Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.384
      1  1.384  jdolecek /*	$NetBSD: rf_netbsdkintf.c,v 1.384 2020/06/19 19:29:39 jdolecek Exp $	*/
      2  1.281     rmind 
      3    1.1     oster /*-
      4  1.295       erh  * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
      5    1.1     oster  * All rights reserved.
      6    1.1     oster  *
      7    1.1     oster  * This code is derived from software contributed to The NetBSD Foundation
      8    1.1     oster  * by Greg Oster; Jason R. Thorpe.
      9    1.1     oster  *
     10    1.1     oster  * Redistribution and use in source and binary forms, with or without
     11    1.1     oster  * modification, are permitted provided that the following conditions
     12    1.1     oster  * are met:
     13    1.1     oster  * 1. Redistributions of source code must retain the above copyright
     14    1.1     oster  *    notice, this list of conditions and the following disclaimer.
     15    1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     oster  *    documentation and/or other materials provided with the distribution.
     18    1.1     oster  *
     19    1.1     oster  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.1     oster  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.1     oster  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.1     oster  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.1     oster  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.1     oster  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.1     oster  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.1     oster  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.1     oster  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.1     oster  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.1     oster  * POSSIBILITY OF SUCH DAMAGE.
     30    1.1     oster  */
     31    1.1     oster 
     32    1.1     oster /*
     33  1.281     rmind  * Copyright (c) 1988 University of Utah.
     34    1.1     oster  * Copyright (c) 1990, 1993
     35    1.1     oster  *      The Regents of the University of California.  All rights reserved.
     36    1.1     oster  *
     37    1.1     oster  * This code is derived from software contributed to Berkeley by
     38    1.1     oster  * the Systems Programming Group of the University of Utah Computer
     39    1.1     oster  * Science Department.
     40    1.1     oster  *
     41    1.1     oster  * Redistribution and use in source and binary forms, with or without
     42    1.1     oster  * modification, are permitted provided that the following conditions
     43    1.1     oster  * are met:
     44    1.1     oster  * 1. Redistributions of source code must retain the above copyright
     45    1.1     oster  *    notice, this list of conditions and the following disclaimer.
     46    1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     47    1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     48    1.1     oster  *    documentation and/or other materials provided with the distribution.
     49  1.162       agc  * 3. Neither the name of the University nor the names of its contributors
     50  1.162       agc  *    may be used to endorse or promote products derived from this software
     51  1.162       agc  *    without specific prior written permission.
     52  1.162       agc  *
     53  1.162       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  1.162       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  1.162       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  1.162       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  1.162       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  1.162       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  1.162       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  1.162       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  1.162       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  1.162       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  1.162       agc  * SUCH DAMAGE.
     64  1.162       agc  *
     65  1.381  riastrad  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     66  1.162       agc  *
     67  1.162       agc  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     68  1.162       agc  */
     69  1.162       agc 
     70  1.162       agc /*
     71    1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
     72    1.1     oster  * All rights reserved.
     73    1.1     oster  *
     74    1.1     oster  * Authors: Mark Holland, Jim Zelenka
     75    1.1     oster  *
     76    1.1     oster  * Permission to use, copy, modify and distribute this software and
     77    1.1     oster  * its documentation is hereby granted, provided that both the copyright
     78    1.1     oster  * notice and this permission notice appear in all copies of the
     79    1.1     oster  * software, derivative works or modified versions, and any portions
     80    1.1     oster  * thereof, and that both notices appear in supporting documentation.
     81    1.1     oster  *
     82    1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     83    1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     84    1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     85    1.1     oster  *
     86    1.1     oster  * Carnegie Mellon requests users of this software to return to
     87    1.1     oster  *
     88    1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     89    1.1     oster  *  School of Computer Science
     90    1.1     oster  *  Carnegie Mellon University
     91    1.1     oster  *  Pittsburgh PA 15213-3890
     92    1.1     oster  *
     93    1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     94    1.1     oster  * rights to redistribute these changes.
     95    1.1     oster  */
     96    1.1     oster 
     97    1.1     oster /***********************************************************
     98    1.1     oster  *
     99    1.1     oster  * rf_kintf.c -- the kernel interface routines for RAIDframe
    100    1.1     oster  *
    101    1.1     oster  ***********************************************************/
    102  1.112     lukem 
    103  1.112     lukem #include <sys/cdefs.h>
    104  1.384  jdolecek __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.384 2020/06/19 19:29:39 jdolecek Exp $");
    105  1.251        ad 
    106  1.251        ad #ifdef _KERNEL_OPT
    107  1.251        ad #include "opt_raid_autoconfig.h"
    108  1.363       mrg #include "opt_compat_netbsd32.h"
    109  1.251        ad #endif
    110    1.1     oster 
    111  1.113     lukem #include <sys/param.h>
    112    1.1     oster #include <sys/errno.h>
    113    1.1     oster #include <sys/pool.h>
    114  1.152   thorpej #include <sys/proc.h>
    115    1.1     oster #include <sys/queue.h>
    116    1.1     oster #include <sys/disk.h>
    117    1.1     oster #include <sys/device.h>
    118    1.1     oster #include <sys/stat.h>
    119    1.1     oster #include <sys/ioctl.h>
    120    1.1     oster #include <sys/fcntl.h>
    121    1.1     oster #include <sys/systm.h>
    122    1.1     oster #include <sys/vnode.h>
    123    1.1     oster #include <sys/disklabel.h>
    124    1.1     oster #include <sys/conf.h>
    125    1.1     oster #include <sys/buf.h>
    126  1.182      yamt #include <sys/bufq.h>
    127   1.65     oster #include <sys/reboot.h>
    128  1.208      elad #include <sys/kauth.h>
    129  1.327  pgoyette #include <sys/module.h>
    130  1.358  pgoyette #include <sys/compat_stub.h>
    131    1.8     oster 
    132  1.234     oster #include <prop/proplib.h>
    133  1.234     oster 
    134  1.110     oster #include <dev/raidframe/raidframevar.h>
    135  1.110     oster #include <dev/raidframe/raidframeio.h>
    136  1.269       jld #include <dev/raidframe/rf_paritymap.h>
    137  1.251        ad 
    138    1.1     oster #include "rf_raid.h"
    139   1.44     oster #include "rf_copyback.h"
    140    1.1     oster #include "rf_dag.h"
    141    1.1     oster #include "rf_dagflags.h"
    142   1.99     oster #include "rf_desc.h"
    143    1.1     oster #include "rf_diskqueue.h"
    144    1.1     oster #include "rf_etimer.h"
    145    1.1     oster #include "rf_general.h"
    146    1.1     oster #include "rf_kintf.h"
    147    1.1     oster #include "rf_options.h"
    148    1.1     oster #include "rf_driver.h"
    149    1.1     oster #include "rf_parityscan.h"
    150    1.1     oster #include "rf_threadstuff.h"
    151    1.1     oster 
    152  1.325  christos #include "ioconf.h"
    153  1.325  christos 
    154  1.133     oster #ifdef DEBUG
    155    1.9     oster int     rf_kdebug_level = 0;
    156    1.1     oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    157    1.9     oster #else				/* DEBUG */
    158    1.1     oster #define db1_printf(a) { }
    159    1.9     oster #endif				/* DEBUG */
    160    1.1     oster 
    161  1.344  christos #ifdef DEBUG_ROOT
    162  1.344  christos #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
    163  1.345  christos #else
    164  1.345  christos #define DPRINTF(a, ...)
    165  1.344  christos #endif
    166  1.344  christos 
    167  1.249     oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    168  1.289       mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
    169  1.287       mrg static rf_declare_cond2(rf_sparet_wait_cv);
    170  1.287       mrg static rf_declare_cond2(rf_sparet_resp_cv);
    171    1.1     oster 
    172   1.10     oster static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    173   1.10     oster 						 * spare table */
    174   1.10     oster static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    175   1.10     oster 						 * installation process */
    176  1.249     oster #endif
    177  1.153   thorpej 
    178  1.384  jdolecek const int rf_b_pass = (B_PHYS|B_RAW|B_MEDIA_FLAGS);
    179  1.384  jdolecek 
    180  1.153   thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    181   1.10     oster 
    182    1.1     oster /* prototypes */
    183  1.187  christos static void KernelWakeupFunc(struct buf *);
    184  1.187  christos static void InitBP(struct buf *, struct vnode *, unsigned,
    185  1.225  christos     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    186  1.384  jdolecek     void *, int);
    187  1.300  christos static void raidinit(struct raid_softc *);
    188  1.335   mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
    189  1.348  jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
    190    1.1     oster 
    191  1.261    dyoung static int raid_match(device_t, cfdata_t, void *);
    192  1.261    dyoung static void raid_attach(device_t, device_t, void *);
    193  1.261    dyoung static int raid_detach(device_t, int);
    194  1.130   gehenna 
    195  1.269       jld static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
    196  1.269       jld     daddr_t, daddr_t);
    197  1.269       jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
    198  1.269       jld     daddr_t, daddr_t, int);
    199  1.269       jld 
    200  1.276       mrg static int raidwrite_component_label(unsigned,
    201  1.276       mrg     dev_t, struct vnode *, RF_ComponentLabel_t *);
    202  1.276       mrg static int raidread_component_label(unsigned,
    203  1.276       mrg     dev_t, struct vnode *, RF_ComponentLabel_t *);
    204  1.269       jld 
    205  1.335   mlelstv static int raid_diskstart(device_t, struct buf *bp);
    206  1.335   mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
    207  1.335   mlelstv static int raid_lastclose(device_t);
    208  1.269       jld 
    209  1.324       mrg static dev_type_open(raidopen);
    210  1.324       mrg static dev_type_close(raidclose);
    211  1.324       mrg static dev_type_read(raidread);
    212  1.324       mrg static dev_type_write(raidwrite);
    213  1.324       mrg static dev_type_ioctl(raidioctl);
    214  1.324       mrg static dev_type_strategy(raidstrategy);
    215  1.324       mrg static dev_type_dump(raiddump);
    216  1.324       mrg static dev_type_size(raidsize);
    217  1.130   gehenna 
    218  1.130   gehenna const struct bdevsw raid_bdevsw = {
    219  1.305  dholland 	.d_open = raidopen,
    220  1.305  dholland 	.d_close = raidclose,
    221  1.305  dholland 	.d_strategy = raidstrategy,
    222  1.305  dholland 	.d_ioctl = raidioctl,
    223  1.305  dholland 	.d_dump = raiddump,
    224  1.305  dholland 	.d_psize = raidsize,
    225  1.311  dholland 	.d_discard = nodiscard,
    226  1.305  dholland 	.d_flag = D_DISK
    227  1.130   gehenna };
    228  1.130   gehenna 
    229  1.130   gehenna const struct cdevsw raid_cdevsw = {
    230  1.305  dholland 	.d_open = raidopen,
    231  1.305  dholland 	.d_close = raidclose,
    232  1.305  dholland 	.d_read = raidread,
    233  1.305  dholland 	.d_write = raidwrite,
    234  1.305  dholland 	.d_ioctl = raidioctl,
    235  1.305  dholland 	.d_stop = nostop,
    236  1.305  dholland 	.d_tty = notty,
    237  1.305  dholland 	.d_poll = nopoll,
    238  1.305  dholland 	.d_mmap = nommap,
    239  1.305  dholland 	.d_kqfilter = nokqfilter,
    240  1.312  dholland 	.d_discard = nodiscard,
    241  1.305  dholland 	.d_flag = D_DISK
    242  1.130   gehenna };
    243    1.1     oster 
    244  1.323   mlelstv static struct dkdriver rf_dkdriver = {
    245  1.335   mlelstv 	.d_open = raidopen,
    246  1.335   mlelstv 	.d_close = raidclose,
    247  1.323   mlelstv 	.d_strategy = raidstrategy,
    248  1.335   mlelstv 	.d_diskstart = raid_diskstart,
    249  1.335   mlelstv 	.d_dumpblocks = raid_dumpblocks,
    250  1.335   mlelstv 	.d_lastclose = raid_lastclose,
    251  1.323   mlelstv 	.d_minphys = minphys
    252  1.323   mlelstv };
    253  1.235     oster 
    254    1.1     oster #define	raidunit(x)	DISKUNIT(x)
    255  1.335   mlelstv #define	raidsoftc(dev)	(((struct raid_softc *)device_private(dev))->sc_r.softc)
    256    1.1     oster 
    257  1.202     oster extern struct cfdriver raid_cd;
    258  1.266    dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
    259  1.266    dyoung     raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
    260  1.266    dyoung     DVF_DETACH_SHUTDOWN);
    261  1.202     oster 
    262  1.353       mrg /* Internal representation of a rf_recon_req */
    263  1.353       mrg struct rf_recon_req_internal {
    264  1.353       mrg 	RF_RowCol_t col;
    265  1.353       mrg 	RF_ReconReqFlags_t flags;
    266  1.353       mrg 	void   *raidPtr;
    267  1.353       mrg };
    268  1.353       mrg 
    269  1.186     perry /*
    270  1.186     perry  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    271  1.186     perry  * Be aware that large numbers can allow the driver to consume a lot of
    272   1.28     oster  * kernel memory, especially on writes, and in degraded mode reads.
    273  1.186     perry  *
    274  1.186     perry  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    275  1.186     perry  * a single 64K write will typically require 64K for the old data,
    276  1.186     perry  * 64K for the old parity, and 64K for the new parity, for a total
    277   1.28     oster  * of 192K (if the parity buffer is not re-used immediately).
    278  1.110     oster  * Even it if is used immediately, that's still 128K, which when multiplied
    279   1.28     oster  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    280  1.186     perry  *
    281   1.28     oster  * Now in degraded mode, for example, a 64K read on the above setup may
    282  1.186     perry  * require data reconstruction, which will require *all* of the 4 remaining
    283   1.28     oster  * disks to participate -- 4 * 32K/disk == 128K again.
    284   1.20     oster  */
    285   1.20     oster 
    286   1.20     oster #ifndef RAIDOUTSTANDING
    287   1.28     oster #define RAIDOUTSTANDING   6
    288   1.20     oster #endif
    289   1.20     oster 
    290    1.1     oster #define RAIDLABELDEV(dev)	\
    291    1.1     oster 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    292    1.1     oster 
    293    1.1     oster /* declared here, and made public, for the benefit of KVM stuff.. */
    294    1.9     oster 
    295  1.104     oster static int raidlock(struct raid_softc *);
    296  1.104     oster static void raidunlock(struct raid_softc *);
    297    1.1     oster 
    298  1.266    dyoung static int raid_detach_unlocked(struct raid_softc *);
    299  1.266    dyoung 
    300  1.104     oster static void rf_markalldirty(RF_Raid_t *);
    301  1.304  christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
    302   1.48     oster 
    303  1.353       mrg void rf_ReconThread(struct rf_recon_req_internal *);
    304  1.104     oster void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    305  1.104     oster void rf_CopybackThread(RF_Raid_t *raidPtr);
    306  1.353       mrg void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
    307  1.261    dyoung int rf_autoconfig(device_t);
    308  1.142   thorpej void rf_buildroothack(RF_ConfigSet_t *);
    309  1.104     oster 
    310  1.104     oster RF_AutoConfig_t *rf_find_raid_components(void);
    311  1.104     oster RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    312  1.104     oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    313  1.292     oster int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
    314  1.104     oster void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    315  1.104     oster int rf_set_autoconfig(RF_Raid_t *, int);
    316  1.104     oster int rf_set_rootpartition(RF_Raid_t *, int);
    317  1.104     oster void rf_release_all_vps(RF_ConfigSet_t *);
    318  1.104     oster void rf_cleanup_config_set(RF_ConfigSet_t *);
    319  1.104     oster int rf_have_enough_components(RF_ConfigSet_t *);
    320  1.300  christos struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
    321  1.278       mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
    322   1.48     oster 
    323  1.295       erh /*
    324  1.295       erh  * Debugging, mostly.  Set to 0 to not allow autoconfig to take place.
    325  1.295       erh  * Note that this is overridden by having RAID_AUTOCONFIG as an option
    326  1.295       erh  * in the kernel config file.
    327  1.295       erh  */
    328  1.295       erh #ifdef RAID_AUTOCONFIG
    329  1.295       erh int raidautoconfig = 1;
    330  1.295       erh #else
    331  1.295       erh int raidautoconfig = 0;
    332  1.295       erh #endif
    333  1.295       erh static bool raidautoconfigdone = false;
    334   1.37     oster 
    335  1.177     oster struct RF_Pools_s rf_pools;
    336  1.177     oster 
    337  1.300  christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
    338  1.300  christos static kmutex_t raid_lock;
    339    1.1     oster 
    340  1.300  christos static struct raid_softc *
    341  1.300  christos raidcreate(int unit) {
    342  1.300  christos 	struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
    343  1.300  christos 	sc->sc_unit = unit;
    344  1.327  pgoyette 	cv_init(&sc->sc_cv, "raidunit");
    345  1.327  pgoyette 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
    346  1.300  christos 	return sc;
    347  1.300  christos }
    348    1.1     oster 
    349  1.300  christos static void
    350  1.300  christos raiddestroy(struct raid_softc *sc) {
    351  1.327  pgoyette 	cv_destroy(&sc->sc_cv);
    352  1.327  pgoyette 	mutex_destroy(&sc->sc_mutex);
    353  1.300  christos 	kmem_free(sc, sizeof(*sc));
    354  1.300  christos }
    355   1.50     oster 
    356  1.300  christos static struct raid_softc *
    357  1.327  pgoyette raidget(int unit, bool create) {
    358  1.300  christos 	struct raid_softc *sc;
    359  1.300  christos 	if (unit < 0) {
    360  1.300  christos #ifdef DIAGNOSTIC
    361  1.300  christos 		panic("%s: unit %d!", __func__, unit);
    362  1.300  christos #endif
    363  1.300  christos 		return NULL;
    364  1.300  christos 	}
    365  1.300  christos 	mutex_enter(&raid_lock);
    366  1.300  christos 	LIST_FOREACH(sc, &raids, sc_link) {
    367  1.300  christos 		if (sc->sc_unit == unit) {
    368  1.300  christos 			mutex_exit(&raid_lock);
    369  1.300  christos 			return sc;
    370  1.300  christos 		}
    371  1.300  christos 	}
    372  1.300  christos 	mutex_exit(&raid_lock);
    373  1.327  pgoyette 	if (!create)
    374  1.327  pgoyette 		return NULL;
    375  1.379       chs 	sc = raidcreate(unit);
    376  1.300  christos 	mutex_enter(&raid_lock);
    377  1.300  christos 	LIST_INSERT_HEAD(&raids, sc, sc_link);
    378  1.300  christos 	mutex_exit(&raid_lock);
    379  1.300  christos 	return sc;
    380  1.300  christos }
    381  1.300  christos 
    382  1.300  christos static void
    383  1.300  christos raidput(struct raid_softc *sc) {
    384  1.300  christos 	mutex_enter(&raid_lock);
    385  1.300  christos 	LIST_REMOVE(sc, sc_link);
    386  1.300  christos 	mutex_exit(&raid_lock);
    387  1.300  christos 	raiddestroy(sc);
    388  1.300  christos }
    389    1.1     oster 
    390  1.300  christos void
    391  1.300  christos raidattach(int num)
    392  1.300  christos {
    393   1.62     oster 
    394  1.142   thorpej 	/*
    395  1.327  pgoyette 	 * Device attachment and associated initialization now occurs
    396  1.327  pgoyette 	 * as part of the module initialization.
    397  1.142   thorpej 	 */
    398  1.142   thorpej }
    399  1.142   thorpej 
    400  1.142   thorpej int
    401  1.261    dyoung rf_autoconfig(device_t self)
    402  1.142   thorpej {
    403  1.142   thorpej 	RF_AutoConfig_t *ac_list;
    404  1.142   thorpej 	RF_ConfigSet_t *config_sets;
    405  1.142   thorpej 
    406  1.295       erh 	if (!raidautoconfig || raidautoconfigdone == true)
    407  1.142   thorpej 		return (0);
    408  1.142   thorpej 
    409  1.142   thorpej 	/* XXX This code can only be run once. */
    410  1.295       erh 	raidautoconfigdone = true;
    411  1.142   thorpej 
    412  1.307  christos #ifdef __HAVE_CPU_BOOTCONF
    413  1.307  christos 	/*
    414  1.307  christos 	 * 0. find the boot device if needed first so we can use it later
    415  1.307  christos 	 * this needs to be done before we autoconfigure any raid sets,
    416  1.307  christos 	 * because if we use wedges we are not going to be able to open
    417  1.307  christos 	 * the boot device later
    418  1.307  christos 	 */
    419  1.307  christos 	if (booted_device == NULL)
    420  1.307  christos 		cpu_bootconf();
    421  1.307  christos #endif
    422   1.48     oster 	/* 1. locate all RAID components on the system */
    423  1.258        ad 	aprint_debug("Searching for RAID components...\n");
    424   1.48     oster 	ac_list = rf_find_raid_components();
    425   1.48     oster 
    426  1.142   thorpej 	/* 2. Sort them into their respective sets. */
    427   1.48     oster 	config_sets = rf_create_auto_sets(ac_list);
    428   1.48     oster 
    429  1.142   thorpej 	/*
    430  1.299     oster 	 * 3. Evaluate each set and configure the valid ones.
    431  1.142   thorpej 	 * This gets done in rf_buildroothack().
    432  1.142   thorpej 	 */
    433  1.142   thorpej 	rf_buildroothack(config_sets);
    434   1.48     oster 
    435  1.213  christos 	return 1;
    436   1.48     oster }
    437   1.48     oster 
    438  1.367  christos int
    439  1.367  christos rf_inited(const struct raid_softc *rs) {
    440  1.367  christos 	return (rs->sc_flags & RAIDF_INITED) != 0;
    441  1.367  christos }
    442  1.367  christos 
    443  1.368     oster RF_Raid_t *
    444  1.368     oster rf_get_raid(struct raid_softc *rs) {
    445  1.368     oster 	return &rs->sc_r;
    446  1.368     oster }
    447  1.368     oster 
    448  1.367  christos int
    449  1.367  christos rf_get_unit(const struct raid_softc *rs) {
    450  1.367  christos 	return rs->sc_unit;
    451  1.367  christos }
    452  1.367  christos 
    453  1.306  christos static int
    454  1.307  christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
    455  1.359       bad 	const char *bootname;
    456  1.359       bad 	size_t len;
    457  1.359       bad 
    458  1.359       bad 	/* if bdv is NULL, the set can't contain it. exit early. */
    459  1.359       bad 	if (bdv == NULL)
    460  1.359       bad 		return 0;
    461  1.359       bad 
    462  1.359       bad 	bootname = device_xname(bdv);
    463  1.359       bad 	len = strlen(bootname);
    464  1.306  christos 
    465  1.306  christos 	for (int col = 0; col < r->numCol; col++) {
    466  1.307  christos 		const char *devname = r->Disks[col].devname;
    467  1.306  christos 		devname += sizeof("/dev/") - 1;
    468  1.307  christos 		if (strncmp(devname, "dk", 2) == 0) {
    469  1.307  christos 			const char *parent =
    470  1.307  christos 			    dkwedge_get_parent_name(r->Disks[col].dev);
    471  1.307  christos 			if (parent != NULL)
    472  1.307  christos 				devname = parent;
    473  1.307  christos 		}
    474  1.306  christos 		if (strncmp(devname, bootname, len) == 0) {
    475  1.306  christos 			struct raid_softc *sc = r->softc;
    476  1.306  christos 			aprint_debug("raid%d includes boot device %s\n",
    477  1.306  christos 			    sc->sc_unit, devname);
    478  1.306  christos 			return 1;
    479  1.306  christos 		}
    480  1.306  christos 	}
    481  1.306  christos 	return 0;
    482  1.306  christos }
    483  1.306  christos 
    484   1.48     oster void
    485  1.142   thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
    486   1.48     oster {
    487   1.48     oster 	RF_ConfigSet_t *cset;
    488   1.48     oster 	RF_ConfigSet_t *next_cset;
    489   1.51     oster 	int num_root;
    490  1.300  christos 	struct raid_softc *sc, *rsc;
    491  1.378    martin 	struct dk_softc *dksc = NULL;	/* XXX gcc -Os: may be used uninit. */
    492   1.48     oster 
    493  1.300  christos 	sc = rsc = NULL;
    494   1.51     oster 	num_root = 0;
    495   1.48     oster 	cset = config_sets;
    496  1.271    dyoung 	while (cset != NULL) {
    497   1.48     oster 		next_cset = cset->next;
    498  1.186     perry 		if (rf_have_enough_components(cset) &&
    499  1.300  christos 		    cset->ac->clabel->autoconfigure == 1) {
    500  1.300  christos 			sc = rf_auto_config_set(cset);
    501  1.300  christos 			if (sc != NULL) {
    502  1.359       bad 				aprint_debug("raid%d: configured ok, rootable %d\n",
    503  1.359       bad 				    sc->sc_unit, cset->rootable);
    504   1.51     oster 				if (cset->rootable) {
    505  1.300  christos 					rsc = sc;
    506   1.51     oster 					num_root++;
    507   1.51     oster 				}
    508   1.51     oster 			} else {
    509   1.51     oster 				/* The autoconfig didn't work :( */
    510  1.300  christos 				aprint_debug("Autoconfig failed\n");
    511   1.51     oster 				rf_release_all_vps(cset);
    512   1.48     oster 			}
    513   1.48     oster 		} else {
    514  1.186     perry 			/* we're not autoconfiguring this set...
    515   1.48     oster 			   release the associated resources */
    516   1.49     oster 			rf_release_all_vps(cset);
    517   1.48     oster 		}
    518   1.48     oster 		/* cleanup */
    519   1.49     oster 		rf_cleanup_config_set(cset);
    520   1.48     oster 		cset = next_cset;
    521   1.48     oster 	}
    522  1.122     oster 
    523  1.223     oster 	/* if the user has specified what the root device should be
    524  1.223     oster 	   then we don't touch booted_device or boothowto... */
    525  1.223     oster 
    526  1.359       bad 	if (rootspec != NULL) {
    527  1.359       bad 		DPRINTF("%s: rootspec %s\n", __func__, rootspec);
    528  1.223     oster 		return;
    529  1.359       bad 	}
    530  1.223     oster 
    531  1.122     oster 	/* we found something bootable... */
    532  1.122     oster 
    533  1.310  christos 	/*
    534  1.310  christos 	 * XXX: The following code assumes that the root raid
    535  1.310  christos 	 * is the first ('a') partition. This is about the best
    536  1.310  christos 	 * we can do with a BSD disklabel, but we might be able
    537  1.310  christos 	 * to do better with a GPT label, by setting a specified
    538  1.310  christos 	 * attribute to indicate the root partition. We can then
    539  1.310  christos 	 * stash the partition number in the r->root_partition
    540  1.310  christos 	 * high bits (the bottom 2 bits are already used). For
    541  1.310  christos 	 * now we just set booted_partition to 0 when we override
    542  1.310  christos 	 * root.
    543  1.310  christos 	 */
    544  1.122     oster 	if (num_root == 1) {
    545  1.306  christos 		device_t candidate_root;
    546  1.377      maxv 		dksc = &rsc->sc_dksc;
    547  1.335   mlelstv 		if (dksc->sc_dkdev.dk_nwedges != 0) {
    548  1.297  christos 			char cname[sizeof(cset->ac->devname)];
    549  1.344  christos 			/* XXX: assume partition 'a' first */
    550  1.297  christos 			snprintf(cname, sizeof(cname), "%s%c",
    551  1.335   mlelstv 			    device_xname(dksc->sc_dev), 'a');
    552  1.306  christos 			candidate_root = dkwedge_find_by_wname(cname);
    553  1.344  christos 			DPRINTF("%s: candidate wedge root=%s\n", __func__,
    554  1.344  christos 			    cname);
    555  1.344  christos 			if (candidate_root == NULL) {
    556  1.344  christos 				/*
    557  1.344  christos 				 * If that is not found, because we don't use
    558  1.344  christos 				 * disklabel, return the first dk child
    559  1.344  christos 				 * XXX: we can skip the 'a' check above
    560  1.344  christos 				 * and always do this...
    561  1.344  christos 				 */
    562  1.344  christos 				size_t i = 0;
    563  1.344  christos 				candidate_root = dkwedge_find_by_parent(
    564  1.344  christos 				    device_xname(dksc->sc_dev), &i);
    565  1.344  christos 			}
    566  1.344  christos 			DPRINTF("%s: candidate wedge root=%p\n", __func__,
    567  1.344  christos 			    candidate_root);
    568  1.297  christos 		} else
    569  1.335   mlelstv 			candidate_root = dksc->sc_dev;
    570  1.344  christos 		DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
    571  1.344  christos 		DPRINTF("%s: booted_device=%p root_partition=%d "
    572  1.359       bad 			"contains_boot=%d",
    573  1.359       bad 		    __func__, booted_device, rsc->sc_r.root_partition,
    574  1.359       bad 			   rf_containsboot(&rsc->sc_r, booted_device));
    575  1.359       bad 		/* XXX the check for booted_device == NULL can probably be
    576  1.359       bad 		 * dropped, now that rf_containsboot handles that case.
    577  1.359       bad 		 */
    578  1.308  christos 		if (booted_device == NULL ||
    579  1.308  christos 		    rsc->sc_r.root_partition == 1 ||
    580  1.310  christos 		    rf_containsboot(&rsc->sc_r, booted_device)) {
    581  1.308  christos 			booted_device = candidate_root;
    582  1.351  christos 			booted_method = "raidframe/single";
    583  1.310  christos 			booted_partition = 0;	/* XXX assume 'a' */
    584  1.310  christos 		}
    585  1.122     oster 	} else if (num_root > 1) {
    586  1.344  christos 		DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
    587  1.344  christos 		    booted_device);
    588  1.226     oster 
    589  1.226     oster 		/*
    590  1.226     oster 		 * Maybe the MD code can help. If it cannot, then
    591  1.226     oster 		 * setroot() will discover that we have no
    592  1.226     oster 		 * booted_device and will ask the user if nothing was
    593  1.226     oster 		 * hardwired in the kernel config file
    594  1.226     oster 		 */
    595  1.226     oster 		if (booted_device == NULL)
    596  1.226     oster 			return;
    597  1.226     oster 
    598  1.226     oster 		num_root = 0;
    599  1.300  christos 		mutex_enter(&raid_lock);
    600  1.300  christos 		LIST_FOREACH(sc, &raids, sc_link) {
    601  1.300  christos 			RF_Raid_t *r = &sc->sc_r;
    602  1.300  christos 			if (r->valid == 0)
    603  1.226     oster 				continue;
    604  1.226     oster 
    605  1.300  christos 			if (r->root_partition == 0)
    606  1.226     oster 				continue;
    607  1.226     oster 
    608  1.306  christos 			if (rf_containsboot(r, booted_device)) {
    609  1.226     oster 				num_root++;
    610  1.300  christos 				rsc = sc;
    611  1.335   mlelstv 				dksc = &rsc->sc_dksc;
    612  1.226     oster 			}
    613  1.226     oster 		}
    614  1.300  christos 		mutex_exit(&raid_lock);
    615  1.295       erh 
    616  1.226     oster 		if (num_root == 1) {
    617  1.335   mlelstv 			booted_device = dksc->sc_dev;
    618  1.351  christos 			booted_method = "raidframe/multi";
    619  1.310  christos 			booted_partition = 0;	/* XXX assume 'a' */
    620  1.226     oster 		} else {
    621  1.226     oster 			/* we can't guess.. require the user to answer... */
    622  1.226     oster 			boothowto |= RB_ASKNAME;
    623  1.226     oster 		}
    624   1.51     oster 	}
    625    1.1     oster }
    626    1.1     oster 
    627  1.324       mrg static int
    628  1.169     oster raidsize(dev_t dev)
    629    1.1     oster {
    630    1.1     oster 	struct raid_softc *rs;
    631  1.335   mlelstv 	struct dk_softc *dksc;
    632  1.335   mlelstv 	unsigned int unit;
    633    1.1     oster 
    634    1.1     oster 	unit = raidunit(dev);
    635  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    636  1.336   mlelstv 		return -1;
    637  1.335   mlelstv 	dksc = &rs->sc_dksc;
    638  1.335   mlelstv 
    639    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    640  1.336   mlelstv 		return -1;
    641    1.1     oster 
    642  1.335   mlelstv 	return dk_size(dksc, dev);
    643  1.335   mlelstv }
    644    1.1     oster 
    645  1.335   mlelstv static int
    646  1.335   mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    647  1.335   mlelstv {
    648  1.335   mlelstv 	unsigned int unit;
    649  1.335   mlelstv 	struct raid_softc *rs;
    650  1.335   mlelstv 	struct dk_softc *dksc;
    651    1.1     oster 
    652  1.335   mlelstv 	unit = raidunit(dev);
    653  1.335   mlelstv 	if ((rs = raidget(unit, false)) == NULL)
    654  1.335   mlelstv 		return ENXIO;
    655  1.335   mlelstv 	dksc = &rs->sc_dksc;
    656    1.1     oster 
    657  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    658  1.335   mlelstv 		return ENODEV;
    659    1.1     oster 
    660  1.336   mlelstv         /*
    661  1.336   mlelstv            Note that blkno is relative to this particular partition.
    662  1.336   mlelstv            By adding adding RF_PROTECTED_SECTORS, we get a value that
    663  1.336   mlelstv 	   is relative to the partition used for the underlying component.
    664  1.336   mlelstv         */
    665  1.336   mlelstv 	blkno += RF_PROTECTED_SECTORS;
    666  1.336   mlelstv 
    667  1.380  riastrad 	return dk_dump(dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE);
    668    1.1     oster }
    669    1.1     oster 
    670  1.324       mrg static int
    671  1.335   mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
    672    1.1     oster {
    673  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(dev);
    674  1.231     oster 	const struct bdevsw *bdev;
    675  1.231     oster 	RF_Raid_t *raidPtr;
    676  1.335   mlelstv 	int     c, sparecol, j, scol, dumpto;
    677  1.231     oster 	int     error = 0;
    678  1.231     oster 
    679  1.300  christos 	raidPtr = &rs->sc_r;
    680  1.231     oster 
    681  1.231     oster 	/* we only support dumping to RAID 1 sets */
    682  1.231     oster 	if (raidPtr->Layout.numDataCol != 1 ||
    683  1.231     oster 	    raidPtr->Layout.numParityCol != 1)
    684  1.231     oster 		return EINVAL;
    685  1.231     oster 
    686  1.231     oster 	if ((error = raidlock(rs)) != 0)
    687  1.231     oster 		return error;
    688  1.231     oster 
    689  1.231     oster 	/* figure out what device is alive.. */
    690  1.231     oster 
    691  1.231     oster 	/*
    692  1.231     oster 	   Look for a component to dump to.  The preference for the
    693  1.231     oster 	   component to dump to is as follows:
    694  1.383     oster 	   1) the first component
    695  1.383     oster 	   2) a used_spare of the first component
    696  1.383     oster 	   3) the second component
    697  1.383     oster 	   4) a used_spare of the second component
    698  1.231     oster 	*/
    699  1.231     oster 
    700  1.231     oster 	dumpto = -1;
    701  1.231     oster 	for (c = 0; c < raidPtr->numCol; c++) {
    702  1.231     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    703  1.231     oster 			/* this might be the one */
    704  1.231     oster 			dumpto = c;
    705  1.231     oster 			break;
    706  1.231     oster 		}
    707  1.231     oster 	}
    708  1.231     oster 
    709  1.231     oster 	/*
    710  1.383     oster 	   At this point we have possibly selected a live component.
    711  1.383     oster 	   If we didn't find a live ocmponent, we now check to see
    712  1.383     oster 	   if there is a relevant spared component.
    713  1.231     oster 	*/
    714  1.231     oster 
    715  1.231     oster 	for (c = 0; c < raidPtr->numSpare; c++) {
    716  1.231     oster 		sparecol = raidPtr->numCol + c;
    717  1.231     oster 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    718  1.231     oster 			/* How about this one? */
    719  1.231     oster 			scol = -1;
    720  1.231     oster 			for(j=0;j<raidPtr->numCol;j++) {
    721  1.231     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
    722  1.231     oster 					scol = j;
    723  1.231     oster 					break;
    724  1.231     oster 				}
    725  1.231     oster 			}
    726  1.231     oster 			if (scol == 0) {
    727  1.231     oster 				/*
    728  1.383     oster 				   We must have found a spared first
    729  1.383     oster 				   component!  We'll take that over
    730  1.383     oster 				   anything else found so far.  (We
    731  1.383     oster 				   couldn't have found a real first
    732  1.383     oster 				   component before, since this is a
    733  1.383     oster 				   used spare, and it's saying that
    734  1.383     oster 				   it's replacing the first
    735  1.383     oster 				   component.)  On reboot (with
    736  1.231     oster 				   autoconfiguration turned on)
    737  1.383     oster 				   sparecol will become the first
    738  1.383     oster 				   component (component0) of this set.
    739  1.231     oster 				*/
    740  1.231     oster 				dumpto = sparecol;
    741  1.231     oster 				break;
    742  1.231     oster 			} else if (scol != -1) {
    743  1.231     oster 				/*
    744  1.383     oster 				   Must be a spared second component.
    745  1.383     oster 				   We'll dump to that if we havn't found
    746  1.383     oster 				   anything else so far.
    747  1.231     oster 				*/
    748  1.231     oster 				if (dumpto == -1)
    749  1.231     oster 					dumpto = sparecol;
    750  1.231     oster 			}
    751  1.231     oster 		}
    752  1.231     oster 	}
    753  1.231     oster 
    754  1.231     oster 	if (dumpto == -1) {
    755  1.231     oster 		/* we couldn't find any live components to dump to!?!?
    756  1.231     oster 		 */
    757  1.231     oster 		error = EINVAL;
    758  1.231     oster 		goto out;
    759  1.231     oster 	}
    760  1.231     oster 
    761  1.231     oster 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    762  1.342   mlelstv 	if (bdev == NULL) {
    763  1.342   mlelstv 		error = ENXIO;
    764  1.342   mlelstv 		goto out;
    765  1.342   mlelstv 	}
    766  1.231     oster 
    767  1.231     oster 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    768  1.336   mlelstv 				blkno, va, nblk * raidPtr->bytesPerSector);
    769  1.231     oster 
    770  1.231     oster out:
    771  1.231     oster 	raidunlock(rs);
    772  1.231     oster 
    773  1.231     oster 	return error;
    774    1.1     oster }
    775  1.324       mrg 
    776    1.1     oster /* ARGSUSED */
    777  1.324       mrg static int
    778  1.222  christos raidopen(dev_t dev, int flags, int fmt,
    779  1.222  christos     struct lwp *l)
    780    1.1     oster {
    781    1.9     oster 	int     unit = raidunit(dev);
    782    1.1     oster 	struct raid_softc *rs;
    783  1.335   mlelstv 	struct dk_softc *dksc;
    784  1.335   mlelstv 	int     error = 0;
    785    1.9     oster 	int     part, pmask;
    786    1.9     oster 
    787  1.327  pgoyette 	if ((rs = raidget(unit, true)) == NULL)
    788  1.300  christos 		return ENXIO;
    789    1.1     oster 	if ((error = raidlock(rs)) != 0)
    790    1.9     oster 		return (error);
    791  1.266    dyoung 
    792  1.266    dyoung 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
    793  1.266    dyoung 		error = EBUSY;
    794  1.266    dyoung 		goto bad;
    795  1.266    dyoung 	}
    796  1.266    dyoung 
    797  1.335   mlelstv 	dksc = &rs->sc_dksc;
    798    1.1     oster 
    799    1.1     oster 	part = DISKPART(dev);
    800    1.1     oster 	pmask = (1 << part);
    801    1.1     oster 
    802  1.335   mlelstv 	if (!DK_BUSY(dksc, pmask) &&
    803   1.13     oster 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    804   1.13     oster 		/* First one... mark things as dirty... Note that we *MUST*
    805   1.13     oster 		 have done a configure before this.  I DO NOT WANT TO BE
    806   1.13     oster 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    807   1.13     oster 		 THAT THEY BELONG TOGETHER!!!!! */
    808   1.13     oster 		/* XXX should check to see if we're only open for reading
    809   1.13     oster 		   here... If so, we needn't do this, but then need some
    810   1.13     oster 		   other way of keeping track of what's happened.. */
    811   1.13     oster 
    812  1.300  christos 		rf_markalldirty(&rs->sc_r);
    813   1.13     oster 	}
    814   1.13     oster 
    815  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) != 0)
    816  1.335   mlelstv 		error = dk_open(dksc, dev, flags, fmt, l);
    817    1.1     oster 
    818  1.213  christos bad:
    819    1.1     oster 	raidunlock(rs);
    820    1.1     oster 
    821    1.9     oster 	return (error);
    822    1.1     oster 
    823    1.1     oster 
    824    1.1     oster }
    825  1.324       mrg 
    826  1.335   mlelstv static int
    827  1.335   mlelstv raid_lastclose(device_t self)
    828  1.335   mlelstv {
    829  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(self);
    830  1.335   mlelstv 
    831  1.335   mlelstv 	/* Last one... device is not unconfigured yet.
    832  1.335   mlelstv 	   Device shutdown has taken care of setting the
    833  1.335   mlelstv 	   clean bits if RAIDF_INITED is not set
    834  1.335   mlelstv 	   mark things as clean... */
    835  1.335   mlelstv 
    836  1.335   mlelstv 	rf_update_component_labels(&rs->sc_r,
    837  1.335   mlelstv 	    RF_FINAL_COMPONENT_UPDATE);
    838  1.335   mlelstv 
    839  1.335   mlelstv 	/* pass to unlocked code */
    840  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
    841  1.335   mlelstv 		rs->sc_flags |= RAIDF_DETACH;
    842  1.335   mlelstv 
    843  1.335   mlelstv 	return 0;
    844  1.335   mlelstv }
    845  1.335   mlelstv 
    846    1.1     oster /* ARGSUSED */
    847  1.324       mrg static int
    848  1.222  christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    849    1.1     oster {
    850    1.9     oster 	int     unit = raidunit(dev);
    851    1.1     oster 	struct raid_softc *rs;
    852  1.335   mlelstv 	struct dk_softc *dksc;
    853  1.335   mlelstv 	cfdata_t cf;
    854  1.335   mlelstv 	int     error = 0, do_detach = 0, do_put = 0;
    855    1.1     oster 
    856  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    857  1.300  christos 		return ENXIO;
    858  1.335   mlelstv 	dksc = &rs->sc_dksc;
    859    1.1     oster 
    860    1.1     oster 	if ((error = raidlock(rs)) != 0)
    861    1.1     oster 		return (error);
    862    1.1     oster 
    863  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) != 0) {
    864  1.335   mlelstv 		error = dk_close(dksc, dev, flags, fmt, l);
    865  1.335   mlelstv 		if ((rs->sc_flags & RAIDF_DETACH) != 0)
    866  1.335   mlelstv 			do_detach = 1;
    867  1.335   mlelstv 	} else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
    868  1.335   mlelstv 		do_put = 1;
    869    1.1     oster 
    870  1.335   mlelstv 	raidunlock(rs);
    871    1.1     oster 
    872  1.335   mlelstv 	if (do_detach) {
    873  1.335   mlelstv 		/* free the pseudo device attach bits */
    874  1.335   mlelstv 		cf = device_cfdata(dksc->sc_dev);
    875  1.335   mlelstv 		error = config_detach(dksc->sc_dev, 0);
    876  1.335   mlelstv 		if (error == 0)
    877  1.335   mlelstv 			free(cf, M_RAIDFRAME);
    878  1.335   mlelstv 	} else if (do_put) {
    879  1.335   mlelstv 		raidput(rs);
    880    1.1     oster 	}
    881  1.186     perry 
    882  1.335   mlelstv 	return (error);
    883  1.147     oster 
    884  1.335   mlelstv }
    885  1.327  pgoyette 
    886  1.335   mlelstv static void
    887  1.335   mlelstv raid_wakeup(RF_Raid_t *raidPtr)
    888  1.335   mlelstv {
    889  1.335   mlelstv 	rf_lock_mutex2(raidPtr->iodone_lock);
    890  1.335   mlelstv 	rf_signal_cond2(raidPtr->iodone_cv);
    891  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->iodone_lock);
    892    1.1     oster }
    893    1.1     oster 
    894  1.324       mrg static void
    895  1.169     oster raidstrategy(struct buf *bp)
    896    1.1     oster {
    897  1.335   mlelstv 	unsigned int unit;
    898  1.335   mlelstv 	struct raid_softc *rs;
    899  1.335   mlelstv 	struct dk_softc *dksc;
    900    1.1     oster 	RF_Raid_t *raidPtr;
    901    1.1     oster 
    902  1.335   mlelstv 	unit = raidunit(bp->b_dev);
    903  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL) {
    904   1.30     oster 		bp->b_error = ENXIO;
    905  1.335   mlelstv 		goto fail;
    906   1.30     oster 	}
    907  1.300  christos 	if ((rs->sc_flags & RAIDF_INITED) == 0) {
    908  1.300  christos 		bp->b_error = ENXIO;
    909  1.335   mlelstv 		goto fail;
    910    1.1     oster 	}
    911  1.335   mlelstv 	dksc = &rs->sc_dksc;
    912  1.300  christos 	raidPtr = &rs->sc_r;
    913  1.335   mlelstv 
    914  1.335   mlelstv 	/* Queue IO only */
    915  1.335   mlelstv 	if (dk_strategy_defer(dksc, bp))
    916  1.196      yamt 		goto done;
    917    1.1     oster 
    918  1.335   mlelstv 	/* schedule the IO to happen at the next convenient time */
    919  1.335   mlelstv 	raid_wakeup(raidPtr);
    920  1.335   mlelstv 
    921  1.335   mlelstv done:
    922  1.335   mlelstv 	return;
    923  1.335   mlelstv 
    924  1.335   mlelstv fail:
    925  1.335   mlelstv 	bp->b_resid = bp->b_bcount;
    926  1.335   mlelstv 	biodone(bp);
    927  1.335   mlelstv }
    928  1.335   mlelstv 
    929  1.335   mlelstv static int
    930  1.335   mlelstv raid_diskstart(device_t dev, struct buf *bp)
    931  1.335   mlelstv {
    932  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(dev);
    933  1.335   mlelstv 	RF_Raid_t *raidPtr;
    934    1.1     oster 
    935  1.335   mlelstv 	raidPtr = &rs->sc_r;
    936  1.335   mlelstv 	if (!raidPtr->valid) {
    937  1.335   mlelstv 		db1_printf(("raid is not valid..\n"));
    938  1.335   mlelstv 		return ENODEV;
    939  1.196      yamt 	}
    940  1.285       mrg 
    941  1.335   mlelstv 	/* XXX */
    942  1.335   mlelstv 	bp->b_resid = 0;
    943  1.335   mlelstv 
    944  1.335   mlelstv 	return raiddoaccess(raidPtr, bp);
    945  1.335   mlelstv }
    946    1.1     oster 
    947  1.335   mlelstv void
    948  1.335   mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
    949  1.335   mlelstv {
    950  1.335   mlelstv 	struct raid_softc *rs;
    951  1.335   mlelstv 	struct dk_softc *dksc;
    952   1.34     oster 
    953  1.335   mlelstv 	rs = raidPtr->softc;
    954  1.335   mlelstv 	dksc = &rs->sc_dksc;
    955   1.34     oster 
    956  1.335   mlelstv 	dk_done(dksc, bp);
    957   1.34     oster 
    958  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
    959  1.335   mlelstv 	raidPtr->openings++;
    960  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
    961  1.196      yamt 
    962  1.335   mlelstv 	/* schedule more IO */
    963  1.335   mlelstv 	raid_wakeup(raidPtr);
    964    1.1     oster }
    965  1.324       mrg 
    966    1.1     oster /* ARGSUSED */
    967  1.324       mrg static int
    968  1.222  christos raidread(dev_t dev, struct uio *uio, int flags)
    969    1.1     oster {
    970    1.9     oster 	int     unit = raidunit(dev);
    971    1.1     oster 	struct raid_softc *rs;
    972    1.1     oster 
    973  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    974  1.300  christos 		return ENXIO;
    975    1.1     oster 
    976    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    977    1.1     oster 		return (ENXIO);
    978    1.1     oster 
    979    1.1     oster 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    980    1.1     oster 
    981    1.1     oster }
    982  1.324       mrg 
    983    1.1     oster /* ARGSUSED */
    984  1.324       mrg static int
    985  1.222  christos raidwrite(dev_t dev, struct uio *uio, int flags)
    986    1.1     oster {
    987    1.9     oster 	int     unit = raidunit(dev);
    988    1.1     oster 	struct raid_softc *rs;
    989    1.1     oster 
    990  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    991  1.300  christos 		return ENXIO;
    992    1.1     oster 
    993    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    994    1.1     oster 		return (ENXIO);
    995  1.147     oster 
    996    1.1     oster 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    997    1.1     oster 
    998    1.1     oster }
    999    1.1     oster 
   1000  1.266    dyoung static int
   1001  1.266    dyoung raid_detach_unlocked(struct raid_softc *rs)
   1002  1.266    dyoung {
   1003  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   1004  1.335   mlelstv 	RF_Raid_t *raidPtr;
   1005  1.266    dyoung 	int error;
   1006  1.266    dyoung 
   1007  1.300  christos 	raidPtr = &rs->sc_r;
   1008  1.266    dyoung 
   1009  1.337   mlelstv 	if (DK_BUSY(dksc, 0) ||
   1010  1.337   mlelstv 	    raidPtr->recon_in_progress != 0 ||
   1011  1.337   mlelstv 	    raidPtr->parity_rewrite_in_progress != 0 ||
   1012  1.337   mlelstv 	    raidPtr->copyback_in_progress != 0)
   1013  1.266    dyoung 		return EBUSY;
   1014  1.266    dyoung 
   1015  1.266    dyoung 	if ((rs->sc_flags & RAIDF_INITED) == 0)
   1016  1.333   mlelstv 		return 0;
   1017  1.333   mlelstv 
   1018  1.333   mlelstv 	rs->sc_flags &= ~RAIDF_SHUTDOWN;
   1019  1.333   mlelstv 
   1020  1.333   mlelstv 	if ((error = rf_Shutdown(raidPtr)) != 0)
   1021  1.266    dyoung 		return error;
   1022  1.266    dyoung 
   1023  1.335   mlelstv 	rs->sc_flags &= ~RAIDF_INITED;
   1024  1.335   mlelstv 
   1025  1.335   mlelstv 	/* Kill off any queued buffers */
   1026  1.335   mlelstv 	dk_drain(dksc);
   1027  1.335   mlelstv 	bufq_free(dksc->sc_bufq);
   1028  1.335   mlelstv 
   1029  1.266    dyoung 	/* Detach the disk. */
   1030  1.335   mlelstv 	dkwedge_delall(&dksc->sc_dkdev);
   1031  1.335   mlelstv 	disk_detach(&dksc->sc_dkdev);
   1032  1.335   mlelstv 	disk_destroy(&dksc->sc_dkdev);
   1033  1.335   mlelstv 	dk_detach(dksc);
   1034  1.333   mlelstv 
   1035  1.266    dyoung 	return 0;
   1036  1.266    dyoung }
   1037  1.266    dyoung 
   1038  1.366  christos static bool
   1039  1.366  christos rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
   1040  1.366  christos {
   1041  1.366  christos 	switch (cmd) {
   1042  1.366  christos 	case RAIDFRAME_ADD_HOT_SPARE:
   1043  1.366  christos 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1044  1.366  christos 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1045  1.366  christos 	case RAIDFRAME_CHECK_PARITY:
   1046  1.366  christos 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1047  1.366  christos 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1048  1.366  christos 	case RAIDFRAME_CHECK_RECON_STATUS:
   1049  1.366  christos 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1050  1.366  christos 	case RAIDFRAME_COPYBACK:
   1051  1.366  christos 	case RAIDFRAME_DELETE_COMPONENT:
   1052  1.366  christos 	case RAIDFRAME_FAIL_DISK:
   1053  1.366  christos 	case RAIDFRAME_GET_ACCTOTALS:
   1054  1.366  christos 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1055  1.366  christos 	case RAIDFRAME_GET_INFO:
   1056  1.366  christos 	case RAIDFRAME_GET_SIZE:
   1057  1.366  christos 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1058  1.366  christos 	case RAIDFRAME_INIT_LABELS:
   1059  1.366  christos 	case RAIDFRAME_KEEP_ACCTOTALS:
   1060  1.366  christos 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1061  1.366  christos 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1062  1.366  christos 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1063  1.366  christos 	case RAIDFRAME_PARITYMAP_STATUS:
   1064  1.366  christos 	case RAIDFRAME_REBUILD_IN_PLACE:
   1065  1.366  christos 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1066  1.366  christos 	case RAIDFRAME_RESET_ACCTOTALS:
   1067  1.366  christos 	case RAIDFRAME_REWRITEPARITY:
   1068  1.366  christos 	case RAIDFRAME_SET_AUTOCONFIG:
   1069  1.366  christos 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1070  1.366  christos 	case RAIDFRAME_SET_ROOT:
   1071  1.369     oster 		return (rs->sc_flags & RAIDF_INITED) == 0;
   1072  1.366  christos 	}
   1073  1.366  christos 	return false;
   1074  1.366  christos }
   1075  1.366  christos 
   1076  1.366  christos int
   1077  1.366  christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
   1078  1.366  christos {
   1079  1.366  christos 	struct rf_recon_req_internal *rrint;
   1080  1.366  christos 
   1081  1.366  christos 	if (raidPtr->Layout.map->faultsTolerated == 0) {
   1082  1.366  christos 		/* Can't do this on a RAID 0!! */
   1083  1.366  christos 		return EINVAL;
   1084  1.366  christos 	}
   1085  1.366  christos 
   1086  1.366  christos 	if (rr->col < 0 || rr->col >= raidPtr->numCol) {
   1087  1.366  christos 		/* bad column */
   1088  1.366  christos 		return EINVAL;
   1089  1.366  christos 	}
   1090  1.366  christos 
   1091  1.366  christos 	rf_lock_mutex2(raidPtr->mutex);
   1092  1.366  christos 	if (raidPtr->status == rf_rs_reconstructing) {
   1093  1.366  christos 		/* you can't fail a disk while we're reconstructing! */
   1094  1.366  christos 		/* XXX wrong for RAID6 */
   1095  1.366  christos 		goto out;
   1096  1.366  christos 	}
   1097  1.366  christos 	if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
   1098  1.366  christos 	    (raidPtr->numFailures > 0)) {
   1099  1.366  christos 		/* some other component has failed.  Let's not make
   1100  1.366  christos 		   things worse. XXX wrong for RAID6 */
   1101  1.366  christos 		goto out;
   1102  1.366  christos 	}
   1103  1.366  christos 	if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1104  1.366  christos 		/* Can't fail a spared disk! */
   1105  1.366  christos 		goto out;
   1106  1.366  christos 	}
   1107  1.366  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1108  1.366  christos 
   1109  1.366  christos 	/* make a copy of the recon request so that we don't rely on
   1110  1.366  christos 	 * the user's buffer */
   1111  1.374  christos 	rrint = RF_Malloc(sizeof(*rrint));
   1112  1.366  christos 	if (rrint == NULL)
   1113  1.366  christos 		return(ENOMEM);
   1114  1.366  christos 	rrint->col = rr->col;
   1115  1.366  christos 	rrint->flags = rr->flags;
   1116  1.366  christos 	rrint->raidPtr = raidPtr;
   1117  1.366  christos 
   1118  1.366  christos 	return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
   1119  1.366  christos 	    rrint, "raid_recon");
   1120  1.366  christos out:
   1121  1.366  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1122  1.366  christos 	return EINVAL;
   1123  1.366  christos }
   1124  1.366  christos 
   1125  1.324       mrg static int
   1126  1.367  christos rf_copyinspecificbuf(RF_Config_t *k_cfg)
   1127  1.367  christos {
   1128  1.367  christos 	/* allocate a buffer for the layout-specific data, and copy it in */
   1129  1.367  christos 	if (k_cfg->layoutSpecificSize == 0)
   1130  1.367  christos 		return 0;
   1131  1.367  christos 
   1132  1.367  christos 	if (k_cfg->layoutSpecificSize > 10000) {
   1133  1.367  christos 	    /* sanity check */
   1134  1.367  christos 	    return EINVAL;
   1135  1.367  christos 	}
   1136  1.367  christos 
   1137  1.367  christos 	u_char *specific_buf;
   1138  1.374  christos 	specific_buf =  RF_Malloc(k_cfg->layoutSpecificSize);
   1139  1.367  christos 	if (specific_buf == NULL)
   1140  1.367  christos 		return ENOMEM;
   1141  1.367  christos 
   1142  1.367  christos 	int retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1143  1.367  christos 	    k_cfg->layoutSpecificSize);
   1144  1.367  christos 	if (retcode) {
   1145  1.367  christos 		RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1146  1.367  christos 		db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode));
   1147  1.367  christos 		return retcode;
   1148  1.367  christos 	}
   1149  1.367  christos 
   1150  1.367  christos 	k_cfg->layoutSpecific = specific_buf;
   1151  1.367  christos 	return 0;
   1152  1.367  christos }
   1153  1.367  christos 
   1154  1.367  christos static int
   1155  1.367  christos rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg)
   1156  1.367  christos {
   1157  1.372  christos 	RF_Config_t *u_cfg = *((RF_Config_t **) data);
   1158  1.372  christos 
   1159  1.367  christos 	if (rs->sc_r.valid) {
   1160  1.367  christos 		/* There is a valid RAID set running on this unit! */
   1161  1.367  christos 		printf("raid%d: Device already configured!\n", rs->sc_unit);
   1162  1.367  christos 		return EINVAL;
   1163  1.367  christos 	}
   1164  1.367  christos 
   1165  1.367  christos 	/* copy-in the configuration information */
   1166  1.367  christos 	/* data points to a pointer to the configuration structure */
   1167  1.374  christos 	*k_cfg = RF_Malloc(sizeof(**k_cfg));
   1168  1.367  christos 	if (*k_cfg == NULL) {
   1169  1.367  christos 		return ENOMEM;
   1170  1.367  christos 	}
   1171  1.373  christos 	int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t));
   1172  1.367  christos 	if (retcode == 0)
   1173  1.367  christos 		return 0;
   1174  1.367  christos 	RF_Free(*k_cfg, sizeof(RF_Config_t));
   1175  1.367  christos 	db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode));
   1176  1.367  christos 	rs->sc_flags |= RAIDF_SHUTDOWN;
   1177  1.367  christos 	return retcode;
   1178  1.367  christos }
   1179  1.367  christos 
   1180  1.367  christos int
   1181  1.367  christos rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg)
   1182  1.367  christos {
   1183  1.367  christos 	int retcode;
   1184  1.367  christos 	RF_Raid_t *raidPtr = &rs->sc_r;
   1185  1.367  christos 
   1186  1.367  christos 	rs->sc_flags &= ~RAIDF_SHUTDOWN;
   1187  1.367  christos 
   1188  1.367  christos 	if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0)
   1189  1.367  christos 		goto out;
   1190  1.367  christos 
   1191  1.367  christos 	/* should do some kind of sanity check on the configuration.
   1192  1.367  christos 	 * Store the sum of all the bytes in the last byte? */
   1193  1.367  christos 
   1194  1.367  christos 	/* configure the system */
   1195  1.367  christos 
   1196  1.367  christos 	/*
   1197  1.367  christos 	 * Clear the entire RAID descriptor, just to make sure
   1198  1.367  christos 	 *  there is no stale data left in the case of a
   1199  1.367  christos 	 *  reconfiguration
   1200  1.367  christos 	 */
   1201  1.367  christos 	memset(raidPtr, 0, sizeof(*raidPtr));
   1202  1.367  christos 	raidPtr->softc = rs;
   1203  1.367  christos 	raidPtr->raidid = rs->sc_unit;
   1204  1.367  christos 
   1205  1.367  christos 	retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1206  1.367  christos 
   1207  1.367  christos 	if (retcode == 0) {
   1208  1.367  christos 		/* allow this many simultaneous IO's to
   1209  1.367  christos 		   this RAID device */
   1210  1.367  christos 		raidPtr->openings = RAIDOUTSTANDING;
   1211  1.367  christos 
   1212  1.367  christos 		raidinit(rs);
   1213  1.367  christos 		raid_wakeup(raidPtr);
   1214  1.367  christos 		rf_markalldirty(raidPtr);
   1215  1.367  christos 	}
   1216  1.367  christos 
   1217  1.367  christos 	/* free the buffers.  No return code here. */
   1218  1.367  christos 	if (k_cfg->layoutSpecificSize) {
   1219  1.367  christos 		RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize);
   1220  1.367  christos 	}
   1221  1.367  christos out:
   1222  1.367  christos 	RF_Free(k_cfg, sizeof(RF_Config_t));
   1223  1.367  christos 	if (retcode) {
   1224  1.367  christos 		/*
   1225  1.367  christos 		 * If configuration failed, set sc_flags so that we
   1226  1.367  christos 		 * will detach the device when we close it.
   1227  1.367  christos 		 */
   1228  1.367  christos 		rs->sc_flags |= RAIDF_SHUTDOWN;
   1229  1.367  christos 	}
   1230  1.367  christos 	return retcode;
   1231  1.367  christos }
   1232  1.367  christos 
   1233  1.367  christos #if RF_DISABLED
   1234  1.367  christos static int
   1235  1.367  christos rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   1236  1.367  christos {
   1237  1.367  christos 
   1238  1.367  christos 	/* XXX check the label for valid stuff... */
   1239  1.367  christos 	/* Note that some things *should not* get modified --
   1240  1.367  christos 	   the user should be re-initing the labels instead of
   1241  1.367  christos 	   trying to patch things.
   1242  1.367  christos 	   */
   1243  1.367  christos #ifdef DEBUG
   1244  1.367  christos 	int raidid = raidPtr->raidid;
   1245  1.367  christos 	printf("raid%d: Got component label:\n", raidid);
   1246  1.367  christos 	printf("raid%d: Version: %d\n", raidid, clabel->version);
   1247  1.367  christos 	printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1248  1.367  christos 	printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1249  1.367  christos 	printf("raid%d: Column: %d\n", raidid, clabel->column);
   1250  1.367  christos 	printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1251  1.367  christos 	printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1252  1.367  christos 	printf("raid%d: Status: %d\n", raidid, clabel->status);
   1253  1.367  christos #endif	/* DEBUG */
   1254  1.367  christos 	clabel->row = 0;
   1255  1.367  christos 	int column = clabel->column;
   1256  1.367  christos 
   1257  1.367  christos 	if ((column < 0) || (column >= raidPtr->numCol)) {
   1258  1.367  christos 		return(EINVAL);
   1259  1.367  christos 	}
   1260  1.367  christos 
   1261  1.367  christos 	/* XXX this isn't allowed to do anything for now :-) */
   1262  1.367  christos 
   1263  1.367  christos 	/* XXX and before it is, we need to fill in the rest
   1264  1.367  christos 	   of the fields!?!?!?! */
   1265  1.367  christos 	memcpy(raidget_component_label(raidPtr, column),
   1266  1.367  christos 	    clabel, sizeof(*clabel));
   1267  1.367  christos 	raidflush_component_label(raidPtr, column);
   1268  1.367  christos 	return 0;
   1269  1.367  christos }
   1270  1.367  christos #endif
   1271  1.367  christos 
   1272  1.367  christos static int
   1273  1.367  christos rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   1274  1.367  christos {
   1275  1.367  christos 	/*
   1276  1.367  christos 	   we only want the serial number from
   1277  1.367  christos 	   the above.  We get all the rest of the information
   1278  1.367  christos 	   from the config that was used to create this RAID
   1279  1.367  christos 	   set.
   1280  1.367  christos 	   */
   1281  1.367  christos 
   1282  1.367  christos 	raidPtr->serial_number = clabel->serial_number;
   1283  1.367  christos 
   1284  1.367  christos 	for (int column = 0; column < raidPtr->numCol; column++) {
   1285  1.367  christos 		RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column];
   1286  1.367  christos 		if (RF_DEAD_DISK(diskPtr->status))
   1287  1.367  christos 			continue;
   1288  1.367  christos 		RF_ComponentLabel_t *ci_label = raidget_component_label(
   1289  1.367  christos 		    raidPtr, column);
   1290  1.367  christos 		/* Zeroing this is important. */
   1291  1.367  christos 		memset(ci_label, 0, sizeof(*ci_label));
   1292  1.367  christos 		raid_init_component_label(raidPtr, ci_label);
   1293  1.367  christos 		ci_label->serial_number = raidPtr->serial_number;
   1294  1.367  christos 		ci_label->row = 0; /* we dont' pretend to support more */
   1295  1.367  christos 		rf_component_label_set_partitionsize(ci_label,
   1296  1.367  christos 		    diskPtr->partitionSize);
   1297  1.367  christos 		ci_label->column = column;
   1298  1.367  christos 		raidflush_component_label(raidPtr, column);
   1299  1.367  christos 		/* XXXjld what about the spares? */
   1300  1.367  christos 	}
   1301  1.367  christos 
   1302  1.367  christos 	return 0;
   1303  1.367  christos }
   1304  1.367  christos 
   1305  1.367  christos static int
   1306  1.367  christos rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr)
   1307  1.367  christos {
   1308  1.367  christos 
   1309  1.367  christos 	if (raidPtr->Layout.map->faultsTolerated == 0) {
   1310  1.367  christos 		/* Can't do this on a RAID 0!! */
   1311  1.367  christos 		return EINVAL;
   1312  1.367  christos 	}
   1313  1.367  christos 
   1314  1.367  christos 	if (raidPtr->recon_in_progress == 1) {
   1315  1.367  christos 		/* a reconstruct is already in progress! */
   1316  1.367  christos 		return EINVAL;
   1317  1.367  christos 	}
   1318  1.367  christos 
   1319  1.367  christos 	RF_SingleComponent_t component;
   1320  1.367  christos 	memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
   1321  1.367  christos 	component.row = 0; /* we don't support any more */
   1322  1.367  christos 	int column = component.column;
   1323  1.367  christos 
   1324  1.367  christos 	if ((column < 0) || (column >= raidPtr->numCol)) {
   1325  1.367  christos 		return EINVAL;
   1326  1.367  christos 	}
   1327  1.367  christos 
   1328  1.367  christos 	rf_lock_mutex2(raidPtr->mutex);
   1329  1.367  christos 	if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1330  1.367  christos 	    (raidPtr->numFailures > 0)) {
   1331  1.367  christos 		/* XXX 0 above shouldn't be constant!!! */
   1332  1.367  christos 		/* some component other than this has failed.
   1333  1.367  christos 		   Let's not make things worse than they already
   1334  1.367  christos 		   are... */
   1335  1.367  christos 		printf("raid%d: Unable to reconstruct to disk at:\n",
   1336  1.367  christos 		       raidPtr->raidid);
   1337  1.367  christos 		printf("raid%d:     Col: %d   Too many failures.\n",
   1338  1.367  christos 		       raidPtr->raidid, column);
   1339  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1340  1.367  christos 		return EINVAL;
   1341  1.367  christos 	}
   1342  1.367  christos 
   1343  1.367  christos 	if (raidPtr->Disks[column].status == rf_ds_reconstructing) {
   1344  1.367  christos 		printf("raid%d: Unable to reconstruct to disk at:\n",
   1345  1.367  christos 		       raidPtr->raidid);
   1346  1.367  christos 		printf("raid%d:    Col: %d   "
   1347  1.367  christos 		    "Reconstruction already occurring!\n",
   1348  1.367  christos 		    raidPtr->raidid, column);
   1349  1.367  christos 
   1350  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1351  1.367  christos 		return EINVAL;
   1352  1.367  christos 	}
   1353  1.367  christos 
   1354  1.367  christos 	if (raidPtr->Disks[column].status == rf_ds_spared) {
   1355  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1356  1.367  christos 		return EINVAL;
   1357  1.367  christos 	}
   1358  1.367  christos 
   1359  1.367  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1360  1.367  christos 
   1361  1.367  christos 	struct rf_recon_req_internal *rrint;
   1362  1.374  christos 	rrint = RF_Malloc(sizeof(*rrint));
   1363  1.367  christos 	if (rrint == NULL)
   1364  1.367  christos 		return ENOMEM;
   1365  1.367  christos 
   1366  1.367  christos 	rrint->col = column;
   1367  1.367  christos 	rrint->raidPtr = raidPtr;
   1368  1.367  christos 
   1369  1.367  christos 	return RF_CREATE_THREAD(raidPtr->recon_thread,
   1370  1.367  christos 	    rf_ReconstructInPlaceThread, rrint, "raid_reconip");
   1371  1.367  christos }
   1372  1.367  christos 
   1373  1.367  christos static int
   1374  1.367  christos rf_check_recon_status(RF_Raid_t *raidPtr, int *data)
   1375  1.367  christos {
   1376  1.367  christos 	/*
   1377  1.367  christos 	 * This makes no sense on a RAID 0, or if we are not reconstructing
   1378  1.367  christos 	 * so tell the user it's done.
   1379  1.367  christos 	 */
   1380  1.367  christos 	if (raidPtr->Layout.map->faultsTolerated == 0 ||
   1381  1.367  christos 	    raidPtr->status != rf_rs_reconstructing) {
   1382  1.367  christos 		*data = 100;
   1383  1.367  christos 		return 0;
   1384  1.367  christos 	}
   1385  1.367  christos 	if (raidPtr->reconControl->numRUsTotal == 0) {
   1386  1.367  christos 		*data = 0;
   1387  1.367  christos 		return 0;
   1388  1.367  christos 	}
   1389  1.367  christos 	*data = (raidPtr->reconControl->numRUsComplete * 100
   1390  1.367  christos 	    / raidPtr->reconControl->numRUsTotal);
   1391  1.367  christos 	return 0;
   1392  1.367  christos }
   1393  1.367  christos 
   1394  1.367  christos static int
   1395  1.225  christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1396    1.1     oster {
   1397    1.9     oster 	int     unit = raidunit(dev);
   1398  1.335   mlelstv 	int     part, pmask;
   1399    1.1     oster 	struct raid_softc *rs;
   1400  1.335   mlelstv 	struct dk_softc *dksc;
   1401  1.367  christos 	RF_Config_t *k_cfg;
   1402   1.42     oster 	RF_Raid_t *raidPtr;
   1403   1.41     oster 	RF_AccTotals_t *totals;
   1404  1.367  christos 	RF_SingleComponent_t component;
   1405  1.371     oster 	RF_DeviceConfig_t *d_cfg, *ucfgp;
   1406   1.11     oster 	int retcode = 0;
   1407   1.11     oster 	int column;
   1408   1.48     oster 	RF_ComponentLabel_t *clabel;
   1409   1.12     oster 	RF_SingleComponent_t *sparePtr,*componentPtr;
   1410  1.353       mrg 	int d;
   1411    1.1     oster 
   1412  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
   1413  1.300  christos 		return ENXIO;
   1414  1.366  christos 
   1415  1.335   mlelstv 	dksc = &rs->sc_dksc;
   1416  1.300  christos 	raidPtr = &rs->sc_r;
   1417    1.1     oster 
   1418  1.276       mrg 	db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
   1419  1.366  christos 	    (int) DISKPART(dev), (int) unit, cmd));
   1420    1.1     oster 
   1421    1.1     oster 	/* Must be initialized for these... */
   1422  1.366  christos 	if (rf_must_be_initialized(rs, cmd))
   1423  1.366  christos 		return ENXIO;
   1424    1.9     oster 
   1425  1.358  pgoyette 	switch (cmd) {
   1426    1.1     oster 		/* configure the system */
   1427    1.1     oster 	case RAIDFRAME_CONFIGURE:
   1428  1.367  christos 		if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0)
   1429  1.367  christos 			return retcode;
   1430  1.367  christos 		return rf_construct(rs, k_cfg);
   1431    1.9     oster 
   1432    1.9     oster 		/* shutdown the system */
   1433    1.1     oster 	case RAIDFRAME_SHUTDOWN:
   1434    1.9     oster 
   1435  1.266    dyoung 		part = DISKPART(dev);
   1436  1.266    dyoung 		pmask = (1 << part);
   1437  1.266    dyoung 
   1438  1.367  christos 		if ((retcode = raidlock(rs)) != 0)
   1439  1.367  christos 			return retcode;
   1440    1.1     oster 
   1441  1.337   mlelstv 		if (DK_BUSY(dksc, pmask) ||
   1442  1.337   mlelstv 		    raidPtr->recon_in_progress != 0 ||
   1443  1.337   mlelstv 		    raidPtr->parity_rewrite_in_progress != 0 ||
   1444  1.337   mlelstv 		    raidPtr->copyback_in_progress != 0)
   1445  1.266    dyoung 			retcode = EBUSY;
   1446  1.266    dyoung 		else {
   1447  1.335   mlelstv 			/* detach and free on close */
   1448  1.266    dyoung 			rs->sc_flags |= RAIDF_SHUTDOWN;
   1449  1.266    dyoung 			retcode = 0;
   1450    1.9     oster 		}
   1451   1.11     oster 
   1452  1.266    dyoung 		raidunlock(rs);
   1453    1.1     oster 
   1454  1.367  christos 		return retcode;
   1455   1.11     oster 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1456  1.353       mrg 		return rf_get_component_label(raidPtr, data);
   1457   1.11     oster 
   1458  1.367  christos #if RF_DISABLED
   1459   1.11     oster 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1460  1.367  christos 		return rf_set_component_label(raidPtr, data);
   1461  1.367  christos #endif
   1462   1.11     oster 
   1463  1.367  christos 	case RAIDFRAME_INIT_LABELS:
   1464  1.367  christos 		return rf_init_component_label(raidPtr, data);
   1465   1.12     oster 
   1466   1.48     oster 	case RAIDFRAME_SET_AUTOCONFIG:
   1467   1.78   minoura 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1468  1.186     perry 		printf("raid%d: New autoconfig value is: %d\n",
   1469  1.123     oster 		       raidPtr->raidid, d);
   1470   1.78   minoura 		*(int *) data = d;
   1471  1.367  christos 		return retcode;
   1472   1.48     oster 
   1473   1.48     oster 	case RAIDFRAME_SET_ROOT:
   1474   1.78   minoura 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1475  1.186     perry 		printf("raid%d: New rootpartition value is: %d\n",
   1476  1.123     oster 		       raidPtr->raidid, d);
   1477   1.78   minoura 		*(int *) data = d;
   1478  1.367  christos 		return retcode;
   1479    1.9     oster 
   1480    1.1     oster 		/* initialize all parity */
   1481    1.1     oster 	case RAIDFRAME_REWRITEPARITY:
   1482    1.1     oster 
   1483   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1484   1.17     oster 			/* Parity for RAID 0 is trivially correct */
   1485   1.42     oster 			raidPtr->parity_good = RF_RAID_CLEAN;
   1486  1.367  christos 			return 0;
   1487   1.17     oster 		}
   1488  1.186     perry 
   1489   1.42     oster 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1490   1.37     oster 			/* Re-write is already in progress! */
   1491  1.367  christos 			return EINVAL;
   1492   1.37     oster 		}
   1493   1.27     oster 
   1494  1.367  christos 		return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1495  1.367  christos 		    rf_RewriteParityThread, raidPtr,"raid_parity");
   1496   1.11     oster 
   1497   1.11     oster 	case RAIDFRAME_ADD_HOT_SPARE:
   1498   1.12     oster 		sparePtr = (RF_SingleComponent_t *) data;
   1499  1.367  christos 		memcpy(&component, sparePtr, sizeof(RF_SingleComponent_t));
   1500  1.367  christos 		return rf_add_hot_spare(raidPtr, &component);
   1501   1.11     oster 
   1502   1.11     oster 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1503  1.367  christos 		return retcode;
   1504   1.73     oster 
   1505   1.73     oster 	case RAIDFRAME_DELETE_COMPONENT:
   1506   1.73     oster 		componentPtr = (RF_SingleComponent_t *)data;
   1507  1.367  christos 		memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
   1508  1.367  christos 		return rf_delete_component(raidPtr, &component);
   1509   1.73     oster 
   1510   1.73     oster 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1511   1.73     oster 		componentPtr = (RF_SingleComponent_t *)data;
   1512  1.367  christos 		memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
   1513  1.367  christos 		return rf_incorporate_hot_spare(raidPtr, &component);
   1514   1.11     oster 
   1515   1.12     oster 	case RAIDFRAME_REBUILD_IN_PLACE:
   1516  1.367  christos 		return rf_rebuild_in_place(raidPtr, data);
   1517   1.24     oster 
   1518  1.366  christos 	case RAIDFRAME_GET_INFO:
   1519  1.371     oster 		ucfgp = *(RF_DeviceConfig_t **)data;
   1520  1.374  christos 		d_cfg = RF_Malloc(sizeof(*d_cfg));
   1521   1.41     oster 		if (d_cfg == NULL)
   1522  1.366  christos 			return ENOMEM;
   1523  1.353       mrg 		retcode = rf_get_info(raidPtr, d_cfg);
   1524  1.353       mrg 		if (retcode == 0) {
   1525  1.371     oster 			retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
   1526   1.41     oster 		}
   1527   1.41     oster 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1528  1.366  christos 		return retcode;
   1529    1.9     oster 
   1530   1.22     oster 	case RAIDFRAME_CHECK_PARITY:
   1531   1.42     oster 		*(int *) data = raidPtr->parity_good;
   1532  1.367  christos 		return 0;
   1533   1.41     oster 
   1534  1.269       jld 	case RAIDFRAME_PARITYMAP_STATUS:
   1535  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1536  1.273       jld 			return EINVAL;
   1537  1.367  christos 		rf_paritymap_status(raidPtr->parity_map, data);
   1538  1.269       jld 		return 0;
   1539  1.269       jld 
   1540  1.269       jld 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1541  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1542  1.273       jld 			return EINVAL;
   1543  1.269       jld 		if (raidPtr->parity_map == NULL)
   1544  1.269       jld 			return ENOENT; /* ??? */
   1545  1.367  christos 		if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0)
   1546  1.269       jld 			return EINVAL;
   1547  1.269       jld 		return 0;
   1548  1.269       jld 
   1549  1.269       jld 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1550  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1551  1.273       jld 			return EINVAL;
   1552  1.269       jld 		*(int *) data = rf_paritymap_get_disable(raidPtr);
   1553  1.269       jld 		return 0;
   1554  1.269       jld 
   1555  1.269       jld 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1556  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1557  1.273       jld 			return EINVAL;
   1558  1.269       jld 		rf_paritymap_set_disable(raidPtr, *(int *)data);
   1559  1.269       jld 		/* XXX should errors be passed up? */
   1560  1.269       jld 		return 0;
   1561  1.269       jld 
   1562    1.1     oster 	case RAIDFRAME_RESET_ACCTOTALS:
   1563  1.108   thorpej 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1564  1.367  christos 		return 0;
   1565    1.9     oster 
   1566    1.1     oster 	case RAIDFRAME_GET_ACCTOTALS:
   1567   1.41     oster 		totals = (RF_AccTotals_t *) data;
   1568   1.42     oster 		*totals = raidPtr->acc_totals;
   1569  1.366  christos 		return 0;
   1570    1.9     oster 
   1571    1.1     oster 	case RAIDFRAME_KEEP_ACCTOTALS:
   1572   1.42     oster 		raidPtr->keep_acc_totals = *(int *)data;
   1573  1.366  christos 		return 0;
   1574    1.9     oster 
   1575    1.1     oster 	case RAIDFRAME_GET_SIZE:
   1576   1.42     oster 		*(int *) data = raidPtr->totalSectors;
   1577  1.366  christos 		return 0;
   1578    1.1     oster 
   1579    1.1     oster 	case RAIDFRAME_FAIL_DISK:
   1580  1.366  christos 		return rf_fail_disk(raidPtr, data);
   1581    1.9     oster 
   1582    1.9     oster 		/* invoke a copyback operation after recon on whatever disk
   1583    1.9     oster 		 * needs it, if any */
   1584    1.9     oster 	case RAIDFRAME_COPYBACK:
   1585   1.24     oster 
   1586   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1587   1.24     oster 			/* This makes no sense on a RAID 0!! */
   1588  1.367  christos 			return EINVAL;
   1589   1.24     oster 		}
   1590   1.24     oster 
   1591   1.42     oster 		if (raidPtr->copyback_in_progress == 1) {
   1592   1.37     oster 			/* Copyback is already in progress! */
   1593  1.367  christos 			return EINVAL;
   1594   1.37     oster 		}
   1595   1.27     oster 
   1596  1.367  christos 		return RF_CREATE_THREAD(raidPtr->copyback_thread,
   1597  1.367  christos 		    rf_CopybackThread, raidPtr, "raid_copyback");
   1598    1.9     oster 
   1599    1.1     oster 		/* return the percentage completion of reconstruction */
   1600   1.37     oster 	case RAIDFRAME_CHECK_RECON_STATUS:
   1601  1.367  christos 		return rf_check_recon_status(raidPtr, data);
   1602  1.367  christos 
   1603   1.83     oster 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1604  1.353       mrg 		rf_check_recon_status_ext(raidPtr, data);
   1605  1.367  christos 		return 0;
   1606    1.9     oster 
   1607   1.37     oster 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1608   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1609   1.80     oster 			/* This makes no sense on a RAID 0, so tell the
   1610   1.80     oster 			   user it's done. */
   1611   1.80     oster 			*(int *) data = 100;
   1612  1.367  christos 			return 0;
   1613   1.37     oster 		}
   1614   1.42     oster 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1615  1.186     perry 			*(int *) data = 100 *
   1616  1.186     perry 				raidPtr->parity_rewrite_stripes_done /
   1617   1.83     oster 				raidPtr->Layout.numStripe;
   1618   1.37     oster 		} else {
   1619   1.37     oster 			*(int *) data = 100;
   1620   1.37     oster 		}
   1621  1.367  christos 		return 0;
   1622   1.37     oster 
   1623   1.83     oster 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1624  1.353       mrg 		rf_check_parityrewrite_status_ext(raidPtr, data);
   1625  1.367  christos 		return 0;
   1626   1.83     oster 
   1627   1.37     oster 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1628   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1629   1.37     oster 			/* This makes no sense on a RAID 0 */
   1630   1.83     oster 			*(int *) data = 100;
   1631  1.367  christos 			return 0;
   1632   1.37     oster 		}
   1633   1.42     oster 		if (raidPtr->copyback_in_progress == 1) {
   1634   1.42     oster 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1635   1.42     oster 				raidPtr->Layout.numStripe;
   1636   1.37     oster 		} else {
   1637   1.37     oster 			*(int *) data = 100;
   1638   1.37     oster 		}
   1639  1.367  christos 		return 0;
   1640   1.37     oster 
   1641   1.83     oster 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1642  1.353       mrg 		rf_check_copyback_status_ext(raidPtr, data);
   1643  1.353       mrg 		return 0;
   1644   1.37     oster 
   1645  1.341  christos 	case RAIDFRAME_SET_LAST_UNIT:
   1646  1.341  christos 		for (column = 0; column < raidPtr->numCol; column++)
   1647  1.341  christos 			if (raidPtr->Disks[column].status != rf_ds_optimal)
   1648  1.341  christos 				return EBUSY;
   1649  1.341  christos 
   1650  1.341  christos 		for (column = 0; column < raidPtr->numCol; column++) {
   1651  1.341  christos 			clabel = raidget_component_label(raidPtr, column);
   1652  1.341  christos 			clabel->last_unit = *(int *)data;
   1653  1.341  christos 			raidflush_component_label(raidPtr, column);
   1654  1.341  christos 		}
   1655  1.341  christos 		rs->sc_cflags |= RAIDF_UNIT_CHANGED;
   1656  1.341  christos 		return 0;
   1657  1.341  christos 
   1658    1.9     oster 		/* the sparetable daemon calls this to wait for the kernel to
   1659    1.9     oster 		 * need a spare table. this ioctl does not return until a
   1660    1.9     oster 		 * spare table is needed. XXX -- calling mpsleep here in the
   1661    1.9     oster 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1662    1.9     oster 		 * -- I should either compute the spare table in the kernel,
   1663    1.9     oster 		 * or have a different -- XXX XXX -- interface (a different
   1664   1.42     oster 		 * character device) for delivering the table     -- XXX */
   1665  1.367  christos #if RF_DISABLED
   1666    1.1     oster 	case RAIDFRAME_SPARET_WAIT:
   1667  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1668    1.9     oster 		while (!rf_sparet_wait_queue)
   1669  1.287       mrg 			rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
   1670  1.367  christos 		RF_SparetWait_t *waitreq = rf_sparet_wait_queue;
   1671    1.1     oster 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1672  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1673    1.9     oster 
   1674   1.42     oster 		/* structure assignment */
   1675  1.186     perry 		*((RF_SparetWait_t *) data) = *waitreq;
   1676    1.9     oster 
   1677    1.1     oster 		RF_Free(waitreq, sizeof(*waitreq));
   1678  1.367  christos 		return 0;
   1679    1.9     oster 
   1680    1.9     oster 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1681    1.9     oster 		 * code in it that will cause the dameon to exit */
   1682    1.1     oster 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1683  1.374  christos 		waitreq = RF_Malloc(sizeof(*waitreq));
   1684    1.1     oster 		waitreq->fcol = -1;
   1685  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1686    1.1     oster 		waitreq->next = rf_sparet_wait_queue;
   1687    1.1     oster 		rf_sparet_wait_queue = waitreq;
   1688  1.367  christos 		rf_broadcast_cond2(rf_sparet_wait_cv);
   1689  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1690  1.367  christos 		return 0;
   1691    1.1     oster 
   1692    1.9     oster 		/* used by the spare table daemon to deliver a spare table
   1693    1.9     oster 		 * into the kernel */
   1694    1.1     oster 	case RAIDFRAME_SEND_SPARET:
   1695    1.9     oster 
   1696    1.1     oster 		/* install the spare table */
   1697   1.42     oster 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1698    1.9     oster 
   1699    1.9     oster 		/* respond to the requestor.  the return status of the spare
   1700    1.9     oster 		 * table installation is passed in the "fcol" field */
   1701  1.374  christos 		waitred = RF_Malloc(sizeof(*waitreq));
   1702    1.1     oster 		waitreq->fcol = retcode;
   1703  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1704    1.1     oster 		waitreq->next = rf_sparet_resp_queue;
   1705    1.1     oster 		rf_sparet_resp_queue = waitreq;
   1706  1.287       mrg 		rf_broadcast_cond2(rf_sparet_resp_cv);
   1707  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1708    1.9     oster 
   1709  1.367  christos 		return retcode;
   1710  1.367  christos #endif
   1711  1.367  christos 	default:
   1712  1.372  christos 		/*
   1713  1.372  christos 		 * Don't bother trying to load compat modules
   1714  1.372  christos 		 * if it is not our ioctl. This is more efficient
   1715  1.372  christos 		 * and makes rump tests not depend on compat code
   1716  1.372  christos 		 */
   1717  1.372  christos 		if (IOCGROUP(cmd) != 'r')
   1718  1.372  christos 			break;
   1719  1.367  christos #ifdef _LP64
   1720  1.367  christos 		if ((l->l_proc->p_flag & PK_32) != 0) {
   1721  1.367  christos 			module_autoload("compat_netbsd32_raid",
   1722  1.367  christos 			    MODULE_CLASS_EXEC);
   1723  1.376  pgoyette 			MODULE_HOOK_CALL(raidframe_netbsd32_ioctl_hook,
   1724  1.367  christos 			    (rs, cmd, data), enosys(), retcode);
   1725  1.367  christos 			if (retcode != EPASSTHROUGH)
   1726  1.367  christos 				return retcode;
   1727  1.367  christos 		}
   1728    1.1     oster #endif
   1729  1.367  christos 		module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
   1730  1.376  pgoyette 		MODULE_HOOK_CALL(raidframe_ioctl_80_hook,
   1731  1.367  christos 		    (rs, cmd, data), enosys(), retcode);
   1732  1.367  christos 		if (retcode != EPASSTHROUGH)
   1733  1.367  christos 			return retcode;
   1734    1.1     oster 
   1735  1.367  christos 		module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
   1736  1.376  pgoyette 		MODULE_HOOK_CALL(raidframe_ioctl_50_hook,
   1737  1.367  christos 		    (rs, cmd, data), enosys(), retcode);
   1738  1.367  christos 		if (retcode != EPASSTHROUGH)
   1739  1.367  christos 			return retcode;
   1740   1.36     oster 		break; /* fall through to the os-specific code below */
   1741    1.1     oster 
   1742    1.1     oster 	}
   1743    1.9     oster 
   1744   1.42     oster 	if (!raidPtr->valid)
   1745    1.9     oster 		return (EINVAL);
   1746    1.9     oster 
   1747    1.1     oster 	/*
   1748    1.1     oster 	 * Add support for "regular" device ioctls here.
   1749    1.1     oster 	 */
   1750  1.263      haad 
   1751    1.1     oster 	switch (cmd) {
   1752  1.348  jdolecek 	case DIOCGCACHE:
   1753  1.348  jdolecek 		retcode = rf_get_component_caches(raidPtr, (int *)data);
   1754  1.348  jdolecek 		break;
   1755  1.348  jdolecek 
   1756  1.252     oster 	case DIOCCACHESYNC:
   1757  1.346  jdolecek 		retcode = rf_sync_component_caches(raidPtr);
   1758  1.347  jdolecek 		break;
   1759  1.298    buhrow 
   1760    1.1     oster 	default:
   1761  1.346  jdolecek 		retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
   1762  1.347  jdolecek 		break;
   1763    1.1     oster 	}
   1764  1.346  jdolecek 
   1765    1.9     oster 	return (retcode);
   1766    1.1     oster 
   1767    1.1     oster }
   1768    1.1     oster 
   1769    1.1     oster 
   1770    1.9     oster /* raidinit -- complete the rest of the initialization for the
   1771    1.1     oster    RAIDframe device.  */
   1772    1.1     oster 
   1773    1.1     oster 
   1774   1.59     oster static void
   1775  1.300  christos raidinit(struct raid_softc *rs)
   1776    1.1     oster {
   1777  1.262    cegger 	cfdata_t cf;
   1778  1.335   mlelstv 	unsigned int unit;
   1779  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   1780  1.300  christos 	RF_Raid_t *raidPtr = &rs->sc_r;
   1781  1.335   mlelstv 	device_t dev;
   1782    1.1     oster 
   1783   1.59     oster 	unit = raidPtr->raidid;
   1784    1.1     oster 
   1785  1.179    itojun 	/* XXX doesn't check bounds. */
   1786  1.335   mlelstv 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
   1787    1.1     oster 
   1788  1.217     oster 	/* attach the pseudo device */
   1789  1.217     oster 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1790  1.217     oster 	cf->cf_name = raid_cd.cd_name;
   1791  1.217     oster 	cf->cf_atname = raid_cd.cd_name;
   1792  1.217     oster 	cf->cf_unit = unit;
   1793  1.217     oster 	cf->cf_fstate = FSTATE_STAR;
   1794  1.217     oster 
   1795  1.335   mlelstv 	dev = config_attach_pseudo(cf);
   1796  1.335   mlelstv 	if (dev == NULL) {
   1797  1.217     oster 		printf("raid%d: config_attach_pseudo failed\n",
   1798  1.270  christos 		    raidPtr->raidid);
   1799  1.265     pooka 		free(cf, M_RAIDFRAME);
   1800  1.265     pooka 		return;
   1801  1.217     oster 	}
   1802  1.217     oster 
   1803  1.335   mlelstv 	/* provide a backpointer to the real softc */
   1804  1.335   mlelstv 	raidsoftc(dev) = rs;
   1805  1.335   mlelstv 
   1806    1.1     oster 	/* disk_attach actually creates space for the CPU disklabel, among
   1807    1.9     oster 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1808    1.9     oster 	 * with disklabels. */
   1809  1.335   mlelstv 	dk_init(dksc, dev, DKTYPE_RAID);
   1810  1.335   mlelstv 	disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1811    1.1     oster 
   1812    1.1     oster 	/* XXX There may be a weird interaction here between this, and
   1813    1.9     oster 	 * protectedSectors, as used in RAIDframe.  */
   1814   1.11     oster 
   1815    1.9     oster 	rs->sc_size = raidPtr->totalSectors;
   1816  1.234     oster 
   1817  1.335   mlelstv 	/* Attach dk and disk subsystems */
   1818  1.335   mlelstv 	dk_attach(dksc);
   1819  1.335   mlelstv 	disk_attach(&dksc->sc_dkdev);
   1820  1.318   mlelstv 	rf_set_geometry(rs, raidPtr);
   1821  1.318   mlelstv 
   1822  1.335   mlelstv 	bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
   1823  1.335   mlelstv 
   1824  1.335   mlelstv 	/* mark unit as usuable */
   1825  1.335   mlelstv 	rs->sc_flags |= RAIDF_INITED;
   1826  1.234     oster 
   1827  1.335   mlelstv 	dkwedge_discover(&dksc->sc_dkdev);
   1828    1.1     oster }
   1829  1.335   mlelstv 
   1830  1.150     oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1831    1.1     oster /* wake up the daemon & tell it to get us a spare table
   1832    1.1     oster  * XXX
   1833    1.9     oster  * the entries in the queues should be tagged with the raidPtr
   1834  1.186     perry  * so that in the extremely rare case that two recons happen at once,
   1835   1.11     oster  * we know for which device were requesting a spare table
   1836    1.1     oster  * XXX
   1837  1.186     perry  *
   1838   1.39     oster  * XXX This code is not currently used. GO
   1839    1.1     oster  */
   1840  1.186     perry int
   1841  1.169     oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1842    1.9     oster {
   1843    1.9     oster 	int     retcode;
   1844    1.9     oster 
   1845  1.287       mrg 	rf_lock_mutex2(rf_sparet_wait_mutex);
   1846    1.9     oster 	req->next = rf_sparet_wait_queue;
   1847    1.9     oster 	rf_sparet_wait_queue = req;
   1848  1.289       mrg 	rf_broadcast_cond2(rf_sparet_wait_cv);
   1849    1.9     oster 
   1850    1.9     oster 	/* mpsleep unlocks the mutex */
   1851    1.9     oster 	while (!rf_sparet_resp_queue) {
   1852  1.289       mrg 		rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
   1853    1.9     oster 	}
   1854    1.9     oster 	req = rf_sparet_resp_queue;
   1855    1.9     oster 	rf_sparet_resp_queue = req->next;
   1856  1.287       mrg 	rf_unlock_mutex2(rf_sparet_wait_mutex);
   1857    1.9     oster 
   1858    1.9     oster 	retcode = req->fcol;
   1859    1.9     oster 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1860    1.9     oster 					 * alloc'd */
   1861    1.9     oster 	return (retcode);
   1862    1.1     oster }
   1863  1.150     oster #endif
   1864   1.39     oster 
   1865  1.186     perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1866   1.11     oster  * bp & passes it down.
   1867    1.1     oster  * any calls originating in the kernel must use non-blocking I/O
   1868    1.1     oster  * do some extra sanity checking to return "appropriate" error values for
   1869    1.1     oster  * certain conditions (to make some standard utilities work)
   1870  1.186     perry  *
   1871   1.34     oster  * Formerly known as: rf_DoAccessKernel
   1872    1.1     oster  */
   1873   1.34     oster void
   1874  1.169     oster raidstart(RF_Raid_t *raidPtr)
   1875    1.1     oster {
   1876    1.1     oster 	struct raid_softc *rs;
   1877  1.335   mlelstv 	struct dk_softc *dksc;
   1878    1.1     oster 
   1879  1.300  christos 	rs = raidPtr->softc;
   1880  1.335   mlelstv 	dksc = &rs->sc_dksc;
   1881   1.56     oster 	/* quick check to see if anything has died recently */
   1882  1.291       mrg 	rf_lock_mutex2(raidPtr->mutex);
   1883   1.56     oster 	if (raidPtr->numNewFailures > 0) {
   1884  1.291       mrg 		rf_unlock_mutex2(raidPtr->mutex);
   1885  1.186     perry 		rf_update_component_labels(raidPtr,
   1886   1.91     oster 					   RF_NORMAL_COMPONENT_UPDATE);
   1887  1.291       mrg 		rf_lock_mutex2(raidPtr->mutex);
   1888   1.56     oster 		raidPtr->numNewFailures--;
   1889   1.56     oster 	}
   1890  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
   1891   1.56     oster 
   1892  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0) {
   1893  1.335   mlelstv 		printf("raid%d: raidstart not ready\n", raidPtr->raidid);
   1894  1.335   mlelstv 		return;
   1895  1.335   mlelstv 	}
   1896   1.34     oster 
   1897  1.335   mlelstv 	dk_start(dksc, NULL);
   1898  1.335   mlelstv }
   1899   1.34     oster 
   1900  1.335   mlelstv static int
   1901  1.335   mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
   1902  1.335   mlelstv {
   1903  1.335   mlelstv 	RF_SectorCount_t num_blocks, pb, sum;
   1904  1.335   mlelstv 	RF_RaidAddr_t raid_addr;
   1905  1.335   mlelstv 	daddr_t blocknum;
   1906  1.335   mlelstv 	int     do_async;
   1907  1.335   mlelstv 	int rc;
   1908  1.186     perry 
   1909  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
   1910  1.335   mlelstv 	if (raidPtr->openings == 0) {
   1911  1.335   mlelstv 		rf_unlock_mutex2(raidPtr->mutex);
   1912  1.335   mlelstv 		return EAGAIN;
   1913  1.335   mlelstv 	}
   1914  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
   1915  1.186     perry 
   1916  1.335   mlelstv 	blocknum = bp->b_rawblkno;
   1917  1.186     perry 
   1918  1.335   mlelstv 	db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1919  1.335   mlelstv 		    (int) blocknum));
   1920    1.1     oster 
   1921  1.335   mlelstv 	db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1922  1.335   mlelstv 	db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1923    1.1     oster 
   1924  1.335   mlelstv 	/* *THIS* is where we adjust what block we're going to...
   1925  1.335   mlelstv 	 * but DO NOT TOUCH bp->b_blkno!!! */
   1926  1.335   mlelstv 	raid_addr = blocknum;
   1927  1.335   mlelstv 
   1928  1.335   mlelstv 	num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1929  1.335   mlelstv 	pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1930  1.335   mlelstv 	sum = raid_addr + num_blocks + pb;
   1931  1.335   mlelstv 	if (1 || rf_debugKernelAccess) {
   1932  1.335   mlelstv 		db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1933  1.335   mlelstv 			    (int) raid_addr, (int) sum, (int) num_blocks,
   1934  1.335   mlelstv 			    (int) pb, (int) bp->b_resid));
   1935  1.335   mlelstv 	}
   1936  1.335   mlelstv 	if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1937  1.335   mlelstv 	    || (sum < num_blocks) || (sum < pb)) {
   1938  1.335   mlelstv 		rc = ENOSPC;
   1939  1.335   mlelstv 		goto done;
   1940  1.335   mlelstv 	}
   1941  1.335   mlelstv 	/*
   1942  1.335   mlelstv 	 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1943  1.335   mlelstv 	 */
   1944  1.186     perry 
   1945  1.335   mlelstv 	if (bp->b_bcount & raidPtr->sectorMask) {
   1946  1.335   mlelstv 		rc = ENOSPC;
   1947  1.335   mlelstv 		goto done;
   1948  1.335   mlelstv 	}
   1949  1.335   mlelstv 	db1_printf(("Calling DoAccess..\n"));
   1950   1.99     oster 
   1951   1.20     oster 
   1952  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
   1953  1.335   mlelstv 	raidPtr->openings--;
   1954  1.291       mrg 	rf_unlock_mutex2(raidPtr->mutex);
   1955   1.20     oster 
   1956  1.335   mlelstv 	/*
   1957  1.335   mlelstv 	 * Everything is async.
   1958  1.335   mlelstv 	 */
   1959  1.335   mlelstv 	do_async = 1;
   1960   1.20     oster 
   1961  1.335   mlelstv 	/* don't ever condition on bp->b_flags & B_WRITE.
   1962  1.335   mlelstv 	 * always condition on B_READ instead */
   1963    1.7  explorer 
   1964  1.335   mlelstv 	rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1965  1.335   mlelstv 			 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1966  1.335   mlelstv 			 do_async, raid_addr, num_blocks,
   1967  1.335   mlelstv 			 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1968  1.335   mlelstv 
   1969  1.335   mlelstv done:
   1970  1.335   mlelstv 	return rc;
   1971  1.335   mlelstv }
   1972    1.7  explorer 
   1973    1.1     oster /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1974    1.1     oster 
   1975  1.186     perry int
   1976  1.169     oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1977    1.1     oster {
   1978    1.9     oster 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1979    1.1     oster 	struct buf *bp;
   1980    1.9     oster 
   1981    1.1     oster 	req->queue = queue;
   1982    1.1     oster 	bp = req->bp;
   1983    1.1     oster 
   1984    1.1     oster 	switch (req->type) {
   1985    1.9     oster 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1986    1.1     oster 		/* XXX need to do something extra here.. */
   1987    1.9     oster 		/* I'm leaving this in, as I've never actually seen it used,
   1988    1.9     oster 		 * and I'd like folks to report it... GO */
   1989    1.1     oster 		printf(("WAKEUP CALLED\n"));
   1990    1.1     oster 		queue->numOutstanding++;
   1991    1.1     oster 
   1992  1.197     oster 		bp->b_flags = 0;
   1993  1.207    simonb 		bp->b_private = req;
   1994    1.1     oster 
   1995  1.194     oster 		KernelWakeupFunc(bp);
   1996    1.1     oster 		break;
   1997    1.9     oster 
   1998    1.1     oster 	case RF_IO_TYPE_READ:
   1999    1.1     oster 	case RF_IO_TYPE_WRITE:
   2000  1.175     oster #if RF_ACC_TRACE > 0
   2001    1.1     oster 		if (req->tracerec) {
   2002    1.1     oster 			RF_ETIMER_START(req->tracerec->timer);
   2003    1.1     oster 		}
   2004  1.175     oster #endif
   2005  1.194     oster 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2006  1.197     oster 		    op, queue->rf_cinfo->ci_dev,
   2007    1.9     oster 		    req->sectorOffset, req->numSector,
   2008    1.9     oster 		    req->buf, KernelWakeupFunc, (void *) req,
   2009  1.384  jdolecek 		    queue->raidPtr->logBytesPerSector);
   2010    1.1     oster 
   2011    1.1     oster 		if (rf_debugKernelAccess) {
   2012    1.9     oster 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2013    1.9     oster 				(long) bp->b_blkno));
   2014    1.1     oster 		}
   2015    1.1     oster 		queue->numOutstanding++;
   2016    1.1     oster 		queue->last_deq_sector = req->sectorOffset;
   2017    1.9     oster 		/* acc wouldn't have been let in if there were any pending
   2018    1.9     oster 		 * reqs at any other priority */
   2019    1.1     oster 		queue->curPriority = req->priority;
   2020    1.1     oster 
   2021  1.166     oster 		db1_printf(("Going for %c to unit %d col %d\n",
   2022  1.186     perry 			    req->type, queue->raidPtr->raidid,
   2023  1.166     oster 			    queue->col));
   2024    1.1     oster 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2025    1.9     oster 			(int) req->sectorOffset, (int) req->numSector,
   2026    1.9     oster 			(int) (req->numSector <<
   2027    1.9     oster 			    queue->raidPtr->logBytesPerSector),
   2028    1.9     oster 			(int) queue->raidPtr->logBytesPerSector));
   2029  1.256     oster 
   2030  1.256     oster 		/*
   2031  1.256     oster 		 * XXX: drop lock here since this can block at
   2032  1.256     oster 		 * least with backing SCSI devices.  Retake it
   2033  1.256     oster 		 * to minimize fuss with calling interfaces.
   2034  1.256     oster 		 */
   2035  1.256     oster 
   2036  1.256     oster 		RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
   2037  1.247     oster 		bdev_strategy(bp);
   2038  1.256     oster 		RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
   2039    1.1     oster 		break;
   2040    1.9     oster 
   2041    1.1     oster 	default:
   2042    1.1     oster 		panic("bad req->type in rf_DispatchKernelIO");
   2043    1.1     oster 	}
   2044    1.1     oster 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2045  1.134     oster 
   2046    1.9     oster 	return (0);
   2047    1.1     oster }
   2048    1.9     oster /* this is the callback function associated with a I/O invoked from
   2049    1.1     oster    kernel code.
   2050    1.1     oster  */
   2051  1.186     perry static void
   2052  1.194     oster KernelWakeupFunc(struct buf *bp)
   2053    1.9     oster {
   2054    1.9     oster 	RF_DiskQueueData_t *req = NULL;
   2055    1.9     oster 	RF_DiskQueue_t *queue;
   2056    1.9     oster 
   2057    1.9     oster 	db1_printf(("recovering the request queue:\n"));
   2058  1.285       mrg 
   2059  1.207    simonb 	req = bp->b_private;
   2060    1.1     oster 
   2061    1.9     oster 	queue = (RF_DiskQueue_t *) req->queue;
   2062    1.1     oster 
   2063  1.286       mrg 	rf_lock_mutex2(queue->raidPtr->iodone_lock);
   2064  1.285       mrg 
   2065  1.175     oster #if RF_ACC_TRACE > 0
   2066    1.9     oster 	if (req->tracerec) {
   2067    1.9     oster 		RF_ETIMER_STOP(req->tracerec->timer);
   2068    1.9     oster 		RF_ETIMER_EVAL(req->tracerec->timer);
   2069  1.288       mrg 		rf_lock_mutex2(rf_tracing_mutex);
   2070    1.9     oster 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2071    1.9     oster 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2072    1.9     oster 		req->tracerec->num_phys_ios++;
   2073  1.288       mrg 		rf_unlock_mutex2(rf_tracing_mutex);
   2074    1.9     oster 	}
   2075  1.175     oster #endif
   2076    1.1     oster 
   2077  1.230        ad 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2078    1.9     oster 	 * ballistic, and mark the component as hosed... */
   2079   1.36     oster 
   2080  1.230        ad 	if (bp->b_error != 0) {
   2081    1.9     oster 		/* Mark the disk as dead */
   2082    1.9     oster 		/* but only mark it once... */
   2083  1.186     perry 		/* and only if it wouldn't leave this RAID set
   2084  1.183     oster 		   completely broken */
   2085  1.193     oster 		if (((queue->raidPtr->Disks[queue->col].status ==
   2086  1.193     oster 		      rf_ds_optimal) ||
   2087  1.193     oster 		     (queue->raidPtr->Disks[queue->col].status ==
   2088  1.193     oster 		      rf_ds_used_spare)) &&
   2089  1.193     oster 		     (queue->raidPtr->numFailures <
   2090  1.204    simonb 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2091  1.322     prlw1 			printf("raid%d: IO Error (%d). Marking %s as failed.\n",
   2092  1.136     oster 			       queue->raidPtr->raidid,
   2093  1.322     prlw1 			       bp->b_error,
   2094  1.166     oster 			       queue->raidPtr->Disks[queue->col].devname);
   2095  1.166     oster 			queue->raidPtr->Disks[queue->col].status =
   2096    1.9     oster 			    rf_ds_failed;
   2097  1.166     oster 			queue->raidPtr->status = rf_rs_degraded;
   2098    1.9     oster 			queue->raidPtr->numFailures++;
   2099   1.56     oster 			queue->raidPtr->numNewFailures++;
   2100    1.9     oster 		} else {	/* Disk is already dead... */
   2101    1.9     oster 			/* printf("Disk already marked as dead!\n"); */
   2102    1.9     oster 		}
   2103    1.4     oster 
   2104    1.9     oster 	}
   2105    1.4     oster 
   2106  1.143     oster 	/* Fill in the error value */
   2107  1.230        ad 	req->error = bp->b_error;
   2108  1.143     oster 
   2109  1.143     oster 	/* Drop this one on the "finished" queue... */
   2110  1.143     oster 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2111  1.143     oster 
   2112  1.143     oster 	/* Let the raidio thread know there is work to be done. */
   2113  1.286       mrg 	rf_signal_cond2(queue->raidPtr->iodone_cv);
   2114  1.143     oster 
   2115  1.286       mrg 	rf_unlock_mutex2(queue->raidPtr->iodone_lock);
   2116    1.1     oster }
   2117    1.1     oster 
   2118    1.1     oster 
   2119    1.1     oster /*
   2120    1.1     oster  * initialize a buf structure for doing an I/O in the kernel.
   2121    1.1     oster  */
   2122  1.186     perry static void
   2123  1.169     oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2124  1.225  christos        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2125  1.384  jdolecek        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector)
   2126    1.9     oster {
   2127  1.384  jdolecek 	bp->b_flags = rw_flag | (bp->b_flags & rf_b_pass);
   2128  1.242        ad 	bp->b_oflags = 0;
   2129  1.242        ad 	bp->b_cflags = 0;
   2130    1.9     oster 	bp->b_bcount = numSect << logBytesPerSector;
   2131    1.9     oster 	bp->b_bufsize = bp->b_bcount;
   2132    1.9     oster 	bp->b_error = 0;
   2133    1.9     oster 	bp->b_dev = dev;
   2134  1.187  christos 	bp->b_data = bf;
   2135  1.275       mrg 	bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
   2136    1.9     oster 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2137    1.1     oster 	if (bp->b_bcount == 0) {
   2138  1.141    provos 		panic("bp->b_bcount is zero in InitBP!!");
   2139    1.1     oster 	}
   2140    1.9     oster 	bp->b_iodone = cbFunc;
   2141  1.207    simonb 	bp->b_private = cbArg;
   2142    1.1     oster }
   2143    1.1     oster 
   2144    1.1     oster /*
   2145    1.1     oster  * Wait interruptibly for an exclusive lock.
   2146    1.1     oster  *
   2147    1.1     oster  * XXX
   2148    1.1     oster  * Several drivers do this; it should be abstracted and made MP-safe.
   2149    1.1     oster  * (Hmm... where have we seen this warning before :->  GO )
   2150    1.1     oster  */
   2151    1.1     oster static int
   2152  1.169     oster raidlock(struct raid_softc *rs)
   2153    1.1     oster {
   2154    1.9     oster 	int     error;
   2155    1.1     oster 
   2156  1.335   mlelstv 	error = 0;
   2157  1.327  pgoyette 	mutex_enter(&rs->sc_mutex);
   2158    1.1     oster 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2159    1.1     oster 		rs->sc_flags |= RAIDF_WANTED;
   2160  1.327  pgoyette 		error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
   2161  1.327  pgoyette 		if (error != 0)
   2162  1.335   mlelstv 			goto done;
   2163    1.1     oster 	}
   2164    1.1     oster 	rs->sc_flags |= RAIDF_LOCKED;
   2165  1.335   mlelstv done:
   2166  1.327  pgoyette 	mutex_exit(&rs->sc_mutex);
   2167  1.335   mlelstv 	return (error);
   2168    1.1     oster }
   2169    1.1     oster /*
   2170    1.1     oster  * Unlock and wake up any waiters.
   2171    1.1     oster  */
   2172    1.1     oster static void
   2173  1.169     oster raidunlock(struct raid_softc *rs)
   2174    1.1     oster {
   2175    1.1     oster 
   2176  1.327  pgoyette 	mutex_enter(&rs->sc_mutex);
   2177    1.1     oster 	rs->sc_flags &= ~RAIDF_LOCKED;
   2178    1.1     oster 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2179    1.1     oster 		rs->sc_flags &= ~RAIDF_WANTED;
   2180  1.327  pgoyette 		cv_broadcast(&rs->sc_cv);
   2181    1.1     oster 	}
   2182  1.327  pgoyette 	mutex_exit(&rs->sc_mutex);
   2183   1.11     oster }
   2184  1.186     perry 
   2185   1.11     oster 
   2186   1.11     oster #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2187   1.11     oster #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2188  1.269       jld #define RF_PARITY_MAP_SIZE   RF_PARITYMAP_NBYTE
   2189   1.11     oster 
   2190  1.276       mrg static daddr_t
   2191  1.276       mrg rf_component_info_offset(void)
   2192  1.276       mrg {
   2193  1.276       mrg 
   2194  1.276       mrg 	return RF_COMPONENT_INFO_OFFSET;
   2195  1.276       mrg }
   2196  1.276       mrg 
   2197  1.276       mrg static daddr_t
   2198  1.276       mrg rf_component_info_size(unsigned secsize)
   2199  1.276       mrg {
   2200  1.276       mrg 	daddr_t info_size;
   2201  1.276       mrg 
   2202  1.276       mrg 	KASSERT(secsize);
   2203  1.276       mrg 	if (secsize > RF_COMPONENT_INFO_SIZE)
   2204  1.276       mrg 		info_size = secsize;
   2205  1.276       mrg 	else
   2206  1.276       mrg 		info_size = RF_COMPONENT_INFO_SIZE;
   2207  1.276       mrg 
   2208  1.276       mrg 	return info_size;
   2209  1.276       mrg }
   2210  1.276       mrg 
   2211  1.276       mrg static daddr_t
   2212  1.276       mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
   2213  1.276       mrg {
   2214  1.276       mrg 	daddr_t map_offset;
   2215  1.276       mrg 
   2216  1.276       mrg 	KASSERT(raidPtr->bytesPerSector);
   2217  1.276       mrg 	if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
   2218  1.276       mrg 		map_offset = raidPtr->bytesPerSector;
   2219  1.276       mrg 	else
   2220  1.276       mrg 		map_offset = RF_COMPONENT_INFO_SIZE;
   2221  1.276       mrg 	map_offset += rf_component_info_offset();
   2222  1.276       mrg 
   2223  1.276       mrg 	return map_offset;
   2224  1.276       mrg }
   2225  1.276       mrg 
   2226  1.276       mrg static daddr_t
   2227  1.276       mrg rf_parity_map_size(RF_Raid_t *raidPtr)
   2228  1.276       mrg {
   2229  1.276       mrg 	daddr_t map_size;
   2230  1.276       mrg 
   2231  1.276       mrg 	if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
   2232  1.276       mrg 		map_size = raidPtr->bytesPerSector;
   2233  1.276       mrg 	else
   2234  1.276       mrg 		map_size = RF_PARITY_MAP_SIZE;
   2235  1.276       mrg 
   2236  1.276       mrg 	return map_size;
   2237  1.276       mrg }
   2238  1.276       mrg 
   2239  1.186     perry int
   2240  1.269       jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2241   1.12     oster {
   2242  1.269       jld 	RF_ComponentLabel_t *clabel;
   2243  1.269       jld 
   2244  1.269       jld 	clabel = raidget_component_label(raidPtr, col);
   2245  1.269       jld 	clabel->clean = RF_RAID_CLEAN;
   2246  1.269       jld 	raidflush_component_label(raidPtr, col);
   2247   1.12     oster 	return(0);
   2248   1.12     oster }
   2249   1.12     oster 
   2250   1.12     oster 
   2251  1.186     perry int
   2252  1.269       jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2253   1.11     oster {
   2254  1.269       jld 	RF_ComponentLabel_t *clabel;
   2255  1.269       jld 
   2256  1.269       jld 	clabel = raidget_component_label(raidPtr, col);
   2257  1.269       jld 	clabel->clean = RF_RAID_DIRTY;
   2258  1.269       jld 	raidflush_component_label(raidPtr, col);
   2259   1.11     oster 	return(0);
   2260   1.11     oster }
   2261   1.11     oster 
   2262   1.11     oster int
   2263  1.269       jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2264  1.269       jld {
   2265  1.276       mrg 	KASSERT(raidPtr->bytesPerSector);
   2266  1.276       mrg 	return raidread_component_label(raidPtr->bytesPerSector,
   2267  1.276       mrg 	    raidPtr->Disks[col].dev,
   2268  1.269       jld 	    raidPtr->raid_cinfo[col].ci_vp,
   2269  1.269       jld 	    &raidPtr->raid_cinfo[col].ci_label);
   2270  1.269       jld }
   2271  1.269       jld 
   2272  1.269       jld RF_ComponentLabel_t *
   2273  1.269       jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2274  1.269       jld {
   2275  1.269       jld 	return &raidPtr->raid_cinfo[col].ci_label;
   2276  1.269       jld }
   2277  1.269       jld 
   2278  1.269       jld int
   2279  1.269       jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2280  1.269       jld {
   2281  1.269       jld 	RF_ComponentLabel_t *label;
   2282  1.269       jld 
   2283  1.269       jld 	label = &raidPtr->raid_cinfo[col].ci_label;
   2284  1.269       jld 	label->mod_counter = raidPtr->mod_counter;
   2285  1.269       jld #ifndef RF_NO_PARITY_MAP
   2286  1.269       jld 	label->parity_map_modcount = label->mod_counter;
   2287  1.269       jld #endif
   2288  1.276       mrg 	return raidwrite_component_label(raidPtr->bytesPerSector,
   2289  1.276       mrg 	    raidPtr->Disks[col].dev,
   2290  1.269       jld 	    raidPtr->raid_cinfo[col].ci_vp, label);
   2291  1.269       jld }
   2292  1.269       jld 
   2293  1.269       jld 
   2294  1.269       jld static int
   2295  1.276       mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
   2296  1.269       jld     RF_ComponentLabel_t *clabel)
   2297  1.269       jld {
   2298  1.269       jld 	return raidread_component_area(dev, b_vp, clabel,
   2299  1.269       jld 	    sizeof(RF_ComponentLabel_t),
   2300  1.276       mrg 	    rf_component_info_offset(),
   2301  1.276       mrg 	    rf_component_info_size(secsize));
   2302  1.269       jld }
   2303  1.269       jld 
   2304  1.269       jld /* ARGSUSED */
   2305  1.269       jld static int
   2306  1.269       jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2307  1.269       jld     size_t msize, daddr_t offset, daddr_t dsize)
   2308   1.11     oster {
   2309   1.11     oster 	struct buf *bp;
   2310   1.11     oster 	int error;
   2311  1.186     perry 
   2312   1.11     oster 	/* XXX should probably ensure that we don't try to do this if
   2313  1.186     perry 	   someone has changed rf_protected_sectors. */
   2314   1.11     oster 
   2315   1.98     oster 	if (b_vp == NULL) {
   2316   1.98     oster 		/* For whatever reason, this component is not valid.
   2317   1.98     oster 		   Don't try to read a component label from it. */
   2318   1.98     oster 		return(EINVAL);
   2319   1.98     oster 	}
   2320   1.98     oster 
   2321   1.11     oster 	/* get a block of the appropriate size... */
   2322  1.269       jld 	bp = geteblk((int)dsize);
   2323   1.11     oster 	bp->b_dev = dev;
   2324   1.11     oster 
   2325   1.11     oster 	/* get our ducks in a row for the read */
   2326  1.269       jld 	bp->b_blkno = offset / DEV_BSIZE;
   2327  1.269       jld 	bp->b_bcount = dsize;
   2328  1.100       chs 	bp->b_flags |= B_READ;
   2329  1.269       jld  	bp->b_resid = dsize;
   2330   1.11     oster 
   2331  1.331   mlelstv 	bdev_strategy(bp);
   2332  1.340  christos 	error = biowait(bp);
   2333   1.11     oster 
   2334   1.11     oster 	if (!error) {
   2335  1.269       jld 		memcpy(data, bp->b_data, msize);
   2336  1.204    simonb 	}
   2337   1.11     oster 
   2338  1.233        ad 	brelse(bp, 0);
   2339   1.11     oster 	return(error);
   2340   1.11     oster }
   2341  1.269       jld 
   2342  1.269       jld 
   2343  1.269       jld static int
   2344  1.276       mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
   2345  1.276       mrg     RF_ComponentLabel_t *clabel)
   2346  1.269       jld {
   2347  1.269       jld 	return raidwrite_component_area(dev, b_vp, clabel,
   2348  1.269       jld 	    sizeof(RF_ComponentLabel_t),
   2349  1.276       mrg 	    rf_component_info_offset(),
   2350  1.276       mrg 	    rf_component_info_size(secsize), 0);
   2351  1.269       jld }
   2352  1.269       jld 
   2353   1.11     oster /* ARGSUSED */
   2354  1.269       jld static int
   2355  1.269       jld raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2356  1.269       jld     size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
   2357   1.11     oster {
   2358   1.11     oster 	struct buf *bp;
   2359   1.11     oster 	int error;
   2360   1.11     oster 
   2361   1.11     oster 	/* get a block of the appropriate size... */
   2362  1.269       jld 	bp = geteblk((int)dsize);
   2363   1.11     oster 	bp->b_dev = dev;
   2364   1.11     oster 
   2365   1.11     oster 	/* get our ducks in a row for the write */
   2366  1.269       jld 	bp->b_blkno = offset / DEV_BSIZE;
   2367  1.269       jld 	bp->b_bcount = dsize;
   2368  1.269       jld 	bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
   2369  1.269       jld  	bp->b_resid = dsize;
   2370   1.11     oster 
   2371  1.269       jld 	memset(bp->b_data, 0, dsize);
   2372  1.269       jld 	memcpy(bp->b_data, data, msize);
   2373   1.11     oster 
   2374  1.331   mlelstv 	bdev_strategy(bp);
   2375  1.269       jld 	if (asyncp)
   2376  1.269       jld 		return 0;
   2377  1.340  christos 	error = biowait(bp);
   2378  1.233        ad 	brelse(bp, 0);
   2379   1.11     oster 	if (error) {
   2380   1.48     oster #if 1
   2381   1.11     oster 		printf("Failed to write RAID component info!\n");
   2382   1.48     oster #endif
   2383   1.11     oster 	}
   2384   1.11     oster 
   2385   1.11     oster 	return(error);
   2386    1.1     oster }
   2387   1.12     oster 
   2388  1.186     perry void
   2389  1.269       jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2390  1.269       jld {
   2391  1.269       jld 	int c;
   2392  1.269       jld 
   2393  1.269       jld 	for (c = 0; c < raidPtr->numCol; c++) {
   2394  1.269       jld 		/* Skip dead disks. */
   2395  1.269       jld 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2396  1.269       jld 			continue;
   2397  1.269       jld 		/* XXXjld: what if an error occurs here? */
   2398  1.269       jld 		raidwrite_component_area(raidPtr->Disks[c].dev,
   2399  1.269       jld 		    raidPtr->raid_cinfo[c].ci_vp, map,
   2400  1.269       jld 		    RF_PARITYMAP_NBYTE,
   2401  1.276       mrg 		    rf_parity_map_offset(raidPtr),
   2402  1.276       mrg 		    rf_parity_map_size(raidPtr), 0);
   2403  1.269       jld 	}
   2404  1.269       jld }
   2405  1.269       jld 
   2406  1.269       jld void
   2407  1.269       jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2408  1.269       jld {
   2409  1.269       jld 	struct rf_paritymap_ondisk tmp;
   2410  1.272     oster 	int c,first;
   2411  1.269       jld 
   2412  1.272     oster 	first=1;
   2413  1.269       jld 	for (c = 0; c < raidPtr->numCol; c++) {
   2414  1.269       jld 		/* Skip dead disks. */
   2415  1.269       jld 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2416  1.269       jld 			continue;
   2417  1.269       jld 		raidread_component_area(raidPtr->Disks[c].dev,
   2418  1.269       jld 		    raidPtr->raid_cinfo[c].ci_vp, &tmp,
   2419  1.269       jld 		    RF_PARITYMAP_NBYTE,
   2420  1.276       mrg 		    rf_parity_map_offset(raidPtr),
   2421  1.276       mrg 		    rf_parity_map_size(raidPtr));
   2422  1.272     oster 		if (first) {
   2423  1.269       jld 			memcpy(map, &tmp, sizeof(*map));
   2424  1.272     oster 			first = 0;
   2425  1.269       jld 		} else {
   2426  1.269       jld 			rf_paritymap_merge(map, &tmp);
   2427  1.269       jld 		}
   2428  1.269       jld 	}
   2429  1.269       jld }
   2430  1.269       jld 
   2431  1.269       jld void
   2432  1.169     oster rf_markalldirty(RF_Raid_t *raidPtr)
   2433   1.12     oster {
   2434  1.269       jld 	RF_ComponentLabel_t *clabel;
   2435  1.146     oster 	int sparecol;
   2436  1.166     oster 	int c;
   2437  1.166     oster 	int j;
   2438  1.166     oster 	int scol = -1;
   2439   1.12     oster 
   2440   1.12     oster 	raidPtr->mod_counter++;
   2441  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2442  1.166     oster 		/* we don't want to touch (at all) a disk that has
   2443  1.166     oster 		   failed */
   2444  1.166     oster 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2445  1.269       jld 			clabel = raidget_component_label(raidPtr, c);
   2446  1.269       jld 			if (clabel->status == rf_ds_spared) {
   2447  1.186     perry 				/* XXX do something special...
   2448  1.186     perry 				   but whatever you do, don't
   2449  1.166     oster 				   try to access it!! */
   2450  1.166     oster 			} else {
   2451  1.269       jld 				raidmarkdirty(raidPtr, c);
   2452   1.12     oster 			}
   2453  1.166     oster 		}
   2454  1.186     perry 	}
   2455  1.146     oster 
   2456   1.12     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2457   1.12     oster 		sparecol = raidPtr->numCol + c;
   2458  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2459  1.186     perry 			/*
   2460  1.186     perry 
   2461  1.186     perry 			   we claim this disk is "optimal" if it's
   2462  1.186     perry 			   rf_ds_used_spare, as that means it should be
   2463  1.186     perry 			   directly substitutable for the disk it replaced.
   2464   1.12     oster 			   We note that too...
   2465   1.12     oster 
   2466   1.12     oster 			 */
   2467   1.12     oster 
   2468  1.166     oster 			for(j=0;j<raidPtr->numCol;j++) {
   2469  1.166     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2470  1.166     oster 					scol = j;
   2471  1.166     oster 					break;
   2472   1.12     oster 				}
   2473   1.12     oster 			}
   2474  1.186     perry 
   2475  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   2476   1.12     oster 			/* make sure status is noted */
   2477  1.146     oster 
   2478  1.269       jld 			raid_init_component_label(raidPtr, clabel);
   2479  1.146     oster 
   2480  1.269       jld 			clabel->row = 0;
   2481  1.269       jld 			clabel->column = scol;
   2482  1.146     oster 			/* Note: we *don't* change status from rf_ds_used_spare
   2483  1.146     oster 			   to rf_ds_optimal */
   2484  1.146     oster 			/* clabel.status = rf_ds_optimal; */
   2485  1.186     perry 
   2486  1.269       jld 			raidmarkdirty(raidPtr, sparecol);
   2487   1.12     oster 		}
   2488   1.12     oster 	}
   2489   1.12     oster }
   2490   1.12     oster 
   2491   1.13     oster 
   2492   1.13     oster void
   2493  1.169     oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2494   1.13     oster {
   2495  1.269       jld 	RF_ComponentLabel_t *clabel;
   2496   1.13     oster 	int sparecol;
   2497  1.166     oster 	int c;
   2498  1.166     oster 	int j;
   2499  1.166     oster 	int scol;
   2500  1.341  christos 	struct raid_softc *rs = raidPtr->softc;
   2501   1.13     oster 
   2502   1.13     oster 	scol = -1;
   2503   1.13     oster 
   2504  1.186     perry 	/* XXX should do extra checks to make sure things really are clean,
   2505   1.13     oster 	   rather than blindly setting the clean bit... */
   2506   1.13     oster 
   2507   1.13     oster 	raidPtr->mod_counter++;
   2508   1.13     oster 
   2509  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2510  1.166     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2511  1.269       jld 			clabel = raidget_component_label(raidPtr, c);
   2512  1.201     oster 			/* make sure status is noted */
   2513  1.269       jld 			clabel->status = rf_ds_optimal;
   2514  1.201     oster 
   2515  1.214     oster 			/* note what unit we are configured as */
   2516  1.341  christos 			if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
   2517  1.341  christos 				clabel->last_unit = raidPtr->raidid;
   2518  1.214     oster 
   2519  1.269       jld 			raidflush_component_label(raidPtr, c);
   2520  1.166     oster 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2521  1.166     oster 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2522  1.269       jld 					raidmarkclean(raidPtr, c);
   2523   1.91     oster 				}
   2524  1.166     oster 			}
   2525  1.186     perry 		}
   2526  1.166     oster 		/* else we don't touch it.. */
   2527  1.186     perry 	}
   2528   1.63     oster 
   2529   1.63     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2530   1.63     oster 		sparecol = raidPtr->numCol + c;
   2531  1.110     oster 		/* Need to ensure that the reconstruct actually completed! */
   2532  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2533  1.186     perry 			/*
   2534  1.186     perry 
   2535  1.186     perry 			   we claim this disk is "optimal" if it's
   2536  1.186     perry 			   rf_ds_used_spare, as that means it should be
   2537  1.186     perry 			   directly substitutable for the disk it replaced.
   2538   1.63     oster 			   We note that too...
   2539   1.63     oster 
   2540   1.63     oster 			 */
   2541   1.63     oster 
   2542  1.166     oster 			for(j=0;j<raidPtr->numCol;j++) {
   2543  1.166     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2544  1.166     oster 					scol = j;
   2545  1.166     oster 					break;
   2546   1.63     oster 				}
   2547   1.63     oster 			}
   2548  1.186     perry 
   2549   1.63     oster 			/* XXX shouldn't *really* need this... */
   2550  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   2551   1.63     oster 			/* make sure status is noted */
   2552   1.63     oster 
   2553  1.269       jld 			raid_init_component_label(raidPtr, clabel);
   2554  1.269       jld 
   2555  1.269       jld 			clabel->column = scol;
   2556  1.269       jld 			clabel->status = rf_ds_optimal;
   2557  1.341  christos 			if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
   2558  1.341  christos 				clabel->last_unit = raidPtr->raidid;
   2559   1.63     oster 
   2560  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   2561   1.91     oster 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2562   1.13     oster 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2563  1.269       jld 					raidmarkclean(raidPtr, sparecol);
   2564   1.13     oster 				}
   2565   1.13     oster 			}
   2566   1.13     oster 		}
   2567   1.13     oster 	}
   2568   1.68     oster }
   2569   1.68     oster 
   2570   1.68     oster void
   2571  1.169     oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2572   1.69     oster {
   2573   1.69     oster 
   2574   1.69     oster 	if (vp != NULL) {
   2575   1.69     oster 		if (auto_configured == 1) {
   2576   1.96     oster 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2577  1.238     pooka 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2578   1.69     oster 			vput(vp);
   2579  1.186     perry 
   2580  1.186     perry 		} else {
   2581  1.244        ad 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
   2582   1.69     oster 		}
   2583  1.186     perry 	}
   2584   1.69     oster }
   2585   1.69     oster 
   2586   1.69     oster 
   2587   1.69     oster void
   2588  1.169     oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2589   1.68     oster {
   2590  1.186     perry 	int r,c;
   2591   1.69     oster 	struct vnode *vp;
   2592   1.69     oster 	int acd;
   2593   1.68     oster 
   2594   1.68     oster 
   2595   1.68     oster 	/* We take this opportunity to close the vnodes like we should.. */
   2596   1.68     oster 
   2597  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2598  1.166     oster 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2599  1.166     oster 		acd = raidPtr->Disks[c].auto_configured;
   2600  1.166     oster 		rf_close_component(raidPtr, vp, acd);
   2601  1.166     oster 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2602  1.166     oster 		raidPtr->Disks[c].auto_configured = 0;
   2603   1.68     oster 	}
   2604  1.166     oster 
   2605   1.68     oster 	for (r = 0; r < raidPtr->numSpare; r++) {
   2606  1.166     oster 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2607  1.166     oster 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2608   1.69     oster 		rf_close_component(raidPtr, vp, acd);
   2609  1.166     oster 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2610  1.166     oster 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2611   1.68     oster 	}
   2612   1.37     oster }
   2613   1.63     oster 
   2614   1.37     oster 
   2615  1.186     perry void
   2616  1.353       mrg rf_ReconThread(struct rf_recon_req_internal *req)
   2617   1.37     oster {
   2618   1.37     oster 	int     s;
   2619   1.37     oster 	RF_Raid_t *raidPtr;
   2620   1.37     oster 
   2621   1.37     oster 	s = splbio();
   2622   1.37     oster 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2623   1.37     oster 	raidPtr->recon_in_progress = 1;
   2624   1.37     oster 
   2625  1.166     oster 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2626   1.37     oster 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2627   1.37     oster 
   2628   1.37     oster 	RF_Free(req, sizeof(*req));
   2629   1.37     oster 
   2630   1.37     oster 	raidPtr->recon_in_progress = 0;
   2631   1.37     oster 	splx(s);
   2632   1.37     oster 
   2633   1.37     oster 	/* That's all... */
   2634  1.204    simonb 	kthread_exit(0);	/* does not return */
   2635   1.37     oster }
   2636   1.37     oster 
   2637   1.37     oster void
   2638  1.169     oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2639   1.37     oster {
   2640   1.37     oster 	int retcode;
   2641   1.37     oster 	int s;
   2642   1.37     oster 
   2643  1.184     oster 	raidPtr->parity_rewrite_stripes_done = 0;
   2644   1.37     oster 	raidPtr->parity_rewrite_in_progress = 1;
   2645   1.37     oster 	s = splbio();
   2646   1.37     oster 	retcode = rf_RewriteParity(raidPtr);
   2647   1.37     oster 	splx(s);
   2648   1.37     oster 	if (retcode) {
   2649  1.279  christos 		printf("raid%d: Error re-writing parity (%d)!\n",
   2650  1.279  christos 		    raidPtr->raidid, retcode);
   2651   1.37     oster 	} else {
   2652   1.37     oster 		/* set the clean bit!  If we shutdown correctly,
   2653   1.37     oster 		   the clean bit on each component label will get
   2654   1.37     oster 		   set */
   2655   1.37     oster 		raidPtr->parity_good = RF_RAID_CLEAN;
   2656   1.37     oster 	}
   2657   1.37     oster 	raidPtr->parity_rewrite_in_progress = 0;
   2658   1.85     oster 
   2659   1.85     oster 	/* Anyone waiting for us to stop?  If so, inform them... */
   2660   1.85     oster 	if (raidPtr->waitShutdown) {
   2661  1.357       mrg 		rf_lock_mutex2(raidPtr->rad_lock);
   2662  1.357       mrg 		cv_broadcast(&raidPtr->parity_rewrite_cv);
   2663  1.357       mrg 		rf_unlock_mutex2(raidPtr->rad_lock);
   2664   1.85     oster 	}
   2665   1.37     oster 
   2666   1.37     oster 	/* That's all... */
   2667  1.204    simonb 	kthread_exit(0);	/* does not return */
   2668   1.37     oster }
   2669   1.37     oster 
   2670   1.37     oster 
   2671   1.37     oster void
   2672  1.169     oster rf_CopybackThread(RF_Raid_t *raidPtr)
   2673   1.37     oster {
   2674   1.37     oster 	int s;
   2675   1.37     oster 
   2676   1.37     oster 	raidPtr->copyback_in_progress = 1;
   2677   1.37     oster 	s = splbio();
   2678   1.37     oster 	rf_CopybackReconstructedData(raidPtr);
   2679   1.37     oster 	splx(s);
   2680   1.37     oster 	raidPtr->copyback_in_progress = 0;
   2681   1.37     oster 
   2682   1.37     oster 	/* That's all... */
   2683  1.204    simonb 	kthread_exit(0);	/* does not return */
   2684   1.37     oster }
   2685   1.37     oster 
   2686   1.37     oster 
   2687   1.37     oster void
   2688  1.353       mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
   2689   1.37     oster {
   2690   1.37     oster 	int s;
   2691   1.37     oster 	RF_Raid_t *raidPtr;
   2692  1.186     perry 
   2693   1.37     oster 	s = splbio();
   2694   1.37     oster 	raidPtr = req->raidPtr;
   2695   1.37     oster 	raidPtr->recon_in_progress = 1;
   2696  1.166     oster 	rf_ReconstructInPlace(raidPtr, req->col);
   2697   1.37     oster 	RF_Free(req, sizeof(*req));
   2698   1.37     oster 	raidPtr->recon_in_progress = 0;
   2699   1.37     oster 	splx(s);
   2700   1.37     oster 
   2701   1.37     oster 	/* That's all... */
   2702  1.204    simonb 	kthread_exit(0);	/* does not return */
   2703   1.48     oster }
   2704   1.48     oster 
   2705  1.213  christos static RF_AutoConfig_t *
   2706  1.213  christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2707  1.276       mrg     const char *cname, RF_SectorCount_t size, uint64_t numsecs,
   2708  1.276       mrg     unsigned secsize)
   2709  1.213  christos {
   2710  1.213  christos 	int good_one = 0;
   2711  1.213  christos 	RF_ComponentLabel_t *clabel;
   2712  1.213  christos 	RF_AutoConfig_t *ac;
   2713  1.213  christos 
   2714  1.379       chs 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_WAITOK);
   2715  1.213  christos 
   2716  1.276       mrg 	if (!raidread_component_label(secsize, dev, vp, clabel)) {
   2717  1.276       mrg 		/* Got the label.  Does it look reasonable? */
   2718  1.284       mrg 		if (rf_reasonable_label(clabel, numsecs) &&
   2719  1.282     enami 		    (rf_component_label_partitionsize(clabel) <= size)) {
   2720  1.224     oster #ifdef DEBUG
   2721  1.276       mrg 			printf("Component on: %s: %llu\n",
   2722  1.213  christos 				cname, (unsigned long long)size);
   2723  1.276       mrg 			rf_print_component_label(clabel);
   2724  1.213  christos #endif
   2725  1.276       mrg 			/* if it's reasonable, add it, else ignore it. */
   2726  1.276       mrg 			ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2727  1.379       chs 				M_WAITOK);
   2728  1.276       mrg 			strlcpy(ac->devname, cname, sizeof(ac->devname));
   2729  1.276       mrg 			ac->dev = dev;
   2730  1.276       mrg 			ac->vp = vp;
   2731  1.276       mrg 			ac->clabel = clabel;
   2732  1.276       mrg 			ac->next = ac_list;
   2733  1.276       mrg 			ac_list = ac;
   2734  1.276       mrg 			good_one = 1;
   2735  1.276       mrg 		}
   2736  1.213  christos 	}
   2737  1.213  christos 	if (!good_one) {
   2738  1.213  christos 		/* cleanup */
   2739  1.213  christos 		free(clabel, M_RAIDFRAME);
   2740  1.213  christos 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2741  1.238     pooka 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2742  1.213  christos 		vput(vp);
   2743  1.213  christos 	}
   2744  1.213  christos 	return ac_list;
   2745  1.213  christos }
   2746  1.213  christos 
   2747   1.48     oster RF_AutoConfig_t *
   2748  1.259    cegger rf_find_raid_components(void)
   2749   1.48     oster {
   2750   1.48     oster 	struct vnode *vp;
   2751   1.48     oster 	struct disklabel label;
   2752  1.261    dyoung 	device_t dv;
   2753  1.268    dyoung 	deviter_t di;
   2754   1.48     oster 	dev_t dev;
   2755  1.296    buhrow 	int bmajor, bminor, wedge, rf_part_found;
   2756   1.48     oster 	int error;
   2757   1.48     oster 	int i;
   2758   1.48     oster 	RF_AutoConfig_t *ac_list;
   2759  1.276       mrg 	uint64_t numsecs;
   2760  1.276       mrg 	unsigned secsize;
   2761  1.335   mlelstv 	int dowedges;
   2762   1.48     oster 
   2763   1.48     oster 	/* initialize the AutoConfig list */
   2764   1.48     oster 	ac_list = NULL;
   2765   1.48     oster 
   2766  1.335   mlelstv 	/*
   2767  1.335   mlelstv 	 * we begin by trolling through *all* the devices on the system *twice*
   2768  1.335   mlelstv 	 * first we scan for wedges, second for other devices. This avoids
   2769  1.335   mlelstv 	 * using a raw partition instead of a wedge that covers the whole disk
   2770  1.335   mlelstv 	 */
   2771   1.48     oster 
   2772  1.335   mlelstv 	for (dowedges=1; dowedges>=0; --dowedges) {
   2773  1.335   mlelstv 		for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
   2774  1.335   mlelstv 		     dv = deviter_next(&di)) {
   2775   1.48     oster 
   2776  1.335   mlelstv 			/* we are only interested in disks... */
   2777  1.335   mlelstv 			if (device_class(dv) != DV_DISK)
   2778  1.335   mlelstv 				continue;
   2779   1.48     oster 
   2780  1.335   mlelstv 			/* we don't care about floppies... */
   2781  1.335   mlelstv 			if (device_is_a(dv, "fd")) {
   2782  1.335   mlelstv 				continue;
   2783  1.335   mlelstv 			}
   2784  1.129     oster 
   2785  1.335   mlelstv 			/* we don't care about CD's... */
   2786  1.335   mlelstv 			if (device_is_a(dv, "cd")) {
   2787  1.335   mlelstv 				continue;
   2788  1.335   mlelstv 			}
   2789  1.129     oster 
   2790  1.335   mlelstv 			/* we don't care about md's... */
   2791  1.335   mlelstv 			if (device_is_a(dv, "md")) {
   2792  1.335   mlelstv 				continue;
   2793  1.335   mlelstv 			}
   2794  1.248     oster 
   2795  1.335   mlelstv 			/* hdfd is the Atari/Hades floppy driver */
   2796  1.335   mlelstv 			if (device_is_a(dv, "hdfd")) {
   2797  1.335   mlelstv 				continue;
   2798  1.335   mlelstv 			}
   2799  1.206   thorpej 
   2800  1.335   mlelstv 			/* fdisa is the Atari/Milan floppy driver */
   2801  1.335   mlelstv 			if (device_is_a(dv, "fdisa")) {
   2802  1.335   mlelstv 				continue;
   2803  1.335   mlelstv 			}
   2804  1.186     perry 
   2805  1.335   mlelstv 			/* are we in the wedges pass ? */
   2806  1.335   mlelstv 			wedge = device_is_a(dv, "dk");
   2807  1.335   mlelstv 			if (wedge != dowedges) {
   2808  1.335   mlelstv 				continue;
   2809  1.335   mlelstv 			}
   2810   1.48     oster 
   2811  1.335   mlelstv 			/* need to find the device_name_to_block_device_major stuff */
   2812  1.335   mlelstv 			bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
   2813  1.296    buhrow 
   2814  1.335   mlelstv 			rf_part_found = 0; /*No raid partition as yet*/
   2815   1.48     oster 
   2816  1.335   mlelstv 			/* get a vnode for the raw partition of this disk */
   2817  1.335   mlelstv 			bminor = minor(device_unit(dv));
   2818  1.335   mlelstv 			dev = wedge ? makedev(bmajor, bminor) :
   2819  1.335   mlelstv 			    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2820  1.335   mlelstv 			if (bdevvp(dev, &vp))
   2821  1.335   mlelstv 				panic("RAID can't alloc vnode");
   2822   1.48     oster 
   2823  1.375   hannken 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2824  1.335   mlelstv 			error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   2825   1.48     oster 
   2826  1.335   mlelstv 			if (error) {
   2827  1.335   mlelstv 				/* "Who cares."  Continue looking
   2828  1.335   mlelstv 				   for something that exists*/
   2829  1.335   mlelstv 				vput(vp);
   2830  1.335   mlelstv 				continue;
   2831  1.335   mlelstv 			}
   2832   1.48     oster 
   2833  1.335   mlelstv 			error = getdisksize(vp, &numsecs, &secsize);
   2834  1.213  christos 			if (error) {
   2835  1.339   mlelstv 				/*
   2836  1.339   mlelstv 				 * Pseudo devices like vnd and cgd can be
   2837  1.339   mlelstv 				 * opened but may still need some configuration.
   2838  1.339   mlelstv 				 * Ignore these quietly.
   2839  1.339   mlelstv 				 */
   2840  1.339   mlelstv 				if (error != ENXIO)
   2841  1.339   mlelstv 					printf("RAIDframe: can't get disk size"
   2842  1.339   mlelstv 					    " for dev %s (%d)\n",
   2843  1.339   mlelstv 					    device_xname(dv), error);
   2844  1.241     oster 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2845  1.241     oster 				vput(vp);
   2846  1.213  christos 				continue;
   2847  1.213  christos 			}
   2848  1.335   mlelstv 			if (wedge) {
   2849  1.335   mlelstv 				struct dkwedge_info dkw;
   2850  1.335   mlelstv 				error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2851  1.335   mlelstv 				    NOCRED);
   2852  1.335   mlelstv 				if (error) {
   2853  1.335   mlelstv 					printf("RAIDframe: can't get wedge info for "
   2854  1.335   mlelstv 					    "dev %s (%d)\n", device_xname(dv), error);
   2855  1.335   mlelstv 					VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2856  1.335   mlelstv 					vput(vp);
   2857  1.335   mlelstv 					continue;
   2858  1.335   mlelstv 				}
   2859  1.213  christos 
   2860  1.335   mlelstv 				if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   2861  1.335   mlelstv 					VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2862  1.335   mlelstv 					vput(vp);
   2863  1.335   mlelstv 					continue;
   2864  1.335   mlelstv 				}
   2865  1.335   mlelstv 
   2866  1.375   hannken 				VOP_UNLOCK(vp);
   2867  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp,
   2868  1.335   mlelstv 				    device_xname(dv), dkw.dkw_size, numsecs, secsize);
   2869  1.335   mlelstv 				rf_part_found = 1; /*There is a raid component on this disk*/
   2870  1.228  christos 				continue;
   2871  1.241     oster 			}
   2872  1.213  christos 
   2873  1.335   mlelstv 			/* Ok, the disk exists.  Go get the disklabel. */
   2874  1.335   mlelstv 			error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   2875  1.335   mlelstv 			if (error) {
   2876  1.335   mlelstv 				/*
   2877  1.335   mlelstv 				 * XXX can't happen - open() would
   2878  1.335   mlelstv 				 * have errored out (or faked up one)
   2879  1.335   mlelstv 				 */
   2880  1.335   mlelstv 				if (error != ENOTTY)
   2881  1.335   mlelstv 					printf("RAIDframe: can't get label for dev "
   2882  1.335   mlelstv 					    "%s (%d)\n", device_xname(dv), error);
   2883  1.335   mlelstv 			}
   2884   1.48     oster 
   2885  1.335   mlelstv 			/* don't need this any more.  We'll allocate it again
   2886  1.335   mlelstv 			   a little later if we really do... */
   2887  1.335   mlelstv 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2888  1.335   mlelstv 			vput(vp);
   2889   1.48     oster 
   2890  1.335   mlelstv 			if (error)
   2891   1.48     oster 				continue;
   2892   1.48     oster 
   2893  1.335   mlelstv 			rf_part_found = 0; /*No raid partitions yet*/
   2894  1.335   mlelstv 			for (i = 0; i < label.d_npartitions; i++) {
   2895  1.335   mlelstv 				char cname[sizeof(ac_list->devname)];
   2896  1.335   mlelstv 
   2897  1.335   mlelstv 				/* We only support partitions marked as RAID */
   2898  1.335   mlelstv 				if (label.d_partitions[i].p_fstype != FS_RAID)
   2899  1.335   mlelstv 					continue;
   2900  1.335   mlelstv 
   2901  1.335   mlelstv 				dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2902  1.335   mlelstv 				if (bdevvp(dev, &vp))
   2903  1.335   mlelstv 					panic("RAID can't alloc vnode");
   2904  1.335   mlelstv 
   2905  1.375   hannken 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2906  1.335   mlelstv 				error = VOP_OPEN(vp, FREAD, NOCRED);
   2907  1.335   mlelstv 				if (error) {
   2908  1.335   mlelstv 					/* Whatever... */
   2909  1.335   mlelstv 					vput(vp);
   2910  1.335   mlelstv 					continue;
   2911  1.335   mlelstv 				}
   2912  1.375   hannken 				VOP_UNLOCK(vp);
   2913  1.335   mlelstv 				snprintf(cname, sizeof(cname), "%s%c",
   2914  1.335   mlelstv 				    device_xname(dv), 'a' + i);
   2915  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp, cname,
   2916  1.335   mlelstv 					label.d_partitions[i].p_size, numsecs, secsize);
   2917  1.335   mlelstv 				rf_part_found = 1; /*There is at least one raid partition on this disk*/
   2918   1.48     oster 			}
   2919  1.296    buhrow 
   2920  1.335   mlelstv 			/*
   2921  1.335   mlelstv 			 *If there is no raid component on this disk, either in a
   2922  1.335   mlelstv 			 *disklabel or inside a wedge, check the raw partition as well,
   2923  1.335   mlelstv 			 *as it is possible to configure raid components on raw disk
   2924  1.335   mlelstv 			 *devices.
   2925  1.335   mlelstv 			 */
   2926  1.296    buhrow 
   2927  1.335   mlelstv 			if (!rf_part_found) {
   2928  1.335   mlelstv 				char cname[sizeof(ac_list->devname)];
   2929  1.296    buhrow 
   2930  1.335   mlelstv 				dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
   2931  1.335   mlelstv 				if (bdevvp(dev, &vp))
   2932  1.335   mlelstv 					panic("RAID can't alloc vnode");
   2933  1.335   mlelstv 
   2934  1.375   hannken 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2935  1.375   hannken 
   2936  1.335   mlelstv 				error = VOP_OPEN(vp, FREAD, NOCRED);
   2937  1.335   mlelstv 				if (error) {
   2938  1.335   mlelstv 					/* Whatever... */
   2939  1.335   mlelstv 					vput(vp);
   2940  1.335   mlelstv 					continue;
   2941  1.335   mlelstv 				}
   2942  1.375   hannken 				VOP_UNLOCK(vp);
   2943  1.335   mlelstv 				snprintf(cname, sizeof(cname), "%s%c",
   2944  1.335   mlelstv 				    device_xname(dv), 'a' + RAW_PART);
   2945  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp, cname,
   2946  1.335   mlelstv 					label.d_partitions[RAW_PART].p_size, numsecs, secsize);
   2947  1.296    buhrow 			}
   2948   1.48     oster 		}
   2949  1.335   mlelstv 		deviter_release(&di);
   2950   1.48     oster 	}
   2951  1.213  christos 	return ac_list;
   2952   1.48     oster }
   2953  1.186     perry 
   2954  1.213  christos 
   2955  1.292     oster int
   2956  1.284       mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
   2957   1.48     oster {
   2958  1.186     perry 
   2959   1.48     oster 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2960   1.48     oster 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2961   1.48     oster 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2962   1.48     oster 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2963  1.186     perry 	    clabel->row >=0 &&
   2964  1.186     perry 	    clabel->column >= 0 &&
   2965   1.48     oster 	    clabel->num_rows > 0 &&
   2966   1.48     oster 	    clabel->num_columns > 0 &&
   2967  1.186     perry 	    clabel->row < clabel->num_rows &&
   2968   1.48     oster 	    clabel->column < clabel->num_columns &&
   2969   1.48     oster 	    clabel->blockSize > 0 &&
   2970  1.282     enami 	    /*
   2971  1.282     enami 	     * numBlocksHi may contain garbage, but it is ok since
   2972  1.282     enami 	     * the type is unsigned.  If it is really garbage,
   2973  1.282     enami 	     * rf_fix_old_label_size() will fix it.
   2974  1.282     enami 	     */
   2975  1.282     enami 	    rf_component_label_numblocks(clabel) > 0) {
   2976  1.284       mrg 		/*
   2977  1.284       mrg 		 * label looks reasonable enough...
   2978  1.284       mrg 		 * let's make sure it has no old garbage.
   2979  1.284       mrg 		 */
   2980  1.292     oster 		if (numsecs)
   2981  1.292     oster 			rf_fix_old_label_size(clabel, numsecs);
   2982   1.48     oster 		return(1);
   2983   1.48     oster 	}
   2984   1.48     oster 	return(0);
   2985   1.48     oster }
   2986   1.48     oster 
   2987   1.48     oster 
   2988  1.278       mrg /*
   2989  1.278       mrg  * For reasons yet unknown, some old component labels have garbage in
   2990  1.278       mrg  * the newer numBlocksHi region, and this causes lossage.  Since those
   2991  1.278       mrg  * disks will also have numsecs set to less than 32 bits of sectors,
   2992  1.299     oster  * we can determine when this corruption has occurred, and fix it.
   2993  1.284       mrg  *
   2994  1.284       mrg  * The exact same problem, with the same unknown reason, happens to
   2995  1.284       mrg  * the partitionSizeHi member as well.
   2996  1.278       mrg  */
   2997  1.278       mrg static void
   2998  1.278       mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
   2999  1.278       mrg {
   3000  1.278       mrg 
   3001  1.284       mrg 	if (numsecs < ((uint64_t)1 << 32)) {
   3002  1.284       mrg 		if (clabel->numBlocksHi) {
   3003  1.284       mrg 			printf("WARNING: total sectors < 32 bits, yet "
   3004  1.284       mrg 			       "numBlocksHi set\n"
   3005  1.284       mrg 			       "WARNING: resetting numBlocksHi to zero.\n");
   3006  1.284       mrg 			clabel->numBlocksHi = 0;
   3007  1.284       mrg 		}
   3008  1.284       mrg 
   3009  1.284       mrg 		if (clabel->partitionSizeHi) {
   3010  1.284       mrg 			printf("WARNING: total sectors < 32 bits, yet "
   3011  1.284       mrg 			       "partitionSizeHi set\n"
   3012  1.284       mrg 			       "WARNING: resetting partitionSizeHi to zero.\n");
   3013  1.284       mrg 			clabel->partitionSizeHi = 0;
   3014  1.284       mrg 		}
   3015  1.278       mrg 	}
   3016  1.278       mrg }
   3017  1.278       mrg 
   3018  1.278       mrg 
   3019  1.224     oster #ifdef DEBUG
   3020   1.48     oster void
   3021  1.169     oster rf_print_component_label(RF_ComponentLabel_t *clabel)
   3022   1.48     oster {
   3023  1.282     enami 	uint64_t numBlocks;
   3024  1.308  christos 	static const char *rp[] = {
   3025  1.308  christos 	    "No", "Force", "Soft", "*invalid*"
   3026  1.308  christos 	};
   3027  1.308  christos 
   3028  1.275       mrg 
   3029  1.282     enami 	numBlocks = rf_component_label_numblocks(clabel);
   3030  1.275       mrg 
   3031   1.48     oster 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3032  1.186     perry 	       clabel->row, clabel->column,
   3033   1.48     oster 	       clabel->num_rows, clabel->num_columns);
   3034   1.48     oster 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3035   1.48     oster 	       clabel->version, clabel->serial_number,
   3036   1.48     oster 	       clabel->mod_counter);
   3037   1.48     oster 	printf("   Clean: %s Status: %d\n",
   3038  1.271    dyoung 	       clabel->clean ? "Yes" : "No", clabel->status);
   3039   1.48     oster 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3040   1.48     oster 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3041  1.275       mrg 	printf("   RAID Level: %c  blocksize: %d numBlocks: %"PRIu64"\n",
   3042  1.275       mrg 	       (char) clabel->parityConfig, clabel->blockSize, numBlocks);
   3043  1.271    dyoung 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
   3044  1.308  christos 	printf("   Root partition: %s\n", rp[clabel->root_partition & 3]);
   3045  1.271    dyoung 	printf("   Last configured as: raid%d\n", clabel->last_unit);
   3046   1.51     oster #if 0
   3047   1.51     oster 	   printf("   Config order: %d\n", clabel->config_order);
   3048   1.51     oster #endif
   3049  1.186     perry 
   3050   1.48     oster }
   3051  1.133     oster #endif
   3052   1.48     oster 
   3053   1.48     oster RF_ConfigSet_t *
   3054  1.169     oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3055   1.48     oster {
   3056   1.48     oster 	RF_AutoConfig_t *ac;
   3057   1.48     oster 	RF_ConfigSet_t *config_sets;
   3058   1.48     oster 	RF_ConfigSet_t *cset;
   3059   1.48     oster 	RF_AutoConfig_t *ac_next;
   3060   1.48     oster 
   3061   1.48     oster 
   3062   1.48     oster 	config_sets = NULL;
   3063   1.48     oster 
   3064   1.48     oster 	/* Go through the AutoConfig list, and figure out which components
   3065   1.48     oster 	   belong to what sets.  */
   3066   1.48     oster 	ac = ac_list;
   3067   1.48     oster 	while(ac!=NULL) {
   3068   1.48     oster 		/* we're going to putz with ac->next, so save it here
   3069   1.48     oster 		   for use at the end of the loop */
   3070   1.48     oster 		ac_next = ac->next;
   3071   1.48     oster 
   3072   1.48     oster 		if (config_sets == NULL) {
   3073   1.48     oster 			/* will need at least this one... */
   3074  1.379       chs 			config_sets = malloc(sizeof(RF_ConfigSet_t),
   3075  1.379       chs 				       M_RAIDFRAME, M_WAITOK);
   3076   1.48     oster 			/* this one is easy :) */
   3077   1.48     oster 			config_sets->ac = ac;
   3078   1.48     oster 			config_sets->next = NULL;
   3079   1.51     oster 			config_sets->rootable = 0;
   3080   1.48     oster 			ac->next = NULL;
   3081   1.48     oster 		} else {
   3082   1.48     oster 			/* which set does this component fit into? */
   3083   1.48     oster 			cset = config_sets;
   3084   1.48     oster 			while(cset!=NULL) {
   3085   1.49     oster 				if (rf_does_it_fit(cset, ac)) {
   3086   1.86     oster 					/* looks like it matches... */
   3087   1.86     oster 					ac->next = cset->ac;
   3088   1.86     oster 					cset->ac = ac;
   3089   1.48     oster 					break;
   3090   1.48     oster 				}
   3091   1.48     oster 				cset = cset->next;
   3092   1.48     oster 			}
   3093   1.48     oster 			if (cset==NULL) {
   3094   1.48     oster 				/* didn't find a match above... new set..*/
   3095  1.379       chs 				cset = malloc(sizeof(RF_ConfigSet_t),
   3096  1.379       chs 					       M_RAIDFRAME, M_WAITOK);
   3097   1.48     oster 				cset->ac = ac;
   3098   1.48     oster 				ac->next = NULL;
   3099   1.48     oster 				cset->next = config_sets;
   3100   1.51     oster 				cset->rootable = 0;
   3101   1.48     oster 				config_sets = cset;
   3102   1.48     oster 			}
   3103   1.48     oster 		}
   3104   1.48     oster 		ac = ac_next;
   3105   1.48     oster 	}
   3106   1.48     oster 
   3107   1.48     oster 
   3108   1.48     oster 	return(config_sets);
   3109   1.48     oster }
   3110   1.48     oster 
   3111   1.48     oster static int
   3112  1.169     oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3113   1.48     oster {
   3114   1.48     oster 	RF_ComponentLabel_t *clabel1, *clabel2;
   3115   1.48     oster 
   3116   1.48     oster 	/* If this one matches the *first* one in the set, that's good
   3117   1.48     oster 	   enough, since the other members of the set would have been
   3118   1.48     oster 	   through here too... */
   3119   1.60     oster 	/* note that we are not checking partitionSize here..
   3120   1.60     oster 
   3121   1.60     oster 	   Note that we are also not checking the mod_counters here.
   3122  1.299     oster 	   If everything else matches except the mod_counter, that's
   3123   1.60     oster 	   good enough for this test.  We will deal with the mod_counters
   3124  1.186     perry 	   a little later in the autoconfiguration process.
   3125   1.60     oster 
   3126   1.60     oster 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3127   1.81     oster 
   3128   1.81     oster 	   The reason we don't check for this is that failed disks
   3129   1.81     oster 	   will have lower modification counts.  If those disks are
   3130   1.81     oster 	   not added to the set they used to belong to, then they will
   3131   1.81     oster 	   form their own set, which may result in 2 different sets,
   3132   1.81     oster 	   for example, competing to be configured at raid0, and
   3133   1.81     oster 	   perhaps competing to be the root filesystem set.  If the
   3134   1.81     oster 	   wrong ones get configured, or both attempt to become /,
   3135   1.81     oster 	   weird behaviour and or serious lossage will occur.  Thus we
   3136   1.81     oster 	   need to bring them into the fold here, and kick them out at
   3137   1.81     oster 	   a later point.
   3138   1.60     oster 
   3139   1.60     oster 	*/
   3140   1.48     oster 
   3141   1.48     oster 	clabel1 = cset->ac->clabel;
   3142   1.48     oster 	clabel2 = ac->clabel;
   3143   1.48     oster 	if ((clabel1->version == clabel2->version) &&
   3144   1.48     oster 	    (clabel1->serial_number == clabel2->serial_number) &&
   3145   1.48     oster 	    (clabel1->num_rows == clabel2->num_rows) &&
   3146   1.48     oster 	    (clabel1->num_columns == clabel2->num_columns) &&
   3147   1.48     oster 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3148   1.48     oster 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3149   1.48     oster 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3150   1.48     oster 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3151   1.48     oster 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3152   1.48     oster 	    (clabel1->blockSize == clabel2->blockSize) &&
   3153  1.282     enami 	    rf_component_label_numblocks(clabel1) ==
   3154  1.282     enami 	    rf_component_label_numblocks(clabel2) &&
   3155   1.48     oster 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3156   1.48     oster 	    (clabel1->root_partition == clabel2->root_partition) &&
   3157   1.48     oster 	    (clabel1->last_unit == clabel2->last_unit) &&
   3158   1.48     oster 	    (clabel1->config_order == clabel2->config_order)) {
   3159   1.48     oster 		/* if it get's here, it almost *has* to be a match */
   3160   1.48     oster 	} else {
   3161  1.186     perry 		/* it's not consistent with somebody in the set..
   3162   1.48     oster 		   punt */
   3163   1.48     oster 		return(0);
   3164   1.48     oster 	}
   3165   1.48     oster 	/* all was fine.. it must fit... */
   3166   1.48     oster 	return(1);
   3167   1.48     oster }
   3168   1.48     oster 
   3169   1.48     oster int
   3170  1.169     oster rf_have_enough_components(RF_ConfigSet_t *cset)
   3171   1.48     oster {
   3172   1.51     oster 	RF_AutoConfig_t *ac;
   3173   1.51     oster 	RF_AutoConfig_t *auto_config;
   3174   1.51     oster 	RF_ComponentLabel_t *clabel;
   3175  1.166     oster 	int c;
   3176   1.51     oster 	int num_cols;
   3177   1.51     oster 	int num_missing;
   3178   1.86     oster 	int mod_counter;
   3179   1.87     oster 	int mod_counter_found;
   3180   1.88     oster 	int even_pair_failed;
   3181   1.88     oster 	char parity_type;
   3182  1.186     perry 
   3183   1.51     oster 
   3184   1.48     oster 	/* check to see that we have enough 'live' components
   3185   1.48     oster 	   of this set.  If so, we can configure it if necessary */
   3186   1.48     oster 
   3187   1.51     oster 	num_cols = cset->ac->clabel->num_columns;
   3188   1.88     oster 	parity_type = cset->ac->clabel->parityConfig;
   3189   1.51     oster 
   3190   1.51     oster 	/* XXX Check for duplicate components!?!?!? */
   3191   1.51     oster 
   3192   1.86     oster 	/* Determine what the mod_counter is supposed to be for this set. */
   3193   1.86     oster 
   3194   1.87     oster 	mod_counter_found = 0;
   3195  1.101     oster 	mod_counter = 0;
   3196   1.86     oster 	ac = cset->ac;
   3197   1.86     oster 	while(ac!=NULL) {
   3198   1.87     oster 		if (mod_counter_found==0) {
   3199   1.86     oster 			mod_counter = ac->clabel->mod_counter;
   3200   1.87     oster 			mod_counter_found = 1;
   3201   1.87     oster 		} else {
   3202   1.87     oster 			if (ac->clabel->mod_counter > mod_counter) {
   3203   1.87     oster 				mod_counter = ac->clabel->mod_counter;
   3204   1.87     oster 			}
   3205   1.86     oster 		}
   3206   1.86     oster 		ac = ac->next;
   3207   1.86     oster 	}
   3208   1.86     oster 
   3209   1.51     oster 	num_missing = 0;
   3210   1.51     oster 	auto_config = cset->ac;
   3211   1.51     oster 
   3212  1.166     oster 	even_pair_failed = 0;
   3213  1.166     oster 	for(c=0; c<num_cols; c++) {
   3214  1.166     oster 		ac = auto_config;
   3215  1.166     oster 		while(ac!=NULL) {
   3216  1.186     perry 			if ((ac->clabel->column == c) &&
   3217  1.166     oster 			    (ac->clabel->mod_counter == mod_counter)) {
   3218  1.166     oster 				/* it's this one... */
   3219  1.224     oster #ifdef DEBUG
   3220  1.166     oster 				printf("Found: %s at %d\n",
   3221  1.166     oster 				       ac->devname,c);
   3222   1.51     oster #endif
   3223  1.166     oster 				break;
   3224   1.51     oster 			}
   3225  1.166     oster 			ac=ac->next;
   3226  1.166     oster 		}
   3227  1.166     oster 		if (ac==NULL) {
   3228   1.51     oster 				/* Didn't find one here! */
   3229   1.88     oster 				/* special case for RAID 1, especially
   3230   1.88     oster 				   where there are more than 2
   3231   1.88     oster 				   components (where RAIDframe treats
   3232   1.88     oster 				   things a little differently :( ) */
   3233  1.166     oster 			if (parity_type == '1') {
   3234  1.166     oster 				if (c%2 == 0) { /* even component */
   3235  1.166     oster 					even_pair_failed = 1;
   3236  1.166     oster 				} else { /* odd component.  If
   3237  1.166     oster 					    we're failed, and
   3238  1.166     oster 					    so is the even
   3239  1.166     oster 					    component, it's
   3240  1.166     oster 					    "Good Night, Charlie" */
   3241  1.166     oster 					if (even_pair_failed == 1) {
   3242  1.166     oster 						return(0);
   3243   1.88     oster 					}
   3244   1.88     oster 				}
   3245  1.166     oster 			} else {
   3246  1.166     oster 				/* normal accounting */
   3247  1.166     oster 				num_missing++;
   3248   1.88     oster 			}
   3249  1.166     oster 		}
   3250  1.166     oster 		if ((parity_type == '1') && (c%2 == 1)) {
   3251   1.88     oster 				/* Just did an even component, and we didn't
   3252  1.186     perry 				   bail.. reset the even_pair_failed flag,
   3253   1.88     oster 				   and go on to the next component.... */
   3254  1.166     oster 			even_pair_failed = 0;
   3255   1.51     oster 		}
   3256   1.51     oster 	}
   3257   1.51     oster 
   3258   1.51     oster 	clabel = cset->ac->clabel;
   3259   1.51     oster 
   3260   1.51     oster 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3261   1.51     oster 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3262   1.51     oster 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3263   1.51     oster 		/* XXX this needs to be made *much* more general */
   3264   1.51     oster 		/* Too many failures */
   3265   1.51     oster 		return(0);
   3266   1.51     oster 	}
   3267   1.51     oster 	/* otherwise, all is well, and we've got enough to take a kick
   3268   1.51     oster 	   at autoconfiguring this set */
   3269   1.51     oster 	return(1);
   3270   1.48     oster }
   3271   1.48     oster 
   3272   1.48     oster void
   3273  1.169     oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3274  1.222  christos 			RF_Raid_t *raidPtr)
   3275   1.48     oster {
   3276   1.48     oster 	RF_ComponentLabel_t *clabel;
   3277   1.77     oster 	int i;
   3278   1.48     oster 
   3279   1.48     oster 	clabel = ac->clabel;
   3280   1.48     oster 
   3281   1.48     oster 	/* 1. Fill in the common stuff */
   3282   1.48     oster 	config->numCol = clabel->num_columns;
   3283   1.48     oster 	config->numSpare = 0; /* XXX should this be set here? */
   3284   1.48     oster 	config->sectPerSU = clabel->sectPerSU;
   3285   1.48     oster 	config->SUsPerPU = clabel->SUsPerPU;
   3286   1.48     oster 	config->SUsPerRU = clabel->SUsPerRU;
   3287   1.48     oster 	config->parityConfig = clabel->parityConfig;
   3288   1.48     oster 	/* XXX... */
   3289   1.48     oster 	strcpy(config->diskQueueType,"fifo");
   3290   1.48     oster 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3291   1.48     oster 	config->layoutSpecificSize = 0; /* XXX ?? */
   3292   1.48     oster 
   3293   1.48     oster 	while(ac!=NULL) {
   3294   1.48     oster 		/* row/col values will be in range due to the checks
   3295   1.48     oster 		   in reasonable_label() */
   3296  1.166     oster 		strcpy(config->devnames[0][ac->clabel->column],
   3297   1.48     oster 		       ac->devname);
   3298   1.48     oster 		ac = ac->next;
   3299   1.48     oster 	}
   3300   1.48     oster 
   3301   1.77     oster 	for(i=0;i<RF_MAXDBGV;i++) {
   3302  1.163      fvdl 		config->debugVars[i][0] = 0;
   3303   1.77     oster 	}
   3304   1.48     oster }
   3305   1.48     oster 
   3306   1.48     oster int
   3307  1.169     oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3308   1.48     oster {
   3309  1.269       jld 	RF_ComponentLabel_t *clabel;
   3310  1.166     oster 	int column;
   3311  1.148     oster 	int sparecol;
   3312   1.48     oster 
   3313   1.54     oster 	raidPtr->autoconfigure = new_value;
   3314  1.166     oster 
   3315  1.166     oster 	for(column=0; column<raidPtr->numCol; column++) {
   3316  1.166     oster 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3317  1.269       jld 			clabel = raidget_component_label(raidPtr, column);
   3318  1.269       jld 			clabel->autoconfigure = new_value;
   3319  1.269       jld 			raidflush_component_label(raidPtr, column);
   3320   1.48     oster 		}
   3321   1.48     oster 	}
   3322  1.148     oster 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3323  1.148     oster 		sparecol = raidPtr->numCol + column;
   3324  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3325  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   3326  1.269       jld 			clabel->autoconfigure = new_value;
   3327  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   3328  1.148     oster 		}
   3329  1.148     oster 	}
   3330   1.48     oster 	return(new_value);
   3331   1.48     oster }
   3332   1.48     oster 
   3333   1.48     oster int
   3334  1.169     oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3335   1.48     oster {
   3336  1.269       jld 	RF_ComponentLabel_t *clabel;
   3337  1.166     oster 	int column;
   3338  1.148     oster 	int sparecol;
   3339   1.48     oster 
   3340   1.54     oster 	raidPtr->root_partition = new_value;
   3341  1.166     oster 	for(column=0; column<raidPtr->numCol; column++) {
   3342  1.166     oster 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3343  1.269       jld 			clabel = raidget_component_label(raidPtr, column);
   3344  1.269       jld 			clabel->root_partition = new_value;
   3345  1.269       jld 			raidflush_component_label(raidPtr, column);
   3346  1.148     oster 		}
   3347  1.148     oster 	}
   3348  1.148     oster 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3349  1.148     oster 		sparecol = raidPtr->numCol + column;
   3350  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3351  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   3352  1.269       jld 			clabel->root_partition = new_value;
   3353  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   3354   1.48     oster 		}
   3355   1.48     oster 	}
   3356   1.48     oster 	return(new_value);
   3357   1.48     oster }
   3358   1.48     oster 
   3359   1.48     oster void
   3360  1.169     oster rf_release_all_vps(RF_ConfigSet_t *cset)
   3361   1.48     oster {
   3362   1.48     oster 	RF_AutoConfig_t *ac;
   3363  1.186     perry 
   3364   1.48     oster 	ac = cset->ac;
   3365   1.48     oster 	while(ac!=NULL) {
   3366   1.48     oster 		/* Close the vp, and give it back */
   3367   1.48     oster 		if (ac->vp) {
   3368   1.96     oster 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3369  1.335   mlelstv 			VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
   3370   1.48     oster 			vput(ac->vp);
   3371   1.86     oster 			ac->vp = NULL;
   3372   1.48     oster 		}
   3373   1.48     oster 		ac = ac->next;
   3374   1.48     oster 	}
   3375   1.48     oster }
   3376   1.48     oster 
   3377   1.48     oster 
   3378   1.48     oster void
   3379  1.169     oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3380   1.48     oster {
   3381   1.48     oster 	RF_AutoConfig_t *ac;
   3382   1.48     oster 	RF_AutoConfig_t *next_ac;
   3383  1.186     perry 
   3384   1.48     oster 	ac = cset->ac;
   3385   1.48     oster 	while(ac!=NULL) {
   3386   1.48     oster 		next_ac = ac->next;
   3387   1.48     oster 		/* nuke the label */
   3388   1.48     oster 		free(ac->clabel, M_RAIDFRAME);
   3389   1.48     oster 		/* cleanup the config structure */
   3390   1.48     oster 		free(ac, M_RAIDFRAME);
   3391   1.48     oster 		/* "next.." */
   3392   1.48     oster 		ac = next_ac;
   3393   1.48     oster 	}
   3394   1.48     oster 	/* and, finally, nuke the config set */
   3395   1.48     oster 	free(cset, M_RAIDFRAME);
   3396   1.48     oster }
   3397   1.48     oster 
   3398   1.48     oster 
   3399   1.48     oster void
   3400  1.169     oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3401   1.48     oster {
   3402   1.48     oster 	/* current version number */
   3403  1.186     perry 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3404   1.57     oster 	clabel->serial_number = raidPtr->serial_number;
   3405   1.48     oster 	clabel->mod_counter = raidPtr->mod_counter;
   3406  1.269       jld 
   3407  1.166     oster 	clabel->num_rows = 1;
   3408   1.48     oster 	clabel->num_columns = raidPtr->numCol;
   3409   1.48     oster 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3410   1.48     oster 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3411  1.186     perry 
   3412   1.48     oster 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3413   1.48     oster 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3414   1.48     oster 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3415   1.54     oster 
   3416   1.54     oster 	clabel->blockSize = raidPtr->bytesPerSector;
   3417  1.282     enami 	rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
   3418   1.54     oster 
   3419   1.48     oster 	/* XXX not portable */
   3420   1.48     oster 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3421   1.54     oster 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3422   1.54     oster 	clabel->autoconfigure = raidPtr->autoconfigure;
   3423   1.54     oster 	clabel->root_partition = raidPtr->root_partition;
   3424   1.48     oster 	clabel->last_unit = raidPtr->raidid;
   3425   1.54     oster 	clabel->config_order = raidPtr->config_order;
   3426  1.269       jld 
   3427  1.269       jld #ifndef RF_NO_PARITY_MAP
   3428  1.269       jld 	rf_paritymap_init_label(raidPtr->parity_map, clabel);
   3429  1.269       jld #endif
   3430   1.51     oster }
   3431   1.51     oster 
   3432  1.300  christos struct raid_softc *
   3433  1.300  christos rf_auto_config_set(RF_ConfigSet_t *cset)
   3434   1.51     oster {
   3435   1.51     oster 	RF_Raid_t *raidPtr;
   3436   1.51     oster 	RF_Config_t *config;
   3437   1.51     oster 	int raidID;
   3438  1.300  christos 	struct raid_softc *sc;
   3439   1.51     oster 
   3440  1.224     oster #ifdef DEBUG
   3441   1.72     oster 	printf("RAID autoconfigure\n");
   3442  1.127     oster #endif
   3443   1.51     oster 
   3444   1.51     oster 	/* 1. Create a config structure */
   3445  1.379       chs 	config = malloc(sizeof(*config), M_RAIDFRAME, M_WAITOK|M_ZERO);
   3446   1.77     oster 
   3447  1.186     perry 	/*
   3448  1.186     perry 	   2. Figure out what RAID ID this one is supposed to live at
   3449   1.51     oster 	   See if we can get the same RAID dev that it was configured
   3450  1.186     perry 	   on last time..
   3451   1.51     oster 	*/
   3452   1.51     oster 
   3453   1.51     oster 	raidID = cset->ac->clabel->last_unit;
   3454  1.327  pgoyette 	for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
   3455  1.327  pgoyette 	     sc = raidget(++raidID, false))
   3456  1.300  christos 		continue;
   3457  1.224     oster #ifdef DEBUG
   3458   1.72     oster 	printf("Configuring raid%d:\n",raidID);
   3459  1.127     oster #endif
   3460  1.127     oster 
   3461  1.327  pgoyette 	if (sc == NULL)
   3462  1.327  pgoyette 		sc = raidget(raidID, true);
   3463  1.300  christos 	raidPtr = &sc->sc_r;
   3464   1.51     oster 
   3465   1.51     oster 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3466  1.302  christos 	raidPtr->softc = sc;
   3467   1.51     oster 	raidPtr->raidid = raidID;
   3468   1.51     oster 	raidPtr->openings = RAIDOUTSTANDING;
   3469   1.51     oster 
   3470   1.51     oster 	/* 3. Build the configuration structure */
   3471   1.51     oster 	rf_create_configuration(cset->ac, config, raidPtr);
   3472   1.51     oster 
   3473   1.51     oster 	/* 4. Do the configuration */
   3474  1.300  christos 	if (rf_Configure(raidPtr, config, cset->ac) == 0) {
   3475  1.300  christos 		raidinit(sc);
   3476  1.186     perry 
   3477  1.300  christos 		rf_markalldirty(raidPtr);
   3478  1.300  christos 		raidPtr->autoconfigure = 1; /* XXX do this here? */
   3479  1.308  christos 		switch (cset->ac->clabel->root_partition) {
   3480  1.308  christos 		case 1:	/* Force Root */
   3481  1.308  christos 		case 2:	/* Soft Root: root when boot partition part of raid */
   3482  1.308  christos 			/*
   3483  1.308  christos 			 * everything configured just fine.  Make a note
   3484  1.308  christos 			 * that this set is eligible to be root,
   3485  1.308  christos 			 * or forced to be root
   3486  1.308  christos 			 */
   3487  1.308  christos 			cset->rootable = cset->ac->clabel->root_partition;
   3488   1.54     oster 			/* XXX do this here? */
   3489  1.308  christos 			raidPtr->root_partition = cset->rootable;
   3490  1.308  christos 			break;
   3491  1.308  christos 		default:
   3492  1.308  christos 			break;
   3493   1.51     oster 		}
   3494  1.300  christos 	} else {
   3495  1.300  christos 		raidput(sc);
   3496  1.300  christos 		sc = NULL;
   3497   1.51     oster 	}
   3498   1.51     oster 
   3499   1.51     oster 	/* 5. Cleanup */
   3500   1.51     oster 	free(config, M_RAIDFRAME);
   3501  1.300  christos 	return sc;
   3502   1.99     oster }
   3503   1.99     oster 
   3504   1.99     oster void
   3505  1.187  christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3506  1.187  christos 	     size_t xmin, size_t xmax)
   3507  1.177     oster {
   3508  1.352  christos 
   3509  1.227        ad 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3510  1.187  christos 	pool_sethiwat(p, xmax);
   3511  1.382       chs 	pool_prime(p, xmin);
   3512  1.177     oster }
   3513  1.190     oster 
   3514  1.190     oster /*
   3515  1.335   mlelstv  * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
   3516  1.335   mlelstv  * to see if there is IO pending and if that IO could possibly be done
   3517  1.335   mlelstv  * for a given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3518  1.190     oster  * otherwise.
   3519  1.190     oster  *
   3520  1.190     oster  */
   3521  1.190     oster int
   3522  1.300  christos rf_buf_queue_check(RF_Raid_t *raidPtr)
   3523  1.190     oster {
   3524  1.335   mlelstv 	struct raid_softc *rs;
   3525  1.335   mlelstv 	struct dk_softc *dksc;
   3526  1.335   mlelstv 
   3527  1.335   mlelstv 	rs = raidPtr->softc;
   3528  1.335   mlelstv 	dksc = &rs->sc_dksc;
   3529  1.335   mlelstv 
   3530  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0)
   3531  1.335   mlelstv 		return 1;
   3532  1.335   mlelstv 
   3533  1.335   mlelstv 	if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
   3534  1.190     oster 		/* there is work to do */
   3535  1.190     oster 		return 0;
   3536  1.335   mlelstv 	}
   3537  1.190     oster 	/* default is nothing to do */
   3538  1.190     oster 	return 1;
   3539  1.190     oster }
   3540  1.213  christos 
   3541  1.213  christos int
   3542  1.294     oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
   3543  1.213  christos {
   3544  1.275       mrg 	uint64_t numsecs;
   3545  1.275       mrg 	unsigned secsize;
   3546  1.213  christos 	int error;
   3547  1.213  christos 
   3548  1.275       mrg 	error = getdisksize(vp, &numsecs, &secsize);
   3549  1.213  christos 	if (error == 0) {
   3550  1.275       mrg 		diskPtr->blockSize = secsize;
   3551  1.275       mrg 		diskPtr->numBlocks = numsecs - rf_protectedSectors;
   3552  1.275       mrg 		diskPtr->partitionSize = numsecs;
   3553  1.213  christos 		return 0;
   3554  1.213  christos 	}
   3555  1.213  christos 	return error;
   3556  1.213  christos }
   3557  1.217     oster 
   3558  1.217     oster static int
   3559  1.261    dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
   3560  1.217     oster {
   3561  1.217     oster 	return 1;
   3562  1.217     oster }
   3563  1.217     oster 
   3564  1.217     oster static void
   3565  1.261    dyoung raid_attach(device_t parent, device_t self, void *aux)
   3566  1.217     oster {
   3567  1.217     oster }
   3568  1.217     oster 
   3569  1.217     oster 
   3570  1.217     oster static int
   3571  1.261    dyoung raid_detach(device_t self, int flags)
   3572  1.217     oster {
   3573  1.266    dyoung 	int error;
   3574  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(self);
   3575  1.303  christos 
   3576  1.303  christos 	if (rs == NULL)
   3577  1.303  christos 		return ENXIO;
   3578  1.266    dyoung 
   3579  1.266    dyoung 	if ((error = raidlock(rs)) != 0)
   3580  1.266    dyoung 		return (error);
   3581  1.217     oster 
   3582  1.266    dyoung 	error = raid_detach_unlocked(rs);
   3583  1.266    dyoung 
   3584  1.332   mlelstv 	raidunlock(rs);
   3585  1.332   mlelstv 
   3586  1.332   mlelstv 	/* XXX raid can be referenced here */
   3587  1.332   mlelstv 
   3588  1.332   mlelstv 	if (error)
   3589  1.332   mlelstv 		return error;
   3590  1.332   mlelstv 
   3591  1.332   mlelstv 	/* Free the softc */
   3592  1.332   mlelstv 	raidput(rs);
   3593  1.332   mlelstv 
   3594  1.332   mlelstv 	return 0;
   3595  1.217     oster }
   3596  1.217     oster 
   3597  1.234     oster static void
   3598  1.304  christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3599  1.234     oster {
   3600  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   3601  1.335   mlelstv 	struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
   3602  1.304  christos 
   3603  1.304  christos 	memset(dg, 0, sizeof(*dg));
   3604  1.304  christos 
   3605  1.304  christos 	dg->dg_secperunit = raidPtr->totalSectors;
   3606  1.304  christos 	dg->dg_secsize = raidPtr->bytesPerSector;
   3607  1.304  christos 	dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   3608  1.304  christos 	dg->dg_ntracks = 4 * raidPtr->numCol;
   3609  1.304  christos 
   3610  1.335   mlelstv 	disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
   3611  1.234     oster }
   3612  1.252     oster 
   3613  1.348  jdolecek /*
   3614  1.348  jdolecek  * Get cache info for all the components (including spares).
   3615  1.348  jdolecek  * Returns intersection of all the cache flags of all disks, or first
   3616  1.348  jdolecek  * error if any encountered.
   3617  1.348  jdolecek  * XXXfua feature flags can change as spares are added - lock down somehow
   3618  1.348  jdolecek  */
   3619  1.348  jdolecek static int
   3620  1.348  jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
   3621  1.348  jdolecek {
   3622  1.348  jdolecek 	int c;
   3623  1.348  jdolecek 	int error;
   3624  1.348  jdolecek 	int dkwhole = 0, dkpart;
   3625  1.348  jdolecek 
   3626  1.348  jdolecek 	for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
   3627  1.348  jdolecek 		/*
   3628  1.348  jdolecek 		 * Check any non-dead disk, even when currently being
   3629  1.348  jdolecek 		 * reconstructed.
   3630  1.348  jdolecek 		 */
   3631  1.348  jdolecek 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
   3632  1.348  jdolecek 		    || raidPtr->Disks[c].status == rf_ds_reconstructing) {
   3633  1.348  jdolecek 			error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
   3634  1.348  jdolecek 			    DIOCGCACHE, &dkpart, FREAD, NOCRED);
   3635  1.348  jdolecek 			if (error) {
   3636  1.348  jdolecek 				if (error != ENODEV) {
   3637  1.348  jdolecek 					printf("raid%d: get cache for component %s failed\n",
   3638  1.348  jdolecek 					    raidPtr->raidid,
   3639  1.348  jdolecek 					    raidPtr->Disks[c].devname);
   3640  1.348  jdolecek 				}
   3641  1.348  jdolecek 
   3642  1.348  jdolecek 				return error;
   3643  1.348  jdolecek 			}
   3644  1.348  jdolecek 
   3645  1.348  jdolecek 			if (c == 0)
   3646  1.348  jdolecek 				dkwhole = dkpart;
   3647  1.348  jdolecek 			else
   3648  1.348  jdolecek 				dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
   3649  1.348  jdolecek 		}
   3650  1.348  jdolecek 	}
   3651  1.348  jdolecek 
   3652  1.349  jdolecek 	*data = dkwhole;
   3653  1.348  jdolecek 
   3654  1.348  jdolecek 	return 0;
   3655  1.348  jdolecek }
   3656  1.348  jdolecek 
   3657  1.252     oster /*
   3658  1.252     oster  * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
   3659  1.252     oster  * We end up returning whatever error was returned by the first cache flush
   3660  1.252     oster  * that fails.
   3661  1.252     oster  */
   3662  1.252     oster 
   3663  1.269       jld int
   3664  1.252     oster rf_sync_component_caches(RF_Raid_t *raidPtr)
   3665  1.252     oster {
   3666  1.252     oster 	int c, sparecol;
   3667  1.252     oster 	int e,error;
   3668  1.252     oster 	int force = 1;
   3669  1.252     oster 
   3670  1.252     oster 	error = 0;
   3671  1.252     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   3672  1.252     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   3673  1.252     oster 			e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
   3674  1.252     oster 					  &force, FWRITE, NOCRED);
   3675  1.252     oster 			if (e) {
   3676  1.255     oster 				if (e != ENODEV)
   3677  1.255     oster 					printf("raid%d: cache flush to component %s failed.\n",
   3678  1.255     oster 					       raidPtr->raidid, raidPtr->Disks[c].devname);
   3679  1.252     oster 				if (error == 0) {
   3680  1.252     oster 					error = e;
   3681  1.252     oster 				}
   3682  1.252     oster 			}
   3683  1.252     oster 		}
   3684  1.252     oster 	}
   3685  1.252     oster 
   3686  1.252     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   3687  1.252     oster 		sparecol = raidPtr->numCol + c;
   3688  1.252     oster 		/* Need to ensure that the reconstruct actually completed! */
   3689  1.252     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3690  1.252     oster 			e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
   3691  1.252     oster 					  DIOCCACHESYNC, &force, FWRITE, NOCRED);
   3692  1.252     oster 			if (e) {
   3693  1.255     oster 				if (e != ENODEV)
   3694  1.255     oster 					printf("raid%d: cache flush to component %s failed.\n",
   3695  1.255     oster 					       raidPtr->raidid, raidPtr->Disks[sparecol].devname);
   3696  1.252     oster 				if (error == 0) {
   3697  1.252     oster 					error = e;
   3698  1.252     oster 				}
   3699  1.252     oster 			}
   3700  1.252     oster 		}
   3701  1.252     oster 	}
   3702  1.252     oster 	return error;
   3703  1.252     oster }
   3704  1.327  pgoyette 
   3705  1.353       mrg /* Fill in info with the current status */
   3706  1.353       mrg void
   3707  1.353       mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3708  1.353       mrg {
   3709  1.353       mrg 
   3710  1.353       mrg 	if (raidPtr->status != rf_rs_reconstructing) {
   3711  1.353       mrg 		info->total = 100;
   3712  1.353       mrg 		info->completed = 100;
   3713  1.353       mrg 	} else {
   3714  1.353       mrg 		info->total = raidPtr->reconControl->numRUsTotal;
   3715  1.353       mrg 		info->completed = raidPtr->reconControl->numRUsComplete;
   3716  1.353       mrg 	}
   3717  1.353       mrg 	info->remaining = info->total - info->completed;
   3718  1.353       mrg }
   3719  1.353       mrg 
   3720  1.353       mrg /* Fill in info with the current status */
   3721  1.353       mrg void
   3722  1.353       mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3723  1.353       mrg {
   3724  1.353       mrg 
   3725  1.353       mrg 	if (raidPtr->parity_rewrite_in_progress == 1) {
   3726  1.353       mrg 		info->total = raidPtr->Layout.numStripe;
   3727  1.353       mrg 		info->completed = raidPtr->parity_rewrite_stripes_done;
   3728  1.353       mrg 	} else {
   3729  1.353       mrg 		info->completed = 100;
   3730  1.353       mrg 		info->total = 100;
   3731  1.353       mrg 	}
   3732  1.353       mrg 	info->remaining = info->total - info->completed;
   3733  1.353       mrg }
   3734  1.353       mrg 
   3735  1.353       mrg /* Fill in info with the current status */
   3736  1.353       mrg void
   3737  1.353       mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3738  1.353       mrg {
   3739  1.353       mrg 
   3740  1.353       mrg 	if (raidPtr->copyback_in_progress == 1) {
   3741  1.353       mrg 		info->total = raidPtr->Layout.numStripe;
   3742  1.353       mrg 		info->completed = raidPtr->copyback_stripes_done;
   3743  1.353       mrg 		info->remaining = info->total - info->completed;
   3744  1.353       mrg 	} else {
   3745  1.353       mrg 		info->remaining = 0;
   3746  1.353       mrg 		info->completed = 100;
   3747  1.353       mrg 		info->total = 100;
   3748  1.353       mrg 	}
   3749  1.353       mrg }
   3750  1.353       mrg 
   3751  1.353       mrg /* Fill in config with the current info */
   3752  1.353       mrg int
   3753  1.353       mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
   3754  1.353       mrg {
   3755  1.353       mrg 	int	d, i, j;
   3756  1.353       mrg 
   3757  1.353       mrg 	if (!raidPtr->valid)
   3758  1.353       mrg 		return (ENODEV);
   3759  1.353       mrg 	config->cols = raidPtr->numCol;
   3760  1.353       mrg 	config->ndevs = raidPtr->numCol;
   3761  1.353       mrg 	if (config->ndevs >= RF_MAX_DISKS)
   3762  1.353       mrg 		return (ENOMEM);
   3763  1.353       mrg 	config->nspares = raidPtr->numSpare;
   3764  1.353       mrg 	if (config->nspares >= RF_MAX_DISKS)
   3765  1.353       mrg 		return (ENOMEM);
   3766  1.353       mrg 	config->maxqdepth = raidPtr->maxQueueDepth;
   3767  1.353       mrg 	d = 0;
   3768  1.353       mrg 	for (j = 0; j < config->cols; j++) {
   3769  1.353       mrg 		config->devs[d] = raidPtr->Disks[j];
   3770  1.353       mrg 		d++;
   3771  1.353       mrg 	}
   3772  1.353       mrg 	for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
   3773  1.353       mrg 		config->spares[i] = raidPtr->Disks[j];
   3774  1.353       mrg 		if (config->spares[i].status == rf_ds_rebuilding_spare) {
   3775  1.353       mrg 			/* XXX: raidctl(8) expects to see this as a used spare */
   3776  1.353       mrg 			config->spares[i].status = rf_ds_used_spare;
   3777  1.353       mrg 		}
   3778  1.353       mrg 	}
   3779  1.353       mrg 	return 0;
   3780  1.353       mrg }
   3781  1.353       mrg 
   3782  1.353       mrg int
   3783  1.353       mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
   3784  1.353       mrg {
   3785  1.353       mrg 	RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
   3786  1.353       mrg 	RF_ComponentLabel_t *raid_clabel;
   3787  1.353       mrg 	int column = clabel->column;
   3788  1.353       mrg 
   3789  1.353       mrg 	if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
   3790  1.353       mrg 		return EINVAL;
   3791  1.353       mrg 	raid_clabel = raidget_component_label(raidPtr, column);
   3792  1.353       mrg 	memcpy(clabel, raid_clabel, sizeof *clabel);
   3793  1.353       mrg 
   3794  1.353       mrg 	return 0;
   3795  1.353       mrg }
   3796  1.353       mrg 
   3797  1.327  pgoyette /*
   3798  1.327  pgoyette  * Module interface
   3799  1.327  pgoyette  */
   3800  1.327  pgoyette 
   3801  1.356  pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
   3802  1.327  pgoyette 
   3803  1.327  pgoyette #ifdef _MODULE
   3804  1.327  pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
   3805  1.327  pgoyette #endif
   3806  1.327  pgoyette 
   3807  1.327  pgoyette static int raid_modcmd(modcmd_t, void *);
   3808  1.327  pgoyette static int raid_modcmd_init(void);
   3809  1.327  pgoyette static int raid_modcmd_fini(void);
   3810  1.327  pgoyette 
   3811  1.327  pgoyette static int
   3812  1.327  pgoyette raid_modcmd(modcmd_t cmd, void *data)
   3813  1.327  pgoyette {
   3814  1.327  pgoyette 	int error;
   3815  1.327  pgoyette 
   3816  1.327  pgoyette 	error = 0;
   3817  1.327  pgoyette 	switch (cmd) {
   3818  1.327  pgoyette 	case MODULE_CMD_INIT:
   3819  1.327  pgoyette 		error = raid_modcmd_init();
   3820  1.327  pgoyette 		break;
   3821  1.327  pgoyette 	case MODULE_CMD_FINI:
   3822  1.327  pgoyette 		error = raid_modcmd_fini();
   3823  1.327  pgoyette 		break;
   3824  1.327  pgoyette 	default:
   3825  1.327  pgoyette 		error = ENOTTY;
   3826  1.327  pgoyette 		break;
   3827  1.327  pgoyette 	}
   3828  1.327  pgoyette 	return error;
   3829  1.327  pgoyette }
   3830  1.327  pgoyette 
   3831  1.327  pgoyette static int
   3832  1.327  pgoyette raid_modcmd_init(void)
   3833  1.327  pgoyette {
   3834  1.327  pgoyette 	int error;
   3835  1.327  pgoyette 	int bmajor, cmajor;
   3836  1.327  pgoyette 
   3837  1.327  pgoyette 	mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
   3838  1.327  pgoyette 	mutex_enter(&raid_lock);
   3839  1.327  pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   3840  1.327  pgoyette 	rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
   3841  1.327  pgoyette 	rf_init_cond2(rf_sparet_wait_cv, "sparetw");
   3842  1.327  pgoyette 	rf_init_cond2(rf_sparet_resp_cv, "rfgst");
   3843  1.327  pgoyette 
   3844  1.327  pgoyette 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
   3845  1.327  pgoyette #endif
   3846  1.327  pgoyette 
   3847  1.327  pgoyette 	bmajor = cmajor = -1;
   3848  1.327  pgoyette 	error = devsw_attach("raid", &raid_bdevsw, &bmajor,
   3849  1.327  pgoyette 	    &raid_cdevsw, &cmajor);
   3850  1.327  pgoyette 	if (error != 0 && error != EEXIST) {
   3851  1.327  pgoyette 		aprint_error("%s: devsw_attach failed %d\n", __func__, error);
   3852  1.327  pgoyette 		mutex_exit(&raid_lock);
   3853  1.327  pgoyette 		return error;
   3854  1.327  pgoyette 	}
   3855  1.327  pgoyette #ifdef _MODULE
   3856  1.327  pgoyette 	error = config_cfdriver_attach(&raid_cd);
   3857  1.327  pgoyette 	if (error != 0) {
   3858  1.327  pgoyette 		aprint_error("%s: config_cfdriver_attach failed %d\n",
   3859  1.327  pgoyette 		    __func__, error);
   3860  1.327  pgoyette 		devsw_detach(&raid_bdevsw, &raid_cdevsw);
   3861  1.327  pgoyette 		mutex_exit(&raid_lock);
   3862  1.327  pgoyette 		return error;
   3863  1.327  pgoyette 	}
   3864  1.327  pgoyette #endif
   3865  1.327  pgoyette 	error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
   3866  1.327  pgoyette 	if (error != 0) {
   3867  1.327  pgoyette 		aprint_error("%s: config_cfattach_attach failed %d\n",
   3868  1.327  pgoyette 		    __func__, error);
   3869  1.327  pgoyette #ifdef _MODULE
   3870  1.327  pgoyette 		config_cfdriver_detach(&raid_cd);
   3871  1.327  pgoyette #endif
   3872  1.327  pgoyette 		devsw_detach(&raid_bdevsw, &raid_cdevsw);
   3873  1.327  pgoyette 		mutex_exit(&raid_lock);
   3874  1.327  pgoyette 		return error;
   3875  1.327  pgoyette 	}
   3876  1.327  pgoyette 
   3877  1.327  pgoyette 	raidautoconfigdone = false;
   3878  1.327  pgoyette 
   3879  1.327  pgoyette 	mutex_exit(&raid_lock);
   3880  1.327  pgoyette 
   3881  1.327  pgoyette 	if (error == 0) {
   3882  1.327  pgoyette 		if (rf_BootRaidframe(true) == 0)
   3883  1.327  pgoyette 			aprint_verbose("Kernelized RAIDframe activated\n");
   3884  1.327  pgoyette 		else
   3885  1.327  pgoyette 			panic("Serious error activating RAID!!");
   3886  1.327  pgoyette 	}
   3887  1.327  pgoyette 
   3888  1.327  pgoyette 	/*
   3889  1.327  pgoyette 	 * Register a finalizer which will be used to auto-config RAID
   3890  1.327  pgoyette 	 * sets once all real hardware devices have been found.
   3891  1.327  pgoyette 	 */
   3892  1.327  pgoyette 	error = config_finalize_register(NULL, rf_autoconfig);
   3893  1.327  pgoyette 	if (error != 0) {
   3894  1.327  pgoyette 		aprint_error("WARNING: unable to register RAIDframe "
   3895  1.327  pgoyette 		    "finalizer\n");
   3896  1.329  pgoyette 		error = 0;
   3897  1.327  pgoyette 	}
   3898  1.327  pgoyette 
   3899  1.327  pgoyette 	return error;
   3900  1.327  pgoyette }
   3901  1.327  pgoyette 
   3902  1.327  pgoyette static int
   3903  1.327  pgoyette raid_modcmd_fini(void)
   3904  1.327  pgoyette {
   3905  1.327  pgoyette 	int error;
   3906  1.327  pgoyette 
   3907  1.327  pgoyette 	mutex_enter(&raid_lock);
   3908  1.327  pgoyette 
   3909  1.327  pgoyette 	/* Don't allow unload if raid device(s) exist.  */
   3910  1.327  pgoyette 	if (!LIST_EMPTY(&raids)) {
   3911  1.327  pgoyette 		mutex_exit(&raid_lock);
   3912  1.327  pgoyette 		return EBUSY;
   3913  1.327  pgoyette 	}
   3914  1.327  pgoyette 
   3915  1.327  pgoyette 	error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
   3916  1.327  pgoyette 	if (error != 0) {
   3917  1.335   mlelstv 		aprint_error("%s: cannot detach cfattach\n",__func__);
   3918  1.327  pgoyette 		mutex_exit(&raid_lock);
   3919  1.327  pgoyette 		return error;
   3920  1.327  pgoyette 	}
   3921  1.327  pgoyette #ifdef _MODULE
   3922  1.327  pgoyette 	error = config_cfdriver_detach(&raid_cd);
   3923  1.327  pgoyette 	if (error != 0) {
   3924  1.335   mlelstv 		aprint_error("%s: cannot detach cfdriver\n",__func__);
   3925  1.327  pgoyette 		config_cfattach_attach(raid_cd.cd_name, &raid_ca);
   3926  1.327  pgoyette 		mutex_exit(&raid_lock);
   3927  1.327  pgoyette 		return error;
   3928  1.327  pgoyette 	}
   3929  1.327  pgoyette #endif
   3930  1.327  pgoyette 	error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
   3931  1.327  pgoyette 	if (error != 0) {
   3932  1.335   mlelstv 		aprint_error("%s: cannot detach devsw\n",__func__);
   3933  1.327  pgoyette #ifdef _MODULE
   3934  1.327  pgoyette 		config_cfdriver_attach(&raid_cd);
   3935  1.327  pgoyette #endif
   3936  1.327  pgoyette 		config_cfattach_attach(raid_cd.cd_name, &raid_ca);
   3937  1.327  pgoyette 		mutex_exit(&raid_lock);
   3938  1.327  pgoyette 		return error;
   3939  1.327  pgoyette 	}
   3940  1.327  pgoyette 	rf_BootRaidframe(false);
   3941  1.327  pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   3942  1.327  pgoyette 	rf_destroy_mutex2(rf_sparet_wait_mutex);
   3943  1.327  pgoyette 	rf_destroy_cond2(rf_sparet_wait_cv);
   3944  1.327  pgoyette 	rf_destroy_cond2(rf_sparet_resp_cv);
   3945  1.327  pgoyette #endif
   3946  1.327  pgoyette 	mutex_exit(&raid_lock);
   3947  1.327  pgoyette 	mutex_destroy(&raid_lock);
   3948  1.327  pgoyette 
   3949  1.327  pgoyette 	return error;
   3950  1.327  pgoyette }
   3951