rf_netbsdkintf.c revision 1.384 1 1.384 jdolecek /* $NetBSD: rf_netbsdkintf.c,v 1.384 2020/06/19 19:29:39 jdolecek Exp $ */
2 1.281 rmind
3 1.1 oster /*-
4 1.295 erh * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 1.1 oster * All rights reserved.
6 1.1 oster *
7 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
8 1.1 oster * by Greg Oster; Jason R. Thorpe.
9 1.1 oster *
10 1.1 oster * Redistribution and use in source and binary forms, with or without
11 1.1 oster * modification, are permitted provided that the following conditions
12 1.1 oster * are met:
13 1.1 oster * 1. Redistributions of source code must retain the above copyright
14 1.1 oster * notice, this list of conditions and the following disclaimer.
15 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 oster * notice, this list of conditions and the following disclaimer in the
17 1.1 oster * documentation and/or other materials provided with the distribution.
18 1.1 oster *
19 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
30 1.1 oster */
31 1.1 oster
32 1.1 oster /*
33 1.281 rmind * Copyright (c) 1988 University of Utah.
34 1.1 oster * Copyright (c) 1990, 1993
35 1.1 oster * The Regents of the University of California. All rights reserved.
36 1.1 oster *
37 1.1 oster * This code is derived from software contributed to Berkeley by
38 1.1 oster * the Systems Programming Group of the University of Utah Computer
39 1.1 oster * Science Department.
40 1.1 oster *
41 1.1 oster * Redistribution and use in source and binary forms, with or without
42 1.1 oster * modification, are permitted provided that the following conditions
43 1.1 oster * are met:
44 1.1 oster * 1. Redistributions of source code must retain the above copyright
45 1.1 oster * notice, this list of conditions and the following disclaimer.
46 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 oster * notice, this list of conditions and the following disclaimer in the
48 1.1 oster * documentation and/or other materials provided with the distribution.
49 1.162 agc * 3. Neither the name of the University nor the names of its contributors
50 1.162 agc * may be used to endorse or promote products derived from this software
51 1.162 agc * without specific prior written permission.
52 1.162 agc *
53 1.162 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.162 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.162 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.162 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.162 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.162 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.162 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.162 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.162 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.162 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.162 agc * SUCH DAMAGE.
64 1.162 agc *
65 1.381 riastrad * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 1.162 agc *
67 1.162 agc * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 1.162 agc */
69 1.162 agc
70 1.162 agc /*
71 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
72 1.1 oster * All rights reserved.
73 1.1 oster *
74 1.1 oster * Authors: Mark Holland, Jim Zelenka
75 1.1 oster *
76 1.1 oster * Permission to use, copy, modify and distribute this software and
77 1.1 oster * its documentation is hereby granted, provided that both the copyright
78 1.1 oster * notice and this permission notice appear in all copies of the
79 1.1 oster * software, derivative works or modified versions, and any portions
80 1.1 oster * thereof, and that both notices appear in supporting documentation.
81 1.1 oster *
82 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 1.1 oster *
86 1.1 oster * Carnegie Mellon requests users of this software to return to
87 1.1 oster *
88 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 1.1 oster * School of Computer Science
90 1.1 oster * Carnegie Mellon University
91 1.1 oster * Pittsburgh PA 15213-3890
92 1.1 oster *
93 1.1 oster * any improvements or extensions that they make and grant Carnegie the
94 1.1 oster * rights to redistribute these changes.
95 1.1 oster */
96 1.1 oster
97 1.1 oster /***********************************************************
98 1.1 oster *
99 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
100 1.1 oster *
101 1.1 oster ***********************************************************/
102 1.112 lukem
103 1.112 lukem #include <sys/cdefs.h>
104 1.384 jdolecek __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.384 2020/06/19 19:29:39 jdolecek Exp $");
105 1.251 ad
106 1.251 ad #ifdef _KERNEL_OPT
107 1.251 ad #include "opt_raid_autoconfig.h"
108 1.363 mrg #include "opt_compat_netbsd32.h"
109 1.251 ad #endif
110 1.1 oster
111 1.113 lukem #include <sys/param.h>
112 1.1 oster #include <sys/errno.h>
113 1.1 oster #include <sys/pool.h>
114 1.152 thorpej #include <sys/proc.h>
115 1.1 oster #include <sys/queue.h>
116 1.1 oster #include <sys/disk.h>
117 1.1 oster #include <sys/device.h>
118 1.1 oster #include <sys/stat.h>
119 1.1 oster #include <sys/ioctl.h>
120 1.1 oster #include <sys/fcntl.h>
121 1.1 oster #include <sys/systm.h>
122 1.1 oster #include <sys/vnode.h>
123 1.1 oster #include <sys/disklabel.h>
124 1.1 oster #include <sys/conf.h>
125 1.1 oster #include <sys/buf.h>
126 1.182 yamt #include <sys/bufq.h>
127 1.65 oster #include <sys/reboot.h>
128 1.208 elad #include <sys/kauth.h>
129 1.327 pgoyette #include <sys/module.h>
130 1.358 pgoyette #include <sys/compat_stub.h>
131 1.8 oster
132 1.234 oster #include <prop/proplib.h>
133 1.234 oster
134 1.110 oster #include <dev/raidframe/raidframevar.h>
135 1.110 oster #include <dev/raidframe/raidframeio.h>
136 1.269 jld #include <dev/raidframe/rf_paritymap.h>
137 1.251 ad
138 1.1 oster #include "rf_raid.h"
139 1.44 oster #include "rf_copyback.h"
140 1.1 oster #include "rf_dag.h"
141 1.1 oster #include "rf_dagflags.h"
142 1.99 oster #include "rf_desc.h"
143 1.1 oster #include "rf_diskqueue.h"
144 1.1 oster #include "rf_etimer.h"
145 1.1 oster #include "rf_general.h"
146 1.1 oster #include "rf_kintf.h"
147 1.1 oster #include "rf_options.h"
148 1.1 oster #include "rf_driver.h"
149 1.1 oster #include "rf_parityscan.h"
150 1.1 oster #include "rf_threadstuff.h"
151 1.1 oster
152 1.325 christos #include "ioconf.h"
153 1.325 christos
154 1.133 oster #ifdef DEBUG
155 1.9 oster int rf_kdebug_level = 0;
156 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 1.9 oster #else /* DEBUG */
158 1.1 oster #define db1_printf(a) { }
159 1.9 oster #endif /* DEBUG */
160 1.1 oster
161 1.344 christos #ifdef DEBUG_ROOT
162 1.344 christos #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
163 1.345 christos #else
164 1.345 christos #define DPRINTF(a, ...)
165 1.344 christos #endif
166 1.344 christos
167 1.249 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
168 1.289 mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
169 1.287 mrg static rf_declare_cond2(rf_sparet_wait_cv);
170 1.287 mrg static rf_declare_cond2(rf_sparet_resp_cv);
171 1.1 oster
172 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
173 1.10 oster * spare table */
174 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
175 1.10 oster * installation process */
176 1.249 oster #endif
177 1.153 thorpej
178 1.384 jdolecek const int rf_b_pass = (B_PHYS|B_RAW|B_MEDIA_FLAGS);
179 1.384 jdolecek
180 1.153 thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
181 1.10 oster
182 1.1 oster /* prototypes */
183 1.187 christos static void KernelWakeupFunc(struct buf *);
184 1.187 christos static void InitBP(struct buf *, struct vnode *, unsigned,
185 1.225 christos dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
186 1.384 jdolecek void *, int);
187 1.300 christos static void raidinit(struct raid_softc *);
188 1.335 mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
189 1.348 jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
190 1.1 oster
191 1.261 dyoung static int raid_match(device_t, cfdata_t, void *);
192 1.261 dyoung static void raid_attach(device_t, device_t, void *);
193 1.261 dyoung static int raid_detach(device_t, int);
194 1.130 gehenna
195 1.269 jld static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
196 1.269 jld daddr_t, daddr_t);
197 1.269 jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
198 1.269 jld daddr_t, daddr_t, int);
199 1.269 jld
200 1.276 mrg static int raidwrite_component_label(unsigned,
201 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
202 1.276 mrg static int raidread_component_label(unsigned,
203 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
204 1.269 jld
205 1.335 mlelstv static int raid_diskstart(device_t, struct buf *bp);
206 1.335 mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
207 1.335 mlelstv static int raid_lastclose(device_t);
208 1.269 jld
209 1.324 mrg static dev_type_open(raidopen);
210 1.324 mrg static dev_type_close(raidclose);
211 1.324 mrg static dev_type_read(raidread);
212 1.324 mrg static dev_type_write(raidwrite);
213 1.324 mrg static dev_type_ioctl(raidioctl);
214 1.324 mrg static dev_type_strategy(raidstrategy);
215 1.324 mrg static dev_type_dump(raiddump);
216 1.324 mrg static dev_type_size(raidsize);
217 1.130 gehenna
218 1.130 gehenna const struct bdevsw raid_bdevsw = {
219 1.305 dholland .d_open = raidopen,
220 1.305 dholland .d_close = raidclose,
221 1.305 dholland .d_strategy = raidstrategy,
222 1.305 dholland .d_ioctl = raidioctl,
223 1.305 dholland .d_dump = raiddump,
224 1.305 dholland .d_psize = raidsize,
225 1.311 dholland .d_discard = nodiscard,
226 1.305 dholland .d_flag = D_DISK
227 1.130 gehenna };
228 1.130 gehenna
229 1.130 gehenna const struct cdevsw raid_cdevsw = {
230 1.305 dholland .d_open = raidopen,
231 1.305 dholland .d_close = raidclose,
232 1.305 dholland .d_read = raidread,
233 1.305 dholland .d_write = raidwrite,
234 1.305 dholland .d_ioctl = raidioctl,
235 1.305 dholland .d_stop = nostop,
236 1.305 dholland .d_tty = notty,
237 1.305 dholland .d_poll = nopoll,
238 1.305 dholland .d_mmap = nommap,
239 1.305 dholland .d_kqfilter = nokqfilter,
240 1.312 dholland .d_discard = nodiscard,
241 1.305 dholland .d_flag = D_DISK
242 1.130 gehenna };
243 1.1 oster
244 1.323 mlelstv static struct dkdriver rf_dkdriver = {
245 1.335 mlelstv .d_open = raidopen,
246 1.335 mlelstv .d_close = raidclose,
247 1.323 mlelstv .d_strategy = raidstrategy,
248 1.335 mlelstv .d_diskstart = raid_diskstart,
249 1.335 mlelstv .d_dumpblocks = raid_dumpblocks,
250 1.335 mlelstv .d_lastclose = raid_lastclose,
251 1.323 mlelstv .d_minphys = minphys
252 1.323 mlelstv };
253 1.235 oster
254 1.1 oster #define raidunit(x) DISKUNIT(x)
255 1.335 mlelstv #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
256 1.1 oster
257 1.202 oster extern struct cfdriver raid_cd;
258 1.266 dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
259 1.266 dyoung raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
260 1.266 dyoung DVF_DETACH_SHUTDOWN);
261 1.202 oster
262 1.353 mrg /* Internal representation of a rf_recon_req */
263 1.353 mrg struct rf_recon_req_internal {
264 1.353 mrg RF_RowCol_t col;
265 1.353 mrg RF_ReconReqFlags_t flags;
266 1.353 mrg void *raidPtr;
267 1.353 mrg };
268 1.353 mrg
269 1.186 perry /*
270 1.186 perry * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
271 1.186 perry * Be aware that large numbers can allow the driver to consume a lot of
272 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
273 1.186 perry *
274 1.186 perry * For example: with a stripe width of 64 blocks (32k) and 5 disks,
275 1.186 perry * a single 64K write will typically require 64K for the old data,
276 1.186 perry * 64K for the old parity, and 64K for the new parity, for a total
277 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
278 1.110 oster * Even it if is used immediately, that's still 128K, which when multiplied
279 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
280 1.186 perry *
281 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
282 1.186 perry * require data reconstruction, which will require *all* of the 4 remaining
283 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
284 1.20 oster */
285 1.20 oster
286 1.20 oster #ifndef RAIDOUTSTANDING
287 1.28 oster #define RAIDOUTSTANDING 6
288 1.20 oster #endif
289 1.20 oster
290 1.1 oster #define RAIDLABELDEV(dev) \
291 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
292 1.1 oster
293 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
294 1.9 oster
295 1.104 oster static int raidlock(struct raid_softc *);
296 1.104 oster static void raidunlock(struct raid_softc *);
297 1.1 oster
298 1.266 dyoung static int raid_detach_unlocked(struct raid_softc *);
299 1.266 dyoung
300 1.104 oster static void rf_markalldirty(RF_Raid_t *);
301 1.304 christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
302 1.48 oster
303 1.353 mrg void rf_ReconThread(struct rf_recon_req_internal *);
304 1.104 oster void rf_RewriteParityThread(RF_Raid_t *raidPtr);
305 1.104 oster void rf_CopybackThread(RF_Raid_t *raidPtr);
306 1.353 mrg void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
307 1.261 dyoung int rf_autoconfig(device_t);
308 1.142 thorpej void rf_buildroothack(RF_ConfigSet_t *);
309 1.104 oster
310 1.104 oster RF_AutoConfig_t *rf_find_raid_components(void);
311 1.104 oster RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
312 1.104 oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
313 1.292 oster int rf_reasonable_label(RF_ComponentLabel_t *, uint64_t);
314 1.104 oster void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
315 1.104 oster int rf_set_autoconfig(RF_Raid_t *, int);
316 1.104 oster int rf_set_rootpartition(RF_Raid_t *, int);
317 1.104 oster void rf_release_all_vps(RF_ConfigSet_t *);
318 1.104 oster void rf_cleanup_config_set(RF_ConfigSet_t *);
319 1.104 oster int rf_have_enough_components(RF_ConfigSet_t *);
320 1.300 christos struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
321 1.278 mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
322 1.48 oster
323 1.295 erh /*
324 1.295 erh * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
325 1.295 erh * Note that this is overridden by having RAID_AUTOCONFIG as an option
326 1.295 erh * in the kernel config file.
327 1.295 erh */
328 1.295 erh #ifdef RAID_AUTOCONFIG
329 1.295 erh int raidautoconfig = 1;
330 1.295 erh #else
331 1.295 erh int raidautoconfig = 0;
332 1.295 erh #endif
333 1.295 erh static bool raidautoconfigdone = false;
334 1.37 oster
335 1.177 oster struct RF_Pools_s rf_pools;
336 1.177 oster
337 1.300 christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
338 1.300 christos static kmutex_t raid_lock;
339 1.1 oster
340 1.300 christos static struct raid_softc *
341 1.300 christos raidcreate(int unit) {
342 1.300 christos struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
343 1.300 christos sc->sc_unit = unit;
344 1.327 pgoyette cv_init(&sc->sc_cv, "raidunit");
345 1.327 pgoyette mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
346 1.300 christos return sc;
347 1.300 christos }
348 1.1 oster
349 1.300 christos static void
350 1.300 christos raiddestroy(struct raid_softc *sc) {
351 1.327 pgoyette cv_destroy(&sc->sc_cv);
352 1.327 pgoyette mutex_destroy(&sc->sc_mutex);
353 1.300 christos kmem_free(sc, sizeof(*sc));
354 1.300 christos }
355 1.50 oster
356 1.300 christos static struct raid_softc *
357 1.327 pgoyette raidget(int unit, bool create) {
358 1.300 christos struct raid_softc *sc;
359 1.300 christos if (unit < 0) {
360 1.300 christos #ifdef DIAGNOSTIC
361 1.300 christos panic("%s: unit %d!", __func__, unit);
362 1.300 christos #endif
363 1.300 christos return NULL;
364 1.300 christos }
365 1.300 christos mutex_enter(&raid_lock);
366 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
367 1.300 christos if (sc->sc_unit == unit) {
368 1.300 christos mutex_exit(&raid_lock);
369 1.300 christos return sc;
370 1.300 christos }
371 1.300 christos }
372 1.300 christos mutex_exit(&raid_lock);
373 1.327 pgoyette if (!create)
374 1.327 pgoyette return NULL;
375 1.379 chs sc = raidcreate(unit);
376 1.300 christos mutex_enter(&raid_lock);
377 1.300 christos LIST_INSERT_HEAD(&raids, sc, sc_link);
378 1.300 christos mutex_exit(&raid_lock);
379 1.300 christos return sc;
380 1.300 christos }
381 1.300 christos
382 1.300 christos static void
383 1.300 christos raidput(struct raid_softc *sc) {
384 1.300 christos mutex_enter(&raid_lock);
385 1.300 christos LIST_REMOVE(sc, sc_link);
386 1.300 christos mutex_exit(&raid_lock);
387 1.300 christos raiddestroy(sc);
388 1.300 christos }
389 1.1 oster
390 1.300 christos void
391 1.300 christos raidattach(int num)
392 1.300 christos {
393 1.62 oster
394 1.142 thorpej /*
395 1.327 pgoyette * Device attachment and associated initialization now occurs
396 1.327 pgoyette * as part of the module initialization.
397 1.142 thorpej */
398 1.142 thorpej }
399 1.142 thorpej
400 1.142 thorpej int
401 1.261 dyoung rf_autoconfig(device_t self)
402 1.142 thorpej {
403 1.142 thorpej RF_AutoConfig_t *ac_list;
404 1.142 thorpej RF_ConfigSet_t *config_sets;
405 1.142 thorpej
406 1.295 erh if (!raidautoconfig || raidautoconfigdone == true)
407 1.142 thorpej return (0);
408 1.142 thorpej
409 1.142 thorpej /* XXX This code can only be run once. */
410 1.295 erh raidautoconfigdone = true;
411 1.142 thorpej
412 1.307 christos #ifdef __HAVE_CPU_BOOTCONF
413 1.307 christos /*
414 1.307 christos * 0. find the boot device if needed first so we can use it later
415 1.307 christos * this needs to be done before we autoconfigure any raid sets,
416 1.307 christos * because if we use wedges we are not going to be able to open
417 1.307 christos * the boot device later
418 1.307 christos */
419 1.307 christos if (booted_device == NULL)
420 1.307 christos cpu_bootconf();
421 1.307 christos #endif
422 1.48 oster /* 1. locate all RAID components on the system */
423 1.258 ad aprint_debug("Searching for RAID components...\n");
424 1.48 oster ac_list = rf_find_raid_components();
425 1.48 oster
426 1.142 thorpej /* 2. Sort them into their respective sets. */
427 1.48 oster config_sets = rf_create_auto_sets(ac_list);
428 1.48 oster
429 1.142 thorpej /*
430 1.299 oster * 3. Evaluate each set and configure the valid ones.
431 1.142 thorpej * This gets done in rf_buildroothack().
432 1.142 thorpej */
433 1.142 thorpej rf_buildroothack(config_sets);
434 1.48 oster
435 1.213 christos return 1;
436 1.48 oster }
437 1.48 oster
438 1.367 christos int
439 1.367 christos rf_inited(const struct raid_softc *rs) {
440 1.367 christos return (rs->sc_flags & RAIDF_INITED) != 0;
441 1.367 christos }
442 1.367 christos
443 1.368 oster RF_Raid_t *
444 1.368 oster rf_get_raid(struct raid_softc *rs) {
445 1.368 oster return &rs->sc_r;
446 1.368 oster }
447 1.368 oster
448 1.367 christos int
449 1.367 christos rf_get_unit(const struct raid_softc *rs) {
450 1.367 christos return rs->sc_unit;
451 1.367 christos }
452 1.367 christos
453 1.306 christos static int
454 1.307 christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
455 1.359 bad const char *bootname;
456 1.359 bad size_t len;
457 1.359 bad
458 1.359 bad /* if bdv is NULL, the set can't contain it. exit early. */
459 1.359 bad if (bdv == NULL)
460 1.359 bad return 0;
461 1.359 bad
462 1.359 bad bootname = device_xname(bdv);
463 1.359 bad len = strlen(bootname);
464 1.306 christos
465 1.306 christos for (int col = 0; col < r->numCol; col++) {
466 1.307 christos const char *devname = r->Disks[col].devname;
467 1.306 christos devname += sizeof("/dev/") - 1;
468 1.307 christos if (strncmp(devname, "dk", 2) == 0) {
469 1.307 christos const char *parent =
470 1.307 christos dkwedge_get_parent_name(r->Disks[col].dev);
471 1.307 christos if (parent != NULL)
472 1.307 christos devname = parent;
473 1.307 christos }
474 1.306 christos if (strncmp(devname, bootname, len) == 0) {
475 1.306 christos struct raid_softc *sc = r->softc;
476 1.306 christos aprint_debug("raid%d includes boot device %s\n",
477 1.306 christos sc->sc_unit, devname);
478 1.306 christos return 1;
479 1.306 christos }
480 1.306 christos }
481 1.306 christos return 0;
482 1.306 christos }
483 1.306 christos
484 1.48 oster void
485 1.142 thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
486 1.48 oster {
487 1.48 oster RF_ConfigSet_t *cset;
488 1.48 oster RF_ConfigSet_t *next_cset;
489 1.51 oster int num_root;
490 1.300 christos struct raid_softc *sc, *rsc;
491 1.378 martin struct dk_softc *dksc = NULL; /* XXX gcc -Os: may be used uninit. */
492 1.48 oster
493 1.300 christos sc = rsc = NULL;
494 1.51 oster num_root = 0;
495 1.48 oster cset = config_sets;
496 1.271 dyoung while (cset != NULL) {
497 1.48 oster next_cset = cset->next;
498 1.186 perry if (rf_have_enough_components(cset) &&
499 1.300 christos cset->ac->clabel->autoconfigure == 1) {
500 1.300 christos sc = rf_auto_config_set(cset);
501 1.300 christos if (sc != NULL) {
502 1.359 bad aprint_debug("raid%d: configured ok, rootable %d\n",
503 1.359 bad sc->sc_unit, cset->rootable);
504 1.51 oster if (cset->rootable) {
505 1.300 christos rsc = sc;
506 1.51 oster num_root++;
507 1.51 oster }
508 1.51 oster } else {
509 1.51 oster /* The autoconfig didn't work :( */
510 1.300 christos aprint_debug("Autoconfig failed\n");
511 1.51 oster rf_release_all_vps(cset);
512 1.48 oster }
513 1.48 oster } else {
514 1.186 perry /* we're not autoconfiguring this set...
515 1.48 oster release the associated resources */
516 1.49 oster rf_release_all_vps(cset);
517 1.48 oster }
518 1.48 oster /* cleanup */
519 1.49 oster rf_cleanup_config_set(cset);
520 1.48 oster cset = next_cset;
521 1.48 oster }
522 1.122 oster
523 1.223 oster /* if the user has specified what the root device should be
524 1.223 oster then we don't touch booted_device or boothowto... */
525 1.223 oster
526 1.359 bad if (rootspec != NULL) {
527 1.359 bad DPRINTF("%s: rootspec %s\n", __func__, rootspec);
528 1.223 oster return;
529 1.359 bad }
530 1.223 oster
531 1.122 oster /* we found something bootable... */
532 1.122 oster
533 1.310 christos /*
534 1.310 christos * XXX: The following code assumes that the root raid
535 1.310 christos * is the first ('a') partition. This is about the best
536 1.310 christos * we can do with a BSD disklabel, but we might be able
537 1.310 christos * to do better with a GPT label, by setting a specified
538 1.310 christos * attribute to indicate the root partition. We can then
539 1.310 christos * stash the partition number in the r->root_partition
540 1.310 christos * high bits (the bottom 2 bits are already used). For
541 1.310 christos * now we just set booted_partition to 0 when we override
542 1.310 christos * root.
543 1.310 christos */
544 1.122 oster if (num_root == 1) {
545 1.306 christos device_t candidate_root;
546 1.377 maxv dksc = &rsc->sc_dksc;
547 1.335 mlelstv if (dksc->sc_dkdev.dk_nwedges != 0) {
548 1.297 christos char cname[sizeof(cset->ac->devname)];
549 1.344 christos /* XXX: assume partition 'a' first */
550 1.297 christos snprintf(cname, sizeof(cname), "%s%c",
551 1.335 mlelstv device_xname(dksc->sc_dev), 'a');
552 1.306 christos candidate_root = dkwedge_find_by_wname(cname);
553 1.344 christos DPRINTF("%s: candidate wedge root=%s\n", __func__,
554 1.344 christos cname);
555 1.344 christos if (candidate_root == NULL) {
556 1.344 christos /*
557 1.344 christos * If that is not found, because we don't use
558 1.344 christos * disklabel, return the first dk child
559 1.344 christos * XXX: we can skip the 'a' check above
560 1.344 christos * and always do this...
561 1.344 christos */
562 1.344 christos size_t i = 0;
563 1.344 christos candidate_root = dkwedge_find_by_parent(
564 1.344 christos device_xname(dksc->sc_dev), &i);
565 1.344 christos }
566 1.344 christos DPRINTF("%s: candidate wedge root=%p\n", __func__,
567 1.344 christos candidate_root);
568 1.297 christos } else
569 1.335 mlelstv candidate_root = dksc->sc_dev;
570 1.344 christos DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
571 1.344 christos DPRINTF("%s: booted_device=%p root_partition=%d "
572 1.359 bad "contains_boot=%d",
573 1.359 bad __func__, booted_device, rsc->sc_r.root_partition,
574 1.359 bad rf_containsboot(&rsc->sc_r, booted_device));
575 1.359 bad /* XXX the check for booted_device == NULL can probably be
576 1.359 bad * dropped, now that rf_containsboot handles that case.
577 1.359 bad */
578 1.308 christos if (booted_device == NULL ||
579 1.308 christos rsc->sc_r.root_partition == 1 ||
580 1.310 christos rf_containsboot(&rsc->sc_r, booted_device)) {
581 1.308 christos booted_device = candidate_root;
582 1.351 christos booted_method = "raidframe/single";
583 1.310 christos booted_partition = 0; /* XXX assume 'a' */
584 1.310 christos }
585 1.122 oster } else if (num_root > 1) {
586 1.344 christos DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
587 1.344 christos booted_device);
588 1.226 oster
589 1.226 oster /*
590 1.226 oster * Maybe the MD code can help. If it cannot, then
591 1.226 oster * setroot() will discover that we have no
592 1.226 oster * booted_device and will ask the user if nothing was
593 1.226 oster * hardwired in the kernel config file
594 1.226 oster */
595 1.226 oster if (booted_device == NULL)
596 1.226 oster return;
597 1.226 oster
598 1.226 oster num_root = 0;
599 1.300 christos mutex_enter(&raid_lock);
600 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
601 1.300 christos RF_Raid_t *r = &sc->sc_r;
602 1.300 christos if (r->valid == 0)
603 1.226 oster continue;
604 1.226 oster
605 1.300 christos if (r->root_partition == 0)
606 1.226 oster continue;
607 1.226 oster
608 1.306 christos if (rf_containsboot(r, booted_device)) {
609 1.226 oster num_root++;
610 1.300 christos rsc = sc;
611 1.335 mlelstv dksc = &rsc->sc_dksc;
612 1.226 oster }
613 1.226 oster }
614 1.300 christos mutex_exit(&raid_lock);
615 1.295 erh
616 1.226 oster if (num_root == 1) {
617 1.335 mlelstv booted_device = dksc->sc_dev;
618 1.351 christos booted_method = "raidframe/multi";
619 1.310 christos booted_partition = 0; /* XXX assume 'a' */
620 1.226 oster } else {
621 1.226 oster /* we can't guess.. require the user to answer... */
622 1.226 oster boothowto |= RB_ASKNAME;
623 1.226 oster }
624 1.51 oster }
625 1.1 oster }
626 1.1 oster
627 1.324 mrg static int
628 1.169 oster raidsize(dev_t dev)
629 1.1 oster {
630 1.1 oster struct raid_softc *rs;
631 1.335 mlelstv struct dk_softc *dksc;
632 1.335 mlelstv unsigned int unit;
633 1.1 oster
634 1.1 oster unit = raidunit(dev);
635 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
636 1.336 mlelstv return -1;
637 1.335 mlelstv dksc = &rs->sc_dksc;
638 1.335 mlelstv
639 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
640 1.336 mlelstv return -1;
641 1.1 oster
642 1.335 mlelstv return dk_size(dksc, dev);
643 1.335 mlelstv }
644 1.1 oster
645 1.335 mlelstv static int
646 1.335 mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
647 1.335 mlelstv {
648 1.335 mlelstv unsigned int unit;
649 1.335 mlelstv struct raid_softc *rs;
650 1.335 mlelstv struct dk_softc *dksc;
651 1.1 oster
652 1.335 mlelstv unit = raidunit(dev);
653 1.335 mlelstv if ((rs = raidget(unit, false)) == NULL)
654 1.335 mlelstv return ENXIO;
655 1.335 mlelstv dksc = &rs->sc_dksc;
656 1.1 oster
657 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
658 1.335 mlelstv return ENODEV;
659 1.1 oster
660 1.336 mlelstv /*
661 1.336 mlelstv Note that blkno is relative to this particular partition.
662 1.336 mlelstv By adding adding RF_PROTECTED_SECTORS, we get a value that
663 1.336 mlelstv is relative to the partition used for the underlying component.
664 1.336 mlelstv */
665 1.336 mlelstv blkno += RF_PROTECTED_SECTORS;
666 1.336 mlelstv
667 1.380 riastrad return dk_dump(dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE);
668 1.1 oster }
669 1.1 oster
670 1.324 mrg static int
671 1.335 mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
672 1.1 oster {
673 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
674 1.231 oster const struct bdevsw *bdev;
675 1.231 oster RF_Raid_t *raidPtr;
676 1.335 mlelstv int c, sparecol, j, scol, dumpto;
677 1.231 oster int error = 0;
678 1.231 oster
679 1.300 christos raidPtr = &rs->sc_r;
680 1.231 oster
681 1.231 oster /* we only support dumping to RAID 1 sets */
682 1.231 oster if (raidPtr->Layout.numDataCol != 1 ||
683 1.231 oster raidPtr->Layout.numParityCol != 1)
684 1.231 oster return EINVAL;
685 1.231 oster
686 1.231 oster if ((error = raidlock(rs)) != 0)
687 1.231 oster return error;
688 1.231 oster
689 1.231 oster /* figure out what device is alive.. */
690 1.231 oster
691 1.231 oster /*
692 1.231 oster Look for a component to dump to. The preference for the
693 1.231 oster component to dump to is as follows:
694 1.383 oster 1) the first component
695 1.383 oster 2) a used_spare of the first component
696 1.383 oster 3) the second component
697 1.383 oster 4) a used_spare of the second component
698 1.231 oster */
699 1.231 oster
700 1.231 oster dumpto = -1;
701 1.231 oster for (c = 0; c < raidPtr->numCol; c++) {
702 1.231 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
703 1.231 oster /* this might be the one */
704 1.231 oster dumpto = c;
705 1.231 oster break;
706 1.231 oster }
707 1.231 oster }
708 1.231 oster
709 1.231 oster /*
710 1.383 oster At this point we have possibly selected a live component.
711 1.383 oster If we didn't find a live ocmponent, we now check to see
712 1.383 oster if there is a relevant spared component.
713 1.231 oster */
714 1.231 oster
715 1.231 oster for (c = 0; c < raidPtr->numSpare; c++) {
716 1.231 oster sparecol = raidPtr->numCol + c;
717 1.231 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
718 1.231 oster /* How about this one? */
719 1.231 oster scol = -1;
720 1.231 oster for(j=0;j<raidPtr->numCol;j++) {
721 1.231 oster if (raidPtr->Disks[j].spareCol == sparecol) {
722 1.231 oster scol = j;
723 1.231 oster break;
724 1.231 oster }
725 1.231 oster }
726 1.231 oster if (scol == 0) {
727 1.231 oster /*
728 1.383 oster We must have found a spared first
729 1.383 oster component! We'll take that over
730 1.383 oster anything else found so far. (We
731 1.383 oster couldn't have found a real first
732 1.383 oster component before, since this is a
733 1.383 oster used spare, and it's saying that
734 1.383 oster it's replacing the first
735 1.383 oster component.) On reboot (with
736 1.231 oster autoconfiguration turned on)
737 1.383 oster sparecol will become the first
738 1.383 oster component (component0) of this set.
739 1.231 oster */
740 1.231 oster dumpto = sparecol;
741 1.231 oster break;
742 1.231 oster } else if (scol != -1) {
743 1.231 oster /*
744 1.383 oster Must be a spared second component.
745 1.383 oster We'll dump to that if we havn't found
746 1.383 oster anything else so far.
747 1.231 oster */
748 1.231 oster if (dumpto == -1)
749 1.231 oster dumpto = sparecol;
750 1.231 oster }
751 1.231 oster }
752 1.231 oster }
753 1.231 oster
754 1.231 oster if (dumpto == -1) {
755 1.231 oster /* we couldn't find any live components to dump to!?!?
756 1.231 oster */
757 1.231 oster error = EINVAL;
758 1.231 oster goto out;
759 1.231 oster }
760 1.231 oster
761 1.231 oster bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
762 1.342 mlelstv if (bdev == NULL) {
763 1.342 mlelstv error = ENXIO;
764 1.342 mlelstv goto out;
765 1.342 mlelstv }
766 1.231 oster
767 1.231 oster error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
768 1.336 mlelstv blkno, va, nblk * raidPtr->bytesPerSector);
769 1.231 oster
770 1.231 oster out:
771 1.231 oster raidunlock(rs);
772 1.231 oster
773 1.231 oster return error;
774 1.1 oster }
775 1.324 mrg
776 1.1 oster /* ARGSUSED */
777 1.324 mrg static int
778 1.222 christos raidopen(dev_t dev, int flags, int fmt,
779 1.222 christos struct lwp *l)
780 1.1 oster {
781 1.9 oster int unit = raidunit(dev);
782 1.1 oster struct raid_softc *rs;
783 1.335 mlelstv struct dk_softc *dksc;
784 1.335 mlelstv int error = 0;
785 1.9 oster int part, pmask;
786 1.9 oster
787 1.327 pgoyette if ((rs = raidget(unit, true)) == NULL)
788 1.300 christos return ENXIO;
789 1.1 oster if ((error = raidlock(rs)) != 0)
790 1.9 oster return (error);
791 1.266 dyoung
792 1.266 dyoung if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
793 1.266 dyoung error = EBUSY;
794 1.266 dyoung goto bad;
795 1.266 dyoung }
796 1.266 dyoung
797 1.335 mlelstv dksc = &rs->sc_dksc;
798 1.1 oster
799 1.1 oster part = DISKPART(dev);
800 1.1 oster pmask = (1 << part);
801 1.1 oster
802 1.335 mlelstv if (!DK_BUSY(dksc, pmask) &&
803 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
804 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
805 1.13 oster have done a configure before this. I DO NOT WANT TO BE
806 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
807 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
808 1.13 oster /* XXX should check to see if we're only open for reading
809 1.13 oster here... If so, we needn't do this, but then need some
810 1.13 oster other way of keeping track of what's happened.. */
811 1.13 oster
812 1.300 christos rf_markalldirty(&rs->sc_r);
813 1.13 oster }
814 1.13 oster
815 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0)
816 1.335 mlelstv error = dk_open(dksc, dev, flags, fmt, l);
817 1.1 oster
818 1.213 christos bad:
819 1.1 oster raidunlock(rs);
820 1.1 oster
821 1.9 oster return (error);
822 1.1 oster
823 1.1 oster
824 1.1 oster }
825 1.324 mrg
826 1.335 mlelstv static int
827 1.335 mlelstv raid_lastclose(device_t self)
828 1.335 mlelstv {
829 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
830 1.335 mlelstv
831 1.335 mlelstv /* Last one... device is not unconfigured yet.
832 1.335 mlelstv Device shutdown has taken care of setting the
833 1.335 mlelstv clean bits if RAIDF_INITED is not set
834 1.335 mlelstv mark things as clean... */
835 1.335 mlelstv
836 1.335 mlelstv rf_update_component_labels(&rs->sc_r,
837 1.335 mlelstv RF_FINAL_COMPONENT_UPDATE);
838 1.335 mlelstv
839 1.335 mlelstv /* pass to unlocked code */
840 1.335 mlelstv if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
841 1.335 mlelstv rs->sc_flags |= RAIDF_DETACH;
842 1.335 mlelstv
843 1.335 mlelstv return 0;
844 1.335 mlelstv }
845 1.335 mlelstv
846 1.1 oster /* ARGSUSED */
847 1.324 mrg static int
848 1.222 christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
849 1.1 oster {
850 1.9 oster int unit = raidunit(dev);
851 1.1 oster struct raid_softc *rs;
852 1.335 mlelstv struct dk_softc *dksc;
853 1.335 mlelstv cfdata_t cf;
854 1.335 mlelstv int error = 0, do_detach = 0, do_put = 0;
855 1.1 oster
856 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
857 1.300 christos return ENXIO;
858 1.335 mlelstv dksc = &rs->sc_dksc;
859 1.1 oster
860 1.1 oster if ((error = raidlock(rs)) != 0)
861 1.1 oster return (error);
862 1.1 oster
863 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) {
864 1.335 mlelstv error = dk_close(dksc, dev, flags, fmt, l);
865 1.335 mlelstv if ((rs->sc_flags & RAIDF_DETACH) != 0)
866 1.335 mlelstv do_detach = 1;
867 1.335 mlelstv } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
868 1.335 mlelstv do_put = 1;
869 1.1 oster
870 1.335 mlelstv raidunlock(rs);
871 1.1 oster
872 1.335 mlelstv if (do_detach) {
873 1.335 mlelstv /* free the pseudo device attach bits */
874 1.335 mlelstv cf = device_cfdata(dksc->sc_dev);
875 1.335 mlelstv error = config_detach(dksc->sc_dev, 0);
876 1.335 mlelstv if (error == 0)
877 1.335 mlelstv free(cf, M_RAIDFRAME);
878 1.335 mlelstv } else if (do_put) {
879 1.335 mlelstv raidput(rs);
880 1.1 oster }
881 1.186 perry
882 1.335 mlelstv return (error);
883 1.147 oster
884 1.335 mlelstv }
885 1.327 pgoyette
886 1.335 mlelstv static void
887 1.335 mlelstv raid_wakeup(RF_Raid_t *raidPtr)
888 1.335 mlelstv {
889 1.335 mlelstv rf_lock_mutex2(raidPtr->iodone_lock);
890 1.335 mlelstv rf_signal_cond2(raidPtr->iodone_cv);
891 1.335 mlelstv rf_unlock_mutex2(raidPtr->iodone_lock);
892 1.1 oster }
893 1.1 oster
894 1.324 mrg static void
895 1.169 oster raidstrategy(struct buf *bp)
896 1.1 oster {
897 1.335 mlelstv unsigned int unit;
898 1.335 mlelstv struct raid_softc *rs;
899 1.335 mlelstv struct dk_softc *dksc;
900 1.1 oster RF_Raid_t *raidPtr;
901 1.1 oster
902 1.335 mlelstv unit = raidunit(bp->b_dev);
903 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) {
904 1.30 oster bp->b_error = ENXIO;
905 1.335 mlelstv goto fail;
906 1.30 oster }
907 1.300 christos if ((rs->sc_flags & RAIDF_INITED) == 0) {
908 1.300 christos bp->b_error = ENXIO;
909 1.335 mlelstv goto fail;
910 1.1 oster }
911 1.335 mlelstv dksc = &rs->sc_dksc;
912 1.300 christos raidPtr = &rs->sc_r;
913 1.335 mlelstv
914 1.335 mlelstv /* Queue IO only */
915 1.335 mlelstv if (dk_strategy_defer(dksc, bp))
916 1.196 yamt goto done;
917 1.1 oster
918 1.335 mlelstv /* schedule the IO to happen at the next convenient time */
919 1.335 mlelstv raid_wakeup(raidPtr);
920 1.335 mlelstv
921 1.335 mlelstv done:
922 1.335 mlelstv return;
923 1.335 mlelstv
924 1.335 mlelstv fail:
925 1.335 mlelstv bp->b_resid = bp->b_bcount;
926 1.335 mlelstv biodone(bp);
927 1.335 mlelstv }
928 1.335 mlelstv
929 1.335 mlelstv static int
930 1.335 mlelstv raid_diskstart(device_t dev, struct buf *bp)
931 1.335 mlelstv {
932 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
933 1.335 mlelstv RF_Raid_t *raidPtr;
934 1.1 oster
935 1.335 mlelstv raidPtr = &rs->sc_r;
936 1.335 mlelstv if (!raidPtr->valid) {
937 1.335 mlelstv db1_printf(("raid is not valid..\n"));
938 1.335 mlelstv return ENODEV;
939 1.196 yamt }
940 1.285 mrg
941 1.335 mlelstv /* XXX */
942 1.335 mlelstv bp->b_resid = 0;
943 1.335 mlelstv
944 1.335 mlelstv return raiddoaccess(raidPtr, bp);
945 1.335 mlelstv }
946 1.1 oster
947 1.335 mlelstv void
948 1.335 mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
949 1.335 mlelstv {
950 1.335 mlelstv struct raid_softc *rs;
951 1.335 mlelstv struct dk_softc *dksc;
952 1.34 oster
953 1.335 mlelstv rs = raidPtr->softc;
954 1.335 mlelstv dksc = &rs->sc_dksc;
955 1.34 oster
956 1.335 mlelstv dk_done(dksc, bp);
957 1.34 oster
958 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
959 1.335 mlelstv raidPtr->openings++;
960 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
961 1.196 yamt
962 1.335 mlelstv /* schedule more IO */
963 1.335 mlelstv raid_wakeup(raidPtr);
964 1.1 oster }
965 1.324 mrg
966 1.1 oster /* ARGSUSED */
967 1.324 mrg static int
968 1.222 christos raidread(dev_t dev, struct uio *uio, int flags)
969 1.1 oster {
970 1.9 oster int unit = raidunit(dev);
971 1.1 oster struct raid_softc *rs;
972 1.1 oster
973 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
974 1.300 christos return ENXIO;
975 1.1 oster
976 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
977 1.1 oster return (ENXIO);
978 1.1 oster
979 1.1 oster return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
980 1.1 oster
981 1.1 oster }
982 1.324 mrg
983 1.1 oster /* ARGSUSED */
984 1.324 mrg static int
985 1.222 christos raidwrite(dev_t dev, struct uio *uio, int flags)
986 1.1 oster {
987 1.9 oster int unit = raidunit(dev);
988 1.1 oster struct raid_softc *rs;
989 1.1 oster
990 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
991 1.300 christos return ENXIO;
992 1.1 oster
993 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
994 1.1 oster return (ENXIO);
995 1.147 oster
996 1.1 oster return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
997 1.1 oster
998 1.1 oster }
999 1.1 oster
1000 1.266 dyoung static int
1001 1.266 dyoung raid_detach_unlocked(struct raid_softc *rs)
1002 1.266 dyoung {
1003 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1004 1.335 mlelstv RF_Raid_t *raidPtr;
1005 1.266 dyoung int error;
1006 1.266 dyoung
1007 1.300 christos raidPtr = &rs->sc_r;
1008 1.266 dyoung
1009 1.337 mlelstv if (DK_BUSY(dksc, 0) ||
1010 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1011 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1012 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1013 1.266 dyoung return EBUSY;
1014 1.266 dyoung
1015 1.266 dyoung if ((rs->sc_flags & RAIDF_INITED) == 0)
1016 1.333 mlelstv return 0;
1017 1.333 mlelstv
1018 1.333 mlelstv rs->sc_flags &= ~RAIDF_SHUTDOWN;
1019 1.333 mlelstv
1020 1.333 mlelstv if ((error = rf_Shutdown(raidPtr)) != 0)
1021 1.266 dyoung return error;
1022 1.266 dyoung
1023 1.335 mlelstv rs->sc_flags &= ~RAIDF_INITED;
1024 1.335 mlelstv
1025 1.335 mlelstv /* Kill off any queued buffers */
1026 1.335 mlelstv dk_drain(dksc);
1027 1.335 mlelstv bufq_free(dksc->sc_bufq);
1028 1.335 mlelstv
1029 1.266 dyoung /* Detach the disk. */
1030 1.335 mlelstv dkwedge_delall(&dksc->sc_dkdev);
1031 1.335 mlelstv disk_detach(&dksc->sc_dkdev);
1032 1.335 mlelstv disk_destroy(&dksc->sc_dkdev);
1033 1.335 mlelstv dk_detach(dksc);
1034 1.333 mlelstv
1035 1.266 dyoung return 0;
1036 1.266 dyoung }
1037 1.266 dyoung
1038 1.366 christos static bool
1039 1.366 christos rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
1040 1.366 christos {
1041 1.366 christos switch (cmd) {
1042 1.366 christos case RAIDFRAME_ADD_HOT_SPARE:
1043 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS:
1044 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1045 1.366 christos case RAIDFRAME_CHECK_PARITY:
1046 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1047 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1048 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS:
1049 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1050 1.366 christos case RAIDFRAME_COPYBACK:
1051 1.366 christos case RAIDFRAME_DELETE_COMPONENT:
1052 1.366 christos case RAIDFRAME_FAIL_DISK:
1053 1.366 christos case RAIDFRAME_GET_ACCTOTALS:
1054 1.366 christos case RAIDFRAME_GET_COMPONENT_LABEL:
1055 1.366 christos case RAIDFRAME_GET_INFO:
1056 1.366 christos case RAIDFRAME_GET_SIZE:
1057 1.366 christos case RAIDFRAME_INCORPORATE_HOT_SPARE:
1058 1.366 christos case RAIDFRAME_INIT_LABELS:
1059 1.366 christos case RAIDFRAME_KEEP_ACCTOTALS:
1060 1.366 christos case RAIDFRAME_PARITYMAP_GET_DISABLE:
1061 1.366 christos case RAIDFRAME_PARITYMAP_SET_DISABLE:
1062 1.366 christos case RAIDFRAME_PARITYMAP_SET_PARAMS:
1063 1.366 christos case RAIDFRAME_PARITYMAP_STATUS:
1064 1.366 christos case RAIDFRAME_REBUILD_IN_PLACE:
1065 1.366 christos case RAIDFRAME_REMOVE_HOT_SPARE:
1066 1.366 christos case RAIDFRAME_RESET_ACCTOTALS:
1067 1.366 christos case RAIDFRAME_REWRITEPARITY:
1068 1.366 christos case RAIDFRAME_SET_AUTOCONFIG:
1069 1.366 christos case RAIDFRAME_SET_COMPONENT_LABEL:
1070 1.366 christos case RAIDFRAME_SET_ROOT:
1071 1.369 oster return (rs->sc_flags & RAIDF_INITED) == 0;
1072 1.366 christos }
1073 1.366 christos return false;
1074 1.366 christos }
1075 1.366 christos
1076 1.366 christos int
1077 1.366 christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
1078 1.366 christos {
1079 1.366 christos struct rf_recon_req_internal *rrint;
1080 1.366 christos
1081 1.366 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1082 1.366 christos /* Can't do this on a RAID 0!! */
1083 1.366 christos return EINVAL;
1084 1.366 christos }
1085 1.366 christos
1086 1.366 christos if (rr->col < 0 || rr->col >= raidPtr->numCol) {
1087 1.366 christos /* bad column */
1088 1.366 christos return EINVAL;
1089 1.366 christos }
1090 1.366 christos
1091 1.366 christos rf_lock_mutex2(raidPtr->mutex);
1092 1.366 christos if (raidPtr->status == rf_rs_reconstructing) {
1093 1.366 christos /* you can't fail a disk while we're reconstructing! */
1094 1.366 christos /* XXX wrong for RAID6 */
1095 1.366 christos goto out;
1096 1.366 christos }
1097 1.366 christos if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
1098 1.366 christos (raidPtr->numFailures > 0)) {
1099 1.366 christos /* some other component has failed. Let's not make
1100 1.366 christos things worse. XXX wrong for RAID6 */
1101 1.366 christos goto out;
1102 1.366 christos }
1103 1.366 christos if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1104 1.366 christos /* Can't fail a spared disk! */
1105 1.366 christos goto out;
1106 1.366 christos }
1107 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1108 1.366 christos
1109 1.366 christos /* make a copy of the recon request so that we don't rely on
1110 1.366 christos * the user's buffer */
1111 1.374 christos rrint = RF_Malloc(sizeof(*rrint));
1112 1.366 christos if (rrint == NULL)
1113 1.366 christos return(ENOMEM);
1114 1.366 christos rrint->col = rr->col;
1115 1.366 christos rrint->flags = rr->flags;
1116 1.366 christos rrint->raidPtr = raidPtr;
1117 1.366 christos
1118 1.366 christos return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
1119 1.366 christos rrint, "raid_recon");
1120 1.366 christos out:
1121 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1122 1.366 christos return EINVAL;
1123 1.366 christos }
1124 1.366 christos
1125 1.324 mrg static int
1126 1.367 christos rf_copyinspecificbuf(RF_Config_t *k_cfg)
1127 1.367 christos {
1128 1.367 christos /* allocate a buffer for the layout-specific data, and copy it in */
1129 1.367 christos if (k_cfg->layoutSpecificSize == 0)
1130 1.367 christos return 0;
1131 1.367 christos
1132 1.367 christos if (k_cfg->layoutSpecificSize > 10000) {
1133 1.367 christos /* sanity check */
1134 1.367 christos return EINVAL;
1135 1.367 christos }
1136 1.367 christos
1137 1.367 christos u_char *specific_buf;
1138 1.374 christos specific_buf = RF_Malloc(k_cfg->layoutSpecificSize);
1139 1.367 christos if (specific_buf == NULL)
1140 1.367 christos return ENOMEM;
1141 1.367 christos
1142 1.367 christos int retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1143 1.367 christos k_cfg->layoutSpecificSize);
1144 1.367 christos if (retcode) {
1145 1.367 christos RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1146 1.367 christos db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode));
1147 1.367 christos return retcode;
1148 1.367 christos }
1149 1.367 christos
1150 1.367 christos k_cfg->layoutSpecific = specific_buf;
1151 1.367 christos return 0;
1152 1.367 christos }
1153 1.367 christos
1154 1.367 christos static int
1155 1.367 christos rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg)
1156 1.367 christos {
1157 1.372 christos RF_Config_t *u_cfg = *((RF_Config_t **) data);
1158 1.372 christos
1159 1.367 christos if (rs->sc_r.valid) {
1160 1.367 christos /* There is a valid RAID set running on this unit! */
1161 1.367 christos printf("raid%d: Device already configured!\n", rs->sc_unit);
1162 1.367 christos return EINVAL;
1163 1.367 christos }
1164 1.367 christos
1165 1.367 christos /* copy-in the configuration information */
1166 1.367 christos /* data points to a pointer to the configuration structure */
1167 1.374 christos *k_cfg = RF_Malloc(sizeof(**k_cfg));
1168 1.367 christos if (*k_cfg == NULL) {
1169 1.367 christos return ENOMEM;
1170 1.367 christos }
1171 1.373 christos int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t));
1172 1.367 christos if (retcode == 0)
1173 1.367 christos return 0;
1174 1.367 christos RF_Free(*k_cfg, sizeof(RF_Config_t));
1175 1.367 christos db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode));
1176 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN;
1177 1.367 christos return retcode;
1178 1.367 christos }
1179 1.367 christos
1180 1.367 christos int
1181 1.367 christos rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg)
1182 1.367 christos {
1183 1.367 christos int retcode;
1184 1.367 christos RF_Raid_t *raidPtr = &rs->sc_r;
1185 1.367 christos
1186 1.367 christos rs->sc_flags &= ~RAIDF_SHUTDOWN;
1187 1.367 christos
1188 1.367 christos if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0)
1189 1.367 christos goto out;
1190 1.367 christos
1191 1.367 christos /* should do some kind of sanity check on the configuration.
1192 1.367 christos * Store the sum of all the bytes in the last byte? */
1193 1.367 christos
1194 1.367 christos /* configure the system */
1195 1.367 christos
1196 1.367 christos /*
1197 1.367 christos * Clear the entire RAID descriptor, just to make sure
1198 1.367 christos * there is no stale data left in the case of a
1199 1.367 christos * reconfiguration
1200 1.367 christos */
1201 1.367 christos memset(raidPtr, 0, sizeof(*raidPtr));
1202 1.367 christos raidPtr->softc = rs;
1203 1.367 christos raidPtr->raidid = rs->sc_unit;
1204 1.367 christos
1205 1.367 christos retcode = rf_Configure(raidPtr, k_cfg, NULL);
1206 1.367 christos
1207 1.367 christos if (retcode == 0) {
1208 1.367 christos /* allow this many simultaneous IO's to
1209 1.367 christos this RAID device */
1210 1.367 christos raidPtr->openings = RAIDOUTSTANDING;
1211 1.367 christos
1212 1.367 christos raidinit(rs);
1213 1.367 christos raid_wakeup(raidPtr);
1214 1.367 christos rf_markalldirty(raidPtr);
1215 1.367 christos }
1216 1.367 christos
1217 1.367 christos /* free the buffers. No return code here. */
1218 1.367 christos if (k_cfg->layoutSpecificSize) {
1219 1.367 christos RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize);
1220 1.367 christos }
1221 1.367 christos out:
1222 1.367 christos RF_Free(k_cfg, sizeof(RF_Config_t));
1223 1.367 christos if (retcode) {
1224 1.367 christos /*
1225 1.367 christos * If configuration failed, set sc_flags so that we
1226 1.367 christos * will detach the device when we close it.
1227 1.367 christos */
1228 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN;
1229 1.367 christos }
1230 1.367 christos return retcode;
1231 1.367 christos }
1232 1.367 christos
1233 1.367 christos #if RF_DISABLED
1234 1.367 christos static int
1235 1.367 christos rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1236 1.367 christos {
1237 1.367 christos
1238 1.367 christos /* XXX check the label for valid stuff... */
1239 1.367 christos /* Note that some things *should not* get modified --
1240 1.367 christos the user should be re-initing the labels instead of
1241 1.367 christos trying to patch things.
1242 1.367 christos */
1243 1.367 christos #ifdef DEBUG
1244 1.367 christos int raidid = raidPtr->raidid;
1245 1.367 christos printf("raid%d: Got component label:\n", raidid);
1246 1.367 christos printf("raid%d: Version: %d\n", raidid, clabel->version);
1247 1.367 christos printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1248 1.367 christos printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1249 1.367 christos printf("raid%d: Column: %d\n", raidid, clabel->column);
1250 1.367 christos printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1251 1.367 christos printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1252 1.367 christos printf("raid%d: Status: %d\n", raidid, clabel->status);
1253 1.367 christos #endif /* DEBUG */
1254 1.367 christos clabel->row = 0;
1255 1.367 christos int column = clabel->column;
1256 1.367 christos
1257 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) {
1258 1.367 christos return(EINVAL);
1259 1.367 christos }
1260 1.367 christos
1261 1.367 christos /* XXX this isn't allowed to do anything for now :-) */
1262 1.367 christos
1263 1.367 christos /* XXX and before it is, we need to fill in the rest
1264 1.367 christos of the fields!?!?!?! */
1265 1.367 christos memcpy(raidget_component_label(raidPtr, column),
1266 1.367 christos clabel, sizeof(*clabel));
1267 1.367 christos raidflush_component_label(raidPtr, column);
1268 1.367 christos return 0;
1269 1.367 christos }
1270 1.367 christos #endif
1271 1.367 christos
1272 1.367 christos static int
1273 1.367 christos rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1274 1.367 christos {
1275 1.367 christos /*
1276 1.367 christos we only want the serial number from
1277 1.367 christos the above. We get all the rest of the information
1278 1.367 christos from the config that was used to create this RAID
1279 1.367 christos set.
1280 1.367 christos */
1281 1.367 christos
1282 1.367 christos raidPtr->serial_number = clabel->serial_number;
1283 1.367 christos
1284 1.367 christos for (int column = 0; column < raidPtr->numCol; column++) {
1285 1.367 christos RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column];
1286 1.367 christos if (RF_DEAD_DISK(diskPtr->status))
1287 1.367 christos continue;
1288 1.367 christos RF_ComponentLabel_t *ci_label = raidget_component_label(
1289 1.367 christos raidPtr, column);
1290 1.367 christos /* Zeroing this is important. */
1291 1.367 christos memset(ci_label, 0, sizeof(*ci_label));
1292 1.367 christos raid_init_component_label(raidPtr, ci_label);
1293 1.367 christos ci_label->serial_number = raidPtr->serial_number;
1294 1.367 christos ci_label->row = 0; /* we dont' pretend to support more */
1295 1.367 christos rf_component_label_set_partitionsize(ci_label,
1296 1.367 christos diskPtr->partitionSize);
1297 1.367 christos ci_label->column = column;
1298 1.367 christos raidflush_component_label(raidPtr, column);
1299 1.367 christos /* XXXjld what about the spares? */
1300 1.367 christos }
1301 1.367 christos
1302 1.367 christos return 0;
1303 1.367 christos }
1304 1.367 christos
1305 1.367 christos static int
1306 1.367 christos rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr)
1307 1.367 christos {
1308 1.367 christos
1309 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1310 1.367 christos /* Can't do this on a RAID 0!! */
1311 1.367 christos return EINVAL;
1312 1.367 christos }
1313 1.367 christos
1314 1.367 christos if (raidPtr->recon_in_progress == 1) {
1315 1.367 christos /* a reconstruct is already in progress! */
1316 1.367 christos return EINVAL;
1317 1.367 christos }
1318 1.367 christos
1319 1.367 christos RF_SingleComponent_t component;
1320 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1321 1.367 christos component.row = 0; /* we don't support any more */
1322 1.367 christos int column = component.column;
1323 1.367 christos
1324 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) {
1325 1.367 christos return EINVAL;
1326 1.367 christos }
1327 1.367 christos
1328 1.367 christos rf_lock_mutex2(raidPtr->mutex);
1329 1.367 christos if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1330 1.367 christos (raidPtr->numFailures > 0)) {
1331 1.367 christos /* XXX 0 above shouldn't be constant!!! */
1332 1.367 christos /* some component other than this has failed.
1333 1.367 christos Let's not make things worse than they already
1334 1.367 christos are... */
1335 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n",
1336 1.367 christos raidPtr->raidid);
1337 1.367 christos printf("raid%d: Col: %d Too many failures.\n",
1338 1.367 christos raidPtr->raidid, column);
1339 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1340 1.367 christos return EINVAL;
1341 1.367 christos }
1342 1.367 christos
1343 1.367 christos if (raidPtr->Disks[column].status == rf_ds_reconstructing) {
1344 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n",
1345 1.367 christos raidPtr->raidid);
1346 1.367 christos printf("raid%d: Col: %d "
1347 1.367 christos "Reconstruction already occurring!\n",
1348 1.367 christos raidPtr->raidid, column);
1349 1.367 christos
1350 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1351 1.367 christos return EINVAL;
1352 1.367 christos }
1353 1.367 christos
1354 1.367 christos if (raidPtr->Disks[column].status == rf_ds_spared) {
1355 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1356 1.367 christos return EINVAL;
1357 1.367 christos }
1358 1.367 christos
1359 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1360 1.367 christos
1361 1.367 christos struct rf_recon_req_internal *rrint;
1362 1.374 christos rrint = RF_Malloc(sizeof(*rrint));
1363 1.367 christos if (rrint == NULL)
1364 1.367 christos return ENOMEM;
1365 1.367 christos
1366 1.367 christos rrint->col = column;
1367 1.367 christos rrint->raidPtr = raidPtr;
1368 1.367 christos
1369 1.367 christos return RF_CREATE_THREAD(raidPtr->recon_thread,
1370 1.367 christos rf_ReconstructInPlaceThread, rrint, "raid_reconip");
1371 1.367 christos }
1372 1.367 christos
1373 1.367 christos static int
1374 1.367 christos rf_check_recon_status(RF_Raid_t *raidPtr, int *data)
1375 1.367 christos {
1376 1.367 christos /*
1377 1.367 christos * This makes no sense on a RAID 0, or if we are not reconstructing
1378 1.367 christos * so tell the user it's done.
1379 1.367 christos */
1380 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0 ||
1381 1.367 christos raidPtr->status != rf_rs_reconstructing) {
1382 1.367 christos *data = 100;
1383 1.367 christos return 0;
1384 1.367 christos }
1385 1.367 christos if (raidPtr->reconControl->numRUsTotal == 0) {
1386 1.367 christos *data = 0;
1387 1.367 christos return 0;
1388 1.367 christos }
1389 1.367 christos *data = (raidPtr->reconControl->numRUsComplete * 100
1390 1.367 christos / raidPtr->reconControl->numRUsTotal);
1391 1.367 christos return 0;
1392 1.367 christos }
1393 1.367 christos
1394 1.367 christos static int
1395 1.225 christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1396 1.1 oster {
1397 1.9 oster int unit = raidunit(dev);
1398 1.335 mlelstv int part, pmask;
1399 1.1 oster struct raid_softc *rs;
1400 1.335 mlelstv struct dk_softc *dksc;
1401 1.367 christos RF_Config_t *k_cfg;
1402 1.42 oster RF_Raid_t *raidPtr;
1403 1.41 oster RF_AccTotals_t *totals;
1404 1.367 christos RF_SingleComponent_t component;
1405 1.371 oster RF_DeviceConfig_t *d_cfg, *ucfgp;
1406 1.11 oster int retcode = 0;
1407 1.11 oster int column;
1408 1.48 oster RF_ComponentLabel_t *clabel;
1409 1.12 oster RF_SingleComponent_t *sparePtr,*componentPtr;
1410 1.353 mrg int d;
1411 1.1 oster
1412 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1413 1.300 christos return ENXIO;
1414 1.366 christos
1415 1.335 mlelstv dksc = &rs->sc_dksc;
1416 1.300 christos raidPtr = &rs->sc_r;
1417 1.1 oster
1418 1.276 mrg db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1419 1.366 christos (int) DISKPART(dev), (int) unit, cmd));
1420 1.1 oster
1421 1.1 oster /* Must be initialized for these... */
1422 1.366 christos if (rf_must_be_initialized(rs, cmd))
1423 1.366 christos return ENXIO;
1424 1.9 oster
1425 1.358 pgoyette switch (cmd) {
1426 1.1 oster /* configure the system */
1427 1.1 oster case RAIDFRAME_CONFIGURE:
1428 1.367 christos if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0)
1429 1.367 christos return retcode;
1430 1.367 christos return rf_construct(rs, k_cfg);
1431 1.9 oster
1432 1.9 oster /* shutdown the system */
1433 1.1 oster case RAIDFRAME_SHUTDOWN:
1434 1.9 oster
1435 1.266 dyoung part = DISKPART(dev);
1436 1.266 dyoung pmask = (1 << part);
1437 1.266 dyoung
1438 1.367 christos if ((retcode = raidlock(rs)) != 0)
1439 1.367 christos return retcode;
1440 1.1 oster
1441 1.337 mlelstv if (DK_BUSY(dksc, pmask) ||
1442 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1443 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1444 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1445 1.266 dyoung retcode = EBUSY;
1446 1.266 dyoung else {
1447 1.335 mlelstv /* detach and free on close */
1448 1.266 dyoung rs->sc_flags |= RAIDF_SHUTDOWN;
1449 1.266 dyoung retcode = 0;
1450 1.9 oster }
1451 1.11 oster
1452 1.266 dyoung raidunlock(rs);
1453 1.1 oster
1454 1.367 christos return retcode;
1455 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1456 1.353 mrg return rf_get_component_label(raidPtr, data);
1457 1.11 oster
1458 1.367 christos #if RF_DISABLED
1459 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1460 1.367 christos return rf_set_component_label(raidPtr, data);
1461 1.367 christos #endif
1462 1.11 oster
1463 1.367 christos case RAIDFRAME_INIT_LABELS:
1464 1.367 christos return rf_init_component_label(raidPtr, data);
1465 1.12 oster
1466 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1467 1.78 minoura d = rf_set_autoconfig(raidPtr, *(int *) data);
1468 1.186 perry printf("raid%d: New autoconfig value is: %d\n",
1469 1.123 oster raidPtr->raidid, d);
1470 1.78 minoura *(int *) data = d;
1471 1.367 christos return retcode;
1472 1.48 oster
1473 1.48 oster case RAIDFRAME_SET_ROOT:
1474 1.78 minoura d = rf_set_rootpartition(raidPtr, *(int *) data);
1475 1.186 perry printf("raid%d: New rootpartition value is: %d\n",
1476 1.123 oster raidPtr->raidid, d);
1477 1.78 minoura *(int *) data = d;
1478 1.367 christos return retcode;
1479 1.9 oster
1480 1.1 oster /* initialize all parity */
1481 1.1 oster case RAIDFRAME_REWRITEPARITY:
1482 1.1 oster
1483 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1484 1.17 oster /* Parity for RAID 0 is trivially correct */
1485 1.42 oster raidPtr->parity_good = RF_RAID_CLEAN;
1486 1.367 christos return 0;
1487 1.17 oster }
1488 1.186 perry
1489 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1490 1.37 oster /* Re-write is already in progress! */
1491 1.367 christos return EINVAL;
1492 1.37 oster }
1493 1.27 oster
1494 1.367 christos return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1495 1.367 christos rf_RewriteParityThread, raidPtr,"raid_parity");
1496 1.11 oster
1497 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1498 1.12 oster sparePtr = (RF_SingleComponent_t *) data;
1499 1.367 christos memcpy(&component, sparePtr, sizeof(RF_SingleComponent_t));
1500 1.367 christos return rf_add_hot_spare(raidPtr, &component);
1501 1.11 oster
1502 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1503 1.367 christos return retcode;
1504 1.73 oster
1505 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1506 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1507 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1508 1.367 christos return rf_delete_component(raidPtr, &component);
1509 1.73 oster
1510 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1511 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1512 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1513 1.367 christos return rf_incorporate_hot_spare(raidPtr, &component);
1514 1.11 oster
1515 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1516 1.367 christos return rf_rebuild_in_place(raidPtr, data);
1517 1.24 oster
1518 1.366 christos case RAIDFRAME_GET_INFO:
1519 1.371 oster ucfgp = *(RF_DeviceConfig_t **)data;
1520 1.374 christos d_cfg = RF_Malloc(sizeof(*d_cfg));
1521 1.41 oster if (d_cfg == NULL)
1522 1.366 christos return ENOMEM;
1523 1.353 mrg retcode = rf_get_info(raidPtr, d_cfg);
1524 1.353 mrg if (retcode == 0) {
1525 1.371 oster retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
1526 1.41 oster }
1527 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1528 1.366 christos return retcode;
1529 1.9 oster
1530 1.22 oster case RAIDFRAME_CHECK_PARITY:
1531 1.42 oster *(int *) data = raidPtr->parity_good;
1532 1.367 christos return 0;
1533 1.41 oster
1534 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1535 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1536 1.273 jld return EINVAL;
1537 1.367 christos rf_paritymap_status(raidPtr->parity_map, data);
1538 1.269 jld return 0;
1539 1.269 jld
1540 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1541 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1542 1.273 jld return EINVAL;
1543 1.269 jld if (raidPtr->parity_map == NULL)
1544 1.269 jld return ENOENT; /* ??? */
1545 1.367 christos if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0)
1546 1.269 jld return EINVAL;
1547 1.269 jld return 0;
1548 1.269 jld
1549 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1550 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1551 1.273 jld return EINVAL;
1552 1.269 jld *(int *) data = rf_paritymap_get_disable(raidPtr);
1553 1.269 jld return 0;
1554 1.269 jld
1555 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1556 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1557 1.273 jld return EINVAL;
1558 1.269 jld rf_paritymap_set_disable(raidPtr, *(int *)data);
1559 1.269 jld /* XXX should errors be passed up? */
1560 1.269 jld return 0;
1561 1.269 jld
1562 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1563 1.108 thorpej memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1564 1.367 christos return 0;
1565 1.9 oster
1566 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1567 1.41 oster totals = (RF_AccTotals_t *) data;
1568 1.42 oster *totals = raidPtr->acc_totals;
1569 1.366 christos return 0;
1570 1.9 oster
1571 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1572 1.42 oster raidPtr->keep_acc_totals = *(int *)data;
1573 1.366 christos return 0;
1574 1.9 oster
1575 1.1 oster case RAIDFRAME_GET_SIZE:
1576 1.42 oster *(int *) data = raidPtr->totalSectors;
1577 1.366 christos return 0;
1578 1.1 oster
1579 1.1 oster case RAIDFRAME_FAIL_DISK:
1580 1.366 christos return rf_fail_disk(raidPtr, data);
1581 1.9 oster
1582 1.9 oster /* invoke a copyback operation after recon on whatever disk
1583 1.9 oster * needs it, if any */
1584 1.9 oster case RAIDFRAME_COPYBACK:
1585 1.24 oster
1586 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1587 1.24 oster /* This makes no sense on a RAID 0!! */
1588 1.367 christos return EINVAL;
1589 1.24 oster }
1590 1.24 oster
1591 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1592 1.37 oster /* Copyback is already in progress! */
1593 1.367 christos return EINVAL;
1594 1.37 oster }
1595 1.27 oster
1596 1.367 christos return RF_CREATE_THREAD(raidPtr->copyback_thread,
1597 1.367 christos rf_CopybackThread, raidPtr, "raid_copyback");
1598 1.9 oster
1599 1.1 oster /* return the percentage completion of reconstruction */
1600 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1601 1.367 christos return rf_check_recon_status(raidPtr, data);
1602 1.367 christos
1603 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1604 1.353 mrg rf_check_recon_status_ext(raidPtr, data);
1605 1.367 christos return 0;
1606 1.9 oster
1607 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1608 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1609 1.80 oster /* This makes no sense on a RAID 0, so tell the
1610 1.80 oster user it's done. */
1611 1.80 oster *(int *) data = 100;
1612 1.367 christos return 0;
1613 1.37 oster }
1614 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1615 1.186 perry *(int *) data = 100 *
1616 1.186 perry raidPtr->parity_rewrite_stripes_done /
1617 1.83 oster raidPtr->Layout.numStripe;
1618 1.37 oster } else {
1619 1.37 oster *(int *) data = 100;
1620 1.37 oster }
1621 1.367 christos return 0;
1622 1.37 oster
1623 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1624 1.353 mrg rf_check_parityrewrite_status_ext(raidPtr, data);
1625 1.367 christos return 0;
1626 1.83 oster
1627 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1628 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1629 1.37 oster /* This makes no sense on a RAID 0 */
1630 1.83 oster *(int *) data = 100;
1631 1.367 christos return 0;
1632 1.37 oster }
1633 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1634 1.42 oster *(int *) data = 100 * raidPtr->copyback_stripes_done /
1635 1.42 oster raidPtr->Layout.numStripe;
1636 1.37 oster } else {
1637 1.37 oster *(int *) data = 100;
1638 1.37 oster }
1639 1.367 christos return 0;
1640 1.37 oster
1641 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1642 1.353 mrg rf_check_copyback_status_ext(raidPtr, data);
1643 1.353 mrg return 0;
1644 1.37 oster
1645 1.341 christos case RAIDFRAME_SET_LAST_UNIT:
1646 1.341 christos for (column = 0; column < raidPtr->numCol; column++)
1647 1.341 christos if (raidPtr->Disks[column].status != rf_ds_optimal)
1648 1.341 christos return EBUSY;
1649 1.341 christos
1650 1.341 christos for (column = 0; column < raidPtr->numCol; column++) {
1651 1.341 christos clabel = raidget_component_label(raidPtr, column);
1652 1.341 christos clabel->last_unit = *(int *)data;
1653 1.341 christos raidflush_component_label(raidPtr, column);
1654 1.341 christos }
1655 1.341 christos rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1656 1.341 christos return 0;
1657 1.341 christos
1658 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1659 1.9 oster * need a spare table. this ioctl does not return until a
1660 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1661 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1662 1.9 oster * -- I should either compute the spare table in the kernel,
1663 1.9 oster * or have a different -- XXX XXX -- interface (a different
1664 1.42 oster * character device) for delivering the table -- XXX */
1665 1.367 christos #if RF_DISABLED
1666 1.1 oster case RAIDFRAME_SPARET_WAIT:
1667 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1668 1.9 oster while (!rf_sparet_wait_queue)
1669 1.287 mrg rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1670 1.367 christos RF_SparetWait_t *waitreq = rf_sparet_wait_queue;
1671 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1672 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1673 1.9 oster
1674 1.42 oster /* structure assignment */
1675 1.186 perry *((RF_SparetWait_t *) data) = *waitreq;
1676 1.9 oster
1677 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1678 1.367 christos return 0;
1679 1.9 oster
1680 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1681 1.9 oster * code in it that will cause the dameon to exit */
1682 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1683 1.374 christos waitreq = RF_Malloc(sizeof(*waitreq));
1684 1.1 oster waitreq->fcol = -1;
1685 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1686 1.1 oster waitreq->next = rf_sparet_wait_queue;
1687 1.1 oster rf_sparet_wait_queue = waitreq;
1688 1.367 christos rf_broadcast_cond2(rf_sparet_wait_cv);
1689 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1690 1.367 christos return 0;
1691 1.1 oster
1692 1.9 oster /* used by the spare table daemon to deliver a spare table
1693 1.9 oster * into the kernel */
1694 1.1 oster case RAIDFRAME_SEND_SPARET:
1695 1.9 oster
1696 1.1 oster /* install the spare table */
1697 1.42 oster retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1698 1.9 oster
1699 1.9 oster /* respond to the requestor. the return status of the spare
1700 1.9 oster * table installation is passed in the "fcol" field */
1701 1.374 christos waitred = RF_Malloc(sizeof(*waitreq));
1702 1.1 oster waitreq->fcol = retcode;
1703 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1704 1.1 oster waitreq->next = rf_sparet_resp_queue;
1705 1.1 oster rf_sparet_resp_queue = waitreq;
1706 1.287 mrg rf_broadcast_cond2(rf_sparet_resp_cv);
1707 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1708 1.9 oster
1709 1.367 christos return retcode;
1710 1.367 christos #endif
1711 1.367 christos default:
1712 1.372 christos /*
1713 1.372 christos * Don't bother trying to load compat modules
1714 1.372 christos * if it is not our ioctl. This is more efficient
1715 1.372 christos * and makes rump tests not depend on compat code
1716 1.372 christos */
1717 1.372 christos if (IOCGROUP(cmd) != 'r')
1718 1.372 christos break;
1719 1.367 christos #ifdef _LP64
1720 1.367 christos if ((l->l_proc->p_flag & PK_32) != 0) {
1721 1.367 christos module_autoload("compat_netbsd32_raid",
1722 1.367 christos MODULE_CLASS_EXEC);
1723 1.376 pgoyette MODULE_HOOK_CALL(raidframe_netbsd32_ioctl_hook,
1724 1.367 christos (rs, cmd, data), enosys(), retcode);
1725 1.367 christos if (retcode != EPASSTHROUGH)
1726 1.367 christos return retcode;
1727 1.367 christos }
1728 1.1 oster #endif
1729 1.367 christos module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
1730 1.376 pgoyette MODULE_HOOK_CALL(raidframe_ioctl_80_hook,
1731 1.367 christos (rs, cmd, data), enosys(), retcode);
1732 1.367 christos if (retcode != EPASSTHROUGH)
1733 1.367 christos return retcode;
1734 1.1 oster
1735 1.367 christos module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
1736 1.376 pgoyette MODULE_HOOK_CALL(raidframe_ioctl_50_hook,
1737 1.367 christos (rs, cmd, data), enosys(), retcode);
1738 1.367 christos if (retcode != EPASSTHROUGH)
1739 1.367 christos return retcode;
1740 1.36 oster break; /* fall through to the os-specific code below */
1741 1.1 oster
1742 1.1 oster }
1743 1.9 oster
1744 1.42 oster if (!raidPtr->valid)
1745 1.9 oster return (EINVAL);
1746 1.9 oster
1747 1.1 oster /*
1748 1.1 oster * Add support for "regular" device ioctls here.
1749 1.1 oster */
1750 1.263 haad
1751 1.1 oster switch (cmd) {
1752 1.348 jdolecek case DIOCGCACHE:
1753 1.348 jdolecek retcode = rf_get_component_caches(raidPtr, (int *)data);
1754 1.348 jdolecek break;
1755 1.348 jdolecek
1756 1.252 oster case DIOCCACHESYNC:
1757 1.346 jdolecek retcode = rf_sync_component_caches(raidPtr);
1758 1.347 jdolecek break;
1759 1.298 buhrow
1760 1.1 oster default:
1761 1.346 jdolecek retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1762 1.347 jdolecek break;
1763 1.1 oster }
1764 1.346 jdolecek
1765 1.9 oster return (retcode);
1766 1.1 oster
1767 1.1 oster }
1768 1.1 oster
1769 1.1 oster
1770 1.9 oster /* raidinit -- complete the rest of the initialization for the
1771 1.1 oster RAIDframe device. */
1772 1.1 oster
1773 1.1 oster
1774 1.59 oster static void
1775 1.300 christos raidinit(struct raid_softc *rs)
1776 1.1 oster {
1777 1.262 cegger cfdata_t cf;
1778 1.335 mlelstv unsigned int unit;
1779 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1780 1.300 christos RF_Raid_t *raidPtr = &rs->sc_r;
1781 1.335 mlelstv device_t dev;
1782 1.1 oster
1783 1.59 oster unit = raidPtr->raidid;
1784 1.1 oster
1785 1.179 itojun /* XXX doesn't check bounds. */
1786 1.335 mlelstv snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1787 1.1 oster
1788 1.217 oster /* attach the pseudo device */
1789 1.217 oster cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1790 1.217 oster cf->cf_name = raid_cd.cd_name;
1791 1.217 oster cf->cf_atname = raid_cd.cd_name;
1792 1.217 oster cf->cf_unit = unit;
1793 1.217 oster cf->cf_fstate = FSTATE_STAR;
1794 1.217 oster
1795 1.335 mlelstv dev = config_attach_pseudo(cf);
1796 1.335 mlelstv if (dev == NULL) {
1797 1.217 oster printf("raid%d: config_attach_pseudo failed\n",
1798 1.270 christos raidPtr->raidid);
1799 1.265 pooka free(cf, M_RAIDFRAME);
1800 1.265 pooka return;
1801 1.217 oster }
1802 1.217 oster
1803 1.335 mlelstv /* provide a backpointer to the real softc */
1804 1.335 mlelstv raidsoftc(dev) = rs;
1805 1.335 mlelstv
1806 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1807 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1808 1.9 oster * with disklabels. */
1809 1.335 mlelstv dk_init(dksc, dev, DKTYPE_RAID);
1810 1.335 mlelstv disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1811 1.1 oster
1812 1.1 oster /* XXX There may be a weird interaction here between this, and
1813 1.9 oster * protectedSectors, as used in RAIDframe. */
1814 1.11 oster
1815 1.9 oster rs->sc_size = raidPtr->totalSectors;
1816 1.234 oster
1817 1.335 mlelstv /* Attach dk and disk subsystems */
1818 1.335 mlelstv dk_attach(dksc);
1819 1.335 mlelstv disk_attach(&dksc->sc_dkdev);
1820 1.318 mlelstv rf_set_geometry(rs, raidPtr);
1821 1.318 mlelstv
1822 1.335 mlelstv bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1823 1.335 mlelstv
1824 1.335 mlelstv /* mark unit as usuable */
1825 1.335 mlelstv rs->sc_flags |= RAIDF_INITED;
1826 1.234 oster
1827 1.335 mlelstv dkwedge_discover(&dksc->sc_dkdev);
1828 1.1 oster }
1829 1.335 mlelstv
1830 1.150 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1831 1.1 oster /* wake up the daemon & tell it to get us a spare table
1832 1.1 oster * XXX
1833 1.9 oster * the entries in the queues should be tagged with the raidPtr
1834 1.186 perry * so that in the extremely rare case that two recons happen at once,
1835 1.11 oster * we know for which device were requesting a spare table
1836 1.1 oster * XXX
1837 1.186 perry *
1838 1.39 oster * XXX This code is not currently used. GO
1839 1.1 oster */
1840 1.186 perry int
1841 1.169 oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1842 1.9 oster {
1843 1.9 oster int retcode;
1844 1.9 oster
1845 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1846 1.9 oster req->next = rf_sparet_wait_queue;
1847 1.9 oster rf_sparet_wait_queue = req;
1848 1.289 mrg rf_broadcast_cond2(rf_sparet_wait_cv);
1849 1.9 oster
1850 1.9 oster /* mpsleep unlocks the mutex */
1851 1.9 oster while (!rf_sparet_resp_queue) {
1852 1.289 mrg rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1853 1.9 oster }
1854 1.9 oster req = rf_sparet_resp_queue;
1855 1.9 oster rf_sparet_resp_queue = req->next;
1856 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1857 1.9 oster
1858 1.9 oster retcode = req->fcol;
1859 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
1860 1.9 oster * alloc'd */
1861 1.9 oster return (retcode);
1862 1.1 oster }
1863 1.150 oster #endif
1864 1.39 oster
1865 1.186 perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
1866 1.11 oster * bp & passes it down.
1867 1.1 oster * any calls originating in the kernel must use non-blocking I/O
1868 1.1 oster * do some extra sanity checking to return "appropriate" error values for
1869 1.1 oster * certain conditions (to make some standard utilities work)
1870 1.186 perry *
1871 1.34 oster * Formerly known as: rf_DoAccessKernel
1872 1.1 oster */
1873 1.34 oster void
1874 1.169 oster raidstart(RF_Raid_t *raidPtr)
1875 1.1 oster {
1876 1.1 oster struct raid_softc *rs;
1877 1.335 mlelstv struct dk_softc *dksc;
1878 1.1 oster
1879 1.300 christos rs = raidPtr->softc;
1880 1.335 mlelstv dksc = &rs->sc_dksc;
1881 1.56 oster /* quick check to see if anything has died recently */
1882 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1883 1.56 oster if (raidPtr->numNewFailures > 0) {
1884 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1885 1.186 perry rf_update_component_labels(raidPtr,
1886 1.91 oster RF_NORMAL_COMPONENT_UPDATE);
1887 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1888 1.56 oster raidPtr->numNewFailures--;
1889 1.56 oster }
1890 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1891 1.56 oster
1892 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) {
1893 1.335 mlelstv printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1894 1.335 mlelstv return;
1895 1.335 mlelstv }
1896 1.34 oster
1897 1.335 mlelstv dk_start(dksc, NULL);
1898 1.335 mlelstv }
1899 1.34 oster
1900 1.335 mlelstv static int
1901 1.335 mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1902 1.335 mlelstv {
1903 1.335 mlelstv RF_SectorCount_t num_blocks, pb, sum;
1904 1.335 mlelstv RF_RaidAddr_t raid_addr;
1905 1.335 mlelstv daddr_t blocknum;
1906 1.335 mlelstv int do_async;
1907 1.335 mlelstv int rc;
1908 1.186 perry
1909 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1910 1.335 mlelstv if (raidPtr->openings == 0) {
1911 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1912 1.335 mlelstv return EAGAIN;
1913 1.335 mlelstv }
1914 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1915 1.186 perry
1916 1.335 mlelstv blocknum = bp->b_rawblkno;
1917 1.186 perry
1918 1.335 mlelstv db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1919 1.335 mlelstv (int) blocknum));
1920 1.1 oster
1921 1.335 mlelstv db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1922 1.335 mlelstv db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1923 1.1 oster
1924 1.335 mlelstv /* *THIS* is where we adjust what block we're going to...
1925 1.335 mlelstv * but DO NOT TOUCH bp->b_blkno!!! */
1926 1.335 mlelstv raid_addr = blocknum;
1927 1.335 mlelstv
1928 1.335 mlelstv num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1929 1.335 mlelstv pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1930 1.335 mlelstv sum = raid_addr + num_blocks + pb;
1931 1.335 mlelstv if (1 || rf_debugKernelAccess) {
1932 1.335 mlelstv db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1933 1.335 mlelstv (int) raid_addr, (int) sum, (int) num_blocks,
1934 1.335 mlelstv (int) pb, (int) bp->b_resid));
1935 1.335 mlelstv }
1936 1.335 mlelstv if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1937 1.335 mlelstv || (sum < num_blocks) || (sum < pb)) {
1938 1.335 mlelstv rc = ENOSPC;
1939 1.335 mlelstv goto done;
1940 1.335 mlelstv }
1941 1.335 mlelstv /*
1942 1.335 mlelstv * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1943 1.335 mlelstv */
1944 1.186 perry
1945 1.335 mlelstv if (bp->b_bcount & raidPtr->sectorMask) {
1946 1.335 mlelstv rc = ENOSPC;
1947 1.335 mlelstv goto done;
1948 1.335 mlelstv }
1949 1.335 mlelstv db1_printf(("Calling DoAccess..\n"));
1950 1.99 oster
1951 1.20 oster
1952 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1953 1.335 mlelstv raidPtr->openings--;
1954 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1955 1.20 oster
1956 1.335 mlelstv /*
1957 1.335 mlelstv * Everything is async.
1958 1.335 mlelstv */
1959 1.335 mlelstv do_async = 1;
1960 1.20 oster
1961 1.335 mlelstv /* don't ever condition on bp->b_flags & B_WRITE.
1962 1.335 mlelstv * always condition on B_READ instead */
1963 1.7 explorer
1964 1.335 mlelstv rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1965 1.335 mlelstv RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1966 1.335 mlelstv do_async, raid_addr, num_blocks,
1967 1.335 mlelstv bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1968 1.335 mlelstv
1969 1.335 mlelstv done:
1970 1.335 mlelstv return rc;
1971 1.335 mlelstv }
1972 1.7 explorer
1973 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1974 1.1 oster
1975 1.186 perry int
1976 1.169 oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1977 1.1 oster {
1978 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1979 1.1 oster struct buf *bp;
1980 1.9 oster
1981 1.1 oster req->queue = queue;
1982 1.1 oster bp = req->bp;
1983 1.1 oster
1984 1.1 oster switch (req->type) {
1985 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1986 1.1 oster /* XXX need to do something extra here.. */
1987 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
1988 1.9 oster * and I'd like folks to report it... GO */
1989 1.1 oster printf(("WAKEUP CALLED\n"));
1990 1.1 oster queue->numOutstanding++;
1991 1.1 oster
1992 1.197 oster bp->b_flags = 0;
1993 1.207 simonb bp->b_private = req;
1994 1.1 oster
1995 1.194 oster KernelWakeupFunc(bp);
1996 1.1 oster break;
1997 1.9 oster
1998 1.1 oster case RF_IO_TYPE_READ:
1999 1.1 oster case RF_IO_TYPE_WRITE:
2000 1.175 oster #if RF_ACC_TRACE > 0
2001 1.1 oster if (req->tracerec) {
2002 1.1 oster RF_ETIMER_START(req->tracerec->timer);
2003 1.1 oster }
2004 1.175 oster #endif
2005 1.194 oster InitBP(bp, queue->rf_cinfo->ci_vp,
2006 1.197 oster op, queue->rf_cinfo->ci_dev,
2007 1.9 oster req->sectorOffset, req->numSector,
2008 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
2009 1.384 jdolecek queue->raidPtr->logBytesPerSector);
2010 1.1 oster
2011 1.1 oster if (rf_debugKernelAccess) {
2012 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
2013 1.9 oster (long) bp->b_blkno));
2014 1.1 oster }
2015 1.1 oster queue->numOutstanding++;
2016 1.1 oster queue->last_deq_sector = req->sectorOffset;
2017 1.9 oster /* acc wouldn't have been let in if there were any pending
2018 1.9 oster * reqs at any other priority */
2019 1.1 oster queue->curPriority = req->priority;
2020 1.1 oster
2021 1.166 oster db1_printf(("Going for %c to unit %d col %d\n",
2022 1.186 perry req->type, queue->raidPtr->raidid,
2023 1.166 oster queue->col));
2024 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
2025 1.9 oster (int) req->sectorOffset, (int) req->numSector,
2026 1.9 oster (int) (req->numSector <<
2027 1.9 oster queue->raidPtr->logBytesPerSector),
2028 1.9 oster (int) queue->raidPtr->logBytesPerSector));
2029 1.256 oster
2030 1.256 oster /*
2031 1.256 oster * XXX: drop lock here since this can block at
2032 1.256 oster * least with backing SCSI devices. Retake it
2033 1.256 oster * to minimize fuss with calling interfaces.
2034 1.256 oster */
2035 1.256 oster
2036 1.256 oster RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2037 1.247 oster bdev_strategy(bp);
2038 1.256 oster RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2039 1.1 oster break;
2040 1.9 oster
2041 1.1 oster default:
2042 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
2043 1.1 oster }
2044 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
2045 1.134 oster
2046 1.9 oster return (0);
2047 1.1 oster }
2048 1.9 oster /* this is the callback function associated with a I/O invoked from
2049 1.1 oster kernel code.
2050 1.1 oster */
2051 1.186 perry static void
2052 1.194 oster KernelWakeupFunc(struct buf *bp)
2053 1.9 oster {
2054 1.9 oster RF_DiskQueueData_t *req = NULL;
2055 1.9 oster RF_DiskQueue_t *queue;
2056 1.9 oster
2057 1.9 oster db1_printf(("recovering the request queue:\n"));
2058 1.285 mrg
2059 1.207 simonb req = bp->b_private;
2060 1.1 oster
2061 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
2062 1.1 oster
2063 1.286 mrg rf_lock_mutex2(queue->raidPtr->iodone_lock);
2064 1.285 mrg
2065 1.175 oster #if RF_ACC_TRACE > 0
2066 1.9 oster if (req->tracerec) {
2067 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
2068 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
2069 1.288 mrg rf_lock_mutex2(rf_tracing_mutex);
2070 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2071 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2072 1.9 oster req->tracerec->num_phys_ios++;
2073 1.288 mrg rf_unlock_mutex2(rf_tracing_mutex);
2074 1.9 oster }
2075 1.175 oster #endif
2076 1.1 oster
2077 1.230 ad /* XXX Ok, let's get aggressive... If b_error is set, let's go
2078 1.9 oster * ballistic, and mark the component as hosed... */
2079 1.36 oster
2080 1.230 ad if (bp->b_error != 0) {
2081 1.9 oster /* Mark the disk as dead */
2082 1.9 oster /* but only mark it once... */
2083 1.186 perry /* and only if it wouldn't leave this RAID set
2084 1.183 oster completely broken */
2085 1.193 oster if (((queue->raidPtr->Disks[queue->col].status ==
2086 1.193 oster rf_ds_optimal) ||
2087 1.193 oster (queue->raidPtr->Disks[queue->col].status ==
2088 1.193 oster rf_ds_used_spare)) &&
2089 1.193 oster (queue->raidPtr->numFailures <
2090 1.204 simonb queue->raidPtr->Layout.map->faultsTolerated)) {
2091 1.322 prlw1 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2092 1.136 oster queue->raidPtr->raidid,
2093 1.322 prlw1 bp->b_error,
2094 1.166 oster queue->raidPtr->Disks[queue->col].devname);
2095 1.166 oster queue->raidPtr->Disks[queue->col].status =
2096 1.9 oster rf_ds_failed;
2097 1.166 oster queue->raidPtr->status = rf_rs_degraded;
2098 1.9 oster queue->raidPtr->numFailures++;
2099 1.56 oster queue->raidPtr->numNewFailures++;
2100 1.9 oster } else { /* Disk is already dead... */
2101 1.9 oster /* printf("Disk already marked as dead!\n"); */
2102 1.9 oster }
2103 1.4 oster
2104 1.9 oster }
2105 1.4 oster
2106 1.143 oster /* Fill in the error value */
2107 1.230 ad req->error = bp->b_error;
2108 1.143 oster
2109 1.143 oster /* Drop this one on the "finished" queue... */
2110 1.143 oster TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2111 1.143 oster
2112 1.143 oster /* Let the raidio thread know there is work to be done. */
2113 1.286 mrg rf_signal_cond2(queue->raidPtr->iodone_cv);
2114 1.143 oster
2115 1.286 mrg rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2116 1.1 oster }
2117 1.1 oster
2118 1.1 oster
2119 1.1 oster /*
2120 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
2121 1.1 oster */
2122 1.186 perry static void
2123 1.169 oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2124 1.225 christos RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2125 1.384 jdolecek void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector)
2126 1.9 oster {
2127 1.384 jdolecek bp->b_flags = rw_flag | (bp->b_flags & rf_b_pass);
2128 1.242 ad bp->b_oflags = 0;
2129 1.242 ad bp->b_cflags = 0;
2130 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
2131 1.9 oster bp->b_bufsize = bp->b_bcount;
2132 1.9 oster bp->b_error = 0;
2133 1.9 oster bp->b_dev = dev;
2134 1.187 christos bp->b_data = bf;
2135 1.275 mrg bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2136 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2137 1.1 oster if (bp->b_bcount == 0) {
2138 1.141 provos panic("bp->b_bcount is zero in InitBP!!");
2139 1.1 oster }
2140 1.9 oster bp->b_iodone = cbFunc;
2141 1.207 simonb bp->b_private = cbArg;
2142 1.1 oster }
2143 1.1 oster
2144 1.1 oster /*
2145 1.1 oster * Wait interruptibly for an exclusive lock.
2146 1.1 oster *
2147 1.1 oster * XXX
2148 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2149 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2150 1.1 oster */
2151 1.1 oster static int
2152 1.169 oster raidlock(struct raid_softc *rs)
2153 1.1 oster {
2154 1.9 oster int error;
2155 1.1 oster
2156 1.335 mlelstv error = 0;
2157 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2158 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2159 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2160 1.327 pgoyette error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2161 1.327 pgoyette if (error != 0)
2162 1.335 mlelstv goto done;
2163 1.1 oster }
2164 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2165 1.335 mlelstv done:
2166 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2167 1.335 mlelstv return (error);
2168 1.1 oster }
2169 1.1 oster /*
2170 1.1 oster * Unlock and wake up any waiters.
2171 1.1 oster */
2172 1.1 oster static void
2173 1.169 oster raidunlock(struct raid_softc *rs)
2174 1.1 oster {
2175 1.1 oster
2176 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2177 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2178 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2179 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2180 1.327 pgoyette cv_broadcast(&rs->sc_cv);
2181 1.1 oster }
2182 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2183 1.11 oster }
2184 1.186 perry
2185 1.11 oster
2186 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2187 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2188 1.269 jld #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2189 1.11 oster
2190 1.276 mrg static daddr_t
2191 1.276 mrg rf_component_info_offset(void)
2192 1.276 mrg {
2193 1.276 mrg
2194 1.276 mrg return RF_COMPONENT_INFO_OFFSET;
2195 1.276 mrg }
2196 1.276 mrg
2197 1.276 mrg static daddr_t
2198 1.276 mrg rf_component_info_size(unsigned secsize)
2199 1.276 mrg {
2200 1.276 mrg daddr_t info_size;
2201 1.276 mrg
2202 1.276 mrg KASSERT(secsize);
2203 1.276 mrg if (secsize > RF_COMPONENT_INFO_SIZE)
2204 1.276 mrg info_size = secsize;
2205 1.276 mrg else
2206 1.276 mrg info_size = RF_COMPONENT_INFO_SIZE;
2207 1.276 mrg
2208 1.276 mrg return info_size;
2209 1.276 mrg }
2210 1.276 mrg
2211 1.276 mrg static daddr_t
2212 1.276 mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
2213 1.276 mrg {
2214 1.276 mrg daddr_t map_offset;
2215 1.276 mrg
2216 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2217 1.276 mrg if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2218 1.276 mrg map_offset = raidPtr->bytesPerSector;
2219 1.276 mrg else
2220 1.276 mrg map_offset = RF_COMPONENT_INFO_SIZE;
2221 1.276 mrg map_offset += rf_component_info_offset();
2222 1.276 mrg
2223 1.276 mrg return map_offset;
2224 1.276 mrg }
2225 1.276 mrg
2226 1.276 mrg static daddr_t
2227 1.276 mrg rf_parity_map_size(RF_Raid_t *raidPtr)
2228 1.276 mrg {
2229 1.276 mrg daddr_t map_size;
2230 1.276 mrg
2231 1.276 mrg if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2232 1.276 mrg map_size = raidPtr->bytesPerSector;
2233 1.276 mrg else
2234 1.276 mrg map_size = RF_PARITY_MAP_SIZE;
2235 1.276 mrg
2236 1.276 mrg return map_size;
2237 1.276 mrg }
2238 1.276 mrg
2239 1.186 perry int
2240 1.269 jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2241 1.12 oster {
2242 1.269 jld RF_ComponentLabel_t *clabel;
2243 1.269 jld
2244 1.269 jld clabel = raidget_component_label(raidPtr, col);
2245 1.269 jld clabel->clean = RF_RAID_CLEAN;
2246 1.269 jld raidflush_component_label(raidPtr, col);
2247 1.12 oster return(0);
2248 1.12 oster }
2249 1.12 oster
2250 1.12 oster
2251 1.186 perry int
2252 1.269 jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2253 1.11 oster {
2254 1.269 jld RF_ComponentLabel_t *clabel;
2255 1.269 jld
2256 1.269 jld clabel = raidget_component_label(raidPtr, col);
2257 1.269 jld clabel->clean = RF_RAID_DIRTY;
2258 1.269 jld raidflush_component_label(raidPtr, col);
2259 1.11 oster return(0);
2260 1.11 oster }
2261 1.11 oster
2262 1.11 oster int
2263 1.269 jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2264 1.269 jld {
2265 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2266 1.276 mrg return raidread_component_label(raidPtr->bytesPerSector,
2267 1.276 mrg raidPtr->Disks[col].dev,
2268 1.269 jld raidPtr->raid_cinfo[col].ci_vp,
2269 1.269 jld &raidPtr->raid_cinfo[col].ci_label);
2270 1.269 jld }
2271 1.269 jld
2272 1.269 jld RF_ComponentLabel_t *
2273 1.269 jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2274 1.269 jld {
2275 1.269 jld return &raidPtr->raid_cinfo[col].ci_label;
2276 1.269 jld }
2277 1.269 jld
2278 1.269 jld int
2279 1.269 jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2280 1.269 jld {
2281 1.269 jld RF_ComponentLabel_t *label;
2282 1.269 jld
2283 1.269 jld label = &raidPtr->raid_cinfo[col].ci_label;
2284 1.269 jld label->mod_counter = raidPtr->mod_counter;
2285 1.269 jld #ifndef RF_NO_PARITY_MAP
2286 1.269 jld label->parity_map_modcount = label->mod_counter;
2287 1.269 jld #endif
2288 1.276 mrg return raidwrite_component_label(raidPtr->bytesPerSector,
2289 1.276 mrg raidPtr->Disks[col].dev,
2290 1.269 jld raidPtr->raid_cinfo[col].ci_vp, label);
2291 1.269 jld }
2292 1.269 jld
2293 1.269 jld
2294 1.269 jld static int
2295 1.276 mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2296 1.269 jld RF_ComponentLabel_t *clabel)
2297 1.269 jld {
2298 1.269 jld return raidread_component_area(dev, b_vp, clabel,
2299 1.269 jld sizeof(RF_ComponentLabel_t),
2300 1.276 mrg rf_component_info_offset(),
2301 1.276 mrg rf_component_info_size(secsize));
2302 1.269 jld }
2303 1.269 jld
2304 1.269 jld /* ARGSUSED */
2305 1.269 jld static int
2306 1.269 jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2307 1.269 jld size_t msize, daddr_t offset, daddr_t dsize)
2308 1.11 oster {
2309 1.11 oster struct buf *bp;
2310 1.11 oster int error;
2311 1.186 perry
2312 1.11 oster /* XXX should probably ensure that we don't try to do this if
2313 1.186 perry someone has changed rf_protected_sectors. */
2314 1.11 oster
2315 1.98 oster if (b_vp == NULL) {
2316 1.98 oster /* For whatever reason, this component is not valid.
2317 1.98 oster Don't try to read a component label from it. */
2318 1.98 oster return(EINVAL);
2319 1.98 oster }
2320 1.98 oster
2321 1.11 oster /* get a block of the appropriate size... */
2322 1.269 jld bp = geteblk((int)dsize);
2323 1.11 oster bp->b_dev = dev;
2324 1.11 oster
2325 1.11 oster /* get our ducks in a row for the read */
2326 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2327 1.269 jld bp->b_bcount = dsize;
2328 1.100 chs bp->b_flags |= B_READ;
2329 1.269 jld bp->b_resid = dsize;
2330 1.11 oster
2331 1.331 mlelstv bdev_strategy(bp);
2332 1.340 christos error = biowait(bp);
2333 1.11 oster
2334 1.11 oster if (!error) {
2335 1.269 jld memcpy(data, bp->b_data, msize);
2336 1.204 simonb }
2337 1.11 oster
2338 1.233 ad brelse(bp, 0);
2339 1.11 oster return(error);
2340 1.11 oster }
2341 1.269 jld
2342 1.269 jld
2343 1.269 jld static int
2344 1.276 mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2345 1.276 mrg RF_ComponentLabel_t *clabel)
2346 1.269 jld {
2347 1.269 jld return raidwrite_component_area(dev, b_vp, clabel,
2348 1.269 jld sizeof(RF_ComponentLabel_t),
2349 1.276 mrg rf_component_info_offset(),
2350 1.276 mrg rf_component_info_size(secsize), 0);
2351 1.269 jld }
2352 1.269 jld
2353 1.11 oster /* ARGSUSED */
2354 1.269 jld static int
2355 1.269 jld raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2356 1.269 jld size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2357 1.11 oster {
2358 1.11 oster struct buf *bp;
2359 1.11 oster int error;
2360 1.11 oster
2361 1.11 oster /* get a block of the appropriate size... */
2362 1.269 jld bp = geteblk((int)dsize);
2363 1.11 oster bp->b_dev = dev;
2364 1.11 oster
2365 1.11 oster /* get our ducks in a row for the write */
2366 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2367 1.269 jld bp->b_bcount = dsize;
2368 1.269 jld bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2369 1.269 jld bp->b_resid = dsize;
2370 1.11 oster
2371 1.269 jld memset(bp->b_data, 0, dsize);
2372 1.269 jld memcpy(bp->b_data, data, msize);
2373 1.11 oster
2374 1.331 mlelstv bdev_strategy(bp);
2375 1.269 jld if (asyncp)
2376 1.269 jld return 0;
2377 1.340 christos error = biowait(bp);
2378 1.233 ad brelse(bp, 0);
2379 1.11 oster if (error) {
2380 1.48 oster #if 1
2381 1.11 oster printf("Failed to write RAID component info!\n");
2382 1.48 oster #endif
2383 1.11 oster }
2384 1.11 oster
2385 1.11 oster return(error);
2386 1.1 oster }
2387 1.12 oster
2388 1.186 perry void
2389 1.269 jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2390 1.269 jld {
2391 1.269 jld int c;
2392 1.269 jld
2393 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2394 1.269 jld /* Skip dead disks. */
2395 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2396 1.269 jld continue;
2397 1.269 jld /* XXXjld: what if an error occurs here? */
2398 1.269 jld raidwrite_component_area(raidPtr->Disks[c].dev,
2399 1.269 jld raidPtr->raid_cinfo[c].ci_vp, map,
2400 1.269 jld RF_PARITYMAP_NBYTE,
2401 1.276 mrg rf_parity_map_offset(raidPtr),
2402 1.276 mrg rf_parity_map_size(raidPtr), 0);
2403 1.269 jld }
2404 1.269 jld }
2405 1.269 jld
2406 1.269 jld void
2407 1.269 jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2408 1.269 jld {
2409 1.269 jld struct rf_paritymap_ondisk tmp;
2410 1.272 oster int c,first;
2411 1.269 jld
2412 1.272 oster first=1;
2413 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2414 1.269 jld /* Skip dead disks. */
2415 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2416 1.269 jld continue;
2417 1.269 jld raidread_component_area(raidPtr->Disks[c].dev,
2418 1.269 jld raidPtr->raid_cinfo[c].ci_vp, &tmp,
2419 1.269 jld RF_PARITYMAP_NBYTE,
2420 1.276 mrg rf_parity_map_offset(raidPtr),
2421 1.276 mrg rf_parity_map_size(raidPtr));
2422 1.272 oster if (first) {
2423 1.269 jld memcpy(map, &tmp, sizeof(*map));
2424 1.272 oster first = 0;
2425 1.269 jld } else {
2426 1.269 jld rf_paritymap_merge(map, &tmp);
2427 1.269 jld }
2428 1.269 jld }
2429 1.269 jld }
2430 1.269 jld
2431 1.269 jld void
2432 1.169 oster rf_markalldirty(RF_Raid_t *raidPtr)
2433 1.12 oster {
2434 1.269 jld RF_ComponentLabel_t *clabel;
2435 1.146 oster int sparecol;
2436 1.166 oster int c;
2437 1.166 oster int j;
2438 1.166 oster int scol = -1;
2439 1.12 oster
2440 1.12 oster raidPtr->mod_counter++;
2441 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2442 1.166 oster /* we don't want to touch (at all) a disk that has
2443 1.166 oster failed */
2444 1.166 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2445 1.269 jld clabel = raidget_component_label(raidPtr, c);
2446 1.269 jld if (clabel->status == rf_ds_spared) {
2447 1.186 perry /* XXX do something special...
2448 1.186 perry but whatever you do, don't
2449 1.166 oster try to access it!! */
2450 1.166 oster } else {
2451 1.269 jld raidmarkdirty(raidPtr, c);
2452 1.12 oster }
2453 1.166 oster }
2454 1.186 perry }
2455 1.146 oster
2456 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2457 1.12 oster sparecol = raidPtr->numCol + c;
2458 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2459 1.186 perry /*
2460 1.186 perry
2461 1.186 perry we claim this disk is "optimal" if it's
2462 1.186 perry rf_ds_used_spare, as that means it should be
2463 1.186 perry directly substitutable for the disk it replaced.
2464 1.12 oster We note that too...
2465 1.12 oster
2466 1.12 oster */
2467 1.12 oster
2468 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2469 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2470 1.166 oster scol = j;
2471 1.166 oster break;
2472 1.12 oster }
2473 1.12 oster }
2474 1.186 perry
2475 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2476 1.12 oster /* make sure status is noted */
2477 1.146 oster
2478 1.269 jld raid_init_component_label(raidPtr, clabel);
2479 1.146 oster
2480 1.269 jld clabel->row = 0;
2481 1.269 jld clabel->column = scol;
2482 1.146 oster /* Note: we *don't* change status from rf_ds_used_spare
2483 1.146 oster to rf_ds_optimal */
2484 1.146 oster /* clabel.status = rf_ds_optimal; */
2485 1.186 perry
2486 1.269 jld raidmarkdirty(raidPtr, sparecol);
2487 1.12 oster }
2488 1.12 oster }
2489 1.12 oster }
2490 1.12 oster
2491 1.13 oster
2492 1.13 oster void
2493 1.169 oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2494 1.13 oster {
2495 1.269 jld RF_ComponentLabel_t *clabel;
2496 1.13 oster int sparecol;
2497 1.166 oster int c;
2498 1.166 oster int j;
2499 1.166 oster int scol;
2500 1.341 christos struct raid_softc *rs = raidPtr->softc;
2501 1.13 oster
2502 1.13 oster scol = -1;
2503 1.13 oster
2504 1.186 perry /* XXX should do extra checks to make sure things really are clean,
2505 1.13 oster rather than blindly setting the clean bit... */
2506 1.13 oster
2507 1.13 oster raidPtr->mod_counter++;
2508 1.13 oster
2509 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2510 1.166 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
2511 1.269 jld clabel = raidget_component_label(raidPtr, c);
2512 1.201 oster /* make sure status is noted */
2513 1.269 jld clabel->status = rf_ds_optimal;
2514 1.201 oster
2515 1.214 oster /* note what unit we are configured as */
2516 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2517 1.341 christos clabel->last_unit = raidPtr->raidid;
2518 1.214 oster
2519 1.269 jld raidflush_component_label(raidPtr, c);
2520 1.166 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2521 1.166 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2522 1.269 jld raidmarkclean(raidPtr, c);
2523 1.91 oster }
2524 1.166 oster }
2525 1.186 perry }
2526 1.166 oster /* else we don't touch it.. */
2527 1.186 perry }
2528 1.63 oster
2529 1.63 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2530 1.63 oster sparecol = raidPtr->numCol + c;
2531 1.110 oster /* Need to ensure that the reconstruct actually completed! */
2532 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2533 1.186 perry /*
2534 1.186 perry
2535 1.186 perry we claim this disk is "optimal" if it's
2536 1.186 perry rf_ds_used_spare, as that means it should be
2537 1.186 perry directly substitutable for the disk it replaced.
2538 1.63 oster We note that too...
2539 1.63 oster
2540 1.63 oster */
2541 1.63 oster
2542 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2543 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2544 1.166 oster scol = j;
2545 1.166 oster break;
2546 1.63 oster }
2547 1.63 oster }
2548 1.186 perry
2549 1.63 oster /* XXX shouldn't *really* need this... */
2550 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2551 1.63 oster /* make sure status is noted */
2552 1.63 oster
2553 1.269 jld raid_init_component_label(raidPtr, clabel);
2554 1.269 jld
2555 1.269 jld clabel->column = scol;
2556 1.269 jld clabel->status = rf_ds_optimal;
2557 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2558 1.341 christos clabel->last_unit = raidPtr->raidid;
2559 1.63 oster
2560 1.269 jld raidflush_component_label(raidPtr, sparecol);
2561 1.91 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2562 1.13 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2563 1.269 jld raidmarkclean(raidPtr, sparecol);
2564 1.13 oster }
2565 1.13 oster }
2566 1.13 oster }
2567 1.13 oster }
2568 1.68 oster }
2569 1.68 oster
2570 1.68 oster void
2571 1.169 oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2572 1.69 oster {
2573 1.69 oster
2574 1.69 oster if (vp != NULL) {
2575 1.69 oster if (auto_configured == 1) {
2576 1.96 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2577 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2578 1.69 oster vput(vp);
2579 1.186 perry
2580 1.186 perry } else {
2581 1.244 ad (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2582 1.69 oster }
2583 1.186 perry }
2584 1.69 oster }
2585 1.69 oster
2586 1.69 oster
2587 1.69 oster void
2588 1.169 oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2589 1.68 oster {
2590 1.186 perry int r,c;
2591 1.69 oster struct vnode *vp;
2592 1.69 oster int acd;
2593 1.68 oster
2594 1.68 oster
2595 1.68 oster /* We take this opportunity to close the vnodes like we should.. */
2596 1.68 oster
2597 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2598 1.166 oster vp = raidPtr->raid_cinfo[c].ci_vp;
2599 1.166 oster acd = raidPtr->Disks[c].auto_configured;
2600 1.166 oster rf_close_component(raidPtr, vp, acd);
2601 1.166 oster raidPtr->raid_cinfo[c].ci_vp = NULL;
2602 1.166 oster raidPtr->Disks[c].auto_configured = 0;
2603 1.68 oster }
2604 1.166 oster
2605 1.68 oster for (r = 0; r < raidPtr->numSpare; r++) {
2606 1.166 oster vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2607 1.166 oster acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2608 1.69 oster rf_close_component(raidPtr, vp, acd);
2609 1.166 oster raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2610 1.166 oster raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2611 1.68 oster }
2612 1.37 oster }
2613 1.63 oster
2614 1.37 oster
2615 1.186 perry void
2616 1.353 mrg rf_ReconThread(struct rf_recon_req_internal *req)
2617 1.37 oster {
2618 1.37 oster int s;
2619 1.37 oster RF_Raid_t *raidPtr;
2620 1.37 oster
2621 1.37 oster s = splbio();
2622 1.37 oster raidPtr = (RF_Raid_t *) req->raidPtr;
2623 1.37 oster raidPtr->recon_in_progress = 1;
2624 1.37 oster
2625 1.166 oster rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2626 1.37 oster ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2627 1.37 oster
2628 1.37 oster RF_Free(req, sizeof(*req));
2629 1.37 oster
2630 1.37 oster raidPtr->recon_in_progress = 0;
2631 1.37 oster splx(s);
2632 1.37 oster
2633 1.37 oster /* That's all... */
2634 1.204 simonb kthread_exit(0); /* does not return */
2635 1.37 oster }
2636 1.37 oster
2637 1.37 oster void
2638 1.169 oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
2639 1.37 oster {
2640 1.37 oster int retcode;
2641 1.37 oster int s;
2642 1.37 oster
2643 1.184 oster raidPtr->parity_rewrite_stripes_done = 0;
2644 1.37 oster raidPtr->parity_rewrite_in_progress = 1;
2645 1.37 oster s = splbio();
2646 1.37 oster retcode = rf_RewriteParity(raidPtr);
2647 1.37 oster splx(s);
2648 1.37 oster if (retcode) {
2649 1.279 christos printf("raid%d: Error re-writing parity (%d)!\n",
2650 1.279 christos raidPtr->raidid, retcode);
2651 1.37 oster } else {
2652 1.37 oster /* set the clean bit! If we shutdown correctly,
2653 1.37 oster the clean bit on each component label will get
2654 1.37 oster set */
2655 1.37 oster raidPtr->parity_good = RF_RAID_CLEAN;
2656 1.37 oster }
2657 1.37 oster raidPtr->parity_rewrite_in_progress = 0;
2658 1.85 oster
2659 1.85 oster /* Anyone waiting for us to stop? If so, inform them... */
2660 1.85 oster if (raidPtr->waitShutdown) {
2661 1.357 mrg rf_lock_mutex2(raidPtr->rad_lock);
2662 1.357 mrg cv_broadcast(&raidPtr->parity_rewrite_cv);
2663 1.357 mrg rf_unlock_mutex2(raidPtr->rad_lock);
2664 1.85 oster }
2665 1.37 oster
2666 1.37 oster /* That's all... */
2667 1.204 simonb kthread_exit(0); /* does not return */
2668 1.37 oster }
2669 1.37 oster
2670 1.37 oster
2671 1.37 oster void
2672 1.169 oster rf_CopybackThread(RF_Raid_t *raidPtr)
2673 1.37 oster {
2674 1.37 oster int s;
2675 1.37 oster
2676 1.37 oster raidPtr->copyback_in_progress = 1;
2677 1.37 oster s = splbio();
2678 1.37 oster rf_CopybackReconstructedData(raidPtr);
2679 1.37 oster splx(s);
2680 1.37 oster raidPtr->copyback_in_progress = 0;
2681 1.37 oster
2682 1.37 oster /* That's all... */
2683 1.204 simonb kthread_exit(0); /* does not return */
2684 1.37 oster }
2685 1.37 oster
2686 1.37 oster
2687 1.37 oster void
2688 1.353 mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
2689 1.37 oster {
2690 1.37 oster int s;
2691 1.37 oster RF_Raid_t *raidPtr;
2692 1.186 perry
2693 1.37 oster s = splbio();
2694 1.37 oster raidPtr = req->raidPtr;
2695 1.37 oster raidPtr->recon_in_progress = 1;
2696 1.166 oster rf_ReconstructInPlace(raidPtr, req->col);
2697 1.37 oster RF_Free(req, sizeof(*req));
2698 1.37 oster raidPtr->recon_in_progress = 0;
2699 1.37 oster splx(s);
2700 1.37 oster
2701 1.37 oster /* That's all... */
2702 1.204 simonb kthread_exit(0); /* does not return */
2703 1.48 oster }
2704 1.48 oster
2705 1.213 christos static RF_AutoConfig_t *
2706 1.213 christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2707 1.276 mrg const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2708 1.276 mrg unsigned secsize)
2709 1.213 christos {
2710 1.213 christos int good_one = 0;
2711 1.213 christos RF_ComponentLabel_t *clabel;
2712 1.213 christos RF_AutoConfig_t *ac;
2713 1.213 christos
2714 1.379 chs clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_WAITOK);
2715 1.213 christos
2716 1.276 mrg if (!raidread_component_label(secsize, dev, vp, clabel)) {
2717 1.276 mrg /* Got the label. Does it look reasonable? */
2718 1.284 mrg if (rf_reasonable_label(clabel, numsecs) &&
2719 1.282 enami (rf_component_label_partitionsize(clabel) <= size)) {
2720 1.224 oster #ifdef DEBUG
2721 1.276 mrg printf("Component on: %s: %llu\n",
2722 1.213 christos cname, (unsigned long long)size);
2723 1.276 mrg rf_print_component_label(clabel);
2724 1.213 christos #endif
2725 1.276 mrg /* if it's reasonable, add it, else ignore it. */
2726 1.276 mrg ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2727 1.379 chs M_WAITOK);
2728 1.276 mrg strlcpy(ac->devname, cname, sizeof(ac->devname));
2729 1.276 mrg ac->dev = dev;
2730 1.276 mrg ac->vp = vp;
2731 1.276 mrg ac->clabel = clabel;
2732 1.276 mrg ac->next = ac_list;
2733 1.276 mrg ac_list = ac;
2734 1.276 mrg good_one = 1;
2735 1.276 mrg }
2736 1.213 christos }
2737 1.213 christos if (!good_one) {
2738 1.213 christos /* cleanup */
2739 1.213 christos free(clabel, M_RAIDFRAME);
2740 1.213 christos vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2741 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2742 1.213 christos vput(vp);
2743 1.213 christos }
2744 1.213 christos return ac_list;
2745 1.213 christos }
2746 1.213 christos
2747 1.48 oster RF_AutoConfig_t *
2748 1.259 cegger rf_find_raid_components(void)
2749 1.48 oster {
2750 1.48 oster struct vnode *vp;
2751 1.48 oster struct disklabel label;
2752 1.261 dyoung device_t dv;
2753 1.268 dyoung deviter_t di;
2754 1.48 oster dev_t dev;
2755 1.296 buhrow int bmajor, bminor, wedge, rf_part_found;
2756 1.48 oster int error;
2757 1.48 oster int i;
2758 1.48 oster RF_AutoConfig_t *ac_list;
2759 1.276 mrg uint64_t numsecs;
2760 1.276 mrg unsigned secsize;
2761 1.335 mlelstv int dowedges;
2762 1.48 oster
2763 1.48 oster /* initialize the AutoConfig list */
2764 1.48 oster ac_list = NULL;
2765 1.48 oster
2766 1.335 mlelstv /*
2767 1.335 mlelstv * we begin by trolling through *all* the devices on the system *twice*
2768 1.335 mlelstv * first we scan for wedges, second for other devices. This avoids
2769 1.335 mlelstv * using a raw partition instead of a wedge that covers the whole disk
2770 1.335 mlelstv */
2771 1.48 oster
2772 1.335 mlelstv for (dowedges=1; dowedges>=0; --dowedges) {
2773 1.335 mlelstv for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2774 1.335 mlelstv dv = deviter_next(&di)) {
2775 1.48 oster
2776 1.335 mlelstv /* we are only interested in disks... */
2777 1.335 mlelstv if (device_class(dv) != DV_DISK)
2778 1.335 mlelstv continue;
2779 1.48 oster
2780 1.335 mlelstv /* we don't care about floppies... */
2781 1.335 mlelstv if (device_is_a(dv, "fd")) {
2782 1.335 mlelstv continue;
2783 1.335 mlelstv }
2784 1.129 oster
2785 1.335 mlelstv /* we don't care about CD's... */
2786 1.335 mlelstv if (device_is_a(dv, "cd")) {
2787 1.335 mlelstv continue;
2788 1.335 mlelstv }
2789 1.129 oster
2790 1.335 mlelstv /* we don't care about md's... */
2791 1.335 mlelstv if (device_is_a(dv, "md")) {
2792 1.335 mlelstv continue;
2793 1.335 mlelstv }
2794 1.248 oster
2795 1.335 mlelstv /* hdfd is the Atari/Hades floppy driver */
2796 1.335 mlelstv if (device_is_a(dv, "hdfd")) {
2797 1.335 mlelstv continue;
2798 1.335 mlelstv }
2799 1.206 thorpej
2800 1.335 mlelstv /* fdisa is the Atari/Milan floppy driver */
2801 1.335 mlelstv if (device_is_a(dv, "fdisa")) {
2802 1.335 mlelstv continue;
2803 1.335 mlelstv }
2804 1.186 perry
2805 1.335 mlelstv /* are we in the wedges pass ? */
2806 1.335 mlelstv wedge = device_is_a(dv, "dk");
2807 1.335 mlelstv if (wedge != dowedges) {
2808 1.335 mlelstv continue;
2809 1.335 mlelstv }
2810 1.48 oster
2811 1.335 mlelstv /* need to find the device_name_to_block_device_major stuff */
2812 1.335 mlelstv bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2813 1.296 buhrow
2814 1.335 mlelstv rf_part_found = 0; /*No raid partition as yet*/
2815 1.48 oster
2816 1.335 mlelstv /* get a vnode for the raw partition of this disk */
2817 1.335 mlelstv bminor = minor(device_unit(dv));
2818 1.335 mlelstv dev = wedge ? makedev(bmajor, bminor) :
2819 1.335 mlelstv MAKEDISKDEV(bmajor, bminor, RAW_PART);
2820 1.335 mlelstv if (bdevvp(dev, &vp))
2821 1.335 mlelstv panic("RAID can't alloc vnode");
2822 1.48 oster
2823 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2824 1.335 mlelstv error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2825 1.48 oster
2826 1.335 mlelstv if (error) {
2827 1.335 mlelstv /* "Who cares." Continue looking
2828 1.335 mlelstv for something that exists*/
2829 1.335 mlelstv vput(vp);
2830 1.335 mlelstv continue;
2831 1.335 mlelstv }
2832 1.48 oster
2833 1.335 mlelstv error = getdisksize(vp, &numsecs, &secsize);
2834 1.213 christos if (error) {
2835 1.339 mlelstv /*
2836 1.339 mlelstv * Pseudo devices like vnd and cgd can be
2837 1.339 mlelstv * opened but may still need some configuration.
2838 1.339 mlelstv * Ignore these quietly.
2839 1.339 mlelstv */
2840 1.339 mlelstv if (error != ENXIO)
2841 1.339 mlelstv printf("RAIDframe: can't get disk size"
2842 1.339 mlelstv " for dev %s (%d)\n",
2843 1.339 mlelstv device_xname(dv), error);
2844 1.241 oster VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2845 1.241 oster vput(vp);
2846 1.213 christos continue;
2847 1.213 christos }
2848 1.335 mlelstv if (wedge) {
2849 1.335 mlelstv struct dkwedge_info dkw;
2850 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2851 1.335 mlelstv NOCRED);
2852 1.335 mlelstv if (error) {
2853 1.335 mlelstv printf("RAIDframe: can't get wedge info for "
2854 1.335 mlelstv "dev %s (%d)\n", device_xname(dv), error);
2855 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2856 1.335 mlelstv vput(vp);
2857 1.335 mlelstv continue;
2858 1.335 mlelstv }
2859 1.213 christos
2860 1.335 mlelstv if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2861 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2862 1.335 mlelstv vput(vp);
2863 1.335 mlelstv continue;
2864 1.335 mlelstv }
2865 1.335 mlelstv
2866 1.375 hannken VOP_UNLOCK(vp);
2867 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp,
2868 1.335 mlelstv device_xname(dv), dkw.dkw_size, numsecs, secsize);
2869 1.335 mlelstv rf_part_found = 1; /*There is a raid component on this disk*/
2870 1.228 christos continue;
2871 1.241 oster }
2872 1.213 christos
2873 1.335 mlelstv /* Ok, the disk exists. Go get the disklabel. */
2874 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2875 1.335 mlelstv if (error) {
2876 1.335 mlelstv /*
2877 1.335 mlelstv * XXX can't happen - open() would
2878 1.335 mlelstv * have errored out (or faked up one)
2879 1.335 mlelstv */
2880 1.335 mlelstv if (error != ENOTTY)
2881 1.335 mlelstv printf("RAIDframe: can't get label for dev "
2882 1.335 mlelstv "%s (%d)\n", device_xname(dv), error);
2883 1.335 mlelstv }
2884 1.48 oster
2885 1.335 mlelstv /* don't need this any more. We'll allocate it again
2886 1.335 mlelstv a little later if we really do... */
2887 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2888 1.335 mlelstv vput(vp);
2889 1.48 oster
2890 1.335 mlelstv if (error)
2891 1.48 oster continue;
2892 1.48 oster
2893 1.335 mlelstv rf_part_found = 0; /*No raid partitions yet*/
2894 1.335 mlelstv for (i = 0; i < label.d_npartitions; i++) {
2895 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2896 1.335 mlelstv
2897 1.335 mlelstv /* We only support partitions marked as RAID */
2898 1.335 mlelstv if (label.d_partitions[i].p_fstype != FS_RAID)
2899 1.335 mlelstv continue;
2900 1.335 mlelstv
2901 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2902 1.335 mlelstv if (bdevvp(dev, &vp))
2903 1.335 mlelstv panic("RAID can't alloc vnode");
2904 1.335 mlelstv
2905 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2906 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2907 1.335 mlelstv if (error) {
2908 1.335 mlelstv /* Whatever... */
2909 1.335 mlelstv vput(vp);
2910 1.335 mlelstv continue;
2911 1.335 mlelstv }
2912 1.375 hannken VOP_UNLOCK(vp);
2913 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2914 1.335 mlelstv device_xname(dv), 'a' + i);
2915 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2916 1.335 mlelstv label.d_partitions[i].p_size, numsecs, secsize);
2917 1.335 mlelstv rf_part_found = 1; /*There is at least one raid partition on this disk*/
2918 1.48 oster }
2919 1.296 buhrow
2920 1.335 mlelstv /*
2921 1.335 mlelstv *If there is no raid component on this disk, either in a
2922 1.335 mlelstv *disklabel or inside a wedge, check the raw partition as well,
2923 1.335 mlelstv *as it is possible to configure raid components on raw disk
2924 1.335 mlelstv *devices.
2925 1.335 mlelstv */
2926 1.296 buhrow
2927 1.335 mlelstv if (!rf_part_found) {
2928 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2929 1.296 buhrow
2930 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2931 1.335 mlelstv if (bdevvp(dev, &vp))
2932 1.335 mlelstv panic("RAID can't alloc vnode");
2933 1.335 mlelstv
2934 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2935 1.375 hannken
2936 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2937 1.335 mlelstv if (error) {
2938 1.335 mlelstv /* Whatever... */
2939 1.335 mlelstv vput(vp);
2940 1.335 mlelstv continue;
2941 1.335 mlelstv }
2942 1.375 hannken VOP_UNLOCK(vp);
2943 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2944 1.335 mlelstv device_xname(dv), 'a' + RAW_PART);
2945 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2946 1.335 mlelstv label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2947 1.296 buhrow }
2948 1.48 oster }
2949 1.335 mlelstv deviter_release(&di);
2950 1.48 oster }
2951 1.213 christos return ac_list;
2952 1.48 oster }
2953 1.186 perry
2954 1.213 christos
2955 1.292 oster int
2956 1.284 mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
2957 1.48 oster {
2958 1.186 perry
2959 1.48 oster if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2960 1.48 oster (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2961 1.48 oster ((clabel->clean == RF_RAID_CLEAN) ||
2962 1.48 oster (clabel->clean == RF_RAID_DIRTY)) &&
2963 1.186 perry clabel->row >=0 &&
2964 1.186 perry clabel->column >= 0 &&
2965 1.48 oster clabel->num_rows > 0 &&
2966 1.48 oster clabel->num_columns > 0 &&
2967 1.186 perry clabel->row < clabel->num_rows &&
2968 1.48 oster clabel->column < clabel->num_columns &&
2969 1.48 oster clabel->blockSize > 0 &&
2970 1.282 enami /*
2971 1.282 enami * numBlocksHi may contain garbage, but it is ok since
2972 1.282 enami * the type is unsigned. If it is really garbage,
2973 1.282 enami * rf_fix_old_label_size() will fix it.
2974 1.282 enami */
2975 1.282 enami rf_component_label_numblocks(clabel) > 0) {
2976 1.284 mrg /*
2977 1.284 mrg * label looks reasonable enough...
2978 1.284 mrg * let's make sure it has no old garbage.
2979 1.284 mrg */
2980 1.292 oster if (numsecs)
2981 1.292 oster rf_fix_old_label_size(clabel, numsecs);
2982 1.48 oster return(1);
2983 1.48 oster }
2984 1.48 oster return(0);
2985 1.48 oster }
2986 1.48 oster
2987 1.48 oster
2988 1.278 mrg /*
2989 1.278 mrg * For reasons yet unknown, some old component labels have garbage in
2990 1.278 mrg * the newer numBlocksHi region, and this causes lossage. Since those
2991 1.278 mrg * disks will also have numsecs set to less than 32 bits of sectors,
2992 1.299 oster * we can determine when this corruption has occurred, and fix it.
2993 1.284 mrg *
2994 1.284 mrg * The exact same problem, with the same unknown reason, happens to
2995 1.284 mrg * the partitionSizeHi member as well.
2996 1.278 mrg */
2997 1.278 mrg static void
2998 1.278 mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
2999 1.278 mrg {
3000 1.278 mrg
3001 1.284 mrg if (numsecs < ((uint64_t)1 << 32)) {
3002 1.284 mrg if (clabel->numBlocksHi) {
3003 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3004 1.284 mrg "numBlocksHi set\n"
3005 1.284 mrg "WARNING: resetting numBlocksHi to zero.\n");
3006 1.284 mrg clabel->numBlocksHi = 0;
3007 1.284 mrg }
3008 1.284 mrg
3009 1.284 mrg if (clabel->partitionSizeHi) {
3010 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3011 1.284 mrg "partitionSizeHi set\n"
3012 1.284 mrg "WARNING: resetting partitionSizeHi to zero.\n");
3013 1.284 mrg clabel->partitionSizeHi = 0;
3014 1.284 mrg }
3015 1.278 mrg }
3016 1.278 mrg }
3017 1.278 mrg
3018 1.278 mrg
3019 1.224 oster #ifdef DEBUG
3020 1.48 oster void
3021 1.169 oster rf_print_component_label(RF_ComponentLabel_t *clabel)
3022 1.48 oster {
3023 1.282 enami uint64_t numBlocks;
3024 1.308 christos static const char *rp[] = {
3025 1.308 christos "No", "Force", "Soft", "*invalid*"
3026 1.308 christos };
3027 1.308 christos
3028 1.275 mrg
3029 1.282 enami numBlocks = rf_component_label_numblocks(clabel);
3030 1.275 mrg
3031 1.48 oster printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3032 1.186 perry clabel->row, clabel->column,
3033 1.48 oster clabel->num_rows, clabel->num_columns);
3034 1.48 oster printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3035 1.48 oster clabel->version, clabel->serial_number,
3036 1.48 oster clabel->mod_counter);
3037 1.48 oster printf(" Clean: %s Status: %d\n",
3038 1.271 dyoung clabel->clean ? "Yes" : "No", clabel->status);
3039 1.48 oster printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3040 1.48 oster clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3041 1.275 mrg printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3042 1.275 mrg (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3043 1.271 dyoung printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3044 1.308 christos printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3045 1.271 dyoung printf(" Last configured as: raid%d\n", clabel->last_unit);
3046 1.51 oster #if 0
3047 1.51 oster printf(" Config order: %d\n", clabel->config_order);
3048 1.51 oster #endif
3049 1.186 perry
3050 1.48 oster }
3051 1.133 oster #endif
3052 1.48 oster
3053 1.48 oster RF_ConfigSet_t *
3054 1.169 oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3055 1.48 oster {
3056 1.48 oster RF_AutoConfig_t *ac;
3057 1.48 oster RF_ConfigSet_t *config_sets;
3058 1.48 oster RF_ConfigSet_t *cset;
3059 1.48 oster RF_AutoConfig_t *ac_next;
3060 1.48 oster
3061 1.48 oster
3062 1.48 oster config_sets = NULL;
3063 1.48 oster
3064 1.48 oster /* Go through the AutoConfig list, and figure out which components
3065 1.48 oster belong to what sets. */
3066 1.48 oster ac = ac_list;
3067 1.48 oster while(ac!=NULL) {
3068 1.48 oster /* we're going to putz with ac->next, so save it here
3069 1.48 oster for use at the end of the loop */
3070 1.48 oster ac_next = ac->next;
3071 1.48 oster
3072 1.48 oster if (config_sets == NULL) {
3073 1.48 oster /* will need at least this one... */
3074 1.379 chs config_sets = malloc(sizeof(RF_ConfigSet_t),
3075 1.379 chs M_RAIDFRAME, M_WAITOK);
3076 1.48 oster /* this one is easy :) */
3077 1.48 oster config_sets->ac = ac;
3078 1.48 oster config_sets->next = NULL;
3079 1.51 oster config_sets->rootable = 0;
3080 1.48 oster ac->next = NULL;
3081 1.48 oster } else {
3082 1.48 oster /* which set does this component fit into? */
3083 1.48 oster cset = config_sets;
3084 1.48 oster while(cset!=NULL) {
3085 1.49 oster if (rf_does_it_fit(cset, ac)) {
3086 1.86 oster /* looks like it matches... */
3087 1.86 oster ac->next = cset->ac;
3088 1.86 oster cset->ac = ac;
3089 1.48 oster break;
3090 1.48 oster }
3091 1.48 oster cset = cset->next;
3092 1.48 oster }
3093 1.48 oster if (cset==NULL) {
3094 1.48 oster /* didn't find a match above... new set..*/
3095 1.379 chs cset = malloc(sizeof(RF_ConfigSet_t),
3096 1.379 chs M_RAIDFRAME, M_WAITOK);
3097 1.48 oster cset->ac = ac;
3098 1.48 oster ac->next = NULL;
3099 1.48 oster cset->next = config_sets;
3100 1.51 oster cset->rootable = 0;
3101 1.48 oster config_sets = cset;
3102 1.48 oster }
3103 1.48 oster }
3104 1.48 oster ac = ac_next;
3105 1.48 oster }
3106 1.48 oster
3107 1.48 oster
3108 1.48 oster return(config_sets);
3109 1.48 oster }
3110 1.48 oster
3111 1.48 oster static int
3112 1.169 oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3113 1.48 oster {
3114 1.48 oster RF_ComponentLabel_t *clabel1, *clabel2;
3115 1.48 oster
3116 1.48 oster /* If this one matches the *first* one in the set, that's good
3117 1.48 oster enough, since the other members of the set would have been
3118 1.48 oster through here too... */
3119 1.60 oster /* note that we are not checking partitionSize here..
3120 1.60 oster
3121 1.60 oster Note that we are also not checking the mod_counters here.
3122 1.299 oster If everything else matches except the mod_counter, that's
3123 1.60 oster good enough for this test. We will deal with the mod_counters
3124 1.186 perry a little later in the autoconfiguration process.
3125 1.60 oster
3126 1.60 oster (clabel1->mod_counter == clabel2->mod_counter) &&
3127 1.81 oster
3128 1.81 oster The reason we don't check for this is that failed disks
3129 1.81 oster will have lower modification counts. If those disks are
3130 1.81 oster not added to the set they used to belong to, then they will
3131 1.81 oster form their own set, which may result in 2 different sets,
3132 1.81 oster for example, competing to be configured at raid0, and
3133 1.81 oster perhaps competing to be the root filesystem set. If the
3134 1.81 oster wrong ones get configured, or both attempt to become /,
3135 1.81 oster weird behaviour and or serious lossage will occur. Thus we
3136 1.81 oster need to bring them into the fold here, and kick them out at
3137 1.81 oster a later point.
3138 1.60 oster
3139 1.60 oster */
3140 1.48 oster
3141 1.48 oster clabel1 = cset->ac->clabel;
3142 1.48 oster clabel2 = ac->clabel;
3143 1.48 oster if ((clabel1->version == clabel2->version) &&
3144 1.48 oster (clabel1->serial_number == clabel2->serial_number) &&
3145 1.48 oster (clabel1->num_rows == clabel2->num_rows) &&
3146 1.48 oster (clabel1->num_columns == clabel2->num_columns) &&
3147 1.48 oster (clabel1->sectPerSU == clabel2->sectPerSU) &&
3148 1.48 oster (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3149 1.48 oster (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3150 1.48 oster (clabel1->parityConfig == clabel2->parityConfig) &&
3151 1.48 oster (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3152 1.48 oster (clabel1->blockSize == clabel2->blockSize) &&
3153 1.282 enami rf_component_label_numblocks(clabel1) ==
3154 1.282 enami rf_component_label_numblocks(clabel2) &&
3155 1.48 oster (clabel1->autoconfigure == clabel2->autoconfigure) &&
3156 1.48 oster (clabel1->root_partition == clabel2->root_partition) &&
3157 1.48 oster (clabel1->last_unit == clabel2->last_unit) &&
3158 1.48 oster (clabel1->config_order == clabel2->config_order)) {
3159 1.48 oster /* if it get's here, it almost *has* to be a match */
3160 1.48 oster } else {
3161 1.186 perry /* it's not consistent with somebody in the set..
3162 1.48 oster punt */
3163 1.48 oster return(0);
3164 1.48 oster }
3165 1.48 oster /* all was fine.. it must fit... */
3166 1.48 oster return(1);
3167 1.48 oster }
3168 1.48 oster
3169 1.48 oster int
3170 1.169 oster rf_have_enough_components(RF_ConfigSet_t *cset)
3171 1.48 oster {
3172 1.51 oster RF_AutoConfig_t *ac;
3173 1.51 oster RF_AutoConfig_t *auto_config;
3174 1.51 oster RF_ComponentLabel_t *clabel;
3175 1.166 oster int c;
3176 1.51 oster int num_cols;
3177 1.51 oster int num_missing;
3178 1.86 oster int mod_counter;
3179 1.87 oster int mod_counter_found;
3180 1.88 oster int even_pair_failed;
3181 1.88 oster char parity_type;
3182 1.186 perry
3183 1.51 oster
3184 1.48 oster /* check to see that we have enough 'live' components
3185 1.48 oster of this set. If so, we can configure it if necessary */
3186 1.48 oster
3187 1.51 oster num_cols = cset->ac->clabel->num_columns;
3188 1.88 oster parity_type = cset->ac->clabel->parityConfig;
3189 1.51 oster
3190 1.51 oster /* XXX Check for duplicate components!?!?!? */
3191 1.51 oster
3192 1.86 oster /* Determine what the mod_counter is supposed to be for this set. */
3193 1.86 oster
3194 1.87 oster mod_counter_found = 0;
3195 1.101 oster mod_counter = 0;
3196 1.86 oster ac = cset->ac;
3197 1.86 oster while(ac!=NULL) {
3198 1.87 oster if (mod_counter_found==0) {
3199 1.86 oster mod_counter = ac->clabel->mod_counter;
3200 1.87 oster mod_counter_found = 1;
3201 1.87 oster } else {
3202 1.87 oster if (ac->clabel->mod_counter > mod_counter) {
3203 1.87 oster mod_counter = ac->clabel->mod_counter;
3204 1.87 oster }
3205 1.86 oster }
3206 1.86 oster ac = ac->next;
3207 1.86 oster }
3208 1.86 oster
3209 1.51 oster num_missing = 0;
3210 1.51 oster auto_config = cset->ac;
3211 1.51 oster
3212 1.166 oster even_pair_failed = 0;
3213 1.166 oster for(c=0; c<num_cols; c++) {
3214 1.166 oster ac = auto_config;
3215 1.166 oster while(ac!=NULL) {
3216 1.186 perry if ((ac->clabel->column == c) &&
3217 1.166 oster (ac->clabel->mod_counter == mod_counter)) {
3218 1.166 oster /* it's this one... */
3219 1.224 oster #ifdef DEBUG
3220 1.166 oster printf("Found: %s at %d\n",
3221 1.166 oster ac->devname,c);
3222 1.51 oster #endif
3223 1.166 oster break;
3224 1.51 oster }
3225 1.166 oster ac=ac->next;
3226 1.166 oster }
3227 1.166 oster if (ac==NULL) {
3228 1.51 oster /* Didn't find one here! */
3229 1.88 oster /* special case for RAID 1, especially
3230 1.88 oster where there are more than 2
3231 1.88 oster components (where RAIDframe treats
3232 1.88 oster things a little differently :( ) */
3233 1.166 oster if (parity_type == '1') {
3234 1.166 oster if (c%2 == 0) { /* even component */
3235 1.166 oster even_pair_failed = 1;
3236 1.166 oster } else { /* odd component. If
3237 1.166 oster we're failed, and
3238 1.166 oster so is the even
3239 1.166 oster component, it's
3240 1.166 oster "Good Night, Charlie" */
3241 1.166 oster if (even_pair_failed == 1) {
3242 1.166 oster return(0);
3243 1.88 oster }
3244 1.88 oster }
3245 1.166 oster } else {
3246 1.166 oster /* normal accounting */
3247 1.166 oster num_missing++;
3248 1.88 oster }
3249 1.166 oster }
3250 1.166 oster if ((parity_type == '1') && (c%2 == 1)) {
3251 1.88 oster /* Just did an even component, and we didn't
3252 1.186 perry bail.. reset the even_pair_failed flag,
3253 1.88 oster and go on to the next component.... */
3254 1.166 oster even_pair_failed = 0;
3255 1.51 oster }
3256 1.51 oster }
3257 1.51 oster
3258 1.51 oster clabel = cset->ac->clabel;
3259 1.51 oster
3260 1.51 oster if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3261 1.51 oster ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3262 1.51 oster ((clabel->parityConfig == '5') && (num_missing > 1))) {
3263 1.51 oster /* XXX this needs to be made *much* more general */
3264 1.51 oster /* Too many failures */
3265 1.51 oster return(0);
3266 1.51 oster }
3267 1.51 oster /* otherwise, all is well, and we've got enough to take a kick
3268 1.51 oster at autoconfiguring this set */
3269 1.51 oster return(1);
3270 1.48 oster }
3271 1.48 oster
3272 1.48 oster void
3273 1.169 oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3274 1.222 christos RF_Raid_t *raidPtr)
3275 1.48 oster {
3276 1.48 oster RF_ComponentLabel_t *clabel;
3277 1.77 oster int i;
3278 1.48 oster
3279 1.48 oster clabel = ac->clabel;
3280 1.48 oster
3281 1.48 oster /* 1. Fill in the common stuff */
3282 1.48 oster config->numCol = clabel->num_columns;
3283 1.48 oster config->numSpare = 0; /* XXX should this be set here? */
3284 1.48 oster config->sectPerSU = clabel->sectPerSU;
3285 1.48 oster config->SUsPerPU = clabel->SUsPerPU;
3286 1.48 oster config->SUsPerRU = clabel->SUsPerRU;
3287 1.48 oster config->parityConfig = clabel->parityConfig;
3288 1.48 oster /* XXX... */
3289 1.48 oster strcpy(config->diskQueueType,"fifo");
3290 1.48 oster config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3291 1.48 oster config->layoutSpecificSize = 0; /* XXX ?? */
3292 1.48 oster
3293 1.48 oster while(ac!=NULL) {
3294 1.48 oster /* row/col values will be in range due to the checks
3295 1.48 oster in reasonable_label() */
3296 1.166 oster strcpy(config->devnames[0][ac->clabel->column],
3297 1.48 oster ac->devname);
3298 1.48 oster ac = ac->next;
3299 1.48 oster }
3300 1.48 oster
3301 1.77 oster for(i=0;i<RF_MAXDBGV;i++) {
3302 1.163 fvdl config->debugVars[i][0] = 0;
3303 1.77 oster }
3304 1.48 oster }
3305 1.48 oster
3306 1.48 oster int
3307 1.169 oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3308 1.48 oster {
3309 1.269 jld RF_ComponentLabel_t *clabel;
3310 1.166 oster int column;
3311 1.148 oster int sparecol;
3312 1.48 oster
3313 1.54 oster raidPtr->autoconfigure = new_value;
3314 1.166 oster
3315 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3316 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3317 1.269 jld clabel = raidget_component_label(raidPtr, column);
3318 1.269 jld clabel->autoconfigure = new_value;
3319 1.269 jld raidflush_component_label(raidPtr, column);
3320 1.48 oster }
3321 1.48 oster }
3322 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3323 1.148 oster sparecol = raidPtr->numCol + column;
3324 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3325 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3326 1.269 jld clabel->autoconfigure = new_value;
3327 1.269 jld raidflush_component_label(raidPtr, sparecol);
3328 1.148 oster }
3329 1.148 oster }
3330 1.48 oster return(new_value);
3331 1.48 oster }
3332 1.48 oster
3333 1.48 oster int
3334 1.169 oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3335 1.48 oster {
3336 1.269 jld RF_ComponentLabel_t *clabel;
3337 1.166 oster int column;
3338 1.148 oster int sparecol;
3339 1.48 oster
3340 1.54 oster raidPtr->root_partition = new_value;
3341 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3342 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3343 1.269 jld clabel = raidget_component_label(raidPtr, column);
3344 1.269 jld clabel->root_partition = new_value;
3345 1.269 jld raidflush_component_label(raidPtr, column);
3346 1.148 oster }
3347 1.148 oster }
3348 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3349 1.148 oster sparecol = raidPtr->numCol + column;
3350 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3351 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3352 1.269 jld clabel->root_partition = new_value;
3353 1.269 jld raidflush_component_label(raidPtr, sparecol);
3354 1.48 oster }
3355 1.48 oster }
3356 1.48 oster return(new_value);
3357 1.48 oster }
3358 1.48 oster
3359 1.48 oster void
3360 1.169 oster rf_release_all_vps(RF_ConfigSet_t *cset)
3361 1.48 oster {
3362 1.48 oster RF_AutoConfig_t *ac;
3363 1.186 perry
3364 1.48 oster ac = cset->ac;
3365 1.48 oster while(ac!=NULL) {
3366 1.48 oster /* Close the vp, and give it back */
3367 1.48 oster if (ac->vp) {
3368 1.96 oster vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3369 1.335 mlelstv VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3370 1.48 oster vput(ac->vp);
3371 1.86 oster ac->vp = NULL;
3372 1.48 oster }
3373 1.48 oster ac = ac->next;
3374 1.48 oster }
3375 1.48 oster }
3376 1.48 oster
3377 1.48 oster
3378 1.48 oster void
3379 1.169 oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
3380 1.48 oster {
3381 1.48 oster RF_AutoConfig_t *ac;
3382 1.48 oster RF_AutoConfig_t *next_ac;
3383 1.186 perry
3384 1.48 oster ac = cset->ac;
3385 1.48 oster while(ac!=NULL) {
3386 1.48 oster next_ac = ac->next;
3387 1.48 oster /* nuke the label */
3388 1.48 oster free(ac->clabel, M_RAIDFRAME);
3389 1.48 oster /* cleanup the config structure */
3390 1.48 oster free(ac, M_RAIDFRAME);
3391 1.48 oster /* "next.." */
3392 1.48 oster ac = next_ac;
3393 1.48 oster }
3394 1.48 oster /* and, finally, nuke the config set */
3395 1.48 oster free(cset, M_RAIDFRAME);
3396 1.48 oster }
3397 1.48 oster
3398 1.48 oster
3399 1.48 oster void
3400 1.169 oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3401 1.48 oster {
3402 1.48 oster /* current version number */
3403 1.186 perry clabel->version = RF_COMPONENT_LABEL_VERSION;
3404 1.57 oster clabel->serial_number = raidPtr->serial_number;
3405 1.48 oster clabel->mod_counter = raidPtr->mod_counter;
3406 1.269 jld
3407 1.166 oster clabel->num_rows = 1;
3408 1.48 oster clabel->num_columns = raidPtr->numCol;
3409 1.48 oster clabel->clean = RF_RAID_DIRTY; /* not clean */
3410 1.48 oster clabel->status = rf_ds_optimal; /* "It's good!" */
3411 1.186 perry
3412 1.48 oster clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3413 1.48 oster clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3414 1.48 oster clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3415 1.54 oster
3416 1.54 oster clabel->blockSize = raidPtr->bytesPerSector;
3417 1.282 enami rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3418 1.54 oster
3419 1.48 oster /* XXX not portable */
3420 1.48 oster clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3421 1.54 oster clabel->maxOutstanding = raidPtr->maxOutstanding;
3422 1.54 oster clabel->autoconfigure = raidPtr->autoconfigure;
3423 1.54 oster clabel->root_partition = raidPtr->root_partition;
3424 1.48 oster clabel->last_unit = raidPtr->raidid;
3425 1.54 oster clabel->config_order = raidPtr->config_order;
3426 1.269 jld
3427 1.269 jld #ifndef RF_NO_PARITY_MAP
3428 1.269 jld rf_paritymap_init_label(raidPtr->parity_map, clabel);
3429 1.269 jld #endif
3430 1.51 oster }
3431 1.51 oster
3432 1.300 christos struct raid_softc *
3433 1.300 christos rf_auto_config_set(RF_ConfigSet_t *cset)
3434 1.51 oster {
3435 1.51 oster RF_Raid_t *raidPtr;
3436 1.51 oster RF_Config_t *config;
3437 1.51 oster int raidID;
3438 1.300 christos struct raid_softc *sc;
3439 1.51 oster
3440 1.224 oster #ifdef DEBUG
3441 1.72 oster printf("RAID autoconfigure\n");
3442 1.127 oster #endif
3443 1.51 oster
3444 1.51 oster /* 1. Create a config structure */
3445 1.379 chs config = malloc(sizeof(*config), M_RAIDFRAME, M_WAITOK|M_ZERO);
3446 1.77 oster
3447 1.186 perry /*
3448 1.186 perry 2. Figure out what RAID ID this one is supposed to live at
3449 1.51 oster See if we can get the same RAID dev that it was configured
3450 1.186 perry on last time..
3451 1.51 oster */
3452 1.51 oster
3453 1.51 oster raidID = cset->ac->clabel->last_unit;
3454 1.327 pgoyette for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3455 1.327 pgoyette sc = raidget(++raidID, false))
3456 1.300 christos continue;
3457 1.224 oster #ifdef DEBUG
3458 1.72 oster printf("Configuring raid%d:\n",raidID);
3459 1.127 oster #endif
3460 1.127 oster
3461 1.327 pgoyette if (sc == NULL)
3462 1.327 pgoyette sc = raidget(raidID, true);
3463 1.300 christos raidPtr = &sc->sc_r;
3464 1.51 oster
3465 1.51 oster /* XXX all this stuff should be done SOMEWHERE ELSE! */
3466 1.302 christos raidPtr->softc = sc;
3467 1.51 oster raidPtr->raidid = raidID;
3468 1.51 oster raidPtr->openings = RAIDOUTSTANDING;
3469 1.51 oster
3470 1.51 oster /* 3. Build the configuration structure */
3471 1.51 oster rf_create_configuration(cset->ac, config, raidPtr);
3472 1.51 oster
3473 1.51 oster /* 4. Do the configuration */
3474 1.300 christos if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3475 1.300 christos raidinit(sc);
3476 1.186 perry
3477 1.300 christos rf_markalldirty(raidPtr);
3478 1.300 christos raidPtr->autoconfigure = 1; /* XXX do this here? */
3479 1.308 christos switch (cset->ac->clabel->root_partition) {
3480 1.308 christos case 1: /* Force Root */
3481 1.308 christos case 2: /* Soft Root: root when boot partition part of raid */
3482 1.308 christos /*
3483 1.308 christos * everything configured just fine. Make a note
3484 1.308 christos * that this set is eligible to be root,
3485 1.308 christos * or forced to be root
3486 1.308 christos */
3487 1.308 christos cset->rootable = cset->ac->clabel->root_partition;
3488 1.54 oster /* XXX do this here? */
3489 1.308 christos raidPtr->root_partition = cset->rootable;
3490 1.308 christos break;
3491 1.308 christos default:
3492 1.308 christos break;
3493 1.51 oster }
3494 1.300 christos } else {
3495 1.300 christos raidput(sc);
3496 1.300 christos sc = NULL;
3497 1.51 oster }
3498 1.51 oster
3499 1.51 oster /* 5. Cleanup */
3500 1.51 oster free(config, M_RAIDFRAME);
3501 1.300 christos return sc;
3502 1.99 oster }
3503 1.99 oster
3504 1.99 oster void
3505 1.187 christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3506 1.187 christos size_t xmin, size_t xmax)
3507 1.177 oster {
3508 1.352 christos
3509 1.227 ad pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3510 1.187 christos pool_sethiwat(p, xmax);
3511 1.382 chs pool_prime(p, xmin);
3512 1.177 oster }
3513 1.190 oster
3514 1.190 oster /*
3515 1.335 mlelstv * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3516 1.335 mlelstv * to see if there is IO pending and if that IO could possibly be done
3517 1.335 mlelstv * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3518 1.190 oster * otherwise.
3519 1.190 oster *
3520 1.190 oster */
3521 1.190 oster int
3522 1.300 christos rf_buf_queue_check(RF_Raid_t *raidPtr)
3523 1.190 oster {
3524 1.335 mlelstv struct raid_softc *rs;
3525 1.335 mlelstv struct dk_softc *dksc;
3526 1.335 mlelstv
3527 1.335 mlelstv rs = raidPtr->softc;
3528 1.335 mlelstv dksc = &rs->sc_dksc;
3529 1.335 mlelstv
3530 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
3531 1.335 mlelstv return 1;
3532 1.335 mlelstv
3533 1.335 mlelstv if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3534 1.190 oster /* there is work to do */
3535 1.190 oster return 0;
3536 1.335 mlelstv }
3537 1.190 oster /* default is nothing to do */
3538 1.190 oster return 1;
3539 1.190 oster }
3540 1.213 christos
3541 1.213 christos int
3542 1.294 oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3543 1.213 christos {
3544 1.275 mrg uint64_t numsecs;
3545 1.275 mrg unsigned secsize;
3546 1.213 christos int error;
3547 1.213 christos
3548 1.275 mrg error = getdisksize(vp, &numsecs, &secsize);
3549 1.213 christos if (error == 0) {
3550 1.275 mrg diskPtr->blockSize = secsize;
3551 1.275 mrg diskPtr->numBlocks = numsecs - rf_protectedSectors;
3552 1.275 mrg diskPtr->partitionSize = numsecs;
3553 1.213 christos return 0;
3554 1.213 christos }
3555 1.213 christos return error;
3556 1.213 christos }
3557 1.217 oster
3558 1.217 oster static int
3559 1.261 dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
3560 1.217 oster {
3561 1.217 oster return 1;
3562 1.217 oster }
3563 1.217 oster
3564 1.217 oster static void
3565 1.261 dyoung raid_attach(device_t parent, device_t self, void *aux)
3566 1.217 oster {
3567 1.217 oster }
3568 1.217 oster
3569 1.217 oster
3570 1.217 oster static int
3571 1.261 dyoung raid_detach(device_t self, int flags)
3572 1.217 oster {
3573 1.266 dyoung int error;
3574 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
3575 1.303 christos
3576 1.303 christos if (rs == NULL)
3577 1.303 christos return ENXIO;
3578 1.266 dyoung
3579 1.266 dyoung if ((error = raidlock(rs)) != 0)
3580 1.266 dyoung return (error);
3581 1.217 oster
3582 1.266 dyoung error = raid_detach_unlocked(rs);
3583 1.266 dyoung
3584 1.332 mlelstv raidunlock(rs);
3585 1.332 mlelstv
3586 1.332 mlelstv /* XXX raid can be referenced here */
3587 1.332 mlelstv
3588 1.332 mlelstv if (error)
3589 1.332 mlelstv return error;
3590 1.332 mlelstv
3591 1.332 mlelstv /* Free the softc */
3592 1.332 mlelstv raidput(rs);
3593 1.332 mlelstv
3594 1.332 mlelstv return 0;
3595 1.217 oster }
3596 1.217 oster
3597 1.234 oster static void
3598 1.304 christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3599 1.234 oster {
3600 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
3601 1.335 mlelstv struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3602 1.304 christos
3603 1.304 christos memset(dg, 0, sizeof(*dg));
3604 1.304 christos
3605 1.304 christos dg->dg_secperunit = raidPtr->totalSectors;
3606 1.304 christos dg->dg_secsize = raidPtr->bytesPerSector;
3607 1.304 christos dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3608 1.304 christos dg->dg_ntracks = 4 * raidPtr->numCol;
3609 1.304 christos
3610 1.335 mlelstv disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3611 1.234 oster }
3612 1.252 oster
3613 1.348 jdolecek /*
3614 1.348 jdolecek * Get cache info for all the components (including spares).
3615 1.348 jdolecek * Returns intersection of all the cache flags of all disks, or first
3616 1.348 jdolecek * error if any encountered.
3617 1.348 jdolecek * XXXfua feature flags can change as spares are added - lock down somehow
3618 1.348 jdolecek */
3619 1.348 jdolecek static int
3620 1.348 jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3621 1.348 jdolecek {
3622 1.348 jdolecek int c;
3623 1.348 jdolecek int error;
3624 1.348 jdolecek int dkwhole = 0, dkpart;
3625 1.348 jdolecek
3626 1.348 jdolecek for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3627 1.348 jdolecek /*
3628 1.348 jdolecek * Check any non-dead disk, even when currently being
3629 1.348 jdolecek * reconstructed.
3630 1.348 jdolecek */
3631 1.348 jdolecek if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3632 1.348 jdolecek || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3633 1.348 jdolecek error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3634 1.348 jdolecek DIOCGCACHE, &dkpart, FREAD, NOCRED);
3635 1.348 jdolecek if (error) {
3636 1.348 jdolecek if (error != ENODEV) {
3637 1.348 jdolecek printf("raid%d: get cache for component %s failed\n",
3638 1.348 jdolecek raidPtr->raidid,
3639 1.348 jdolecek raidPtr->Disks[c].devname);
3640 1.348 jdolecek }
3641 1.348 jdolecek
3642 1.348 jdolecek return error;
3643 1.348 jdolecek }
3644 1.348 jdolecek
3645 1.348 jdolecek if (c == 0)
3646 1.348 jdolecek dkwhole = dkpart;
3647 1.348 jdolecek else
3648 1.348 jdolecek dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3649 1.348 jdolecek }
3650 1.348 jdolecek }
3651 1.348 jdolecek
3652 1.349 jdolecek *data = dkwhole;
3653 1.348 jdolecek
3654 1.348 jdolecek return 0;
3655 1.348 jdolecek }
3656 1.348 jdolecek
3657 1.252 oster /*
3658 1.252 oster * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3659 1.252 oster * We end up returning whatever error was returned by the first cache flush
3660 1.252 oster * that fails.
3661 1.252 oster */
3662 1.252 oster
3663 1.269 jld int
3664 1.252 oster rf_sync_component_caches(RF_Raid_t *raidPtr)
3665 1.252 oster {
3666 1.252 oster int c, sparecol;
3667 1.252 oster int e,error;
3668 1.252 oster int force = 1;
3669 1.252 oster
3670 1.252 oster error = 0;
3671 1.252 oster for (c = 0; c < raidPtr->numCol; c++) {
3672 1.252 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
3673 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3674 1.252 oster &force, FWRITE, NOCRED);
3675 1.252 oster if (e) {
3676 1.255 oster if (e != ENODEV)
3677 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3678 1.255 oster raidPtr->raidid, raidPtr->Disks[c].devname);
3679 1.252 oster if (error == 0) {
3680 1.252 oster error = e;
3681 1.252 oster }
3682 1.252 oster }
3683 1.252 oster }
3684 1.252 oster }
3685 1.252 oster
3686 1.252 oster for( c = 0; c < raidPtr->numSpare ; c++) {
3687 1.252 oster sparecol = raidPtr->numCol + c;
3688 1.252 oster /* Need to ensure that the reconstruct actually completed! */
3689 1.252 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3690 1.252 oster e = VOP_IOCTL(raidPtr->raid_cinfo[sparecol].ci_vp,
3691 1.252 oster DIOCCACHESYNC, &force, FWRITE, NOCRED);
3692 1.252 oster if (e) {
3693 1.255 oster if (e != ENODEV)
3694 1.255 oster printf("raid%d: cache flush to component %s failed.\n",
3695 1.255 oster raidPtr->raidid, raidPtr->Disks[sparecol].devname);
3696 1.252 oster if (error == 0) {
3697 1.252 oster error = e;
3698 1.252 oster }
3699 1.252 oster }
3700 1.252 oster }
3701 1.252 oster }
3702 1.252 oster return error;
3703 1.252 oster }
3704 1.327 pgoyette
3705 1.353 mrg /* Fill in info with the current status */
3706 1.353 mrg void
3707 1.353 mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3708 1.353 mrg {
3709 1.353 mrg
3710 1.353 mrg if (raidPtr->status != rf_rs_reconstructing) {
3711 1.353 mrg info->total = 100;
3712 1.353 mrg info->completed = 100;
3713 1.353 mrg } else {
3714 1.353 mrg info->total = raidPtr->reconControl->numRUsTotal;
3715 1.353 mrg info->completed = raidPtr->reconControl->numRUsComplete;
3716 1.353 mrg }
3717 1.353 mrg info->remaining = info->total - info->completed;
3718 1.353 mrg }
3719 1.353 mrg
3720 1.353 mrg /* Fill in info with the current status */
3721 1.353 mrg void
3722 1.353 mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3723 1.353 mrg {
3724 1.353 mrg
3725 1.353 mrg if (raidPtr->parity_rewrite_in_progress == 1) {
3726 1.353 mrg info->total = raidPtr->Layout.numStripe;
3727 1.353 mrg info->completed = raidPtr->parity_rewrite_stripes_done;
3728 1.353 mrg } else {
3729 1.353 mrg info->completed = 100;
3730 1.353 mrg info->total = 100;
3731 1.353 mrg }
3732 1.353 mrg info->remaining = info->total - info->completed;
3733 1.353 mrg }
3734 1.353 mrg
3735 1.353 mrg /* Fill in info with the current status */
3736 1.353 mrg void
3737 1.353 mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3738 1.353 mrg {
3739 1.353 mrg
3740 1.353 mrg if (raidPtr->copyback_in_progress == 1) {
3741 1.353 mrg info->total = raidPtr->Layout.numStripe;
3742 1.353 mrg info->completed = raidPtr->copyback_stripes_done;
3743 1.353 mrg info->remaining = info->total - info->completed;
3744 1.353 mrg } else {
3745 1.353 mrg info->remaining = 0;
3746 1.353 mrg info->completed = 100;
3747 1.353 mrg info->total = 100;
3748 1.353 mrg }
3749 1.353 mrg }
3750 1.353 mrg
3751 1.353 mrg /* Fill in config with the current info */
3752 1.353 mrg int
3753 1.353 mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
3754 1.353 mrg {
3755 1.353 mrg int d, i, j;
3756 1.353 mrg
3757 1.353 mrg if (!raidPtr->valid)
3758 1.353 mrg return (ENODEV);
3759 1.353 mrg config->cols = raidPtr->numCol;
3760 1.353 mrg config->ndevs = raidPtr->numCol;
3761 1.353 mrg if (config->ndevs >= RF_MAX_DISKS)
3762 1.353 mrg return (ENOMEM);
3763 1.353 mrg config->nspares = raidPtr->numSpare;
3764 1.353 mrg if (config->nspares >= RF_MAX_DISKS)
3765 1.353 mrg return (ENOMEM);
3766 1.353 mrg config->maxqdepth = raidPtr->maxQueueDepth;
3767 1.353 mrg d = 0;
3768 1.353 mrg for (j = 0; j < config->cols; j++) {
3769 1.353 mrg config->devs[d] = raidPtr->Disks[j];
3770 1.353 mrg d++;
3771 1.353 mrg }
3772 1.353 mrg for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
3773 1.353 mrg config->spares[i] = raidPtr->Disks[j];
3774 1.353 mrg if (config->spares[i].status == rf_ds_rebuilding_spare) {
3775 1.353 mrg /* XXX: raidctl(8) expects to see this as a used spare */
3776 1.353 mrg config->spares[i].status = rf_ds_used_spare;
3777 1.353 mrg }
3778 1.353 mrg }
3779 1.353 mrg return 0;
3780 1.353 mrg }
3781 1.353 mrg
3782 1.353 mrg int
3783 1.353 mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
3784 1.353 mrg {
3785 1.353 mrg RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
3786 1.353 mrg RF_ComponentLabel_t *raid_clabel;
3787 1.353 mrg int column = clabel->column;
3788 1.353 mrg
3789 1.353 mrg if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
3790 1.353 mrg return EINVAL;
3791 1.353 mrg raid_clabel = raidget_component_label(raidPtr, column);
3792 1.353 mrg memcpy(clabel, raid_clabel, sizeof *clabel);
3793 1.353 mrg
3794 1.353 mrg return 0;
3795 1.353 mrg }
3796 1.353 mrg
3797 1.327 pgoyette /*
3798 1.327 pgoyette * Module interface
3799 1.327 pgoyette */
3800 1.327 pgoyette
3801 1.356 pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
3802 1.327 pgoyette
3803 1.327 pgoyette #ifdef _MODULE
3804 1.327 pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
3805 1.327 pgoyette #endif
3806 1.327 pgoyette
3807 1.327 pgoyette static int raid_modcmd(modcmd_t, void *);
3808 1.327 pgoyette static int raid_modcmd_init(void);
3809 1.327 pgoyette static int raid_modcmd_fini(void);
3810 1.327 pgoyette
3811 1.327 pgoyette static int
3812 1.327 pgoyette raid_modcmd(modcmd_t cmd, void *data)
3813 1.327 pgoyette {
3814 1.327 pgoyette int error;
3815 1.327 pgoyette
3816 1.327 pgoyette error = 0;
3817 1.327 pgoyette switch (cmd) {
3818 1.327 pgoyette case MODULE_CMD_INIT:
3819 1.327 pgoyette error = raid_modcmd_init();
3820 1.327 pgoyette break;
3821 1.327 pgoyette case MODULE_CMD_FINI:
3822 1.327 pgoyette error = raid_modcmd_fini();
3823 1.327 pgoyette break;
3824 1.327 pgoyette default:
3825 1.327 pgoyette error = ENOTTY;
3826 1.327 pgoyette break;
3827 1.327 pgoyette }
3828 1.327 pgoyette return error;
3829 1.327 pgoyette }
3830 1.327 pgoyette
3831 1.327 pgoyette static int
3832 1.327 pgoyette raid_modcmd_init(void)
3833 1.327 pgoyette {
3834 1.327 pgoyette int error;
3835 1.327 pgoyette int bmajor, cmajor;
3836 1.327 pgoyette
3837 1.327 pgoyette mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3838 1.327 pgoyette mutex_enter(&raid_lock);
3839 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3840 1.327 pgoyette rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3841 1.327 pgoyette rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3842 1.327 pgoyette rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3843 1.327 pgoyette
3844 1.327 pgoyette rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3845 1.327 pgoyette #endif
3846 1.327 pgoyette
3847 1.327 pgoyette bmajor = cmajor = -1;
3848 1.327 pgoyette error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3849 1.327 pgoyette &raid_cdevsw, &cmajor);
3850 1.327 pgoyette if (error != 0 && error != EEXIST) {
3851 1.327 pgoyette aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3852 1.327 pgoyette mutex_exit(&raid_lock);
3853 1.327 pgoyette return error;
3854 1.327 pgoyette }
3855 1.327 pgoyette #ifdef _MODULE
3856 1.327 pgoyette error = config_cfdriver_attach(&raid_cd);
3857 1.327 pgoyette if (error != 0) {
3858 1.327 pgoyette aprint_error("%s: config_cfdriver_attach failed %d\n",
3859 1.327 pgoyette __func__, error);
3860 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3861 1.327 pgoyette mutex_exit(&raid_lock);
3862 1.327 pgoyette return error;
3863 1.327 pgoyette }
3864 1.327 pgoyette #endif
3865 1.327 pgoyette error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3866 1.327 pgoyette if (error != 0) {
3867 1.327 pgoyette aprint_error("%s: config_cfattach_attach failed %d\n",
3868 1.327 pgoyette __func__, error);
3869 1.327 pgoyette #ifdef _MODULE
3870 1.327 pgoyette config_cfdriver_detach(&raid_cd);
3871 1.327 pgoyette #endif
3872 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3873 1.327 pgoyette mutex_exit(&raid_lock);
3874 1.327 pgoyette return error;
3875 1.327 pgoyette }
3876 1.327 pgoyette
3877 1.327 pgoyette raidautoconfigdone = false;
3878 1.327 pgoyette
3879 1.327 pgoyette mutex_exit(&raid_lock);
3880 1.327 pgoyette
3881 1.327 pgoyette if (error == 0) {
3882 1.327 pgoyette if (rf_BootRaidframe(true) == 0)
3883 1.327 pgoyette aprint_verbose("Kernelized RAIDframe activated\n");
3884 1.327 pgoyette else
3885 1.327 pgoyette panic("Serious error activating RAID!!");
3886 1.327 pgoyette }
3887 1.327 pgoyette
3888 1.327 pgoyette /*
3889 1.327 pgoyette * Register a finalizer which will be used to auto-config RAID
3890 1.327 pgoyette * sets once all real hardware devices have been found.
3891 1.327 pgoyette */
3892 1.327 pgoyette error = config_finalize_register(NULL, rf_autoconfig);
3893 1.327 pgoyette if (error != 0) {
3894 1.327 pgoyette aprint_error("WARNING: unable to register RAIDframe "
3895 1.327 pgoyette "finalizer\n");
3896 1.329 pgoyette error = 0;
3897 1.327 pgoyette }
3898 1.327 pgoyette
3899 1.327 pgoyette return error;
3900 1.327 pgoyette }
3901 1.327 pgoyette
3902 1.327 pgoyette static int
3903 1.327 pgoyette raid_modcmd_fini(void)
3904 1.327 pgoyette {
3905 1.327 pgoyette int error;
3906 1.327 pgoyette
3907 1.327 pgoyette mutex_enter(&raid_lock);
3908 1.327 pgoyette
3909 1.327 pgoyette /* Don't allow unload if raid device(s) exist. */
3910 1.327 pgoyette if (!LIST_EMPTY(&raids)) {
3911 1.327 pgoyette mutex_exit(&raid_lock);
3912 1.327 pgoyette return EBUSY;
3913 1.327 pgoyette }
3914 1.327 pgoyette
3915 1.327 pgoyette error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3916 1.327 pgoyette if (error != 0) {
3917 1.335 mlelstv aprint_error("%s: cannot detach cfattach\n",__func__);
3918 1.327 pgoyette mutex_exit(&raid_lock);
3919 1.327 pgoyette return error;
3920 1.327 pgoyette }
3921 1.327 pgoyette #ifdef _MODULE
3922 1.327 pgoyette error = config_cfdriver_detach(&raid_cd);
3923 1.327 pgoyette if (error != 0) {
3924 1.335 mlelstv aprint_error("%s: cannot detach cfdriver\n",__func__);
3925 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3926 1.327 pgoyette mutex_exit(&raid_lock);
3927 1.327 pgoyette return error;
3928 1.327 pgoyette }
3929 1.327 pgoyette #endif
3930 1.327 pgoyette error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3931 1.327 pgoyette if (error != 0) {
3932 1.335 mlelstv aprint_error("%s: cannot detach devsw\n",__func__);
3933 1.327 pgoyette #ifdef _MODULE
3934 1.327 pgoyette config_cfdriver_attach(&raid_cd);
3935 1.327 pgoyette #endif
3936 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3937 1.327 pgoyette mutex_exit(&raid_lock);
3938 1.327 pgoyette return error;
3939 1.327 pgoyette }
3940 1.327 pgoyette rf_BootRaidframe(false);
3941 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3942 1.327 pgoyette rf_destroy_mutex2(rf_sparet_wait_mutex);
3943 1.327 pgoyette rf_destroy_cond2(rf_sparet_wait_cv);
3944 1.327 pgoyette rf_destroy_cond2(rf_sparet_resp_cv);
3945 1.327 pgoyette #endif
3946 1.327 pgoyette mutex_exit(&raid_lock);
3947 1.327 pgoyette mutex_destroy(&raid_lock);
3948 1.327 pgoyette
3949 1.327 pgoyette return error;
3950 1.327 pgoyette }
3951