335 mlelstv dk_start(dksc, NULL);
2041 1.335 mlelstv }
2042 1.34 oster
2043 1.335 mlelstv static int
2044 1.335 mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
2045 1.335 mlelstv {
2046 1.335 mlelstv RF_SectorCount_t num_blocks, pb, sum;
2047 1.335 mlelstv RF_RaidAddr_t raid_addr;
2048 1.335 mlelstv daddr_t blocknum;
2049 1.335 mlelstv int do_async;
2050 1.335 mlelstv int rc;
2051 1.186 perry
2052 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
2053 1.335 mlelstv if (raidPtr->openings == 0) {
2054 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
2055 1.335 mlelstv return EAGAIN;
2056 1.335 mlelstv }
2057 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
2058 1.186 perry
2059 1.335 mlelstv blocknum = bp->b_rawblkno;
2060 1.186 perry
2061 1.335 mlelstv db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
2062 1.335 mlelstv (int) blocknum));
2063 1.1 oster
2064 1.335 mlelstv db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
2065 1.335 mlelstv db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
2066 1.1 oster
2067 1.335 mlelstv /* *THIS* is where we adjust what block we're going to...
2068 1.335 mlelstv * but DO NOT TOUCH bp->b_blkno!!! */
2069 1.335 mlelstv raid_addr = blocknum;
2070 1.335 mlelstv
2071 1.335 mlelstv num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
2072 1.335 mlelstv pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
2073 1.335 mlelstv sum = raid_addr + num_blocks + pb;
2074 1.335 mlelstv if (1 || rf_debugKernelAccess) {
2075 1.335 mlelstv db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
2076 1.335 mlelstv (int) raid_addr, (int) sum, (int) num_blocks,
2077 1.335 mlelstv (int) pb, (int) bp->b_resid));
2078 1.335 mlelstv }
2079 1.335 mlelstv if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
2080 1.335 mlelstv || (sum < num_blocks) || (sum < pb)) {
2081 1.335 mlelstv rc = ENOSPC;
2082 1.335 mlelstv goto done;
2083 1.335 mlelstv }
2084 1.335 mlelstv /*
2085 1.335 mlelstv * XXX rf_DoAccess() should do this, not just DoAccessKernel()
2086 1.335 mlelstv */
2087 1.186 perry
2088 1.335 mlelstv if (bp->b_bcount & raidPtr->sectorMask) {
2089 1.335 mlelstv rc = ENOSPC;
2090 1.335 mlelstv goto done;
2091 1.335 mlelstv }
2092 1.335 mlelstv db1_printf(("Calling DoAccess..\n"));
2093 1.99 oster
2094 1.20 oster
2095 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
2096 1.335 mlelstv raidPtr->openings--;
2097 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
2098 1.20 oster
2099 1.335 mlelstv /*
2100 1.335 mlelstv * Everything is async.
2101 1.335 mlelstv */
2102 1.335 mlelstv do_async = 1;
2103 1.20 oster
2104 1.335 mlelstv /* don't ever condition on bp->b_flags & B_WRITE.
2105 1.335 mlelstv * always condition on B_READ instead */
2106 1.7 explorer
2107 1.335 mlelstv rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2108 1.335 mlelstv RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2109 1.335 mlelstv do_async, raid_addr, num_blocks,
2110 1.335 mlelstv bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2111 1.335 mlelstv
2112 1.335 mlelstv done:
2113 1.335 mlelstv return rc;
2114 1.335 mlelstv }
2115 1.7 explorer
2116 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2117 1.1 oster
2118 1.186 perry int
2119 1.169 oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2120 1.1 oster {
2121 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2122 1.1 oster struct buf *bp;
2123 1.9 oster
2124 1.1 oster req->queue = queue;
2125 1.1 oster bp = req->bp;
2126 1.1 oster
2127 1.1 oster switch (req->type) {
2128 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2129 1.1 oster /* XXX need to do something extra here.. */
2130 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
2131 1.9 oster * and I'd like folks to report it... GO */
2132 1.1 oster printf(("WAKEUP CALLED\n"));
2133 1.1 oster queue->numOutstanding++;
2134 1.1 oster
2135 1.197 oster bp->b_flags = 0;
2136 1.207 simonb bp->b_private = req;
2137 1.1 oster
2138 1.194 oster KernelWakeupFunc(bp);
2139 1.1 oster break;
2140 1.9 oster
2141 1.1 oster case RF_IO_TYPE_READ:
2142 1.1 oster case RF_IO_TYPE_WRITE:
2143 1.175 oster #if RF_ACC_TRACE > 0
2144 1.1 oster if (req->tracerec) {
2145 1.1 oster RF_ETIMER_START(req->tracerec->timer);
2146 1.1 oster }
2147 1.175 oster #endif
2148 1.194 oster InitBP(bp, queue->rf_cinfo->ci_vp,
2149 1.197 oster op, queue->rf_cinfo->ci_dev,
2150 1.9 oster req->sectorOffset, req->numSector,
2151 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
2152 1.9 oster queue->raidPtr->logBytesPerSector, req->b_proc);
2153 1.1 oster
2154 1.1 oster if (rf_debugKernelAccess) {
2155 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
2156 1.9 oster (long) bp->b_blkno));
2157 1.1 oster }
2158 1.1 oster queue->numOutstanding++;
2159 1.1 oster queue->last_deq_sector = req->sectorOffset;
2160 1.9 oster /* acc wouldn't have been let in if there were any pending
2161 1.9 oster * reqs at any other priority */
2162 1.1 oster queue->curPriority = req->priority;
2163 1.1 oster
2164 1.166 oster db1_printf(("Going for %c to unit %d col %d\n",
2165 1.186 perry req->type, queue->raidPtr->raidid,
2166 1.166 oster queue->col));
2167 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
2168 1.9 oster (int) req->sectorOffset, (int) req->numSector,
2169 1.9 oster (int) (req->numSector <<
2170 1.9 oster queue->raidPtr->logBytesPerSector),
2171 1.9 oster (int) queue->raidPtr->logBytesPerSector));
2172 1.256 oster
2173 1.256 oster /*
2174 1.376.4.6 martin * XXX: drop lock here since this can block at
2175 1.256 oster * least with backing SCSI devices. Retake it
2176 1.256 oster * to minimize fuss with calling interfaces.
2177 1.256 oster */
2178 1.256 oster
2179 1.256 oster RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2180 1.247 oster bdev_strategy(bp);
2181 1.256 oster RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2182 1.1 oster break;
2183 1.9 oster
2184 1.1 oster default:
2185 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
2186 1.1 oster }
2187 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
2188 1.134 oster
2189 1.9 oster return (0);
2190 1.1 oster }
2191 1.9 oster /* this is the callback function associated with a I/O invoked from
2192 1.1 oster kernel code.
2193 1.1 oster */
2194 1.186 perry static void
2195 1.194 oster KernelWakeupFunc(struct buf *bp)
2196 1.9 oster {
2197 1.9 oster RF_DiskQueueData_t *req = NULL;
2198 1.9 oster RF_DiskQueue_t *queue;
2199 1.9 oster
2200 1.9 oster db1_printf(("recovering the request queue:\n"));
2201 1.285 mrg
2202 1.207 simonb req = bp->b_private;
2203 1.1 oster
2204 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
2205 1.1 oster
2206 1.286 mrg rf_lock_mutex2(queue->raidPtr->iodone_lock);
2207 1.285 mrg
2208 1.175 oster #if RF_ACC_TRACE > 0
2209 1.9 oster if (req->tracerec) {
2210 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
2211 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
2212 1.288 mrg rf_lock_mutex2(rf_tracing_mutex);
2213 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2214 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2215 1.9 oster req->tracerec->num_phys_ios++;
2216 1.288 mrg rf_unlock_mutex2(rf_tracing_mutex);
2217 1.9 oster }
2218 1.175 oster #endif
2219 1.1 oster
2220 1.230 ad /* XXX Ok, let's get aggressive... If b_error is set, let's go
2221 1.9 oster * ballistic, and mark the component as hosed... */
2222 1.36 oster
2223 1.230 ad if (bp->b_error != 0) {
2224 1.9 oster /* Mark the disk as dead */
2225 1.9 oster /* but only mark it once... */
2226 1.186 perry /* and only if it wouldn't leave this RAID set
2227 1.183 oster completely broken */
2228 1.193 oster if (((queue->raidPtr->Disks[queue->col].status ==
2229 1.193 oster rf_ds_optimal) ||
2230 1.193 oster (queue->raidPtr->Disks[queue->col].status ==
2231 1.376.4.6 martin rf_ds_used_spare)) &&
2232 1.193 oster (queue->raidPtr->numFailures <
2233 1.204 simonb queue->raidPtr->Layout.map->faultsTolerated)) {
2234 1.322 prlw1 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2235 1.136 oster queue->raidPtr->raidid,
2236 1.322 prlw1 bp->b_error,
2237 1.166 oster queue->raidPtr->Disks[queue->col].devname);
2238 1.166 oster queue->raidPtr->Disks[queue->col].status =
2239 1.9 oster rf_ds_failed;
2240 1.166 oster queue->raidPtr->status = rf_rs_degraded;
2241 1.9 oster queue->raidPtr->numFailures++;
2242 1.56 oster queue->raidPtr->numNewFailures++;
2243 1.9 oster } else { /* Disk is already dead... */
2244 1.9 oster /* printf("Disk already marked as dead!\n"); */
2245 1.9 oster }
2246 1.4 oster
2247 1.9 oster }
2248 1.4 oster
2249 1.143 oster /* Fill in the error value */
2250 1.230 ad req->error = bp->b_error;
2251 1.143 oster
2252 1.143 oster /* Drop this one on the "finished" queue... */
2253 1.143 oster TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2254 1.143 oster
2255 1.143 oster /* Let the raidio thread know there is work to be done. */
2256 1.286 mrg rf_signal_cond2(queue->raidPtr->iodone_cv);
2257 1.143 oster
2258 1.286 mrg rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2259 1.1 oster }
2260 1.1 oster
2261 1.1 oster
2262 1.1 oster /*
2263 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
2264 1.1 oster */
2265 1.186 perry static void
2266 1.169 oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2267 1.225 christos RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2268 1.169 oster void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2269 1.169 oster struct proc *b_proc)
2270 1.9 oster {
2271 1.9 oster /* bp->b_flags = B_PHYS | rw_flag; */
2272 1.242 ad bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2273 1.242 ad bp->b_oflags = 0;
2274 1.242 ad bp->b_cflags = 0;
2275 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
2276 1.9 oster bp->b_bufsize = bp->b_bcount;
2277 1.9 oster bp->b_error = 0;
2278 1.9 oster bp->b_dev = dev;
2279 1.187 christos bp->b_data = bf;
2280 1.275 mrg bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2281 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2282 1.1 oster if (bp->b_bcount == 0) {
2283 1.141 provos panic("bp->b_bcount is zero in InitBP!!");
2284 1.1 oster }
2285 1.161 fvdl bp->b_proc = b_proc;
2286 1.9 oster bp->b_iodone = cbFunc;
2287 1.207 simonb bp->b_private = cbArg;
2288 1.1 oster }
2289 1.1 oster
2290 1.1 oster /*
2291 1.1 oster * Wait interruptibly for an exclusive lock.
2292 1.1 oster *
2293 1.1 oster * XXX
2294 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2295 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2296 1.1 oster */
2297 1.1 oster static int
2298 1.169 oster raidlock(struct raid_softc *rs)
2299 1.1 oster {
2300 1.9 oster int error;
2301 1.1 oster
2302 1.335 mlelstv error = 0;
2303 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2304 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2305 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2306 1.327 pgoyette error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2307 1.327 pgoyette if (error != 0)
2308 1.335 mlelstv goto done;
2309 1.1 oster }
2310 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2311 1.335 mlelstv done:
2312 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2313 1.335 mlelstv return (error);
2314 1.1 oster }
2315 1.1 oster /*
2316 1.1 oster * Unlock and wake up any waiters.
2317 1.1 oster */
2318 1.1 oster static void
2319 1.169 oster raidunlock(struct raid_softc *rs)
2320 1.1 oster {
2321 1.1 oster
2322 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2323 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2324 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2325 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2326 1.327 pgoyette cv_broadcast(&rs->sc_cv);
2327 1.1 oster }
2328 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2329 1.11 oster }
2330 1.186 perry
2331 1.11 oster
2332 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2333 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2334 1.269 jld #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2335 1.11 oster
2336 1.276 mrg static daddr_t
2337 1.276 mrg rf_component_info_offset(void)
2338 1.276 mrg {
2339 1.276 mrg
2340 1.276 mrg return RF_COMPONENT_INFO_OFFSET;
2341 1.276 mrg }
2342 1.276 mrg
2343 1.276 mrg static daddr_t
2344 1.276 mrg rf_component_info_size(unsigned secsize)
2345 1.276 mrg {
2346 1.276 mrg daddr_t info_size;
2347 1.276 mrg
2348 1.276 mrg KASSERT(secsize);
2349 1.276 mrg if (secsize > RF_COMPONENT_INFO_SIZE)
2350 1.276 mrg info_size = secsize;
2351 1.276 mrg else
2352 1.276 mrg info_size = RF_COMPONENT_INFO_SIZE;
2353 1.276 mrg
2354 1.276 mrg return info_size;
2355 1.276 mrg }
2356 1.276 mrg
2357 1.276 mrg static daddr_t
2358 1.276 mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
2359 1.276 mrg {
2360 1.276 mrg daddr_t map_offset;
2361 1.276 mrg
2362 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2363 1.276 mrg if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2364 1.276 mrg map_offset = raidPtr->bytesPerSector;
2365 1.276 mrg else
2366 1.276 mrg map_offset = RF_COMPONENT_INFO_SIZE;
2367 1.276 mrg map_offset += rf_component_info_offset();
2368 1.276 mrg
2369 1.276 mrg return map_offset;
2370 1.276 mrg }
2371 1.276 mrg
2372 1.276 mrg static daddr_t
2373 1.276 mrg rf_parity_map_size(RF_Raid_t *raidPtr)
2374 1.276 mrg {
2375 1.276 mrg daddr_t map_size;
2376 1.276 mrg
2377 1.276 mrg if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2378 1.276 mrg map_size = raidPtr->bytesPerSector;
2379 1.276 mrg else
2380 1.276 mrg map_size = RF_PARITY_MAP_SIZE;
2381 1.276 mrg
2382 1.276 mrg return map_size;
2383 1.276 mrg }
2384 1.276 mrg
2385 1.186 perry int
2386 1.269 jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2387 1.12 oster {
2388 1.269 jld RF_ComponentLabel_t *clabel;
2389 1.269 jld
2390 1.269 jld clabel = raidget_component_label(raidPtr, col);
2391 1.269 jld clabel->clean = RF_RAID_CLEAN;
2392 1.269 jld raidflush_component_label(raidPtr, col);
2393 1.12 oster return(0);
2394 1.12 oster }
2395 1.12 oster
2396 1.12 oster
2397 1.186 perry int
2398 1.269 jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2399 1.11 oster {
2400 1.269 jld RF_ComponentLabel_t *clabel;
2401 1.269 jld
2402 1.269 jld clabel = raidget_component_label(raidPtr, col);
2403 1.269 jld clabel->clean = RF_RAID_DIRTY;
2404 1.269 jld raidflush_component_label(raidPtr, col);
2405 1.11 oster return(0);
2406 1.11 oster }
2407 1.11 oster
2408 1.11 oster int
2409 1.269 jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2410 1.269 jld {
2411 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2412 1.276 mrg return raidread_component_label(raidPtr->bytesPerSector,
2413 1.276 mrg raidPtr->Disks[col].dev,
2414 1.376.4.6 martin raidPtr->raid_cinfo[col].ci_vp,
2415 1.269 jld &raidPtr->raid_cinfo[col].ci_label);
2416 1.269 jld }
2417 1.269 jld
2418 1.269 jld RF_ComponentLabel_t *
2419 1.269 jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2420 1.269 jld {
2421 1.269 jld return &raidPtr->raid_cinfo[col].ci_label;
2422 1.269 jld }
2423 1.269 jld
2424 1.269 jld int
2425 1.269 jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2426 1.269 jld {
2427 1.269 jld RF_ComponentLabel_t *label;
2428 1.269 jld
2429 1.269 jld label = &raidPtr->raid_cinfo[col].ci_label;
2430 1.269 jld label->mod_counter = raidPtr->mod_counter;
2431 1.269 jld #ifndef RF_NO_PARITY_MAP
2432 1.269 jld label->parity_map_modcount = label->mod_counter;
2433 1.269 jld #endif
2434 1.276 mrg return raidwrite_component_label(raidPtr->bytesPerSector,
2435 1.276 mrg raidPtr->Disks[col].dev,
2436 1.269 jld raidPtr->raid_cinfo[col].ci_vp, label);
2437 1.269 jld }
2438 1.269 jld
2439 1.269 jld
2440 1.269 jld static int
2441 1.276 mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2442 1.269 jld RF_ComponentLabel_t *clabel)
2443 1.269 jld {
2444 1.376.4.6 martin return raidread_component_area(dev, b_vp, clabel,
2445 1.269 jld sizeof(RF_ComponentLabel_t),
2446 1.276 mrg rf_component_info_offset(),
2447 1.276 mrg rf_component_info_size(secsize));
2448 1.269 jld }
2449 1.269 jld
2450 1.269 jld /* ARGSUSED */
2451 1.269 jld static int
2452 1.269 jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2453 1.269 jld size_t msize, daddr_t offset, daddr_t dsize)
2454 1.11 oster {
2455 1.11 oster struct buf *bp;
2456 1.11 oster int error;
2457 1.186 perry
2458 1.11 oster /* XXX should probably ensure that we don't try to do this if
2459 1.186 perry someone has changed rf_protected_sectors. */
2460 1.11 oster
2461 1.98 oster if (b_vp == NULL) {
2462 1.98 oster /* For whatever reason, this component is not valid.
2463 1.98 oster Don't try to read a component label from it. */
2464 1.98 oster return(EINVAL);
2465 1.98 oster }
2466 1.98 oster
2467 1.11 oster /* get a block of the appropriate size... */
2468 1.269 jld bp = geteblk((int)dsize);
2469 1.11 oster bp->b_dev = dev;
2470 1.11 oster
2471 1.11 oster /* get our ducks in a row for the read */
2472 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2473 1.269 jld bp->b_bcount = dsize;
2474 1.100 chs bp->b_flags |= B_READ;
2475 1.269 jld bp->b_resid = dsize;
2476 1.11 oster
2477 1.331 mlelstv bdev_strategy(bp);
2478 1.340 christos error = biowait(bp);
2479 1.11 oster
2480 1.11 oster if (!error) {
2481 1.269 jld memcpy(data, bp->b_data, msize);
2482 1.204 simonb }
2483 1.11 oster
2484 1.233 ad brelse(bp, 0);
2485 1.11 oster return(error);
2486 1.11 oster }
2487 1.269 jld
2488 1.269 jld
2489 1.269 jld static int
2490 1.276 mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2491 1.276 mrg RF_ComponentLabel_t *clabel)
2492 1.269 jld {
2493 1.269 jld return raidwrite_component_area(dev, b_vp, clabel,
2494 1.269 jld sizeof(RF_ComponentLabel_t),
2495 1.276 mrg rf_component_info_offset(),
2496 1.276 mrg rf_component_info_size(secsize), 0);
2497 1.269 jld }
2498 1.269 jld
2499 1.11 oster /* ARGSUSED */
2500 1.269 jld static int
2501 1.376.4.6 martin raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2502 1.269 jld size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2503 1.11 oster {
2504 1.11 oster struct buf *bp;
2505 1.11 oster int error;
2506 1.11 oster
2507 1.11 oster /* get a block of the appropriate size... */
2508 1.269 jld bp = geteblk((int)dsize);
2509 1.11 oster bp->b_dev = dev;
2510 1.11 oster
2511 1.11 oster /* get our ducks in a row for the write */
2512 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2513 1.269 jld bp->b_bcount = dsize;
2514 1.269 jld bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2515 1.269 jld bp->b_resid = dsize;
2516 1.11 oster
2517 1.269 jld memset(bp->b_data, 0, dsize);
2518 1.269 jld memcpy(bp->b_data, data, msize);
2519 1.11 oster
2520 1.331 mlelstv bdev_strategy(bp);
2521 1.269 jld if (asyncp)
2522 1.269 jld return 0;
2523 1.340 christos error = biowait(bp);
2524 1.233 ad brelse(bp, 0);
2525 1.11 oster if (error) {
2526 1.48 oster #if 1
2527 1.11 oster printf("Failed to write RAID component info!\n");
2528 1.48 oster #endif
2529 1.11 oster }
2530 1.11 oster
2531 1.11 oster return(error);
2532 1.1 oster }
2533 1.12 oster
2534 1.186 perry void
2535 1.269 jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2536 1.269 jld {
2537 1.269 jld int c;
2538 1.269 jld
2539 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2540 1.269 jld /* Skip dead disks. */
2541 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2542 1.269 jld continue;
2543 1.269 jld /* XXXjld: what if an error occurs here? */
2544 1.269 jld raidwrite_component_area(raidPtr->Disks[c].dev,
2545 1.269 jld raidPtr->raid_cinfo[c].ci_vp, map,
2546 1.269 jld RF_PARITYMAP_NBYTE,
2547 1.276 mrg rf_parity_map_offset(raidPtr),
2548 1.276 mrg rf_parity_map_size(raidPtr), 0);
2549 1.269 jld }
2550 1.269 jld }
2551 1.269 jld
2552 1.269 jld void
2553 1.269 jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2554 1.269 jld {
2555 1.269 jld struct rf_paritymap_ondisk tmp;
2556 1.272 oster int c,first;
2557 1.269 jld
2558 1.272 oster first=1;
2559 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2560 1.269 jld /* Skip dead disks. */
2561 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2562 1.269 jld continue;
2563 1.269 jld raidread_component_area(raidPtr->Disks[c].dev,
2564 1.269 jld raidPtr->raid_cinfo[c].ci_vp, &tmp,
2565 1.269 jld RF_PARITYMAP_NBYTE,
2566 1.276 mrg rf_parity_map_offset(raidPtr),
2567 1.276 mrg rf_parity_map_size(raidPtr));
2568 1.272 oster if (first) {
2569 1.269 jld memcpy(map, &tmp, sizeof(*map));
2570 1.272 oster first = 0;
2571 1.269 jld } else {
2572 1.269 jld rf_paritymap_merge(map, &tmp);
2573 1.269 jld }
2574 1.269 jld }
2575 1.269 jld }
2576 1.269 jld
2577 1.269 jld void
2578 1.169 oster rf_markalldirty(RF_Raid_t *raidPtr)
2579 1.12 oster {
2580 1.269 jld RF_ComponentLabel_t *clabel;
2581 1.146 oster int sparecol;
2582 1.166 oster int c;
2583 1.166 oster int j;
2584 1.166 oster int scol = -1;
2585 1.12 oster
2586 1.12 oster raidPtr->mod_counter++;
2587 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2588 1.166 oster /* we don't want to touch (at all) a disk that has
2589 1.166 oster failed */
2590 1.166 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2591 1.269 jld clabel = raidget_component_label(raidPtr, c);
2592 1.269 jld if (clabel->status == rf_ds_spared) {
2593 1.186 perry /* XXX do something special...
2594 1.186 perry but whatever you do, don't
2595 1.166 oster try to access it!! */
2596 1.166 oster } else {
2597 1.269 jld raidmarkdirty(raidPtr, c);
2598 1.12 oster }
2599 1.166 oster }
2600 1.186 perry }
2601 1.146 oster
2602 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2603 1.12 oster sparecol = raidPtr->numCol + c;
2604 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2605 1.186 perry /*
2606 1.186 perry
2607 1.186 perry we claim this disk is "optimal" if it's
2608 1.186 perry rf_ds_used_spare, as that means it should be
2609 1.186 perry directly substitutable for the disk it replaced.
2610 1.12 oster We note that too...
2611 1.12 oster
2612 1.12 oster */
2613 1.12 oster
2614 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2615 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2616 1.166 oster scol = j;
2617 1.166 oster break;
2618 1.12 oster }
2619 1.12 oster }
2620 1.186 perry
2621 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2622 1.12 oster /* make sure status is noted */
2623 1.146 oster
2624 1.269 jld raid_init_component_label(raidPtr, clabel);
2625 1.146 oster
2626 1.269 jld clabel->row = 0;
2627 1.269 jld clabel->column = scol;
2628 1.146 oster /* Note: we *don't* change status from rf_ds_used_spare
2629 1.146 oster to rf_ds_optimal */
2630 1.146 oster /* clabel.status = rf_ds_optimal; */
2631 1.186 perry
2632 1.269 jld raidmarkdirty(raidPtr, sparecol);
2633 1.12 oster }
2634 1.12 oster }
2635 1.12 oster }
2636 1.12 oster
2637 1.13 oster
2638 1.13 oster void
2639 1.169 oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2640 1.13 oster {
2641 1.269 jld RF_ComponentLabel_t *clabel;
2642 1.13 oster int sparecol;
2643 1.166 oster int c;
2644 1.166 oster int j;
2645 1.166 oster int scol;
2646 1.341 christos struct raid_softc *rs = raidPtr->softc;
2647 1.13 oster
2648 1.13 oster scol = -1;
2649 1.13 oster
2650 1.186 perry /* XXX should do extra checks to make sure things really are clean,
2651 1.13 oster rather than blindly setting the clean bit... */
2652 1.13 oster
2653 1.13 oster raidPtr->mod_counter++;
2654 1.13 oster
2655 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2656 1.166 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
2657 1.269 jld clabel = raidget_component_label(raidPtr, c);
2658 1.201 oster /* make sure status is noted */
2659 1.269 jld clabel->status = rf_ds_optimal;
2660 1.376.4.6 martin
2661 1.214 oster /* note what unit we are configured as */
2662 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2663 1.341 christos clabel->last_unit = raidPtr->raidid;
2664 1.214 oster
2665 1.269 jld raidflush_component_label(raidPtr, c);
2666 1.166 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2667 1.166 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2668 1.269 jld raidmarkclean(raidPtr, c);
2669 1.91 oster }
2670 1.166 oster }
2671 1.186 perry }
2672 1.166 oster /* else we don't touch it.. */
2673 1.186 perry }
2674 1.63 oster
2675 1.63 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2676 1.63 oster sparecol = raidPtr->numCol + c;
2677 1.110 oster /* Need to ensure that the reconstruct actually completed! */
2678 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2679 1.186 perry /*
2680 1.186 perry
2681 1.186 perry we claim this disk is "optimal" if it's
2682 1.186 perry rf_ds_used_spare, as that means it should be
2683 1.186 perry directly substitutable for the disk it replaced.
2684 1.63 oster We note that too...
2685 1.63 oster
2686 1.63 oster */
2687 1.63 oster
2688 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2689 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2690 1.166 oster scol = j;
2691 1.166 oster break;
2692 1.63 oster }
2693 1.63 oster }
2694 1.186 perry
2695 1.63 oster /* XXX shouldn't *really* need this... */
2696 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2697 1.63 oster /* make sure status is noted */
2698 1.63 oster
2699 1.269 jld raid_init_component_label(raidPtr, clabel);
2700 1.269 jld
2701 1.269 jld clabel->column = scol;
2702 1.269 jld clabel->status = rf_ds_optimal;
2703 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2704 1.341 christos clabel->last_unit = raidPtr->raidid;
2705 1.63 oster
2706 1.269 jld raidflush_component_label(raidPtr, sparecol);
2707 1.91 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2708 1.13 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2709 1.269 jld raidmarkclean(raidPtr, sparecol);
2710 1.13 oster }
2711 1.13 oster }
2712 1.13 oster }
2713 1.13 oster }
2714 1.68 oster }
2715 1.68 oster
2716 1.68 oster void
2717 1.169 oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2718 1.69 oster {
2719 1.69 oster
2720 1.69 oster if (vp != NULL) {
2721 1.69 oster if (auto_configured == 1) {
2722 1.96 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2723 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2724 1.69 oster vput(vp);
2725 1.186 perry
2726 1.186 perry } else {
2727 1.244 ad (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2728 1.69 oster }
2729 1.186 perry }
2730 1.69 oster }
2731 1.69 oster
2732 1.69 oster
2733 1.69 oster void
2734 1.169 oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2735 1.68 oster {
2736 1.186 perry int r,c;
2737 1.69 oster struct vnode *vp;
2738 1.69 oster int acd;
2739 1.68 oster
2740 1.68 oster
2741 1.68 oster /* We take this opportunity to close the vnodes like we should.. */
2742 1.68 oster
2743 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2744 1.166 oster vp = raidPtr->raid_cinfo[c].ci_vp;
2745 1.166 oster acd = raidPtr->Disks[c].auto_configured;
2746 1.166 oster rf_close_component(raidPtr, vp, acd);
2747 1.166 oster raidPtr->raid_cinfo[c].ci_vp = NULL;
2748 1.166 oster raidPtr->Disks[c].auto_configured = 0;
2749 1.68 oster }
2750 1.166 oster
2751 1.68 oster for (r = 0; r < raidPtr->numSpare; r++) {
2752 1.166 oster vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2753 1.166 oster acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2754 1.69 oster rf_close_component(raidPtr, vp, acd);
2755 1.166 oster raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2756 1.166 oster raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2757 1.68 oster }
2758 1.37 oster }
2759 1.63 oster
2760 1.37 oster
2761 1.186 perry void
2762 1.353 mrg rf_ReconThread(struct rf_recon_req_internal *req)
2763 1.37 oster {
2764 1.37 oster int s;
2765 1.37 oster RF_Raid_t *raidPtr;
2766 1.37 oster
2767 1.37 oster s = splbio();
2768 1.37 oster raidPtr = (RF_Raid_t *) req->raidPtr;
2769 1.37 oster raidPtr->recon_in_progress = 1;
2770 1.37 oster
2771 1.166 oster rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2772 1.37 oster ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2773 1.37 oster
2774 1.37 oster RF_Free(req, sizeof(*req));
2775 1.37 oster
2776 1.37 oster raidPtr->recon_in_progress = 0;
2777 1.37 oster splx(s);
2778 1.37 oster
2779 1.37 oster /* That's all... */
2780 1.204 simonb kthread_exit(0); /* does not return */
2781 1.37 oster }
2782 1.37 oster
2783 1.37 oster void
2784 1.169 oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
2785 1.37 oster {
2786 1.37 oster int retcode;
2787 1.37 oster int s;
2788 1.37 oster
2789 1.184 oster raidPtr->parity_rewrite_stripes_done = 0;
2790 1.37 oster raidPtr->parity_rewrite_in_progress = 1;
2791 1.37 oster s = splbio();
2792 1.37 oster retcode = rf_RewriteParity(raidPtr);
2793 1.37 oster splx(s);
2794 1.37 oster if (retcode) {
2795 1.279 christos printf("raid%d: Error re-writing parity (%d)!\n",
2796 1.279 christos raidPtr->raidid, retcode);
2797 1.37 oster } else {
2798 1.37 oster /* set the clean bit! If we shutdown correctly,
2799 1.37 oster the clean bit on each component label will get
2800 1.37 oster set */
2801 1.37 oster raidPtr->parity_good = RF_RAID_CLEAN;
2802 1.37 oster }
2803 1.37 oster raidPtr->parity_rewrite_in_progress = 0;
2804 1.85 oster
2805 1.85 oster /* Anyone waiting for us to stop? If so, inform them... */
2806 1.85 oster if (raidPtr->waitShutdown) {
2807 1.357 mrg rf_lock_mutex2(raidPtr->rad_lock);
2808 1.357 mrg cv_broadcast(&raidPtr->parity_rewrite_cv);
2809 1.357 mrg rf_unlock_mutex2(raidPtr->rad_lock);
2810 1.85 oster }
2811 1.37 oster
2812 1.37 oster /* That's all... */
2813 1.204 simonb kthread_exit(0); /* does not return */
2814 1.37 oster }
2815 1.37 oster
2816 1.37 oster
2817 1.37 oster void
2818 1.169 oster rf_CopybackThread(RF_Raid_t *raidPtr)
2819 1.37 oster {
2820 1.37 oster int s;
2821 1.37 oster
2822 1.37 oster raidPtr->copyback_in_progress = 1;
2823 1.37 oster s = splbio();
2824 1.37 oster rf_CopybackReconstructedData(raidPtr);
2825 1.37 oster splx(s);
2826 1.37 oster raidPtr->copyback_in_progress = 0;
2827 1.37 oster
2828 1.37 oster /* That's all... */
2829 1.204 simonb kthread_exit(0); /* does not return */
2830 1.37 oster }
2831 1.37 oster
2832 1.37 oster
2833 1.37 oster void
2834 1.353 mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
2835 1.37 oster {
2836 1.37 oster int s;
2837 1.37 oster RF_Raid_t *raidPtr;
2838 1.186 perry
2839 1.37 oster s = splbio();
2840 1.37 oster raidPtr = req->raidPtr;
2841 1.37 oster raidPtr->recon_in_progress = 1;
2842 1.166 oster rf_ReconstructInPlace(raidPtr, req->col);
2843 1.37 oster RF_Free(req, sizeof(*req));
2844 1.37 oster raidPtr->recon_in_progress = 0;
2845 1.37 oster splx(s);
2846 1.37 oster
2847 1.37 oster /* That's all... */
2848 1.204 simonb kthread_exit(0); /* does not return */
2849 1.48 oster }
2850 1.48 oster
2851 1.213 christos static RF_AutoConfig_t *
2852 1.213 christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2853 1.276 mrg const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2854 1.276 mrg unsigned secsize)
2855 1.213 christos {
2856 1.213 christos int good_one = 0;
2857 1.376.4.6 martin RF_ComponentLabel_t *clabel;
2858 1.213 christos RF_AutoConfig_t *ac;
2859 1.213 christos
2860 1.376.4.6 martin clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_WAITOK);
2861 1.213 christos
2862 1.276 mrg if (!raidread_component_label(secsize, dev, vp, clabel)) {
2863 1.276 mrg /* Got the label. Does it look reasonable? */
2864 1.376.4.6 martin if (rf_reasonable_label(clabel, numsecs) &&
2865 1.282 enami (rf_component_label_partitionsize(clabel) <= size)) {
2866 1.224 oster #ifdef DEBUG
2867 1.276 mrg printf("Component on: %s: %llu\n",
2868 1.213 christos cname, (unsigned long long)size);
2869 1.276 mrg rf_print_component_label(clabel);
2870 1.213 christos #endif
2871 1.276 mrg /* if it's reasonable, add it, else ignore it. */
2872 1.276 mrg ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2873 1.376.4.6 martin M_WAITOK);
2874 1.276 mrg strlcpy(ac->devname, cname, sizeof(ac->devname));
2875 1.276 mrg ac->dev = dev;
2876 1.276 mrg ac->vp = vp;
2877 1.276 mrg ac->clabel = clabel;
2878 1.276 mrg ac->next = ac_list;
2879 1.276 mrg ac_list = ac;
2880 1.276 mrg good_one = 1;
2881 1.276 mrg }
2882 1.213 christos }
2883 1.213 christos if (!good_one) {
2884 1.213 christos /* cleanup */
2885 1.213 christos free(clabel, M_RAIDFRAME);
2886 1.213 christos vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2887 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2888 1.213 christos vput(vp);
2889 1.213 christos }
2890 1.213 christos return ac_list;
2891 1.213 christos }
2892 1.213 christos
2893 1.48 oster RF_AutoConfig_t *
2894 1.259 cegger rf_find_raid_components(void)
2895 1.48 oster {
2896 1.48 oster struct vnode *vp;
2897 1.48 oster struct disklabel label;
2898 1.261 dyoung device_t dv;
2899 1.268 dyoung deviter_t di;
2900 1.48 oster dev_t dev;
2901 1.296 buhrow int bmajor, bminor, wedge, rf_part_found;
2902 1.48 oster int error;
2903 1.48 oster int i;
2904 1.48 oster RF_AutoConfig_t *ac_list;
2905 1.276 mrg uint64_t numsecs;
2906 1.276 mrg unsigned secsize;
2907 1.335 mlelstv int dowedges;
2908 1.48 oster
2909 1.48 oster /* initialize the AutoConfig list */
2910 1.48 oster ac_list = NULL;
2911 1.48 oster
2912 1.335 mlelstv /*
2913 1.335 mlelstv * we begin by trolling through *all* the devices on the system *twice*
2914 1.335 mlelstv * first we scan for wedges, second for other devices. This avoids
2915 1.335 mlelstv * using a raw partition instead of a wedge that covers the whole disk
2916 1.335 mlelstv */
2917 1.48 oster
2918 1.335 mlelstv for (dowedges=1; dowedges>=0; --dowedges) {
2919 1.335 mlelstv for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2920 1.335 mlelstv dv = deviter_next(&di)) {
2921 1.48 oster
2922 1.335 mlelstv /* we are only interested in disks... */
2923 1.335 mlelstv if (device_class(dv) != DV_DISK)
2924 1.335 mlelstv continue;
2925 1.48 oster
2926 1.335 mlelstv /* we don't care about floppies... */
2927 1.335 mlelstv if (device_is_a(dv, "fd")) {
2928 1.335 mlelstv continue;
2929 1.335 mlelstv }
2930 1.129 oster
2931 1.335 mlelstv /* we don't care about CD's... */
2932 1.335 mlelstv if (device_is_a(dv, "cd")) {
2933 1.335 mlelstv continue;
2934 1.335 mlelstv }
2935 1.129 oster
2936 1.335 mlelstv /* we don't care about md's... */
2937 1.335 mlelstv if (device_is_a(dv, "md")) {
2938 1.335 mlelstv continue;
2939 1.335 mlelstv }
2940 1.248 oster
2941 1.335 mlelstv /* hdfd is the Atari/Hades floppy driver */
2942 1.335 mlelstv if (device_is_a(dv, "hdfd")) {
2943 1.335 mlelstv continue;
2944 1.335 mlelstv }
2945 1.206 thorpej
2946 1.335 mlelstv /* fdisa is the Atari/Milan floppy driver */
2947 1.335 mlelstv if (device_is_a(dv, "fdisa")) {
2948 1.335 mlelstv continue;
2949 1.335 mlelstv }
2950 1.186 perry
2951 1.335 mlelstv /* are we in the wedges pass ? */
2952 1.335 mlelstv wedge = device_is_a(dv, "dk");
2953 1.335 mlelstv if (wedge != dowedges) {
2954 1.335 mlelstv continue;
2955 1.335 mlelstv }
2956 1.48 oster
2957 1.335 mlelstv /* need to find the device_name_to_block_device_major stuff */
2958 1.335 mlelstv bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2959 1.296 buhrow
2960 1.335 mlelstv rf_part_found = 0; /*No raid partition as yet*/
2961 1.48 oster
2962 1.335 mlelstv /* get a vnode for the raw partition of this disk */
2963 1.335 mlelstv bminor = minor(device_unit(dv));
2964 1.335 mlelstv dev = wedge ? makedev(bmajor, bminor) :
2965 1.335 mlelstv MAKEDISKDEV(bmajor, bminor, RAW_PART);
2966 1.335 mlelstv if (bdevvp(dev, &vp))
2967 1.335 mlelstv panic("RAID can't alloc vnode");
2968 1.48 oster
2969 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2970 1.335 mlelstv error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2971 1.48 oster
2972 1.335 mlelstv if (error) {
2973 1.335 mlelstv /* "Who cares." Continue looking
2974 1.335 mlelstv for something that exists*/
2975 1.335 mlelstv vput(vp);
2976 1.335 mlelstv continue;
2977 1.335 mlelstv }
2978 1.48 oster
2979 1.335 mlelstv error = getdisksize(vp, &numsecs, &secsize);
2980 1.213 christos if (error) {
2981 1.339 mlelstv /*
2982 1.339 mlelstv * Pseudo devices like vnd and cgd can be
2983 1.339 mlelstv * opened but may still need some configuration.
2984 1.339 mlelstv * Ignore these quietly.
2985 1.339 mlelstv */
2986 1.339 mlelstv if (error != ENXIO)
2987 1.339 mlelstv printf("RAIDframe: can't get disk size"
2988 1.339 mlelstv " for dev %s (%d)\n",
2989 1.339 mlelstv device_xname(dv), error);
2990 1.241 oster VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2991 1.241 oster vput(vp);
2992 1.213 christos continue;
2993 1.213 christos }
2994 1.335 mlelstv if (wedge) {
2995 1.335 mlelstv struct dkwedge_info dkw;
2996 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2997 1.335 mlelstv NOCRED);
2998 1.335 mlelstv if (error) {
2999 1.335 mlelstv printf("RAIDframe: can't get wedge info for "
3000 1.335 mlelstv "dev %s (%d)\n", device_xname(dv), error);
3001 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3002 1.335 mlelstv vput(vp);
3003 1.335 mlelstv continue;
3004 1.335 mlelstv }
3005 1.213 christos
3006 1.335 mlelstv if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
3007 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3008 1.335 mlelstv vput(vp);
3009 1.335 mlelstv continue;
3010 1.335 mlelstv }
3011 1.376.4.6 martin
3012 1.375 hannken VOP_UNLOCK(vp);
3013 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp,
3014 1.335 mlelstv device_xname(dv), dkw.dkw_size, numsecs, secsize);
3015 1.335 mlelstv rf_part_found = 1; /*There is a raid component on this disk*/
3016 1.228 christos continue;
3017 1.241 oster }
3018 1.213 christos
3019 1.335 mlelstv /* Ok, the disk exists. Go get the disklabel. */
3020 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
3021 1.335 mlelstv if (error) {
3022 1.335 mlelstv /*
3023 1.335 mlelstv * XXX can't happen - open() would
3024 1.335 mlelstv * have errored out (or faked up one)
3025 1.335 mlelstv */
3026 1.335 mlelstv if (error != ENOTTY)
3027 1.335 mlelstv printf("RAIDframe: can't get label for dev "
3028 1.335 mlelstv "%s (%d)\n", device_xname(dv), error);
3029 1.335 mlelstv }
3030 1.48 oster
3031 1.335 mlelstv /* don't need this any more. We'll allocate it again
3032 1.335 mlelstv a little later if we really do... */
3033 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
3034 1.335 mlelstv vput(vp);
3035 1.48 oster
3036 1.335 mlelstv if (error)
3037 1.48 oster continue;
3038 1.48 oster
3039 1.335 mlelstv rf_part_found = 0; /*No raid partitions yet*/
3040 1.335 mlelstv for (i = 0; i < label.d_npartitions; i++) {
3041 1.335 mlelstv char cname[sizeof(ac_list->devname)];
3042 1.335 mlelstv
3043 1.335 mlelstv /* We only support partitions marked as RAID */
3044 1.335 mlelstv if (label.d_partitions[i].p_fstype != FS_RAID)
3045 1.335 mlelstv continue;
3046 1.335 mlelstv
3047 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
3048 1.335 mlelstv if (bdevvp(dev, &vp))
3049 1.335 mlelstv panic("RAID can't alloc vnode");
3050 1.335 mlelstv
3051 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3052 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
3053 1.335 mlelstv if (error) {
3054 1.335 mlelstv /* Whatever... */
3055 1.335 mlelstv vput(vp);
3056 1.335 mlelstv continue;
3057 1.335 mlelstv }
3058 1.375 hannken VOP_UNLOCK(vp);
3059 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
3060 1.335 mlelstv device_xname(dv), 'a' + i);
3061 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
3062 1.335 mlelstv label.d_partitions[i].p_size, numsecs, secsize);
3063 1.335 mlelstv rf_part_found = 1; /*There is at least one raid partition on this disk*/
3064 1.48 oster }
3065 1.296 buhrow
3066 1.335 mlelstv /*
3067 1.335 mlelstv *If there is no raid component on this disk, either in a
3068 1.335 mlelstv *disklabel or inside a wedge, check the raw partition as well,
3069 1.335 mlelstv *as it is possible to configure raid components on raw disk
3070 1.335 mlelstv *devices.
3071 1.335 mlelstv */
3072 1.296 buhrow
3073 1.335 mlelstv if (!rf_part_found) {
3074 1.335 mlelstv char cname[sizeof(ac_list->devname)];
3075 1.296 buhrow
3076 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
3077 1.335 mlelstv if (bdevvp(dev, &vp))
3078 1.335 mlelstv panic("RAID can't alloc vnode");
3079 1.335 mlelstv
3080 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3081 1.375 hannken
3082 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
3083 1.335 mlelstv if (error) {
3084 1.335 mlelstv /* Whatever... */
3085 1.335 mlelstv vput(vp);
3086 1.335 mlelstv continue;
3087 1.335 mlelstv }
3088 1.375 hannken VOP_UNLOCK(vp);
3089 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
3090 1.335 mlelstv device_xname(dv), 'a' + RAW_PART);
3091 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
3092 1.335 mlelstv label.d_partitions[RAW_PART].p_size, numsecs, secsize);
3093 1.296 buhrow }
3094 1.48 oster }
3095 1.335 mlelstv deviter_release(&di);
3096 1.48 oster }
3097 1.213 christos return ac_list;
3098 1.48 oster }
3099 1.186 perry
3100 1.213 christos
3101 1.292 oster int
3102 1.284 mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3103 1.48 oster {
3104 1.186 perry
3105 1.48 oster if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
3106 1.48 oster (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
3107 1.48 oster ((clabel->clean == RF_RAID_CLEAN) ||
3108 1.48 oster (clabel->clean == RF_RAID_DIRTY)) &&
3109 1.186 perry clabel->row >=0 &&
3110 1.186 perry clabel->column >= 0 &&
3111 1.48 oster clabel->num_rows > 0 &&
3112 1.48 oster clabel->num_columns > 0 &&
3113 1.186 perry clabel->row < clabel->num_rows &&
3114 1.48 oster clabel->column < clabel->num_columns &&
3115 1.48 oster clabel->blockSize > 0 &&
3116 1.282 enami /*
3117 1.282 enami * numBlocksHi may contain garbage, but it is ok since
3118 1.282 enami * the type is unsigned. If it is really garbage,
3119 1.282 enami * rf_fix_old_label_size() will fix it.
3120 1.282 enami */
3121 1.282 enami rf_component_label_numblocks(clabel) > 0) {
3122 1.284 mrg /*
3123 1.284 mrg * label looks reasonable enough...
3124 1.284 mrg * let's make sure it has no old garbage.
3125 1.284 mrg */
3126 1.292 oster if (numsecs)
3127 1.292 oster rf_fix_old_label_size(clabel, numsecs);
3128 1.48 oster return(1);
3129 1.48 oster }
3130 1.48 oster return(0);
3131 1.48 oster }
3132 1.48 oster
3133 1.48 oster
3134 1.278 mrg /*
3135 1.278 mrg * For reasons yet unknown, some old component labels have garbage in
3136 1.278 mrg * the newer numBlocksHi region, and this causes lossage. Since those
3137 1.278 mrg * disks will also have numsecs set to less than 32 bits of sectors,
3138 1.299 oster * we can determine when this corruption has occurred, and fix it.
3139 1.284 mrg *
3140 1.284 mrg * The exact same problem, with the same unknown reason, happens to
3141 1.284 mrg * the partitionSizeHi member as well.
3142 1.278 mrg */
3143 1.278 mrg static void
3144 1.278 mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3145 1.278 mrg {
3146 1.278 mrg
3147 1.284 mrg if (numsecs < ((uint64_t)1 << 32)) {
3148 1.284 mrg if (clabel->numBlocksHi) {
3149 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3150 1.284 mrg "numBlocksHi set\n"
3151 1.284 mrg "WARNING: resetting numBlocksHi to zero.\n");
3152 1.284 mrg clabel->numBlocksHi = 0;
3153 1.284 mrg }
3154 1.284 mrg
3155 1.284 mrg if (clabel->partitionSizeHi) {
3156 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3157 1.284 mrg "partitionSizeHi set\n"
3158 1.284 mrg "WARNING: resetting partitionSizeHi to zero.\n");
3159 1.284 mrg clabel->partitionSizeHi = 0;
3160 1.284 mrg }
3161 1.278 mrg }
3162 1.278 mrg }
3163 1.278 mrg
3164 1.278 mrg
3165 1.224 oster #ifdef DEBUG
3166 1.48 oster void
3167 1.169 oster rf_print_component_label(RF_ComponentLabel_t *clabel)
3168 1.48 oster {
3169 1.282 enami uint64_t numBlocks;
3170 1.308 christos static const char *rp[] = {
3171 1.308 christos "No", "Force", "Soft", "*invalid*"
3172 1.308 christos };
3173 1.308 christos
3174 1.275 mrg
3175 1.282 enami numBlocks = rf_component_label_numblocks(clabel);
3176 1.275 mrg
3177 1.48 oster printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3178 1.186 perry clabel->row, clabel->column,
3179 1.48 oster clabel->num_rows, clabel->num_columns);
3180 1.48 oster printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3181 1.48 oster clabel->version, clabel->serial_number,
3182 1.48 oster clabel->mod_counter);
3183 1.48 oster printf(" Clean: %s Status: %d\n",
3184 1.271 dyoung clabel->clean ? "Yes" : "No", clabel->status);
3185 1.48 oster printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3186 1.48 oster clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3187 1.275 mrg printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3188 1.275 mrg (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3189 1.271 dyoung printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3190 1.308 christos printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3191 1.271 dyoung printf(" Last configured as: raid%d\n", clabel->last_unit);
3192 1.51 oster #if 0
3193 1.51 oster printf(" Config order: %d\n", clabel->config_order);
3194 1.51 oster #endif
3195 1.186 perry
3196 1.48 oster }
3197 1.133 oster #endif
3198 1.48 oster
3199 1.48 oster RF_ConfigSet_t *
3200 1.169 oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3201 1.48 oster {
3202 1.48 oster RF_AutoConfig_t *ac;
3203 1.48 oster RF_ConfigSet_t *config_sets;
3204 1.48 oster RF_ConfigSet_t *cset;
3205 1.48 oster RF_AutoConfig_t *ac_next;
3206 1.48 oster
3207 1.48 oster
3208 1.48 oster config_sets = NULL;
3209 1.48 oster
3210 1.48 oster /* Go through the AutoConfig list, and figure out which components
3211 1.48 oster belong to what sets. */
3212 1.48 oster ac = ac_list;
3213 1.48 oster while(ac!=NULL) {
3214 1.48 oster /* we're going to putz with ac->next, so save it here
3215 1.48 oster for use at the end of the loop */
3216 1.48 oster ac_next = ac->next;
3217 1.48 oster
3218 1.48 oster if (config_sets == NULL) {
3219 1.48 oster /* will need at least this one... */
3220 1.376.4.6 martin config_sets = malloc(sizeof(RF_ConfigSet_t),
3221 1.376.4.6 martin M_RAIDFRAME, M_WAITOK);
3222 1.48 oster /* this one is easy :) */
3223 1.48 oster config_sets->ac = ac;
3224 1.48 oster config_sets->next = NULL;
3225 1.51 oster config_sets->rootable = 0;
3226 1.48 oster ac->next = NULL;
3227 1.48 oster } else {
3228 1.48 oster /* which set does this component fit into? */
3229 1.48 oster cset = config_sets;
3230 1.48 oster while(cset!=NULL) {
3231 1.49 oster if (rf_does_it_fit(cset, ac)) {
3232 1.86 oster /* looks like it matches... */
3233 1.86 oster ac->next = cset->ac;
3234 1.86 oster cset->ac = ac;
3235 1.48 oster break;
3236 1.48 oster }
3237 1.48 oster cset = cset->next;
3238 1.48 oster }
3239 1.48 oster if (cset==NULL) {
3240 1.48 oster /* didn't find a match above... new set..*/
3241 1.376.4.6 martin cset = malloc(sizeof(RF_ConfigSet_t),
3242 1.376.4.6 martin M_RAIDFRAME, M_WAITOK);
3243 1.48 oster cset->ac = ac;
3244 1.48 oster ac->next = NULL;
3245 1.48 oster cset->next = config_sets;
3246 1.51 oster cset->rootable = 0;
3247 1.48 oster config_sets = cset;
3248 1.48 oster }
3249 1.48 oster }
3250 1.48 oster ac = ac_next;
3251 1.48 oster }
3252 1.48 oster
3253 1.48 oster
3254 1.48 oster return(config_sets);
3255 1.48 oster }
3256 1.48 oster
3257 1.48 oster static int
3258 1.169 oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3259 1.48 oster {
3260 1.48 oster RF_ComponentLabel_t *clabel1, *clabel2;
3261 1.48 oster
3262 1.48 oster /* If this one matches the *first* one in the set, that's good
3263 1.48 oster enough, since the other members of the set would have been
3264 1.48 oster through here too... */
3265 1.60 oster /* note that we are not checking partitionSize here..
3266 1.60 oster
3267 1.60 oster Note that we are also not checking the mod_counters here.
3268 1.299 oster If everything else matches except the mod_counter, that's
3269 1.60 oster good enough for this test. We will deal with the mod_counters
3270 1.186 perry a little later in the autoconfiguration process.
3271 1.60 oster
3272 1.60 oster (clabel1->mod_counter == clabel2->mod_counter) &&
3273 1.81 oster
3274 1.81 oster The reason we don't check for this is that failed disks
3275 1.81 oster will have lower modification counts. If those disks are
3276 1.81 oster not added to the set they used to belong to, then they will
3277 1.81 oster form their own set, which may result in 2 different sets,
3278 1.81 oster for example, competing to be configured at raid0, and
3279 1.81 oster perhaps competing to be the root filesystem set. If the
3280 1.81 oster wrong ones get configured, or both attempt to become /,
3281 1.81 oster weird behaviour and or serious lossage will occur. Thus we
3282 1.81 oster need to bring them into the fold here, and kick them out at
3283 1.81 oster a later point.
3284 1.60 oster
3285 1.60 oster */
3286 1.48 oster
3287 1.48 oster clabel1 = cset->ac->clabel;
3288 1.48 oster clabel2 = ac->clabel;
3289 1.48 oster if ((clabel1->version == clabel2->version) &&
3290 1.48 oster (clabel1->serial_number == clabel2->serial_number) &&
3291 1.48 oster (clabel1->num_rows == clabel2->num_rows) &&
3292 1.48 oster (clabel1->num_columns == clabel2->num_columns) &&
3293 1.48 oster (clabel1->sectPerSU == clabel2->sectPerSU) &&
3294 1.48 oster (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3295 1.48 oster (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3296 1.48 oster (clabel1->parityConfig == clabel2->parityConfig) &&
3297 1.48 oster (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3298 1.48 oster (clabel1->blockSize == clabel2->blockSize) &&
3299 1.282 enami rf_component_label_numblocks(clabel1) ==
3300 1.282 enami rf_component_label_numblocks(clabel2) &&
3301 1.48 oster (clabel1->autoconfigure == clabel2->autoconfigure) &&
3302 1.48 oster (clabel1->root_partition == clabel2->root_partition) &&
3303 1.48 oster (clabel1->last_unit == clabel2->last_unit) &&
3304 1.48 oster (clabel1->config_order == clabel2->config_order)) {
3305 1.48 oster /* if it get's here, it almost *has* to be a match */
3306 1.48 oster } else {
3307 1.186 perry /* it's not consistent with somebody in the set..
3308 1.48 oster punt */
3309 1.48 oster return(0);
3310 1.48 oster }
3311 1.48 oster /* all was fine.. it must fit... */
3312 1.48 oster return(1);
3313 1.48 oster }
3314 1.48 oster
3315 1.48 oster int
3316 1.169 oster rf_have_enough_components(RF_ConfigSet_t *cset)
3317 1.48 oster {
3318 1.51 oster RF_AutoConfig_t *ac;
3319 1.51 oster RF_AutoConfig_t *auto_config;
3320 1.51 oster RF_ComponentLabel_t *clabel;
3321 1.166 oster int c;
3322 1.51 oster int num_cols;
3323 1.51 oster int num_missing;
3324 1.86 oster int mod_counter;
3325 1.87 oster int mod_counter_found;
3326 1.88 oster int even_pair_failed;
3327 1.88 oster char parity_type;
3328 1.186 perry
3329 1.51 oster
3330 1.48 oster /* check to see that we have enough 'live' components
3331 1.48 oster of this set. If so, we can configure it if necessary */
3332 1.48 oster
3333 1.51 oster num_cols = cset->ac->clabel->num_columns;
3334 1.88 oster parity_type = cset->ac->clabel->parityConfig;
3335 1.51 oster
3336 1.51 oster /* XXX Check for duplicate components!?!?!? */
3337 1.51 oster
3338 1.86 oster /* Determine what the mod_counter is supposed to be for this set. */
3339 1.86 oster
3340 1.87 oster mod_counter_found = 0;
3341 1.101 oster mod_counter = 0;
3342 1.86 oster ac = cset->ac;
3343 1.86 oster while(ac!=NULL) {
3344 1.87 oster if (mod_counter_found==0) {
3345 1.86 oster mod_counter = ac->clabel->mod_counter;
3346 1.87 oster mod_counter_found = 1;
3347 1.87 oster } else {
3348 1.87 oster if (ac->clabel->mod_counter > mod_counter) {
3349 1.87 oster mod_counter = ac->clabel->mod_counter;
3350 1.87 oster }
3351 1.86 oster }
3352 1.86 oster ac = ac->next;
3353 1.86 oster }
3354 1.86 oster
3355 1.51 oster num_missing = 0;
3356 1.51 oster auto_config = cset->ac;
3357 1.51 oster
3358 1.166 oster even_pair_failed = 0;
3359 1.166 oster for(c=0; c<num_cols; c++) {
3360 1.166 oster ac = auto_config;
3361 1.166 oster while(ac!=NULL) {
3362 1.186 perry if ((ac->clabel->column == c) &&
3363 1.166 oster (ac->clabel->mod_counter == mod_counter)) {
3364 1.166 oster /* it's this one... */
3365 1.224 oster #ifdef DEBUG
3366 1.166 oster printf("Found: %s at %d\n",
3367 1.166 oster ac->devname,c);
3368 1.51 oster #endif
3369 1.166 oster break;
3370 1.51 oster }
3371 1.166 oster ac=ac->next;
3372 1.166 oster }
3373 1.166 oster if (ac==NULL) {
3374 1.51 oster /* Didn't find one here! */
3375 1.88 oster /* special case for RAID 1, especially
3376 1.88 oster where there are more than 2
3377 1.88 oster components (where RAIDframe treats
3378 1.88 oster things a little differently :( ) */
3379 1.166 oster if (parity_type == '1') {
3380 1.166 oster if (c%2 == 0) { /* even component */
3381 1.166 oster even_pair_failed = 1;
3382 1.166 oster } else { /* odd component. If
3383 1.166 oster we're failed, and
3384 1.166 oster so is the even
3385 1.166 oster component, it's
3386 1.166 oster "Good Night, Charlie" */
3387 1.166 oster if (even_pair_failed == 1) {
3388 1.166 oster return(0);
3389 1.88 oster }
3390 1.88 oster }
3391 1.166 oster } else {
3392 1.166 oster /* normal accounting */
3393 1.166 oster num_missing++;
3394 1.88 oster }
3395 1.166 oster }
3396 1.166 oster if ((parity_type == '1') && (c%2 == 1)) {
3397 1.88 oster /* Just did an even component, and we didn't
3398 1.186 perry bail.. reset the even_pair_failed flag,
3399 1.88 oster and go on to the next component.... */
3400 1.166 oster even_pair_failed = 0;
3401 1.51 oster }
3402 1.51 oster }
3403 1.51 oster
3404 1.51 oster clabel = cset->ac->clabel;
3405 1.51 oster
3406 1.51 oster if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3407 1.51 oster ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3408 1.51 oster ((clabel->parityConfig == '5') && (num_missing > 1))) {
3409 1.51 oster /* XXX this needs to be made *much* more general */
3410 1.51 oster /* Too many failures */
3411 1.51 oster return(0);
3412 1.51 oster }
3413 1.51 oster /* otherwise, all is well, and we've got enough to take a kick
3414 1.51 oster at autoconfiguring this set */
3415 1.51 oster return(1);
3416 1.48 oster }
3417 1.48 oster
3418 1.48 oster void
3419 1.169 oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3420 1.222 christos RF_Raid_t *raidPtr)
3421 1.48 oster {
3422 1.48 oster RF_ComponentLabel_t *clabel;
3423 1.77 oster int i;
3424 1.48 oster
3425 1.48 oster clabel = ac->clabel;
3426 1.48 oster
3427 1.48 oster /* 1. Fill in the common stuff */
3428 1.48 oster config->numCol = clabel->num_columns;
3429 1.48 oster config->numSpare = 0; /* XXX should this be set here? */
3430 1.48 oster config->sectPerSU = clabel->sectPerSU;
3431 1.48 oster config->SUsPerPU = clabel->SUsPerPU;
3432 1.48 oster config->SUsPerRU = clabel->SUsPerRU;
3433 1.48 oster config->parityConfig = clabel->parityConfig;
3434 1.48 oster /* XXX... */
3435 1.48 oster strcpy(config->diskQueueType,"fifo");
3436 1.48 oster config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3437 1.48 oster config->layoutSpecificSize = 0; /* XXX ?? */
3438 1.48 oster
3439 1.48 oster while(ac!=NULL) {
3440 1.48 oster /* row/col values will be in range due to the checks
3441 1.48 oster in reasonable_label() */
3442 1.166 oster strcpy(config->devnames[0][ac->clabel->column],
3443 1.48 oster ac->devname);
3444 1.48 oster ac = ac->next;
3445 1.48 oster }
3446 1.48 oster
3447 1.77 oster for(i=0;i<RF_MAXDBGV;i++) {
3448 1.163 fvdl config->debugVars[i][0] = 0;
3449 1.77 oster }
3450 1.48 oster }
3451 1.48 oster
3452 1.48 oster int
3453 1.169 oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3454 1.48 oster {
3455 1.269 jld RF_ComponentLabel_t *clabel;
3456 1.166 oster int column;
3457 1.148 oster int sparecol;
3458 1.48 oster
3459 1.54 oster raidPtr->autoconfigure = new_value;
3460 1.166 oster
3461 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3462 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3463 1.269 jld clabel = raidget_component_label(raidPtr, column);
3464 1.269 jld clabel->autoconfigure = new_value;
3465 1.269 jld raidflush_component_label(raidPtr, column);
3466 1.48 oster }
3467 1.48 oster }
3468 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3469 1.148 oster sparecol = raidPtr->numCol + column;
3470 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3471 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3472 1.269 jld clabel->autoconfigure = new_value;
3473 1.269 jld raidflush_component_label(raidPtr, sparecol);
3474 1.148 oster }
3475 1.148 oster }
3476 1.48 oster return(new_value);
3477 1.48 oster }
3478 1.48 oster
3479 1.48 oster int
3480 1.169 oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3481 1.48 oster {
3482 1.269 jld RF_ComponentLabel_t *clabel;
3483 1.166 oster int column;
3484 1.148 oster int sparecol;
3485 1.48 oster
3486 1.54 oster raidPtr->root_partition = new_value;
3487 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3488 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3489 1.269 jld clabel = raidget_component_label(raidPtr, column);
3490 1.269 jld clabel->root_partition = new_value;
3491 1.269 jld raidflush_component_label(raidPtr, column);
3492 1.148 oster }
3493 1.148 oster }
3494 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3495 1.148 oster sparecol = raidPtr->numCol + column;
3496 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3497 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3498 1.269 jld clabel->root_partition = new_value;
3499 1.269 jld raidflush_component_label(raidPtr, sparecol);
3500 1.48 oster }
3501 1.48 oster }
3502 1.48 oster return(new_value);
3503 1.48 oster }
3504 1.48 oster
3505 1.48 oster void
3506 1.169 oster rf_release_all_vps(RF_ConfigSet_t *cset)
3507 1.48 oster {
3508 1.48 oster RF_AutoConfig_t *ac;
3509 1.186 perry
3510 1.48 oster ac = cset->ac;
3511 1.48 oster while(ac!=NULL) {
3512 1.48 oster /* Close the vp, and give it back */
3513 1.48 oster if (ac->vp) {
3514 1.96 oster vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3515 1.335 mlelstv VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3516 1.48 oster vput(ac->vp);
3517 1.86 oster ac->vp = NULL;
3518 1.48 oster }
3519 1.48 oster ac = ac->next;
3520 1.48 oster }
3521 1.48 oster }
3522 1.48 oster
3523 1.48 oster
3524 1.48 oster void
3525 1.169 oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
3526 1.48 oster {
3527 1.48 oster RF_AutoConfig_t *ac;
3528 1.48 oster RF_AutoConfig_t *next_ac;
3529 1.186 perry
3530 1.48 oster ac = cset->ac;
3531 1.48 oster while(ac!=NULL) {
3532 1.48 oster next_ac = ac->next;
3533 1.48 oster /* nuke the label */
3534 1.48 oster free(ac->clabel, M_RAIDFRAME);
3535 1.48 oster /* cleanup the config structure */
3536 1.48 oster free(ac, M_RAIDFRAME);
3537 1.48 oster /* "next.." */
3538 1.48 oster ac = next_ac;
3539 1.48 oster }
3540 1.48 oster /* and, finally, nuke the config set */
3541 1.48 oster free(cset, M_RAIDFRAME);
3542 1.48 oster }
3543 1.48 oster
3544 1.48 oster
3545 1.48 oster void
3546 1.169 oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3547 1.48 oster {
3548 1.48 oster /* current version number */
3549 1.186 perry clabel->version = RF_COMPONENT_LABEL_VERSION;
3550 1.57 oster clabel->serial_number = raidPtr->serial_number;
3551 1.48 oster clabel->mod_counter = raidPtr->mod_counter;
3552 1.269 jld
3553 1.166 oster clabel->num_rows = 1;
3554 1.48 oster clabel->num_columns = raidPtr->numCol;
3555 1.48 oster clabel->clean = RF_RAID_DIRTY; /* not clean */
3556 1.48 oster clabel->status = rf_ds_optimal; /* "It's good!" */
3557 1.186 perry
3558 1.48 oster clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3559 1.48 oster clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3560 1.48 oster clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3561 1.54 oster
3562 1.54 oster clabel->blockSize = raidPtr->bytesPerSector;
3563 1.282 enami rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3564 1.54 oster
3565 1.48 oster /* XXX not portable */
3566 1.48 oster clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3567 1.54 oster clabel->maxOutstanding = raidPtr->maxOutstanding;
3568 1.54 oster clabel->autoconfigure = raidPtr->autoconfigure;
3569 1.54 oster clabel->root_partition = raidPtr->root_partition;
3570 1.48 oster clabel->last_unit = raidPtr->raidid;
3571 1.54 oster clabel->config_order = raidPtr->config_order;
3572 1.269 jld
3573 1.269 jld #ifndef RF_NO_PARITY_MAP
3574 1.269 jld rf_paritymap_init_label(raidPtr->parity_map, clabel);
3575 1.269 jld #endif
3576 1.51 oster }
3577 1.51 oster
3578 1.300 christos struct raid_softc *
3579 1.300 christos rf_auto_config_set(RF_ConfigSet_t *cset)
3580 1.51 oster {
3581 1.51 oster RF_Raid_t *raidPtr;
3582 1.51 oster RF_Config_t *config;
3583 1.51 oster int raidID;
3584 1.300 christos struct raid_softc *sc;
3585 1.51 oster
3586 1.224 oster #ifdef DEBUG
3587 1.72 oster printf("RAID autoconfigure\n");
3588 1.127 oster #endif
3589 1.51 oster
3590 1.51 oster /* 1. Create a config structure */
3591 1.376.4.6 martin config = malloc(sizeof(*config), M_RAIDFRAME, M_WAITOK|M_ZERO);
3592 1.77 oster
3593 1.186 perry /*
3594 1.186 perry 2. Figure out what RAID ID this one is supposed to live at
3595 1.51 oster See if we can get the same RAID dev that it was configured
3596 1.186 perry on last time..
3597 1.51 oster */
3598 1.51 oster
3599 1.51 oster raidID = cset->ac->clabel->last_unit;
3600 1.327 pgoyette for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3601 1.327 pgoyette sc = raidget(++raidID, false))
3602 1.300 christos continue;
3603 1.224 oster #ifdef DEBUG
3604 1.72 oster printf("Configuring raid%d:\n",raidID);
3605 1.127 oster #endif
3606 1.127 oster
3607 1.327 pgoyette if (sc == NULL)
3608 1.327 pgoyette sc = raidget(raidID, true);
3609 1.300 christos raidPtr = &sc->sc_r;
3610 1.51 oster
3611 1.51 oster /* XXX all this stuff should be done SOMEWHERE ELSE! */
3612 1.302 christos raidPtr->softc = sc;
3613 1.51 oster raidPtr->raidid = raidID;
3614 1.51 oster raidPtr->openings = RAIDOUTSTANDING;
3615 1.51 oster
3616 1.51 oster /* 3. Build the configuration structure */
3617 1.51 oster rf_create_configuration(cset->ac, config, raidPtr);
3618 1.51 oster
3619 1.51 oster /* 4. Do the configuration */
3620 1.300 christos if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3621 1.300 christos raidinit(sc);
3622 1.186 perry
3623 1.300 christos rf_markalldirty(raidPtr);
3624 1.300 christos raidPtr->autoconfigure = 1; /* XXX do this here? */
3625 1.308 christos switch (cset->ac->clabel->root_partition) {
3626 1.308 christos case 1: /* Force Root */
3627 1.308 christos case 2: /* Soft Root: root when boot partition part of raid */
3628 1.308 christos /*
3629 1.308 christos * everything configured just fine. Make a note
3630 1.308 christos * that this set is eligible to be root,
3631 1.308 christos * or forced to be root
3632 1.308 christos */
3633 1.308 christos cset->rootable = cset->ac->clabel->root_partition;
3634 1.54 oster /* XXX do this here? */
3635 1.308 christos raidPtr->root_partition = cset->rootable;
3636 1.308 christos break;
3637 1.308 christos default:
3638 1.308 christos break;
3639 1.51 oster }
3640 1.300 christos } else {
3641 1.300 christos raidput(sc);
3642 1.300 christos sc = NULL;
3643 1.51 oster }
3644 1.51 oster
3645 1.51 oster /* 5. Cleanup */
3646 1.51 oster free(config, M_RAIDFRAME);
3647 1.300 christos return sc;
3648 1.99 oster }
3649 1.99 oster
3650 1.99 oster void
3651 1.187 christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3652 1.187 christos size_t xmin, size_t xmax)
3653 1.177 oster {
3654 1.352 christos int error;
3655 1.352 christos
3656 1.227 ad pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3657 1.187 christos pool_sethiwat(p, xmax);
3658 1.352 christos if ((error = pool_prime(p, xmin)) != 0)
3659 1.352 christos panic("%s: failed to prime pool: %d", __func__, error);
3660 1.187 christos pool_setlowat(p, xmin);
3661 1.177 oster }
3662 1.190 oster
3663 1.190 oster /*
3664 1.335 mlelstv * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3665 1.335 mlelstv * to see if there is IO pending and if that IO could possibly be done
3666 1.335 mlelstv * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3667 1.190 oster * otherwise.
3668 1.190 oster *
3669 1.190 oster */
3670 1.190 oster int
3671 1.300 christos rf_buf_queue_check(RF_Raid_t *raidPtr)
3672 1.190 oster {
3673 1.335 mlelstv struct raid_softc *rs;
3674 1.335 mlelstv struct dk_softc *dksc;
3675 1.335 mlelstv
3676 1.335 mlelstv rs = raidPtr->softc;
3677 1.335 mlelstv dksc = &rs->sc_dksc;
3678 1.335 mlelstv
3679 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
3680 1.335 mlelstv return 1;
3681 1.335 mlelstv
3682 1.335 mlelstv if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3683 1.190 oster /* there is work to do */
3684 1.190 oster return 0;
3685 1.335 mlelstv }
3686 1.190 oster /* default is nothing to do */
3687 1.190 oster return 1;
3688 1.190 oster }
3689 1.213 christos
3690 1.213 christos int
3691 1.294 oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3692 1.213 christos {
3693 1.275 mrg uint64_t numsecs;
3694 1.275 mrg unsigned secsize;
3695 1.213 christos int error;
3696 1.213 christos
3697 1.275 mrg error = getdisksize(vp, &numsecs, &secsize);
3698 1.213 christos if (error == 0) {
3699 1.275 mrg diskPtr->blockSize = secsize;
3700 1.275 mrg diskPtr->numBlocks = numsecs - rf_protectedSectors;
3701 1.275 mrg diskPtr->partitionSize = numsecs;
3702 1.213 christos return 0;
3703 1.213 christos }
3704 1.213 christos return error;
3705 1.213 christos }
3706 1.217 oster
3707 1.217 oster static int
3708 1.261 dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
3709 1.217 oster {
3710 1.217 oster return 1;
3711 1.217 oster }
3712 1.217 oster
3713 1.217 oster static void
3714 1.261 dyoung raid_attach(device_t parent, device_t self, void *aux)
3715 1.217 oster {
3716 1.217 oster }
3717 1.217 oster
3718 1.217 oster
3719 1.217 oster static int
3720 1.261 dyoung raid_detach(device_t self, int flags)
3721 1.217 oster {
3722 1.266 dyoung int error;
3723 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
3724 1.303 christos
3725 1.303 christos if (rs == NULL)
3726 1.303 christos return ENXIO;
3727 1.266 dyoung
3728 1.266 dyoung if ((error = raidlock(rs)) != 0)
3729 1.266 dyoung return (error);
3730 1.217 oster
3731 1.266 dyoung error = raid_detach_unlocked(rs);
3732 1.266 dyoung
3733 1.332 mlelstv raidunlock(rs);
3734 1.332 mlelstv
3735 1.332 mlelstv /* XXX raid can be referenced here */
3736 1.332 mlelstv
3737 1.332 mlelstv if (error)
3738 1.332 mlelstv return error;
3739 1.332 mlelstv
3740 1.332 mlelstv /* Free the softc */
3741 1.332 mlelstv raidput(rs);
3742 1.332 mlelstv
3743 1.332 mlelstv return 0;
3744 1.217 oster }
3745 1.217 oster
3746 1.234 oster static void
3747 1.304 christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3748 1.234 oster {
3749 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
3750 1.335 mlelstv struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3751 1.304 christos
3752 1.304 christos memset(dg, 0, sizeof(*dg));
3753 1.304 christos
3754 1.304 christos dg->dg_secperunit = raidPtr->totalSectors;
3755 1.304 christos dg->dg_secsize = raidPtr->bytesPerSector;
3756 1.304 christos dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3757 1.304 christos dg->dg_ntracks = 4 * raidPtr->numCol;
3758 1.304 christos
3759 1.335 mlelstv disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3760 1.234 oster }
3761 1.252 oster
3762 1.348 jdolecek /*
3763 1.348 jdolecek * Get cache info for all the components (including spares).
3764 1.348 jdolecek * Returns intersection of all the cache flags of all disks, or first
3765 1.348 jdolecek * error if any encountered.
3766 1.348 jdolecek * XXXfua feature flags can change as spares are added - lock down somehow
3767 1.348 jdolecek */
3768 1.348 jdolecek static int
3769 1.348 jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3770 1.348 jdolecek {
3771 1.348 jdolecek int c;
3772 1.348 jdolecek int error;
3773 1.348 jdolecek int dkwhole = 0, dkpart;
3774 1.376.4.6 martin
3775 1.348 jdolecek for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3776 1.348 jdolecek /*
3777 1.348 jdolecek * Check any non-dead disk, even when currently being
3778 1.348 jdolecek * reconstructed.
3779 1.348 jdolecek */
3780 1.376.4.5 martin if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
3781 1.348 jdolecek error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3782 1.348 jdolecek DIOCGCACHE, &dkpart, FREAD, NOCRED);
3783 1.348 jdolecek if (error) {
3784 1.348 jdolecek if (error != ENODEV) {
3785 1.348 jdolecek printf("raid%d: get cache for component %s failed\n",
3786 1.348 jdolecek raidPtr->raidid,
3787 1.348 jdolecek raidPtr->Disks[c].devname);
3788 1.348 jdolecek }
3789 1.348 jdolecek
3790 1.348 jdolecek return error;
3791 1.348 jdolecek }
3792 1.348 jdolecek
3793 1.348 jdolecek if (c == 0)
3794 1.348 jdolecek dkwhole = dkpart;
3795 1.348 jdolecek else
3796 1.348 jdolecek dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3797 1.348 jdolecek }
3798 1.348 jdolecek }
3799 1.348 jdolecek
3800 1.349 jdolecek *data = dkwhole;
3801 1.348 jdolecek
3802 1.348 jdolecek return 0;
3803 1.348 jdolecek }
3804 1.348 jdolecek
3805 1.376.4.6 martin /*
3806 1.252 oster * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3807 1.252 oster * We end up returning whatever error was returned by the first cache flush
3808 1.252 oster * that fails.
3809 1.252 oster */
3810 1.252 oster
3811 1.269 jld int
3812 1.252 oster rf_sync_component_caches(RF_Raid_t *raidPtr)
3813 1.252 oster {
3814 1.252 oster int c, sparecol;
3815 1.252 oster int e,error;
3816 1.252 oster int force = 1;
3817 1.376.4.6 martin
3818 1.252 oster error = 0;
3819 1.252 oster for (c = 0; c < raidPtr->numCol; c++) {
3820 1.252 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
3821 1.376.4.6 martin e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3822 1.252 oster &force, FWRITE, NOCRED);
3823 1.252 oster if (e) {
3824 1.255 oster if (e != ENODEV)
3825 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3826 1.255 oster raidPtr->raidid, raidPtr->Disks[c].devname);
3827 1.252 oster if (error == 0) {
3828 1.252 oster error = e;
3829 1.252 oster }
3830 1.252 oster }
3831 1.252 oster }
3832 1.252 oster }
3833 1.252 oster
3834 1.252 oster for( c = 0; c < raidPtr->numSpare ; c++) {
3835 1.252 oster sparecol = raidPtr->numCol + c;
3836 1.252 oster /* Need to ensure that the reconstruct actually completed! */
3837 1.252 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3838 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3839 1.252 oster DIOCCACHESYNC, &force, FWRITE, NOCRED);
3840 1.252 oster if (e) {
3841 1.255 oster if (e != ENODEV)
3842 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3843 1.255 oster raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3844 1.252 oster if (error == 0) {
3845 1.252 oster error = e;
3846 1.252 oster }
3847 1.252 oster }
3848 1.252 oster }
3849 1.252 oster }
3850 1.252 oster return error;
3851 1.252 oster }
3852 1.327 pgoyette
3853 1.353 mrg /* Fill in info with the current status */
3854 1.353 mrg void
3855 1.353 mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3856 1.353 mrg {
3857 1.353 mrg
3858 1.376.4.2 martin memset(info, 0, sizeof(*info));
3859 1.376.4.2 martin
3860 1.353 mrg if (raidPtr->status != rf_rs_reconstructing) {
3861 1.353 mrg info->total = 100;
3862 1.353 mrg info->completed = 100;
3863 1.353 mrg } else {
3864 1.353 mrg info->total = raidPtr->reconControl->numRUsTotal;
3865 1.353 mrg info->completed = raidPtr->reconControl->numRUsComplete;
3866 1.353 mrg }
3867 1.353 mrg info->remaining = info->total - info->completed;
3868 1.353 mrg }
3869 1.353 mrg
3870 1.353 mrg /* Fill in info with the current status */
3871 1.353 mrg void
3872 1.353 mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3873 1.353 mrg {
3874 1.353 mrg
3875 1.376.4.2 martin memset(info, 0, sizeof(*info));
3876 1.376.4.2 martin
3877 1.353 mrg if (raidPtr->parity_rewrite_in_progress == 1) {
3878 1.353 mrg info->total = raidPtr->Layout.numStripe;
3879 1.353 mrg info->completed = raidPtr->parity_rewrite_stripes_done;
3880 1.353 mrg } else {
3881 1.353 mrg info->completed = 100;
3882 1.353 mrg info->total = 100;
3883 1.353 mrg }
3884 1.353 mrg info->remaining = info->total - info->completed;
3885 1.353 mrg }
3886 1.353 mrg
3887 1.353 mrg /* Fill in info with the current status */
3888 1.353 mrg void
3889 1.353 mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3890 1.353 mrg {
3891 1.353 mrg
3892 1.376.4.2 martin memset(info, 0, sizeof(*info));
3893 1.376.4.2 martin
3894 1.353 mrg if (raidPtr->copyback_in_progress == 1) {
3895 1.353 mrg info->total = raidPtr->Layout.numStripe;
3896 1.353 mrg info->completed = raidPtr->copyback_stripes_done;
3897 1.353 mrg info->remaining = info->total - info->completed;
3898 1.353 mrg } else {
3899 1.353 mrg info->remaining = 0;
3900 1.353 mrg info->completed = 100;
3901 1.353 mrg info->total = 100;
3902 1.353 mrg }
3903 1.353 mrg }
3904 1.353 mrg
3905 1.353 mrg /* Fill in config with the current info */
3906 1.353 mrg int
3907 1.353 mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
3908 1.353 mrg {
3909 1.353 mrg int d, i, j;
3910 1.353 mrg
3911 1.353 mrg if (!raidPtr->valid)
3912 1.353 mrg return (ENODEV);
3913 1.353 mrg config->cols = raidPtr->numCol;
3914 1.353 mrg config->ndevs = raidPtr->numCol;
3915 1.353 mrg if (config->ndevs >= RF_MAX_DISKS)
3916 1.353 mrg return (ENOMEM);
3917 1.353 mrg config->nspares = raidPtr->numSpare;
3918 1.353 mrg if (config->nspares >= RF_MAX_DISKS)
3919 1.353 mrg return (ENOMEM);
3920 1.353 mrg config->maxqdepth = raidPtr->maxQueueDepth;
3921 1.353 mrg d = 0;
3922 1.353 mrg for (j = 0; j < config->cols; j++) {
3923 1.353 mrg config->devs[d] = raidPtr->Disks[j];
3924 1.353 mrg d++;
3925 1.353 mrg }
3926 1.353 mrg for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
3927 1.353 mrg config->spares[i] = raidPtr->Disks[j];
3928 1.353 mrg if (config->spares[i].status == rf_ds_rebuilding_spare) {
3929 1.353 mrg /* XXX: raidctl(8) expects to see this as a used spare */
3930 1.353 mrg config->spares[i].status = rf_ds_used_spare;
3931 1.353 mrg }
3932 1.353 mrg }
3933 1.353 mrg return 0;
3934 1.353 mrg }
3935 1.353 mrg
3936 1.353 mrg int
3937 1.353 mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
3938 1.353 mrg {
3939 1.353 mrg RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
3940 1.353 mrg RF_ComponentLabel_t *raid_clabel;
3941 1.353 mrg int column = clabel->column;
3942 1.353 mrg
3943 1.353 mrg if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
3944 1.353 mrg return EINVAL;
3945 1.353 mrg raid_clabel = raidget_component_label(raidPtr, column);
3946 1.353 mrg memcpy(clabel, raid_clabel, sizeof *clabel);
3947 1.353 mrg
3948 1.353 mrg return 0;
3949 1.353 mrg }
3950 1.353 mrg
3951 1.327 pgoyette /*
3952 1.327 pgoyette * Module interface
3953 1.327 pgoyette */
3954 1.327 pgoyette
3955 1.356 pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
3956 1.327 pgoyette
3957 1.327 pgoyette #ifdef _MODULE
3958 1.327 pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
3959 1.327 pgoyette #endif
3960 1.327 pgoyette
3961 1.327 pgoyette static int raid_modcmd(modcmd_t, void *);
3962 1.327 pgoyette static int raid_modcmd_init(void);
3963 1.327 pgoyette static int raid_modcmd_fini(void);
3964 1.327 pgoyette
3965 1.327 pgoyette static int
3966 1.327 pgoyette raid_modcmd(modcmd_t cmd, void *data)
3967 1.327 pgoyette {
3968 1.327 pgoyette int error;
3969 1.327 pgoyette
3970 1.327 pgoyette error = 0;
3971 1.327 pgoyette switch (cmd) {
3972 1.327 pgoyette case MODULE_CMD_INIT:
3973 1.327 pgoyette error = raid_modcmd_init();
3974 1.327 pgoyette break;
3975 1.327 pgoyette case MODULE_CMD_FINI:
3976 1.327 pgoyette error = raid_modcmd_fini();
3977 1.327 pgoyette break;
3978 1.327 pgoyette default:
3979 1.327 pgoyette error = ENOTTY;
3980 1.327 pgoyette break;
3981 1.327 pgoyette }
3982 1.327 pgoyette return error;
3983 1.327 pgoyette }
3984 1.327 pgoyette
3985 1.327 pgoyette static int
3986 1.327 pgoyette raid_modcmd_init(void)
3987 1.327 pgoyette {
3988 1.327 pgoyette int error;
3989 1.327 pgoyette int bmajor, cmajor;
3990 1.327 pgoyette
3991 1.327 pgoyette mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3992 1.327 pgoyette mutex_enter(&raid_lock);
3993 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3994 1.327 pgoyette rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3995 1.327 pgoyette rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3996 1.327 pgoyette rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3997 1.327 pgoyette
3998 1.327 pgoyette rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3999 1.327 pgoyette #endif
4000 1.327 pgoyette
4001 1.327 pgoyette bmajor = cmajor = -1;
4002 1.327 pgoyette error = devsw_attach("raid", &raid_bdevsw, &bmajor,
4003 1.327 pgoyette &raid_cdevsw, &cmajor);
4004 1.327 pgoyette if (error != 0 && error != EEXIST) {
4005 1.327 pgoyette aprint_error("%s: devsw_attach failed %d\n", __func__, error);
4006 1.327 pgoyette mutex_exit(&raid_lock);
4007 1.327 pgoyette return error;
4008 1.327 pgoyette }
4009 1.327 pgoyette #ifdef _MODULE
4010 1.327 pgoyette error = config_cfdriver_attach(&raid_cd);
4011 1.327 pgoyette if (error != 0) {
4012 1.327 pgoyette aprint_error("%s: config_cfdriver_attach failed %d\n",
4013 1.327 pgoyette __func__, error);
4014 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
4015 1.327 pgoyette mutex_exit(&raid_lock);
4016 1.327 pgoyette return error;
4017 1.327 pgoyette }
4018 1.327 pgoyette #endif
4019 1.327 pgoyette error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
4020 1.327 pgoyette if (error != 0) {
4021 1.327 pgoyette aprint_error("%s: config_cfattach_attach failed %d\n",
4022 1.327 pgoyette __func__, error);
4023 1.327 pgoyette #ifdef _MODULE
4024 1.327 pgoyette config_cfdriver_detach(&raid_cd);
4025 1.327 pgoyette #endif
4026 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
4027 1.327 pgoyette mutex_exit(&raid_lock);
4028 1.327 pgoyette return error;
4029 1.327 pgoyette }
4030 1.327 pgoyette
4031 1.327 pgoyette raidautoconfigdone = false;
4032 1.327 pgoyette
4033 1.327 pgoyette mutex_exit(&raid_lock);
4034 1.327 pgoyette
4035 1.327 pgoyette if (error == 0) {
4036 1.327 pgoyette if (rf_BootRaidframe(true) == 0)
4037 1.327 pgoyette aprint_verbose("Kernelized RAIDframe activated\n");
4038 1.327 pgoyette else
4039 1.327 pgoyette panic("Serious error activating RAID!!");
4040 1.327 pgoyette }
4041 1.327 pgoyette
4042 1.327 pgoyette /*
4043 1.327 pgoyette * Register a finalizer which will be used to auto-config RAID
4044 1.327 pgoyette * sets once all real hardware devices have been found.
4045 1.327 pgoyette */
4046 1.327 pgoyette error = config_finalize_register(NULL, rf_autoconfig);
4047 1.327 pgoyette if (error != 0) {
4048 1.327 pgoyette aprint_error("WARNING: unable to register RAIDframe "
4049 1.327 pgoyette "finalizer\n");
4050 1.329 pgoyette error = 0;
4051 1.327 pgoyette }
4052 1.327 pgoyette
4053 1.327 pgoyette return error;
4054 1.327 pgoyette }
4055 1.327 pgoyette
4056 1.327 pgoyette static int
4057 1.327 pgoyette raid_modcmd_fini(void)
4058 1.327 pgoyette {
4059 1.327 pgoyette int error;
4060 1.327 pgoyette
4061 1.327 pgoyette mutex_enter(&raid_lock);
4062 1.327 pgoyette
4063 1.327 pgoyette /* Don't allow unload if raid device(s) exist. */
4064 1.327 pgoyette if (!LIST_EMPTY(&raids)) {
4065 1.327 pgoyette mutex_exit(&raid_lock);
4066 1.327 pgoyette return EBUSY;
4067 1.327 pgoyette }
4068 1.327 pgoyette
4069 1.327 pgoyette error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
4070 1.327 pgoyette if (error != 0) {
4071 1.335 mlelstv aprint_error("%s: cannot detach cfattach\n",__func__);
4072 1.327 pgoyette mutex_exit(&raid_lock);
4073 1.327 pgoyette return error;
4074 1.327 pgoyette }
4075 1.327 pgoyette #ifdef _MODULE
4076 1.327 pgoyette error = config_cfdriver_detach(&raid_cd);
4077 1.327 pgoyette if (error != 0) {
4078 1.335 mlelstv aprint_error("%s: cannot detach cfdriver\n",__func__);
4079 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
4080 1.327 pgoyette mutex_exit(&raid_lock);
4081 1.327 pgoyette return error;
4082 1.327 pgoyette }
4083 1.327 pgoyette #endif
4084 1.327 pgoyette error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
4085 1.327 pgoyette if (error != 0) {
4086 1.335 mlelstv aprint_error("%s: cannot detach devsw\n",__func__);
4087 1.327 pgoyette #ifdef _MODULE
4088 1.327 pgoyette config_cfdriver_attach(&raid_cd);
4089 1.327 pgoyette #endif
4090 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
4091 1.327 pgoyette mutex_exit(&raid_lock);
4092 1.327 pgoyette return error;
4093 1.327 pgoyette }
4094 1.327 pgoyette rf_BootRaidframe(false);
4095 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
4096 1.327 pgoyette rf_destroy_mutex2(rf_sparet_wait_mutex);
4097 1.327 pgoyette rf_destroy_cond2(rf_sparet_wait_cv);
4098 1.327 pgoyette rf_destroy_cond2(rf_sparet_resp_cv);
4099 1.327 pgoyette #endif
4100 1.327 pgoyette mutex_exit(&raid_lock);
4101 1.327 pgoyette mutex_destroy(&raid_lock);
4102 1.327 pgoyette
4103 1.327 pgoyette return error;
4104 1.327 pgoyette }
4105