rf_netbsdkintf.c revision 1.393 1 1.393 mrg /* $NetBSD: rf_netbsdkintf.c,v 1.393 2021/05/24 07:43:15 mrg Exp $ */
2 1.281 rmind
3 1.1 oster /*-
4 1.295 erh * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
5 1.1 oster * All rights reserved.
6 1.1 oster *
7 1.1 oster * This code is derived from software contributed to The NetBSD Foundation
8 1.1 oster * by Greg Oster; Jason R. Thorpe.
9 1.1 oster *
10 1.1 oster * Redistribution and use in source and binary forms, with or without
11 1.1 oster * modification, are permitted provided that the following conditions
12 1.1 oster * are met:
13 1.1 oster * 1. Redistributions of source code must retain the above copyright
14 1.1 oster * notice, this list of conditions and the following disclaimer.
15 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 oster * notice, this list of conditions and the following disclaimer in the
17 1.1 oster * documentation and/or other materials provided with the distribution.
18 1.1 oster *
19 1.1 oster * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 oster * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 oster * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 oster * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 oster * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 oster * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 oster * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 oster * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 oster * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 oster * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 oster * POSSIBILITY OF SUCH DAMAGE.
30 1.1 oster */
31 1.1 oster
32 1.1 oster /*
33 1.281 rmind * Copyright (c) 1988 University of Utah.
34 1.1 oster * Copyright (c) 1990, 1993
35 1.1 oster * The Regents of the University of California. All rights reserved.
36 1.1 oster *
37 1.1 oster * This code is derived from software contributed to Berkeley by
38 1.1 oster * the Systems Programming Group of the University of Utah Computer
39 1.1 oster * Science Department.
40 1.1 oster *
41 1.1 oster * Redistribution and use in source and binary forms, with or without
42 1.1 oster * modification, are permitted provided that the following conditions
43 1.1 oster * are met:
44 1.1 oster * 1. Redistributions of source code must retain the above copyright
45 1.1 oster * notice, this list of conditions and the following disclaimer.
46 1.1 oster * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 oster * notice, this list of conditions and the following disclaimer in the
48 1.1 oster * documentation and/or other materials provided with the distribution.
49 1.162 agc * 3. Neither the name of the University nor the names of its contributors
50 1.162 agc * may be used to endorse or promote products derived from this software
51 1.162 agc * without specific prior written permission.
52 1.162 agc *
53 1.162 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.162 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.162 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.162 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.162 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.162 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.162 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.162 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.162 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.162 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.162 agc * SUCH DAMAGE.
64 1.162 agc *
65 1.381 riastrad * from: Utah $Hdr: cd.c 1.6 90/11/28$
66 1.162 agc *
67 1.162 agc * @(#)cd.c 8.2 (Berkeley) 11/16/93
68 1.162 agc */
69 1.162 agc
70 1.162 agc /*
71 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
72 1.1 oster * All rights reserved.
73 1.1 oster *
74 1.1 oster * Authors: Mark Holland, Jim Zelenka
75 1.1 oster *
76 1.1 oster * Permission to use, copy, modify and distribute this software and
77 1.1 oster * its documentation is hereby granted, provided that both the copyright
78 1.1 oster * notice and this permission notice appear in all copies of the
79 1.1 oster * software, derivative works or modified versions, and any portions
80 1.1 oster * thereof, and that both notices appear in supporting documentation.
81 1.1 oster *
82 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
83 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
84 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
85 1.1 oster *
86 1.1 oster * Carnegie Mellon requests users of this software to return to
87 1.1 oster *
88 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
89 1.1 oster * School of Computer Science
90 1.1 oster * Carnegie Mellon University
91 1.1 oster * Pittsburgh PA 15213-3890
92 1.1 oster *
93 1.1 oster * any improvements or extensions that they make and grant Carnegie the
94 1.1 oster * rights to redistribute these changes.
95 1.1 oster */
96 1.1 oster
97 1.1 oster /***********************************************************
98 1.1 oster *
99 1.1 oster * rf_kintf.c -- the kernel interface routines for RAIDframe
100 1.1 oster *
101 1.1 oster ***********************************************************/
102 1.112 lukem
103 1.112 lukem #include <sys/cdefs.h>
104 1.393 mrg __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.393 2021/05/24 07:43:15 mrg Exp $");
105 1.251 ad
106 1.251 ad #ifdef _KERNEL_OPT
107 1.251 ad #include "opt_raid_autoconfig.h"
108 1.363 mrg #include "opt_compat_netbsd32.h"
109 1.251 ad #endif
110 1.1 oster
111 1.113 lukem #include <sys/param.h>
112 1.1 oster #include <sys/errno.h>
113 1.1 oster #include <sys/pool.h>
114 1.152 thorpej #include <sys/proc.h>
115 1.1 oster #include <sys/queue.h>
116 1.1 oster #include <sys/disk.h>
117 1.1 oster #include <sys/device.h>
118 1.1 oster #include <sys/stat.h>
119 1.1 oster #include <sys/ioctl.h>
120 1.1 oster #include <sys/fcntl.h>
121 1.1 oster #include <sys/systm.h>
122 1.1 oster #include <sys/vnode.h>
123 1.1 oster #include <sys/disklabel.h>
124 1.1 oster #include <sys/conf.h>
125 1.1 oster #include <sys/buf.h>
126 1.182 yamt #include <sys/bufq.h>
127 1.65 oster #include <sys/reboot.h>
128 1.208 elad #include <sys/kauth.h>
129 1.327 pgoyette #include <sys/module.h>
130 1.358 pgoyette #include <sys/compat_stub.h>
131 1.8 oster
132 1.234 oster #include <prop/proplib.h>
133 1.234 oster
134 1.110 oster #include <dev/raidframe/raidframevar.h>
135 1.110 oster #include <dev/raidframe/raidframeio.h>
136 1.269 jld #include <dev/raidframe/rf_paritymap.h>
137 1.251 ad
138 1.1 oster #include "rf_raid.h"
139 1.44 oster #include "rf_copyback.h"
140 1.1 oster #include "rf_dag.h"
141 1.1 oster #include "rf_dagflags.h"
142 1.99 oster #include "rf_desc.h"
143 1.1 oster #include "rf_diskqueue.h"
144 1.1 oster #include "rf_etimer.h"
145 1.1 oster #include "rf_general.h"
146 1.1 oster #include "rf_kintf.h"
147 1.1 oster #include "rf_options.h"
148 1.1 oster #include "rf_driver.h"
149 1.1 oster #include "rf_parityscan.h"
150 1.1 oster #include "rf_threadstuff.h"
151 1.1 oster
152 1.325 christos #include "ioconf.h"
153 1.325 christos
154 1.133 oster #ifdef DEBUG
155 1.9 oster int rf_kdebug_level = 0;
156 1.1 oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 1.9 oster #else /* DEBUG */
158 1.1 oster #define db1_printf(a) { }
159 1.9 oster #endif /* DEBUG */
160 1.1 oster
161 1.344 christos #ifdef DEBUG_ROOT
162 1.344 christos #define DPRINTF(a, ...) printf(a, __VA_ARGS__)
163 1.345 christos #else
164 1.345 christos #define DPRINTF(a, ...)
165 1.344 christos #endif
166 1.344 christos
167 1.249 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
168 1.289 mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
169 1.287 mrg static rf_declare_cond2(rf_sparet_wait_cv);
170 1.287 mrg static rf_declare_cond2(rf_sparet_resp_cv);
171 1.1 oster
172 1.10 oster static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
173 1.10 oster * spare table */
174 1.10 oster static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
175 1.10 oster * installation process */
176 1.249 oster #endif
177 1.153 thorpej
178 1.384 jdolecek const int rf_b_pass = (B_PHYS|B_RAW|B_MEDIA_FLAGS);
179 1.384 jdolecek
180 1.153 thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
181 1.10 oster
182 1.1 oster /* prototypes */
183 1.187 christos static void KernelWakeupFunc(struct buf *);
184 1.187 christos static void InitBP(struct buf *, struct vnode *, unsigned,
185 1.225 christos dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
186 1.384 jdolecek void *, int);
187 1.300 christos static void raidinit(struct raid_softc *);
188 1.335 mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
189 1.348 jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
190 1.1 oster
191 1.261 dyoung static int raid_match(device_t, cfdata_t, void *);
192 1.261 dyoung static void raid_attach(device_t, device_t, void *);
193 1.261 dyoung static int raid_detach(device_t, int);
194 1.130 gehenna
195 1.385 riastrad static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
196 1.269 jld daddr_t, daddr_t);
197 1.269 jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
198 1.269 jld daddr_t, daddr_t, int);
199 1.269 jld
200 1.276 mrg static int raidwrite_component_label(unsigned,
201 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
202 1.276 mrg static int raidread_component_label(unsigned,
203 1.276 mrg dev_t, struct vnode *, RF_ComponentLabel_t *);
204 1.269 jld
205 1.335 mlelstv static int raid_diskstart(device_t, struct buf *bp);
206 1.335 mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
207 1.335 mlelstv static int raid_lastclose(device_t);
208 1.269 jld
209 1.324 mrg static dev_type_open(raidopen);
210 1.324 mrg static dev_type_close(raidclose);
211 1.324 mrg static dev_type_read(raidread);
212 1.324 mrg static dev_type_write(raidwrite);
213 1.324 mrg static dev_type_ioctl(raidioctl);
214 1.324 mrg static dev_type_strategy(raidstrategy);
215 1.324 mrg static dev_type_dump(raiddump);
216 1.324 mrg static dev_type_size(raidsize);
217 1.130 gehenna
218 1.130 gehenna const struct bdevsw raid_bdevsw = {
219 1.305 dholland .d_open = raidopen,
220 1.305 dholland .d_close = raidclose,
221 1.305 dholland .d_strategy = raidstrategy,
222 1.305 dholland .d_ioctl = raidioctl,
223 1.305 dholland .d_dump = raiddump,
224 1.305 dholland .d_psize = raidsize,
225 1.311 dholland .d_discard = nodiscard,
226 1.305 dholland .d_flag = D_DISK
227 1.130 gehenna };
228 1.130 gehenna
229 1.130 gehenna const struct cdevsw raid_cdevsw = {
230 1.305 dholland .d_open = raidopen,
231 1.305 dholland .d_close = raidclose,
232 1.305 dholland .d_read = raidread,
233 1.305 dholland .d_write = raidwrite,
234 1.305 dholland .d_ioctl = raidioctl,
235 1.305 dholland .d_stop = nostop,
236 1.305 dholland .d_tty = notty,
237 1.305 dholland .d_poll = nopoll,
238 1.305 dholland .d_mmap = nommap,
239 1.305 dholland .d_kqfilter = nokqfilter,
240 1.312 dholland .d_discard = nodiscard,
241 1.305 dholland .d_flag = D_DISK
242 1.130 gehenna };
243 1.1 oster
244 1.323 mlelstv static struct dkdriver rf_dkdriver = {
245 1.335 mlelstv .d_open = raidopen,
246 1.335 mlelstv .d_close = raidclose,
247 1.323 mlelstv .d_strategy = raidstrategy,
248 1.335 mlelstv .d_diskstart = raid_diskstart,
249 1.335 mlelstv .d_dumpblocks = raid_dumpblocks,
250 1.335 mlelstv .d_lastclose = raid_lastclose,
251 1.323 mlelstv .d_minphys = minphys
252 1.323 mlelstv };
253 1.235 oster
254 1.1 oster #define raidunit(x) DISKUNIT(x)
255 1.335 mlelstv #define raidsoftc(dev) (((struct raid_softc *)device_private(dev))->sc_r.softc)
256 1.1 oster
257 1.202 oster extern struct cfdriver raid_cd;
258 1.266 dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
259 1.266 dyoung raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
260 1.266 dyoung DVF_DETACH_SHUTDOWN);
261 1.202 oster
262 1.353 mrg /* Internal representation of a rf_recon_req */
263 1.353 mrg struct rf_recon_req_internal {
264 1.353 mrg RF_RowCol_t col;
265 1.353 mrg RF_ReconReqFlags_t flags;
266 1.353 mrg void *raidPtr;
267 1.353 mrg };
268 1.353 mrg
269 1.186 perry /*
270 1.186 perry * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
271 1.186 perry * Be aware that large numbers can allow the driver to consume a lot of
272 1.28 oster * kernel memory, especially on writes, and in degraded mode reads.
273 1.186 perry *
274 1.186 perry * For example: with a stripe width of 64 blocks (32k) and 5 disks,
275 1.186 perry * a single 64K write will typically require 64K for the old data,
276 1.186 perry * 64K for the old parity, and 64K for the new parity, for a total
277 1.28 oster * of 192K (if the parity buffer is not re-used immediately).
278 1.110 oster * Even it if is used immediately, that's still 128K, which when multiplied
279 1.28 oster * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
280 1.186 perry *
281 1.28 oster * Now in degraded mode, for example, a 64K read on the above setup may
282 1.186 perry * require data reconstruction, which will require *all* of the 4 remaining
283 1.28 oster * disks to participate -- 4 * 32K/disk == 128K again.
284 1.20 oster */
285 1.20 oster
286 1.20 oster #ifndef RAIDOUTSTANDING
287 1.28 oster #define RAIDOUTSTANDING 6
288 1.20 oster #endif
289 1.20 oster
290 1.1 oster #define RAIDLABELDEV(dev) \
291 1.1 oster (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
292 1.1 oster
293 1.1 oster /* declared here, and made public, for the benefit of KVM stuff.. */
294 1.9 oster
295 1.104 oster static int raidlock(struct raid_softc *);
296 1.104 oster static void raidunlock(struct raid_softc *);
297 1.1 oster
298 1.266 dyoung static int raid_detach_unlocked(struct raid_softc *);
299 1.266 dyoung
300 1.104 oster static void rf_markalldirty(RF_Raid_t *);
301 1.304 christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
302 1.48 oster
303 1.393 mrg static void rf_ReconThread(struct rf_recon_req_internal *);
304 1.393 mrg static void rf_RewriteParityThread(RF_Raid_t *raidPtr);
305 1.393 mrg static void rf_CopybackThread(RF_Raid_t *raidPtr);
306 1.393 mrg static void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
307 1.393 mrg static int rf_autoconfig(device_t);
308 1.393 mrg static void rf_buildroothack(RF_ConfigSet_t *);
309 1.104 oster
310 1.393 mrg static RF_AutoConfig_t *rf_find_raid_components(void);
311 1.393 mrg static RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
312 1.104 oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
313 1.393 mrg static void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
314 1.393 mrg static int rf_set_autoconfig(RF_Raid_t *, int);
315 1.393 mrg static int rf_set_rootpartition(RF_Raid_t *, int);
316 1.393 mrg static void rf_release_all_vps(RF_ConfigSet_t *);
317 1.393 mrg static void rf_cleanup_config_set(RF_ConfigSet_t *);
318 1.393 mrg static int rf_have_enough_components(RF_ConfigSet_t *);
319 1.393 mrg static struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
320 1.278 mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
321 1.48 oster
322 1.295 erh /*
323 1.295 erh * Debugging, mostly. Set to 0 to not allow autoconfig to take place.
324 1.295 erh * Note that this is overridden by having RAID_AUTOCONFIG as an option
325 1.295 erh * in the kernel config file.
326 1.295 erh */
327 1.295 erh #ifdef RAID_AUTOCONFIG
328 1.295 erh int raidautoconfig = 1;
329 1.295 erh #else
330 1.295 erh int raidautoconfig = 0;
331 1.295 erh #endif
332 1.295 erh static bool raidautoconfigdone = false;
333 1.37 oster
334 1.177 oster struct RF_Pools_s rf_pools;
335 1.177 oster
336 1.300 christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
337 1.300 christos static kmutex_t raid_lock;
338 1.1 oster
339 1.300 christos static struct raid_softc *
340 1.300 christos raidcreate(int unit) {
341 1.300 christos struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
342 1.300 christos sc->sc_unit = unit;
343 1.327 pgoyette cv_init(&sc->sc_cv, "raidunit");
344 1.327 pgoyette mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
345 1.300 christos return sc;
346 1.300 christos }
347 1.1 oster
348 1.300 christos static void
349 1.300 christos raiddestroy(struct raid_softc *sc) {
350 1.327 pgoyette cv_destroy(&sc->sc_cv);
351 1.327 pgoyette mutex_destroy(&sc->sc_mutex);
352 1.300 christos kmem_free(sc, sizeof(*sc));
353 1.300 christos }
354 1.50 oster
355 1.300 christos static struct raid_softc *
356 1.327 pgoyette raidget(int unit, bool create) {
357 1.300 christos struct raid_softc *sc;
358 1.300 christos if (unit < 0) {
359 1.300 christos #ifdef DIAGNOSTIC
360 1.300 christos panic("%s: unit %d!", __func__, unit);
361 1.300 christos #endif
362 1.300 christos return NULL;
363 1.300 christos }
364 1.300 christos mutex_enter(&raid_lock);
365 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
366 1.300 christos if (sc->sc_unit == unit) {
367 1.300 christos mutex_exit(&raid_lock);
368 1.300 christos return sc;
369 1.300 christos }
370 1.300 christos }
371 1.300 christos mutex_exit(&raid_lock);
372 1.327 pgoyette if (!create)
373 1.327 pgoyette return NULL;
374 1.379 chs sc = raidcreate(unit);
375 1.300 christos mutex_enter(&raid_lock);
376 1.300 christos LIST_INSERT_HEAD(&raids, sc, sc_link);
377 1.300 christos mutex_exit(&raid_lock);
378 1.300 christos return sc;
379 1.300 christos }
380 1.300 christos
381 1.385 riastrad static void
382 1.300 christos raidput(struct raid_softc *sc) {
383 1.300 christos mutex_enter(&raid_lock);
384 1.300 christos LIST_REMOVE(sc, sc_link);
385 1.300 christos mutex_exit(&raid_lock);
386 1.300 christos raiddestroy(sc);
387 1.300 christos }
388 1.1 oster
389 1.300 christos void
390 1.300 christos raidattach(int num)
391 1.300 christos {
392 1.62 oster
393 1.142 thorpej /*
394 1.327 pgoyette * Device attachment and associated initialization now occurs
395 1.327 pgoyette * as part of the module initialization.
396 1.142 thorpej */
397 1.142 thorpej }
398 1.142 thorpej
399 1.393 mrg static int
400 1.261 dyoung rf_autoconfig(device_t self)
401 1.142 thorpej {
402 1.142 thorpej RF_AutoConfig_t *ac_list;
403 1.142 thorpej RF_ConfigSet_t *config_sets;
404 1.142 thorpej
405 1.295 erh if (!raidautoconfig || raidautoconfigdone == true)
406 1.389 skrll return 0;
407 1.142 thorpej
408 1.142 thorpej /* XXX This code can only be run once. */
409 1.295 erh raidautoconfigdone = true;
410 1.142 thorpej
411 1.307 christos #ifdef __HAVE_CPU_BOOTCONF
412 1.307 christos /*
413 1.307 christos * 0. find the boot device if needed first so we can use it later
414 1.307 christos * this needs to be done before we autoconfigure any raid sets,
415 1.307 christos * because if we use wedges we are not going to be able to open
416 1.307 christos * the boot device later
417 1.307 christos */
418 1.307 christos if (booted_device == NULL)
419 1.307 christos cpu_bootconf();
420 1.307 christos #endif
421 1.48 oster /* 1. locate all RAID components on the system */
422 1.258 ad aprint_debug("Searching for RAID components...\n");
423 1.48 oster ac_list = rf_find_raid_components();
424 1.48 oster
425 1.142 thorpej /* 2. Sort them into their respective sets. */
426 1.48 oster config_sets = rf_create_auto_sets(ac_list);
427 1.48 oster
428 1.142 thorpej /*
429 1.299 oster * 3. Evaluate each set and configure the valid ones.
430 1.142 thorpej * This gets done in rf_buildroothack().
431 1.142 thorpej */
432 1.142 thorpej rf_buildroothack(config_sets);
433 1.48 oster
434 1.213 christos return 1;
435 1.48 oster }
436 1.48 oster
437 1.367 christos int
438 1.367 christos rf_inited(const struct raid_softc *rs) {
439 1.367 christos return (rs->sc_flags & RAIDF_INITED) != 0;
440 1.367 christos }
441 1.367 christos
442 1.368 oster RF_Raid_t *
443 1.368 oster rf_get_raid(struct raid_softc *rs) {
444 1.368 oster return &rs->sc_r;
445 1.368 oster }
446 1.368 oster
447 1.367 christos int
448 1.367 christos rf_get_unit(const struct raid_softc *rs) {
449 1.367 christos return rs->sc_unit;
450 1.367 christos }
451 1.367 christos
452 1.306 christos static int
453 1.307 christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
454 1.359 bad const char *bootname;
455 1.359 bad size_t len;
456 1.359 bad
457 1.359 bad /* if bdv is NULL, the set can't contain it. exit early. */
458 1.359 bad if (bdv == NULL)
459 1.359 bad return 0;
460 1.359 bad
461 1.359 bad bootname = device_xname(bdv);
462 1.359 bad len = strlen(bootname);
463 1.306 christos
464 1.306 christos for (int col = 0; col < r->numCol; col++) {
465 1.307 christos const char *devname = r->Disks[col].devname;
466 1.306 christos devname += sizeof("/dev/") - 1;
467 1.307 christos if (strncmp(devname, "dk", 2) == 0) {
468 1.307 christos const char *parent =
469 1.307 christos dkwedge_get_parent_name(r->Disks[col].dev);
470 1.307 christos if (parent != NULL)
471 1.307 christos devname = parent;
472 1.307 christos }
473 1.306 christos if (strncmp(devname, bootname, len) == 0) {
474 1.306 christos struct raid_softc *sc = r->softc;
475 1.306 christos aprint_debug("raid%d includes boot device %s\n",
476 1.306 christos sc->sc_unit, devname);
477 1.306 christos return 1;
478 1.306 christos }
479 1.306 christos }
480 1.306 christos return 0;
481 1.306 christos }
482 1.306 christos
483 1.393 mrg static void
484 1.142 thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
485 1.48 oster {
486 1.48 oster RF_ConfigSet_t *cset;
487 1.48 oster RF_ConfigSet_t *next_cset;
488 1.51 oster int num_root;
489 1.300 christos struct raid_softc *sc, *rsc;
490 1.378 martin struct dk_softc *dksc = NULL; /* XXX gcc -Os: may be used uninit. */
491 1.48 oster
492 1.300 christos sc = rsc = NULL;
493 1.51 oster num_root = 0;
494 1.48 oster cset = config_sets;
495 1.271 dyoung while (cset != NULL) {
496 1.48 oster next_cset = cset->next;
497 1.186 perry if (rf_have_enough_components(cset) &&
498 1.300 christos cset->ac->clabel->autoconfigure == 1) {
499 1.300 christos sc = rf_auto_config_set(cset);
500 1.300 christos if (sc != NULL) {
501 1.359 bad aprint_debug("raid%d: configured ok, rootable %d\n",
502 1.359 bad sc->sc_unit, cset->rootable);
503 1.51 oster if (cset->rootable) {
504 1.300 christos rsc = sc;
505 1.51 oster num_root++;
506 1.51 oster }
507 1.51 oster } else {
508 1.51 oster /* The autoconfig didn't work :( */
509 1.300 christos aprint_debug("Autoconfig failed\n");
510 1.51 oster rf_release_all_vps(cset);
511 1.48 oster }
512 1.48 oster } else {
513 1.186 perry /* we're not autoconfiguring this set...
514 1.48 oster release the associated resources */
515 1.49 oster rf_release_all_vps(cset);
516 1.48 oster }
517 1.48 oster /* cleanup */
518 1.49 oster rf_cleanup_config_set(cset);
519 1.48 oster cset = next_cset;
520 1.48 oster }
521 1.122 oster
522 1.223 oster /* if the user has specified what the root device should be
523 1.223 oster then we don't touch booted_device or boothowto... */
524 1.223 oster
525 1.359 bad if (rootspec != NULL) {
526 1.359 bad DPRINTF("%s: rootspec %s\n", __func__, rootspec);
527 1.223 oster return;
528 1.359 bad }
529 1.223 oster
530 1.122 oster /* we found something bootable... */
531 1.122 oster
532 1.310 christos /*
533 1.310 christos * XXX: The following code assumes that the root raid
534 1.310 christos * is the first ('a') partition. This is about the best
535 1.310 christos * we can do with a BSD disklabel, but we might be able
536 1.310 christos * to do better with a GPT label, by setting a specified
537 1.310 christos * attribute to indicate the root partition. We can then
538 1.310 christos * stash the partition number in the r->root_partition
539 1.310 christos * high bits (the bottom 2 bits are already used). For
540 1.310 christos * now we just set booted_partition to 0 when we override
541 1.310 christos * root.
542 1.310 christos */
543 1.122 oster if (num_root == 1) {
544 1.306 christos device_t candidate_root;
545 1.377 maxv dksc = &rsc->sc_dksc;
546 1.335 mlelstv if (dksc->sc_dkdev.dk_nwedges != 0) {
547 1.297 christos char cname[sizeof(cset->ac->devname)];
548 1.344 christos /* XXX: assume partition 'a' first */
549 1.297 christos snprintf(cname, sizeof(cname), "%s%c",
550 1.335 mlelstv device_xname(dksc->sc_dev), 'a');
551 1.306 christos candidate_root = dkwedge_find_by_wname(cname);
552 1.344 christos DPRINTF("%s: candidate wedge root=%s\n", __func__,
553 1.344 christos cname);
554 1.344 christos if (candidate_root == NULL) {
555 1.344 christos /*
556 1.344 christos * If that is not found, because we don't use
557 1.344 christos * disklabel, return the first dk child
558 1.344 christos * XXX: we can skip the 'a' check above
559 1.344 christos * and always do this...
560 1.344 christos */
561 1.344 christos size_t i = 0;
562 1.344 christos candidate_root = dkwedge_find_by_parent(
563 1.344 christos device_xname(dksc->sc_dev), &i);
564 1.344 christos }
565 1.344 christos DPRINTF("%s: candidate wedge root=%p\n", __func__,
566 1.344 christos candidate_root);
567 1.297 christos } else
568 1.335 mlelstv candidate_root = dksc->sc_dev;
569 1.344 christos DPRINTF("%s: candidate root=%p\n", __func__, candidate_root);
570 1.344 christos DPRINTF("%s: booted_device=%p root_partition=%d "
571 1.359 bad "contains_boot=%d",
572 1.359 bad __func__, booted_device, rsc->sc_r.root_partition,
573 1.359 bad rf_containsboot(&rsc->sc_r, booted_device));
574 1.359 bad /* XXX the check for booted_device == NULL can probably be
575 1.359 bad * dropped, now that rf_containsboot handles that case.
576 1.359 bad */
577 1.308 christos if (booted_device == NULL ||
578 1.308 christos rsc->sc_r.root_partition == 1 ||
579 1.310 christos rf_containsboot(&rsc->sc_r, booted_device)) {
580 1.308 christos booted_device = candidate_root;
581 1.351 christos booted_method = "raidframe/single";
582 1.310 christos booted_partition = 0; /* XXX assume 'a' */
583 1.392 mrg DPRINTF("%s: set booted_device=%s(%p)\n", __func__,
584 1.392 mrg device_xname(booted_device), booted_device);
585 1.310 christos }
586 1.122 oster } else if (num_root > 1) {
587 1.344 christos DPRINTF("%s: many roots=%d, %p\n", __func__, num_root,
588 1.344 christos booted_device);
589 1.226 oster
590 1.385 riastrad /*
591 1.226 oster * Maybe the MD code can help. If it cannot, then
592 1.226 oster * setroot() will discover that we have no
593 1.226 oster * booted_device and will ask the user if nothing was
594 1.385 riastrad * hardwired in the kernel config file
595 1.226 oster */
596 1.385 riastrad if (booted_device == NULL)
597 1.226 oster return;
598 1.226 oster
599 1.226 oster num_root = 0;
600 1.300 christos mutex_enter(&raid_lock);
601 1.300 christos LIST_FOREACH(sc, &raids, sc_link) {
602 1.300 christos RF_Raid_t *r = &sc->sc_r;
603 1.300 christos if (r->valid == 0)
604 1.226 oster continue;
605 1.226 oster
606 1.300 christos if (r->root_partition == 0)
607 1.226 oster continue;
608 1.226 oster
609 1.306 christos if (rf_containsboot(r, booted_device)) {
610 1.226 oster num_root++;
611 1.300 christos rsc = sc;
612 1.335 mlelstv dksc = &rsc->sc_dksc;
613 1.226 oster }
614 1.226 oster }
615 1.300 christos mutex_exit(&raid_lock);
616 1.295 erh
617 1.226 oster if (num_root == 1) {
618 1.335 mlelstv booted_device = dksc->sc_dev;
619 1.351 christos booted_method = "raidframe/multi";
620 1.310 christos booted_partition = 0; /* XXX assume 'a' */
621 1.226 oster } else {
622 1.226 oster /* we can't guess.. require the user to answer... */
623 1.226 oster boothowto |= RB_ASKNAME;
624 1.226 oster }
625 1.51 oster }
626 1.1 oster }
627 1.1 oster
628 1.324 mrg static int
629 1.169 oster raidsize(dev_t dev)
630 1.1 oster {
631 1.1 oster struct raid_softc *rs;
632 1.335 mlelstv struct dk_softc *dksc;
633 1.335 mlelstv unsigned int unit;
634 1.1 oster
635 1.1 oster unit = raidunit(dev);
636 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
637 1.336 mlelstv return -1;
638 1.335 mlelstv dksc = &rs->sc_dksc;
639 1.335 mlelstv
640 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
641 1.336 mlelstv return -1;
642 1.1 oster
643 1.335 mlelstv return dk_size(dksc, dev);
644 1.335 mlelstv }
645 1.1 oster
646 1.335 mlelstv static int
647 1.335 mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
648 1.335 mlelstv {
649 1.335 mlelstv unsigned int unit;
650 1.335 mlelstv struct raid_softc *rs;
651 1.335 mlelstv struct dk_softc *dksc;
652 1.1 oster
653 1.335 mlelstv unit = raidunit(dev);
654 1.335 mlelstv if ((rs = raidget(unit, false)) == NULL)
655 1.335 mlelstv return ENXIO;
656 1.335 mlelstv dksc = &rs->sc_dksc;
657 1.1 oster
658 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
659 1.335 mlelstv return ENODEV;
660 1.1 oster
661 1.336 mlelstv /*
662 1.336 mlelstv Note that blkno is relative to this particular partition.
663 1.336 mlelstv By adding adding RF_PROTECTED_SECTORS, we get a value that
664 1.336 mlelstv is relative to the partition used for the underlying component.
665 1.336 mlelstv */
666 1.336 mlelstv blkno += RF_PROTECTED_SECTORS;
667 1.336 mlelstv
668 1.380 riastrad return dk_dump(dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE);
669 1.1 oster }
670 1.1 oster
671 1.324 mrg static int
672 1.335 mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
673 1.1 oster {
674 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
675 1.231 oster const struct bdevsw *bdev;
676 1.231 oster RF_Raid_t *raidPtr;
677 1.335 mlelstv int c, sparecol, j, scol, dumpto;
678 1.231 oster int error = 0;
679 1.231 oster
680 1.300 christos raidPtr = &rs->sc_r;
681 1.231 oster
682 1.231 oster /* we only support dumping to RAID 1 sets */
683 1.385 riastrad if (raidPtr->Layout.numDataCol != 1 ||
684 1.231 oster raidPtr->Layout.numParityCol != 1)
685 1.231 oster return EINVAL;
686 1.231 oster
687 1.231 oster if ((error = raidlock(rs)) != 0)
688 1.231 oster return error;
689 1.231 oster
690 1.231 oster /* figure out what device is alive.. */
691 1.231 oster
692 1.385 riastrad /*
693 1.231 oster Look for a component to dump to. The preference for the
694 1.231 oster component to dump to is as follows:
695 1.383 oster 1) the first component
696 1.383 oster 2) a used_spare of the first component
697 1.383 oster 3) the second component
698 1.383 oster 4) a used_spare of the second component
699 1.231 oster */
700 1.231 oster
701 1.231 oster dumpto = -1;
702 1.231 oster for (c = 0; c < raidPtr->numCol; c++) {
703 1.231 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
704 1.231 oster /* this might be the one */
705 1.231 oster dumpto = c;
706 1.231 oster break;
707 1.231 oster }
708 1.231 oster }
709 1.385 riastrad
710 1.385 riastrad /*
711 1.383 oster At this point we have possibly selected a live component.
712 1.383 oster If we didn't find a live ocmponent, we now check to see
713 1.383 oster if there is a relevant spared component.
714 1.231 oster */
715 1.231 oster
716 1.231 oster for (c = 0; c < raidPtr->numSpare; c++) {
717 1.231 oster sparecol = raidPtr->numCol + c;
718 1.231 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
719 1.231 oster /* How about this one? */
720 1.231 oster scol = -1;
721 1.231 oster for(j=0;j<raidPtr->numCol;j++) {
722 1.231 oster if (raidPtr->Disks[j].spareCol == sparecol) {
723 1.231 oster scol = j;
724 1.231 oster break;
725 1.231 oster }
726 1.231 oster }
727 1.231 oster if (scol == 0) {
728 1.385 riastrad /*
729 1.383 oster We must have found a spared first
730 1.383 oster component! We'll take that over
731 1.383 oster anything else found so far. (We
732 1.383 oster couldn't have found a real first
733 1.383 oster component before, since this is a
734 1.383 oster used spare, and it's saying that
735 1.383 oster it's replacing the first
736 1.383 oster component.) On reboot (with
737 1.231 oster autoconfiguration turned on)
738 1.383 oster sparecol will become the first
739 1.383 oster component (component0) of this set.
740 1.231 oster */
741 1.231 oster dumpto = sparecol;
742 1.231 oster break;
743 1.231 oster } else if (scol != -1) {
744 1.385 riastrad /*
745 1.385 riastrad Must be a spared second component.
746 1.385 riastrad We'll dump to that if we havn't found
747 1.385 riastrad anything else so far.
748 1.231 oster */
749 1.231 oster if (dumpto == -1)
750 1.231 oster dumpto = sparecol;
751 1.231 oster }
752 1.231 oster }
753 1.231 oster }
754 1.385 riastrad
755 1.231 oster if (dumpto == -1) {
756 1.231 oster /* we couldn't find any live components to dump to!?!?
757 1.231 oster */
758 1.231 oster error = EINVAL;
759 1.231 oster goto out;
760 1.231 oster }
761 1.231 oster
762 1.231 oster bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
763 1.342 mlelstv if (bdev == NULL) {
764 1.342 mlelstv error = ENXIO;
765 1.342 mlelstv goto out;
766 1.342 mlelstv }
767 1.231 oster
768 1.385 riastrad error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
769 1.336 mlelstv blkno, va, nblk * raidPtr->bytesPerSector);
770 1.385 riastrad
771 1.231 oster out:
772 1.231 oster raidunlock(rs);
773 1.385 riastrad
774 1.231 oster return error;
775 1.1 oster }
776 1.324 mrg
777 1.1 oster /* ARGSUSED */
778 1.324 mrg static int
779 1.222 christos raidopen(dev_t dev, int flags, int fmt,
780 1.222 christos struct lwp *l)
781 1.1 oster {
782 1.9 oster int unit = raidunit(dev);
783 1.1 oster struct raid_softc *rs;
784 1.335 mlelstv struct dk_softc *dksc;
785 1.335 mlelstv int error = 0;
786 1.9 oster int part, pmask;
787 1.9 oster
788 1.327 pgoyette if ((rs = raidget(unit, true)) == NULL)
789 1.300 christos return ENXIO;
790 1.1 oster if ((error = raidlock(rs)) != 0)
791 1.389 skrll return error;
792 1.266 dyoung
793 1.266 dyoung if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
794 1.266 dyoung error = EBUSY;
795 1.266 dyoung goto bad;
796 1.266 dyoung }
797 1.266 dyoung
798 1.335 mlelstv dksc = &rs->sc_dksc;
799 1.1 oster
800 1.1 oster part = DISKPART(dev);
801 1.1 oster pmask = (1 << part);
802 1.1 oster
803 1.335 mlelstv if (!DK_BUSY(dksc, pmask) &&
804 1.13 oster ((rs->sc_flags & RAIDF_INITED) != 0)) {
805 1.13 oster /* First one... mark things as dirty... Note that we *MUST*
806 1.13 oster have done a configure before this. I DO NOT WANT TO BE
807 1.13 oster SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
808 1.13 oster THAT THEY BELONG TOGETHER!!!!! */
809 1.13 oster /* XXX should check to see if we're only open for reading
810 1.13 oster here... If so, we needn't do this, but then need some
811 1.13 oster other way of keeping track of what's happened.. */
812 1.13 oster
813 1.300 christos rf_markalldirty(&rs->sc_r);
814 1.13 oster }
815 1.13 oster
816 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0)
817 1.335 mlelstv error = dk_open(dksc, dev, flags, fmt, l);
818 1.1 oster
819 1.213 christos bad:
820 1.1 oster raidunlock(rs);
821 1.1 oster
822 1.389 skrll return error;
823 1.1 oster
824 1.1 oster
825 1.1 oster }
826 1.324 mrg
827 1.335 mlelstv static int
828 1.335 mlelstv raid_lastclose(device_t self)
829 1.335 mlelstv {
830 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
831 1.335 mlelstv
832 1.335 mlelstv /* Last one... device is not unconfigured yet.
833 1.335 mlelstv Device shutdown has taken care of setting the
834 1.335 mlelstv clean bits if RAIDF_INITED is not set
835 1.335 mlelstv mark things as clean... */
836 1.335 mlelstv
837 1.335 mlelstv rf_update_component_labels(&rs->sc_r,
838 1.335 mlelstv RF_FINAL_COMPONENT_UPDATE);
839 1.335 mlelstv
840 1.335 mlelstv /* pass to unlocked code */
841 1.335 mlelstv if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
842 1.335 mlelstv rs->sc_flags |= RAIDF_DETACH;
843 1.335 mlelstv
844 1.335 mlelstv return 0;
845 1.335 mlelstv }
846 1.335 mlelstv
847 1.1 oster /* ARGSUSED */
848 1.324 mrg static int
849 1.222 christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
850 1.1 oster {
851 1.9 oster int unit = raidunit(dev);
852 1.1 oster struct raid_softc *rs;
853 1.335 mlelstv struct dk_softc *dksc;
854 1.335 mlelstv cfdata_t cf;
855 1.335 mlelstv int error = 0, do_detach = 0, do_put = 0;
856 1.1 oster
857 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
858 1.300 christos return ENXIO;
859 1.335 mlelstv dksc = &rs->sc_dksc;
860 1.1 oster
861 1.1 oster if ((error = raidlock(rs)) != 0)
862 1.389 skrll return error;
863 1.1 oster
864 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) != 0) {
865 1.335 mlelstv error = dk_close(dksc, dev, flags, fmt, l);
866 1.335 mlelstv if ((rs->sc_flags & RAIDF_DETACH) != 0)
867 1.335 mlelstv do_detach = 1;
868 1.335 mlelstv } else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
869 1.335 mlelstv do_put = 1;
870 1.1 oster
871 1.335 mlelstv raidunlock(rs);
872 1.1 oster
873 1.335 mlelstv if (do_detach) {
874 1.335 mlelstv /* free the pseudo device attach bits */
875 1.335 mlelstv cf = device_cfdata(dksc->sc_dev);
876 1.335 mlelstv error = config_detach(dksc->sc_dev, 0);
877 1.385 riastrad if (error == 0)
878 1.335 mlelstv free(cf, M_RAIDFRAME);
879 1.335 mlelstv } else if (do_put) {
880 1.335 mlelstv raidput(rs);
881 1.1 oster }
882 1.186 perry
883 1.389 skrll return error;
884 1.147 oster
885 1.335 mlelstv }
886 1.327 pgoyette
887 1.335 mlelstv static void
888 1.335 mlelstv raid_wakeup(RF_Raid_t *raidPtr)
889 1.335 mlelstv {
890 1.335 mlelstv rf_lock_mutex2(raidPtr->iodone_lock);
891 1.335 mlelstv rf_signal_cond2(raidPtr->iodone_cv);
892 1.335 mlelstv rf_unlock_mutex2(raidPtr->iodone_lock);
893 1.1 oster }
894 1.1 oster
895 1.324 mrg static void
896 1.169 oster raidstrategy(struct buf *bp)
897 1.1 oster {
898 1.335 mlelstv unsigned int unit;
899 1.335 mlelstv struct raid_softc *rs;
900 1.335 mlelstv struct dk_softc *dksc;
901 1.1 oster RF_Raid_t *raidPtr;
902 1.1 oster
903 1.335 mlelstv unit = raidunit(bp->b_dev);
904 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL) {
905 1.30 oster bp->b_error = ENXIO;
906 1.335 mlelstv goto fail;
907 1.30 oster }
908 1.300 christos if ((rs->sc_flags & RAIDF_INITED) == 0) {
909 1.300 christos bp->b_error = ENXIO;
910 1.335 mlelstv goto fail;
911 1.1 oster }
912 1.335 mlelstv dksc = &rs->sc_dksc;
913 1.300 christos raidPtr = &rs->sc_r;
914 1.335 mlelstv
915 1.335 mlelstv /* Queue IO only */
916 1.335 mlelstv if (dk_strategy_defer(dksc, bp))
917 1.196 yamt goto done;
918 1.1 oster
919 1.335 mlelstv /* schedule the IO to happen at the next convenient time */
920 1.335 mlelstv raid_wakeup(raidPtr);
921 1.335 mlelstv
922 1.335 mlelstv done:
923 1.335 mlelstv return;
924 1.335 mlelstv
925 1.335 mlelstv fail:
926 1.335 mlelstv bp->b_resid = bp->b_bcount;
927 1.335 mlelstv biodone(bp);
928 1.335 mlelstv }
929 1.335 mlelstv
930 1.335 mlelstv static int
931 1.335 mlelstv raid_diskstart(device_t dev, struct buf *bp)
932 1.335 mlelstv {
933 1.335 mlelstv struct raid_softc *rs = raidsoftc(dev);
934 1.335 mlelstv RF_Raid_t *raidPtr;
935 1.1 oster
936 1.335 mlelstv raidPtr = &rs->sc_r;
937 1.335 mlelstv if (!raidPtr->valid) {
938 1.335 mlelstv db1_printf(("raid is not valid..\n"));
939 1.335 mlelstv return ENODEV;
940 1.196 yamt }
941 1.285 mrg
942 1.335 mlelstv /* XXX */
943 1.335 mlelstv bp->b_resid = 0;
944 1.335 mlelstv
945 1.335 mlelstv return raiddoaccess(raidPtr, bp);
946 1.335 mlelstv }
947 1.1 oster
948 1.335 mlelstv void
949 1.335 mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
950 1.335 mlelstv {
951 1.335 mlelstv struct raid_softc *rs;
952 1.335 mlelstv struct dk_softc *dksc;
953 1.34 oster
954 1.335 mlelstv rs = raidPtr->softc;
955 1.335 mlelstv dksc = &rs->sc_dksc;
956 1.34 oster
957 1.335 mlelstv dk_done(dksc, bp);
958 1.34 oster
959 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
960 1.335 mlelstv raidPtr->openings++;
961 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
962 1.196 yamt
963 1.335 mlelstv /* schedule more IO */
964 1.335 mlelstv raid_wakeup(raidPtr);
965 1.1 oster }
966 1.324 mrg
967 1.1 oster /* ARGSUSED */
968 1.324 mrg static int
969 1.222 christos raidread(dev_t dev, struct uio *uio, int flags)
970 1.1 oster {
971 1.9 oster int unit = raidunit(dev);
972 1.1 oster struct raid_softc *rs;
973 1.1 oster
974 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
975 1.300 christos return ENXIO;
976 1.1 oster
977 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
978 1.389 skrll return ENXIO;
979 1.1 oster
980 1.389 skrll return physio(raidstrategy, NULL, dev, B_READ, minphys, uio);
981 1.1 oster
982 1.1 oster }
983 1.324 mrg
984 1.1 oster /* ARGSUSED */
985 1.324 mrg static int
986 1.222 christos raidwrite(dev_t dev, struct uio *uio, int flags)
987 1.1 oster {
988 1.9 oster int unit = raidunit(dev);
989 1.1 oster struct raid_softc *rs;
990 1.1 oster
991 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
992 1.300 christos return ENXIO;
993 1.1 oster
994 1.1 oster if ((rs->sc_flags & RAIDF_INITED) == 0)
995 1.389 skrll return ENXIO;
996 1.147 oster
997 1.389 skrll return physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio);
998 1.1 oster
999 1.1 oster }
1000 1.1 oster
1001 1.266 dyoung static int
1002 1.266 dyoung raid_detach_unlocked(struct raid_softc *rs)
1003 1.266 dyoung {
1004 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1005 1.335 mlelstv RF_Raid_t *raidPtr;
1006 1.266 dyoung int error;
1007 1.266 dyoung
1008 1.300 christos raidPtr = &rs->sc_r;
1009 1.266 dyoung
1010 1.337 mlelstv if (DK_BUSY(dksc, 0) ||
1011 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1012 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1013 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1014 1.266 dyoung return EBUSY;
1015 1.266 dyoung
1016 1.266 dyoung if ((rs->sc_flags & RAIDF_INITED) == 0)
1017 1.333 mlelstv return 0;
1018 1.333 mlelstv
1019 1.333 mlelstv rs->sc_flags &= ~RAIDF_SHUTDOWN;
1020 1.333 mlelstv
1021 1.333 mlelstv if ((error = rf_Shutdown(raidPtr)) != 0)
1022 1.266 dyoung return error;
1023 1.266 dyoung
1024 1.335 mlelstv rs->sc_flags &= ~RAIDF_INITED;
1025 1.335 mlelstv
1026 1.335 mlelstv /* Kill off any queued buffers */
1027 1.335 mlelstv dk_drain(dksc);
1028 1.335 mlelstv bufq_free(dksc->sc_bufq);
1029 1.335 mlelstv
1030 1.266 dyoung /* Detach the disk. */
1031 1.335 mlelstv dkwedge_delall(&dksc->sc_dkdev);
1032 1.335 mlelstv disk_detach(&dksc->sc_dkdev);
1033 1.335 mlelstv disk_destroy(&dksc->sc_dkdev);
1034 1.335 mlelstv dk_detach(dksc);
1035 1.333 mlelstv
1036 1.266 dyoung return 0;
1037 1.266 dyoung }
1038 1.266 dyoung
1039 1.366 christos static bool
1040 1.366 christos rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
1041 1.366 christos {
1042 1.366 christos switch (cmd) {
1043 1.366 christos case RAIDFRAME_ADD_HOT_SPARE:
1044 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS:
1045 1.366 christos case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1046 1.366 christos case RAIDFRAME_CHECK_PARITY:
1047 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1048 1.366 christos case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1049 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS:
1050 1.366 christos case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1051 1.366 christos case RAIDFRAME_COPYBACK:
1052 1.366 christos case RAIDFRAME_DELETE_COMPONENT:
1053 1.366 christos case RAIDFRAME_FAIL_DISK:
1054 1.366 christos case RAIDFRAME_GET_ACCTOTALS:
1055 1.366 christos case RAIDFRAME_GET_COMPONENT_LABEL:
1056 1.366 christos case RAIDFRAME_GET_INFO:
1057 1.366 christos case RAIDFRAME_GET_SIZE:
1058 1.366 christos case RAIDFRAME_INCORPORATE_HOT_SPARE:
1059 1.366 christos case RAIDFRAME_INIT_LABELS:
1060 1.366 christos case RAIDFRAME_KEEP_ACCTOTALS:
1061 1.366 christos case RAIDFRAME_PARITYMAP_GET_DISABLE:
1062 1.366 christos case RAIDFRAME_PARITYMAP_SET_DISABLE:
1063 1.366 christos case RAIDFRAME_PARITYMAP_SET_PARAMS:
1064 1.366 christos case RAIDFRAME_PARITYMAP_STATUS:
1065 1.366 christos case RAIDFRAME_REBUILD_IN_PLACE:
1066 1.366 christos case RAIDFRAME_REMOVE_HOT_SPARE:
1067 1.366 christos case RAIDFRAME_RESET_ACCTOTALS:
1068 1.366 christos case RAIDFRAME_REWRITEPARITY:
1069 1.366 christos case RAIDFRAME_SET_AUTOCONFIG:
1070 1.366 christos case RAIDFRAME_SET_COMPONENT_LABEL:
1071 1.366 christos case RAIDFRAME_SET_ROOT:
1072 1.369 oster return (rs->sc_flags & RAIDF_INITED) == 0;
1073 1.366 christos }
1074 1.366 christos return false;
1075 1.366 christos }
1076 1.366 christos
1077 1.366 christos int
1078 1.366 christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
1079 1.366 christos {
1080 1.366 christos struct rf_recon_req_internal *rrint;
1081 1.366 christos
1082 1.366 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1083 1.366 christos /* Can't do this on a RAID 0!! */
1084 1.366 christos return EINVAL;
1085 1.366 christos }
1086 1.366 christos
1087 1.366 christos if (rr->col < 0 || rr->col >= raidPtr->numCol) {
1088 1.366 christos /* bad column */
1089 1.366 christos return EINVAL;
1090 1.366 christos }
1091 1.366 christos
1092 1.366 christos rf_lock_mutex2(raidPtr->mutex);
1093 1.366 christos if (raidPtr->status == rf_rs_reconstructing) {
1094 1.366 christos /* you can't fail a disk while we're reconstructing! */
1095 1.366 christos /* XXX wrong for RAID6 */
1096 1.366 christos goto out;
1097 1.366 christos }
1098 1.366 christos if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
1099 1.366 christos (raidPtr->numFailures > 0)) {
1100 1.366 christos /* some other component has failed. Let's not make
1101 1.366 christos things worse. XXX wrong for RAID6 */
1102 1.366 christos goto out;
1103 1.366 christos }
1104 1.366 christos if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1105 1.366 christos /* Can't fail a spared disk! */
1106 1.366 christos goto out;
1107 1.366 christos }
1108 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1109 1.366 christos
1110 1.366 christos /* make a copy of the recon request so that we don't rely on
1111 1.366 christos * the user's buffer */
1112 1.374 christos rrint = RF_Malloc(sizeof(*rrint));
1113 1.366 christos if (rrint == NULL)
1114 1.366 christos return(ENOMEM);
1115 1.366 christos rrint->col = rr->col;
1116 1.366 christos rrint->flags = rr->flags;
1117 1.366 christos rrint->raidPtr = raidPtr;
1118 1.366 christos
1119 1.366 christos return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
1120 1.366 christos rrint, "raid_recon");
1121 1.366 christos out:
1122 1.366 christos rf_unlock_mutex2(raidPtr->mutex);
1123 1.366 christos return EINVAL;
1124 1.366 christos }
1125 1.366 christos
1126 1.324 mrg static int
1127 1.367 christos rf_copyinspecificbuf(RF_Config_t *k_cfg)
1128 1.367 christos {
1129 1.367 christos /* allocate a buffer for the layout-specific data, and copy it in */
1130 1.367 christos if (k_cfg->layoutSpecificSize == 0)
1131 1.367 christos return 0;
1132 1.367 christos
1133 1.367 christos if (k_cfg->layoutSpecificSize > 10000) {
1134 1.367 christos /* sanity check */
1135 1.367 christos return EINVAL;
1136 1.367 christos }
1137 1.367 christos
1138 1.367 christos u_char *specific_buf;
1139 1.374 christos specific_buf = RF_Malloc(k_cfg->layoutSpecificSize);
1140 1.367 christos if (specific_buf == NULL)
1141 1.367 christos return ENOMEM;
1142 1.367 christos
1143 1.367 christos int retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1144 1.367 christos k_cfg->layoutSpecificSize);
1145 1.367 christos if (retcode) {
1146 1.367 christos RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1147 1.367 christos db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode));
1148 1.367 christos return retcode;
1149 1.367 christos }
1150 1.367 christos
1151 1.367 christos k_cfg->layoutSpecific = specific_buf;
1152 1.367 christos return 0;
1153 1.367 christos }
1154 1.367 christos
1155 1.367 christos static int
1156 1.367 christos rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg)
1157 1.367 christos {
1158 1.372 christos RF_Config_t *u_cfg = *((RF_Config_t **) data);
1159 1.372 christos
1160 1.367 christos if (rs->sc_r.valid) {
1161 1.367 christos /* There is a valid RAID set running on this unit! */
1162 1.367 christos printf("raid%d: Device already configured!\n", rs->sc_unit);
1163 1.367 christos return EINVAL;
1164 1.367 christos }
1165 1.367 christos
1166 1.367 christos /* copy-in the configuration information */
1167 1.367 christos /* data points to a pointer to the configuration structure */
1168 1.374 christos *k_cfg = RF_Malloc(sizeof(**k_cfg));
1169 1.367 christos if (*k_cfg == NULL) {
1170 1.367 christos return ENOMEM;
1171 1.367 christos }
1172 1.373 christos int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t));
1173 1.367 christos if (retcode == 0)
1174 1.367 christos return 0;
1175 1.367 christos RF_Free(*k_cfg, sizeof(RF_Config_t));
1176 1.367 christos db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode));
1177 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN;
1178 1.367 christos return retcode;
1179 1.367 christos }
1180 1.367 christos
1181 1.367 christos int
1182 1.367 christos rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg)
1183 1.367 christos {
1184 1.367 christos int retcode;
1185 1.367 christos RF_Raid_t *raidPtr = &rs->sc_r;
1186 1.367 christos
1187 1.367 christos rs->sc_flags &= ~RAIDF_SHUTDOWN;
1188 1.367 christos
1189 1.367 christos if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0)
1190 1.367 christos goto out;
1191 1.367 christos
1192 1.367 christos /* should do some kind of sanity check on the configuration.
1193 1.367 christos * Store the sum of all the bytes in the last byte? */
1194 1.367 christos
1195 1.367 christos /* configure the system */
1196 1.367 christos
1197 1.367 christos /*
1198 1.367 christos * Clear the entire RAID descriptor, just to make sure
1199 1.367 christos * there is no stale data left in the case of a
1200 1.367 christos * reconfiguration
1201 1.367 christos */
1202 1.367 christos memset(raidPtr, 0, sizeof(*raidPtr));
1203 1.367 christos raidPtr->softc = rs;
1204 1.367 christos raidPtr->raidid = rs->sc_unit;
1205 1.367 christos
1206 1.367 christos retcode = rf_Configure(raidPtr, k_cfg, NULL);
1207 1.367 christos
1208 1.367 christos if (retcode == 0) {
1209 1.367 christos /* allow this many simultaneous IO's to
1210 1.367 christos this RAID device */
1211 1.367 christos raidPtr->openings = RAIDOUTSTANDING;
1212 1.367 christos
1213 1.367 christos raidinit(rs);
1214 1.367 christos raid_wakeup(raidPtr);
1215 1.367 christos rf_markalldirty(raidPtr);
1216 1.367 christos }
1217 1.367 christos
1218 1.367 christos /* free the buffers. No return code here. */
1219 1.367 christos if (k_cfg->layoutSpecificSize) {
1220 1.367 christos RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize);
1221 1.367 christos }
1222 1.367 christos out:
1223 1.367 christos RF_Free(k_cfg, sizeof(RF_Config_t));
1224 1.367 christos if (retcode) {
1225 1.367 christos /*
1226 1.367 christos * If configuration failed, set sc_flags so that we
1227 1.367 christos * will detach the device when we close it.
1228 1.367 christos */
1229 1.367 christos rs->sc_flags |= RAIDF_SHUTDOWN;
1230 1.367 christos }
1231 1.367 christos return retcode;
1232 1.367 christos }
1233 1.367 christos
1234 1.367 christos #if RF_DISABLED
1235 1.367 christos static int
1236 1.367 christos rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1237 1.367 christos {
1238 1.367 christos
1239 1.367 christos /* XXX check the label for valid stuff... */
1240 1.367 christos /* Note that some things *should not* get modified --
1241 1.367 christos the user should be re-initing the labels instead of
1242 1.367 christos trying to patch things.
1243 1.367 christos */
1244 1.367 christos #ifdef DEBUG
1245 1.367 christos int raidid = raidPtr->raidid;
1246 1.367 christos printf("raid%d: Got component label:\n", raidid);
1247 1.367 christos printf("raid%d: Version: %d\n", raidid, clabel->version);
1248 1.367 christos printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1249 1.367 christos printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1250 1.367 christos printf("raid%d: Column: %d\n", raidid, clabel->column);
1251 1.367 christos printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1252 1.367 christos printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1253 1.367 christos printf("raid%d: Status: %d\n", raidid, clabel->status);
1254 1.367 christos #endif /* DEBUG */
1255 1.367 christos clabel->row = 0;
1256 1.367 christos int column = clabel->column;
1257 1.367 christos
1258 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) {
1259 1.367 christos return(EINVAL);
1260 1.367 christos }
1261 1.367 christos
1262 1.367 christos /* XXX this isn't allowed to do anything for now :-) */
1263 1.367 christos
1264 1.367 christos /* XXX and before it is, we need to fill in the rest
1265 1.367 christos of the fields!?!?!?! */
1266 1.367 christos memcpy(raidget_component_label(raidPtr, column),
1267 1.367 christos clabel, sizeof(*clabel));
1268 1.367 christos raidflush_component_label(raidPtr, column);
1269 1.367 christos return 0;
1270 1.367 christos }
1271 1.367 christos #endif
1272 1.367 christos
1273 1.367 christos static int
1274 1.367 christos rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
1275 1.367 christos {
1276 1.367 christos /*
1277 1.367 christos we only want the serial number from
1278 1.367 christos the above. We get all the rest of the information
1279 1.367 christos from the config that was used to create this RAID
1280 1.367 christos set.
1281 1.367 christos */
1282 1.367 christos
1283 1.367 christos raidPtr->serial_number = clabel->serial_number;
1284 1.367 christos
1285 1.367 christos for (int column = 0; column < raidPtr->numCol; column++) {
1286 1.367 christos RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column];
1287 1.367 christos if (RF_DEAD_DISK(diskPtr->status))
1288 1.367 christos continue;
1289 1.367 christos RF_ComponentLabel_t *ci_label = raidget_component_label(
1290 1.367 christos raidPtr, column);
1291 1.367 christos /* Zeroing this is important. */
1292 1.367 christos memset(ci_label, 0, sizeof(*ci_label));
1293 1.367 christos raid_init_component_label(raidPtr, ci_label);
1294 1.367 christos ci_label->serial_number = raidPtr->serial_number;
1295 1.367 christos ci_label->row = 0; /* we dont' pretend to support more */
1296 1.367 christos rf_component_label_set_partitionsize(ci_label,
1297 1.367 christos diskPtr->partitionSize);
1298 1.367 christos ci_label->column = column;
1299 1.367 christos raidflush_component_label(raidPtr, column);
1300 1.367 christos /* XXXjld what about the spares? */
1301 1.367 christos }
1302 1.385 riastrad
1303 1.367 christos return 0;
1304 1.367 christos }
1305 1.367 christos
1306 1.367 christos static int
1307 1.367 christos rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr)
1308 1.367 christos {
1309 1.367 christos
1310 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0) {
1311 1.367 christos /* Can't do this on a RAID 0!! */
1312 1.367 christos return EINVAL;
1313 1.367 christos }
1314 1.367 christos
1315 1.367 christos if (raidPtr->recon_in_progress == 1) {
1316 1.367 christos /* a reconstruct is already in progress! */
1317 1.367 christos return EINVAL;
1318 1.367 christos }
1319 1.367 christos
1320 1.367 christos RF_SingleComponent_t component;
1321 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1322 1.367 christos component.row = 0; /* we don't support any more */
1323 1.367 christos int column = component.column;
1324 1.367 christos
1325 1.367 christos if ((column < 0) || (column >= raidPtr->numCol)) {
1326 1.367 christos return EINVAL;
1327 1.367 christos }
1328 1.367 christos
1329 1.367 christos rf_lock_mutex2(raidPtr->mutex);
1330 1.367 christos if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1331 1.367 christos (raidPtr->numFailures > 0)) {
1332 1.367 christos /* XXX 0 above shouldn't be constant!!! */
1333 1.367 christos /* some component other than this has failed.
1334 1.367 christos Let's not make things worse than they already
1335 1.367 christos are... */
1336 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n",
1337 1.367 christos raidPtr->raidid);
1338 1.367 christos printf("raid%d: Col: %d Too many failures.\n",
1339 1.367 christos raidPtr->raidid, column);
1340 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1341 1.367 christos return EINVAL;
1342 1.367 christos }
1343 1.367 christos
1344 1.367 christos if (raidPtr->Disks[column].status == rf_ds_reconstructing) {
1345 1.367 christos printf("raid%d: Unable to reconstruct to disk at:\n",
1346 1.367 christos raidPtr->raidid);
1347 1.367 christos printf("raid%d: Col: %d "
1348 1.367 christos "Reconstruction already occurring!\n",
1349 1.367 christos raidPtr->raidid, column);
1350 1.367 christos
1351 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1352 1.367 christos return EINVAL;
1353 1.367 christos }
1354 1.367 christos
1355 1.367 christos if (raidPtr->Disks[column].status == rf_ds_spared) {
1356 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1357 1.367 christos return EINVAL;
1358 1.367 christos }
1359 1.367 christos
1360 1.367 christos rf_unlock_mutex2(raidPtr->mutex);
1361 1.367 christos
1362 1.367 christos struct rf_recon_req_internal *rrint;
1363 1.374 christos rrint = RF_Malloc(sizeof(*rrint));
1364 1.367 christos if (rrint == NULL)
1365 1.367 christos return ENOMEM;
1366 1.367 christos
1367 1.367 christos rrint->col = column;
1368 1.367 christos rrint->raidPtr = raidPtr;
1369 1.367 christos
1370 1.367 christos return RF_CREATE_THREAD(raidPtr->recon_thread,
1371 1.367 christos rf_ReconstructInPlaceThread, rrint, "raid_reconip");
1372 1.367 christos }
1373 1.367 christos
1374 1.367 christos static int
1375 1.367 christos rf_check_recon_status(RF_Raid_t *raidPtr, int *data)
1376 1.367 christos {
1377 1.367 christos /*
1378 1.367 christos * This makes no sense on a RAID 0, or if we are not reconstructing
1379 1.367 christos * so tell the user it's done.
1380 1.367 christos */
1381 1.367 christos if (raidPtr->Layout.map->faultsTolerated == 0 ||
1382 1.367 christos raidPtr->status != rf_rs_reconstructing) {
1383 1.367 christos *data = 100;
1384 1.367 christos return 0;
1385 1.367 christos }
1386 1.367 christos if (raidPtr->reconControl->numRUsTotal == 0) {
1387 1.367 christos *data = 0;
1388 1.367 christos return 0;
1389 1.367 christos }
1390 1.367 christos *data = (raidPtr->reconControl->numRUsComplete * 100
1391 1.367 christos / raidPtr->reconControl->numRUsTotal);
1392 1.367 christos return 0;
1393 1.367 christos }
1394 1.367 christos
1395 1.367 christos static int
1396 1.225 christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1397 1.1 oster {
1398 1.9 oster int unit = raidunit(dev);
1399 1.335 mlelstv int part, pmask;
1400 1.1 oster struct raid_softc *rs;
1401 1.335 mlelstv struct dk_softc *dksc;
1402 1.367 christos RF_Config_t *k_cfg;
1403 1.42 oster RF_Raid_t *raidPtr;
1404 1.41 oster RF_AccTotals_t *totals;
1405 1.367 christos RF_SingleComponent_t component;
1406 1.371 oster RF_DeviceConfig_t *d_cfg, *ucfgp;
1407 1.11 oster int retcode = 0;
1408 1.11 oster int column;
1409 1.48 oster RF_ComponentLabel_t *clabel;
1410 1.12 oster RF_SingleComponent_t *sparePtr,*componentPtr;
1411 1.353 mrg int d;
1412 1.1 oster
1413 1.327 pgoyette if ((rs = raidget(unit, false)) == NULL)
1414 1.300 christos return ENXIO;
1415 1.366 christos
1416 1.335 mlelstv dksc = &rs->sc_dksc;
1417 1.300 christos raidPtr = &rs->sc_r;
1418 1.1 oster
1419 1.276 mrg db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
1420 1.366 christos (int) DISKPART(dev), (int) unit, cmd));
1421 1.1 oster
1422 1.1 oster /* Must be initialized for these... */
1423 1.366 christos if (rf_must_be_initialized(rs, cmd))
1424 1.366 christos return ENXIO;
1425 1.9 oster
1426 1.358 pgoyette switch (cmd) {
1427 1.1 oster /* configure the system */
1428 1.1 oster case RAIDFRAME_CONFIGURE:
1429 1.367 christos if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0)
1430 1.367 christos return retcode;
1431 1.367 christos return rf_construct(rs, k_cfg);
1432 1.9 oster
1433 1.9 oster /* shutdown the system */
1434 1.1 oster case RAIDFRAME_SHUTDOWN:
1435 1.9 oster
1436 1.266 dyoung part = DISKPART(dev);
1437 1.266 dyoung pmask = (1 << part);
1438 1.266 dyoung
1439 1.367 christos if ((retcode = raidlock(rs)) != 0)
1440 1.367 christos return retcode;
1441 1.1 oster
1442 1.337 mlelstv if (DK_BUSY(dksc, pmask) ||
1443 1.337 mlelstv raidPtr->recon_in_progress != 0 ||
1444 1.337 mlelstv raidPtr->parity_rewrite_in_progress != 0 ||
1445 1.337 mlelstv raidPtr->copyback_in_progress != 0)
1446 1.266 dyoung retcode = EBUSY;
1447 1.266 dyoung else {
1448 1.335 mlelstv /* detach and free on close */
1449 1.266 dyoung rs->sc_flags |= RAIDF_SHUTDOWN;
1450 1.266 dyoung retcode = 0;
1451 1.9 oster }
1452 1.11 oster
1453 1.266 dyoung raidunlock(rs);
1454 1.1 oster
1455 1.367 christos return retcode;
1456 1.11 oster case RAIDFRAME_GET_COMPONENT_LABEL:
1457 1.353 mrg return rf_get_component_label(raidPtr, data);
1458 1.11 oster
1459 1.367 christos #if RF_DISABLED
1460 1.11 oster case RAIDFRAME_SET_COMPONENT_LABEL:
1461 1.367 christos return rf_set_component_label(raidPtr, data);
1462 1.367 christos #endif
1463 1.11 oster
1464 1.367 christos case RAIDFRAME_INIT_LABELS:
1465 1.367 christos return rf_init_component_label(raidPtr, data);
1466 1.12 oster
1467 1.48 oster case RAIDFRAME_SET_AUTOCONFIG:
1468 1.78 minoura d = rf_set_autoconfig(raidPtr, *(int *) data);
1469 1.186 perry printf("raid%d: New autoconfig value is: %d\n",
1470 1.123 oster raidPtr->raidid, d);
1471 1.78 minoura *(int *) data = d;
1472 1.367 christos return retcode;
1473 1.48 oster
1474 1.48 oster case RAIDFRAME_SET_ROOT:
1475 1.78 minoura d = rf_set_rootpartition(raidPtr, *(int *) data);
1476 1.186 perry printf("raid%d: New rootpartition value is: %d\n",
1477 1.123 oster raidPtr->raidid, d);
1478 1.78 minoura *(int *) data = d;
1479 1.367 christos return retcode;
1480 1.9 oster
1481 1.1 oster /* initialize all parity */
1482 1.1 oster case RAIDFRAME_REWRITEPARITY:
1483 1.1 oster
1484 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1485 1.17 oster /* Parity for RAID 0 is trivially correct */
1486 1.42 oster raidPtr->parity_good = RF_RAID_CLEAN;
1487 1.367 christos return 0;
1488 1.17 oster }
1489 1.186 perry
1490 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1491 1.37 oster /* Re-write is already in progress! */
1492 1.367 christos return EINVAL;
1493 1.37 oster }
1494 1.27 oster
1495 1.367 christos return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1496 1.367 christos rf_RewriteParityThread, raidPtr,"raid_parity");
1497 1.11 oster
1498 1.11 oster case RAIDFRAME_ADD_HOT_SPARE:
1499 1.12 oster sparePtr = (RF_SingleComponent_t *) data;
1500 1.367 christos memcpy(&component, sparePtr, sizeof(RF_SingleComponent_t));
1501 1.367 christos return rf_add_hot_spare(raidPtr, &component);
1502 1.11 oster
1503 1.11 oster case RAIDFRAME_REMOVE_HOT_SPARE:
1504 1.367 christos return retcode;
1505 1.73 oster
1506 1.73 oster case RAIDFRAME_DELETE_COMPONENT:
1507 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1508 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1509 1.367 christos return rf_delete_component(raidPtr, &component);
1510 1.73 oster
1511 1.73 oster case RAIDFRAME_INCORPORATE_HOT_SPARE:
1512 1.73 oster componentPtr = (RF_SingleComponent_t *)data;
1513 1.367 christos memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
1514 1.367 christos return rf_incorporate_hot_spare(raidPtr, &component);
1515 1.11 oster
1516 1.12 oster case RAIDFRAME_REBUILD_IN_PLACE:
1517 1.367 christos return rf_rebuild_in_place(raidPtr, data);
1518 1.24 oster
1519 1.366 christos case RAIDFRAME_GET_INFO:
1520 1.371 oster ucfgp = *(RF_DeviceConfig_t **)data;
1521 1.374 christos d_cfg = RF_Malloc(sizeof(*d_cfg));
1522 1.41 oster if (d_cfg == NULL)
1523 1.366 christos return ENOMEM;
1524 1.353 mrg retcode = rf_get_info(raidPtr, d_cfg);
1525 1.353 mrg if (retcode == 0) {
1526 1.371 oster retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
1527 1.41 oster }
1528 1.41 oster RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1529 1.366 christos return retcode;
1530 1.9 oster
1531 1.22 oster case RAIDFRAME_CHECK_PARITY:
1532 1.42 oster *(int *) data = raidPtr->parity_good;
1533 1.367 christos return 0;
1534 1.41 oster
1535 1.269 jld case RAIDFRAME_PARITYMAP_STATUS:
1536 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1537 1.273 jld return EINVAL;
1538 1.367 christos rf_paritymap_status(raidPtr->parity_map, data);
1539 1.269 jld return 0;
1540 1.269 jld
1541 1.269 jld case RAIDFRAME_PARITYMAP_SET_PARAMS:
1542 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1543 1.273 jld return EINVAL;
1544 1.269 jld if (raidPtr->parity_map == NULL)
1545 1.269 jld return ENOENT; /* ??? */
1546 1.367 christos if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0)
1547 1.269 jld return EINVAL;
1548 1.269 jld return 0;
1549 1.269 jld
1550 1.269 jld case RAIDFRAME_PARITYMAP_GET_DISABLE:
1551 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1552 1.273 jld return EINVAL;
1553 1.269 jld *(int *) data = rf_paritymap_get_disable(raidPtr);
1554 1.269 jld return 0;
1555 1.269 jld
1556 1.269 jld case RAIDFRAME_PARITYMAP_SET_DISABLE:
1557 1.273 jld if (rf_paritymap_ineligible(raidPtr))
1558 1.273 jld return EINVAL;
1559 1.269 jld rf_paritymap_set_disable(raidPtr, *(int *)data);
1560 1.269 jld /* XXX should errors be passed up? */
1561 1.269 jld return 0;
1562 1.269 jld
1563 1.1 oster case RAIDFRAME_RESET_ACCTOTALS:
1564 1.108 thorpej memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1565 1.367 christos return 0;
1566 1.9 oster
1567 1.1 oster case RAIDFRAME_GET_ACCTOTALS:
1568 1.41 oster totals = (RF_AccTotals_t *) data;
1569 1.42 oster *totals = raidPtr->acc_totals;
1570 1.366 christos return 0;
1571 1.9 oster
1572 1.1 oster case RAIDFRAME_KEEP_ACCTOTALS:
1573 1.42 oster raidPtr->keep_acc_totals = *(int *)data;
1574 1.366 christos return 0;
1575 1.9 oster
1576 1.1 oster case RAIDFRAME_GET_SIZE:
1577 1.42 oster *(int *) data = raidPtr->totalSectors;
1578 1.366 christos return 0;
1579 1.1 oster
1580 1.1 oster case RAIDFRAME_FAIL_DISK:
1581 1.366 christos return rf_fail_disk(raidPtr, data);
1582 1.9 oster
1583 1.9 oster /* invoke a copyback operation after recon on whatever disk
1584 1.9 oster * needs it, if any */
1585 1.9 oster case RAIDFRAME_COPYBACK:
1586 1.24 oster
1587 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1588 1.24 oster /* This makes no sense on a RAID 0!! */
1589 1.367 christos return EINVAL;
1590 1.24 oster }
1591 1.24 oster
1592 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1593 1.37 oster /* Copyback is already in progress! */
1594 1.367 christos return EINVAL;
1595 1.37 oster }
1596 1.27 oster
1597 1.367 christos return RF_CREATE_THREAD(raidPtr->copyback_thread,
1598 1.367 christos rf_CopybackThread, raidPtr, "raid_copyback");
1599 1.9 oster
1600 1.1 oster /* return the percentage completion of reconstruction */
1601 1.37 oster case RAIDFRAME_CHECK_RECON_STATUS:
1602 1.367 christos return rf_check_recon_status(raidPtr, data);
1603 1.367 christos
1604 1.83 oster case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1605 1.353 mrg rf_check_recon_status_ext(raidPtr, data);
1606 1.367 christos return 0;
1607 1.9 oster
1608 1.37 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1609 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1610 1.80 oster /* This makes no sense on a RAID 0, so tell the
1611 1.80 oster user it's done. */
1612 1.80 oster *(int *) data = 100;
1613 1.367 christos return 0;
1614 1.37 oster }
1615 1.42 oster if (raidPtr->parity_rewrite_in_progress == 1) {
1616 1.186 perry *(int *) data = 100 *
1617 1.186 perry raidPtr->parity_rewrite_stripes_done /
1618 1.83 oster raidPtr->Layout.numStripe;
1619 1.37 oster } else {
1620 1.37 oster *(int *) data = 100;
1621 1.37 oster }
1622 1.367 christos return 0;
1623 1.37 oster
1624 1.83 oster case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1625 1.353 mrg rf_check_parityrewrite_status_ext(raidPtr, data);
1626 1.367 christos return 0;
1627 1.83 oster
1628 1.37 oster case RAIDFRAME_CHECK_COPYBACK_STATUS:
1629 1.42 oster if (raidPtr->Layout.map->faultsTolerated == 0) {
1630 1.37 oster /* This makes no sense on a RAID 0 */
1631 1.83 oster *(int *) data = 100;
1632 1.367 christos return 0;
1633 1.37 oster }
1634 1.42 oster if (raidPtr->copyback_in_progress == 1) {
1635 1.42 oster *(int *) data = 100 * raidPtr->copyback_stripes_done /
1636 1.42 oster raidPtr->Layout.numStripe;
1637 1.37 oster } else {
1638 1.37 oster *(int *) data = 100;
1639 1.37 oster }
1640 1.367 christos return 0;
1641 1.37 oster
1642 1.83 oster case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1643 1.353 mrg rf_check_copyback_status_ext(raidPtr, data);
1644 1.353 mrg return 0;
1645 1.37 oster
1646 1.341 christos case RAIDFRAME_SET_LAST_UNIT:
1647 1.341 christos for (column = 0; column < raidPtr->numCol; column++)
1648 1.341 christos if (raidPtr->Disks[column].status != rf_ds_optimal)
1649 1.341 christos return EBUSY;
1650 1.341 christos
1651 1.341 christos for (column = 0; column < raidPtr->numCol; column++) {
1652 1.341 christos clabel = raidget_component_label(raidPtr, column);
1653 1.341 christos clabel->last_unit = *(int *)data;
1654 1.341 christos raidflush_component_label(raidPtr, column);
1655 1.341 christos }
1656 1.341 christos rs->sc_cflags |= RAIDF_UNIT_CHANGED;
1657 1.341 christos return 0;
1658 1.341 christos
1659 1.9 oster /* the sparetable daemon calls this to wait for the kernel to
1660 1.9 oster * need a spare table. this ioctl does not return until a
1661 1.9 oster * spare table is needed. XXX -- calling mpsleep here in the
1662 1.9 oster * ioctl code is almost certainly wrong and evil. -- XXX XXX
1663 1.9 oster * -- I should either compute the spare table in the kernel,
1664 1.9 oster * or have a different -- XXX XXX -- interface (a different
1665 1.42 oster * character device) for delivering the table -- XXX */
1666 1.367 christos #if RF_DISABLED
1667 1.1 oster case RAIDFRAME_SPARET_WAIT:
1668 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1669 1.9 oster while (!rf_sparet_wait_queue)
1670 1.287 mrg rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
1671 1.367 christos RF_SparetWait_t *waitreq = rf_sparet_wait_queue;
1672 1.1 oster rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1673 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1674 1.9 oster
1675 1.42 oster /* structure assignment */
1676 1.186 perry *((RF_SparetWait_t *) data) = *waitreq;
1677 1.9 oster
1678 1.1 oster RF_Free(waitreq, sizeof(*waitreq));
1679 1.367 christos return 0;
1680 1.9 oster
1681 1.9 oster /* wakes up a process waiting on SPARET_WAIT and puts an error
1682 1.9 oster * code in it that will cause the dameon to exit */
1683 1.1 oster case RAIDFRAME_ABORT_SPARET_WAIT:
1684 1.374 christos waitreq = RF_Malloc(sizeof(*waitreq));
1685 1.1 oster waitreq->fcol = -1;
1686 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1687 1.1 oster waitreq->next = rf_sparet_wait_queue;
1688 1.1 oster rf_sparet_wait_queue = waitreq;
1689 1.367 christos rf_broadcast_cond2(rf_sparet_wait_cv);
1690 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1691 1.367 christos return 0;
1692 1.1 oster
1693 1.9 oster /* used by the spare table daemon to deliver a spare table
1694 1.9 oster * into the kernel */
1695 1.1 oster case RAIDFRAME_SEND_SPARET:
1696 1.9 oster
1697 1.1 oster /* install the spare table */
1698 1.42 oster retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1699 1.9 oster
1700 1.9 oster /* respond to the requestor. the return status of the spare
1701 1.9 oster * table installation is passed in the "fcol" field */
1702 1.374 christos waitred = RF_Malloc(sizeof(*waitreq));
1703 1.1 oster waitreq->fcol = retcode;
1704 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1705 1.1 oster waitreq->next = rf_sparet_resp_queue;
1706 1.1 oster rf_sparet_resp_queue = waitreq;
1707 1.287 mrg rf_broadcast_cond2(rf_sparet_resp_cv);
1708 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1709 1.9 oster
1710 1.367 christos return retcode;
1711 1.367 christos #endif
1712 1.367 christos default:
1713 1.372 christos /*
1714 1.372 christos * Don't bother trying to load compat modules
1715 1.372 christos * if it is not our ioctl. This is more efficient
1716 1.372 christos * and makes rump tests not depend on compat code
1717 1.372 christos */
1718 1.372 christos if (IOCGROUP(cmd) != 'r')
1719 1.372 christos break;
1720 1.367 christos #ifdef _LP64
1721 1.367 christos if ((l->l_proc->p_flag & PK_32) != 0) {
1722 1.367 christos module_autoload("compat_netbsd32_raid",
1723 1.367 christos MODULE_CLASS_EXEC);
1724 1.376 pgoyette MODULE_HOOK_CALL(raidframe_netbsd32_ioctl_hook,
1725 1.367 christos (rs, cmd, data), enosys(), retcode);
1726 1.367 christos if (retcode != EPASSTHROUGH)
1727 1.367 christos return retcode;
1728 1.367 christos }
1729 1.1 oster #endif
1730 1.367 christos module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
1731 1.376 pgoyette MODULE_HOOK_CALL(raidframe_ioctl_80_hook,
1732 1.367 christos (rs, cmd, data), enosys(), retcode);
1733 1.367 christos if (retcode != EPASSTHROUGH)
1734 1.367 christos return retcode;
1735 1.1 oster
1736 1.367 christos module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
1737 1.376 pgoyette MODULE_HOOK_CALL(raidframe_ioctl_50_hook,
1738 1.367 christos (rs, cmd, data), enosys(), retcode);
1739 1.367 christos if (retcode != EPASSTHROUGH)
1740 1.367 christos return retcode;
1741 1.36 oster break; /* fall through to the os-specific code below */
1742 1.1 oster
1743 1.1 oster }
1744 1.9 oster
1745 1.42 oster if (!raidPtr->valid)
1746 1.389 skrll return EINVAL;
1747 1.9 oster
1748 1.1 oster /*
1749 1.1 oster * Add support for "regular" device ioctls here.
1750 1.1 oster */
1751 1.385 riastrad
1752 1.1 oster switch (cmd) {
1753 1.348 jdolecek case DIOCGCACHE:
1754 1.348 jdolecek retcode = rf_get_component_caches(raidPtr, (int *)data);
1755 1.348 jdolecek break;
1756 1.348 jdolecek
1757 1.252 oster case DIOCCACHESYNC:
1758 1.390 christos retcode = rf_sync_component_caches(raidPtr, *(int *)data);
1759 1.347 jdolecek break;
1760 1.298 buhrow
1761 1.1 oster default:
1762 1.346 jdolecek retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
1763 1.347 jdolecek break;
1764 1.1 oster }
1765 1.346 jdolecek
1766 1.389 skrll return retcode;
1767 1.1 oster
1768 1.1 oster }
1769 1.1 oster
1770 1.1 oster
1771 1.9 oster /* raidinit -- complete the rest of the initialization for the
1772 1.1 oster RAIDframe device. */
1773 1.1 oster
1774 1.1 oster
1775 1.59 oster static void
1776 1.300 christos raidinit(struct raid_softc *rs)
1777 1.1 oster {
1778 1.262 cegger cfdata_t cf;
1779 1.335 mlelstv unsigned int unit;
1780 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
1781 1.300 christos RF_Raid_t *raidPtr = &rs->sc_r;
1782 1.335 mlelstv device_t dev;
1783 1.1 oster
1784 1.59 oster unit = raidPtr->raidid;
1785 1.1 oster
1786 1.179 itojun /* XXX doesn't check bounds. */
1787 1.335 mlelstv snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
1788 1.1 oster
1789 1.217 oster /* attach the pseudo device */
1790 1.217 oster cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1791 1.217 oster cf->cf_name = raid_cd.cd_name;
1792 1.217 oster cf->cf_atname = raid_cd.cd_name;
1793 1.217 oster cf->cf_unit = unit;
1794 1.217 oster cf->cf_fstate = FSTATE_STAR;
1795 1.217 oster
1796 1.335 mlelstv dev = config_attach_pseudo(cf);
1797 1.335 mlelstv if (dev == NULL) {
1798 1.217 oster printf("raid%d: config_attach_pseudo failed\n",
1799 1.270 christos raidPtr->raidid);
1800 1.265 pooka free(cf, M_RAIDFRAME);
1801 1.265 pooka return;
1802 1.217 oster }
1803 1.217 oster
1804 1.335 mlelstv /* provide a backpointer to the real softc */
1805 1.335 mlelstv raidsoftc(dev) = rs;
1806 1.335 mlelstv
1807 1.1 oster /* disk_attach actually creates space for the CPU disklabel, among
1808 1.9 oster * other things, so it's critical to call this *BEFORE* we try putzing
1809 1.9 oster * with disklabels. */
1810 1.335 mlelstv dk_init(dksc, dev, DKTYPE_RAID);
1811 1.335 mlelstv disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
1812 1.1 oster
1813 1.1 oster /* XXX There may be a weird interaction here between this, and
1814 1.9 oster * protectedSectors, as used in RAIDframe. */
1815 1.11 oster
1816 1.9 oster rs->sc_size = raidPtr->totalSectors;
1817 1.234 oster
1818 1.335 mlelstv /* Attach dk and disk subsystems */
1819 1.335 mlelstv dk_attach(dksc);
1820 1.335 mlelstv disk_attach(&dksc->sc_dkdev);
1821 1.318 mlelstv rf_set_geometry(rs, raidPtr);
1822 1.318 mlelstv
1823 1.335 mlelstv bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
1824 1.335 mlelstv
1825 1.335 mlelstv /* mark unit as usuable */
1826 1.335 mlelstv rs->sc_flags |= RAIDF_INITED;
1827 1.234 oster
1828 1.335 mlelstv dkwedge_discover(&dksc->sc_dkdev);
1829 1.1 oster }
1830 1.335 mlelstv
1831 1.150 oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1832 1.1 oster /* wake up the daemon & tell it to get us a spare table
1833 1.1 oster * XXX
1834 1.9 oster * the entries in the queues should be tagged with the raidPtr
1835 1.186 perry * so that in the extremely rare case that two recons happen at once,
1836 1.11 oster * we know for which device were requesting a spare table
1837 1.1 oster * XXX
1838 1.186 perry *
1839 1.39 oster * XXX This code is not currently used. GO
1840 1.1 oster */
1841 1.186 perry int
1842 1.169 oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1843 1.9 oster {
1844 1.9 oster int retcode;
1845 1.9 oster
1846 1.287 mrg rf_lock_mutex2(rf_sparet_wait_mutex);
1847 1.9 oster req->next = rf_sparet_wait_queue;
1848 1.9 oster rf_sparet_wait_queue = req;
1849 1.289 mrg rf_broadcast_cond2(rf_sparet_wait_cv);
1850 1.9 oster
1851 1.9 oster /* mpsleep unlocks the mutex */
1852 1.9 oster while (!rf_sparet_resp_queue) {
1853 1.289 mrg rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
1854 1.9 oster }
1855 1.9 oster req = rf_sparet_resp_queue;
1856 1.9 oster rf_sparet_resp_queue = req->next;
1857 1.287 mrg rf_unlock_mutex2(rf_sparet_wait_mutex);
1858 1.9 oster
1859 1.9 oster retcode = req->fcol;
1860 1.9 oster RF_Free(req, sizeof(*req)); /* this is not the same req as we
1861 1.9 oster * alloc'd */
1862 1.389 skrll return retcode;
1863 1.1 oster }
1864 1.150 oster #endif
1865 1.39 oster
1866 1.186 perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
1867 1.11 oster * bp & passes it down.
1868 1.1 oster * any calls originating in the kernel must use non-blocking I/O
1869 1.1 oster * do some extra sanity checking to return "appropriate" error values for
1870 1.1 oster * certain conditions (to make some standard utilities work)
1871 1.186 perry *
1872 1.34 oster * Formerly known as: rf_DoAccessKernel
1873 1.1 oster */
1874 1.34 oster void
1875 1.169 oster raidstart(RF_Raid_t *raidPtr)
1876 1.1 oster {
1877 1.1 oster struct raid_softc *rs;
1878 1.335 mlelstv struct dk_softc *dksc;
1879 1.1 oster
1880 1.300 christos rs = raidPtr->softc;
1881 1.335 mlelstv dksc = &rs->sc_dksc;
1882 1.56 oster /* quick check to see if anything has died recently */
1883 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1884 1.56 oster if (raidPtr->numNewFailures > 0) {
1885 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1886 1.186 perry rf_update_component_labels(raidPtr,
1887 1.91 oster RF_NORMAL_COMPONENT_UPDATE);
1888 1.291 mrg rf_lock_mutex2(raidPtr->mutex);
1889 1.56 oster raidPtr->numNewFailures--;
1890 1.56 oster }
1891 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1892 1.56 oster
1893 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0) {
1894 1.335 mlelstv printf("raid%d: raidstart not ready\n", raidPtr->raidid);
1895 1.335 mlelstv return;
1896 1.335 mlelstv }
1897 1.34 oster
1898 1.335 mlelstv dk_start(dksc, NULL);
1899 1.335 mlelstv }
1900 1.34 oster
1901 1.335 mlelstv static int
1902 1.335 mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
1903 1.335 mlelstv {
1904 1.335 mlelstv RF_SectorCount_t num_blocks, pb, sum;
1905 1.335 mlelstv RF_RaidAddr_t raid_addr;
1906 1.335 mlelstv daddr_t blocknum;
1907 1.335 mlelstv int do_async;
1908 1.335 mlelstv int rc;
1909 1.186 perry
1910 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1911 1.335 mlelstv if (raidPtr->openings == 0) {
1912 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1913 1.335 mlelstv return EAGAIN;
1914 1.335 mlelstv }
1915 1.335 mlelstv rf_unlock_mutex2(raidPtr->mutex);
1916 1.186 perry
1917 1.335 mlelstv blocknum = bp->b_rawblkno;
1918 1.186 perry
1919 1.335 mlelstv db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1920 1.335 mlelstv (int) blocknum));
1921 1.1 oster
1922 1.335 mlelstv db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1923 1.335 mlelstv db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1924 1.1 oster
1925 1.335 mlelstv /* *THIS* is where we adjust what block we're going to...
1926 1.335 mlelstv * but DO NOT TOUCH bp->b_blkno!!! */
1927 1.335 mlelstv raid_addr = blocknum;
1928 1.335 mlelstv
1929 1.335 mlelstv num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1930 1.335 mlelstv pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1931 1.335 mlelstv sum = raid_addr + num_blocks + pb;
1932 1.335 mlelstv if (1 || rf_debugKernelAccess) {
1933 1.335 mlelstv db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1934 1.335 mlelstv (int) raid_addr, (int) sum, (int) num_blocks,
1935 1.335 mlelstv (int) pb, (int) bp->b_resid));
1936 1.335 mlelstv }
1937 1.335 mlelstv if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1938 1.335 mlelstv || (sum < num_blocks) || (sum < pb)) {
1939 1.335 mlelstv rc = ENOSPC;
1940 1.335 mlelstv goto done;
1941 1.335 mlelstv }
1942 1.335 mlelstv /*
1943 1.335 mlelstv * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1944 1.335 mlelstv */
1945 1.186 perry
1946 1.335 mlelstv if (bp->b_bcount & raidPtr->sectorMask) {
1947 1.335 mlelstv rc = ENOSPC;
1948 1.335 mlelstv goto done;
1949 1.335 mlelstv }
1950 1.335 mlelstv db1_printf(("Calling DoAccess..\n"));
1951 1.99 oster
1952 1.20 oster
1953 1.335 mlelstv rf_lock_mutex2(raidPtr->mutex);
1954 1.335 mlelstv raidPtr->openings--;
1955 1.291 mrg rf_unlock_mutex2(raidPtr->mutex);
1956 1.20 oster
1957 1.335 mlelstv /*
1958 1.335 mlelstv * Everything is async.
1959 1.335 mlelstv */
1960 1.335 mlelstv do_async = 1;
1961 1.20 oster
1962 1.335 mlelstv /* don't ever condition on bp->b_flags & B_WRITE.
1963 1.335 mlelstv * always condition on B_READ instead */
1964 1.7 explorer
1965 1.335 mlelstv rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1966 1.335 mlelstv RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1967 1.335 mlelstv do_async, raid_addr, num_blocks,
1968 1.335 mlelstv bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1969 1.335 mlelstv
1970 1.335 mlelstv done:
1971 1.335 mlelstv return rc;
1972 1.335 mlelstv }
1973 1.7 explorer
1974 1.1 oster /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1975 1.1 oster
1976 1.186 perry int
1977 1.169 oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1978 1.1 oster {
1979 1.9 oster int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1980 1.1 oster struct buf *bp;
1981 1.9 oster
1982 1.1 oster req->queue = queue;
1983 1.1 oster bp = req->bp;
1984 1.1 oster
1985 1.1 oster switch (req->type) {
1986 1.9 oster case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1987 1.1 oster /* XXX need to do something extra here.. */
1988 1.9 oster /* I'm leaving this in, as I've never actually seen it used,
1989 1.9 oster * and I'd like folks to report it... GO */
1990 1.391 mrg printf("%s: WAKEUP CALLED\n", __func__);
1991 1.1 oster queue->numOutstanding++;
1992 1.1 oster
1993 1.197 oster bp->b_flags = 0;
1994 1.207 simonb bp->b_private = req;
1995 1.1 oster
1996 1.194 oster KernelWakeupFunc(bp);
1997 1.1 oster break;
1998 1.9 oster
1999 1.1 oster case RF_IO_TYPE_READ:
2000 1.1 oster case RF_IO_TYPE_WRITE:
2001 1.175 oster #if RF_ACC_TRACE > 0
2002 1.1 oster if (req->tracerec) {
2003 1.1 oster RF_ETIMER_START(req->tracerec->timer);
2004 1.1 oster }
2005 1.175 oster #endif
2006 1.194 oster InitBP(bp, queue->rf_cinfo->ci_vp,
2007 1.197 oster op, queue->rf_cinfo->ci_dev,
2008 1.9 oster req->sectorOffset, req->numSector,
2009 1.9 oster req->buf, KernelWakeupFunc, (void *) req,
2010 1.384 jdolecek queue->raidPtr->logBytesPerSector);
2011 1.1 oster
2012 1.1 oster if (rf_debugKernelAccess) {
2013 1.9 oster db1_printf(("dispatch: bp->b_blkno = %ld\n",
2014 1.9 oster (long) bp->b_blkno));
2015 1.1 oster }
2016 1.1 oster queue->numOutstanding++;
2017 1.1 oster queue->last_deq_sector = req->sectorOffset;
2018 1.9 oster /* acc wouldn't have been let in if there were any pending
2019 1.9 oster * reqs at any other priority */
2020 1.1 oster queue->curPriority = req->priority;
2021 1.1 oster
2022 1.166 oster db1_printf(("Going for %c to unit %d col %d\n",
2023 1.186 perry req->type, queue->raidPtr->raidid,
2024 1.166 oster queue->col));
2025 1.1 oster db1_printf(("sector %d count %d (%d bytes) %d\n",
2026 1.9 oster (int) req->sectorOffset, (int) req->numSector,
2027 1.9 oster (int) (req->numSector <<
2028 1.9 oster queue->raidPtr->logBytesPerSector),
2029 1.9 oster (int) queue->raidPtr->logBytesPerSector));
2030 1.256 oster
2031 1.256 oster /*
2032 1.385 riastrad * XXX: drop lock here since this can block at
2033 1.256 oster * least with backing SCSI devices. Retake it
2034 1.256 oster * to minimize fuss with calling interfaces.
2035 1.256 oster */
2036 1.256 oster
2037 1.256 oster RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
2038 1.247 oster bdev_strategy(bp);
2039 1.256 oster RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
2040 1.1 oster break;
2041 1.9 oster
2042 1.1 oster default:
2043 1.1 oster panic("bad req->type in rf_DispatchKernelIO");
2044 1.1 oster }
2045 1.1 oster db1_printf(("Exiting from DispatchKernelIO\n"));
2046 1.134 oster
2047 1.389 skrll return 0;
2048 1.1 oster }
2049 1.9 oster /* this is the callback function associated with a I/O invoked from
2050 1.1 oster kernel code.
2051 1.1 oster */
2052 1.186 perry static void
2053 1.194 oster KernelWakeupFunc(struct buf *bp)
2054 1.9 oster {
2055 1.9 oster RF_DiskQueueData_t *req = NULL;
2056 1.9 oster RF_DiskQueue_t *queue;
2057 1.9 oster
2058 1.9 oster db1_printf(("recovering the request queue:\n"));
2059 1.285 mrg
2060 1.207 simonb req = bp->b_private;
2061 1.1 oster
2062 1.9 oster queue = (RF_DiskQueue_t *) req->queue;
2063 1.1 oster
2064 1.286 mrg rf_lock_mutex2(queue->raidPtr->iodone_lock);
2065 1.285 mrg
2066 1.175 oster #if RF_ACC_TRACE > 0
2067 1.9 oster if (req->tracerec) {
2068 1.9 oster RF_ETIMER_STOP(req->tracerec->timer);
2069 1.9 oster RF_ETIMER_EVAL(req->tracerec->timer);
2070 1.288 mrg rf_lock_mutex2(rf_tracing_mutex);
2071 1.9 oster req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2072 1.9 oster req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2073 1.9 oster req->tracerec->num_phys_ios++;
2074 1.288 mrg rf_unlock_mutex2(rf_tracing_mutex);
2075 1.9 oster }
2076 1.175 oster #endif
2077 1.1 oster
2078 1.230 ad /* XXX Ok, let's get aggressive... If b_error is set, let's go
2079 1.9 oster * ballistic, and mark the component as hosed... */
2080 1.36 oster
2081 1.230 ad if (bp->b_error != 0) {
2082 1.9 oster /* Mark the disk as dead */
2083 1.9 oster /* but only mark it once... */
2084 1.186 perry /* and only if it wouldn't leave this RAID set
2085 1.183 oster completely broken */
2086 1.193 oster if (((queue->raidPtr->Disks[queue->col].status ==
2087 1.193 oster rf_ds_optimal) ||
2088 1.193 oster (queue->raidPtr->Disks[queue->col].status ==
2089 1.385 riastrad rf_ds_used_spare)) &&
2090 1.193 oster (queue->raidPtr->numFailures <
2091 1.204 simonb queue->raidPtr->Layout.map->faultsTolerated)) {
2092 1.322 prlw1 printf("raid%d: IO Error (%d). Marking %s as failed.\n",
2093 1.136 oster queue->raidPtr->raidid,
2094 1.322 prlw1 bp->b_error,
2095 1.166 oster queue->raidPtr->Disks[queue->col].devname);
2096 1.166 oster queue->raidPtr->Disks[queue->col].status =
2097 1.9 oster rf_ds_failed;
2098 1.166 oster queue->raidPtr->status = rf_rs_degraded;
2099 1.9 oster queue->raidPtr->numFailures++;
2100 1.56 oster queue->raidPtr->numNewFailures++;
2101 1.9 oster } else { /* Disk is already dead... */
2102 1.9 oster /* printf("Disk already marked as dead!\n"); */
2103 1.9 oster }
2104 1.4 oster
2105 1.9 oster }
2106 1.4 oster
2107 1.143 oster /* Fill in the error value */
2108 1.230 ad req->error = bp->b_error;
2109 1.143 oster
2110 1.143 oster /* Drop this one on the "finished" queue... */
2111 1.143 oster TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2112 1.143 oster
2113 1.143 oster /* Let the raidio thread know there is work to be done. */
2114 1.286 mrg rf_signal_cond2(queue->raidPtr->iodone_cv);
2115 1.143 oster
2116 1.286 mrg rf_unlock_mutex2(queue->raidPtr->iodone_lock);
2117 1.1 oster }
2118 1.1 oster
2119 1.1 oster
2120 1.1 oster /*
2121 1.1 oster * initialize a buf structure for doing an I/O in the kernel.
2122 1.1 oster */
2123 1.186 perry static void
2124 1.169 oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2125 1.225 christos RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2126 1.384 jdolecek void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector)
2127 1.9 oster {
2128 1.384 jdolecek bp->b_flags = rw_flag | (bp->b_flags & rf_b_pass);
2129 1.242 ad bp->b_oflags = 0;
2130 1.242 ad bp->b_cflags = 0;
2131 1.9 oster bp->b_bcount = numSect << logBytesPerSector;
2132 1.9 oster bp->b_bufsize = bp->b_bcount;
2133 1.9 oster bp->b_error = 0;
2134 1.9 oster bp->b_dev = dev;
2135 1.187 christos bp->b_data = bf;
2136 1.275 mrg bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
2137 1.9 oster bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2138 1.1 oster if (bp->b_bcount == 0) {
2139 1.141 provos panic("bp->b_bcount is zero in InitBP!!");
2140 1.1 oster }
2141 1.9 oster bp->b_iodone = cbFunc;
2142 1.207 simonb bp->b_private = cbArg;
2143 1.1 oster }
2144 1.1 oster
2145 1.1 oster /*
2146 1.1 oster * Wait interruptibly for an exclusive lock.
2147 1.1 oster *
2148 1.1 oster * XXX
2149 1.1 oster * Several drivers do this; it should be abstracted and made MP-safe.
2150 1.1 oster * (Hmm... where have we seen this warning before :-> GO )
2151 1.1 oster */
2152 1.1 oster static int
2153 1.169 oster raidlock(struct raid_softc *rs)
2154 1.1 oster {
2155 1.9 oster int error;
2156 1.1 oster
2157 1.335 mlelstv error = 0;
2158 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2159 1.1 oster while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2160 1.1 oster rs->sc_flags |= RAIDF_WANTED;
2161 1.327 pgoyette error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
2162 1.327 pgoyette if (error != 0)
2163 1.335 mlelstv goto done;
2164 1.1 oster }
2165 1.1 oster rs->sc_flags |= RAIDF_LOCKED;
2166 1.335 mlelstv done:
2167 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2168 1.389 skrll return error;
2169 1.1 oster }
2170 1.1 oster /*
2171 1.1 oster * Unlock and wake up any waiters.
2172 1.1 oster */
2173 1.1 oster static void
2174 1.169 oster raidunlock(struct raid_softc *rs)
2175 1.1 oster {
2176 1.1 oster
2177 1.327 pgoyette mutex_enter(&rs->sc_mutex);
2178 1.1 oster rs->sc_flags &= ~RAIDF_LOCKED;
2179 1.1 oster if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2180 1.1 oster rs->sc_flags &= ~RAIDF_WANTED;
2181 1.327 pgoyette cv_broadcast(&rs->sc_cv);
2182 1.1 oster }
2183 1.327 pgoyette mutex_exit(&rs->sc_mutex);
2184 1.11 oster }
2185 1.186 perry
2186 1.11 oster
2187 1.11 oster #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2188 1.11 oster #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2189 1.269 jld #define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
2190 1.11 oster
2191 1.276 mrg static daddr_t
2192 1.276 mrg rf_component_info_offset(void)
2193 1.276 mrg {
2194 1.276 mrg
2195 1.276 mrg return RF_COMPONENT_INFO_OFFSET;
2196 1.276 mrg }
2197 1.276 mrg
2198 1.276 mrg static daddr_t
2199 1.276 mrg rf_component_info_size(unsigned secsize)
2200 1.276 mrg {
2201 1.276 mrg daddr_t info_size;
2202 1.276 mrg
2203 1.276 mrg KASSERT(secsize);
2204 1.276 mrg if (secsize > RF_COMPONENT_INFO_SIZE)
2205 1.276 mrg info_size = secsize;
2206 1.276 mrg else
2207 1.276 mrg info_size = RF_COMPONENT_INFO_SIZE;
2208 1.276 mrg
2209 1.276 mrg return info_size;
2210 1.276 mrg }
2211 1.276 mrg
2212 1.276 mrg static daddr_t
2213 1.276 mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
2214 1.276 mrg {
2215 1.276 mrg daddr_t map_offset;
2216 1.276 mrg
2217 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2218 1.276 mrg if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
2219 1.276 mrg map_offset = raidPtr->bytesPerSector;
2220 1.276 mrg else
2221 1.276 mrg map_offset = RF_COMPONENT_INFO_SIZE;
2222 1.276 mrg map_offset += rf_component_info_offset();
2223 1.276 mrg
2224 1.276 mrg return map_offset;
2225 1.276 mrg }
2226 1.276 mrg
2227 1.276 mrg static daddr_t
2228 1.276 mrg rf_parity_map_size(RF_Raid_t *raidPtr)
2229 1.276 mrg {
2230 1.276 mrg daddr_t map_size;
2231 1.276 mrg
2232 1.276 mrg if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
2233 1.276 mrg map_size = raidPtr->bytesPerSector;
2234 1.276 mrg else
2235 1.276 mrg map_size = RF_PARITY_MAP_SIZE;
2236 1.276 mrg
2237 1.276 mrg return map_size;
2238 1.276 mrg }
2239 1.276 mrg
2240 1.186 perry int
2241 1.269 jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
2242 1.12 oster {
2243 1.269 jld RF_ComponentLabel_t *clabel;
2244 1.269 jld
2245 1.269 jld clabel = raidget_component_label(raidPtr, col);
2246 1.269 jld clabel->clean = RF_RAID_CLEAN;
2247 1.269 jld raidflush_component_label(raidPtr, col);
2248 1.12 oster return(0);
2249 1.12 oster }
2250 1.12 oster
2251 1.12 oster
2252 1.186 perry int
2253 1.269 jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
2254 1.11 oster {
2255 1.269 jld RF_ComponentLabel_t *clabel;
2256 1.269 jld
2257 1.269 jld clabel = raidget_component_label(raidPtr, col);
2258 1.269 jld clabel->clean = RF_RAID_DIRTY;
2259 1.269 jld raidflush_component_label(raidPtr, col);
2260 1.11 oster return(0);
2261 1.11 oster }
2262 1.11 oster
2263 1.11 oster int
2264 1.269 jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2265 1.269 jld {
2266 1.276 mrg KASSERT(raidPtr->bytesPerSector);
2267 1.276 mrg return raidread_component_label(raidPtr->bytesPerSector,
2268 1.276 mrg raidPtr->Disks[col].dev,
2269 1.385 riastrad raidPtr->raid_cinfo[col].ci_vp,
2270 1.269 jld &raidPtr->raid_cinfo[col].ci_label);
2271 1.269 jld }
2272 1.269 jld
2273 1.269 jld RF_ComponentLabel_t *
2274 1.269 jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2275 1.269 jld {
2276 1.269 jld return &raidPtr->raid_cinfo[col].ci_label;
2277 1.269 jld }
2278 1.269 jld
2279 1.269 jld int
2280 1.269 jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
2281 1.269 jld {
2282 1.269 jld RF_ComponentLabel_t *label;
2283 1.269 jld
2284 1.269 jld label = &raidPtr->raid_cinfo[col].ci_label;
2285 1.269 jld label->mod_counter = raidPtr->mod_counter;
2286 1.269 jld #ifndef RF_NO_PARITY_MAP
2287 1.269 jld label->parity_map_modcount = label->mod_counter;
2288 1.269 jld #endif
2289 1.276 mrg return raidwrite_component_label(raidPtr->bytesPerSector,
2290 1.276 mrg raidPtr->Disks[col].dev,
2291 1.269 jld raidPtr->raid_cinfo[col].ci_vp, label);
2292 1.269 jld }
2293 1.269 jld
2294 1.269 jld
2295 1.269 jld static int
2296 1.276 mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2297 1.269 jld RF_ComponentLabel_t *clabel)
2298 1.269 jld {
2299 1.385 riastrad return raidread_component_area(dev, b_vp, clabel,
2300 1.269 jld sizeof(RF_ComponentLabel_t),
2301 1.276 mrg rf_component_info_offset(),
2302 1.276 mrg rf_component_info_size(secsize));
2303 1.269 jld }
2304 1.269 jld
2305 1.269 jld /* ARGSUSED */
2306 1.269 jld static int
2307 1.269 jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
2308 1.269 jld size_t msize, daddr_t offset, daddr_t dsize)
2309 1.11 oster {
2310 1.11 oster struct buf *bp;
2311 1.11 oster int error;
2312 1.186 perry
2313 1.11 oster /* XXX should probably ensure that we don't try to do this if
2314 1.186 perry someone has changed rf_protected_sectors. */
2315 1.11 oster
2316 1.98 oster if (b_vp == NULL) {
2317 1.98 oster /* For whatever reason, this component is not valid.
2318 1.98 oster Don't try to read a component label from it. */
2319 1.98 oster return(EINVAL);
2320 1.98 oster }
2321 1.98 oster
2322 1.11 oster /* get a block of the appropriate size... */
2323 1.269 jld bp = geteblk((int)dsize);
2324 1.11 oster bp->b_dev = dev;
2325 1.11 oster
2326 1.11 oster /* get our ducks in a row for the read */
2327 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2328 1.269 jld bp->b_bcount = dsize;
2329 1.100 chs bp->b_flags |= B_READ;
2330 1.269 jld bp->b_resid = dsize;
2331 1.11 oster
2332 1.331 mlelstv bdev_strategy(bp);
2333 1.340 christos error = biowait(bp);
2334 1.11 oster
2335 1.11 oster if (!error) {
2336 1.269 jld memcpy(data, bp->b_data, msize);
2337 1.204 simonb }
2338 1.11 oster
2339 1.233 ad brelse(bp, 0);
2340 1.11 oster return(error);
2341 1.11 oster }
2342 1.269 jld
2343 1.269 jld
2344 1.269 jld static int
2345 1.276 mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
2346 1.276 mrg RF_ComponentLabel_t *clabel)
2347 1.269 jld {
2348 1.269 jld return raidwrite_component_area(dev, b_vp, clabel,
2349 1.269 jld sizeof(RF_ComponentLabel_t),
2350 1.276 mrg rf_component_info_offset(),
2351 1.276 mrg rf_component_info_size(secsize), 0);
2352 1.269 jld }
2353 1.269 jld
2354 1.11 oster /* ARGSUSED */
2355 1.269 jld static int
2356 1.385 riastrad raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
2357 1.269 jld size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
2358 1.11 oster {
2359 1.11 oster struct buf *bp;
2360 1.11 oster int error;
2361 1.11 oster
2362 1.11 oster /* get a block of the appropriate size... */
2363 1.269 jld bp = geteblk((int)dsize);
2364 1.11 oster bp->b_dev = dev;
2365 1.11 oster
2366 1.11 oster /* get our ducks in a row for the write */
2367 1.269 jld bp->b_blkno = offset / DEV_BSIZE;
2368 1.269 jld bp->b_bcount = dsize;
2369 1.269 jld bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
2370 1.269 jld bp->b_resid = dsize;
2371 1.11 oster
2372 1.269 jld memset(bp->b_data, 0, dsize);
2373 1.269 jld memcpy(bp->b_data, data, msize);
2374 1.11 oster
2375 1.331 mlelstv bdev_strategy(bp);
2376 1.269 jld if (asyncp)
2377 1.269 jld return 0;
2378 1.340 christos error = biowait(bp);
2379 1.233 ad brelse(bp, 0);
2380 1.11 oster if (error) {
2381 1.48 oster #if 1
2382 1.11 oster printf("Failed to write RAID component info!\n");
2383 1.48 oster #endif
2384 1.11 oster }
2385 1.11 oster
2386 1.11 oster return(error);
2387 1.1 oster }
2388 1.12 oster
2389 1.186 perry void
2390 1.269 jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2391 1.269 jld {
2392 1.269 jld int c;
2393 1.269 jld
2394 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2395 1.269 jld /* Skip dead disks. */
2396 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2397 1.269 jld continue;
2398 1.269 jld /* XXXjld: what if an error occurs here? */
2399 1.269 jld raidwrite_component_area(raidPtr->Disks[c].dev,
2400 1.269 jld raidPtr->raid_cinfo[c].ci_vp, map,
2401 1.269 jld RF_PARITYMAP_NBYTE,
2402 1.276 mrg rf_parity_map_offset(raidPtr),
2403 1.276 mrg rf_parity_map_size(raidPtr), 0);
2404 1.269 jld }
2405 1.269 jld }
2406 1.269 jld
2407 1.269 jld void
2408 1.269 jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
2409 1.269 jld {
2410 1.269 jld struct rf_paritymap_ondisk tmp;
2411 1.272 oster int c,first;
2412 1.269 jld
2413 1.272 oster first=1;
2414 1.269 jld for (c = 0; c < raidPtr->numCol; c++) {
2415 1.269 jld /* Skip dead disks. */
2416 1.269 jld if (RF_DEAD_DISK(raidPtr->Disks[c].status))
2417 1.269 jld continue;
2418 1.269 jld raidread_component_area(raidPtr->Disks[c].dev,
2419 1.269 jld raidPtr->raid_cinfo[c].ci_vp, &tmp,
2420 1.269 jld RF_PARITYMAP_NBYTE,
2421 1.276 mrg rf_parity_map_offset(raidPtr),
2422 1.276 mrg rf_parity_map_size(raidPtr));
2423 1.272 oster if (first) {
2424 1.269 jld memcpy(map, &tmp, sizeof(*map));
2425 1.272 oster first = 0;
2426 1.269 jld } else {
2427 1.269 jld rf_paritymap_merge(map, &tmp);
2428 1.269 jld }
2429 1.269 jld }
2430 1.269 jld }
2431 1.269 jld
2432 1.269 jld void
2433 1.169 oster rf_markalldirty(RF_Raid_t *raidPtr)
2434 1.12 oster {
2435 1.269 jld RF_ComponentLabel_t *clabel;
2436 1.146 oster int sparecol;
2437 1.166 oster int c;
2438 1.166 oster int j;
2439 1.166 oster int scol = -1;
2440 1.12 oster
2441 1.12 oster raidPtr->mod_counter++;
2442 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2443 1.166 oster /* we don't want to touch (at all) a disk that has
2444 1.166 oster failed */
2445 1.166 oster if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2446 1.269 jld clabel = raidget_component_label(raidPtr, c);
2447 1.269 jld if (clabel->status == rf_ds_spared) {
2448 1.186 perry /* XXX do something special...
2449 1.186 perry but whatever you do, don't
2450 1.166 oster try to access it!! */
2451 1.166 oster } else {
2452 1.269 jld raidmarkdirty(raidPtr, c);
2453 1.12 oster }
2454 1.166 oster }
2455 1.186 perry }
2456 1.146 oster
2457 1.12 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2458 1.12 oster sparecol = raidPtr->numCol + c;
2459 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2460 1.186 perry /*
2461 1.186 perry
2462 1.186 perry we claim this disk is "optimal" if it's
2463 1.186 perry rf_ds_used_spare, as that means it should be
2464 1.186 perry directly substitutable for the disk it replaced.
2465 1.12 oster We note that too...
2466 1.12 oster
2467 1.12 oster */
2468 1.12 oster
2469 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2470 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2471 1.166 oster scol = j;
2472 1.166 oster break;
2473 1.12 oster }
2474 1.12 oster }
2475 1.186 perry
2476 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2477 1.12 oster /* make sure status is noted */
2478 1.146 oster
2479 1.269 jld raid_init_component_label(raidPtr, clabel);
2480 1.146 oster
2481 1.269 jld clabel->row = 0;
2482 1.269 jld clabel->column = scol;
2483 1.146 oster /* Note: we *don't* change status from rf_ds_used_spare
2484 1.146 oster to rf_ds_optimal */
2485 1.146 oster /* clabel.status = rf_ds_optimal; */
2486 1.186 perry
2487 1.269 jld raidmarkdirty(raidPtr, sparecol);
2488 1.12 oster }
2489 1.12 oster }
2490 1.12 oster }
2491 1.12 oster
2492 1.13 oster
2493 1.13 oster void
2494 1.169 oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2495 1.13 oster {
2496 1.269 jld RF_ComponentLabel_t *clabel;
2497 1.13 oster int sparecol;
2498 1.166 oster int c;
2499 1.166 oster int j;
2500 1.166 oster int scol;
2501 1.341 christos struct raid_softc *rs = raidPtr->softc;
2502 1.13 oster
2503 1.13 oster scol = -1;
2504 1.13 oster
2505 1.186 perry /* XXX should do extra checks to make sure things really are clean,
2506 1.13 oster rather than blindly setting the clean bit... */
2507 1.13 oster
2508 1.13 oster raidPtr->mod_counter++;
2509 1.13 oster
2510 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2511 1.166 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
2512 1.269 jld clabel = raidget_component_label(raidPtr, c);
2513 1.201 oster /* make sure status is noted */
2514 1.269 jld clabel->status = rf_ds_optimal;
2515 1.385 riastrad
2516 1.214 oster /* note what unit we are configured as */
2517 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2518 1.341 christos clabel->last_unit = raidPtr->raidid;
2519 1.214 oster
2520 1.269 jld raidflush_component_label(raidPtr, c);
2521 1.166 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2522 1.166 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2523 1.269 jld raidmarkclean(raidPtr, c);
2524 1.91 oster }
2525 1.166 oster }
2526 1.186 perry }
2527 1.166 oster /* else we don't touch it.. */
2528 1.186 perry }
2529 1.63 oster
2530 1.63 oster for( c = 0; c < raidPtr->numSpare ; c++) {
2531 1.63 oster sparecol = raidPtr->numCol + c;
2532 1.110 oster /* Need to ensure that the reconstruct actually completed! */
2533 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2534 1.186 perry /*
2535 1.186 perry
2536 1.186 perry we claim this disk is "optimal" if it's
2537 1.186 perry rf_ds_used_spare, as that means it should be
2538 1.186 perry directly substitutable for the disk it replaced.
2539 1.63 oster We note that too...
2540 1.63 oster
2541 1.63 oster */
2542 1.63 oster
2543 1.166 oster for(j=0;j<raidPtr->numCol;j++) {
2544 1.166 oster if (raidPtr->Disks[j].spareCol == sparecol) {
2545 1.166 oster scol = j;
2546 1.166 oster break;
2547 1.63 oster }
2548 1.63 oster }
2549 1.186 perry
2550 1.63 oster /* XXX shouldn't *really* need this... */
2551 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
2552 1.63 oster /* make sure status is noted */
2553 1.63 oster
2554 1.269 jld raid_init_component_label(raidPtr, clabel);
2555 1.269 jld
2556 1.269 jld clabel->column = scol;
2557 1.269 jld clabel->status = rf_ds_optimal;
2558 1.341 christos if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
2559 1.341 christos clabel->last_unit = raidPtr->raidid;
2560 1.63 oster
2561 1.269 jld raidflush_component_label(raidPtr, sparecol);
2562 1.91 oster if (final == RF_FINAL_COMPONENT_UPDATE) {
2563 1.13 oster if (raidPtr->parity_good == RF_RAID_CLEAN) {
2564 1.269 jld raidmarkclean(raidPtr, sparecol);
2565 1.13 oster }
2566 1.13 oster }
2567 1.13 oster }
2568 1.13 oster }
2569 1.68 oster }
2570 1.68 oster
2571 1.68 oster void
2572 1.169 oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2573 1.69 oster {
2574 1.69 oster
2575 1.69 oster if (vp != NULL) {
2576 1.69 oster if (auto_configured == 1) {
2577 1.96 oster vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2578 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2579 1.69 oster vput(vp);
2580 1.186 perry
2581 1.186 perry } else {
2582 1.244 ad (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
2583 1.69 oster }
2584 1.186 perry }
2585 1.69 oster }
2586 1.69 oster
2587 1.69 oster
2588 1.69 oster void
2589 1.169 oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2590 1.68 oster {
2591 1.186 perry int r,c;
2592 1.69 oster struct vnode *vp;
2593 1.69 oster int acd;
2594 1.68 oster
2595 1.68 oster
2596 1.68 oster /* We take this opportunity to close the vnodes like we should.. */
2597 1.68 oster
2598 1.166 oster for (c = 0; c < raidPtr->numCol; c++) {
2599 1.166 oster vp = raidPtr->raid_cinfo[c].ci_vp;
2600 1.166 oster acd = raidPtr->Disks[c].auto_configured;
2601 1.166 oster rf_close_component(raidPtr, vp, acd);
2602 1.166 oster raidPtr->raid_cinfo[c].ci_vp = NULL;
2603 1.166 oster raidPtr->Disks[c].auto_configured = 0;
2604 1.68 oster }
2605 1.166 oster
2606 1.68 oster for (r = 0; r < raidPtr->numSpare; r++) {
2607 1.166 oster vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2608 1.166 oster acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2609 1.69 oster rf_close_component(raidPtr, vp, acd);
2610 1.166 oster raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2611 1.166 oster raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2612 1.68 oster }
2613 1.37 oster }
2614 1.63 oster
2615 1.37 oster
2616 1.393 mrg static void
2617 1.353 mrg rf_ReconThread(struct rf_recon_req_internal *req)
2618 1.37 oster {
2619 1.37 oster int s;
2620 1.37 oster RF_Raid_t *raidPtr;
2621 1.37 oster
2622 1.37 oster s = splbio();
2623 1.37 oster raidPtr = (RF_Raid_t *) req->raidPtr;
2624 1.37 oster raidPtr->recon_in_progress = 1;
2625 1.37 oster
2626 1.166 oster rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2627 1.37 oster ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2628 1.37 oster
2629 1.37 oster RF_Free(req, sizeof(*req));
2630 1.37 oster
2631 1.37 oster raidPtr->recon_in_progress = 0;
2632 1.37 oster splx(s);
2633 1.37 oster
2634 1.37 oster /* That's all... */
2635 1.204 simonb kthread_exit(0); /* does not return */
2636 1.37 oster }
2637 1.37 oster
2638 1.393 mrg static void
2639 1.169 oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
2640 1.37 oster {
2641 1.37 oster int retcode;
2642 1.37 oster int s;
2643 1.37 oster
2644 1.184 oster raidPtr->parity_rewrite_stripes_done = 0;
2645 1.37 oster raidPtr->parity_rewrite_in_progress = 1;
2646 1.37 oster s = splbio();
2647 1.37 oster retcode = rf_RewriteParity(raidPtr);
2648 1.37 oster splx(s);
2649 1.37 oster if (retcode) {
2650 1.279 christos printf("raid%d: Error re-writing parity (%d)!\n",
2651 1.279 christos raidPtr->raidid, retcode);
2652 1.37 oster } else {
2653 1.37 oster /* set the clean bit! If we shutdown correctly,
2654 1.37 oster the clean bit on each component label will get
2655 1.37 oster set */
2656 1.37 oster raidPtr->parity_good = RF_RAID_CLEAN;
2657 1.37 oster }
2658 1.37 oster raidPtr->parity_rewrite_in_progress = 0;
2659 1.85 oster
2660 1.85 oster /* Anyone waiting for us to stop? If so, inform them... */
2661 1.85 oster if (raidPtr->waitShutdown) {
2662 1.357 mrg rf_lock_mutex2(raidPtr->rad_lock);
2663 1.357 mrg cv_broadcast(&raidPtr->parity_rewrite_cv);
2664 1.357 mrg rf_unlock_mutex2(raidPtr->rad_lock);
2665 1.85 oster }
2666 1.37 oster
2667 1.37 oster /* That's all... */
2668 1.204 simonb kthread_exit(0); /* does not return */
2669 1.37 oster }
2670 1.37 oster
2671 1.37 oster
2672 1.393 mrg static void
2673 1.169 oster rf_CopybackThread(RF_Raid_t *raidPtr)
2674 1.37 oster {
2675 1.37 oster int s;
2676 1.37 oster
2677 1.37 oster raidPtr->copyback_in_progress = 1;
2678 1.37 oster s = splbio();
2679 1.37 oster rf_CopybackReconstructedData(raidPtr);
2680 1.37 oster splx(s);
2681 1.37 oster raidPtr->copyback_in_progress = 0;
2682 1.37 oster
2683 1.37 oster /* That's all... */
2684 1.204 simonb kthread_exit(0); /* does not return */
2685 1.37 oster }
2686 1.37 oster
2687 1.37 oster
2688 1.393 mrg static void
2689 1.353 mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
2690 1.37 oster {
2691 1.37 oster int s;
2692 1.37 oster RF_Raid_t *raidPtr;
2693 1.186 perry
2694 1.37 oster s = splbio();
2695 1.37 oster raidPtr = req->raidPtr;
2696 1.37 oster raidPtr->recon_in_progress = 1;
2697 1.166 oster rf_ReconstructInPlace(raidPtr, req->col);
2698 1.37 oster RF_Free(req, sizeof(*req));
2699 1.37 oster raidPtr->recon_in_progress = 0;
2700 1.37 oster splx(s);
2701 1.37 oster
2702 1.37 oster /* That's all... */
2703 1.204 simonb kthread_exit(0); /* does not return */
2704 1.48 oster }
2705 1.48 oster
2706 1.213 christos static RF_AutoConfig_t *
2707 1.213 christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2708 1.276 mrg const char *cname, RF_SectorCount_t size, uint64_t numsecs,
2709 1.276 mrg unsigned secsize)
2710 1.213 christos {
2711 1.213 christos int good_one = 0;
2712 1.385 riastrad RF_ComponentLabel_t *clabel;
2713 1.213 christos RF_AutoConfig_t *ac;
2714 1.213 christos
2715 1.379 chs clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_WAITOK);
2716 1.213 christos
2717 1.276 mrg if (!raidread_component_label(secsize, dev, vp, clabel)) {
2718 1.276 mrg /* Got the label. Does it look reasonable? */
2719 1.385 riastrad if (rf_reasonable_label(clabel, numsecs) &&
2720 1.282 enami (rf_component_label_partitionsize(clabel) <= size)) {
2721 1.224 oster #ifdef DEBUG
2722 1.276 mrg printf("Component on: %s: %llu\n",
2723 1.213 christos cname, (unsigned long long)size);
2724 1.276 mrg rf_print_component_label(clabel);
2725 1.213 christos #endif
2726 1.276 mrg /* if it's reasonable, add it, else ignore it. */
2727 1.276 mrg ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2728 1.379 chs M_WAITOK);
2729 1.276 mrg strlcpy(ac->devname, cname, sizeof(ac->devname));
2730 1.276 mrg ac->dev = dev;
2731 1.276 mrg ac->vp = vp;
2732 1.276 mrg ac->clabel = clabel;
2733 1.276 mrg ac->next = ac_list;
2734 1.276 mrg ac_list = ac;
2735 1.276 mrg good_one = 1;
2736 1.276 mrg }
2737 1.213 christos }
2738 1.213 christos if (!good_one) {
2739 1.213 christos /* cleanup */
2740 1.213 christos free(clabel, M_RAIDFRAME);
2741 1.213 christos vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2742 1.238 pooka VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2743 1.213 christos vput(vp);
2744 1.213 christos }
2745 1.213 christos return ac_list;
2746 1.213 christos }
2747 1.213 christos
2748 1.393 mrg static RF_AutoConfig_t *
2749 1.259 cegger rf_find_raid_components(void)
2750 1.48 oster {
2751 1.48 oster struct vnode *vp;
2752 1.48 oster struct disklabel label;
2753 1.261 dyoung device_t dv;
2754 1.268 dyoung deviter_t di;
2755 1.48 oster dev_t dev;
2756 1.296 buhrow int bmajor, bminor, wedge, rf_part_found;
2757 1.48 oster int error;
2758 1.48 oster int i;
2759 1.48 oster RF_AutoConfig_t *ac_list;
2760 1.276 mrg uint64_t numsecs;
2761 1.276 mrg unsigned secsize;
2762 1.335 mlelstv int dowedges;
2763 1.48 oster
2764 1.48 oster /* initialize the AutoConfig list */
2765 1.48 oster ac_list = NULL;
2766 1.48 oster
2767 1.335 mlelstv /*
2768 1.335 mlelstv * we begin by trolling through *all* the devices on the system *twice*
2769 1.335 mlelstv * first we scan for wedges, second for other devices. This avoids
2770 1.335 mlelstv * using a raw partition instead of a wedge that covers the whole disk
2771 1.335 mlelstv */
2772 1.48 oster
2773 1.335 mlelstv for (dowedges=1; dowedges>=0; --dowedges) {
2774 1.335 mlelstv for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
2775 1.335 mlelstv dv = deviter_next(&di)) {
2776 1.48 oster
2777 1.393 mrg /* we are only interested in disks */
2778 1.335 mlelstv if (device_class(dv) != DV_DISK)
2779 1.335 mlelstv continue;
2780 1.48 oster
2781 1.393 mrg /* we don't care about floppies */
2782 1.335 mlelstv if (device_is_a(dv, "fd")) {
2783 1.335 mlelstv continue;
2784 1.335 mlelstv }
2785 1.129 oster
2786 1.393 mrg /* we don't care about CDs. */
2787 1.335 mlelstv if (device_is_a(dv, "cd")) {
2788 1.335 mlelstv continue;
2789 1.335 mlelstv }
2790 1.129 oster
2791 1.393 mrg /* we don't care about md. */
2792 1.335 mlelstv if (device_is_a(dv, "md")) {
2793 1.335 mlelstv continue;
2794 1.335 mlelstv }
2795 1.248 oster
2796 1.335 mlelstv /* hdfd is the Atari/Hades floppy driver */
2797 1.335 mlelstv if (device_is_a(dv, "hdfd")) {
2798 1.335 mlelstv continue;
2799 1.335 mlelstv }
2800 1.206 thorpej
2801 1.335 mlelstv /* fdisa is the Atari/Milan floppy driver */
2802 1.335 mlelstv if (device_is_a(dv, "fdisa")) {
2803 1.335 mlelstv continue;
2804 1.335 mlelstv }
2805 1.186 perry
2806 1.393 mrg /* we don't care about spiflash */
2807 1.393 mrg if (device_is_a(dv, "spiflash")) {
2808 1.393 mrg continue;
2809 1.393 mrg }
2810 1.393 mrg
2811 1.335 mlelstv /* are we in the wedges pass ? */
2812 1.335 mlelstv wedge = device_is_a(dv, "dk");
2813 1.335 mlelstv if (wedge != dowedges) {
2814 1.335 mlelstv continue;
2815 1.335 mlelstv }
2816 1.48 oster
2817 1.335 mlelstv /* need to find the device_name_to_block_device_major stuff */
2818 1.335 mlelstv bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
2819 1.296 buhrow
2820 1.335 mlelstv rf_part_found = 0; /*No raid partition as yet*/
2821 1.48 oster
2822 1.335 mlelstv /* get a vnode for the raw partition of this disk */
2823 1.335 mlelstv bminor = minor(device_unit(dv));
2824 1.335 mlelstv dev = wedge ? makedev(bmajor, bminor) :
2825 1.335 mlelstv MAKEDISKDEV(bmajor, bminor, RAW_PART);
2826 1.335 mlelstv if (bdevvp(dev, &vp))
2827 1.335 mlelstv panic("RAID can't alloc vnode");
2828 1.48 oster
2829 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2830 1.335 mlelstv error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
2831 1.48 oster
2832 1.335 mlelstv if (error) {
2833 1.335 mlelstv /* "Who cares." Continue looking
2834 1.335 mlelstv for something that exists*/
2835 1.335 mlelstv vput(vp);
2836 1.335 mlelstv continue;
2837 1.335 mlelstv }
2838 1.48 oster
2839 1.335 mlelstv error = getdisksize(vp, &numsecs, &secsize);
2840 1.213 christos if (error) {
2841 1.339 mlelstv /*
2842 1.339 mlelstv * Pseudo devices like vnd and cgd can be
2843 1.339 mlelstv * opened but may still need some configuration.
2844 1.339 mlelstv * Ignore these quietly.
2845 1.339 mlelstv */
2846 1.339 mlelstv if (error != ENXIO)
2847 1.339 mlelstv printf("RAIDframe: can't get disk size"
2848 1.339 mlelstv " for dev %s (%d)\n",
2849 1.339 mlelstv device_xname(dv), error);
2850 1.241 oster VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2851 1.241 oster vput(vp);
2852 1.213 christos continue;
2853 1.213 christos }
2854 1.335 mlelstv if (wedge) {
2855 1.335 mlelstv struct dkwedge_info dkw;
2856 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2857 1.335 mlelstv NOCRED);
2858 1.335 mlelstv if (error) {
2859 1.335 mlelstv printf("RAIDframe: can't get wedge info for "
2860 1.335 mlelstv "dev %s (%d)\n", device_xname(dv), error);
2861 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2862 1.335 mlelstv vput(vp);
2863 1.335 mlelstv continue;
2864 1.335 mlelstv }
2865 1.213 christos
2866 1.335 mlelstv if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
2867 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2868 1.335 mlelstv vput(vp);
2869 1.335 mlelstv continue;
2870 1.335 mlelstv }
2871 1.385 riastrad
2872 1.375 hannken VOP_UNLOCK(vp);
2873 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp,
2874 1.335 mlelstv device_xname(dv), dkw.dkw_size, numsecs, secsize);
2875 1.335 mlelstv rf_part_found = 1; /*There is a raid component on this disk*/
2876 1.228 christos continue;
2877 1.241 oster }
2878 1.213 christos
2879 1.335 mlelstv /* Ok, the disk exists. Go get the disklabel. */
2880 1.335 mlelstv error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
2881 1.335 mlelstv if (error) {
2882 1.335 mlelstv /*
2883 1.335 mlelstv * XXX can't happen - open() would
2884 1.335 mlelstv * have errored out (or faked up one)
2885 1.335 mlelstv */
2886 1.335 mlelstv if (error != ENOTTY)
2887 1.335 mlelstv printf("RAIDframe: can't get label for dev "
2888 1.335 mlelstv "%s (%d)\n", device_xname(dv), error);
2889 1.335 mlelstv }
2890 1.48 oster
2891 1.335 mlelstv /* don't need this any more. We'll allocate it again
2892 1.335 mlelstv a little later if we really do... */
2893 1.335 mlelstv VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
2894 1.335 mlelstv vput(vp);
2895 1.48 oster
2896 1.335 mlelstv if (error)
2897 1.48 oster continue;
2898 1.48 oster
2899 1.335 mlelstv rf_part_found = 0; /*No raid partitions yet*/
2900 1.335 mlelstv for (i = 0; i < label.d_npartitions; i++) {
2901 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2902 1.335 mlelstv
2903 1.335 mlelstv /* We only support partitions marked as RAID */
2904 1.335 mlelstv if (label.d_partitions[i].p_fstype != FS_RAID)
2905 1.335 mlelstv continue;
2906 1.335 mlelstv
2907 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2908 1.335 mlelstv if (bdevvp(dev, &vp))
2909 1.335 mlelstv panic("RAID can't alloc vnode");
2910 1.335 mlelstv
2911 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2912 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2913 1.335 mlelstv if (error) {
2914 1.335 mlelstv /* Whatever... */
2915 1.335 mlelstv vput(vp);
2916 1.335 mlelstv continue;
2917 1.335 mlelstv }
2918 1.375 hannken VOP_UNLOCK(vp);
2919 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2920 1.335 mlelstv device_xname(dv), 'a' + i);
2921 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2922 1.335 mlelstv label.d_partitions[i].p_size, numsecs, secsize);
2923 1.335 mlelstv rf_part_found = 1; /*There is at least one raid partition on this disk*/
2924 1.48 oster }
2925 1.296 buhrow
2926 1.335 mlelstv /*
2927 1.335 mlelstv *If there is no raid component on this disk, either in a
2928 1.335 mlelstv *disklabel or inside a wedge, check the raw partition as well,
2929 1.335 mlelstv *as it is possible to configure raid components on raw disk
2930 1.335 mlelstv *devices.
2931 1.335 mlelstv */
2932 1.296 buhrow
2933 1.335 mlelstv if (!rf_part_found) {
2934 1.335 mlelstv char cname[sizeof(ac_list->devname)];
2935 1.296 buhrow
2936 1.335 mlelstv dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
2937 1.335 mlelstv if (bdevvp(dev, &vp))
2938 1.335 mlelstv panic("RAID can't alloc vnode");
2939 1.335 mlelstv
2940 1.375 hannken vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2941 1.375 hannken
2942 1.335 mlelstv error = VOP_OPEN(vp, FREAD, NOCRED);
2943 1.335 mlelstv if (error) {
2944 1.335 mlelstv /* Whatever... */
2945 1.335 mlelstv vput(vp);
2946 1.335 mlelstv continue;
2947 1.335 mlelstv }
2948 1.375 hannken VOP_UNLOCK(vp);
2949 1.335 mlelstv snprintf(cname, sizeof(cname), "%s%c",
2950 1.335 mlelstv device_xname(dv), 'a' + RAW_PART);
2951 1.335 mlelstv ac_list = rf_get_component(ac_list, dev, vp, cname,
2952 1.335 mlelstv label.d_partitions[RAW_PART].p_size, numsecs, secsize);
2953 1.296 buhrow }
2954 1.48 oster }
2955 1.335 mlelstv deviter_release(&di);
2956 1.48 oster }
2957 1.213 christos return ac_list;
2958 1.48 oster }
2959 1.186 perry
2960 1.292 oster int
2961 1.284 mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
2962 1.48 oster {
2963 1.186 perry
2964 1.393 mrg if ((clabel->version==RF_COMPONENT_LABEL_VERSION_1 ||
2965 1.393 mrg clabel->version==RF_COMPONENT_LABEL_VERSION) &&
2966 1.393 mrg (clabel->clean == RF_RAID_CLEAN ||
2967 1.393 mrg clabel->clean == RF_RAID_DIRTY) &&
2968 1.186 perry clabel->row >=0 &&
2969 1.186 perry clabel->column >= 0 &&
2970 1.48 oster clabel->num_rows > 0 &&
2971 1.48 oster clabel->num_columns > 0 &&
2972 1.186 perry clabel->row < clabel->num_rows &&
2973 1.48 oster clabel->column < clabel->num_columns &&
2974 1.48 oster clabel->blockSize > 0 &&
2975 1.282 enami /*
2976 1.282 enami * numBlocksHi may contain garbage, but it is ok since
2977 1.282 enami * the type is unsigned. If it is really garbage,
2978 1.282 enami * rf_fix_old_label_size() will fix it.
2979 1.282 enami */
2980 1.282 enami rf_component_label_numblocks(clabel) > 0) {
2981 1.284 mrg /*
2982 1.284 mrg * label looks reasonable enough...
2983 1.284 mrg * let's make sure it has no old garbage.
2984 1.284 mrg */
2985 1.292 oster if (numsecs)
2986 1.292 oster rf_fix_old_label_size(clabel, numsecs);
2987 1.48 oster return(1);
2988 1.48 oster }
2989 1.48 oster return(0);
2990 1.48 oster }
2991 1.48 oster
2992 1.48 oster
2993 1.278 mrg /*
2994 1.278 mrg * For reasons yet unknown, some old component labels have garbage in
2995 1.278 mrg * the newer numBlocksHi region, and this causes lossage. Since those
2996 1.278 mrg * disks will also have numsecs set to less than 32 bits of sectors,
2997 1.299 oster * we can determine when this corruption has occurred, and fix it.
2998 1.284 mrg *
2999 1.284 mrg * The exact same problem, with the same unknown reason, happens to
3000 1.284 mrg * the partitionSizeHi member as well.
3001 1.278 mrg */
3002 1.278 mrg static void
3003 1.278 mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
3004 1.278 mrg {
3005 1.278 mrg
3006 1.284 mrg if (numsecs < ((uint64_t)1 << 32)) {
3007 1.284 mrg if (clabel->numBlocksHi) {
3008 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3009 1.284 mrg "numBlocksHi set\n"
3010 1.284 mrg "WARNING: resetting numBlocksHi to zero.\n");
3011 1.284 mrg clabel->numBlocksHi = 0;
3012 1.284 mrg }
3013 1.284 mrg
3014 1.284 mrg if (clabel->partitionSizeHi) {
3015 1.284 mrg printf("WARNING: total sectors < 32 bits, yet "
3016 1.284 mrg "partitionSizeHi set\n"
3017 1.284 mrg "WARNING: resetting partitionSizeHi to zero.\n");
3018 1.284 mrg clabel->partitionSizeHi = 0;
3019 1.284 mrg }
3020 1.278 mrg }
3021 1.278 mrg }
3022 1.278 mrg
3023 1.278 mrg
3024 1.224 oster #ifdef DEBUG
3025 1.48 oster void
3026 1.169 oster rf_print_component_label(RF_ComponentLabel_t *clabel)
3027 1.48 oster {
3028 1.282 enami uint64_t numBlocks;
3029 1.308 christos static const char *rp[] = {
3030 1.308 christos "No", "Force", "Soft", "*invalid*"
3031 1.308 christos };
3032 1.308 christos
3033 1.275 mrg
3034 1.282 enami numBlocks = rf_component_label_numblocks(clabel);
3035 1.275 mrg
3036 1.48 oster printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3037 1.186 perry clabel->row, clabel->column,
3038 1.48 oster clabel->num_rows, clabel->num_columns);
3039 1.48 oster printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3040 1.48 oster clabel->version, clabel->serial_number,
3041 1.48 oster clabel->mod_counter);
3042 1.48 oster printf(" Clean: %s Status: %d\n",
3043 1.271 dyoung clabel->clean ? "Yes" : "No", clabel->status);
3044 1.48 oster printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3045 1.48 oster clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3046 1.275 mrg printf(" RAID Level: %c blocksize: %d numBlocks: %"PRIu64"\n",
3047 1.275 mrg (char) clabel->parityConfig, clabel->blockSize, numBlocks);
3048 1.271 dyoung printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
3049 1.308 christos printf(" Root partition: %s\n", rp[clabel->root_partition & 3]);
3050 1.271 dyoung printf(" Last configured as: raid%d\n", clabel->last_unit);
3051 1.51 oster #if 0
3052 1.51 oster printf(" Config order: %d\n", clabel->config_order);
3053 1.51 oster #endif
3054 1.186 perry
3055 1.48 oster }
3056 1.133 oster #endif
3057 1.48 oster
3058 1.393 mrg static RF_ConfigSet_t *
3059 1.169 oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3060 1.48 oster {
3061 1.48 oster RF_AutoConfig_t *ac;
3062 1.48 oster RF_ConfigSet_t *config_sets;
3063 1.48 oster RF_ConfigSet_t *cset;
3064 1.48 oster RF_AutoConfig_t *ac_next;
3065 1.48 oster
3066 1.48 oster
3067 1.48 oster config_sets = NULL;
3068 1.48 oster
3069 1.48 oster /* Go through the AutoConfig list, and figure out which components
3070 1.48 oster belong to what sets. */
3071 1.48 oster ac = ac_list;
3072 1.48 oster while(ac!=NULL) {
3073 1.48 oster /* we're going to putz with ac->next, so save it here
3074 1.48 oster for use at the end of the loop */
3075 1.48 oster ac_next = ac->next;
3076 1.48 oster
3077 1.48 oster if (config_sets == NULL) {
3078 1.48 oster /* will need at least this one... */
3079 1.379 chs config_sets = malloc(sizeof(RF_ConfigSet_t),
3080 1.379 chs M_RAIDFRAME, M_WAITOK);
3081 1.48 oster /* this one is easy :) */
3082 1.48 oster config_sets->ac = ac;
3083 1.48 oster config_sets->next = NULL;
3084 1.51 oster config_sets->rootable = 0;
3085 1.48 oster ac->next = NULL;
3086 1.48 oster } else {
3087 1.48 oster /* which set does this component fit into? */
3088 1.48 oster cset = config_sets;
3089 1.48 oster while(cset!=NULL) {
3090 1.49 oster if (rf_does_it_fit(cset, ac)) {
3091 1.86 oster /* looks like it matches... */
3092 1.86 oster ac->next = cset->ac;
3093 1.86 oster cset->ac = ac;
3094 1.48 oster break;
3095 1.48 oster }
3096 1.48 oster cset = cset->next;
3097 1.48 oster }
3098 1.48 oster if (cset==NULL) {
3099 1.48 oster /* didn't find a match above... new set..*/
3100 1.379 chs cset = malloc(sizeof(RF_ConfigSet_t),
3101 1.379 chs M_RAIDFRAME, M_WAITOK);
3102 1.48 oster cset->ac = ac;
3103 1.48 oster ac->next = NULL;
3104 1.48 oster cset->next = config_sets;
3105 1.51 oster cset->rootable = 0;
3106 1.48 oster config_sets = cset;
3107 1.48 oster }
3108 1.48 oster }
3109 1.48 oster ac = ac_next;
3110 1.48 oster }
3111 1.48 oster
3112 1.48 oster
3113 1.48 oster return(config_sets);
3114 1.48 oster }
3115 1.48 oster
3116 1.48 oster static int
3117 1.169 oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3118 1.48 oster {
3119 1.48 oster RF_ComponentLabel_t *clabel1, *clabel2;
3120 1.48 oster
3121 1.48 oster /* If this one matches the *first* one in the set, that's good
3122 1.48 oster enough, since the other members of the set would have been
3123 1.48 oster through here too... */
3124 1.60 oster /* note that we are not checking partitionSize here..
3125 1.60 oster
3126 1.60 oster Note that we are also not checking the mod_counters here.
3127 1.299 oster If everything else matches except the mod_counter, that's
3128 1.60 oster good enough for this test. We will deal with the mod_counters
3129 1.186 perry a little later in the autoconfiguration process.
3130 1.60 oster
3131 1.60 oster (clabel1->mod_counter == clabel2->mod_counter) &&
3132 1.81 oster
3133 1.81 oster The reason we don't check for this is that failed disks
3134 1.81 oster will have lower modification counts. If those disks are
3135 1.81 oster not added to the set they used to belong to, then they will
3136 1.81 oster form their own set, which may result in 2 different sets,
3137 1.81 oster for example, competing to be configured at raid0, and
3138 1.81 oster perhaps competing to be the root filesystem set. If the
3139 1.81 oster wrong ones get configured, or both attempt to become /,
3140 1.81 oster weird behaviour and or serious lossage will occur. Thus we
3141 1.81 oster need to bring them into the fold here, and kick them out at
3142 1.81 oster a later point.
3143 1.60 oster
3144 1.60 oster */
3145 1.48 oster
3146 1.48 oster clabel1 = cset->ac->clabel;
3147 1.48 oster clabel2 = ac->clabel;
3148 1.48 oster if ((clabel1->version == clabel2->version) &&
3149 1.48 oster (clabel1->serial_number == clabel2->serial_number) &&
3150 1.48 oster (clabel1->num_rows == clabel2->num_rows) &&
3151 1.48 oster (clabel1->num_columns == clabel2->num_columns) &&
3152 1.48 oster (clabel1->sectPerSU == clabel2->sectPerSU) &&
3153 1.48 oster (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3154 1.48 oster (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3155 1.48 oster (clabel1->parityConfig == clabel2->parityConfig) &&
3156 1.48 oster (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3157 1.48 oster (clabel1->blockSize == clabel2->blockSize) &&
3158 1.282 enami rf_component_label_numblocks(clabel1) ==
3159 1.282 enami rf_component_label_numblocks(clabel2) &&
3160 1.48 oster (clabel1->autoconfigure == clabel2->autoconfigure) &&
3161 1.48 oster (clabel1->root_partition == clabel2->root_partition) &&
3162 1.48 oster (clabel1->last_unit == clabel2->last_unit) &&
3163 1.48 oster (clabel1->config_order == clabel2->config_order)) {
3164 1.48 oster /* if it get's here, it almost *has* to be a match */
3165 1.48 oster } else {
3166 1.186 perry /* it's not consistent with somebody in the set..
3167 1.48 oster punt */
3168 1.48 oster return(0);
3169 1.48 oster }
3170 1.48 oster /* all was fine.. it must fit... */
3171 1.48 oster return(1);
3172 1.48 oster }
3173 1.48 oster
3174 1.393 mrg static int
3175 1.169 oster rf_have_enough_components(RF_ConfigSet_t *cset)
3176 1.48 oster {
3177 1.51 oster RF_AutoConfig_t *ac;
3178 1.51 oster RF_AutoConfig_t *auto_config;
3179 1.51 oster RF_ComponentLabel_t *clabel;
3180 1.166 oster int c;
3181 1.51 oster int num_cols;
3182 1.51 oster int num_missing;
3183 1.86 oster int mod_counter;
3184 1.87 oster int mod_counter_found;
3185 1.88 oster int even_pair_failed;
3186 1.88 oster char parity_type;
3187 1.186 perry
3188 1.51 oster
3189 1.48 oster /* check to see that we have enough 'live' components
3190 1.48 oster of this set. If so, we can configure it if necessary */
3191 1.48 oster
3192 1.51 oster num_cols = cset->ac->clabel->num_columns;
3193 1.88 oster parity_type = cset->ac->clabel->parityConfig;
3194 1.51 oster
3195 1.51 oster /* XXX Check for duplicate components!?!?!? */
3196 1.51 oster
3197 1.86 oster /* Determine what the mod_counter is supposed to be for this set. */
3198 1.86 oster
3199 1.87 oster mod_counter_found = 0;
3200 1.101 oster mod_counter = 0;
3201 1.86 oster ac = cset->ac;
3202 1.86 oster while(ac!=NULL) {
3203 1.87 oster if (mod_counter_found==0) {
3204 1.86 oster mod_counter = ac->clabel->mod_counter;
3205 1.87 oster mod_counter_found = 1;
3206 1.87 oster } else {
3207 1.87 oster if (ac->clabel->mod_counter > mod_counter) {
3208 1.87 oster mod_counter = ac->clabel->mod_counter;
3209 1.87 oster }
3210 1.86 oster }
3211 1.86 oster ac = ac->next;
3212 1.86 oster }
3213 1.86 oster
3214 1.51 oster num_missing = 0;
3215 1.51 oster auto_config = cset->ac;
3216 1.51 oster
3217 1.166 oster even_pair_failed = 0;
3218 1.166 oster for(c=0; c<num_cols; c++) {
3219 1.166 oster ac = auto_config;
3220 1.166 oster while(ac!=NULL) {
3221 1.186 perry if ((ac->clabel->column == c) &&
3222 1.166 oster (ac->clabel->mod_counter == mod_counter)) {
3223 1.166 oster /* it's this one... */
3224 1.224 oster #ifdef DEBUG
3225 1.166 oster printf("Found: %s at %d\n",
3226 1.166 oster ac->devname,c);
3227 1.51 oster #endif
3228 1.166 oster break;
3229 1.51 oster }
3230 1.166 oster ac=ac->next;
3231 1.166 oster }
3232 1.166 oster if (ac==NULL) {
3233 1.51 oster /* Didn't find one here! */
3234 1.88 oster /* special case for RAID 1, especially
3235 1.88 oster where there are more than 2
3236 1.88 oster components (where RAIDframe treats
3237 1.88 oster things a little differently :( ) */
3238 1.166 oster if (parity_type == '1') {
3239 1.166 oster if (c%2 == 0) { /* even component */
3240 1.166 oster even_pair_failed = 1;
3241 1.166 oster } else { /* odd component. If
3242 1.166 oster we're failed, and
3243 1.166 oster so is the even
3244 1.166 oster component, it's
3245 1.166 oster "Good Night, Charlie" */
3246 1.166 oster if (even_pair_failed == 1) {
3247 1.166 oster return(0);
3248 1.88 oster }
3249 1.88 oster }
3250 1.166 oster } else {
3251 1.166 oster /* normal accounting */
3252 1.166 oster num_missing++;
3253 1.88 oster }
3254 1.166 oster }
3255 1.166 oster if ((parity_type == '1') && (c%2 == 1)) {
3256 1.88 oster /* Just did an even component, and we didn't
3257 1.186 perry bail.. reset the even_pair_failed flag,
3258 1.88 oster and go on to the next component.... */
3259 1.166 oster even_pair_failed = 0;
3260 1.51 oster }
3261 1.51 oster }
3262 1.51 oster
3263 1.51 oster clabel = cset->ac->clabel;
3264 1.51 oster
3265 1.51 oster if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3266 1.51 oster ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3267 1.51 oster ((clabel->parityConfig == '5') && (num_missing > 1))) {
3268 1.51 oster /* XXX this needs to be made *much* more general */
3269 1.51 oster /* Too many failures */
3270 1.51 oster return(0);
3271 1.51 oster }
3272 1.51 oster /* otherwise, all is well, and we've got enough to take a kick
3273 1.51 oster at autoconfiguring this set */
3274 1.51 oster return(1);
3275 1.48 oster }
3276 1.48 oster
3277 1.393 mrg static void
3278 1.169 oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3279 1.222 christos RF_Raid_t *raidPtr)
3280 1.48 oster {
3281 1.48 oster RF_ComponentLabel_t *clabel;
3282 1.77 oster int i;
3283 1.48 oster
3284 1.48 oster clabel = ac->clabel;
3285 1.48 oster
3286 1.48 oster /* 1. Fill in the common stuff */
3287 1.48 oster config->numCol = clabel->num_columns;
3288 1.48 oster config->numSpare = 0; /* XXX should this be set here? */
3289 1.48 oster config->sectPerSU = clabel->sectPerSU;
3290 1.48 oster config->SUsPerPU = clabel->SUsPerPU;
3291 1.48 oster config->SUsPerRU = clabel->SUsPerRU;
3292 1.48 oster config->parityConfig = clabel->parityConfig;
3293 1.48 oster /* XXX... */
3294 1.48 oster strcpy(config->diskQueueType,"fifo");
3295 1.48 oster config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3296 1.48 oster config->layoutSpecificSize = 0; /* XXX ?? */
3297 1.48 oster
3298 1.48 oster while(ac!=NULL) {
3299 1.48 oster /* row/col values will be in range due to the checks
3300 1.48 oster in reasonable_label() */
3301 1.166 oster strcpy(config->devnames[0][ac->clabel->column],
3302 1.48 oster ac->devname);
3303 1.48 oster ac = ac->next;
3304 1.48 oster }
3305 1.48 oster
3306 1.77 oster for(i=0;i<RF_MAXDBGV;i++) {
3307 1.163 fvdl config->debugVars[i][0] = 0;
3308 1.77 oster }
3309 1.48 oster }
3310 1.48 oster
3311 1.393 mrg static int
3312 1.169 oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3313 1.48 oster {
3314 1.269 jld RF_ComponentLabel_t *clabel;
3315 1.166 oster int column;
3316 1.148 oster int sparecol;
3317 1.48 oster
3318 1.54 oster raidPtr->autoconfigure = new_value;
3319 1.166 oster
3320 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3321 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3322 1.269 jld clabel = raidget_component_label(raidPtr, column);
3323 1.269 jld clabel->autoconfigure = new_value;
3324 1.269 jld raidflush_component_label(raidPtr, column);
3325 1.48 oster }
3326 1.48 oster }
3327 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3328 1.148 oster sparecol = raidPtr->numCol + column;
3329 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3330 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3331 1.269 jld clabel->autoconfigure = new_value;
3332 1.269 jld raidflush_component_label(raidPtr, sparecol);
3333 1.148 oster }
3334 1.148 oster }
3335 1.48 oster return(new_value);
3336 1.48 oster }
3337 1.48 oster
3338 1.393 mrg static int
3339 1.169 oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3340 1.48 oster {
3341 1.269 jld RF_ComponentLabel_t *clabel;
3342 1.166 oster int column;
3343 1.148 oster int sparecol;
3344 1.48 oster
3345 1.54 oster raidPtr->root_partition = new_value;
3346 1.166 oster for(column=0; column<raidPtr->numCol; column++) {
3347 1.166 oster if (raidPtr->Disks[column].status == rf_ds_optimal) {
3348 1.269 jld clabel = raidget_component_label(raidPtr, column);
3349 1.269 jld clabel->root_partition = new_value;
3350 1.269 jld raidflush_component_label(raidPtr, column);
3351 1.148 oster }
3352 1.148 oster }
3353 1.148 oster for(column = 0; column < raidPtr->numSpare ; column++) {
3354 1.148 oster sparecol = raidPtr->numCol + column;
3355 1.166 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3356 1.269 jld clabel = raidget_component_label(raidPtr, sparecol);
3357 1.269 jld clabel->root_partition = new_value;
3358 1.269 jld raidflush_component_label(raidPtr, sparecol);
3359 1.48 oster }
3360 1.48 oster }
3361 1.48 oster return(new_value);
3362 1.48 oster }
3363 1.48 oster
3364 1.393 mrg static void
3365 1.169 oster rf_release_all_vps(RF_ConfigSet_t *cset)
3366 1.48 oster {
3367 1.48 oster RF_AutoConfig_t *ac;
3368 1.186 perry
3369 1.48 oster ac = cset->ac;
3370 1.48 oster while(ac!=NULL) {
3371 1.48 oster /* Close the vp, and give it back */
3372 1.48 oster if (ac->vp) {
3373 1.96 oster vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3374 1.335 mlelstv VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
3375 1.48 oster vput(ac->vp);
3376 1.86 oster ac->vp = NULL;
3377 1.48 oster }
3378 1.48 oster ac = ac->next;
3379 1.48 oster }
3380 1.48 oster }
3381 1.48 oster
3382 1.48 oster
3383 1.393 mrg static void
3384 1.169 oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
3385 1.48 oster {
3386 1.48 oster RF_AutoConfig_t *ac;
3387 1.48 oster RF_AutoConfig_t *next_ac;
3388 1.186 perry
3389 1.48 oster ac = cset->ac;
3390 1.48 oster while(ac!=NULL) {
3391 1.48 oster next_ac = ac->next;
3392 1.48 oster /* nuke the label */
3393 1.48 oster free(ac->clabel, M_RAIDFRAME);
3394 1.48 oster /* cleanup the config structure */
3395 1.48 oster free(ac, M_RAIDFRAME);
3396 1.48 oster /* "next.." */
3397 1.48 oster ac = next_ac;
3398 1.48 oster }
3399 1.48 oster /* and, finally, nuke the config set */
3400 1.48 oster free(cset, M_RAIDFRAME);
3401 1.48 oster }
3402 1.48 oster
3403 1.48 oster
3404 1.48 oster void
3405 1.169 oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3406 1.48 oster {
3407 1.48 oster /* current version number */
3408 1.186 perry clabel->version = RF_COMPONENT_LABEL_VERSION;
3409 1.57 oster clabel->serial_number = raidPtr->serial_number;
3410 1.48 oster clabel->mod_counter = raidPtr->mod_counter;
3411 1.269 jld
3412 1.166 oster clabel->num_rows = 1;
3413 1.48 oster clabel->num_columns = raidPtr->numCol;
3414 1.48 oster clabel->clean = RF_RAID_DIRTY; /* not clean */
3415 1.48 oster clabel->status = rf_ds_optimal; /* "It's good!" */
3416 1.186 perry
3417 1.48 oster clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3418 1.48 oster clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3419 1.48 oster clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3420 1.54 oster
3421 1.54 oster clabel->blockSize = raidPtr->bytesPerSector;
3422 1.282 enami rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
3423 1.54 oster
3424 1.48 oster /* XXX not portable */
3425 1.48 oster clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3426 1.54 oster clabel->maxOutstanding = raidPtr->maxOutstanding;
3427 1.54 oster clabel->autoconfigure = raidPtr->autoconfigure;
3428 1.54 oster clabel->root_partition = raidPtr->root_partition;
3429 1.48 oster clabel->last_unit = raidPtr->raidid;
3430 1.54 oster clabel->config_order = raidPtr->config_order;
3431 1.269 jld
3432 1.269 jld #ifndef RF_NO_PARITY_MAP
3433 1.269 jld rf_paritymap_init_label(raidPtr->parity_map, clabel);
3434 1.269 jld #endif
3435 1.51 oster }
3436 1.51 oster
3437 1.393 mrg static struct raid_softc *
3438 1.300 christos rf_auto_config_set(RF_ConfigSet_t *cset)
3439 1.51 oster {
3440 1.51 oster RF_Raid_t *raidPtr;
3441 1.51 oster RF_Config_t *config;
3442 1.51 oster int raidID;
3443 1.300 christos struct raid_softc *sc;
3444 1.51 oster
3445 1.224 oster #ifdef DEBUG
3446 1.72 oster printf("RAID autoconfigure\n");
3447 1.127 oster #endif
3448 1.51 oster
3449 1.51 oster /* 1. Create a config structure */
3450 1.379 chs config = malloc(sizeof(*config), M_RAIDFRAME, M_WAITOK|M_ZERO);
3451 1.77 oster
3452 1.186 perry /*
3453 1.186 perry 2. Figure out what RAID ID this one is supposed to live at
3454 1.51 oster See if we can get the same RAID dev that it was configured
3455 1.186 perry on last time..
3456 1.51 oster */
3457 1.51 oster
3458 1.51 oster raidID = cset->ac->clabel->last_unit;
3459 1.327 pgoyette for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
3460 1.327 pgoyette sc = raidget(++raidID, false))
3461 1.300 christos continue;
3462 1.224 oster #ifdef DEBUG
3463 1.72 oster printf("Configuring raid%d:\n",raidID);
3464 1.127 oster #endif
3465 1.127 oster
3466 1.327 pgoyette if (sc == NULL)
3467 1.327 pgoyette sc = raidget(raidID, true);
3468 1.300 christos raidPtr = &sc->sc_r;
3469 1.51 oster
3470 1.51 oster /* XXX all this stuff should be done SOMEWHERE ELSE! */
3471 1.302 christos raidPtr->softc = sc;
3472 1.51 oster raidPtr->raidid = raidID;
3473 1.51 oster raidPtr->openings = RAIDOUTSTANDING;
3474 1.51 oster
3475 1.51 oster /* 3. Build the configuration structure */
3476 1.51 oster rf_create_configuration(cset->ac, config, raidPtr);
3477 1.51 oster
3478 1.51 oster /* 4. Do the configuration */
3479 1.300 christos if (rf_Configure(raidPtr, config, cset->ac) == 0) {
3480 1.300 christos raidinit(sc);
3481 1.186 perry
3482 1.300 christos rf_markalldirty(raidPtr);
3483 1.300 christos raidPtr->autoconfigure = 1; /* XXX do this here? */
3484 1.308 christos switch (cset->ac->clabel->root_partition) {
3485 1.308 christos case 1: /* Force Root */
3486 1.308 christos case 2: /* Soft Root: root when boot partition part of raid */
3487 1.308 christos /*
3488 1.308 christos * everything configured just fine. Make a note
3489 1.308 christos * that this set is eligible to be root,
3490 1.308 christos * or forced to be root
3491 1.308 christos */
3492 1.308 christos cset->rootable = cset->ac->clabel->root_partition;
3493 1.54 oster /* XXX do this here? */
3494 1.308 christos raidPtr->root_partition = cset->rootable;
3495 1.308 christos break;
3496 1.308 christos default:
3497 1.308 christos break;
3498 1.51 oster }
3499 1.300 christos } else {
3500 1.300 christos raidput(sc);
3501 1.300 christos sc = NULL;
3502 1.51 oster }
3503 1.51 oster
3504 1.51 oster /* 5. Cleanup */
3505 1.51 oster free(config, M_RAIDFRAME);
3506 1.300 christos return sc;
3507 1.99 oster }
3508 1.99 oster
3509 1.99 oster void
3510 1.187 christos rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3511 1.187 christos size_t xmin, size_t xmax)
3512 1.177 oster {
3513 1.352 christos
3514 1.227 ad pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3515 1.187 christos pool_sethiwat(p, xmax);
3516 1.382 chs pool_prime(p, xmin);
3517 1.177 oster }
3518 1.190 oster
3519 1.190 oster /*
3520 1.335 mlelstv * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
3521 1.335 mlelstv * to see if there is IO pending and if that IO could possibly be done
3522 1.335 mlelstv * for a given RAID set. Returns 0 if IO is waiting and can be done, 1
3523 1.190 oster * otherwise.
3524 1.190 oster *
3525 1.190 oster */
3526 1.190 oster int
3527 1.300 christos rf_buf_queue_check(RF_Raid_t *raidPtr)
3528 1.190 oster {
3529 1.335 mlelstv struct raid_softc *rs;
3530 1.335 mlelstv struct dk_softc *dksc;
3531 1.335 mlelstv
3532 1.335 mlelstv rs = raidPtr->softc;
3533 1.335 mlelstv dksc = &rs->sc_dksc;
3534 1.335 mlelstv
3535 1.335 mlelstv if ((rs->sc_flags & RAIDF_INITED) == 0)
3536 1.335 mlelstv return 1;
3537 1.335 mlelstv
3538 1.335 mlelstv if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
3539 1.190 oster /* there is work to do */
3540 1.190 oster return 0;
3541 1.335 mlelstv }
3542 1.190 oster /* default is nothing to do */
3543 1.190 oster return 1;
3544 1.190 oster }
3545 1.213 christos
3546 1.213 christos int
3547 1.294 oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
3548 1.213 christos {
3549 1.275 mrg uint64_t numsecs;
3550 1.275 mrg unsigned secsize;
3551 1.213 christos int error;
3552 1.213 christos
3553 1.275 mrg error = getdisksize(vp, &numsecs, &secsize);
3554 1.213 christos if (error == 0) {
3555 1.275 mrg diskPtr->blockSize = secsize;
3556 1.275 mrg diskPtr->numBlocks = numsecs - rf_protectedSectors;
3557 1.275 mrg diskPtr->partitionSize = numsecs;
3558 1.213 christos return 0;
3559 1.213 christos }
3560 1.213 christos return error;
3561 1.213 christos }
3562 1.217 oster
3563 1.217 oster static int
3564 1.261 dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
3565 1.217 oster {
3566 1.217 oster return 1;
3567 1.217 oster }
3568 1.217 oster
3569 1.217 oster static void
3570 1.261 dyoung raid_attach(device_t parent, device_t self, void *aux)
3571 1.217 oster {
3572 1.217 oster }
3573 1.217 oster
3574 1.217 oster
3575 1.217 oster static int
3576 1.261 dyoung raid_detach(device_t self, int flags)
3577 1.217 oster {
3578 1.266 dyoung int error;
3579 1.335 mlelstv struct raid_softc *rs = raidsoftc(self);
3580 1.303 christos
3581 1.303 christos if (rs == NULL)
3582 1.303 christos return ENXIO;
3583 1.266 dyoung
3584 1.266 dyoung if ((error = raidlock(rs)) != 0)
3585 1.389 skrll return error;
3586 1.217 oster
3587 1.266 dyoung error = raid_detach_unlocked(rs);
3588 1.266 dyoung
3589 1.332 mlelstv raidunlock(rs);
3590 1.332 mlelstv
3591 1.332 mlelstv /* XXX raid can be referenced here */
3592 1.332 mlelstv
3593 1.332 mlelstv if (error)
3594 1.332 mlelstv return error;
3595 1.332 mlelstv
3596 1.332 mlelstv /* Free the softc */
3597 1.332 mlelstv raidput(rs);
3598 1.332 mlelstv
3599 1.332 mlelstv return 0;
3600 1.217 oster }
3601 1.217 oster
3602 1.234 oster static void
3603 1.304 christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
3604 1.234 oster {
3605 1.335 mlelstv struct dk_softc *dksc = &rs->sc_dksc;
3606 1.335 mlelstv struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
3607 1.304 christos
3608 1.304 christos memset(dg, 0, sizeof(*dg));
3609 1.304 christos
3610 1.304 christos dg->dg_secperunit = raidPtr->totalSectors;
3611 1.304 christos dg->dg_secsize = raidPtr->bytesPerSector;
3612 1.304 christos dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
3613 1.304 christos dg->dg_ntracks = 4 * raidPtr->numCol;
3614 1.304 christos
3615 1.335 mlelstv disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
3616 1.234 oster }
3617 1.252 oster
3618 1.348 jdolecek /*
3619 1.348 jdolecek * Get cache info for all the components (including spares).
3620 1.348 jdolecek * Returns intersection of all the cache flags of all disks, or first
3621 1.348 jdolecek * error if any encountered.
3622 1.348 jdolecek * XXXfua feature flags can change as spares are added - lock down somehow
3623 1.348 jdolecek */
3624 1.348 jdolecek static int
3625 1.348 jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
3626 1.348 jdolecek {
3627 1.348 jdolecek int c;
3628 1.348 jdolecek int error;
3629 1.348 jdolecek int dkwhole = 0, dkpart;
3630 1.385 riastrad
3631 1.348 jdolecek for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
3632 1.348 jdolecek /*
3633 1.348 jdolecek * Check any non-dead disk, even when currently being
3634 1.348 jdolecek * reconstructed.
3635 1.348 jdolecek */
3636 1.348 jdolecek if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
3637 1.348 jdolecek || raidPtr->Disks[c].status == rf_ds_reconstructing) {
3638 1.348 jdolecek error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
3639 1.348 jdolecek DIOCGCACHE, &dkpart, FREAD, NOCRED);
3640 1.348 jdolecek if (error) {
3641 1.348 jdolecek if (error != ENODEV) {
3642 1.348 jdolecek printf("raid%d: get cache for component %s failed\n",
3643 1.348 jdolecek raidPtr->raidid,
3644 1.348 jdolecek raidPtr->Disks[c].devname);
3645 1.348 jdolecek }
3646 1.348 jdolecek
3647 1.348 jdolecek return error;
3648 1.348 jdolecek }
3649 1.348 jdolecek
3650 1.348 jdolecek if (c == 0)
3651 1.348 jdolecek dkwhole = dkpart;
3652 1.348 jdolecek else
3653 1.348 jdolecek dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
3654 1.348 jdolecek }
3655 1.348 jdolecek }
3656 1.348 jdolecek
3657 1.349 jdolecek *data = dkwhole;
3658 1.348 jdolecek
3659 1.348 jdolecek return 0;
3660 1.348 jdolecek }
3661 1.348 jdolecek
3662 1.385 riastrad /*
3663 1.252 oster * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
3664 1.252 oster * We end up returning whatever error was returned by the first cache flush
3665 1.252 oster * that fails.
3666 1.252 oster */
3667 1.252 oster
3668 1.386 christos static int
3669 1.390 christos rf_sync_component_cache(RF_Raid_t *raidPtr, int c, int force)
3670 1.386 christos {
3671 1.386 christos int e = 0;
3672 1.386 christos for (int i = 0; i < 5; i++) {
3673 1.386 christos e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
3674 1.386 christos &force, FWRITE, NOCRED);
3675 1.386 christos if (!e || e == ENODEV)
3676 1.386 christos return e;
3677 1.386 christos printf("raid%d: cache flush[%d] to component %s failed (%d)\n",
3678 1.386 christos raidPtr->raidid, i, raidPtr->Disks[c].devname, e);
3679 1.386 christos }
3680 1.387 christos return e;
3681 1.386 christos }
3682 1.386 christos
3683 1.269 jld int
3684 1.390 christos rf_sync_component_caches(RF_Raid_t *raidPtr, int force)
3685 1.252 oster {
3686 1.386 christos int c, error;
3687 1.385 riastrad
3688 1.252 oster error = 0;
3689 1.252 oster for (c = 0; c < raidPtr->numCol; c++) {
3690 1.252 oster if (raidPtr->Disks[c].status == rf_ds_optimal) {
3691 1.390 christos int e = rf_sync_component_cache(raidPtr, c, force);
3692 1.387 christos if (e && !error)
3693 1.386 christos error = e;
3694 1.252 oster }
3695 1.252 oster }
3696 1.252 oster
3697 1.386 christos for (c = 0; c < raidPtr->numSpare ; c++) {
3698 1.386 christos int sparecol = raidPtr->numCol + c;
3699 1.252 oster /* Need to ensure that the reconstruct actually completed! */
3700 1.252 oster if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3701 1.390 christos int e = rf_sync_component_cache(raidPtr, sparecol,
3702 1.390 christos force);
3703 1.387 christos if (e && !error)
3704 1.386 christos error = e;
3705 1.252 oster }
3706 1.252 oster }
3707 1.252 oster return error;
3708 1.252 oster }
3709 1.327 pgoyette
3710 1.353 mrg /* Fill in info with the current status */
3711 1.353 mrg void
3712 1.353 mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3713 1.353 mrg {
3714 1.353 mrg
3715 1.353 mrg if (raidPtr->status != rf_rs_reconstructing) {
3716 1.353 mrg info->total = 100;
3717 1.353 mrg info->completed = 100;
3718 1.353 mrg } else {
3719 1.353 mrg info->total = raidPtr->reconControl->numRUsTotal;
3720 1.353 mrg info->completed = raidPtr->reconControl->numRUsComplete;
3721 1.353 mrg }
3722 1.353 mrg info->remaining = info->total - info->completed;
3723 1.353 mrg }
3724 1.353 mrg
3725 1.353 mrg /* Fill in info with the current status */
3726 1.353 mrg void
3727 1.353 mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3728 1.353 mrg {
3729 1.353 mrg
3730 1.353 mrg if (raidPtr->parity_rewrite_in_progress == 1) {
3731 1.353 mrg info->total = raidPtr->Layout.numStripe;
3732 1.353 mrg info->completed = raidPtr->parity_rewrite_stripes_done;
3733 1.353 mrg } else {
3734 1.353 mrg info->completed = 100;
3735 1.353 mrg info->total = 100;
3736 1.353 mrg }
3737 1.353 mrg info->remaining = info->total - info->completed;
3738 1.353 mrg }
3739 1.353 mrg
3740 1.353 mrg /* Fill in info with the current status */
3741 1.353 mrg void
3742 1.353 mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
3743 1.353 mrg {
3744 1.353 mrg
3745 1.353 mrg if (raidPtr->copyback_in_progress == 1) {
3746 1.353 mrg info->total = raidPtr->Layout.numStripe;
3747 1.353 mrg info->completed = raidPtr->copyback_stripes_done;
3748 1.353 mrg info->remaining = info->total - info->completed;
3749 1.353 mrg } else {
3750 1.353 mrg info->remaining = 0;
3751 1.353 mrg info->completed = 100;
3752 1.353 mrg info->total = 100;
3753 1.353 mrg }
3754 1.353 mrg }
3755 1.353 mrg
3756 1.353 mrg /* Fill in config with the current info */
3757 1.353 mrg int
3758 1.353 mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
3759 1.353 mrg {
3760 1.353 mrg int d, i, j;
3761 1.353 mrg
3762 1.353 mrg if (!raidPtr->valid)
3763 1.389 skrll return ENODEV;
3764 1.353 mrg config->cols = raidPtr->numCol;
3765 1.353 mrg config->ndevs = raidPtr->numCol;
3766 1.353 mrg if (config->ndevs >= RF_MAX_DISKS)
3767 1.389 skrll return ENOMEM;
3768 1.353 mrg config->nspares = raidPtr->numSpare;
3769 1.353 mrg if (config->nspares >= RF_MAX_DISKS)
3770 1.389 skrll return ENOMEM;
3771 1.353 mrg config->maxqdepth = raidPtr->maxQueueDepth;
3772 1.353 mrg d = 0;
3773 1.353 mrg for (j = 0; j < config->cols; j++) {
3774 1.353 mrg config->devs[d] = raidPtr->Disks[j];
3775 1.353 mrg d++;
3776 1.353 mrg }
3777 1.353 mrg for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
3778 1.353 mrg config->spares[i] = raidPtr->Disks[j];
3779 1.353 mrg if (config->spares[i].status == rf_ds_rebuilding_spare) {
3780 1.353 mrg /* XXX: raidctl(8) expects to see this as a used spare */
3781 1.353 mrg config->spares[i].status = rf_ds_used_spare;
3782 1.353 mrg }
3783 1.353 mrg }
3784 1.353 mrg return 0;
3785 1.353 mrg }
3786 1.353 mrg
3787 1.353 mrg int
3788 1.353 mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
3789 1.353 mrg {
3790 1.353 mrg RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
3791 1.353 mrg RF_ComponentLabel_t *raid_clabel;
3792 1.353 mrg int column = clabel->column;
3793 1.353 mrg
3794 1.353 mrg if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
3795 1.353 mrg return EINVAL;
3796 1.353 mrg raid_clabel = raidget_component_label(raidPtr, column);
3797 1.353 mrg memcpy(clabel, raid_clabel, sizeof *clabel);
3798 1.353 mrg
3799 1.353 mrg return 0;
3800 1.353 mrg }
3801 1.353 mrg
3802 1.327 pgoyette /*
3803 1.327 pgoyette * Module interface
3804 1.327 pgoyette */
3805 1.327 pgoyette
3806 1.356 pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
3807 1.327 pgoyette
3808 1.327 pgoyette #ifdef _MODULE
3809 1.327 pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
3810 1.327 pgoyette #endif
3811 1.327 pgoyette
3812 1.327 pgoyette static int raid_modcmd(modcmd_t, void *);
3813 1.327 pgoyette static int raid_modcmd_init(void);
3814 1.327 pgoyette static int raid_modcmd_fini(void);
3815 1.327 pgoyette
3816 1.327 pgoyette static int
3817 1.327 pgoyette raid_modcmd(modcmd_t cmd, void *data)
3818 1.327 pgoyette {
3819 1.327 pgoyette int error;
3820 1.327 pgoyette
3821 1.327 pgoyette error = 0;
3822 1.327 pgoyette switch (cmd) {
3823 1.327 pgoyette case MODULE_CMD_INIT:
3824 1.327 pgoyette error = raid_modcmd_init();
3825 1.327 pgoyette break;
3826 1.327 pgoyette case MODULE_CMD_FINI:
3827 1.327 pgoyette error = raid_modcmd_fini();
3828 1.327 pgoyette break;
3829 1.327 pgoyette default:
3830 1.327 pgoyette error = ENOTTY;
3831 1.327 pgoyette break;
3832 1.327 pgoyette }
3833 1.327 pgoyette return error;
3834 1.327 pgoyette }
3835 1.327 pgoyette
3836 1.327 pgoyette static int
3837 1.327 pgoyette raid_modcmd_init(void)
3838 1.327 pgoyette {
3839 1.327 pgoyette int error;
3840 1.327 pgoyette int bmajor, cmajor;
3841 1.327 pgoyette
3842 1.327 pgoyette mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
3843 1.327 pgoyette mutex_enter(&raid_lock);
3844 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3845 1.327 pgoyette rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
3846 1.327 pgoyette rf_init_cond2(rf_sparet_wait_cv, "sparetw");
3847 1.327 pgoyette rf_init_cond2(rf_sparet_resp_cv, "rfgst");
3848 1.327 pgoyette
3849 1.327 pgoyette rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
3850 1.327 pgoyette #endif
3851 1.327 pgoyette
3852 1.327 pgoyette bmajor = cmajor = -1;
3853 1.327 pgoyette error = devsw_attach("raid", &raid_bdevsw, &bmajor,
3854 1.327 pgoyette &raid_cdevsw, &cmajor);
3855 1.327 pgoyette if (error != 0 && error != EEXIST) {
3856 1.327 pgoyette aprint_error("%s: devsw_attach failed %d\n", __func__, error);
3857 1.327 pgoyette mutex_exit(&raid_lock);
3858 1.327 pgoyette return error;
3859 1.327 pgoyette }
3860 1.327 pgoyette #ifdef _MODULE
3861 1.327 pgoyette error = config_cfdriver_attach(&raid_cd);
3862 1.327 pgoyette if (error != 0) {
3863 1.327 pgoyette aprint_error("%s: config_cfdriver_attach failed %d\n",
3864 1.327 pgoyette __func__, error);
3865 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3866 1.327 pgoyette mutex_exit(&raid_lock);
3867 1.327 pgoyette return error;
3868 1.327 pgoyette }
3869 1.327 pgoyette #endif
3870 1.327 pgoyette error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3871 1.327 pgoyette if (error != 0) {
3872 1.327 pgoyette aprint_error("%s: config_cfattach_attach failed %d\n",
3873 1.327 pgoyette __func__, error);
3874 1.327 pgoyette #ifdef _MODULE
3875 1.327 pgoyette config_cfdriver_detach(&raid_cd);
3876 1.327 pgoyette #endif
3877 1.327 pgoyette devsw_detach(&raid_bdevsw, &raid_cdevsw);
3878 1.327 pgoyette mutex_exit(&raid_lock);
3879 1.327 pgoyette return error;
3880 1.327 pgoyette }
3881 1.327 pgoyette
3882 1.327 pgoyette raidautoconfigdone = false;
3883 1.327 pgoyette
3884 1.327 pgoyette mutex_exit(&raid_lock);
3885 1.327 pgoyette
3886 1.327 pgoyette if (error == 0) {
3887 1.327 pgoyette if (rf_BootRaidframe(true) == 0)
3888 1.327 pgoyette aprint_verbose("Kernelized RAIDframe activated\n");
3889 1.327 pgoyette else
3890 1.327 pgoyette panic("Serious error activating RAID!!");
3891 1.327 pgoyette }
3892 1.327 pgoyette
3893 1.327 pgoyette /*
3894 1.327 pgoyette * Register a finalizer which will be used to auto-config RAID
3895 1.327 pgoyette * sets once all real hardware devices have been found.
3896 1.327 pgoyette */
3897 1.327 pgoyette error = config_finalize_register(NULL, rf_autoconfig);
3898 1.327 pgoyette if (error != 0) {
3899 1.327 pgoyette aprint_error("WARNING: unable to register RAIDframe "
3900 1.327 pgoyette "finalizer\n");
3901 1.329 pgoyette error = 0;
3902 1.327 pgoyette }
3903 1.327 pgoyette
3904 1.327 pgoyette return error;
3905 1.327 pgoyette }
3906 1.327 pgoyette
3907 1.327 pgoyette static int
3908 1.327 pgoyette raid_modcmd_fini(void)
3909 1.327 pgoyette {
3910 1.327 pgoyette int error;
3911 1.327 pgoyette
3912 1.327 pgoyette mutex_enter(&raid_lock);
3913 1.327 pgoyette
3914 1.327 pgoyette /* Don't allow unload if raid device(s) exist. */
3915 1.327 pgoyette if (!LIST_EMPTY(&raids)) {
3916 1.327 pgoyette mutex_exit(&raid_lock);
3917 1.327 pgoyette return EBUSY;
3918 1.327 pgoyette }
3919 1.327 pgoyette
3920 1.327 pgoyette error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
3921 1.327 pgoyette if (error != 0) {
3922 1.335 mlelstv aprint_error("%s: cannot detach cfattach\n",__func__);
3923 1.327 pgoyette mutex_exit(&raid_lock);
3924 1.327 pgoyette return error;
3925 1.327 pgoyette }
3926 1.327 pgoyette #ifdef _MODULE
3927 1.327 pgoyette error = config_cfdriver_detach(&raid_cd);
3928 1.327 pgoyette if (error != 0) {
3929 1.335 mlelstv aprint_error("%s: cannot detach cfdriver\n",__func__);
3930 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3931 1.327 pgoyette mutex_exit(&raid_lock);
3932 1.327 pgoyette return error;
3933 1.327 pgoyette }
3934 1.327 pgoyette #endif
3935 1.327 pgoyette error = devsw_detach(&raid_bdevsw, &raid_cdevsw);
3936 1.327 pgoyette if (error != 0) {
3937 1.335 mlelstv aprint_error("%s: cannot detach devsw\n",__func__);
3938 1.327 pgoyette #ifdef _MODULE
3939 1.327 pgoyette config_cfdriver_attach(&raid_cd);
3940 1.327 pgoyette #endif
3941 1.327 pgoyette config_cfattach_attach(raid_cd.cd_name, &raid_ca);
3942 1.327 pgoyette mutex_exit(&raid_lock);
3943 1.327 pgoyette return error;
3944 1.327 pgoyette }
3945 1.327 pgoyette rf_BootRaidframe(false);
3946 1.327 pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
3947 1.327 pgoyette rf_destroy_mutex2(rf_sparet_wait_mutex);
3948 1.327 pgoyette rf_destroy_cond2(rf_sparet_wait_cv);
3949 1.327 pgoyette rf_destroy_cond2(rf_sparet_resp_cv);
3950 1.327 pgoyette #endif
3951 1.327 pgoyette mutex_exit(&raid_lock);
3952 1.327 pgoyette mutex_destroy(&raid_lock);
3953 1.327 pgoyette
3954 1.327 pgoyette return error;
3955 1.327 pgoyette }
3956