Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.383
      1  1.383     oster /*	$NetBSD: rf_netbsdkintf.c,v 1.383 2020/06/16 14:45:08 oster Exp $	*/
      2  1.281     rmind 
      3    1.1     oster /*-
      4  1.295       erh  * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
      5    1.1     oster  * All rights reserved.
      6    1.1     oster  *
      7    1.1     oster  * This code is derived from software contributed to The NetBSD Foundation
      8    1.1     oster  * by Greg Oster; Jason R. Thorpe.
      9    1.1     oster  *
     10    1.1     oster  * Redistribution and use in source and binary forms, with or without
     11    1.1     oster  * modification, are permitted provided that the following conditions
     12    1.1     oster  * are met:
     13    1.1     oster  * 1. Redistributions of source code must retain the above copyright
     14    1.1     oster  *    notice, this list of conditions and the following disclaimer.
     15    1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     oster  *    documentation and/or other materials provided with the distribution.
     18    1.1     oster  *
     19    1.1     oster  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.1     oster  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.1     oster  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.1     oster  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.1     oster  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.1     oster  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.1     oster  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.1     oster  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.1     oster  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.1     oster  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.1     oster  * POSSIBILITY OF SUCH DAMAGE.
     30    1.1     oster  */
     31    1.1     oster 
     32    1.1     oster /*
     33  1.281     rmind  * Copyright (c) 1988 University of Utah.
     34    1.1     oster  * Copyright (c) 1990, 1993
     35    1.1     oster  *      The Regents of the University of California.  All rights reserved.
     36    1.1     oster  *
     37    1.1     oster  * This code is derived from software contributed to Berkeley by
     38    1.1     oster  * the Systems Programming Group of the University of Utah Computer
     39    1.1     oster  * Science Department.
     40    1.1     oster  *
     41    1.1     oster  * Redistribution and use in source and binary forms, with or without
     42    1.1     oster  * modification, are permitted provided that the following conditions
     43    1.1     oster  * are met:
     44    1.1     oster  * 1. Redistributions of source code must retain the above copyright
     45    1.1     oster  *    notice, this list of conditions and the following disclaimer.
     46    1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     47    1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     48    1.1     oster  *    documentation and/or other materials provided with the distribution.
     49  1.162       agc  * 3. Neither the name of the University nor the names of its contributors
     50  1.162       agc  *    may be used to endorse or promote products derived from this software
     51  1.162       agc  *    without specific prior written permission.
     52  1.162       agc  *
     53  1.162       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  1.162       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  1.162       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  1.162       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  1.162       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  1.162       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  1.162       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  1.162       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  1.162       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  1.162       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  1.162       agc  * SUCH DAMAGE.
     64  1.162       agc  *
     65  1.381  riastrad  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     66  1.162       agc  *
     67  1.162       agc  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     68  1.162       agc  */
     69  1.162       agc 
     70  1.162       agc /*
     71    1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
     72    1.1     oster  * All rights reserved.
     73    1.1     oster  *
     74    1.1     oster  * Authors: Mark Holland, Jim Zelenka
     75    1.1     oster  *
     76    1.1     oster  * Permission to use, copy, modify and distribute this software and
     77    1.1     oster  * its documentation is hereby granted, provided that both the copyright
     78    1.1     oster  * notice and this permission notice appear in all copies of the
     79    1.1     oster  * software, derivative works or modified versions, and any portions
     80    1.1     oster  * thereof, and that both notices appear in supporting documentation.
     81    1.1     oster  *
     82    1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     83    1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     84    1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     85    1.1     oster  *
     86    1.1     oster  * Carnegie Mellon requests users of this software to return to
     87    1.1     oster  *
     88    1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     89    1.1     oster  *  School of Computer Science
     90    1.1     oster  *  Carnegie Mellon University
     91    1.1     oster  *  Pittsburgh PA 15213-3890
     92    1.1     oster  *
     93    1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     94    1.1     oster  * rights to redistribute these changes.
     95    1.1     oster  */
     96    1.1     oster 
     97    1.1     oster /***********************************************************
     98    1.1     oster  *
     99    1.1     oster  * rf_kintf.c -- the kernel interface routines for RAIDframe
    100    1.1     oster  *
    101    1.1     oster  ***********************************************************/
    102  1.112     lukem 
    103  1.112     lukem #include <sys/cdefs.h>
    104  1.383     oster __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.383 2020/06/16 14:45:08 oster Exp $");
    105  1.251        ad 
    106  1.251        ad #ifdef _KERNEL_OPT
    107  1.251        ad #include "opt_raid_autoconfig.h"
    108  1.363       mrg #include "opt_compat_netbsd32.h"
    109  1.251        ad #endif
    110    1.1     oster 
    111  1.113     lukem #include <sys/param.h>
    112    1.1     oster #include <sys/errno.h>
    113    1.1     oster #include <sys/pool.h>
    114  1.152   thorpej #include <sys/proc.h>
    115    1.1     oster #include <sys/queue.h>
    116    1.1     oster #include <sys/disk.h>
    117    1.1     oster #include <sys/device.h>
    118    1.1     oster #include <sys/stat.h>
    119    1.1     oster #include <sys/ioctl.h>
    120    1.1     oster #include <sys/fcntl.h>
    121    1.1     oster #include <sys/systm.h>
    122    1.1     oster #include <sys/vnode.h>
    123    1.1     oster #include <sys/disklabel.h>
    124    1.1     oster #include <sys/conf.h>
    125    1.1     oster #include <sys/buf.h>
    126  1.182      yamt #include <sys/bufq.h>
    127   1.65     oster #include <sys/reboot.h>
    128  1.208      elad #include <sys/kauth.h>
    129  1.327  pgoyette #include <sys/module.h>
    130  1.358  pgoyette #include <sys/compat_stub.h>
    131    1.8     oster 
    132  1.234     oster #include <prop/proplib.h>
    133  1.234     oster 
    134  1.110     oster #include <dev/raidframe/raidframevar.h>
    135  1.110     oster #include <dev/raidframe/raidframeio.h>
    136  1.269       jld #include <dev/raidframe/rf_paritymap.h>
    137  1.251        ad 
    138    1.1     oster #include "rf_raid.h"
    139   1.44     oster #include "rf_copyback.h"
    140    1.1     oster #include "rf_dag.h"
    141    1.1     oster #include "rf_dagflags.h"
    142   1.99     oster #include "rf_desc.h"
    143    1.1     oster #include "rf_diskqueue.h"
    144    1.1     oster #include "rf_etimer.h"
    145    1.1     oster #include "rf_general.h"
    146    1.1     oster #include "rf_kintf.h"
    147    1.1     oster #include "rf_options.h"
    148    1.1     oster #include "rf_driver.h"
    149    1.1     oster #include "rf_parityscan.h"
    150    1.1     oster #include "rf_threadstuff.h"
    151    1.1     oster 
    152  1.325  christos #include "ioconf.h"
    153  1.325  christos 
    154  1.133     oster #ifdef DEBUG
    155    1.9     oster int     rf_kdebug_level = 0;
    156    1.1     oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    157    1.9     oster #else				/* DEBUG */
    158    1.1     oster #define db1_printf(a) { }
    159    1.9     oster #endif				/* DEBUG */
    160    1.1     oster 
    161  1.344  christos #ifdef DEBUG_ROOT
    162  1.344  christos #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
    163  1.345  christos #else
    164  1.345  christos #define DPRINTF(a, ...)
    165  1.344  christos #endif
    166  1.344  christos 
    167  1.249     oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    168  1.289       mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
    169  1.287       mrg static rf_declare_cond2(rf_sparet_wait_cv);
    170  1.287       mrg static rf_declare_cond2(rf_sparet_resp_cv);
    171    1.1     oster 
    172   1.10     oster static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    173   1.10     oster 						 * spare table */
    174   1.10     oster static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    175   1.10     oster 						 * installation process */
    176  1.249     oster #endif
    177  1.153   thorpej 
    178  1.153   thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    179   1.10     oster 
    180    1.1     oster /* prototypes */
    181  1.187  christos static void KernelWakeupFunc(struct buf *);
    182  1.187  christos static void InitBP(struct buf *, struct vnode *, unsigned,
    183  1.225  christos     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    184  1.187  christos     void *, int, struct proc *);
    185  1.300  christos static void raidinit(struct raid_softc *);
    186  1.335   mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
    187  1.348  jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
    188    1.1     oster 
    189  1.261    dyoung static int raid_match(device_t, cfdata_t, void *);
    190  1.261    dyoung static void raid_attach(device_t, device_t, void *);
    191  1.261    dyoung static int raid_detach(device_t, int);
    192  1.130   gehenna 
    193  1.269       jld static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
    194  1.269       jld     daddr_t, daddr_t);
    195  1.269       jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
    196  1.269       jld     daddr_t, daddr_t, int);
    197  1.269       jld 
    198  1.276       mrg static int raidwrite_component_label(unsigned,
    199  1.276       mrg     dev_t, struct vnode *, RF_ComponentLabel_t *);
    200  1.276       mrg static int raidread_component_label(unsigned,
    201  1.276       mrg     dev_t, struct vnode *, RF_ComponentLabel_t *);
    202  1.269       jld 
    203  1.335   mlelstv static int raid_diskstart(device_t, struct buf *bp);
    204  1.335   mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
    205  1.335   mlelstv static int raid_lastclose(device_t);
    206  1.269       jld 
    207  1.324       mrg static dev_type_open(raidopen);
    208  1.324       mrg static dev_type_close(raidclose);
    209  1.324       mrg static dev_type_read(raidread);
    210  1.324       mrg static dev_type_write(raidwrite);
    211  1.324       mrg static dev_type_ioctl(raidioctl);
    212  1.324       mrg static dev_type_strategy(raidstrategy);
    213  1.324       mrg static dev_type_dump(raiddump);
    214  1.324       mrg static dev_type_size(raidsize);
    215  1.130   gehenna 
    216  1.130   gehenna const struct bdevsw raid_bdevsw = {
    217  1.305  dholland 	.d_open = raidopen,
    218  1.305  dholland 	.d_close = raidclose,
    219  1.305  dholland 	.d_strategy = raidstrategy,
    220  1.305  dholland 	.d_ioctl = raidioctl,
    221  1.305  dholland 	.d_dump = raiddump,
    222  1.305  dholland 	.d_psize = raidsize,
    223  1.311  dholland 	.d_discard = nodiscard,
    224  1.305  dholland 	.d_flag = D_DISK
    225  1.130   gehenna };
    226  1.130   gehenna 
    227  1.130   gehenna const struct cdevsw raid_cdevsw = {
    228  1.305  dholland 	.d_open = raidopen,
    229  1.305  dholland 	.d_close = raidclose,
    230  1.305  dholland 	.d_read = raidread,
    231  1.305  dholland 	.d_write = raidwrite,
    232  1.305  dholland 	.d_ioctl = raidioctl,
    233  1.305  dholland 	.d_stop = nostop,
    234  1.305  dholland 	.d_tty = notty,
    235  1.305  dholland 	.d_poll = nopoll,
    236  1.305  dholland 	.d_mmap = nommap,
    237  1.305  dholland 	.d_kqfilter = nokqfilter,
    238  1.312  dholland 	.d_discard = nodiscard,
    239  1.305  dholland 	.d_flag = D_DISK
    240  1.130   gehenna };
    241    1.1     oster 
    242  1.323   mlelstv static struct dkdriver rf_dkdriver = {
    243  1.335   mlelstv 	.d_open = raidopen,
    244  1.335   mlelstv 	.d_close = raidclose,
    245  1.323   mlelstv 	.d_strategy = raidstrategy,
    246  1.335   mlelstv 	.d_diskstart = raid_diskstart,
    247  1.335   mlelstv 	.d_dumpblocks = raid_dumpblocks,
    248  1.335   mlelstv 	.d_lastclose = raid_lastclose,
    249  1.323   mlelstv 	.d_minphys = minphys
    250  1.323   mlelstv };
    251  1.235     oster 
    252    1.1     oster #define	raidunit(x)	DISKUNIT(x)
    253  1.335   mlelstv #define	raidsoftc(dev)	(((struct raid_softc *)device_private(dev))->sc_r.softc)
    254    1.1     oster 
    255  1.202     oster extern struct cfdriver raid_cd;
    256  1.266    dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
    257  1.266    dyoung     raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
    258  1.266    dyoung     DVF_DETACH_SHUTDOWN);
    259  1.202     oster 
    260  1.353       mrg /* Internal representation of a rf_recon_req */
    261  1.353       mrg struct rf_recon_req_internal {
    262  1.353       mrg 	RF_RowCol_t col;
    263  1.353       mrg 	RF_ReconReqFlags_t flags;
    264  1.353       mrg 	void   *raidPtr;
    265  1.353       mrg };
    266  1.353       mrg 
    267  1.186     perry /*
    268  1.186     perry  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    269  1.186     perry  * Be aware that large numbers can allow the driver to consume a lot of
    270   1.28     oster  * kernel memory, especially on writes, and in degraded mode reads.
    271  1.186     perry  *
    272  1.186     perry  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    273  1.186     perry  * a single 64K write will typically require 64K for the old data,
    274  1.186     perry  * 64K for the old parity, and 64K for the new parity, for a total
    275   1.28     oster  * of 192K (if the parity buffer is not re-used immediately).
    276  1.110     oster  * Even it if is used immediately, that's still 128K, which when multiplied
    277   1.28     oster  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    278  1.186     perry  *
    279   1.28     oster  * Now in degraded mode, for example, a 64K read on the above setup may
    280  1.186     perry  * require data reconstruction, which will require *all* of the 4 remaining
    281   1.28     oster  * disks to participate -- 4 * 32K/disk == 128K again.
    282   1.20     oster  */
    283   1.20     oster 
    284   1.20     oster #ifndef RAIDOUTSTANDING
    285   1.28     oster #define RAIDOUTSTANDING   6
    286   1.20     oster #endif
    287   1.20     oster 
    288    1.1     oster #define RAIDLABELDEV(dev)	\
    289    1.1     oster 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    290    1.1     oster 
    291    1.1     oster /* declared here, and made public, for the benefit of KVM stuff.. */
    292    1.9     oster 
    293  1.104     oster static int raidlock(struct raid_softc *);
    294  1.104     oster static void raidunlock(struct raid_softc *);
    295    1.1     oster 
    296  1.266    dyoung static int raid_detach_unlocked(struct raid_softc *);
    297  1.266    dyoung 
    298  1.104     oster static void rf_markalldirty(RF_Raid_t *);
    299  1.304  christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
    300   1.48     oster 
    301  1.353       mrg void rf_ReconThread(struct rf_recon_req_internal *);
    302  1.104     oster void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    303  1.104     oster void rf_CopybackThread(RF_Raid_t *raidPtr);
    304  1.353       mrg void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
    305  1.261    dyoung int rf_autoconfig(device_t);
    306  1.142   thorpej void rf_buildroothack(RF_ConfigSet_t *);
    307  1.104     oster 
    308  1.104     oster RF_AutoConfig_t *rf_find_raid_components(void);
    309  1.104     oster RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    310  1.104     oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    311  1.292     oster int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
    312  1.104     oster void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    313  1.104     oster int rf_set_autoconfig(RF_Raid_t *, int);
    314  1.104     oster int rf_set_rootpartition(RF_Raid_t *, int);
    315  1.104     oster void rf_release_all_vps(RF_ConfigSet_t *);
    316  1.104     oster void rf_cleanup_config_set(RF_ConfigSet_t *);
    317  1.104     oster int rf_have_enough_components(RF_ConfigSet_t *);
    318  1.300  christos struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
    319  1.278       mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
    320   1.48     oster 
    321  1.295       erh /*
    322  1.295       erh  * Debugging, mostly.  Set to 0 to not allow autoconfig to take place.
    323  1.295       erh  * Note that this is overridden by having RAID_AUTOCONFIG as an option
    324  1.295       erh  * in the kernel config file.
    325  1.295       erh  */
    326  1.295       erh #ifdef RAID_AUTOCONFIG
    327  1.295       erh int raidautoconfig = 1;
    328  1.295       erh #else
    329  1.295       erh int raidautoconfig = 0;
    330  1.295       erh #endif
    331  1.295       erh static bool raidautoconfigdone = false;
    332   1.37     oster 
    333  1.177     oster struct RF_Pools_s rf_pools;
    334  1.177     oster 
    335  1.300  christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
    336  1.300  christos static kmutex_t raid_lock;
    337    1.1     oster 
    338  1.300  christos static struct raid_softc *
    339  1.300  christos raidcreate(int unit) {
    340  1.300  christos 	struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
    341  1.300  christos 	sc->sc_unit = unit;
    342  1.327  pgoyette 	cv_init(&sc->sc_cv, "raidunit");
    343  1.327  pgoyette 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
    344  1.300  christos 	return sc;
    345  1.300  christos }
    346    1.1     oster 
    347  1.300  christos static void
    348  1.300  christos raiddestroy(struct raid_softc *sc) {
    349  1.327  pgoyette 	cv_destroy(&sc->sc_cv);
    350  1.327  pgoyette 	mutex_destroy(&sc->sc_mutex);
    351  1.300  christos 	kmem_free(sc, sizeof(*sc));
    352  1.300  christos }
    353   1.50     oster 
    354  1.300  christos static struct raid_softc *
    355  1.327  pgoyette raidget(int unit, bool create) {
    356  1.300  christos 	struct raid_softc *sc;
    357  1.300  christos 	if (unit < 0) {
    358  1.300  christos #ifdef DIAGNOSTIC
    359  1.300  christos 		panic("%s: unit %d!", __func__, unit);
    360  1.300  christos #endif
    361  1.300  christos 		return NULL;
    362  1.300  christos 	}
    363  1.300  christos 	mutex_enter(&raid_lock);
    364  1.300  christos 	LIST_FOREACH(sc, &raids, sc_link) {
    365  1.300  christos 		if (sc->sc_unit == unit) {
    366  1.300  christos 			mutex_exit(&raid_lock);
    367  1.300  christos 			return sc;
    368  1.300  christos 		}
    369  1.300  christos 	}
    370  1.300  christos 	mutex_exit(&raid_lock);
    371  1.327  pgoyette 	if (!create)
    372  1.327  pgoyette 		return NULL;
    373  1.379       chs 	sc = raidcreate(unit);
    374  1.300  christos 	mutex_enter(&raid_lock);
    375  1.300  christos 	LIST_INSERT_HEAD(&raids, sc, sc_link);
    376  1.300  christos 	mutex_exit(&raid_lock);
    377  1.300  christos 	return sc;
    378  1.300  christos }
    379  1.300  christos 
    380  1.300  christos static void
    381  1.300  christos raidput(struct raid_softc *sc) {
    382  1.300  christos 	mutex_enter(&raid_lock);
    383  1.300  christos 	LIST_REMOVE(sc, sc_link);
    384  1.300  christos 	mutex_exit(&raid_lock);
    385  1.300  christos 	raiddestroy(sc);
    386  1.300  christos }
    387    1.1     oster 
    388  1.300  christos void
    389  1.300  christos raidattach(int num)
    390  1.300  christos {
    391   1.62     oster 
    392  1.142   thorpej 	/*
    393  1.327  pgoyette 	 * Device attachment and associated initialization now occurs
    394  1.327  pgoyette 	 * as part of the module initialization.
    395  1.142   thorpej 	 */
    396  1.142   thorpej }
    397  1.142   thorpej 
    398  1.142   thorpej int
    399  1.261    dyoung rf_autoconfig(device_t self)
    400  1.142   thorpej {
    401  1.142   thorpej 	RF_AutoConfig_t *ac_list;
    402  1.142   thorpej 	RF_ConfigSet_t *config_sets;
    403  1.142   thorpej 
    404  1.295       erh 	if (!raidautoconfig || raidautoconfigdone == true)
    405  1.142   thorpej 		return (0);
    406  1.142   thorpej 
    407  1.142   thorpej 	/* XXX This code can only be run once. */
    408  1.295       erh 	raidautoconfigdone = true;
    409  1.142   thorpej 
    410  1.307  christos #ifdef __HAVE_CPU_BOOTCONF
    411  1.307  christos 	/*
    412  1.307  christos 	 * 0. find the boot device if needed first so we can use it later
    413  1.307  christos 	 * this needs to be done before we autoconfigure any raid sets,
    414  1.307  christos 	 * because if we use wedges we are not going to be able to open
    415  1.307  christos 	 * the boot device later
    416  1.307  christos 	 */
    417  1.307  christos 	if (booted_device == NULL)
    418  1.307  christos 		cpu_bootconf();
    419  1.307  christos #endif
    420   1.48     oster 	/* 1. locate all RAID components on the system */
    421  1.258        ad 	aprint_debug("Searching for RAID components...\n");
    422   1.48     oster 	ac_list = rf_find_raid_components();
    423   1.48     oster 
    424  1.142   thorpej 	/* 2. Sort them into their respective sets. */
    425   1.48     oster 	config_sets = rf_create_auto_sets(ac_list);
    426   1.48     oster 
    427  1.142   thorpej 	/*
    428  1.299     oster 	 * 3. Evaluate each set and configure the valid ones.
    429  1.142   thorpej 	 * This gets done in rf_buildroothack().
    430  1.142   thorpej 	 */
    431  1.142   thorpej 	rf_buildroothack(config_sets);
    432   1.48     oster 
    433  1.213  christos 	return 1;
    434   1.48     oster }
    435   1.48     oster 
    436  1.367  christos int
    437  1.367  christos rf_inited(const struct raid_softc *rs) {
    438  1.367  christos 	return (rs->sc_flags & RAIDF_INITED) != 0;
    439  1.367  christos }
    440  1.367  christos 
    441  1.368     oster RF_Raid_t *
    442  1.368     oster rf_get_raid(struct raid_softc *rs) {
    443  1.368     oster 	return &rs->sc_r;
    444  1.368     oster }
    445  1.368     oster 
    446  1.367  christos int
    447  1.367  christos rf_get_unit(const struct raid_softc *rs) {
    448  1.367  christos 	return rs->sc_unit;
    449  1.367  christos }
    450  1.367  christos 
    451  1.306  christos static int
    452  1.307  christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
    453  1.359       bad 	const char *bootname;
    454  1.359       bad 	size_t len;
    455  1.359       bad 
    456  1.359       bad 	/* if bdv is NULL, the set can't contain it. exit early. */
    457  1.359       bad 	if (bdv == NULL)
    458  1.359       bad 		return 0;
    459  1.359       bad 
    460  1.359       bad 	bootname = device_xname(bdv);
    461  1.359       bad 	len = strlen(bootname);
    462  1.306  christos 
    463  1.306  christos 	for (int col = 0; col < r->numCol; col++) {
    464  1.307  christos 		const char *devname = r->Disks[col].devname;
    465  1.306  christos 		devname += sizeof("/dev/") - 1;
    466  1.307  christos 		if (strncmp(devname, "dk", 2) == 0) {
    467  1.307  christos 			const char *parent =
    468  1.307  christos 			    dkwedge_get_parent_name(r->Disks[col].dev);
    469  1.307  christos 			if (parent != NULL)
    470  1.307  christos 				devname = parent;
    471  1.307  christos 		}
    472  1.306  christos 		if (strncmp(devname, bootname, len) == 0) {
    473  1.306  christos 			struct raid_softc *sc = r->softc;
    474  1.306  christos 			aprint_debug("raid%d includes boot device %s\n",
    475  1.306  christos 			    sc->sc_unit, devname);
    476  1.306  christos 			return 1;
    477  1.306  christos 		}
    478  1.306  christos 	}
    479  1.306  christos 	return 0;
    480  1.306  christos }
    481  1.306  christos 
    482   1.48     oster void
    483  1.142   thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
    484   1.48     oster {
    485   1.48     oster 	RF_ConfigSet_t *cset;
    486   1.48     oster 	RF_ConfigSet_t *next_cset;
    487   1.51     oster 	int num_root;
    488  1.300  christos 	struct raid_softc *sc, *rsc;
    489  1.378    martin 	struct dk_softc *dksc = NULL;	/* XXX gcc -Os: may be used uninit. */
    490   1.48     oster 
    491  1.300  christos 	sc = rsc = NULL;
    492   1.51     oster 	num_root = 0;
    493   1.48     oster 	cset = config_sets;
    494  1.271    dyoung 	while (cset != NULL) {
    495   1.48     oster 		next_cset = cset->next;
    496  1.186     perry 		if (rf_have_enough_components(cset) &&
    497  1.300  christos 		    cset->ac->clabel->autoconfigure == 1) {
    498  1.300  christos 			sc = rf_auto_config_set(cset);
    499  1.300  christos 			if (sc != NULL) {
    500  1.359       bad 				aprint_debug("raid%d: configured ok, rootable %d\n",
    501  1.359       bad 				    sc->sc_unit, cset->rootable);
    502   1.51     oster 				if (cset->rootable) {
    503  1.300  christos 					rsc = sc;
    504   1.51     oster 					num_root++;
    505   1.51     oster 				}
    506   1.51     oster 			} else {
    507   1.51     oster 				/* The autoconfig didn't work :( */
    508  1.300  christos 				aprint_debug("Autoconfig failed\n");
    509   1.51     oster 				rf_release_all_vps(cset);
    510   1.48     oster 			}
    511   1.48     oster 		} else {
    512  1.186     perry 			/* we're not autoconfiguring this set...
    513   1.48     oster 			   release the associated resources */
    514   1.49     oster 			rf_release_all_vps(cset);
    515   1.48     oster 		}
    516   1.48     oster 		/* cleanup */
    517   1.49     oster 		rf_cleanup_config_set(cset);
    518   1.48     oster 		cset = next_cset;
    519   1.48     oster 	}
    520  1.122     oster 
    521  1.223     oster 	/* if the user has specified what the root device should be
    522  1.223     oster 	   then we don't touch booted_device or boothowto... */
    523  1.223     oster 
    524  1.359       bad 	if (rootspec != NULL) {
    525  1.359       bad 		DPRINTF("%s: rootspec %s\n", __func__, rootspec);
    526  1.223     oster 		return;
    527  1.359       bad 	}
    528  1.223     oster 
    529  1.122     oster 	/* we found something bootable... */
    530  1.122     oster 
    531  1.310  christos 	/*
    532  1.310  christos 	 * XXX: The following code assumes that the root raid
    533  1.310  christos 	 * is the first ('a') partition. This is about the best
    534  1.310  christos 	 * we can do with a BSD disklabel, but we might be able
    535  1.310  christos 	 * to do better with a GPT label, by setting a specified
    536  1.310  christos 	 * attribute to indicate the root partition. We can then
    537  1.310  christos 	 * stash the partition number in the r->root_partition
    538  1.310  christos 	 * high bits (the bottom 2 bits are already used). For
    539  1.310  christos 	 * now we just set booted_partition to 0 when we override
    540  1.310  christos 	 * root.
    541  1.310  christos 	 */
    542  1.122     oster 	if (num_root == 1) {
    543  1.306  christos 		device_t candidate_root;
    544  1.377      maxv 		dksc = &rsc->sc_dksc;
    545  1.335   mlelstv 		if (dksc->sc_dkdev.dk_nwedges != 0) {
    546  1.297  christos 			char cname[sizeof(cset->ac->devname)];
    547  1.344  christos 			/* XXX: assume partition 'a' first */
    548  1.297  christos 			snprintf(cname, sizeof(cname), "%s%c",
    549  1.335   mlelstv 			    device_xname(dksc->sc_dev), 'a');
    550  1.306  christos 			candidate_root = dkwedge_find_by_wname(cname);
    551  1.344  christos 			DPRINTF("%s: candidate wedge root=%s\n", __func__,
    552  1.344  christos 			    cname);
    553  1.344  christos 			if (candidate_root == NULL) {
    554  1.344  christos 				/*
    555  1.344  christos 				 * If that is not found, because we don't use
    556  1.344  christos 				 * disklabel, return the first dk child
    557  1.344  christos 				 * XXX: we can skip the 'a' check above
    558  1.344  christos 				 * and always do this...
    559  1.344  christos 				 */
    560  1.344  christos 				size_t i = 0;
    561  1.344  christos 				candidate_root = dkwedge_find_by_parent(
    562  1.344  christos 				    device_xname(dksc->sc_dev), &i);
    563  1.344  christos 			}
    564  1.344  christos 			DPRINTF("%s: candidate wedge root=%p\n", __func__,
    565  1.344  christos 			    candidate_root);
    566  1.297  christos 		} else
    567  1.335   mlelstv 			candidate_root = dksc->sc_dev;
    568  1.344  christos 		DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
    569  1.344  christos 		DPRINTF("%s: booted_device=%p root_partition=%d "
    570  1.359       bad 			"contains_boot=%d",
    571  1.359       bad 		    __func__, booted_device, rsc->sc_r.root_partition,
    572  1.359       bad 			   rf_containsboot(&rsc->sc_r, booted_device));
    573  1.359       bad 		/* XXX the check for booted_device == NULL can probably be
    574  1.359       bad 		 * dropped, now that rf_containsboot handles that case.
    575  1.359       bad 		 */
    576  1.308  christos 		if (booted_device == NULL ||
    577  1.308  christos 		    rsc->sc_r.root_partition == 1 ||
    578  1.310  christos 		    rf_containsboot(&rsc->sc_r, booted_device)) {
    579  1.308  christos 			booted_device = candidate_root;
    580  1.351  christos 			booted_method = "raidframe/single";
    581  1.310  christos 			booted_partition = 0;	/* XXX assume 'a' */
    582  1.310  christos 		}
    583  1.122     oster 	} else if (num_root > 1) {
    584  1.344  christos 		DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
    585  1.344  christos 		    booted_device);
    586  1.226     oster 
    587  1.226     oster 		/*
    588  1.226     oster 		 * Maybe the MD code can help. If it cannot, then
    589  1.226     oster 		 * setroot() will discover that we have no
    590  1.226     oster 		 * booted_device and will ask the user if nothing was
    591  1.226     oster 		 * hardwired in the kernel config file
    592  1.226     oster 		 */
    593  1.226     oster 		if (booted_device == NULL)
    594  1.226     oster 			return;
    595  1.226     oster 
    596  1.226     oster 		num_root = 0;
    597  1.300  christos 		mutex_enter(&raid_lock);
    598  1.300  christos 		LIST_FOREACH(sc, &raids, sc_link) {
    599  1.300  christos 			RF_Raid_t *r = &sc->sc_r;
    600  1.300  christos 			if (r->valid == 0)
    601  1.226     oster 				continue;
    602  1.226     oster 
    603  1.300  christos 			if (r->root_partition == 0)
    604  1.226     oster 				continue;
    605  1.226     oster 
    606  1.306  christos 			if (rf_containsboot(r, booted_device)) {
    607  1.226     oster 				num_root++;
    608  1.300  christos 				rsc = sc;
    609  1.335   mlelstv 				dksc = &rsc->sc_dksc;
    610  1.226     oster 			}
    611  1.226     oster 		}
    612  1.300  christos 		mutex_exit(&raid_lock);
    613  1.295       erh 
    614  1.226     oster 		if (num_root == 1) {
    615  1.335   mlelstv 			booted_device = dksc->sc_dev;
    616  1.351  christos 			booted_method = "raidframe/multi";
    617  1.310  christos 			booted_partition = 0;	/* XXX assume 'a' */
    618  1.226     oster 		} else {
    619  1.226     oster 			/* we can't guess.. require the user to answer... */
    620  1.226     oster 			boothowto |= RB_ASKNAME;
    621  1.226     oster 		}
    622   1.51     oster 	}
    623    1.1     oster }
    624    1.1     oster 
    625  1.324       mrg static int
    626  1.169     oster raidsize(dev_t dev)
    627    1.1     oster {
    628    1.1     oster 	struct raid_softc *rs;
    629  1.335   mlelstv 	struct dk_softc *dksc;
    630  1.335   mlelstv 	unsigned int unit;
    631    1.1     oster 
    632    1.1     oster 	unit = raidunit(dev);
    633  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    634  1.336   mlelstv 		return -1;
    635  1.335   mlelstv 	dksc = &rs->sc_dksc;
    636  1.335   mlelstv 
    637    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    638  1.336   mlelstv 		return -1;
    639    1.1     oster 
    640  1.335   mlelstv 	return dk_size(dksc, dev);
    641  1.335   mlelstv }
    642    1.1     oster 
    643  1.335   mlelstv static int
    644  1.335   mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    645  1.335   mlelstv {
    646  1.335   mlelstv 	unsigned int unit;
    647  1.335   mlelstv 	struct raid_softc *rs;
    648  1.335   mlelstv 	struct dk_softc *dksc;
    649    1.1     oster 
    650  1.335   mlelstv 	unit = raidunit(dev);
    651  1.335   mlelstv 	if ((rs = raidget(unit, false)) == NULL)
    652  1.335   mlelstv 		return ENXIO;
    653  1.335   mlelstv 	dksc = &rs->sc_dksc;
    654    1.1     oster 
    655  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    656  1.335   mlelstv 		return ENODEV;
    657    1.1     oster 
    658  1.336   mlelstv         /*
    659  1.336   mlelstv            Note that blkno is relative to this particular partition.
    660  1.336   mlelstv            By adding adding RF_PROTECTED_SECTORS, we get a value that
    661  1.336   mlelstv 	   is relative to the partition used for the underlying component.
    662  1.336   mlelstv         */
    663  1.336   mlelstv 	blkno += RF_PROTECTED_SECTORS;
    664  1.336   mlelstv 
    665  1.380  riastrad 	return dk_dump(dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE);
    666    1.1     oster }
    667    1.1     oster 
    668  1.324       mrg static int
    669  1.335   mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
    670    1.1     oster {
    671  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(dev);
    672  1.231     oster 	const struct bdevsw *bdev;
    673  1.231     oster 	RF_Raid_t *raidPtr;
    674  1.335   mlelstv 	int     c, sparecol, j, scol, dumpto;
    675  1.231     oster 	int     error = 0;
    676  1.231     oster 
    677  1.300  christos 	raidPtr = &rs->sc_r;
    678  1.231     oster 
    679  1.231     oster 	/* we only support dumping to RAID 1 sets */
    680  1.231     oster 	if (raidPtr->Layout.numDataCol != 1 ||
    681  1.231     oster 	    raidPtr->Layout.numParityCol != 1)
    682  1.231     oster 		return EINVAL;
    683  1.231     oster 
    684  1.231     oster 	if ((error = raidlock(rs)) != 0)
    685  1.231     oster 		return error;
    686  1.231     oster 
    687  1.231     oster 	/* figure out what device is alive.. */
    688  1.231     oster 
    689  1.231     oster 	/*
    690  1.231     oster 	   Look for a component to dump to.  The preference for the
    691  1.231     oster 	   component to dump to is as follows:
    692  1.383     oster 	   1) the first component
    693  1.383     oster 	   2) a used_spare of the first component
    694  1.383     oster 	   3) the second component
    695  1.383     oster 	   4) a used_spare of the second component
    696  1.231     oster 	*/
    697  1.231     oster 
    698  1.231     oster 	dumpto = -1;
    699  1.231     oster 	for (c = 0; c < raidPtr->numCol; c++) {
    700  1.231     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    701  1.231     oster 			/* this might be the one */
    702  1.231     oster 			dumpto = c;
    703  1.231     oster 			break;
    704  1.231     oster 		}
    705  1.231     oster 	}
    706  1.231     oster 
    707  1.231     oster 	/*
    708  1.383     oster 	   At this point we have possibly selected a live component.
    709  1.383     oster 	   If we didn't find a live ocmponent, we now check to see
    710  1.383     oster 	   if there is a relevant spared component.
    711  1.231     oster 	*/
    712  1.231     oster 
    713  1.231     oster 	for (c = 0; c < raidPtr->numSpare; c++) {
    714  1.231     oster 		sparecol = raidPtr->numCol + c;
    715  1.231     oster 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    716  1.231     oster 			/* How about this one? */
    717  1.231     oster 			scol = -1;
    718  1.231     oster 			for(j=0;j<raidPtr->numCol;j++) {
    719  1.231     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
    720  1.231     oster 					scol = j;
    721  1.231     oster 					break;
    722  1.231     oster 				}
    723  1.231     oster 			}
    724  1.231     oster 			if (scol == 0) {
    725  1.231     oster 				/*
    726  1.383     oster 				   We must have found a spared first
    727  1.383     oster 				   component!  We'll take that over
    728  1.383     oster 				   anything else found so far.  (We
    729  1.383     oster 				   couldn't have found a real first
    730  1.383     oster 				   component before, since this is a
    731  1.383     oster 				   used spare, and it's saying that
    732  1.383     oster 				   it's replacing the first
    733  1.383     oster 				   component.)  On reboot (with
    734  1.231     oster 				   autoconfiguration turned on)
    735  1.383     oster 				   sparecol will become the first
    736  1.383     oster 				   component (component0) of this set.
    737  1.231     oster 				*/
    738  1.231     oster 				dumpto = sparecol;
    739  1.231     oster 				break;
    740  1.231     oster 			} else if (scol != -1) {
    741  1.231     oster 				/*
    742  1.383     oster 				   Must be a spared second component.
    743  1.383     oster 				   We'll dump to that if we havn't found
    744  1.383     oster 				   anything else so far.
    745  1.231     oster 				*/
    746  1.231     oster 				if (dumpto == -1)
    747  1.231     oster 					dumpto = sparecol;
    748  1.231     oster 			}
    749  1.231     oster 		}
    750  1.231     oster 	}
    751  1.231     oster 
    752  1.231     oster 	if (dumpto == -1) {
    753  1.231     oster 		/* we couldn't find any live components to dump to!?!?
    754  1.231     oster 		 */
    755  1.231     oster 		error = EINVAL;
    756  1.231     oster 		goto out;
    757  1.231     oster 	}
    758  1.231     oster 
    759  1.231     oster 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    760  1.342   mlelstv 	if (bdev == NULL) {
    761  1.342   mlelstv 		error = ENXIO;
    762  1.342   mlelstv 		goto out;
    763  1.342   mlelstv 	}
    764  1.231     oster 
    765  1.231     oster 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    766  1.336   mlelstv 				blkno, va, nblk * raidPtr->bytesPerSector);
    767  1.231     oster 
    768  1.231     oster out:
    769  1.231     oster 	raidunlock(rs);
    770  1.231     oster 
    771  1.231     oster 	return error;
    772    1.1     oster }
    773  1.324       mrg 
    774    1.1     oster /* ARGSUSED */
    775  1.324       mrg static int
    776  1.222  christos raidopen(dev_t dev, int flags, int fmt,
    777  1.222  christos     struct lwp *l)
    778    1.1     oster {
    779    1.9     oster 	int     unit = raidunit(dev);
    780    1.1     oster 	struct raid_softc *rs;
    781  1.335   mlelstv 	struct dk_softc *dksc;
    782  1.335   mlelstv 	int     error = 0;
    783    1.9     oster 	int     part, pmask;
    784    1.9     oster 
    785  1.327  pgoyette 	if ((rs = raidget(unit, true)) == NULL)
    786  1.300  christos 		return ENXIO;
    787    1.1     oster 	if ((error = raidlock(rs)) != 0)
    788    1.9     oster 		return (error);
    789  1.266    dyoung 
    790  1.266    dyoung 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
    791  1.266    dyoung 		error = EBUSY;
    792  1.266    dyoung 		goto bad;
    793  1.266    dyoung 	}
    794  1.266    dyoung 
    795  1.335   mlelstv 	dksc = &rs->sc_dksc;
    796    1.1     oster 
    797    1.1     oster 	part = DISKPART(dev);
    798    1.1     oster 	pmask = (1 << part);
    799    1.1     oster 
    800  1.335   mlelstv 	if (!DK_BUSY(dksc, pmask) &&
    801   1.13     oster 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    802   1.13     oster 		/* First one... mark things as dirty... Note that we *MUST*
    803   1.13     oster 		 have done a configure before this.  I DO NOT WANT TO BE
    804   1.13     oster 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    805   1.13     oster 		 THAT THEY BELONG TOGETHER!!!!! */
    806   1.13     oster 		/* XXX should check to see if we're only open for reading
    807   1.13     oster 		   here... If so, we needn't do this, but then need some
    808   1.13     oster 		   other way of keeping track of what's happened.. */
    809   1.13     oster 
    810  1.300  christos 		rf_markalldirty(&rs->sc_r);
    811   1.13     oster 	}
    812   1.13     oster 
    813  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) != 0)
    814  1.335   mlelstv 		error = dk_open(dksc, dev, flags, fmt, l);
    815    1.1     oster 
    816  1.213  christos bad:
    817    1.1     oster 	raidunlock(rs);
    818    1.1     oster 
    819    1.9     oster 	return (error);
    820    1.1     oster 
    821    1.1     oster 
    822    1.1     oster }
    823  1.324       mrg 
    824  1.335   mlelstv static int
    825  1.335   mlelstv raid_lastclose(device_t self)
    826  1.335   mlelstv {
    827  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(self);
    828  1.335   mlelstv 
    829  1.335   mlelstv 	/* Last one... device is not unconfigured yet.
    830  1.335   mlelstv 	   Device shutdown has taken care of setting the
    831  1.335   mlelstv 	   clean bits if RAIDF_INITED is not set
    832  1.335   mlelstv 	   mark things as clean... */
    833  1.335   mlelstv 
    834  1.335   mlelstv 	rf_update_component_labels(&rs->sc_r,
    835  1.335   mlelstv 	    RF_FINAL_COMPONENT_UPDATE);
    836  1.335   mlelstv 
    837  1.335   mlelstv 	/* pass to unlocked code */
    838  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
    839  1.335   mlelstv 		rs->sc_flags |= RAIDF_DETACH;
    840  1.335   mlelstv 
    841  1.335   mlelstv 	return 0;
    842  1.335   mlelstv }
    843  1.335   mlelstv 
    844    1.1     oster /* ARGSUSED */
    845  1.324       mrg static int
    846  1.222  christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    847    1.1     oster {
    848    1.9     oster 	int     unit = raidunit(dev);
    849    1.1     oster 	struct raid_softc *rs;
    850  1.335   mlelstv 	struct dk_softc *dksc;
    851  1.335   mlelstv 	cfdata_t cf;
    852  1.335   mlelstv 	int     error = 0, do_detach = 0, do_put = 0;
    853    1.1     oster 
    854  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    855  1.300  christos 		return ENXIO;
    856  1.335   mlelstv 	dksc = &rs->sc_dksc;
    857    1.1     oster 
    858    1.1     oster 	if ((error = raidlock(rs)) != 0)
    859    1.1     oster 		return (error);
    860    1.1     oster 
    861  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) != 0) {
    862  1.335   mlelstv 		error = dk_close(dksc, dev, flags, fmt, l);
    863  1.335   mlelstv 		if ((rs->sc_flags & RAIDF_DETACH) != 0)
    864  1.335   mlelstv 			do_detach = 1;
    865  1.335   mlelstv 	} else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
    866  1.335   mlelstv 		do_put = 1;
    867    1.1     oster 
    868  1.335   mlelstv 	raidunlock(rs);
    869    1.1     oster 
    870  1.335   mlelstv 	if (do_detach) {
    871  1.335   mlelstv 		/* free the pseudo device attach bits */
    872  1.335   mlelstv 		cf = device_cfdata(dksc->sc_dev);
    873  1.335   mlelstv 		error = config_detach(dksc->sc_dev, 0);
    874  1.335   mlelstv 		if (error == 0)
    875  1.335   mlelstv 			free(cf, M_RAIDFRAME);
    876  1.335   mlelstv 	} else if (do_put) {
    877  1.335   mlelstv 		raidput(rs);
    878    1.1     oster 	}
    879  1.186     perry 
    880  1.335   mlelstv 	return (error);
    881  1.147     oster 
    882  1.335   mlelstv }
    883  1.327  pgoyette 
    884  1.335   mlelstv static void
    885  1.335   mlelstv raid_wakeup(RF_Raid_t *raidPtr)
    886  1.335   mlelstv {
    887  1.335   mlelstv 	rf_lock_mutex2(raidPtr->iodone_lock);
    888  1.335   mlelstv 	rf_signal_cond2(raidPtr->iodone_cv);
    889  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->iodone_lock);
    890    1.1     oster }
    891    1.1     oster 
    892  1.324       mrg static void
    893  1.169     oster raidstrategy(struct buf *bp)
    894    1.1     oster {
    895  1.335   mlelstv 	unsigned int unit;
    896  1.335   mlelstv 	struct raid_softc *rs;
    897  1.335   mlelstv 	struct dk_softc *dksc;
    898    1.1     oster 	RF_Raid_t *raidPtr;
    899    1.1     oster 
    900  1.335   mlelstv 	unit = raidunit(bp->b_dev);
    901  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL) {
    902   1.30     oster 		bp->b_error = ENXIO;
    903  1.335   mlelstv 		goto fail;
    904   1.30     oster 	}
    905  1.300  christos 	if ((rs->sc_flags & RAIDF_INITED) == 0) {
    906  1.300  christos 		bp->b_error = ENXIO;
    907  1.335   mlelstv 		goto fail;
    908    1.1     oster 	}
    909  1.335   mlelstv 	dksc = &rs->sc_dksc;
    910  1.300  christos 	raidPtr = &rs->sc_r;
    911  1.335   mlelstv 
    912  1.335   mlelstv 	/* Queue IO only */
    913  1.335   mlelstv 	if (dk_strategy_defer(dksc, bp))
    914  1.196      yamt 		goto done;
    915    1.1     oster 
    916  1.335   mlelstv 	/* schedule the IO to happen at the next convenient time */
    917  1.335   mlelstv 	raid_wakeup(raidPtr);
    918  1.335   mlelstv 
    919  1.335   mlelstv done:
    920  1.335   mlelstv 	return;
    921  1.335   mlelstv 
    922  1.335   mlelstv fail:
    923  1.335   mlelstv 	bp->b_resid = bp->b_bcount;
    924  1.335   mlelstv 	biodone(bp);
    925  1.335   mlelstv }
    926  1.335   mlelstv 
    927  1.335   mlelstv static int
    928  1.335   mlelstv raid_diskstart(device_t dev, struct buf *bp)
    929  1.335   mlelstv {
    930  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(dev);
    931  1.335   mlelstv 	RF_Raid_t *raidPtr;
    932    1.1     oster 
    933  1.335   mlelstv 	raidPtr = &rs->sc_r;
    934  1.335   mlelstv 	if (!raidPtr->valid) {
    935  1.335   mlelstv 		db1_printf(("raid is not valid..\n"));
    936  1.335   mlelstv 		return ENODEV;
    937  1.196      yamt 	}
    938  1.285       mrg 
    939  1.335   mlelstv 	/* XXX */
    940  1.335   mlelstv 	bp->b_resid = 0;
    941  1.335   mlelstv 
    942  1.335   mlelstv 	return raiddoaccess(raidPtr, bp);
    943  1.335   mlelstv }
    944    1.1     oster 
    945  1.335   mlelstv void
    946  1.335   mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
    947  1.335   mlelstv {
    948  1.335   mlelstv 	struct raid_softc *rs;
    949  1.335   mlelstv 	struct dk_softc *dksc;
    950   1.34     oster 
    951  1.335   mlelstv 	rs = raidPtr->softc;
    952  1.335   mlelstv 	dksc = &rs->sc_dksc;
    953   1.34     oster 
    954  1.335   mlelstv 	dk_done(dksc, bp);
    955   1.34     oster 
    956  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
    957  1.335   mlelstv 	raidPtr->openings++;
    958  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
    959  1.196      yamt 
    960  1.335   mlelstv 	/* schedule more IO */
    961  1.335   mlelstv 	raid_wakeup(raidPtr);
    962    1.1     oster }
    963  1.324       mrg 
    964    1.1     oster /* ARGSUSED */
    965  1.324       mrg static int
    966  1.222  christos raidread(dev_t dev, struct uio *uio, int flags)
    967    1.1     oster {
    968    1.9     oster 	int     unit = raidunit(dev);
    969    1.1     oster 	struct raid_softc *rs;
    970    1.1     oster 
    971  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    972  1.300  christos 		return ENXIO;
    973    1.1     oster 
    974    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    975    1.1     oster 		return (ENXIO);
    976    1.1     oster 
    977    1.1     oster 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    978    1.1     oster 
    979    1.1     oster }
    980  1.324       mrg 
    981    1.1     oster /* ARGSUSED */
    982  1.324       mrg static int
    983  1.222  christos raidwrite(dev_t dev, struct uio *uio, int flags)
    984    1.1     oster {
    985    1.9     oster 	int     unit = raidunit(dev);
    986    1.1     oster 	struct raid_softc *rs;
    987    1.1     oster 
    988  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    989  1.300  christos 		return ENXIO;
    990    1.1     oster 
    991    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    992    1.1     oster 		return (ENXIO);
    993  1.147     oster 
    994    1.1     oster 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    995    1.1     oster 
    996    1.1     oster }
    997    1.1     oster 
    998  1.266    dyoung static int
    999  1.266    dyoung raid_detach_unlocked(struct raid_softc *rs)
   1000  1.266    dyoung {
   1001  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   1002  1.335   mlelstv 	RF_Raid_t *raidPtr;
   1003  1.266    dyoung 	int error;
   1004  1.266    dyoung 
   1005  1.300  christos 	raidPtr = &rs->sc_r;
   1006  1.266    dyoung 
   1007  1.337   mlelstv 	if (DK_BUSY(dksc, 0) ||
   1008  1.337   mlelstv 	    raidPtr->recon_in_progress != 0 ||
   1009  1.337   mlelstv 	    raidPtr->parity_rewrite_in_progress != 0 ||
   1010  1.337   mlelstv 	    raidPtr->copyback_in_progress != 0)
   1011  1.266    dyoung 		return EBUSY;
   1012  1.266    dyoung 
   1013  1.266    dyoung 	if ((rs->sc_flags & RAIDF_INITED) == 0)
   1014  1.333   mlelstv 		return 0;
   1015  1.333   mlelstv 
   1016  1.333   mlelstv 	rs->sc_flags &= ~RAIDF_SHUTDOWN;
   1017  1.333   mlelstv 
   1018  1.333   mlelstv 	if ((error = rf_Shutdown(raidPtr)) != 0)
   1019  1.266    dyoung 		return error;
   1020  1.266    dyoung 
   1021  1.335   mlelstv 	rs->sc_flags &= ~RAIDF_INITED;
   1022  1.335   mlelstv 
   1023  1.335   mlelstv 	/* Kill off any queued buffers */
   1024  1.335   mlelstv 	dk_drain(dksc);
   1025  1.335   mlelstv 	bufq_free(dksc->sc_bufq);
   1026  1.335   mlelstv 
   1027  1.266    dyoung 	/* Detach the disk. */
   1028  1.335   mlelstv 	dkwedge_delall(&dksc->sc_dkdev);
   1029  1.335   mlelstv 	disk_detach(&dksc->sc_dkdev);
   1030  1.335   mlelstv 	disk_destroy(&dksc->sc_dkdev);
   1031  1.335   mlelstv 	dk_detach(dksc);
   1032  1.333   mlelstv 
   1033  1.266    dyoung 	return 0;
   1034  1.266    dyoung }
   1035  1.266    dyoung 
   1036  1.366  christos static bool
   1037  1.366  christos rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
   1038  1.366  christos {
   1039  1.366  christos 	switch (cmd) {
   1040  1.366  christos 	case RAIDFRAME_ADD_HOT_SPARE:
   1041  1.366  christos 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1042  1.366  christos 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1043  1.366  christos 	case RAIDFRAME_CHECK_PARITY:
   1044  1.366  christos 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1045  1.366  christos 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1046  1.366  christos 	case RAIDFRAME_CHECK_RECON_STATUS:
   1047  1.366  christos 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1048  1.366  christos 	case RAIDFRAME_COPYBACK:
   1049  1.366  christos 	case RAIDFRAME_DELETE_COMPONENT:
   1050  1.366  christos 	case RAIDFRAME_FAIL_DISK:
   1051  1.366  christos 	case RAIDFRAME_GET_ACCTOTALS:
   1052  1.366  christos 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1053  1.366  christos 	case RAIDFRAME_GET_INFO:
   1054  1.366  christos 	case RAIDFRAME_GET_SIZE:
   1055  1.366  christos 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1056  1.366  christos 	case RAIDFRAME_INIT_LABELS:
   1057  1.366  christos 	case RAIDFRAME_KEEP_ACCTOTALS:
   1058  1.366  christos 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1059  1.366  christos 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1060  1.366  christos 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1061  1.366  christos 	case RAIDFRAME_PARITYMAP_STATUS:
   1062  1.366  christos 	case RAIDFRAME_REBUILD_IN_PLACE:
   1063  1.366  christos 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1064  1.366  christos 	case RAIDFRAME_RESET_ACCTOTALS:
   1065  1.366  christos 	case RAIDFRAME_REWRITEPARITY:
   1066  1.366  christos 	case RAIDFRAME_SET_AUTOCONFIG:
   1067  1.366  christos 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1068  1.366  christos 	case RAIDFRAME_SET_ROOT:
   1069  1.369     oster 		return (rs->sc_flags & RAIDF_INITED) == 0;
   1070  1.366  christos 	}
   1071  1.366  christos 	return false;
   1072  1.366  christos }
   1073  1.366  christos 
   1074  1.366  christos int
   1075  1.366  christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
   1076  1.366  christos {
   1077  1.366  christos 	struct rf_recon_req_internal *rrint;
   1078  1.366  christos 
   1079  1.366  christos 	if (raidPtr->Layout.map->faultsTolerated == 0) {
   1080  1.366  christos 		/* Can't do this on a RAID 0!! */
   1081  1.366  christos 		return EINVAL;
   1082  1.366  christos 	}
   1083  1.366  christos 
   1084  1.366  christos 	if (rr->col < 0 || rr->col >= raidPtr->numCol) {
   1085  1.366  christos 		/* bad column */
   1086  1.366  christos 		return EINVAL;
   1087  1.366  christos 	}
   1088  1.366  christos 
   1089  1.366  christos 	rf_lock_mutex2(raidPtr->mutex);
   1090  1.366  christos 	if (raidPtr->status == rf_rs_reconstructing) {
   1091  1.366  christos 		/* you can't fail a disk while we're reconstructing! */
   1092  1.366  christos 		/* XXX wrong for RAID6 */
   1093  1.366  christos 		goto out;
   1094  1.366  christos 	}
   1095  1.366  christos 	if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
   1096  1.366  christos 	    (raidPtr->numFailures > 0)) {
   1097  1.366  christos 		/* some other component has failed.  Let's not make
   1098  1.366  christos 		   things worse. XXX wrong for RAID6 */
   1099  1.366  christos 		goto out;
   1100  1.366  christos 	}
   1101  1.366  christos 	if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1102  1.366  christos 		/* Can't fail a spared disk! */
   1103  1.366  christos 		goto out;
   1104  1.366  christos 	}
   1105  1.366  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1106  1.366  christos 
   1107  1.366  christos 	/* make a copy of the recon request so that we don't rely on
   1108  1.366  christos 	 * the user's buffer */
   1109  1.374  christos 	rrint = RF_Malloc(sizeof(*rrint));
   1110  1.366  christos 	if (rrint == NULL)
   1111  1.366  christos 		return(ENOMEM);
   1112  1.366  christos 	rrint->col = rr->col;
   1113  1.366  christos 	rrint->flags = rr->flags;
   1114  1.366  christos 	rrint->raidPtr = raidPtr;
   1115  1.366  christos 
   1116  1.366  christos 	return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
   1117  1.366  christos 	    rrint, "raid_recon");
   1118  1.366  christos out:
   1119  1.366  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1120  1.366  christos 	return EINVAL;
   1121  1.366  christos }
   1122  1.366  christos 
   1123  1.324       mrg static int
   1124  1.367  christos rf_copyinspecificbuf(RF_Config_t *k_cfg)
   1125  1.367  christos {
   1126  1.367  christos 	/* allocate a buffer for the layout-specific data, and copy it in */
   1127  1.367  christos 	if (k_cfg->layoutSpecificSize == 0)
   1128  1.367  christos 		return 0;
   1129  1.367  christos 
   1130  1.367  christos 	if (k_cfg->layoutSpecificSize > 10000) {
   1131  1.367  christos 	    /* sanity check */
   1132  1.367  christos 	    return EINVAL;
   1133  1.367  christos 	}
   1134  1.367  christos 
   1135  1.367  christos 	u_char *specific_buf;
   1136  1.374  christos 	specific_buf =  RF_Malloc(k_cfg->layoutSpecificSize);
   1137  1.367  christos 	if (specific_buf == NULL)
   1138  1.367  christos 		return ENOMEM;
   1139  1.367  christos 
   1140  1.367  christos 	int retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1141  1.367  christos 	    k_cfg->layoutSpecificSize);
   1142  1.367  christos 	if (retcode) {
   1143  1.367  christos 		RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1144  1.367  christos 		db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode));
   1145  1.367  christos 		return retcode;
   1146  1.367  christos 	}
   1147  1.367  christos 
   1148  1.367  christos 	k_cfg->layoutSpecific = specific_buf;
   1149  1.367  christos 	return 0;
   1150  1.367  christos }
   1151  1.367  christos 
   1152  1.367  christos static int
   1153  1.367  christos rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg)
   1154  1.367  christos {
   1155  1.372  christos 	RF_Config_t *u_cfg = *((RF_Config_t **) data);
   1156  1.372  christos 
   1157  1.367  christos 	if (rs->sc_r.valid) {
   1158  1.367  christos 		/* There is a valid RAID set running on this unit! */
   1159  1.367  christos 		printf("raid%d: Device already configured!\n", rs->sc_unit);
   1160  1.367  christos 		return EINVAL;
   1161  1.367  christos 	}
   1162  1.367  christos 
   1163  1.367  christos 	/* copy-in the configuration information */
   1164  1.367  christos 	/* data points to a pointer to the configuration structure */
   1165  1.374  christos 	*k_cfg = RF_Malloc(sizeof(**k_cfg));
   1166  1.367  christos 	if (*k_cfg == NULL) {
   1167  1.367  christos 		return ENOMEM;
   1168  1.367  christos 	}
   1169  1.373  christos 	int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t));
   1170  1.367  christos 	if (retcode == 0)
   1171  1.367  christos 		return 0;
   1172  1.367  christos 	RF_Free(*k_cfg, sizeof(RF_Config_t));
   1173  1.367  christos 	db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode));
   1174  1.367  christos 	rs->sc_flags |= RAIDF_SHUTDOWN;
   1175  1.367  christos 	return retcode;
   1176  1.367  christos }
   1177  1.367  christos 
   1178  1.367  christos int
   1179  1.367  christos rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg)
   1180  1.367  christos {
   1181  1.367  christos 	int retcode;
   1182  1.367  christos 	RF_Raid_t *raidPtr = &rs->sc_r;
   1183  1.367  christos 
   1184  1.367  christos 	rs->sc_flags &= ~RAIDF_SHUTDOWN;
   1185  1.367  christos 
   1186  1.367  christos 	if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0)
   1187  1.367  christos 		goto out;
   1188  1.367  christos 
   1189  1.367  christos 	/* should do some kind of sanity check on the configuration.
   1190  1.367  christos 	 * Store the sum of all the bytes in the last byte? */
   1191  1.367  christos 
   1192  1.367  christos 	/* configure the system */
   1193  1.367  christos 
   1194  1.367  christos 	/*
   1195  1.367  christos 	 * Clear the entire RAID descriptor, just to make sure
   1196  1.367  christos 	 *  there is no stale data left in the case of a
   1197  1.367  christos 	 *  reconfiguration
   1198  1.367  christos 	 */
   1199  1.367  christos 	memset(raidPtr, 0, sizeof(*raidPtr));
   1200  1.367  christos 	raidPtr->softc = rs;
   1201  1.367  christos 	raidPtr->raidid = rs->sc_unit;
   1202  1.367  christos 
   1203  1.367  christos 	retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1204  1.367  christos 
   1205  1.367  christos 	if (retcode == 0) {
   1206  1.367  christos 		/* allow this many simultaneous IO's to
   1207  1.367  christos 		   this RAID device */
   1208  1.367  christos 		raidPtr->openings = RAIDOUTSTANDING;
   1209  1.367  christos 
   1210  1.367  christos 		raidinit(rs);
   1211  1.367  christos 		raid_wakeup(raidPtr);
   1212  1.367  christos 		rf_markalldirty(raidPtr);
   1213  1.367  christos 	}
   1214  1.367  christos 
   1215  1.367  christos 	/* free the buffers.  No return code here. */
   1216  1.367  christos 	if (k_cfg->layoutSpecificSize) {
   1217  1.367  christos 		RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize);
   1218  1.367  christos 	}
   1219  1.367  christos out:
   1220  1.367  christos 	RF_Free(k_cfg, sizeof(RF_Config_t));
   1221  1.367  christos 	if (retcode) {
   1222  1.367  christos 		/*
   1223  1.367  christos 		 * If configuration failed, set sc_flags so that we
   1224  1.367  christos 		 * will detach the device when we close it.
   1225  1.367  christos 		 */
   1226  1.367  christos 		rs->sc_flags |= RAIDF_SHUTDOWN;
   1227  1.367  christos 	}
   1228  1.367  christos 	return retcode;
   1229  1.367  christos }
   1230  1.367  christos 
   1231  1.367  christos #if RF_DISABLED
   1232  1.367  christos static int
   1233  1.367  christos rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   1234  1.367  christos {
   1235  1.367  christos 
   1236  1.367  christos 	/* XXX check the label for valid stuff... */
   1237  1.367  christos 	/* Note that some things *should not* get modified --
   1238  1.367  christos 	   the user should be re-initing the labels instead of
   1239  1.367  christos 	   trying to patch things.
   1240  1.367  christos 	   */
   1241  1.367  christos #ifdef DEBUG
   1242  1.367  christos 	int raidid = raidPtr->raidid;
   1243  1.367  christos 	printf("raid%d: Got component label:\n", raidid);
   1244  1.367  christos 	printf("raid%d: Version: %d\n", raidid, clabel->version);
   1245  1.367  christos 	printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1246  1.367  christos 	printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1247  1.367  christos 	printf("raid%d: Column: %d\n", raidid, clabel->column);
   1248  1.367  christos 	printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1249  1.367  christos 	printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1250  1.367  christos 	printf("raid%d: Status: %d\n", raidid, clabel->status);
   1251  1.367  christos #endif	/* DEBUG */
   1252  1.367  christos 	clabel->row = 0;
   1253  1.367  christos 	int column = clabel->column;
   1254  1.367  christos 
   1255  1.367  christos 	if ((column < 0) || (column >= raidPtr->numCol)) {
   1256  1.367  christos 		return(EINVAL);
   1257  1.367  christos 	}
   1258  1.367  christos 
   1259  1.367  christos 	/* XXX this isn't allowed to do anything for now :-) */
   1260  1.367  christos 
   1261  1.367  christos 	/* XXX and before it is, we need to fill in the rest
   1262  1.367  christos 	   of the fields!?!?!?! */
   1263  1.367  christos 	memcpy(raidget_component_label(raidPtr, column),
   1264  1.367  christos 	    clabel, sizeof(*clabel));
   1265  1.367  christos 	raidflush_component_label(raidPtr, column);
   1266  1.367  christos 	return 0;
   1267  1.367  christos }
   1268  1.367  christos #endif
   1269  1.367  christos 
   1270  1.367  christos static int
   1271  1.367  christos rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   1272  1.367  christos {
   1273  1.367  christos 	/*
   1274  1.367  christos 	   we only want the serial number from
   1275  1.367  christos 	   the above.  We get all the rest of the information
   1276  1.367  christos 	   from the config that was used to create this RAID
   1277  1.367  christos 	   set.
   1278  1.367  christos 	   */
   1279  1.367  christos 
   1280  1.367  christos 	raidPtr->serial_number = clabel->serial_number;
   1281  1.367  christos 
   1282  1.367  christos 	for (int column = 0; column < raidPtr->numCol; column++) {
   1283  1.367  christos 		RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column];
   1284  1.367  christos 		if (RF_DEAD_DISK(diskPtr->status))
   1285  1.367  christos 			continue;
   1286  1.367  christos 		RF_ComponentLabel_t *ci_label = raidget_component_label(
   1287  1.367  christos 		    raidPtr, column);
   1288  1.367  christos 		/* Zeroing this is important. */
   1289  1.367  christos 		memset(ci_label, 0, sizeof(*ci_label));
   1290  1.367  christos 		raid_init_component_label(raidPtr, ci_label);
   1291  1.367  christos 		ci_label->serial_number = raidPtr->serial_number;
   1292  1.367  christos 		ci_label->row = 0; /* we dont' pretend to support more */
   1293  1.367  christos 		rf_component_label_set_partitionsize(ci_label,
   1294  1.367  christos 		    diskPtr->partitionSize);
   1295  1.367  christos 		ci_label->column = column;
   1296  1.367  christos 		raidflush_component_label(raidPtr, column);
   1297  1.367  christos 		/* XXXjld what about the spares? */
   1298  1.367  christos 	}
   1299  1.367  christos 
   1300  1.367  christos 	return 0;
   1301  1.367  christos }
   1302  1.367  christos 
   1303  1.367  christos static int
   1304  1.367  christos rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr)
   1305  1.367  christos {
   1306  1.367  christos 
   1307  1.367  christos 	if (raidPtr->Layout.map->faultsTolerated == 0) {
   1308  1.367  christos 		/* Can't do this on a RAID 0!! */
   1309  1.367  christos 		return EINVAL;
   1310  1.367  christos 	}
   1311  1.367  christos 
   1312  1.367  christos 	if (raidPtr->recon_in_progress == 1) {
   1313  1.367  christos 		/* a reconstruct is already in progress! */
   1314  1.367  christos 		return EINVAL;
   1315  1.367  christos 	}
   1316  1.367  christos 
   1317  1.367  christos 	RF_SingleComponent_t component;
   1318  1.367  christos 	memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
   1319  1.367  christos 	component.row = 0; /* we don't support any more */
   1320  1.367  christos 	int column = component.column;
   1321  1.367  christos 
   1322  1.367  christos 	if ((column < 0) || (column >= raidPtr->numCol)) {
   1323  1.367  christos 		return EINVAL;
   1324  1.367  christos 	}
   1325  1.367  christos 
   1326  1.367  christos 	rf_lock_mutex2(raidPtr->mutex);
   1327  1.367  christos 	if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1328  1.367  christos 	    (raidPtr->numFailures > 0)) {
   1329  1.367  christos 		/* XXX 0 above shouldn't be constant!!! */
   1330  1.367  christos 		/* some component other than this has failed.
   1331  1.367  christos 		   Let's not make things worse than they already
   1332  1.367  christos 		   are... */
   1333  1.367  christos 		printf("raid%d: Unable to reconstruct to disk at:\n",
   1334  1.367  christos 		       raidPtr->raidid);
   1335  1.367  christos 		printf("raid%d:     Col: %d   Too many failures.\n",
   1336  1.367  christos 		       raidPtr->raidid, column);
   1337  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1338  1.367  christos 		return EINVAL;
   1339  1.367  christos 	}
   1340  1.367  christos 
   1341  1.367  christos 	if (raidPtr->Disks[column].status == rf_ds_reconstructing) {
   1342  1.367  christos 		printf("raid%d: Unable to reconstruct to disk at:\n",
   1343  1.367  christos 		       raidPtr->raidid);
   1344  1.367  christos 		printf("raid%d:    Col: %d   "
   1345  1.367  christos 		    "Reconstruction already occurring!\n",
   1346  1.367  christos 		    raidPtr->raidid, column);
   1347  1.367  christos 
   1348  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1349  1.367  christos 		return EINVAL;
   1350  1.367  christos 	}
   1351  1.367  christos 
   1352  1.367  christos 	if (raidPtr->Disks[column].status == rf_ds_spared) {
   1353  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1354  1.367  christos 		return EINVAL;
   1355  1.367  christos 	}
   1356  1.367  christos 
   1357  1.367  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1358  1.367  christos 
   1359  1.367  christos 	struct rf_recon_req_internal *rrint;
   1360  1.374  christos 	rrint = RF_Malloc(sizeof(*rrint));
   1361  1.367  christos 	if (rrint == NULL)
   1362  1.367  christos 		return ENOMEM;
   1363  1.367  christos 
   1364  1.367  christos 	rrint->col = column;
   1365  1.367  christos 	rrint->raidPtr = raidPtr;
   1366  1.367  christos 
   1367  1.367  christos 	return RF_CREATE_THREAD(raidPtr->recon_thread,
   1368  1.367  christos 	    rf_ReconstructInPlaceThread, rrint, "raid_reconip");
   1369  1.367  christos }
   1370  1.367  christos 
   1371  1.367  christos static int
   1372  1.367  christos rf_check_recon_status(RF_Raid_t *raidPtr, int *data)
   1373  1.367  christos {
   1374  1.367  christos 	/*
   1375  1.367  christos 	 * This makes no sense on a RAID 0, or if we are not reconstructing
   1376  1.367  christos 	 * so tell the user it's done.
   1377  1.367  christos 	 */
   1378  1.367  christos 	if (raidPtr->Layout.map->faultsTolerated == 0 ||
   1379  1.367  christos 	    raidPtr->status != rf_rs_reconstructing) {
   1380  1.367  christos 		*data = 100;
   1381  1.367  christos 		return 0;
   1382  1.367  christos 	}
   1383  1.367  christos 	if (raidPtr->reconControl->numRUsTotal == 0) {
   1384  1.367  christos 		*data = 0;
   1385  1.367  christos 		return 0;
   1386  1.367  christos 	}
   1387  1.367  christos 	*data = (raidPtr->reconControl->numRUsComplete * 100
   1388  1.367  christos 	    / raidPtr->reconControl->numRUsTotal);
   1389  1.367  christos 	return 0;
   1390  1.367  christos }
   1391  1.367  christos 
   1392  1.367  christos static int
   1393  1.225  christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1394    1.1     oster {
   1395    1.9     oster 	int     unit = raidunit(dev);
   1396  1.335   mlelstv 	int     part, pmask;
   1397    1.1     oster 	struct raid_softc *rs;
   1398  1.335   mlelstv 	struct dk_softc *dksc;
   1399  1.367  christos 	RF_Config_t *k_cfg;
   1400   1.42     oster 	RF_Raid_t *raidPtr;
   1401   1.41     oster 	RF_AccTotals_t *totals;
   1402  1.367  christos 	RF_SingleComponent_t component;
   1403  1.371     oster 	RF_DeviceConfig_t *d_cfg, *ucfgp;
   1404   1.11     oster 	int retcode = 0;
   1405   1.11     oster 	int column;
   1406   1.48     oster 	RF_ComponentLabel_t *clabel;
   1407   1.12     oster 	RF_SingleComponent_t *sparePtr,*componentPtr;
   1408  1.353       mrg 	int d;
   1409    1.1     oster 
   1410  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
   1411  1.300  christos 		return ENXIO;
   1412  1.366  christos 
   1413  1.335   mlelstv 	dksc = &rs->sc_dksc;
   1414  1.300  christos 	raidPtr = &rs->sc_r;
   1415    1.1     oster 
   1416  1.276       mrg 	db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
   1417  1.366  christos 	    (int) DISKPART(dev), (int) unit, cmd));
   1418    1.1     oster 
   1419    1.1     oster 	/* Must be initialized for these... */
   1420  1.366  christos 	if (rf_must_be_initialized(rs, cmd))
   1421  1.366  christos 		return ENXIO;
   1422    1.9     oster 
   1423  1.358  pgoyette 	switch (cmd) {
   1424    1.1     oster 		/* configure the system */
   1425    1.1     oster 	case RAIDFRAME_CONFIGURE:
   1426  1.367  christos 		if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0)
   1427  1.367  christos 			return retcode;
   1428  1.367  christos 		return rf_construct(rs, k_cfg);
   1429    1.9     oster 
   1430    1.9     oster 		/* shutdown the system */
   1431    1.1     oster 	case RAIDFRAME_SHUTDOWN:
   1432    1.9     oster 
   1433  1.266    dyoung 		part = DISKPART(dev);
   1434  1.266    dyoung 		pmask = (1 << part);
   1435  1.266    dyoung 
   1436  1.367  christos 		if ((retcode = raidlock(rs)) != 0)
   1437  1.367  christos 			return retcode;
   1438    1.1     oster 
   1439  1.337   mlelstv 		if (DK_BUSY(dksc, pmask) ||
   1440  1.337   mlelstv 		    raidPtr->recon_in_progress != 0 ||
   1441  1.337   mlelstv 		    raidPtr->parity_rewrite_in_progress != 0 ||
   1442  1.337   mlelstv 		    raidPtr->copyback_in_progress != 0)
   1443  1.266    dyoung 			retcode = EBUSY;
   1444  1.266    dyoung 		else {
   1445  1.335   mlelstv 			/* detach and free on close */
   1446  1.266    dyoung 			rs->sc_flags |= RAIDF_SHUTDOWN;
   1447  1.266    dyoung 			retcode = 0;
   1448    1.9     oster 		}
   1449   1.11     oster 
   1450  1.266    dyoung 		raidunlock(rs);
   1451    1.1     oster 
   1452  1.367  christos 		return retcode;
   1453   1.11     oster 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1454  1.353       mrg 		return rf_get_component_label(raidPtr, data);
   1455   1.11     oster 
   1456  1.367  christos #if RF_DISABLED
   1457   1.11     oster 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1458  1.367  christos 		return rf_set_component_label(raidPtr, data);
   1459  1.367  christos #endif
   1460   1.11     oster 
   1461  1.367  christos 	case RAIDFRAME_INIT_LABELS:
   1462  1.367  christos 		return rf_init_component_label(raidPtr, data);
   1463   1.12     oster 
   1464   1.48     oster 	case RAIDFRAME_SET_AUTOCONFIG:
   1465   1.78   minoura 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1466  1.186     perry 		printf("raid%d: New autoconfig value is: %d\n",
   1467  1.123     oster 		       raidPtr->raidid, d);
   1468   1.78   minoura 		*(int *) data = d;
   1469  1.367  christos 		return retcode;
   1470   1.48     oster 
   1471   1.48     oster 	case RAIDFRAME_SET_ROOT:
   1472   1.78   minoura 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1473  1.186     perry 		printf("raid%d: New rootpartition value is: %d\n",
   1474  1.123     oster 		       raidPtr->raidid, d);
   1475   1.78   minoura 		*(int *) data = d;
   1476  1.367  christos 		return retcode;
   1477    1.9     oster 
   1478    1.1     oster 		/* initialize all parity */
   1479    1.1     oster 	case RAIDFRAME_REWRITEPARITY:
   1480    1.1     oster 
   1481   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1482   1.17     oster 			/* Parity for RAID 0 is trivially correct */
   1483   1.42     oster 			raidPtr->parity_good = RF_RAID_CLEAN;
   1484  1.367  christos 			return 0;
   1485   1.17     oster 		}
   1486  1.186     perry 
   1487   1.42     oster 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1488   1.37     oster 			/* Re-write is already in progress! */
   1489  1.367  christos 			return EINVAL;
   1490   1.37     oster 		}
   1491   1.27     oster 
   1492  1.367  christos 		return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1493  1.367  christos 		    rf_RewriteParityThread, raidPtr,"raid_parity");
   1494   1.11     oster 
   1495   1.11     oster 	case RAIDFRAME_ADD_HOT_SPARE:
   1496   1.12     oster 		sparePtr = (RF_SingleComponent_t *) data;
   1497  1.367  christos 		memcpy(&component, sparePtr, sizeof(RF_SingleComponent_t));
   1498  1.367  christos 		return rf_add_hot_spare(raidPtr, &component);
   1499   1.11     oster 
   1500   1.11     oster 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1501  1.367  christos 		return retcode;
   1502   1.73     oster 
   1503   1.73     oster 	case RAIDFRAME_DELETE_COMPONENT:
   1504   1.73     oster 		componentPtr = (RF_SingleComponent_t *)data;
   1505  1.367  christos 		memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
   1506  1.367  christos 		return rf_delete_component(raidPtr, &component);
   1507   1.73     oster 
   1508   1.73     oster 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1509   1.73     oster 		componentPtr = (RF_SingleComponent_t *)data;
   1510  1.367  christos 		memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
   1511  1.367  christos 		return rf_incorporate_hot_spare(raidPtr, &component);
   1512   1.11     oster 
   1513   1.12     oster 	case RAIDFRAME_REBUILD_IN_PLACE:
   1514  1.367  christos 		return rf_rebuild_in_place(raidPtr, data);
   1515   1.24     oster 
   1516  1.366  christos 	case RAIDFRAME_GET_INFO:
   1517  1.371     oster 		ucfgp = *(RF_DeviceConfig_t **)data;
   1518  1.374  christos 		d_cfg = RF_Malloc(sizeof(*d_cfg));
   1519   1.41     oster 		if (d_cfg == NULL)
   1520  1.366  christos 			return ENOMEM;
   1521  1.353       mrg 		retcode = rf_get_info(raidPtr, d_cfg);
   1522  1.353       mrg 		if (retcode == 0) {
   1523  1.371     oster 			retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
   1524   1.41     oster 		}
   1525   1.41     oster 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1526  1.366  christos 		return retcode;
   1527    1.9     oster 
   1528   1.22     oster 	case RAIDFRAME_CHECK_PARITY:
   1529   1.42     oster 		*(int *) data = raidPtr->parity_good;
   1530  1.367  christos 		return 0;
   1531   1.41     oster 
   1532  1.269       jld 	case RAIDFRAME_PARITYMAP_STATUS:
   1533  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1534  1.273       jld 			return EINVAL;
   1535  1.367  christos 		rf_paritymap_status(raidPtr->parity_map, data);
   1536  1.269       jld 		return 0;
   1537  1.269       jld 
   1538  1.269       jld 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1539  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1540  1.273       jld 			return EINVAL;
   1541  1.269       jld 		if (raidPtr->parity_map == NULL)
   1542  1.269       jld 			return ENOENT; /* ??? */
   1543  1.367  christos 		if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0)
   1544  1.269       jld 			return EINVAL;
   1545  1.269       jld 		return 0;
   1546  1.269       jld 
   1547  1.269       jld 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1548  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1549  1.273       jld 			return EINVAL;
   1550  1.269       jld 		*(int *) data = rf_paritymap_get_disable(raidPtr);
   1551  1.269       jld 		return 0;
   1552  1.269       jld 
   1553  1.269       jld 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1554  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1555  1.273       jld 			return EINVAL;
   1556  1.269       jld 		rf_paritymap_set_disable(raidPtr, *(int *)data);
   1557  1.269       jld 		/* XXX should errors be passed up? */
   1558  1.269       jld 		return 0;
   1559  1.269       jld 
   1560    1.1     oster 	case RAIDFRAME_RESET_ACCTOTALS:
   1561  1.108   thorpej 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1562  1.367  christos 		return 0;
   1563    1.9     oster 
   1564    1.1     oster 	case RAIDFRAME_GET_ACCTOTALS:
   1565   1.41     oster 		totals = (RF_AccTotals_t *) data;
   1566   1.42     oster 		*totals = raidPtr->acc_totals;
   1567  1.366  christos 		return 0;
   1568    1.9     oster 
   1569    1.1     oster 	case RAIDFRAME_KEEP_ACCTOTALS:
   1570   1.42     oster 		raidPtr->keep_acc_totals = *(int *)data;
   1571  1.366  christos 		return 0;
   1572    1.9     oster 
   1573    1.1     oster 	case RAIDFRAME_GET_SIZE:
   1574   1.42     oster 		*(int *) data = raidPtr->totalSectors;
   1575  1.366  christos 		return 0;
   1576    1.1     oster 
   1577    1.1     oster 	case RAIDFRAME_FAIL_DISK:
   1578  1.366  christos 		return rf_fail_disk(raidPtr, data);
   1579    1.9     oster 
   1580    1.9     oster 		/* invoke a copyback operation after recon on whatever disk
   1581    1.9     oster 		 * needs it, if any */
   1582    1.9     oster 	case RAIDFRAME_COPYBACK:
   1583   1.24     oster 
   1584   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1585   1.24     oster 			/* This makes no sense on a RAID 0!! */
   1586  1.367  christos 			return EINVAL;
   1587   1.24     oster 		}
   1588   1.24     oster 
   1589   1.42     oster 		if (raidPtr->copyback_in_progress == 1) {
   1590   1.37     oster 			/* Copyback is already in progress! */
   1591  1.367  christos 			return EINVAL;
   1592   1.37     oster 		}
   1593   1.27     oster 
   1594  1.367  christos 		return RF_CREATE_THREAD(raidPtr->copyback_thread,
   1595  1.367  christos 		    rf_CopybackThread, raidPtr, "raid_copyback");
   1596    1.9     oster 
   1597    1.1     oster 		/* return the percentage completion of reconstruction */
   1598   1.37     oster 	case RAIDFRAME_CHECK_RECON_STATUS:
   1599  1.367  christos 		return rf_check_recon_status(raidPtr, data);
   1600  1.367  christos 
   1601   1.83     oster 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1602  1.353       mrg 		rf_check_recon_status_ext(raidPtr, data);
   1603  1.367  christos 		return 0;
   1604    1.9     oster 
   1605   1.37     oster 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1606   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1607   1.80     oster 			/* This makes no sense on a RAID 0, so tell the
   1608   1.80     oster 			   user it's done. */
   1609   1.80     oster 			*(int *) data = 100;
   1610  1.367  christos 			return 0;
   1611   1.37     oster 		}
   1612   1.42     oster 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1613  1.186     perry 			*(int *) data = 100 *
   1614  1.186     perry 				raidPtr->parity_rewrite_stripes_done /
   1615   1.83     oster 				raidPtr->Layout.numStripe;
   1616   1.37     oster 		} else {
   1617   1.37     oster 			*(int *) data = 100;
   1618   1.37     oster 		}
   1619  1.367  christos 		return 0;
   1620   1.37     oster 
   1621   1.83     oster 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1622  1.353       mrg 		rf_check_parityrewrite_status_ext(raidPtr, data);
   1623  1.367  christos 		return 0;
   1624   1.83     oster 
   1625   1.37     oster 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1626   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1627   1.37     oster 			/* This makes no sense on a RAID 0 */
   1628   1.83     oster 			*(int *) data = 100;
   1629  1.367  christos 			return 0;
   1630   1.37     oster 		}
   1631   1.42     oster 		if (raidPtr->copyback_in_progress == 1) {
   1632   1.42     oster 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1633   1.42     oster 				raidPtr->Layout.numStripe;
   1634   1.37     oster 		} else {
   1635   1.37     oster 			*(int *) data = 100;
   1636   1.37     oster 		}
   1637  1.367  christos 		return 0;
   1638   1.37     oster 
   1639   1.83     oster 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1640  1.353       mrg 		rf_check_copyback_status_ext(raidPtr, data);
   1641  1.353       mrg 		return 0;
   1642   1.37     oster 
   1643  1.341  christos 	case RAIDFRAME_SET_LAST_UNIT:
   1644  1.341  christos 		for (column = 0; column < raidPtr->numCol; column++)
   1645  1.341  christos 			if (raidPtr->Disks[column].status != rf_ds_optimal)
   1646  1.341  christos 				return EBUSY;
   1647  1.341  christos 
   1648  1.341  christos 		for (column = 0; column < raidPtr->numCol; column++) {
   1649  1.341  christos 			clabel = raidget_component_label(raidPtr, column);
   1650  1.341  christos 			clabel->last_unit = *(int *)data;
   1651  1.341  christos 			raidflush_component_label(raidPtr, column);
   1652  1.341  christos 		}
   1653  1.341  christos 		rs->sc_cflags |= RAIDF_UNIT_CHANGED;
   1654  1.341  christos 		return 0;
   1655  1.341  christos 
   1656    1.9     oster 		/* the sparetable daemon calls this to wait for the kernel to
   1657    1.9     oster 		 * need a spare table. this ioctl does not return until a
   1658    1.9     oster 		 * spare table is needed. XXX -- calling mpsleep here in the
   1659    1.9     oster 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1660    1.9     oster 		 * -- I should either compute the spare table in the kernel,
   1661    1.9     oster 		 * or have a different -- XXX XXX -- interface (a different
   1662   1.42     oster 		 * character device) for delivering the table     -- XXX */
   1663  1.367  christos #if RF_DISABLED
   1664    1.1     oster 	case RAIDFRAME_SPARET_WAIT:
   1665  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1666    1.9     oster 		while (!rf_sparet_wait_queue)
   1667  1.287       mrg 			rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
   1668  1.367  christos 		RF_SparetWait_t *waitreq = rf_sparet_wait_queue;
   1669    1.1     oster 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1670  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1671    1.9     oster 
   1672   1.42     oster 		/* structure assignment */
   1673  1.186     perry 		*((RF_SparetWait_t *) data) = *waitreq;
   1674    1.9     oster 
   1675    1.1     oster 		RF_Free(waitreq, sizeof(*waitreq));
   1676  1.367  christos 		return 0;
   1677    1.9     oster 
   1678    1.9     oster 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1679    1.9     oster 		 * code in it that will cause the dameon to exit */
   1680    1.1     oster 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1681  1.374  christos 		waitreq = RF_Malloc(sizeof(*waitreq));
   1682    1.1     oster 		waitreq->fcol = -1;
   1683  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1684    1.1     oster 		waitreq->next = rf_sparet_wait_queue;
   1685    1.1     oster 		rf_sparet_wait_queue = waitreq;
   1686  1.367  christos 		rf_broadcast_cond2(rf_sparet_wait_cv);
   1687  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1688  1.367  christos 		return 0;
   1689    1.1     oster 
   1690    1.9     oster 		/* used by the spare table daemon to deliver a spare table
   1691    1.9     oster 		 * into the kernel */
   1692    1.1     oster 	case RAIDFRAME_SEND_SPARET:
   1693    1.9     oster 
   1694    1.1     oster 		/* install the spare table */
   1695   1.42     oster 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1696    1.9     oster 
   1697    1.9     oster 		/* respond to the requestor.  the return status of the spare
   1698    1.9     oster 		 * table installation is passed in the "fcol" field */
   1699  1.374  christos 		waitred = RF_Malloc(sizeof(*waitreq));
   1700    1.1     oster 		waitreq->fcol = retcode;
   1701  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1702    1.1     oster 		waitreq->next = rf_sparet_resp_queue;
   1703    1.1     oster 		rf_sparet_resp_queue = waitreq;
   1704  1.287       mrg 		rf_broadcast_cond2(rf_sparet_resp_cv);
   1705  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1706    1.9     oster 
   1707  1.367  christos 		return retcode;
   1708  1.367  christos #endif
   1709  1.367  christos 	default:
   1710  1.372  christos 		/*
   1711  1.372  christos 		 * Don't bother trying to load compat modules
   1712  1.372  christos 		 * if it is not our ioctl. This is more efficient
   1713  1.372  christos 		 * and makes rump tests not depend on compat code
   1714  1.372  christos 		 */
   1715  1.372  christos 		if (IOCGROUP(cmd) != 'r')
   1716  1.372  christos 			break;
   1717  1.367  christos #ifdef _LP64
   1718  1.367  christos 		if ((l->l_proc->p_flag & PK_32) != 0) {
   1719  1.367  christos 			module_autoload("compat_netbsd32_raid",
   1720  1.367  christos 			    MODULE_CLASS_EXEC);
   1721  1.376  pgoyette 			MODULE_HOOK_CALL(raidframe_netbsd32_ioctl_hook,
   1722  1.367  christos 			    (rs, cmd, data), enosys(), retcode);
   1723  1.367  christos 			if (retcode != EPASSTHROUGH)
   1724  1.367  christos 				return retcode;
   1725  1.367  christos 		}
   1726    1.1     oster #endif
   1727  1.367  christos 		module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
   1728  1.376  pgoyette 		MODULE_HOOK_CALL(raidframe_ioctl_80_hook,
   1729  1.367  christos 		    (rs, cmd, data), enosys(), retcode);
   1730  1.367  christos 		if (retcode != EPASSTHROUGH)
   1731  1.367  christos 			return retcode;
   1732    1.1     oster 
   1733  1.367  christos 		module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
   1734  1.376  pgoyette 		MODULE_HOOK_CALL(raidframe_ioctl_50_hook,
   1735  1.367  christos 		    (rs, cmd, data), enosys(), retcode);
   1736  1.367  christos 		if (retcode != EPASSTHROUGH)
   1737  1.367  christos 			return retcode;
   1738   1.36     oster 		break; /* fall through to the os-specific code below */
   1739    1.1     oster 
   1740    1.1     oster 	}
   1741    1.9     oster 
   1742   1.42     oster 	if (!raidPtr->valid)
   1743    1.9     oster 		return (EINVAL);
   1744    1.9     oster 
   1745    1.1     oster 	/*
   1746    1.1     oster 	 * Add support for "regular" device ioctls here.
   1747    1.1     oster 	 */
   1748  1.263      haad 
   1749    1.1     oster 	switch (cmd) {
   1750  1.348  jdolecek 	case DIOCGCACHE:
   1751  1.348  jdolecek 		retcode = rf_get_component_caches(raidPtr, (int *)data);
   1752  1.348  jdolecek 		break;
   1753  1.348  jdolecek 
   1754  1.252     oster 	case DIOCCACHESYNC:
   1755  1.346  jdolecek 		retcode = rf_sync_component_caches(raidPtr);
   1756  1.347  jdolecek 		break;
   1757  1.298    buhrow 
   1758    1.1     oster 	default:
   1759  1.346  jdolecek 		retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
   1760  1.347  jdolecek 		break;
   1761    1.1     oster 	}
   1762  1.346  jdolecek 
   1763    1.9     oster 	return (retcode);
   1764    1.1     oster 
   1765    1.1     oster }
   1766    1.1     oster 
   1767    1.1     oster 
   1768    1.9     oster /* raidinit -- complete the rest of the initialization for the
   1769    1.1     oster    RAIDframe device.  */
   1770    1.1     oster 
   1771    1.1     oster 
   1772   1.59     oster static void
   1773  1.300  christos raidinit(struct raid_softc *rs)
   1774    1.1     oster {
   1775  1.262    cegger 	cfdata_t cf;
   1776  1.335   mlelstv 	unsigned int unit;
   1777  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   1778  1.300  christos 	RF_Raid_t *raidPtr = &rs->sc_r;
   1779  1.335   mlelstv 	device_t dev;
   1780    1.1     oster 
   1781   1.59     oster 	unit = raidPtr->raidid;
   1782    1.1     oster 
   1783  1.179    itojun 	/* XXX doesn't check bounds. */
   1784  1.335   mlelstv 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
   1785    1.1     oster 
   1786  1.217     oster 	/* attach the pseudo device */
   1787  1.217     oster 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1788  1.217     oster 	cf->cf_name = raid_cd.cd_name;
   1789  1.217     oster 	cf->cf_atname = raid_cd.cd_name;
   1790  1.217     oster 	cf->cf_unit = unit;
   1791  1.217     oster 	cf->cf_fstate = FSTATE_STAR;
   1792  1.217     oster 
   1793  1.335   mlelstv 	dev = config_attach_pseudo(cf);
   1794  1.335   mlelstv 	if (dev == NULL) {
   1795  1.217     oster 		printf("raid%d: config_attach_pseudo failed\n",
   1796  1.270  christos 		    raidPtr->raidid);
   1797  1.265     pooka 		free(cf, M_RAIDFRAME);
   1798  1.265     pooka 		return;
   1799  1.217     oster 	}
   1800  1.217     oster 
   1801  1.335   mlelstv 	/* provide a backpointer to the real softc */
   1802  1.335   mlelstv 	raidsoftc(dev) = rs;
   1803  1.335   mlelstv 
   1804    1.1     oster 	/* disk_attach actually creates space for the CPU disklabel, among
   1805    1.9     oster 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1806    1.9     oster 	 * with disklabels. */
   1807  1.335   mlelstv 	dk_init(dksc, dev, DKTYPE_RAID);
   1808  1.335   mlelstv 	disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1809    1.1     oster 
   1810    1.1     oster 	/* XXX There may be a weird interaction here between this, and
   1811    1.9     oster 	 * protectedSectors, as used in RAIDframe.  */
   1812   1.11     oster 
   1813    1.9     oster 	rs->sc_size = raidPtr->totalSectors;
   1814  1.234     oster 
   1815  1.335   mlelstv 	/* Attach dk and disk subsystems */
   1816  1.335   mlelstv 	dk_attach(dksc);
   1817  1.335   mlelstv 	disk_attach(&dksc->sc_dkdev);
   1818  1.318   mlelstv 	rf_set_geometry(rs, raidPtr);
   1819  1.318   mlelstv 
   1820  1.335   mlelstv 	bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
   1821  1.335   mlelstv 
   1822  1.335   mlelstv 	/* mark unit as usuable */
   1823  1.335   mlelstv 	rs->sc_flags |= RAIDF_INITED;
   1824  1.234     oster 
   1825  1.335   mlelstv 	dkwedge_discover(&dksc->sc_dkdev);
   1826    1.1     oster }
   1827  1.335   mlelstv 
   1828  1.150     oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1829    1.1     oster /* wake up the daemon & tell it to get us a spare table
   1830    1.1     oster  * XXX
   1831    1.9     oster  * the entries in the queues should be tagged with the raidPtr
   1832  1.186     perry  * so that in the extremely rare case that two recons happen at once,
   1833   1.11     oster  * we know for which device were requesting a spare table
   1834    1.1     oster  * XXX
   1835  1.186     perry  *
   1836   1.39     oster  * XXX This code is not currently used. GO
   1837    1.1     oster  */
   1838  1.186     perry int
   1839  1.169     oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1840    1.9     oster {
   1841    1.9     oster 	int     retcode;
   1842    1.9     oster 
   1843  1.287       mrg 	rf_lock_mutex2(rf_sparet_wait_mutex);
   1844    1.9     oster 	req->next = rf_sparet_wait_queue;
   1845    1.9     oster 	rf_sparet_wait_queue = req;
   1846  1.289       mrg 	rf_broadcast_cond2(rf_sparet_wait_cv);
   1847    1.9     oster 
   1848    1.9     oster 	/* mpsleep unlocks the mutex */
   1849    1.9     oster 	while (!rf_sparet_resp_queue) {
   1850  1.289       mrg 		rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
   1851    1.9     oster 	}
   1852    1.9     oster 	req = rf_sparet_resp_queue;
   1853    1.9     oster 	rf_sparet_resp_queue = req->next;
   1854  1.287       mrg 	rf_unlock_mutex2(rf_sparet_wait_mutex);
   1855    1.9     oster 
   1856    1.9     oster 	retcode = req->fcol;
   1857    1.9     oster 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1858    1.9     oster 					 * alloc'd */
   1859    1.9     oster 	return (retcode);
   1860    1.1     oster }
   1861  1.150     oster #endif
   1862   1.39     oster 
   1863  1.186     perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1864   1.11     oster  * bp & passes it down.
   1865    1.1     oster  * any calls originating in the kernel must use non-blocking I/O
   1866    1.1     oster  * do some extra sanity checking to return "appropriate" error values for
   1867    1.1     oster  * certain conditions (to make some standard utilities work)
   1868  1.186     perry  *
   1869   1.34     oster  * Formerly known as: rf_DoAccessKernel
   1870    1.1     oster  */
   1871   1.34     oster void
   1872  1.169     oster raidstart(RF_Raid_t *raidPtr)
   1873    1.1     oster {
   1874    1.1     oster 	struct raid_softc *rs;
   1875  1.335   mlelstv 	struct dk_softc *dksc;
   1876    1.1     oster 
   1877  1.300  christos 	rs = raidPtr->softc;
   1878  1.335   mlelstv 	dksc = &rs->sc_dksc;
   1879   1.56     oster 	/* quick check to see if anything has died recently */
   1880  1.291       mrg 	rf_lock_mutex2(raidPtr->mutex);
   1881   1.56     oster 	if (raidPtr->numNewFailures > 0) {
   1882  1.291       mrg 		rf_unlock_mutex2(raidPtr->mutex);
   1883  1.186     perry 		rf_update_component_labels(raidPtr,
   1884   1.91     oster 					   RF_NORMAL_COMPONENT_UPDATE);
   1885  1.291       mrg 		rf_lock_mutex2(raidPtr->mutex);
   1886   1.56     oster 		raidPtr->numNewFailures--;
   1887   1.56     oster 	}
   1888  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
   1889   1.56     oster 
   1890  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0) {
   1891  1.335   mlelstv 		printf("raid%d: raidstart not ready\n", raidPtr->raidid);
   1892  1.335   mlelstv 		return;
   1893  1.335   mlelstv 	}
   1894   1.34     oster 
   1895  1.335   mlelstv 	dk_start(dksc, NULL);
   1896  1.335   mlelstv }
   1897   1.34     oster 
   1898  1.335   mlelstv static int
   1899  1.335   mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
   1900  1.335   mlelstv {
   1901  1.335   mlelstv 	RF_SectorCount_t num_blocks, pb, sum;
   1902  1.335   mlelstv 	RF_RaidAddr_t raid_addr;
   1903  1.335   mlelstv 	daddr_t blocknum;
   1904  1.335   mlelstv 	int     do_async;
   1905  1.335   mlelstv 	int rc;
   1906  1.186     perry 
   1907  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
   1908  1.335   mlelstv 	if (raidPtr->openings == 0) {
   1909  1.335   mlelstv 		rf_unlock_mutex2(raidPtr->mutex);
   1910  1.335   mlelstv 		return EAGAIN;
   1911  1.335   mlelstv 	}
   1912  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
   1913  1.186     perry 
   1914  1.335   mlelstv 	blocknum = bp->b_rawblkno;
   1915  1.186     perry 
   1916  1.335   mlelstv 	db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1917  1.335   mlelstv 		    (int) blocknum));
   1918    1.1     oster 
   1919  1.335   mlelstv 	db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1920  1.335   mlelstv 	db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1921    1.1     oster 
   1922  1.335   mlelstv 	/* *THIS* is where we adjust what block we're going to...
   1923  1.335   mlelstv 	 * but DO NOT TOUCH bp->b_blkno!!! */
   1924  1.335   mlelstv 	raid_addr = blocknum;
   1925  1.335   mlelstv 
   1926  1.335   mlelstv 	num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1927  1.335   mlelstv 	pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1928  1.335   mlelstv 	sum = raid_addr + num_blocks + pb;
   1929  1.335   mlelstv 	if (1 || rf_debugKernelAccess) {
   1930  1.335   mlelstv 		db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1931  1.335   mlelstv 			    (int) raid_addr, (int) sum, (int) num_blocks,
   1932  1.335   mlelstv 			    (int) pb, (int) bp->b_resid));
   1933  1.335   mlelstv 	}
   1934  1.335   mlelstv 	if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1935  1.335   mlelstv 	    || (sum < num_blocks) || (sum < pb)) {
   1936  1.335   mlelstv 		rc = ENOSPC;
   1937  1.335   mlelstv 		goto done;
   1938  1.335   mlelstv 	}
   1939  1.335   mlelstv 	/*
   1940  1.335   mlelstv 	 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1941  1.335   mlelstv 	 */
   1942  1.186     perry 
   1943  1.335   mlelstv 	if (bp->b_bcount & raidPtr->sectorMask) {
   1944  1.335   mlelstv 		rc = ENOSPC;
   1945  1.335   mlelstv 		goto done;
   1946  1.335   mlelstv 	}
   1947  1.335   mlelstv 	db1_printf(("Calling DoAccess..\n"));
   1948   1.99     oster 
   1949   1.20     oster 
   1950  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
   1951  1.335   mlelstv 	raidPtr->openings--;
   1952  1.291       mrg 	rf_unlock_mutex2(raidPtr->mutex);
   1953   1.20     oster 
   1954  1.335   mlelstv 	/*
   1955  1.335   mlelstv 	 * Everything is async.
   1956  1.335   mlelstv 	 */
   1957  1.335   mlelstv 	do_async = 1;
   1958   1.20     oster 
   1959  1.335   mlelstv 	/* don't ever condition on bp->b_flags & B_WRITE.
   1960  1.335   mlelstv 	 * always condition on B_READ instead */
   1961    1.7  explorer 
   1962  1.335   mlelstv 	rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1963  1.335   mlelstv 			 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1964  1.335   mlelstv 			 do_async, raid_addr, num_blocks,
   1965  1.335   mlelstv 			 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1966  1.335   mlelstv 
   1967  1.335   mlelstv done:
   1968  1.335   mlelstv 	return rc;
   1969  1.335   mlelstv }
   1970    1.7  explorer 
   1971    1.1     oster /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1972    1.1     oster 
   1973  1.186     perry int
   1974  1.169     oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1975    1.1     oster {
   1976    1.9     oster 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1977    1.1     oster 	struct buf *bp;
   1978    1.9     oster 
   1979    1.1     oster 	req->queue = queue;
   1980    1.1     oster 	bp = req->bp;
   1981    1.1     oster 
   1982    1.1     oster 	switch (req->type) {
   1983    1.9     oster 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1984    1.1     oster 		/* XXX need to do something extra here.. */
   1985    1.9     oster 		/* I'm leaving this in, as I've never actually seen it used,
   1986    1.9     oster 		 * and I'd like folks to report it... GO */
   1987    1.1     oster 		printf(("WAKEUP CALLED\n"));
   1988    1.1     oster 		queue->numOutstanding++;
   1989    1.1     oster 
   1990  1.197     oster 		bp->b_flags = 0;
   1991  1.207    simonb 		bp->b_private = req;
   1992    1.1     oster 
   1993  1.194     oster 		KernelWakeupFunc(bp);
   1994    1.1     oster 		break;
   1995    1.9     oster 
   1996    1.1     oster 	case RF_IO_TYPE_READ:
   1997    1.1     oster 	case RF_IO_TYPE_WRITE:
   1998  1.175     oster #if RF_ACC_TRACE > 0
   1999    1.1     oster 		if (req->tracerec) {
   2000    1.1     oster 			RF_ETIMER_START(req->tracerec->timer);
   2001    1.1     oster 		}
   2002  1.175     oster #endif
   2003  1.194     oster 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2004  1.197     oster 		    op, queue->rf_cinfo->ci_dev,
   2005    1.9     oster 		    req->sectorOffset, req->numSector,
   2006    1.9     oster 		    req->buf, KernelWakeupFunc, (void *) req,
   2007    1.9     oster 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2008    1.1     oster 
   2009    1.1     oster 		if (rf_debugKernelAccess) {
   2010    1.9     oster 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2011    1.9     oster 				(long) bp->b_blkno));
   2012    1.1     oster 		}
   2013    1.1     oster 		queue->numOutstanding++;
   2014    1.1     oster 		queue->last_deq_sector = req->sectorOffset;
   2015    1.9     oster 		/* acc wouldn't have been let in if there were any pending
   2016    1.9     oster 		 * reqs at any other priority */
   2017    1.1     oster 		queue->curPriority = req->priority;
   2018    1.1     oster 
   2019  1.166     oster 		db1_printf(("Going for %c to unit %d col %d\n",
   2020  1.186     perry 			    req->type, queue->raidPtr->raidid,
   2021  1.166     oster 			    queue->col));
   2022    1.1     oster 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2023    1.9     oster 			(int) req->sectorOffset, (int) req->numSector,
   2024    1.9     oster 			(int) (req->numSector <<
   2025    1.9     oster 			    queue->raidPtr->logBytesPerSector),
   2026    1.9     oster 			(int) queue->raidPtr->logBytesPerSector));
   2027  1.256     oster 
   2028  1.256     oster 		/*
   2029  1.256     oster 		 * XXX: drop lock here since this can block at
   2030  1.256     oster 		 * least with backing SCSI devices.  Retake it
   2031  1.256     oster 		 * to minimize fuss with calling interfaces.
   2032  1.256     oster 		 */
   2033  1.256     oster 
   2034  1.256     oster 		RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
   2035  1.247     oster 		bdev_strategy(bp);
   2036  1.256     oster 		RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
   2037    1.1     oster 		break;
   2038    1.9     oster 
   2039    1.1     oster 	default:
   2040    1.1     oster 		panic("bad req->type in rf_DispatchKernelIO");
   2041    1.1     oster 	}
   2042    1.1     oster 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2043  1.134     oster 
   2044    1.9     oster 	return (0);
   2045    1.1     oster }
   2046    1.9     oster /* this is the callback function associated with a I/O invoked from
   2047    1.1     oster    kernel code.
   2048    1.1     oster  */
   2049  1.186     perry static void
   2050  1.194     oster KernelWakeupFunc(struct buf *bp)
   2051    1.9     oster {
   2052    1.9     oster 	RF_DiskQueueData_t *req = NULL;
   2053    1.9     oster 	RF_DiskQueue_t *queue;
   2054    1.9     oster 
   2055    1.9     oster 	db1_printf(("recovering the request queue:\n"));
   2056  1.285       mrg 
   2057  1.207    simonb 	req = bp->b_private;
   2058    1.1     oster 
   2059    1.9     oster 	queue = (RF_DiskQueue_t *) req->queue;
   2060    1.1     oster 
   2061  1.286       mrg 	rf_lock_mutex2(queue->raidPtr->iodone_lock);
   2062  1.285       mrg 
   2063  1.175     oster #if RF_ACC_TRACE > 0
   2064    1.9     oster 	if (req->tracerec) {
   2065    1.9     oster 		RF_ETIMER_STOP(req->tracerec->timer);
   2066    1.9     oster 		RF_ETIMER_EVAL(req->tracerec->timer);
   2067  1.288       mrg 		rf_lock_mutex2(rf_tracing_mutex);
   2068    1.9     oster 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2069    1.9     oster 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2070    1.9     oster 		req->tracerec->num_phys_ios++;
   2071  1.288       mrg 		rf_unlock_mutex2(rf_tracing_mutex);
   2072    1.9     oster 	}
   2073  1.175     oster #endif
   2074    1.1     oster 
   2075  1.230        ad 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2076    1.9     oster 	 * ballistic, and mark the component as hosed... */
   2077   1.36     oster 
   2078  1.230        ad 	if (bp->b_error != 0) {
   2079    1.9     oster 		/* Mark the disk as dead */
   2080    1.9     oster 		/* but only mark it once... */
   2081  1.186     perry 		/* and only if it wouldn't leave this RAID set
   2082  1.183     oster 		   completely broken */
   2083  1.193     oster 		if (((queue->raidPtr->Disks[queue->col].status ==
   2084  1.193     oster 		      rf_ds_optimal) ||
   2085  1.193     oster 		     (queue->raidPtr->Disks[queue->col].status ==
   2086  1.193     oster 		      rf_ds_used_spare)) &&
   2087  1.193     oster 		     (queue->raidPtr->numFailures <
   2088  1.204    simonb 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2089  1.322     prlw1 			printf("raid%d: IO Error (%d). Marking %s as failed.\n",
   2090  1.136     oster 			       queue->raidPtr->raidid,
   2091  1.322     prlw1 			       bp->b_error,
   2092  1.166     oster 			       queue->raidPtr->Disks[queue->col].devname);
   2093  1.166     oster 			queue->raidPtr->Disks[queue->col].status =
   2094    1.9     oster 			    rf_ds_failed;
   2095  1.166     oster 			queue->raidPtr->status = rf_rs_degraded;
   2096    1.9     oster 			queue->raidPtr->numFailures++;
   2097   1.56     oster 			queue->raidPtr->numNewFailures++;
   2098    1.9     oster 		} else {	/* Disk is already dead... */
   2099    1.9     oster 			/* printf("Disk already marked as dead!\n"); */
   2100    1.9     oster 		}
   2101    1.4     oster 
   2102    1.9     oster 	}
   2103    1.4     oster 
   2104  1.143     oster 	/* Fill in the error value */
   2105  1.230        ad 	req->error = bp->b_error;
   2106  1.143     oster 
   2107  1.143     oster 	/* Drop this one on the "finished" queue... */
   2108  1.143     oster 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2109  1.143     oster 
   2110  1.143     oster 	/* Let the raidio thread know there is work to be done. */
   2111  1.286       mrg 	rf_signal_cond2(queue->raidPtr->iodone_cv);
   2112  1.143     oster 
   2113  1.286       mrg 	rf_unlock_mutex2(queue->raidPtr->iodone_lock);
   2114    1.1     oster }
   2115    1.1     oster 
   2116    1.1     oster 
   2117    1.1     oster /*
   2118    1.1     oster  * initialize a buf structure for doing an I/O in the kernel.
   2119    1.1     oster  */
   2120  1.186     perry static void
   2121  1.169     oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2122  1.225  christos        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2123  1.169     oster        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2124  1.169     oster        struct proc *b_proc)
   2125    1.9     oster {
   2126    1.9     oster 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2127  1.242        ad 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
   2128  1.242        ad 	bp->b_oflags = 0;
   2129  1.242        ad 	bp->b_cflags = 0;
   2130    1.9     oster 	bp->b_bcount = numSect << logBytesPerSector;
   2131    1.9     oster 	bp->b_bufsize = bp->b_bcount;
   2132    1.9     oster 	bp->b_error = 0;
   2133    1.9     oster 	bp->b_dev = dev;
   2134  1.187  christos 	bp->b_data = bf;
   2135  1.275       mrg 	bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
   2136    1.9     oster 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2137    1.1     oster 	if (bp->b_bcount == 0) {
   2138  1.141    provos 		panic("bp->b_bcount is zero in InitBP!!");
   2139    1.1     oster 	}
   2140  1.161      fvdl 	bp->b_proc = b_proc;
   2141    1.9     oster 	bp->b_iodone = cbFunc;
   2142  1.207    simonb 	bp->b_private = cbArg;
   2143    1.1     oster }
   2144    1.1     oster 
   2145    1.1     oster /*
   2146    1.1     oster  * Wait interruptibly for an exclusive lock.
   2147    1.1     oster  *
   2148    1.1     oster  * XXX
   2149    1.1     oster  * Several drivers do this; it should be abstracted and made MP-safe.
   2150    1.1     oster  * (Hmm... where have we seen this warning before :->  GO )
   2151    1.1     oster  */
   2152    1.1     oster static int
   2153  1.169     oster raidlock(struct raid_softc *rs)
   2154    1.1     oster {
   2155    1.9     oster 	int     error;
   2156    1.1     oster 
   2157  1.335   mlelstv 	error = 0;
   2158  1.327  pgoyette 	mutex_enter(&rs->sc_mutex);
   2159    1.1     oster 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2160    1.1     oster 		rs->sc_flags |= RAIDF_WANTED;
   2161  1.327  pgoyette 		error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
   2162  1.327  pgoyette 		if (error != 0)
   2163  1.335   mlelstv 			goto done;
   2164    1.1     oster 	}
   2165    1.1     oster 	rs->sc_flags |= RAIDF_LOCKED;
   2166  1.335   mlelstv done:
   2167  1.327  pgoyette 	mutex_exit(&rs->sc_mutex);
   2168  1.335   mlelstv 	return (error);
   2169    1.1     oster }
   2170    1.1     oster /*
   2171    1.1     oster  * Unlock and wake up any waiters.
   2172    1.1     oster  */
   2173    1.1     oster static void
   2174  1.169     oster raidunlock(struct raid_softc *rs)
   2175    1.1     oster {
   2176    1.1     oster 
   2177  1.327  pgoyette 	mutex_enter(&rs->sc_mutex);
   2178    1.1     oster 	rs->sc_flags &= ~RAIDF_LOCKED;
   2179    1.1     oster 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2180    1.1     oster 		rs->sc_flags &= ~RAIDF_WANTED;
   2181  1.327  pgoyette 		cv_broadcast(&rs->sc_cv);
   2182    1.1     oster 	}
   2183  1.327  pgoyette 	mutex_exit(&rs->sc_mutex);
   2184   1.11     oster }
   2185  1.186     perry 
   2186   1.11     oster 
   2187   1.11     oster #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2188   1.11     oster #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2189  1.269       jld #define RF_PARITY_MAP_SIZE   RF_PARITYMAP_NBYTE
   2190   1.11     oster 
   2191  1.276       mrg static daddr_t
   2192  1.276       mrg rf_component_info_offset(void)
   2193  1.276       mrg {
   2194  1.276       mrg 
   2195  1.276       mrg 	return RF_COMPONENT_INFO_OFFSET;
   2196  1.276       mrg }
   2197  1.276       mrg 
   2198  1.276       mrg static daddr_t
   2199  1.276       mrg rf_component_info_size(unsigned secsize)
   2200  1.276       mrg {
   2201  1.276       mrg 	daddr_t info_size;
   2202  1.276       mrg 
   2203  1.276       mrg 	KASSERT(secsize);
   2204  1.276       mrg 	if (secsize > RF_COMPONENT_INFO_SIZE)
   2205  1.276       mrg 		info_size = secsize;
   2206  1.276       mrg 	else
   2207  1.276       mrg 		info_size = RF_COMPONENT_INFO_SIZE;
   2208  1.276       mrg 
   2209  1.276       mrg 	return info_size;
   2210  1.276       mrg }
   2211  1.276       mrg 
   2212  1.276       mrg static daddr_t
   2213  1.276       mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
   2214  1.276       mrg {
   2215  1.276       mrg 	daddr_t map_offset;
   2216  1.276       mrg 
   2217  1.276       mrg 	KASSERT(raidPtr->bytesPerSector);
   2218  1.276       mrg 	if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
   2219  1.276       mrg 		map_offset = raidPtr->bytesPerSector;
   2220  1.276       mrg 	else
   2221  1.276       mrg 		map_offset = RF_COMPONENT_INFO_SIZE;
   2222  1.276       mrg 	map_offset += rf_component_info_offset();
   2223  1.276       mrg 
   2224  1.276       mrg 	return map_offset;
   2225  1.276       mrg }
   2226  1.276       mrg 
   2227  1.276       mrg static daddr_t
   2228  1.276       mrg rf_parity_map_size(RF_Raid_t *raidPtr)
   2229  1.276       mrg {
   2230  1.276       mrg 	daddr_t map_size;
   2231  1.276       mrg 
   2232  1.276       mrg 	if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
   2233  1.276       mrg 		map_size = raidPtr->bytesPerSector;
   2234  1.276       mrg 	else
   2235  1.276       mrg 		map_size = RF_PARITY_MAP_SIZE;
   2236  1.276       mrg 
   2237  1.276       mrg 	return map_size;
   2238  1.276       mrg }
   2239  1.276       mrg 
   2240  1.186     perry int
   2241  1.269       jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2242   1.12     oster {
   2243  1.269       jld 	RF_ComponentLabel_t *clabel;
   2244  1.269       jld 
   2245  1.269       jld 	clabel = raidget_component_label(raidPtr, col);
   2246  1.269       jld 	clabel->clean = RF_RAID_CLEAN;
   2247  1.269       jld 	raidflush_component_label(raidPtr, col);
   2248   1.12     oster 	return(0);
   2249   1.12     oster }
   2250   1.12     oster 
   2251   1.12     oster 
   2252  1.186     perry int
   2253  1.269       jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2254   1.11     oster {
   2255  1.269       jld 	RF_ComponentLabel_t *clabel;
   2256  1.269       jld 
   2257  1.269       jld 	clabel = raidget_component_label(raidPtr, col);
   2258  1.269       jld 	clabel->clean = RF_RAID_DIRTY;
   2259  1.269       jld 	raidflush_component_label(raidPtr, col);
   2260   1.11     oster 	return(0);
   2261   1.11     oster }
   2262   1.11     oster 
   2263   1.11     oster int
   2264  1.269       jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2265  1.269       jld {
   2266  1.276       mrg 	KASSERT(raidPtr->bytesPerSector);
   2267  1.276       mrg 	return raidread_component_label(raidPtr->bytesPerSector,
   2268  1.276       mrg 	    raidPtr->Disks[col].dev,
   2269  1.269       jld 	    raidPtr->raid_cinfo[col].ci_vp,
   2270  1.269       jld 	    &raidPtr->raid_cinfo[col].ci_label);
   2271  1.269       jld }
   2272  1.269       jld 
   2273  1.269       jld RF_ComponentLabel_t *
   2274  1.269       jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2275  1.269       jld {
   2276  1.269       jld 	return &raidPtr->raid_cinfo[col].ci_label;
   2277  1.269       jld }
   2278  1.269       jld 
   2279  1.269       jld int
   2280  1.269       jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2281  1.269       jld {
   2282  1.269       jld 	RF_ComponentLabel_t *label;
   2283  1.269       jld 
   2284  1.269       jld 	label = &raidPtr->raid_cinfo[col].ci_label;
   2285  1.269       jld 	label->mod_counter = raidPtr->mod_counter;
   2286  1.269       jld #ifndef RF_NO_PARITY_MAP
   2287  1.269       jld 	label->parity_map_modcount = label->mod_counter;
   2288  1.269       jld #endif
   2289  1.276       mrg 	return raidwrite_component_label(raidPtr->bytesPerSector,
   2290  1.276       mrg 	    raidPtr->Disks[col].dev,
   2291  1.269       jld 	    raidPtr->raid_cinfo[col].ci_vp, label);
   2292  1.269       jld }
   2293  1.269       jld 
   2294  1.269       jld 
   2295  1.269       jld static int
   2296  1.276       mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
   2297  1.269       jld     RF_ComponentLabel_t *clabel)
   2298  1.269       jld {
   2299  1.269       jld 	return raidread_component_area(dev, b_vp, clabel,
   2300  1.269       jld 	    sizeof(RF_ComponentLabel_t),
   2301  1.276       mrg 	    rf_component_info_offset(),
   2302  1.276       mrg 	    rf_component_info_size(secsize));
   2303  1.269       jld }
   2304  1.269       jld 
   2305  1.269       jld /* ARGSUSED */
   2306  1.269       jld static int
   2307  1.269       jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2308  1.269       jld     size_t msize, daddr_t offset, daddr_t dsize)
   2309   1.11     oster {
   2310   1.11     oster 	struct buf *bp;
   2311   1.11     oster 	int error;
   2312  1.186     perry 
   2313   1.11     oster 	/* XXX should probably ensure that we don't try to do this if
   2314  1.186     perry 	   someone has changed rf_protected_sectors. */
   2315   1.11     oster 
   2316   1.98     oster 	if (b_vp == NULL) {
   2317   1.98     oster 		/* For whatever reason, this component is not valid.
   2318   1.98     oster 		   Don't try to read a component label from it. */
   2319   1.98     oster 		return(EINVAL);
   2320   1.98     oster 	}
   2321   1.98     oster 
   2322   1.11     oster 	/* get a block of the appropriate size... */
   2323  1.269       jld 	bp = geteblk((int)dsize);
   2324   1.11     oster 	bp->b_dev = dev;
   2325   1.11     oster 
   2326   1.11     oster 	/* get our ducks in a row for the read */
   2327  1.269       jld 	bp->b_blkno = offset / DEV_BSIZE;
   2328  1.269       jld 	bp->b_bcount = dsize;
   2329  1.100       chs 	bp->b_flags |= B_READ;
   2330  1.269       jld  	bp->b_resid = dsize;
   2331   1.11     oster 
   2332  1.331   mlelstv 	bdev_strategy(bp);
   2333  1.340  christos 	error = biowait(bp);
   2334   1.11     oster 
   2335   1.11     oster 	if (!error) {
   2336  1.269       jld 		memcpy(data, bp->b_data, msize);
   2337  1.204    simonb 	}
   2338   1.11     oster 
   2339  1.233        ad 	brelse(bp, 0);
   2340   1.11     oster 	return(error);
   2341   1.11     oster }
   2342  1.269       jld 
   2343  1.269       jld 
   2344  1.269       jld static int
   2345  1.276       mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
   2346  1.276       mrg     RF_ComponentLabel_t *clabel)
   2347  1.269       jld {
   2348  1.269       jld 	return raidwrite_component_area(dev, b_vp, clabel,
   2349  1.269       jld 	    sizeof(RF_ComponentLabel_t),
   2350  1.276       mrg 	    rf_component_info_offset(),
   2351  1.276       mrg 	    rf_component_info_size(secsize), 0);
   2352  1.269       jld }
   2353  1.269       jld 
   2354   1.11     oster /* ARGSUSED */
   2355  1.269       jld static int
   2356  1.269       jld raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2357  1.269       jld     size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
   2358   1.11     oster {
   2359   1.11     oster 	struct buf *bp;
   2360   1.11     oster 	int error;
   2361   1.11     oster 
   2362   1.11     oster 	/* get a block of the appropriate size... */
   2363  1.269       jld 	bp = geteblk((int)dsize);
   2364   1.11     oster 	bp->b_dev = dev;
   2365   1.11     oster 
   2366   1.11     oster 	/* get our ducks in a row for the write */
   2367  1.269       jld 	bp->b_blkno = offset / DEV_BSIZE;
   2368  1.269       jld 	bp->b_bcount = dsize;
   2369  1.269       jld 	bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
   2370  1.269       jld  	bp->b_resid = dsize;
   2371   1.11     oster 
   2372  1.269       jld 	memset(bp->b_data, 0, dsize);
   2373  1.269       jld 	memcpy(bp->b_data, data, msize);
   2374   1.11     oster 
   2375  1.331   mlelstv 	bdev_strategy(bp);
   2376  1.269       jld 	if (asyncp)
   2377  1.269       jld 		return 0;
   2378  1.340  christos 	error = biowait(bp);
   2379  1.233        ad 	brelse(bp, 0);
   2380   1.11     oster 	if (error) {
   2381   1.48     oster #if 1
   2382   1.11     oster 		printf("Failed to write RAID component info!\n");
   2383   1.48     oster #endif
   2384   1.11     oster 	}
   2385   1.11     oster 
   2386   1.11     oster 	return(error);
   2387    1.1     oster }
   2388   1.12     oster 
   2389  1.186     perry void
   2390  1.269       jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2391  1.269       jld {
   2392  1.269       jld 	int c;
   2393  1.269       jld 
   2394  1.269       jld 	for (c = 0; c < raidPtr->numCol; c++) {
   2395  1.269       jld 		/* Skip dead disks. */
   2396  1.269       jld 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2397  1.269       jld 			continue;
   2398  1.269       jld 		/* XXXjld: what if an error occurs here? */
   2399  1.269       jld 		raidwrite_component_area(raidPtr->Disks[c].dev,
   2400  1.269       jld 		    raidPtr->raid_cinfo[c].ci_vp, map,
   2401  1.269       jld 		    RF_PARITYMAP_NBYTE,
   2402  1.276       mrg 		    rf_parity_map_offset(raidPtr),
   2403  1.276       mrg 		    rf_parity_map_size(raidPtr), 0);
   2404  1.269       jld 	}
   2405  1.269       jld }
   2406  1.269       jld 
   2407  1.269       jld void
   2408  1.269       jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2409  1.269       jld {
   2410  1.269       jld 	struct rf_paritymap_ondisk tmp;
   2411  1.272     oster 	int c,first;
   2412  1.269       jld 
   2413  1.272     oster 	first=1;
   2414  1.269       jld 	for (c = 0; c < raidPtr->numCol; c++) {
   2415  1.269       jld 		/* Skip dead disks. */
   2416  1.269       jld 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2417  1.269       jld 			continue;
   2418  1.269       jld 		raidread_component_area(raidPtr->Disks[c].dev,
   2419  1.269       jld 		    raidPtr->raid_cinfo[c].ci_vp, &tmp,
   2420  1.269       jld 		    RF_PARITYMAP_NBYTE,
   2421  1.276       mrg 		    rf_parity_map_offset(raidPtr),
   2422  1.276       mrg 		    rf_parity_map_size(raidPtr));
   2423  1.272     oster 		if (first) {
   2424  1.269       jld 			memcpy(map, &tmp, sizeof(*map));
   2425  1.272     oster 			first = 0;
   2426  1.269       jld 		} else {
   2427  1.269       jld 			rf_paritymap_merge(map, &tmp);
   2428  1.269       jld 		}
   2429  1.269       jld 	}
   2430  1.269       jld }
   2431  1.269       jld 
   2432  1.269       jld void
   2433  1.169     oster rf_markalldirty(RF_Raid_t *raidPtr)
   2434   1.12     oster {
   2435  1.269       jld 	RF_ComponentLabel_t *clabel;
   2436  1.146     oster 	int sparecol;
   2437  1.166     oster 	int c;
   2438  1.166     oster 	int j;
   2439  1.166     oster 	int scol = -1;
   2440   1.12     oster 
   2441   1.12     oster 	raidPtr->mod_counter++;
   2442  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2443  1.166     oster 		/* we don't want to touch (at all) a disk that has
   2444  1.166     oster 		   failed */
   2445  1.166     oster 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2446  1.269       jld 			clabel = raidget_component_label(raidPtr, c);
   2447  1.269       jld 			if (clabel->status == rf_ds_spared) {
   2448  1.186     perry 				/* XXX do something special...
   2449  1.186     perry 				   but whatever you do, don't
   2450  1.166     oster 				   try to access it!! */
   2451  1.166     oster 			} else {
   2452  1.269       jld 				raidmarkdirty(raidPtr, c);
   2453   1.12     oster 			}
   2454  1.166     oster 		}
   2455  1.186     perry 	}
   2456  1.146     oster 
   2457   1.12     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2458   1.12     oster 		sparecol = raidPtr->numCol + c;
   2459  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2460  1.186     perry 			/*
   2461  1.186     perry 
   2462  1.186     perry 			   we claim this disk is "optimal" if it's
   2463  1.186     perry 			   rf_ds_used_spare, as that means it should be
   2464  1.186     perry 			   directly substitutable for the disk it replaced.
   2465   1.12     oster 			   We note that too...
   2466   1.12     oster 
   2467   1.12     oster 			 */
   2468   1.12     oster 
   2469  1.166     oster 			for(j=0;j<raidPtr->numCol;j++) {
   2470  1.166     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2471  1.166     oster 					scol = j;
   2472  1.166     oster 					break;
   2473   1.12     oster 				}
   2474   1.12     oster 			}
   2475  1.186     perry 
   2476  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   2477   1.12     oster 			/* make sure status is noted */
   2478  1.146     oster 
   2479  1.269       jld 			raid_init_component_label(raidPtr, clabel);
   2480  1.146     oster 
   2481  1.269       jld 			clabel->row = 0;
   2482  1.269       jld 			clabel->column = scol;
   2483  1.146     oster 			/* Note: we *don't* change status from rf_ds_used_spare
   2484  1.146     oster 			   to rf_ds_optimal */
   2485  1.146     oster 			/* clabel.status = rf_ds_optimal; */
   2486  1.186     perry 
   2487  1.269       jld 			raidmarkdirty(raidPtr, sparecol);
   2488   1.12     oster 		}
   2489   1.12     oster 	}
   2490   1.12     oster }
   2491   1.12     oster 
   2492   1.13     oster 
   2493   1.13     oster void
   2494  1.169     oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2495   1.13     oster {
   2496  1.269       jld 	RF_ComponentLabel_t *clabel;
   2497   1.13     oster 	int sparecol;
   2498  1.166     oster 	int c;
   2499  1.166     oster 	int j;
   2500  1.166     oster 	int scol;
   2501  1.341  christos 	struct raid_softc *rs = raidPtr->softc;
   2502   1.13     oster 
   2503   1.13     oster 	scol = -1;
   2504   1.13     oster 
   2505  1.186     perry 	/* XXX should do extra checks to make sure things really are clean,
   2506   1.13     oster 	   rather than blindly setting the clean bit... */
   2507   1.13     oster 
   2508   1.13     oster 	raidPtr->mod_counter++;
   2509   1.13     oster 
   2510  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2511  1.166     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2512  1.269       jld 			clabel = raidget_component_label(raidPtr, c);
   2513  1.201     oster 			/* make sure status is noted */
   2514  1.269       jld 			clabel->status = rf_ds_optimal;
   2515  1.201     oster 
   2516  1.214     oster 			/* note what unit we are configured as */
   2517  1.341  christos 			if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
   2518  1.341  christos 				clabel->last_unit = raidPtr->raidid;
   2519  1.214     oster 
   2520  1.269       jld 			raidflush_component_label(raidPtr, c);
   2521  1.166     oster 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2522  1.166     oster 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2523  1.269       jld 					raidmarkclean(raidPtr, c);
   2524   1.91     oster 				}
   2525  1.166     oster 			}
   2526  1.186     perry 		}
   2527  1.166     oster 		/* else we don't touch it.. */
   2528  1.186     perry 	}
   2529   1.63     oster 
   2530   1.63     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2531   1.63     oster 		sparecol = raidPtr->numCol + c;
   2532  1.110     oster 		/* Need to ensure that the reconstruct actually completed! */
   2533  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2534  1.186     perry 			/*
   2535  1.186     perry 
   2536  1.186     perry 			   we claim this disk is "optimal" if it's
   2537  1.186     perry 			   rf_ds_used_spare, as that means it should be
   2538  1.186     perry 			   directly substitutable for the disk it replaced.
   2539   1.63     oster 			   We note that too...
   2540   1.63     oster 
   2541   1.63     oster 			 */
   2542   1.63     oster 
   2543  1.166     oster 			for(j=0;j<raidPtr->numCol;j++) {
   2544  1.166     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2545  1.166     oster 					scol = j;
   2546  1.166     oster 					break;
   2547   1.63     oster 				}
   2548   1.63     oster 			}
   2549  1.186     perry 
   2550   1.63     oster 			/* XXX shouldn't *really* need this... */
   2551  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   2552   1.63     oster 			/* make sure status is noted */
   2553   1.63     oster 
   2554  1.269       jld 			raid_init_component_label(raidPtr, clabel);
   2555  1.269       jld 
   2556  1.269       jld 			clabel->column = scol;
   2557  1.269       jld 			clabel->status = rf_ds_optimal;
   2558  1.341  christos 			if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
   2559  1.341  christos 				clabel->last_unit = raidPtr->raidid;
   2560   1.63     oster 
   2561  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   2562   1.91     oster 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2563   1.13     oster 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2564  1.269       jld 					raidmarkclean(raidPtr, sparecol);
   2565   1.13     oster 				}
   2566   1.13     oster 			}
   2567   1.13     oster 		}
   2568   1.13     oster 	}
   2569   1.68     oster }
   2570   1.68     oster 
   2571   1.68     oster void
   2572  1.169     oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2573   1.69     oster {
   2574   1.69     oster 
   2575   1.69     oster 	if (vp != NULL) {
   2576   1.69     oster 		if (auto_configured == 1) {
   2577   1.96     oster 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2578  1.238     pooka 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2579   1.69     oster 			vput(vp);
   2580  1.186     perry 
   2581  1.186     perry 		} else {
   2582  1.244        ad 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
   2583   1.69     oster 		}
   2584  1.186     perry 	}
   2585   1.69     oster }
   2586   1.69     oster 
   2587   1.69     oster 
   2588   1.69     oster void
   2589  1.169     oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2590   1.68     oster {
   2591  1.186     perry 	int r,c;
   2592   1.69     oster 	struct vnode *vp;
   2593   1.69     oster 	int acd;
   2594   1.68     oster 
   2595   1.68     oster 
   2596   1.68     oster 	/* We take this opportunity to close the vnodes like we should.. */
   2597   1.68     oster 
   2598  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2599  1.166     oster 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2600  1.166     oster 		acd = raidPtr->Disks[c].auto_configured;
   2601  1.166     oster 		rf_close_component(raidPtr, vp, acd);
   2602  1.166     oster 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2603  1.166     oster 		raidPtr->Disks[c].auto_configured = 0;
   2604   1.68     oster 	}
   2605  1.166     oster 
   2606   1.68     oster 	for (r = 0; r < raidPtr->numSpare; r++) {
   2607  1.166     oster 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2608  1.166     oster 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2609   1.69     oster 		rf_close_component(raidPtr, vp, acd);
   2610  1.166     oster 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2611  1.166     oster 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2612   1.68     oster 	}
   2613   1.37     oster }
   2614   1.63     oster 
   2615   1.37     oster 
   2616  1.186     perry void
   2617  1.353       mrg rf_ReconThread(struct rf_recon_req_internal *req)
   2618   1.37     oster {
   2619   1.37     oster 	int     s;
   2620   1.37     oster 	RF_Raid_t *raidPtr;
   2621   1.37     oster 
   2622   1.37     oster 	s = splbio();
   2623   1.37     oster 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2624   1.37     oster 	raidPtr->recon_in_progress = 1;
   2625   1.37     oster 
   2626  1.166     oster 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2627   1.37     oster 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2628   1.37     oster 
   2629   1.37     oster 	RF_Free(req, sizeof(*req));
   2630   1.37     oster 
   2631   1.37     oster 	raidPtr->recon_in_progress = 0;
   2632   1.37     oster 	splx(s);
   2633   1.37     oster 
   2634   1.37     oster 	/* That's all... */
   2635  1.204    simonb 	kthread_exit(0);	/* does not return */
   2636   1.37     oster }
   2637   1.37     oster 
   2638   1.37     oster void
   2639  1.169     oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2640   1.37     oster {
   2641   1.37     oster 	int retcode;
   2642   1.37     oster 	int s;
   2643   1.37     oster 
   2644  1.184     oster 	raidPtr->parity_rewrite_stripes_done = 0;
   2645   1.37     oster 	raidPtr->parity_rewrite_in_progress = 1;
   2646   1.37     oster 	s = splbio();
   2647   1.37     oster 	retcode = rf_RewriteParity(raidPtr);
   2648   1.37     oster 	splx(s);
   2649   1.37     oster 	if (retcode) {
   2650  1.279  christos 		printf("raid%d: Error re-writing parity (%d)!\n",
   2651  1.279  christos 		    raidPtr->raidid, retcode);
   2652   1.37     oster 	} else {
   2653   1.37     oster 		/* set the clean bit!  If we shutdown correctly,
   2654   1.37     oster 		   the clean bit on each component label will get
   2655   1.37     oster 		   set */
   2656   1.37     oster 		raidPtr->parity_good = RF_RAID_CLEAN;
   2657   1.37     oster 	}
   2658   1.37     oster 	raidPtr->parity_rewrite_in_progress = 0;
   2659   1.85     oster 
   2660   1.85     oster 	/* Anyone waiting for us to stop?  If so, inform them... */
   2661   1.85     oster 	if (raidPtr->waitShutdown) {
   2662  1.357       mrg 		rf_lock_mutex2(raidPtr->rad_lock);
   2663  1.357       mrg 		cv_broadcast(&raidPtr->parity_rewrite_cv);
   2664  1.357       mrg 		rf_unlock_mutex2(raidPtr->rad_lock);
   2665   1.85     oster 	}
   2666   1.37     oster 
   2667   1.37     oster 	/* That's all... */
   2668  1.204    simonb 	kthread_exit(0);	/* does not return */
   2669   1.37     oster }
   2670   1.37     oster 
   2671   1.37     oster 
   2672   1.37     oster void
   2673  1.169     oster rf_CopybackThread(RF_Raid_t *raidPtr)
   2674   1.37     oster {
   2675   1.37     oster 	int s;
   2676   1.37     oster 
   2677   1.37     oster 	raidPtr->copyback_in_progress = 1;
   2678   1.37     oster 	s = splbio();
   2679   1.37     oster 	rf_CopybackReconstructedData(raidPtr);
   2680   1.37     oster 	splx(s);
   2681   1.37     oster 	raidPtr->copyback_in_progress = 0;
   2682   1.37     oster 
   2683   1.37     oster 	/* That's all... */
   2684  1.204    simonb 	kthread_exit(0);	/* does not return */
   2685   1.37     oster }
   2686   1.37     oster 
   2687   1.37     oster 
   2688   1.37     oster void
   2689  1.353       mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
   2690   1.37     oster {
   2691   1.37     oster 	int s;
   2692   1.37     oster 	RF_Raid_t *raidPtr;
   2693  1.186     perry 
   2694   1.37     oster 	s = splbio();
   2695   1.37     oster 	raidPtr = req->raidPtr;
   2696   1.37     oster 	raidPtr->recon_in_progress = 1;
   2697  1.166     oster 	rf_ReconstructInPlace(raidPtr, req->col);
   2698   1.37     oster 	RF_Free(req, sizeof(*req));
   2699   1.37     oster 	raidPtr->recon_in_progress = 0;
   2700   1.37     oster 	splx(s);
   2701   1.37     oster 
   2702   1.37     oster 	/* That's all... */
   2703  1.204    simonb 	kthread_exit(0);	/* does not return */
   2704   1.48     oster }
   2705   1.48     oster 
   2706  1.213  christos static RF_AutoConfig_t *
   2707  1.213  christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2708  1.276       mrg     const char *cname, RF_SectorCount_t size, uint64_t numsecs,
   2709  1.276       mrg     unsigned secsize)
   2710  1.213  christos {
   2711  1.213  christos 	int good_one = 0;
   2712  1.213  christos 	RF_ComponentLabel_t *clabel;
   2713  1.213  christos 	RF_AutoConfig_t *ac;
   2714  1.213  christos 
   2715  1.379       chs 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_WAITOK);
   2716  1.213  christos 
   2717  1.276       mrg 	if (!raidread_component_label(secsize, dev, vp, clabel)) {
   2718  1.276       mrg 		/* Got the label.  Does it look reasonable? */
   2719  1.284       mrg 		if (rf_reasonable_label(clabel, numsecs) &&
   2720  1.282     enami 		    (rf_component_label_partitionsize(clabel) <= size)) {
   2721  1.224     oster #ifdef DEBUG
   2722  1.276       mrg 			printf("Component on: %s: %llu\n",
   2723  1.213  christos 				cname, (unsigned long long)size);
   2724  1.276       mrg 			rf_print_component_label(clabel);
   2725  1.213  christos #endif
   2726  1.276       mrg 			/* if it's reasonable, add it, else ignore it. */
   2727  1.276       mrg 			ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2728  1.379       chs 				M_WAITOK);
   2729  1.276       mrg 			strlcpy(ac->devname, cname, sizeof(ac->devname));
   2730  1.276       mrg 			ac->dev = dev;
   2731  1.276       mrg 			ac->vp = vp;
   2732  1.276       mrg 			ac->clabel = clabel;
   2733  1.276       mrg 			ac->next = ac_list;
   2734  1.276       mrg 			ac_list = ac;
   2735  1.276       mrg 			good_one = 1;
   2736  1.276       mrg 		}
   2737  1.213  christos 	}
   2738  1.213  christos 	if (!good_one) {
   2739  1.213  christos 		/* cleanup */
   2740  1.213  christos 		free(clabel, M_RAIDFRAME);
   2741  1.213  christos 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2742  1.238     pooka 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2743  1.213  christos 		vput(vp);
   2744  1.213  christos 	}
   2745  1.213  christos 	return ac_list;
   2746  1.213  christos }
   2747  1.213  christos 
   2748   1.48     oster RF_AutoConfig_t *
   2749  1.259    cegger rf_find_raid_components(void)
   2750   1.48     oster {
   2751   1.48     oster 	struct vnode *vp;
   2752   1.48     oster 	struct disklabel label;
   2753  1.261    dyoung 	device_t dv;
   2754  1.268    dyoung 	deviter_t di;
   2755   1.48     oster 	dev_t dev;
   2756  1.296    buhrow 	int bmajor, bminor, wedge, rf_part_found;
   2757   1.48     oster 	int error;
   2758   1.48     oster 	int i;
   2759   1.48     oster 	RF_AutoConfig_t *ac_list;
   2760  1.276       mrg 	uint64_t numsecs;
   2761  1.276       mrg 	unsigned secsize;
   2762  1.335   mlelstv 	int dowedges;
   2763   1.48     oster 
   2764   1.48     oster 	/* initialize the AutoConfig list */
   2765   1.48     oster 	ac_list = NULL;
   2766   1.48     oster 
   2767  1.335   mlelstv 	/*
   2768  1.335   mlelstv 	 * we begin by trolling through *all* the devices on the system *twice*
   2769  1.335   mlelstv 	 * first we scan for wedges, second for other devices. This avoids
   2770  1.335   mlelstv 	 * using a raw partition instead of a wedge that covers the whole disk
   2771  1.335   mlelstv 	 */
   2772   1.48     oster 
   2773  1.335   mlelstv 	for (dowedges=1; dowedges>=0; --dowedges) {
   2774  1.335   mlelstv 		for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
   2775  1.335   mlelstv 		     dv = deviter_next(&di)) {
   2776   1.48     oster 
   2777  1.335   mlelstv 			/* we are only interested in disks... */
   2778  1.335   mlelstv 			if (device_class(dv) != DV_DISK)
   2779  1.335   mlelstv 				continue;
   2780   1.48     oster 
   2781  1.335   mlelstv 			/* we don't care about floppies... */
   2782  1.335   mlelstv 			if (device_is_a(dv, "fd")) {
   2783  1.335   mlelstv 				continue;
   2784  1.335   mlelstv 			}
   2785  1.129     oster 
   2786  1.335   mlelstv 			/* we don't care about CD's... */
   2787  1.335   mlelstv 			if (device_is_a(dv, "cd")) {
   2788  1.335   mlelstv 				continue;
   2789  1.335   mlelstv 			}
   2790  1.129     oster 
   2791  1.335   mlelstv 			/* we don't care about md's... */
   2792  1.335   mlelstv 			if (device_is_a(dv, "md")) {
   2793  1.335   mlelstv 				continue;
   2794  1.335   mlelstv 			}
   2795  1.248     oster 
   2796  1.335   mlelstv 			/* hdfd is the Atari/Hades floppy driver */
   2797  1.335   mlelstv 			if (device_is_a(dv, "hdfd")) {
   2798  1.335   mlelstv 				continue;
   2799  1.335   mlelstv 			}
   2800  1.206   thorpej 
   2801  1.335   mlelstv 			/* fdisa is the Atari/Milan floppy driver */
   2802  1.335   mlelstv 			if (device_is_a(dv, "fdisa")) {
   2803  1.335   mlelstv 				continue;
   2804  1.335   mlelstv 			}
   2805  1.186     perry 
   2806  1.335   mlelstv 			/* are we in the wedges pass ? */
   2807  1.335   mlelstv 			wedge = device_is_a(dv, "dk");
   2808  1.335   mlelstv 			if (wedge != dowedges) {
   2809  1.335   mlelstv 				continue;
   2810  1.335   mlelstv 			}
   2811   1.48     oster 
   2812  1.335   mlelstv 			/* need to find the device_name_to_block_device_major stuff */
   2813  1.335   mlelstv 			bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
   2814  1.296    buhrow 
   2815  1.335   mlelstv 			rf_part_found = 0; /*No raid partition as yet*/
   2816   1.48     oster 
   2817  1.335   mlelstv 			/* get a vnode for the raw partition of this disk */
   2818  1.335   mlelstv 			bminor = minor(device_unit(dv));
   2819  1.335   mlelstv 			dev = wedge ? makedev(bmajor, bminor) :
   2820  1.335   mlelstv 			    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2821  1.335   mlelstv 			if (bdevvp(dev, &vp))
   2822  1.335   mlelstv 				panic("RAID can't alloc vnode");
   2823   1.48     oster 
   2824  1.375   hannken 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2825  1.335   mlelstv 			error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   2826   1.48     oster 
   2827  1.335   mlelstv 			if (error) {
   2828  1.335   mlelstv 				/* "Who cares."  Continue looking
   2829  1.335   mlelstv 				   for something that exists*/
   2830  1.335   mlelstv 				vput(vp);
   2831  1.335   mlelstv 				continue;
   2832  1.335   mlelstv 			}
   2833   1.48     oster 
   2834  1.335   mlelstv 			error = getdisksize(vp, &numsecs, &secsize);
   2835  1.213  christos 			if (error) {
   2836  1.339   mlelstv 				/*
   2837  1.339   mlelstv 				 * Pseudo devices like vnd and cgd can be
   2838  1.339   mlelstv 				 * opened but may still need some configuration.
   2839  1.339   mlelstv 				 * Ignore these quietly.
   2840  1.339   mlelstv 				 */
   2841  1.339   mlelstv 				if (error != ENXIO)
   2842  1.339   mlelstv 					printf("RAIDframe: can't get disk size"
   2843  1.339   mlelstv 					    " for dev %s (%d)\n",
   2844  1.339   mlelstv 					    device_xname(dv), error);
   2845  1.241     oster 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2846  1.241     oster 				vput(vp);
   2847  1.213  christos 				continue;
   2848  1.213  christos 			}
   2849  1.335   mlelstv 			if (wedge) {
   2850  1.335   mlelstv 				struct dkwedge_info dkw;
   2851  1.335   mlelstv 				error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2852  1.335   mlelstv 				    NOCRED);
   2853  1.335   mlelstv 				if (error) {
   2854  1.335   mlelstv 					printf("RAIDframe: can't get wedge info for "
   2855  1.335   mlelstv 					    "dev %s (%d)\n", device_xname(dv), error);
   2856  1.335   mlelstv 					VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2857  1.335   mlelstv 					vput(vp);
   2858  1.335   mlelstv 					continue;
   2859  1.335   mlelstv 				}
   2860  1.213  christos 
   2861  1.335   mlelstv 				if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   2862  1.335   mlelstv 					VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2863  1.335   mlelstv 					vput(vp);
   2864  1.335   mlelstv 					continue;
   2865  1.335   mlelstv 				}
   2866  1.335   mlelstv 
   2867  1.375   hannken 				VOP_UNLOCK(vp);
   2868  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp,
   2869  1.335   mlelstv 				    device_xname(dv), dkw.dkw_size, numsecs, secsize);
   2870  1.335   mlelstv 				rf_part_found = 1; /*There is a raid component on this disk*/
   2871  1.228  christos 				continue;
   2872  1.241     oster 			}
   2873  1.213  christos 
   2874  1.335   mlelstv 			/* Ok, the disk exists.  Go get the disklabel. */
   2875  1.335   mlelstv 			error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   2876  1.335   mlelstv 			if (error) {
   2877  1.335   mlelstv 				/*
   2878  1.335   mlelstv 				 * XXX can't happen - open() would
   2879  1.335   mlelstv 				 * have errored out (or faked up one)
   2880  1.335   mlelstv 				 */
   2881  1.335   mlelstv 				if (error != ENOTTY)
   2882  1.335   mlelstv 					printf("RAIDframe: can't get label for dev "
   2883  1.335   mlelstv 					    "%s (%d)\n", device_xname(dv), error);
   2884  1.335   mlelstv 			}
   2885   1.48     oster 
   2886  1.335   mlelstv 			/* don't need this any more.  We'll allocate it again
   2887  1.335   mlelstv 			   a little later if we really do... */
   2888  1.335   mlelstv 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2889  1.335   mlelstv 			vput(vp);
   2890   1.48     oster 
   2891  1.335   mlelstv 			if (error)
   2892   1.48     oster 				continue;
   2893   1.48     oster 
   2894  1.335   mlelstv 			rf_part_found = 0; /*No raid partitions yet*/
   2895  1.335   mlelstv 			for (i = 0; i < label.d_npartitions; i++) {
   2896  1.335   mlelstv 				char cname[sizeof(ac_list->devname)];
   2897  1.335   mlelstv 
   2898  1.335   mlelstv 				/* We only support partitions marked as RAID */
   2899  1.335   mlelstv 				if (label.d_partitions[i].p_fstype != FS_RAID)
   2900  1.335   mlelstv 					continue;
   2901  1.335   mlelstv 
   2902  1.335   mlelstv 				dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2903  1.335   mlelstv 				if (bdevvp(dev, &vp))
   2904  1.335   mlelstv 					panic("RAID can't alloc vnode");
   2905  1.335   mlelstv 
   2906  1.375   hannken 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2907  1.335   mlelstv 				error = VOP_OPEN(vp, FREAD, NOCRED);
   2908  1.335   mlelstv 				if (error) {
   2909  1.335   mlelstv 					/* Whatever... */
   2910  1.335   mlelstv 					vput(vp);
   2911  1.335   mlelstv 					continue;
   2912  1.335   mlelstv 				}
   2913  1.375   hannken 				VOP_UNLOCK(vp);
   2914  1.335   mlelstv 				snprintf(cname, sizeof(cname), "%s%c",
   2915  1.335   mlelstv 				    device_xname(dv), 'a' + i);
   2916  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp, cname,
   2917  1.335   mlelstv 					label.d_partitions[i].p_size, numsecs, secsize);
   2918  1.335   mlelstv 				rf_part_found = 1; /*There is at least one raid partition on this disk*/
   2919   1.48     oster 			}
   2920  1.296    buhrow 
   2921  1.335   mlelstv 			/*
   2922  1.335   mlelstv 			 *If there is no raid component on this disk, either in a
   2923  1.335   mlelstv 			 *disklabel or inside a wedge, check the raw partition as well,
   2924  1.335   mlelstv 			 *as it is possible to configure raid components on raw disk
   2925  1.335   mlelstv 			 *devices.
   2926  1.335   mlelstv 			 */
   2927  1.296    buhrow 
   2928  1.335   mlelstv 			if (!rf_part_found) {
   2929  1.335   mlelstv 				char cname[sizeof(ac_list->devname)];
   2930  1.296    buhrow 
   2931  1.335   mlelstv 				dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
   2932  1.335   mlelstv 				if (bdevvp(dev, &vp))
   2933  1.335   mlelstv 					panic("RAID can't alloc vnode");
   2934  1.335   mlelstv 
   2935  1.375   hannken 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2936  1.375   hannken 
   2937  1.335   mlelstv 				error = VOP_OPEN(vp, FREAD, NOCRED);
   2938  1.335   mlelstv 				if (error) {
   2939  1.335   mlelstv 					/* Whatever... */
   2940  1.335   mlelstv 					vput(vp);
   2941  1.335   mlelstv 					continue;
   2942  1.335   mlelstv 				}
   2943  1.375   hannken 				VOP_UNLOCK(vp);
   2944  1.335   mlelstv 				snprintf(cname, sizeof(cname), "%s%c",
   2945  1.335   mlelstv 				    device_xname(dv), 'a' + RAW_PART);
   2946  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp, cname,
   2947  1.335   mlelstv 					label.d_partitions[RAW_PART].p_size, numsecs, secsize);
   2948  1.296    buhrow 			}
   2949   1.48     oster 		}
   2950  1.335   mlelstv 		deviter_release(&di);
   2951   1.48     oster 	}
   2952  1.213  christos 	return ac_list;
   2953   1.48     oster }
   2954  1.186     perry 
   2955  1.213  christos 
   2956  1.292     oster int
   2957  1.284       mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
   2958   1.48     oster {
   2959  1.186     perry 
   2960   1.48     oster 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2961   1.48     oster 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2962   1.48     oster 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2963   1.48     oster 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2964  1.186     perry 	    clabel->row >=0 &&
   2965  1.186     perry 	    clabel->column >= 0 &&
   2966   1.48     oster 	    clabel->num_rows > 0 &&
   2967   1.48     oster 	    clabel->num_columns > 0 &&
   2968  1.186     perry 	    clabel->row < clabel->num_rows &&
   2969   1.48     oster 	    clabel->column < clabel->num_columns &&
   2970   1.48     oster 	    clabel->blockSize > 0 &&
   2971  1.282     enami 	    /*
   2972  1.282     enami 	     * numBlocksHi may contain garbage, but it is ok since
   2973  1.282     enami 	     * the type is unsigned.  If it is really garbage,
   2974  1.282     enami 	     * rf_fix_old_label_size() will fix it.
   2975  1.282     enami 	     */
   2976  1.282     enami 	    rf_component_label_numblocks(clabel) > 0) {
   2977  1.284       mrg 		/*
   2978  1.284       mrg 		 * label looks reasonable enough...
   2979  1.284       mrg 		 * let's make sure it has no old garbage.
   2980  1.284       mrg 		 */
   2981  1.292     oster 		if (numsecs)
   2982  1.292     oster 			rf_fix_old_label_size(clabel, numsecs);
   2983   1.48     oster 		return(1);
   2984   1.48     oster 	}
   2985   1.48     oster 	return(0);
   2986   1.48     oster }
   2987   1.48     oster 
   2988   1.48     oster 
   2989  1.278       mrg /*
   2990  1.278       mrg  * For reasons yet unknown, some old component labels have garbage in
   2991  1.278       mrg  * the newer numBlocksHi region, and this causes lossage.  Since those
   2992  1.278       mrg  * disks will also have numsecs set to less than 32 bits of sectors,
   2993  1.299     oster  * we can determine when this corruption has occurred, and fix it.
   2994  1.284       mrg  *
   2995  1.284       mrg  * The exact same problem, with the same unknown reason, happens to
   2996  1.284       mrg  * the partitionSizeHi member as well.
   2997  1.278       mrg  */
   2998  1.278       mrg static void
   2999  1.278       mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
   3000  1.278       mrg {
   3001  1.278       mrg 
   3002  1.284       mrg 	if (numsecs < ((uint64_t)1 << 32)) {
   3003  1.284       mrg 		if (clabel->numBlocksHi) {
   3004  1.284       mrg 			printf("WARNING: total sectors < 32 bits, yet "
   3005  1.284       mrg 			       "numBlocksHi set\n"
   3006  1.284       mrg 			       "WARNING: resetting numBlocksHi to zero.\n");
   3007  1.284       mrg 			clabel->numBlocksHi = 0;
   3008  1.284       mrg 		}
   3009  1.284       mrg 
   3010  1.284       mrg 		if (clabel->partitionSizeHi) {
   3011  1.284       mrg 			printf("WARNING: total sectors < 32 bits, yet "
   3012  1.284       mrg 			       "partitionSizeHi set\n"
   3013  1.284       mrg 			       "WARNING: resetting partitionSizeHi to zero.\n");
   3014  1.284       mrg 			clabel->partitionSizeHi = 0;
   3015  1.284       mrg 		}
   3016  1.278       mrg 	}
   3017  1.278       mrg }
   3018  1.278       mrg 
   3019  1.278       mrg 
   3020  1.224     oster #ifdef DEBUG
   3021   1.48     oster void
   3022  1.169     oster rf_print_component_label(RF_ComponentLabel_t *clabel)
   3023   1.48     oster {
   3024  1.282     enami 	uint64_t numBlocks;
   3025  1.308  christos 	static const char *rp[] = {
   3026  1.308  christos 	    "No", "Force", "Soft", "*invalid*"
   3027  1.308  christos 	};
   3028  1.308  christos 
   3029  1.275       mrg 
   3030  1.282     enami 	numBlocks = rf_component_label_numblocks(clabel);
   3031  1.275       mrg 
   3032   1.48     oster 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3033  1.186     perry 	       clabel->row, clabel->column,
   3034   1.48     oster 	       clabel->num_rows, clabel->num_columns);
   3035   1.48     oster 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3036   1.48     oster 	       clabel->version, clabel->serial_number,
   3037   1.48     oster 	       clabel->mod_counter);
   3038   1.48     oster 	printf("   Clean: %s Status: %d\n",
   3039  1.271    dyoung 	       clabel->clean ? "Yes" : "No", clabel->status);
   3040   1.48     oster 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3041   1.48     oster 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3042  1.275       mrg 	printf("   RAID Level: %c  blocksize: %d numBlocks: %"PRIu64"\n",
   3043  1.275       mrg 	       (char) clabel->parityConfig, clabel->blockSize, numBlocks);
   3044  1.271    dyoung 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
   3045  1.308  christos 	printf("   Root partition: %s\n", rp[clabel->root_partition & 3]);
   3046  1.271    dyoung 	printf("   Last configured as: raid%d\n", clabel->last_unit);
   3047   1.51     oster #if 0
   3048   1.51     oster 	   printf("   Config order: %d\n", clabel->config_order);
   3049   1.51     oster #endif
   3050  1.186     perry 
   3051   1.48     oster }
   3052  1.133     oster #endif
   3053   1.48     oster 
   3054   1.48     oster RF_ConfigSet_t *
   3055  1.169     oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3056   1.48     oster {
   3057   1.48     oster 	RF_AutoConfig_t *ac;
   3058   1.48     oster 	RF_ConfigSet_t *config_sets;
   3059   1.48     oster 	RF_ConfigSet_t *cset;
   3060   1.48     oster 	RF_AutoConfig_t *ac_next;
   3061   1.48     oster 
   3062   1.48     oster 
   3063   1.48     oster 	config_sets = NULL;
   3064   1.48     oster 
   3065   1.48     oster 	/* Go through the AutoConfig list, and figure out which components
   3066   1.48     oster 	   belong to what sets.  */
   3067   1.48     oster 	ac = ac_list;
   3068   1.48     oster 	while(ac!=NULL) {
   3069   1.48     oster 		/* we're going to putz with ac->next, so save it here
   3070   1.48     oster 		   for use at the end of the loop */
   3071   1.48     oster 		ac_next = ac->next;
   3072   1.48     oster 
   3073   1.48     oster 		if (config_sets == NULL) {
   3074   1.48     oster 			/* will need at least this one... */
   3075  1.379       chs 			config_sets = malloc(sizeof(RF_ConfigSet_t),
   3076  1.379       chs 				       M_RAIDFRAME, M_WAITOK);
   3077   1.48     oster 			/* this one is easy :) */
   3078   1.48     oster 			config_sets->ac = ac;
   3079   1.48     oster 			config_sets->next = NULL;
   3080   1.51     oster 			config_sets->rootable = 0;
   3081   1.48     oster 			ac->next = NULL;
   3082   1.48     oster 		} else {
   3083   1.48     oster 			/* which set does this component fit into? */
   3084   1.48     oster 			cset = config_sets;
   3085   1.48     oster 			while(cset!=NULL) {
   3086   1.49     oster 				if (rf_does_it_fit(cset, ac)) {
   3087   1.86     oster 					/* looks like it matches... */
   3088   1.86     oster 					ac->next = cset->ac;
   3089   1.86     oster 					cset->ac = ac;
   3090   1.48     oster 					break;
   3091   1.48     oster 				}
   3092   1.48     oster 				cset = cset->next;
   3093   1.48     oster 			}
   3094   1.48     oster 			if (cset==NULL) {
   3095   1.48     oster 				/* didn't find a match above... new set..*/
   3096  1.379       chs 				cset = malloc(sizeof(RF_ConfigSet_t),
   3097  1.379       chs 					       M_RAIDFRAME, M_WAITOK);
   3098   1.48     oster 				cset->ac = ac;
   3099   1.48     oster 				ac->next = NULL;
   3100   1.48     oster 				cset->next = config_sets;
   3101   1.51     oster 				cset->rootable = 0;
   3102   1.48     oster 				config_sets = cset;
   3103   1.48     oster 			}
   3104   1.48     oster 		}
   3105   1.48     oster 		ac = ac_next;
   3106   1.48     oster 	}
   3107   1.48     oster 
   3108   1.48     oster 
   3109   1.48     oster 	return(config_sets);
   3110   1.48     oster }
   3111   1.48     oster 
   3112   1.48     oster static int
   3113  1.169     oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3114   1.48     oster {
   3115   1.48     oster 	RF_ComponentLabel_t *clabel1, *clabel2;
   3116   1.48     oster 
   3117   1.48     oster 	/* If this one matches the *first* one in the set, that's good
   3118   1.48     oster 	   enough, since the other members of the set would have been
   3119   1.48     oster 	   through here too... */
   3120   1.60     oster 	/* note that we are not checking partitionSize here..
   3121   1.60     oster 
   3122   1.60     oster 	   Note that we are also not checking the mod_counters here.
   3123  1.299     oster 	   If everything else matches except the mod_counter, that's
   3124   1.60     oster 	   good enough for this test.  We will deal with the mod_counters
   3125  1.186     perry 	   a little later in the autoconfiguration process.
   3126   1.60     oster 
   3127   1.60     oster 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3128   1.81     oster 
   3129   1.81     oster 	   The reason we don't check for this is that failed disks
   3130   1.81     oster 	   will have lower modification counts.  If those disks are
   3131   1.81     oster 	   not added to the set they used to belong to, then they will
   3132   1.81     oster 	   form their own set, which may result in 2 different sets,
   3133   1.81     oster 	   for example, competing to be configured at raid0, and
   3134   1.81     oster 	   perhaps competing to be the root filesystem set.  If the
   3135   1.81     oster 	   wrong ones get configured, or both attempt to become /,
   3136   1.81     oster 	   weird behaviour and or serious lossage will occur.  Thus we
   3137   1.81     oster 	   need to bring them into the fold here, and kick them out at
   3138   1.81     oster 	   a later point.
   3139   1.60     oster 
   3140   1.60     oster 	*/
   3141   1.48     oster 
   3142   1.48     oster 	clabel1 = cset->ac->clabel;
   3143   1.48     oster 	clabel2 = ac->clabel;
   3144   1.48     oster 	if ((clabel1->version == clabel2->version) &&
   3145   1.48     oster 	    (clabel1->serial_number == clabel2->serial_number) &&
   3146   1.48     oster 	    (clabel1->num_rows == clabel2->num_rows) &&
   3147   1.48     oster 	    (clabel1->num_columns == clabel2->num_columns) &&
   3148   1.48     oster 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3149   1.48     oster 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3150   1.48     oster 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3151   1.48     oster 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3152   1.48     oster 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3153   1.48     oster 	    (clabel1->blockSize == clabel2->blockSize) &&
   3154  1.282     enami 	    rf_component_label_numblocks(clabel1) ==
   3155  1.282     enami 	    rf_component_label_numblocks(clabel2) &&
   3156   1.48     oster 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3157   1.48     oster 	    (clabel1->root_partition == clabel2->root_partition) &&
   3158   1.48     oster 	    (clabel1->last_unit == clabel2->last_unit) &&
   3159   1.48     oster 	    (clabel1->config_order == clabel2->config_order)) {
   3160   1.48     oster 		/* if it get's here, it almost *has* to be a match */
   3161   1.48     oster 	} else {
   3162  1.186     perry 		/* it's not consistent with somebody in the set..
   3163   1.48     oster 		   punt */
   3164   1.48     oster 		return(0);
   3165   1.48     oster 	}
   3166   1.48     oster 	/* all was fine.. it must fit... */
   3167   1.48     oster 	return(1);
   3168   1.48     oster }
   3169   1.48     oster 
   3170   1.48     oster int
   3171  1.169     oster rf_have_enough_components(RF_ConfigSet_t *cset)
   3172   1.48     oster {
   3173   1.51     oster 	RF_AutoConfig_t *ac;
   3174   1.51     oster 	RF_AutoConfig_t *auto_config;
   3175   1.51     oster 	RF_ComponentLabel_t *clabel;
   3176  1.166     oster 	int c;
   3177   1.51     oster 	int num_cols;
   3178   1.51     oster 	int num_missing;
   3179   1.86     oster 	int mod_counter;
   3180   1.87     oster 	int mod_counter_found;
   3181   1.88     oster 	int even_pair_failed;
   3182   1.88     oster 	char parity_type;
   3183  1.186     perry 
   3184   1.51     oster 
   3185   1.48     oster 	/* check to see that we have enough 'live' components
   3186   1.48     oster 	   of this set.  If so, we can configure it if necessary */
   3187   1.48     oster 
   3188   1.51     oster 	num_cols = cset->ac->clabel->num_columns;
   3189   1.88     oster 	parity_type = cset->ac->clabel->parityConfig;
   3190   1.51     oster 
   3191   1.51     oster 	/* XXX Check for duplicate components!?!?!? */
   3192   1.51     oster 
   3193   1.86     oster 	/* Determine what the mod_counter is supposed to be for this set. */
   3194   1.86     oster 
   3195   1.87     oster 	mod_counter_found = 0;
   3196  1.101     oster 	mod_counter = 0;
   3197   1.86     oster 	ac = cset->ac;
   3198   1.86     oster 	while(ac!=NULL) {
   3199   1.87     oster 		if (mod_counter_found==0) {
   3200   1.86     oster 			mod_counter = ac->clabel->mod_counter;
   3201   1.87     oster 			mod_counter_found = 1;
   3202   1.87     oster 		} else {
   3203   1.87     oster 			if (ac->clabel->mod_counter > mod_counter) {
   3204   1.87     oster 				mod_counter = ac->clabel->mod_counter;
   3205   1.87     oster 			}
   3206   1.86     oster 		}
   3207   1.86     oster 		ac = ac->next;
   3208   1.86     oster 	}
   3209   1.86     oster 
   3210   1.51     oster 	num_missing = 0;
   3211   1.51     oster 	auto_config = cset->ac;
   3212   1.51     oster 
   3213  1.166     oster 	even_pair_failed = 0;
   3214  1.166     oster 	for(c=0; c<num_cols; c++) {
   3215  1.166     oster 		ac = auto_config;
   3216  1.166     oster 		while(ac!=NULL) {
   3217  1.186     perry 			if ((ac->clabel->column == c) &&
   3218  1.166     oster 			    (ac->clabel->mod_counter == mod_counter)) {
   3219  1.166     oster 				/* it's this one... */
   3220  1.224     oster #ifdef DEBUG
   3221  1.166     oster 				printf("Found: %s at %d\n",
   3222  1.166     oster 				       ac->devname,c);
   3223   1.51     oster #endif
   3224  1.166     oster 				break;
   3225   1.51     oster 			}
   3226  1.166     oster 			ac=ac->next;
   3227  1.166     oster 		}
   3228  1.166     oster 		if (ac==NULL) {
   3229   1.51     oster 				/* Didn't find one here! */
   3230   1.88     oster 				/* special case for RAID 1, especially
   3231   1.88     oster 				   where there are more than 2
   3232   1.88     oster 				   components (where RAIDframe treats
   3233   1.88     oster 				   things a little differently :( ) */
   3234  1.166     oster 			if (parity_type == '1') {
   3235  1.166     oster 				if (c%2 == 0) { /* even component */
   3236  1.166     oster 					even_pair_failed = 1;
   3237  1.166     oster 				} else { /* odd component.  If
   3238  1.166     oster 					    we're failed, and
   3239  1.166     oster 					    so is the even
   3240  1.166     oster 					    component, it's
   3241  1.166     oster 					    "Good Night, Charlie" */
   3242  1.166     oster 					if (even_pair_failed == 1) {
   3243  1.166     oster 						return(0);
   3244   1.88     oster 					}
   3245   1.88     oster 				}
   3246  1.166     oster 			} else {
   3247  1.166     oster 				/* normal accounting */
   3248  1.166     oster 				num_missing++;
   3249   1.88     oster 			}
   3250  1.166     oster 		}
   3251  1.166     oster 		if ((parity_type == '1') && (c%2 == 1)) {
   3252   1.88     oster 				/* Just did an even component, and we didn't
   3253  1.186     perry 				   bail.. reset the even_pair_failed flag,
   3254   1.88     oster 				   and go on to the next component.... */
   3255  1.166     oster 			even_pair_failed = 0;
   3256   1.51     oster 		}
   3257   1.51     oster 	}
   3258   1.51     oster 
   3259   1.51     oster 	clabel = cset->ac->clabel;
   3260   1.51     oster 
   3261   1.51     oster 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3262   1.51     oster 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3263   1.51     oster 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3264   1.51     oster 		/* XXX this needs to be made *much* more general */
   3265   1.51     oster 		/* Too many failures */
   3266   1.51     oster 		return(0);
   3267   1.51     oster 	}
   3268   1.51     oster 	/* otherwise, all is well, and we've got enough to take a kick
   3269   1.51     oster 	   at autoconfiguring this set */
   3270   1.51     oster 	return(1);
   3271   1.48     oster }
   3272   1.48     oster 
   3273   1.48     oster void
   3274  1.169     oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3275  1.222  christos 			RF_Raid_t *raidPtr)
   3276   1.48     oster {
   3277   1.48     oster 	RF_ComponentLabel_t *clabel;
   3278   1.77     oster 	int i;
   3279   1.48     oster 
   3280   1.48     oster 	clabel = ac->clabel;
   3281   1.48     oster 
   3282   1.48     oster 	/* 1. Fill in the common stuff */
   3283   1.48     oster 	config->numCol = clabel->num_columns;
   3284   1.48     oster 	config->numSpare = 0; /* XXX should this be set here? */
   3285   1.48     oster 	config->sectPerSU = clabel->sectPerSU;
   3286   1.48     oster 	config->SUsPerPU = clabel->SUsPerPU;
   3287   1.48     oster 	config->SUsPerRU = clabel->SUsPerRU;
   3288   1.48     oster 	config->parityConfig = clabel->parityConfig;
   3289   1.48     oster 	/* XXX... */
   3290   1.48     oster 	strcpy(config->diskQueueType,"fifo");
   3291   1.48     oster 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3292   1.48     oster 	config->layoutSpecificSize = 0; /* XXX ?? */
   3293   1.48     oster 
   3294   1.48     oster 	while(ac!=NULL) {
   3295   1.48     oster 		/* row/col values will be in range due to the checks
   3296   1.48     oster 		   in reasonable_label() */
   3297  1.166     oster 		strcpy(config->devnames[0][ac->clabel->column],
   3298   1.48     oster 		       ac->devname);
   3299   1.48     oster 		ac = ac->next;
   3300   1.48     oster 	}
   3301   1.48     oster 
   3302   1.77     oster 	for(i=0;i<RF_MAXDBGV;i++) {
   3303  1.163      fvdl 		config->debugVars[i][0] = 0;
   3304   1.77     oster 	}
   3305   1.48     oster }
   3306   1.48     oster 
   3307   1.48     oster int
   3308  1.169     oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3309   1.48     oster {
   3310  1.269       jld 	RF_ComponentLabel_t *clabel;
   3311  1.166     oster 	int column;
   3312  1.148     oster 	int sparecol;
   3313   1.48     oster 
   3314   1.54     oster 	raidPtr->autoconfigure = new_value;
   3315  1.166     oster 
   3316  1.166     oster 	for(column=0; column<raidPtr->numCol; column++) {
   3317  1.166     oster 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3318  1.269       jld 			clabel = raidget_component_label(raidPtr, column);
   3319  1.269       jld 			clabel->autoconfigure = new_value;
   3320  1.269       jld 			raidflush_component_label(raidPtr, column);
   3321   1.48     oster 		}
   3322   1.48     oster 	}
   3323  1.148     oster 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3324  1.148     oster 		sparecol = raidPtr->numCol + column;
   3325  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3326  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   3327  1.269       jld 			clabel->autoconfigure = new_value;
   3328  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   3329  1.148     oster 		}
   3330  1.148     oster 	}
   3331   1.48     oster 	return(new_value);
   3332   1.48     oster }
   3333   1.48     oster 
   3334   1.48     oster int
   3335  1.169     oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3336   1.48     oster {
   3337  1.269       jld 	RF_ComponentLabel_t *clabel;
   3338  1.166     oster 	int column;
   3339  1.148     oster 	int sparecol;
   3340   1.48     oster 
   3341   1.54     oster 	raidPtr->root_partition = new_value;
   3342  1.166     oster 	for(column=0; column<raidPtr->numCol; column++) {
   3343  1.166     oster 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3344  1.269       jld 			clabel = raidget_component_label(raidPtr, column);
   3345  1.269       jld 			clabel->root_partition = new_value;
   3346  1.269       jld 			raidflush_component_label(raidPtr, column);
   3347  1.148     oster 		}
   3348  1.148     oster 	}
   3349  1.148     oster 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3350  1.148     oster 		sparecol = raidPtr->numCol + column;
   3351  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3352  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   3353  1.269       jld 			clabel->root_partition = new_value;
   3354  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   3355   1.48     oster 		}
   3356   1.48     oster 	}
   3357   1.48     oster 	return(new_value);
   3358   1.48     oster }
   3359   1.48     oster 
   3360   1.48     oster void
   3361  1.169     oster rf_release_all_vps(RF_ConfigSet_t *cset)
   3362   1.48     oster {
   3363   1.48     oster 	RF_AutoConfig_t *ac;
   3364  1.186     perry 
   3365   1.48     oster 	ac = cset->ac;
   3366   1.48     oster 	while(ac!=NULL) {
   3367   1.48     oster 		/* Close the vp, and give it back */
   3368   1.48     oster 		if (ac->vp) {
   3369   1.96     oster 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3370  1.335   mlelstv 			VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
   3371   1.48     oster 			vput(ac->vp);
   3372   1.86     oster 			ac->vp = NULL;
   3373   1.48     oster 		}
   3374   1.48     oster 		ac = ac->next;
   3375   1.48     oster 	}
   3376   1.48     oster }
   3377   1.48     oster 
   3378   1.48     oster 
   3379   1.48     oster void
   3380  1.169     oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3381   1.48     oster {
   3382   1.48     oster 	RF_AutoConfig_t *ac;
   3383   1.48     oster 	RF_AutoConfig_t *next_ac;
   3384  1.186     perry 
   3385   1.48     oster 	ac = cset->ac;
   3386   1.48     oster 	while(ac!=NULL) {
   3387   1.48     oster 		next_ac = ac->next;
   3388   1.48     oster 		/* nuke the label */
   3389   1.48     oster 		free(ac->clabel, M_RAIDFRAME);
   3390   1.48     oster 		/* cleanup the config structure */
   3391   1.48     oster 		free(ac, M_RAIDFRAME);
   3392   1.48     oster 		/* "next.." */
   3393   1.48     oster 		ac = next_ac;
   3394   1.48     oster 	}
   3395   1.48     oster 	/* and, finally, nuke the config set */
   3396   1.48     oster 	free(cset, M_RAIDFRAME);
   3397   1.48     oster }
   3398   1.48     oster 
   3399   1.48     oster 
   3400   1.48     oster void
   3401  1.169     oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3402   1.48     oster {
   3403   1.48     oster 	/* current version number */
   3404  1.186     perry 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3405   1.57     oster 	clabel->serial_number = raidPtr->serial_number;
   3406   1.48     oster 	clabel->mod_counter = raidPtr->mod_counter;
   3407  1.269       jld 
   3408  1.166     oster 	clabel->num_rows = 1;
   3409   1.48     oster 	clabel->num_columns = raidPtr->numCol;
   3410   1.48     oster 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3411   1.48     oster 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3412  1.186     perry 
   3413   1.48     oster 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3414   1.48     oster 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3415   1.48     oster 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3416   1.54     oster 
   3417   1.54     oster 	clabel->blockSize = raidPtr->bytesPerSector;
   3418  1.282     enami 	rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
   3419   1.54     oster 
   3420   1.48     oster 	/* XXX not portable */
   3421   1.48     oster 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3422   1.54     oster 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3423   1.54     oster 	clabel->autoconfigure = raidPtr->autoconfigure;
   3424   1.54     oster 	clabel->root_partition = raidPtr->root_partition;
   3425   1.48     oster 	clabel->last_unit = raidPtr->raidid;
   3426   1.54     oster 	clabel->config_order = raidPtr->config_order;
   3427  1.269       jld 
   3428  1.269       jld #ifndef RF_NO_PARITY_MAP
   3429  1.269       jld 	rf_paritymap_init_label(raidPtr->parity_map, clabel);
   3430  1.269       jld #endif
   3431   1.51     oster }
   3432   1.51     oster 
   3433  1.300  christos struct raid_softc *
   3434  1.300  christos rf_auto_config_set(RF_ConfigSet_t *cset)
   3435   1.51     oster {
   3436   1.51     oster 	RF_Raid_t *raidPtr;
   3437   1.51     oster 	RF_Config_t *config;
   3438   1.51     oster 	int raidID;
   3439  1.300  christos 	struct raid_softc *sc;
   3440   1.51     oster 
   3441  1.224     oster #ifdef DEBUG
   3442   1.72     oster 	printf("RAID autoconfigure\n");
   3443  1.127     oster #endif
   3444   1.51     oster 
   3445   1.51     oster 	/* 1. Create a config structure */
   3446  1.379       chs 	config = malloc(sizeof(*config), M_RAIDFRAME, M_WAITOK|M_ZERO);
   3447   1.77     oster 
   3448  1.186     perry 	/*
   3449  1.186     perry 	   2. Figure out what RAID ID this one is supposed to live at
   3450   1.51     oster 	   See if we can get the same RAID dev that it was configured
   3451  1.186     perry 	   on last time..
   3452   1.51     oster 	*/
   3453   1.51     oster 
   3454   1.51     oster 	raidID = cset->ac->clabel->last_unit;
   3455  1.327  pgoyette 	for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
   3456  1.327  pgoyette 	     sc = raidget(++raidID, false))
   3457  1.300  christos 		continue;
   3458  1.224     oster #ifdef DEBUG
   3459   1.72     oster 	printf("Configuring raid%d:\n",raidID);
   3460  1.127     oster #endif
   3461  1.127     oster 
   3462  1.327  pgoyette 	if (sc == NULL)
   3463  1.327  pgoyette 		sc = raidget(raidID, true);
   3464  1.300  christos 	raidPtr = &sc->sc_r;
   3465   1.51     oster 
   3466   1.51     oster 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3467  1.302  christos 	raidPtr->softc = sc;
   3468   1.51     oster 	raidPtr->raidid = raidID;
   3469   1.51     oster 	raidPtr->openings = RAIDOUTSTANDING;
   3470   1.51     oster 
   3471   1.51     oster 	/* 3. Build the configuration structure */
   3472   1.51     oster 	rf_create_configuration(cset->ac, config, raidPtr);
   3473   1.51     oster 
   3474   1.51     oster 	/* 4. Do the configuration */
   3475  1.300  christos 	if (rf_Configure(raidPtr, config, cset->ac) == 0) {
   3476  1.300  christos 		raidinit(sc);
   3477  1.186     perry 
   3478  1.300  christos 		rf_markalldirty(raidPtr);
   3479  1.300  christos 		raidPtr->autoconfigure = 1; /* XXX do this here? */
   3480  1.308  christos 		switch (cset->ac->clabel->root_partition) {
   3481  1.308  christos 		case 1:	/* Force Root */
   3482  1.308  christos 		case 2:	/* Soft Root: root when boot partition part of raid */
   3483  1.308  christos 			/*
   3484  1.308  christos 			 * everything configured just fine.  Make a note
   3485  1.308  christos 			 * that this set is eligible to be root,
   3486  1.308  christos 			 * or forced to be root
   3487  1.308  christos 			 */
   3488  1.308  christos 			cset->rootable = cset->ac->clabel->root_partition;
   3489   1.54     oster 			/* XXX do this here? */
   3490  1.308  christos 			raidPtr->root_partition = cset->rootable;
   3491  1.308  christos 			break;
   3492  1.308  christos 		default:
   3493  1.308  christos 			break;
   3494   1.51     oster 		}
   3495  1.300  christos 	} else {
   3496  1.300  christos 		raidput(sc);
   3497  1.300  christos 		sc = NULL;
   3498   1.51     oster 	}
   3499   1.51     oster 
   3500   1.51     oster 	/* 5. Cleanup */
   3501   1.51     oster 	free(config, M_RAIDFRAME);
   3502  1.300  christos 	return sc;
   3503   1.99     oster }
   3504   1.99     oster 
   3505   1.99     oster void
   3506  1.187  christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3507  1.187  christos 	     size_t xmin, size_t xmax)
   3508  1.177     oster {
   3509  1.352  christos 
   3510  1.227        ad 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3511  1.187  christos 	pool_sethiwat(p, xmax);
   3512  1.382       chs 	pool_prime(p, xmin);
   3513  1.177     oster }
   3514  1.190     oster 
   3515  1.190     oster /*
   3516  1.335   mlelstv  * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
   3517  1.335   mlelstv  * to see if there is IO pending and if that IO could possibly be done
   3518  1.335   mlelstv  * for a given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3519  1.190     oster  * otherwise.
   3520  1.190     oster  *
   3521  1.190     oster  */
   3522  1.190     oster int
   3523  1.300  christos rf_buf_queue_check(RF_Raid_t *raidPtr)
   3524  1.190     oster {
   3525  1.335   mlelstv 	struct raid_softc *rs;
   3526  1.335   mlelstv 	struct dk_softc *dksc;
   3527  1.335   mlelstv 
   3528  1.335   mlelstv 	rs = raidPtr->softc;
   3529  1.335   mlelstv 	dksc = &rs->sc_dksc;
   3530  1.335   mlelstv 
   3531  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0)
   3532  1.335   mlelstv 		return 1;
   3533  1.335   mlelstv 
   3534  1.335   mlelstv 	if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
   3535  1.190     oster 		/* there is work to do */
   3536  1.190     oster 		return 0;
   3537  1.335   mlelstv 	}
   3538  1.190     oster 	/* default is nothing to do */
   3539  1.190     oster 	return 1;
   3540  1.190     oster }
   3541  1.213  christos 
   3542  1.213  christos int
   3543  1.294     oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
   3544  1.213  christos {
   3545  1.275       mrg 	uint64_t numsecs;
   3546  1.275       mrg 	unsigned secsize;
   3547  1.213  christos 	int error;
   3548  1.213  christos 
   3549  1.275       mrg 	error = getdisksize(vp, &numsecs, &secsize);
   3550  1.213  christos 	if (error == 0) {
   3551  1.275       mrg 		diskPtr->blockSize = secsize;
   3552  1.275       mrg 		diskPtr->numBlocks = numsecs - rf_protectedSectors;
   3553  1.275       mrg 		diskPtr->partitionSize = numsecs;
   3554  1.213  christos 		return 0;
   3555  1.213  christos 	}
   3556  1.213  christos 	return error;
   3557  1.213  christos }
   3558  1.217     oster 
   3559  1.217     oster static int
   3560  1.261    dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
   3561  1.217     oster {
   3562  1.217     oster 	return 1;
   3563  1.217     oster }
   3564  1.217     oster 
   3565  1.217     oster static void
   3566  1.261    dyoung raid_attach(device_t parent, device_t self, void *aux)
   3567  1.217     oster {
   3568  1.217     oster }
   3569  1.217     oster 
   3570  1.217     oster 
   3571  1.217     oster static int
   3572  1.261    dyoung raid_detach(device_t self, int flags)
   3573  1.217     oster {
   3574  1.266    dyoung 	int error;
   3575  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(self);
   3576  1.303  christos 
   3577  1.303  christos 	if (rs == NULL)
   3578  1.303  christos 		return ENXIO;
   3579  1.266    dyoung 
   3580  1.266    dyoung 	if ((error = raidlock(rs)) != 0)
   3581  1.266    dyoung 		return (error);
   3582  1.217     oster 
   3583  1.266    dyoung 	error = raid_detach_unlocked(rs);
   3584  1.266    dyoung 
   3585  1.332   mlelstv 	raidunlock(rs);
   3586  1.332   mlelstv 
   3587  1.332   mlelstv 	/* XXX raid can be referenced here */
   3588  1.332   mlelstv 
   3589  1.332   mlelstv 	if (error)
   3590  1.332   mlelstv 		return error;
   3591  1.332   mlelstv 
   3592  1.332   mlelstv 	/* Free the softc */
   3593  1.332   mlelstv 	raidput(rs);
   3594  1.332   mlelstv 
   3595  1.332   mlelstv 	return 0;
   3596  1.217     oster }
   3597  1.217     oster 
   3598  1.234     oster static void
   3599  1.304  christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3600  1.234     oster {
   3601  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   3602  1.335   mlelstv 	struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
   3603  1.304  christos 
   3604  1.304  christos 	memset(dg, 0, sizeof(*dg));
   3605  1.304  christos 
   3606  1.304  christos 	dg->dg_secperunit = raidPtr->totalSectors;
   3607  1.304  christos 	dg->dg_secsize = raidPtr->bytesPerSector;
   3608  1.304  christos 	dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   3609  1.304  christos 	dg->dg_ntracks = 4 * raidPtr->numCol;
   3610  1.304  christos 
   3611  1.335   mlelstv 	disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
   3612  1.234     oster }
   3613  1.252     oster 
   3614  1.348  jdolecek /*
   3615  1.348  jdolecek  * Get cache info for all the components (including spares).
   3616  1.348  jdolecek  * Returns intersection of all the cache flags of all disks, or first
   3617  1.348  jdolecek  * error if any encountered.
   3618  1.348  jdolecek  * XXXfua feature flags can change as spares are added - lock down somehow
   3619  1.348  jdolecek  */
   3620  1.348  jdolecek static int
   3621  1.348  jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
   3622  1.348  jdolecek {
   3623  1.348  jdolecek 	int c;
   3624  1.348  jdolecek 	int error;
   3625  1.348  jdolecek 	int dkwhole = 0, dkpart;
   3626  1.348  jdolecek 
   3627  1.348  jdolecek 	for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
   3628  1.348  jdolecek 		/*
   3629  1.348  jdolecek 		 * Check any non-dead disk, even when currently being
   3630  1.348  jdolecek 		 * reconstructed.
   3631  1.348  jdolecek 		 */
   3632  1.348  jdolecek 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
   3633  1.348  jdolecek 		    || raidPtr->Disks[c].status == rf_ds_reconstructing) {
   3634  1.348  jdolecek 			error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
   3635  1.348  jdolecek 			    DIOCGCACHE, &dkpart, FREAD, NOCRED);
   3636  1.348  jdolecek 			if (error) {
   3637  1.348  jdolecek 				if (error != ENODEV) {
   3638  1.348  jdolecek 					printf("raid%d: get cache for component %s failed\n",
   3639  1.348  jdolecek 					    raidPtr->raidid,
   3640  1.348  jdolecek 					    raidPtr->Disks[c].devname);
   3641  1.348  jdolecek 				}
   3642  1.348  jdolecek 
   3643  1.348  jdolecek 				return error;
   3644  1.348  jdolecek 			}
   3645  1.348  jdolecek 
   3646  1.348  jdolecek 			if (c == 0)
   3647  1.348  jdolecek 				dkwhole = dkpart;
   3648  1.348  jdolecek 			else
   3649  1.348  jdolecek 				dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
   3650  1.348  jdolecek 		}
   3651  1.348  jdolecek 	}
   3652  1.348  jdolecek 
   3653  1.349  jdolecek 	*data = dkwhole;
   3654  1.348  jdolecek 
   3655  1.348  jdolecek 	return 0;
   3656  1.348  jdolecek }
   3657  1.348  jdolecek 
   3658  1.252     oster /*
   3659  1.252     oster  * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
   3660  1.252     oster  * We end up returning whatever error was returned by the first cache flush
   3661  1.252     oster  * that fails.
   3662  1.252     oster  */
   3663  1.252     oster 
   3664  1.269       jld int
   3665  1.252     oster rf_sync_component_caches(RF_Raid_t *raidPtr)
   3666  1.252     oster {
   3667  1.252     oster 	int c, sparecol;
   3668  1.252     oster 	int e,error;
   3669  1.252     oster 	int force = 1;
   3670  1.252     oster 
   3671  1.252     oster 	error = 0;
   3672  1.252     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   3673  1.252     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   3674  1.252     oster 			e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
   3675  1.252     oster 					  &force, FWRITE, NOCRED);
   3676  1.252     oster 			if (e) {
   3677  1.255     oster 				if (e != ENODEV)
   3678  1.255     oster 					printf("raid%d: cache flush to component %s failed.\n",
   3679  1.255     oster 					       raidPtr->raidid, raidPtr->Disks[c].devname);
   3680  1.252     oster 				if (error == 0) {
   3681  1.252     oster 					error = e;
   3682  1.252     oster 				}
   3683  1.252     oster 			}
   3684  1.252     oster 		}
   3685  1.252     oster 	}
   3686  1.252     oster 
   3687  1.252     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   3688  1.252     oster 		sparecol = raidPtr->numCol + c;
   3689  1.252     oster 		/* Need to ensure that the reconstruct actually completed! */
   3690  1.252     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3691  1.252     oster 			e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
   3692  1.252     oster 					  DIOCCACHESYNC, &force, FWRITE, NOCRED);
   3693  1.252     oster 			if (e) {
   3694  1.255     oster 				if (e != ENODEV)
   3695  1.255     oster 					printf("raid%d: cache flush to component %s failed.\n",
   3696  1.255     oster 					       raidPtr->raidid, raidPtr->Disks[sparecol].devname);
   3697  1.252     oster 				if (error == 0) {
   3698  1.252     oster 					error = e;
   3699  1.252     oster 				}
   3700  1.252     oster 			}
   3701  1.252     oster 		}
   3702  1.252     oster 	}
   3703  1.252     oster 	return error;
   3704  1.252     oster }
   3705  1.327  pgoyette 
   3706  1.353       mrg /* Fill in info with the current status */
   3707  1.353       mrg void
   3708  1.353       mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3709  1.353       mrg {
   3710  1.353       mrg 
   3711  1.353       mrg 	if (raidPtr->status != rf_rs_reconstructing) {
   3712  1.353       mrg 		info->total = 100;
   3713  1.353       mrg 		info->completed = 100;
   3714  1.353       mrg 	} else {
   3715  1.353       mrg 		info->total = raidPtr->reconControl->numRUsTotal;
   3716  1.353       mrg 		info->completed = raidPtr->reconControl->numRUsComplete;
   3717  1.353       mrg 	}
   3718  1.353       mrg 	info->remaining = info->total - info->completed;
   3719  1.353       mrg }
   3720  1.353       mrg 
   3721  1.353       mrg /* Fill in info with the current status */
   3722  1.353       mrg void
   3723  1.353       mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3724  1.353       mrg {
   3725  1.353       mrg 
   3726  1.353       mrg 	if (raidPtr->parity_rewrite_in_progress == 1) {
   3727  1.353       mrg 		info->total = raidPtr->Layout.numStripe;
   3728  1.353       mrg 		info->completed = raidPtr->parity_rewrite_stripes_done;
   3729  1.353       mrg 	} else {
   3730  1.353       mrg 		info->completed = 100;
   3731  1.353       mrg 		info->total = 100;
   3732  1.353       mrg 	}
   3733  1.353       mrg 	info->remaining = info->total - info->completed;
   3734  1.353       mrg }
   3735  1.353       mrg 
   3736  1.353       mrg /* Fill in info with the current status */
   3737  1.353       mrg void
   3738  1.353       mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3739  1.353       mrg {
   3740  1.353       mrg 
   3741  1.353       mrg 	if (raidPtr->copyback_in_progress == 1) {
   3742  1.353       mrg 		info->total = raidPtr->Layout.numStripe;
   3743  1.353       mrg 		info->completed = raidPtr->copyback_stripes_done;
   3744  1.353       mrg 		info->remaining = info->total - info->completed;
   3745  1.353       mrg 	} else {
   3746  1.353       mrg 		info->remaining = 0;
   3747  1.353       mrg 		info->completed = 100;
   3748  1.353       mrg 		info->total = 100;
   3749  1.353       mrg 	}
   3750  1.353       mrg }
   3751  1.353       mrg 
   3752  1.353       mrg /* Fill in config with the current info */
   3753  1.353       mrg int
   3754  1.353       mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
   3755  1.353       mrg {
   3756  1.353       mrg 	int	d, i, j;
   3757  1.353       mrg 
   3758  1.353       mrg 	if (!raidPtr->valid)
   3759  1.353       mrg 		return (ENODEV);
   3760  1.353       mrg 	config->cols = raidPtr->numCol;
   3761  1.353       mrg 	config->ndevs = raidPtr->numCol;
   3762  1.353       mrg 	if (config->ndevs >= RF_MAX_DISKS)
   3763  1.353       mrg 		return (ENOMEM);
   3764  1.353       mrg 	config->nspares = raidPtr->numSpare;
   3765  1.353       mrg 	if (config->nspares >= RF_MAX_DISKS)
   3766  1.353       mrg 		return (ENOMEM);
   3767  1.353       mrg 	config->maxqdepth = raidPtr->maxQueueDepth;
   3768  1.353       mrg 	d = 0;
   3769  1.353       mrg 	for (j = 0; j < config->cols; j++) {
   3770  1.353       mrg 		config->devs[d] = raidPtr->Disks[j];
   3771  1.353       mrg 		d++;
   3772  1.353       mrg 	}
   3773  1.353       mrg 	for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
   3774  1.353       mrg 		config->spares[i] = raidPtr->Disks[j];
   3775  1.353       mrg 		if (config->spares[i].status == rf_ds_rebuilding_spare) {
   3776  1.353       mrg 			/* XXX: raidctl(8) expects to see this as a used spare */
   3777  1.353       mrg 			config->spares[i].status = rf_ds_used_spare;
   3778  1.353       mrg 		}
   3779  1.353       mrg 	}
   3780  1.353       mrg 	return 0;
   3781  1.353       mrg }
   3782  1.353       mrg 
   3783  1.353       mrg int
   3784  1.353       mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
   3785  1.353       mrg {
   3786  1.353       mrg 	RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
   3787  1.353       mrg 	RF_ComponentLabel_t *raid_clabel;
   3788  1.353       mrg 	int column = clabel->column;
   3789  1.353       mrg 
   3790  1.353       mrg 	if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
   3791  1.353       mrg 		return EINVAL;
   3792  1.353       mrg 	raid_clabel = raidget_component_label(raidPtr, column);
   3793  1.353       mrg 	memcpy(clabel, raid_clabel, sizeof *clabel);
   3794  1.353       mrg 
   3795  1.353       mrg 	return 0;
   3796  1.353       mrg }
   3797  1.353       mrg 
   3798  1.327  pgoyette /*
   3799  1.327  pgoyette  * Module interface
   3800  1.327  pgoyette  */
   3801  1.327  pgoyette 
   3802  1.356  pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
   3803  1.327  pgoyette 
   3804  1.327  pgoyette #ifdef _MODULE
   3805  1.327  pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
   3806  1.327  pgoyette #endif
   3807  1.327  pgoyette 
   3808  1.327  pgoyette static int raid_modcmd(modcmd_t, void *);
   3809  1.327  pgoyette static int raid_modcmd_init(void);
   3810  1.327  pgoyette static int raid_modcmd_fini(void);
   3811  1.327  pgoyette 
   3812  1.327  pgoyette static int
   3813  1.327  pgoyette raid_modcmd(modcmd_t cmd, void *data)
   3814  1.327  pgoyette {
   3815  1.327  pgoyette 	int error;
   3816  1.327  pgoyette 
   3817  1.327  pgoyette 	error = 0;
   3818  1.327  pgoyette 	switch (cmd) {
   3819  1.327  pgoyette 	case MODULE_CMD_INIT:
   3820  1.327  pgoyette 		error = raid_modcmd_init();
   3821  1.327  pgoyette 		break;
   3822  1.327  pgoyette 	case MODULE_CMD_FINI:
   3823  1.327  pgoyette 		error = raid_modcmd_fini();
   3824  1.327  pgoyette 		break;
   3825  1.327  pgoyette 	default:
   3826  1.327  pgoyette 		error = ENOTTY;
   3827  1.327  pgoyette 		break;
   3828  1.327  pgoyette 	}
   3829  1.327  pgoyette 	return error;
   3830  1.327  pgoyette }
   3831  1.327  pgoyette 
   3832  1.327  pgoyette static int
   3833  1.327  pgoyette raid_modcmd_init(void)
   3834  1.327  pgoyette {
   3835  1.327  pgoyette 	int error;
   3836  1.327  pgoyette 	int bmajor, cmajor;
   3837  1.327  pgoyette 
   3838  1.327  pgoyette 	mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
   3839  1.327  pgoyette 	mutex_enter(&raid_lock);
   3840  1.327  pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   3841  1.327  pgoyette 	rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
   3842  1.327  pgoyette 	rf_init_cond2(rf_sparet_wait_cv, "sparetw");
   3843  1.327  pgoyette 	rf_init_cond2(rf_sparet_resp_cv, "rfgst");
   3844  1.327  pgoyette 
   3845  1.327  pgoyette 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
   3846  1.327  pgoyette #endif
   3847  1.327  pgoyette 
   3848  1.327  pgoyette 	bmajor = cmajor = -1;
   3849  1.327  pgoyette 	error = devsw_attach("raid", &raid_bdevsw, &bmajor,
   3850  1.327  pgoyette 	    &raid_cdevsw, &cmajor);
   3851  1.327  pgoyette 	if (error != 0 && error != EEXIST) {
   3852  1.327  pgoyette 		aprint_error("%s: devsw_attach failed %d\n", __func__, error);
   3853  1.327  pgoyette 		mutex_exit(&raid_lock);
   3854  1.327  pgoyette 		return error;
   3855  1.327  pgoyette 	}
   3856  1.327  pgoyette #ifdef _MODULE
   3857  1.327  pgoyette 	error = config_cfdriver_attach(&raid_cd);
   3858  1.327  pgoyette 	if (error != 0) {
   3859  1.327  pgoyette 		aprint_error("%s: config_cfdriver_attach failed %d\n",
   3860  1.327  pgoyette 		    __func__, error);
   3861  1.327  pgoyette 		devsw_detach(&raid_bdevsw, &raid_cdevsw);
   3862  1.327  pgoyette 		mutex_exit(&raid_lock);
   3863  1.327  pgoyette 		return error;
   3864  1.327  pgoyette 	}
   3865  1.327  pgoyette #endif
   3866  1.327  pgoyette 	error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
   3867  1.327  pgoyette 	if (error != 0) {
   3868  1.327  pgoyette 		aprint_error("%s: config_cfattach_attach failed %d\n",
   3869  1.327  pgoyette 		    __func__, error);
   3870  1.327  pgoyette #ifdef _MODULE
   3871  1.327  pgoyette 		config_cfdriver_detach(&raid_cd);
   3872  1.327  pgoyette #endif
   3873  1.327  pgoyette 		devsw_detach(&raid_bdevsw, &raid_cdevsw);
   3874  1.327  pgoyette 		mutex_exit(&raid_lock);
   3875  1.327  pgoyette 		return error;
   3876  1.327  pgoyette 	}
   3877  1.327  pgoyette 
   3878  1.327  pgoyette 	raidautoconfigdone = false;
   3879  1.327  pgoyette 
   3880  1.327  pgoyette 	mutex_exit(&raid_lock);
   3881  1.327  pgoyette 
   3882  1.327  pgoyette 	if (error == 0) {
   3883  1.327  pgoyette 		if (rf_BootRaidframe(true) == 0)
   3884  1.327  pgoyette 			aprint_verbose("Kernelized RAIDframe activated\n");
   3885  1.327  pgoyette 		else
   3886  1.327  pgoyette 			panic("Serious error activating RAID!!");
   3887  1.327  pgoyette 	}
   3888  1.327  pgoyette 
   3889  1.327  pgoyette 	/*
   3890  1.327  pgoyette 	 * Register a finalizer which will be used to auto-config RAID
   3891  1.327  pgoyette 	 * sets once all real hardware devices have been found.
   3892  1.327  pgoyette 	 */
   3893  1.327  pgoyette 	error = config_finalize_register(NULL, rf_autoconfig);
   3894  1.327  pgoyette 	if (error != 0) {
   3895  1.327  pgoyette 		aprint_error("WARNING: unable to register RAIDframe "
   3896  1.327  pgoyette 		    "finalizer\n");
   3897  1.329  pgoyette 		error = 0;
   3898  1.327  pgoyette 	}
   3899  1.327  pgoyette 
   3900  1.327  pgoyette 	return error;
   3901  1.327  pgoyette }
   3902  1.327  pgoyette 
   3903  1.327  pgoyette static int
   3904  1.327  pgoyette raid_modcmd_fini(void)
   3905  1.327  pgoyette {
   3906  1.327  pgoyette 	int error;
   3907  1.327  pgoyette 
   3908  1.327  pgoyette 	mutex_enter(&raid_lock);
   3909  1.327  pgoyette 
   3910  1.327  pgoyette 	/* Don't allow unload if raid device(s) exist.  */
   3911  1.327  pgoyette 	if (!LIST_EMPTY(&raids)) {
   3912  1.327  pgoyette 		mutex_exit(&raid_lock);
   3913  1.327  pgoyette 		return EBUSY;
   3914  1.327  pgoyette 	}
   3915  1.327  pgoyette 
   3916  1.327  pgoyette 	error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
   3917  1.327  pgoyette 	if (error != 0) {
   3918  1.335   mlelstv 		aprint_error("%s: cannot detach cfattach\n",__func__);
   3919  1.327  pgoyette 		mutex_exit(&raid_lock);
   3920  1.327  pgoyette 		return error;
   3921  1.327  pgoyette 	}
   3922  1.327  pgoyette #ifdef _MODULE
   3923  1.327  pgoyette 	error = config_cfdriver_detach(&raid_cd);
   3924  1.327  pgoyette 	if (error != 0) {
   3925  1.335   mlelstv 		aprint_error("%s: cannot detach cfdriver\n",__func__);
   3926  1.327  pgoyette 		config_cfattach_attach(raid_cd.cd_name, &raid_ca);
   3927  1.327  pgoyette 		mutex_exit(&raid_lock);
   3928  1.327  pgoyette 		return error;
   3929  1.327  pgoyette 	}
   3930  1.327  pgoyette #endif
   3931  1.327  pgoyette 	error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
   3932  1.327  pgoyette 	if (error != 0) {
   3933  1.335   mlelstv 		aprint_error("%s: cannot detach devsw\n",__func__);
   3934  1.327  pgoyette #ifdef _MODULE
   3935  1.327  pgoyette 		config_cfdriver_attach(&raid_cd);
   3936  1.327  pgoyette #endif
   3937  1.327  pgoyette 		config_cfattach_attach(raid_cd.cd_name, &raid_ca);
   3938  1.327  pgoyette 		mutex_exit(&raid_lock);
   3939  1.327  pgoyette 		return error;
   3940  1.327  pgoyette 	}
   3941  1.327  pgoyette 	rf_BootRaidframe(false);
   3942  1.327  pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   3943  1.327  pgoyette 	rf_destroy_mutex2(rf_sparet_wait_mutex);
   3944  1.327  pgoyette 	rf_destroy_cond2(rf_sparet_wait_cv);
   3945  1.327  pgoyette 	rf_destroy_cond2(rf_sparet_resp_cv);
   3946  1.327  pgoyette #endif
   3947  1.327  pgoyette 	mutex_exit(&raid_lock);
   3948  1.327  pgoyette 	mutex_destroy(&raid_lock);
   3949  1.327  pgoyette 
   3950  1.327  pgoyette 	return error;
   3951  1.327  pgoyette }
   3952