Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.408
      1  1.408       mrg /*	$NetBSD: rf_netbsdkintf.c,v 1.408 2022/08/10 01:16:38 mrg Exp $	*/
      2  1.281     rmind 
      3    1.1     oster /*-
      4  1.295       erh  * Copyright (c) 1996, 1997, 1998, 2008-2011 The NetBSD Foundation, Inc.
      5    1.1     oster  * All rights reserved.
      6    1.1     oster  *
      7    1.1     oster  * This code is derived from software contributed to The NetBSD Foundation
      8    1.1     oster  * by Greg Oster; Jason R. Thorpe.
      9    1.1     oster  *
     10    1.1     oster  * Redistribution and use in source and binary forms, with or without
     11    1.1     oster  * modification, are permitted provided that the following conditions
     12    1.1     oster  * are met:
     13    1.1     oster  * 1. Redistributions of source code must retain the above copyright
     14    1.1     oster  *    notice, this list of conditions and the following disclaimer.
     15    1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     17    1.1     oster  *    documentation and/or other materials provided with the distribution.
     18    1.1     oster  *
     19    1.1     oster  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.1     oster  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.1     oster  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.1     oster  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.1     oster  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.1     oster  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.1     oster  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.1     oster  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.1     oster  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.1     oster  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.1     oster  * POSSIBILITY OF SUCH DAMAGE.
     30    1.1     oster  */
     31    1.1     oster 
     32    1.1     oster /*
     33  1.281     rmind  * Copyright (c) 1988 University of Utah.
     34    1.1     oster  * Copyright (c) 1990, 1993
     35    1.1     oster  *      The Regents of the University of California.  All rights reserved.
     36    1.1     oster  *
     37    1.1     oster  * This code is derived from software contributed to Berkeley by
     38    1.1     oster  * the Systems Programming Group of the University of Utah Computer
     39    1.1     oster  * Science Department.
     40    1.1     oster  *
     41    1.1     oster  * Redistribution and use in source and binary forms, with or without
     42    1.1     oster  * modification, are permitted provided that the following conditions
     43    1.1     oster  * are met:
     44    1.1     oster  * 1. Redistributions of source code must retain the above copyright
     45    1.1     oster  *    notice, this list of conditions and the following disclaimer.
     46    1.1     oster  * 2. Redistributions in binary form must reproduce the above copyright
     47    1.1     oster  *    notice, this list of conditions and the following disclaimer in the
     48    1.1     oster  *    documentation and/or other materials provided with the distribution.
     49  1.162       agc  * 3. Neither the name of the University nor the names of its contributors
     50  1.162       agc  *    may be used to endorse or promote products derived from this software
     51  1.162       agc  *    without specific prior written permission.
     52  1.162       agc  *
     53  1.162       agc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  1.162       agc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  1.162       agc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  1.162       agc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  1.162       agc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  1.162       agc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  1.162       agc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  1.162       agc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  1.162       agc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  1.162       agc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  1.162       agc  * SUCH DAMAGE.
     64  1.162       agc  *
     65  1.405       wiz  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     66  1.162       agc  *
     67  1.162       agc  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     68  1.162       agc  */
     69  1.162       agc 
     70  1.162       agc /*
     71    1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
     72    1.1     oster  * All rights reserved.
     73    1.1     oster  *
     74    1.1     oster  * Authors: Mark Holland, Jim Zelenka
     75    1.1     oster  *
     76    1.1     oster  * Permission to use, copy, modify and distribute this software and
     77    1.1     oster  * its documentation is hereby granted, provided that both the copyright
     78    1.1     oster  * notice and this permission notice appear in all copies of the
     79    1.1     oster  * software, derivative works or modified versions, and any portions
     80    1.1     oster  * thereof, and that both notices appear in supporting documentation.
     81    1.1     oster  *
     82    1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     83    1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     84    1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     85    1.1     oster  *
     86    1.1     oster  * Carnegie Mellon requests users of this software to return to
     87    1.1     oster  *
     88    1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     89    1.1     oster  *  School of Computer Science
     90    1.1     oster  *  Carnegie Mellon University
     91    1.1     oster  *  Pittsburgh PA 15213-3890
     92    1.1     oster  *
     93    1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     94    1.1     oster  * rights to redistribute these changes.
     95    1.1     oster  */
     96    1.1     oster 
     97    1.1     oster /***********************************************************
     98    1.1     oster  *
     99    1.1     oster  * rf_kintf.c -- the kernel interface routines for RAIDframe
    100    1.1     oster  *
    101    1.1     oster  ***********************************************************/
    102  1.112     lukem 
    103  1.112     lukem #include <sys/cdefs.h>
    104  1.408       mrg __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.408 2022/08/10 01:16:38 mrg Exp $");
    105  1.251        ad 
    106  1.251        ad #ifdef _KERNEL_OPT
    107  1.251        ad #include "opt_raid_autoconfig.h"
    108  1.363       mrg #include "opt_compat_netbsd32.h"
    109  1.251        ad #endif
    110    1.1     oster 
    111  1.113     lukem #include <sys/param.h>
    112    1.1     oster #include <sys/errno.h>
    113    1.1     oster #include <sys/pool.h>
    114  1.152   thorpej #include <sys/proc.h>
    115    1.1     oster #include <sys/queue.h>
    116    1.1     oster #include <sys/disk.h>
    117    1.1     oster #include <sys/device.h>
    118    1.1     oster #include <sys/stat.h>
    119    1.1     oster #include <sys/ioctl.h>
    120    1.1     oster #include <sys/fcntl.h>
    121    1.1     oster #include <sys/systm.h>
    122    1.1     oster #include <sys/vnode.h>
    123    1.1     oster #include <sys/disklabel.h>
    124    1.1     oster #include <sys/conf.h>
    125    1.1     oster #include <sys/buf.h>
    126  1.182      yamt #include <sys/bufq.h>
    127   1.65     oster #include <sys/reboot.h>
    128  1.208      elad #include <sys/kauth.h>
    129  1.327  pgoyette #include <sys/module.h>
    130  1.358  pgoyette #include <sys/compat_stub.h>
    131    1.8     oster 
    132  1.234     oster #include <prop/proplib.h>
    133  1.234     oster 
    134  1.110     oster #include <dev/raidframe/raidframevar.h>
    135  1.110     oster #include <dev/raidframe/raidframeio.h>
    136  1.269       jld #include <dev/raidframe/rf_paritymap.h>
    137  1.251        ad 
    138    1.1     oster #include "rf_raid.h"
    139   1.44     oster #include "rf_copyback.h"
    140    1.1     oster #include "rf_dag.h"
    141    1.1     oster #include "rf_dagflags.h"
    142   1.99     oster #include "rf_desc.h"
    143    1.1     oster #include "rf_diskqueue.h"
    144    1.1     oster #include "rf_etimer.h"
    145    1.1     oster #include "rf_general.h"
    146    1.1     oster #include "rf_kintf.h"
    147    1.1     oster #include "rf_options.h"
    148    1.1     oster #include "rf_driver.h"
    149    1.1     oster #include "rf_parityscan.h"
    150    1.1     oster #include "rf_threadstuff.h"
    151    1.1     oster 
    152  1.325  christos #include "ioconf.h"
    153  1.325  christos 
    154  1.133     oster #ifdef DEBUG
    155    1.9     oster int     rf_kdebug_level = 0;
    156    1.1     oster #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    157    1.9     oster #else				/* DEBUG */
    158    1.1     oster #define db1_printf(a) { }
    159    1.9     oster #endif				/* DEBUG */
    160    1.1     oster 
    161  1.249     oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
    162  1.289       mrg static rf_declare_mutex2(rf_sparet_wait_mutex);
    163  1.287       mrg static rf_declare_cond2(rf_sparet_wait_cv);
    164  1.287       mrg static rf_declare_cond2(rf_sparet_resp_cv);
    165    1.1     oster 
    166   1.10     oster static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    167   1.10     oster 						 * spare table */
    168   1.10     oster static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    169   1.10     oster 						 * installation process */
    170  1.249     oster #endif
    171  1.153   thorpej 
    172  1.384  jdolecek const int rf_b_pass = (B_PHYS|B_RAW|B_MEDIA_FLAGS);
    173  1.384  jdolecek 
    174  1.153   thorpej MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    175   1.10     oster 
    176    1.1     oster /* prototypes */
    177  1.187  christos static void KernelWakeupFunc(struct buf *);
    178  1.187  christos static void InitBP(struct buf *, struct vnode *, unsigned,
    179  1.225  christos     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    180  1.384  jdolecek     void *, int);
    181  1.300  christos static void raidinit(struct raid_softc *);
    182  1.335   mlelstv static int raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp);
    183  1.348  jdolecek static int rf_get_component_caches(RF_Raid_t *raidPtr, int *);
    184    1.1     oster 
    185  1.261    dyoung static int raid_match(device_t, cfdata_t, void *);
    186  1.261    dyoung static void raid_attach(device_t, device_t, void *);
    187  1.261    dyoung static int raid_detach(device_t, int);
    188  1.130   gehenna 
    189  1.385  riastrad static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
    190  1.269       jld     daddr_t, daddr_t);
    191  1.269       jld static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
    192  1.269       jld     daddr_t, daddr_t, int);
    193  1.269       jld 
    194  1.276       mrg static int raidwrite_component_label(unsigned,
    195  1.276       mrg     dev_t, struct vnode *, RF_ComponentLabel_t *);
    196  1.276       mrg static int raidread_component_label(unsigned,
    197  1.276       mrg     dev_t, struct vnode *, RF_ComponentLabel_t *);
    198  1.269       jld 
    199  1.335   mlelstv static int raid_diskstart(device_t, struct buf *bp);
    200  1.335   mlelstv static int raid_dumpblocks(device_t, void *, daddr_t, int);
    201  1.335   mlelstv static int raid_lastclose(device_t);
    202  1.269       jld 
    203  1.324       mrg static dev_type_open(raidopen);
    204  1.324       mrg static dev_type_close(raidclose);
    205  1.324       mrg static dev_type_read(raidread);
    206  1.324       mrg static dev_type_write(raidwrite);
    207  1.324       mrg static dev_type_ioctl(raidioctl);
    208  1.324       mrg static dev_type_strategy(raidstrategy);
    209  1.324       mrg static dev_type_dump(raiddump);
    210  1.324       mrg static dev_type_size(raidsize);
    211  1.130   gehenna 
    212  1.130   gehenna const struct bdevsw raid_bdevsw = {
    213  1.305  dholland 	.d_open = raidopen,
    214  1.305  dholland 	.d_close = raidclose,
    215  1.305  dholland 	.d_strategy = raidstrategy,
    216  1.305  dholland 	.d_ioctl = raidioctl,
    217  1.305  dholland 	.d_dump = raiddump,
    218  1.305  dholland 	.d_psize = raidsize,
    219  1.311  dholland 	.d_discard = nodiscard,
    220  1.305  dholland 	.d_flag = D_DISK
    221  1.130   gehenna };
    222  1.130   gehenna 
    223  1.130   gehenna const struct cdevsw raid_cdevsw = {
    224  1.305  dholland 	.d_open = raidopen,
    225  1.305  dholland 	.d_close = raidclose,
    226  1.305  dholland 	.d_read = raidread,
    227  1.305  dholland 	.d_write = raidwrite,
    228  1.305  dholland 	.d_ioctl = raidioctl,
    229  1.305  dholland 	.d_stop = nostop,
    230  1.305  dholland 	.d_tty = notty,
    231  1.305  dholland 	.d_poll = nopoll,
    232  1.305  dholland 	.d_mmap = nommap,
    233  1.305  dholland 	.d_kqfilter = nokqfilter,
    234  1.312  dholland 	.d_discard = nodiscard,
    235  1.305  dholland 	.d_flag = D_DISK
    236  1.130   gehenna };
    237    1.1     oster 
    238  1.323   mlelstv static struct dkdriver rf_dkdriver = {
    239  1.335   mlelstv 	.d_open = raidopen,
    240  1.335   mlelstv 	.d_close = raidclose,
    241  1.323   mlelstv 	.d_strategy = raidstrategy,
    242  1.335   mlelstv 	.d_diskstart = raid_diskstart,
    243  1.335   mlelstv 	.d_dumpblocks = raid_dumpblocks,
    244  1.335   mlelstv 	.d_lastclose = raid_lastclose,
    245  1.323   mlelstv 	.d_minphys = minphys
    246  1.323   mlelstv };
    247  1.235     oster 
    248    1.1     oster #define	raidunit(x)	DISKUNIT(x)
    249  1.335   mlelstv #define	raidsoftc(dev)	(((struct raid_softc *)device_private(dev))->sc_r.softc)
    250    1.1     oster 
    251  1.202     oster extern struct cfdriver raid_cd;
    252  1.266    dyoung CFATTACH_DECL3_NEW(raid, sizeof(struct raid_softc),
    253  1.266    dyoung     raid_match, raid_attach, raid_detach, NULL, NULL, NULL,
    254  1.266    dyoung     DVF_DETACH_SHUTDOWN);
    255  1.202     oster 
    256  1.353       mrg /* Internal representation of a rf_recon_req */
    257  1.353       mrg struct rf_recon_req_internal {
    258  1.353       mrg 	RF_RowCol_t col;
    259  1.353       mrg 	RF_ReconReqFlags_t flags;
    260  1.353       mrg 	void   *raidPtr;
    261  1.353       mrg };
    262  1.353       mrg 
    263  1.186     perry /*
    264  1.186     perry  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    265  1.186     perry  * Be aware that large numbers can allow the driver to consume a lot of
    266   1.28     oster  * kernel memory, especially on writes, and in degraded mode reads.
    267  1.186     perry  *
    268  1.186     perry  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    269  1.186     perry  * a single 64K write will typically require 64K for the old data,
    270  1.186     perry  * 64K for the old parity, and 64K for the new parity, for a total
    271   1.28     oster  * of 192K (if the parity buffer is not re-used immediately).
    272  1.110     oster  * Even it if is used immediately, that's still 128K, which when multiplied
    273   1.28     oster  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    274  1.186     perry  *
    275   1.28     oster  * Now in degraded mode, for example, a 64K read on the above setup may
    276  1.186     perry  * require data reconstruction, which will require *all* of the 4 remaining
    277   1.28     oster  * disks to participate -- 4 * 32K/disk == 128K again.
    278   1.20     oster  */
    279   1.20     oster 
    280   1.20     oster #ifndef RAIDOUTSTANDING
    281   1.28     oster #define RAIDOUTSTANDING   6
    282   1.20     oster #endif
    283   1.20     oster 
    284    1.1     oster #define RAIDLABELDEV(dev)	\
    285    1.1     oster 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    286    1.1     oster 
    287    1.1     oster /* declared here, and made public, for the benefit of KVM stuff.. */
    288    1.9     oster 
    289  1.104     oster static int raidlock(struct raid_softc *);
    290  1.104     oster static void raidunlock(struct raid_softc *);
    291    1.1     oster 
    292  1.266    dyoung static int raid_detach_unlocked(struct raid_softc *);
    293  1.266    dyoung 
    294  1.104     oster static void rf_markalldirty(RF_Raid_t *);
    295  1.304  christos static void rf_set_geometry(struct raid_softc *, RF_Raid_t *);
    296   1.48     oster 
    297  1.393       mrg static void rf_ReconThread(struct rf_recon_req_internal *);
    298  1.393       mrg static void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    299  1.393       mrg static void rf_CopybackThread(RF_Raid_t *raidPtr);
    300  1.393       mrg static void rf_ReconstructInPlaceThread(struct rf_recon_req_internal *);
    301  1.393       mrg static int rf_autoconfig(device_t);
    302  1.398     oster static int rf_rescan(void);
    303  1.393       mrg static void rf_buildroothack(RF_ConfigSet_t *);
    304  1.104     oster 
    305  1.393       mrg static RF_AutoConfig_t *rf_find_raid_components(void);
    306  1.393       mrg static RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    307  1.104     oster static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    308  1.393       mrg static void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    309  1.393       mrg static int rf_set_autoconfig(RF_Raid_t *, int);
    310  1.393       mrg static int rf_set_rootpartition(RF_Raid_t *, int);
    311  1.393       mrg static void rf_release_all_vps(RF_ConfigSet_t *);
    312  1.393       mrg static void rf_cleanup_config_set(RF_ConfigSet_t *);
    313  1.393       mrg static int rf_have_enough_components(RF_ConfigSet_t *);
    314  1.393       mrg static struct raid_softc *rf_auto_config_set(RF_ConfigSet_t *);
    315  1.278       mrg static void rf_fix_old_label_size(RF_ComponentLabel_t *, uint64_t);
    316   1.48     oster 
    317  1.295       erh /*
    318  1.295       erh  * Debugging, mostly.  Set to 0 to not allow autoconfig to take place.
    319  1.295       erh  * Note that this is overridden by having RAID_AUTOCONFIG as an option
    320  1.295       erh  * in the kernel config file.
    321  1.295       erh  */
    322  1.295       erh #ifdef RAID_AUTOCONFIG
    323  1.295       erh int raidautoconfig = 1;
    324  1.295       erh #else
    325  1.295       erh int raidautoconfig = 0;
    326  1.295       erh #endif
    327  1.295       erh static bool raidautoconfigdone = false;
    328   1.37     oster 
    329  1.395     oster struct pool rf_alloclist_pool;   /* AllocList */
    330  1.177     oster 
    331  1.300  christos static LIST_HEAD(, raid_softc) raids = LIST_HEAD_INITIALIZER(raids);
    332  1.300  christos static kmutex_t raid_lock;
    333    1.1     oster 
    334  1.300  christos static struct raid_softc *
    335  1.300  christos raidcreate(int unit) {
    336  1.300  christos 	struct raid_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP);
    337  1.300  christos 	sc->sc_unit = unit;
    338  1.327  pgoyette 	cv_init(&sc->sc_cv, "raidunit");
    339  1.327  pgoyette 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
    340  1.300  christos 	return sc;
    341  1.300  christos }
    342    1.1     oster 
    343  1.300  christos static void
    344  1.300  christos raiddestroy(struct raid_softc *sc) {
    345  1.327  pgoyette 	cv_destroy(&sc->sc_cv);
    346  1.327  pgoyette 	mutex_destroy(&sc->sc_mutex);
    347  1.300  christos 	kmem_free(sc, sizeof(*sc));
    348  1.300  christos }
    349   1.50     oster 
    350  1.300  christos static struct raid_softc *
    351  1.327  pgoyette raidget(int unit, bool create) {
    352  1.300  christos 	struct raid_softc *sc;
    353  1.300  christos 	if (unit < 0) {
    354  1.300  christos #ifdef DIAGNOSTIC
    355  1.300  christos 		panic("%s: unit %d!", __func__, unit);
    356  1.300  christos #endif
    357  1.300  christos 		return NULL;
    358  1.300  christos 	}
    359  1.300  christos 	mutex_enter(&raid_lock);
    360  1.300  christos 	LIST_FOREACH(sc, &raids, sc_link) {
    361  1.300  christos 		if (sc->sc_unit == unit) {
    362  1.300  christos 			mutex_exit(&raid_lock);
    363  1.300  christos 			return sc;
    364  1.300  christos 		}
    365  1.300  christos 	}
    366  1.300  christos 	mutex_exit(&raid_lock);
    367  1.327  pgoyette 	if (!create)
    368  1.327  pgoyette 		return NULL;
    369  1.379       chs 	sc = raidcreate(unit);
    370  1.300  christos 	mutex_enter(&raid_lock);
    371  1.300  christos 	LIST_INSERT_HEAD(&raids, sc, sc_link);
    372  1.300  christos 	mutex_exit(&raid_lock);
    373  1.300  christos 	return sc;
    374  1.300  christos }
    375  1.300  christos 
    376  1.385  riastrad static void
    377  1.300  christos raidput(struct raid_softc *sc) {
    378  1.300  christos 	mutex_enter(&raid_lock);
    379  1.300  christos 	LIST_REMOVE(sc, sc_link);
    380  1.300  christos 	mutex_exit(&raid_lock);
    381  1.300  christos 	raiddestroy(sc);
    382  1.300  christos }
    383    1.1     oster 
    384  1.300  christos void
    385  1.300  christos raidattach(int num)
    386  1.300  christos {
    387   1.62     oster 
    388  1.142   thorpej 	/*
    389  1.327  pgoyette 	 * Device attachment and associated initialization now occurs
    390  1.327  pgoyette 	 * as part of the module initialization.
    391  1.142   thorpej 	 */
    392  1.142   thorpej }
    393  1.142   thorpej 
    394  1.393       mrg static int
    395  1.261    dyoung rf_autoconfig(device_t self)
    396  1.142   thorpej {
    397  1.142   thorpej 	RF_AutoConfig_t *ac_list;
    398  1.142   thorpej 	RF_ConfigSet_t *config_sets;
    399  1.142   thorpej 
    400  1.295       erh 	if (!raidautoconfig || raidautoconfigdone == true)
    401  1.389     skrll 		return 0;
    402  1.142   thorpej 
    403  1.142   thorpej 	/* XXX This code can only be run once. */
    404  1.295       erh 	raidautoconfigdone = true;
    405  1.142   thorpej 
    406  1.307  christos #ifdef __HAVE_CPU_BOOTCONF
    407  1.307  christos 	/*
    408  1.307  christos 	 * 0. find the boot device if needed first so we can use it later
    409  1.307  christos 	 * this needs to be done before we autoconfigure any raid sets,
    410  1.307  christos 	 * because if we use wedges we are not going to be able to open
    411  1.307  christos 	 * the boot device later
    412  1.307  christos 	 */
    413  1.307  christos 	if (booted_device == NULL)
    414  1.307  christos 		cpu_bootconf();
    415  1.307  christos #endif
    416   1.48     oster 	/* 1. locate all RAID components on the system */
    417  1.258        ad 	aprint_debug("Searching for RAID components...\n");
    418   1.48     oster 	ac_list = rf_find_raid_components();
    419   1.48     oster 
    420  1.142   thorpej 	/* 2. Sort them into their respective sets. */
    421   1.48     oster 	config_sets = rf_create_auto_sets(ac_list);
    422   1.48     oster 
    423  1.142   thorpej 	/*
    424  1.299     oster 	 * 3. Evaluate each set and configure the valid ones.
    425  1.142   thorpej 	 * This gets done in rf_buildroothack().
    426  1.142   thorpej 	 */
    427  1.142   thorpej 	rf_buildroothack(config_sets);
    428   1.48     oster 
    429  1.213  christos 	return 1;
    430   1.48     oster }
    431   1.48     oster 
    432  1.367  christos int
    433  1.367  christos rf_inited(const struct raid_softc *rs) {
    434  1.367  christos 	return (rs->sc_flags & RAIDF_INITED) != 0;
    435  1.367  christos }
    436  1.367  christos 
    437  1.368     oster RF_Raid_t *
    438  1.368     oster rf_get_raid(struct raid_softc *rs) {
    439  1.368     oster 	return &rs->sc_r;
    440  1.368     oster }
    441  1.368     oster 
    442  1.367  christos int
    443  1.367  christos rf_get_unit(const struct raid_softc *rs) {
    444  1.367  christos 	return rs->sc_unit;
    445  1.367  christos }
    446  1.367  christos 
    447  1.306  christos static int
    448  1.307  christos rf_containsboot(RF_Raid_t *r, device_t bdv) {
    449  1.359       bad 	const char *bootname;
    450  1.359       bad 	size_t len;
    451  1.359       bad 
    452  1.359       bad 	/* if bdv is NULL, the set can't contain it. exit early. */
    453  1.359       bad 	if (bdv == NULL)
    454  1.359       bad 		return 0;
    455  1.359       bad 
    456  1.359       bad 	bootname = device_xname(bdv);
    457  1.359       bad 	len = strlen(bootname);
    458  1.306  christos 
    459  1.306  christos 	for (int col = 0; col < r->numCol; col++) {
    460  1.307  christos 		const char *devname = r->Disks[col].devname;
    461  1.306  christos 		devname += sizeof("/dev/") - 1;
    462  1.307  christos 		if (strncmp(devname, "dk", 2) == 0) {
    463  1.307  christos 			const char *parent =
    464  1.307  christos 			    dkwedge_get_parent_name(r->Disks[col].dev);
    465  1.307  christos 			if (parent != NULL)
    466  1.307  christos 				devname = parent;
    467  1.307  christos 		}
    468  1.306  christos 		if (strncmp(devname, bootname, len) == 0) {
    469  1.306  christos 			struct raid_softc *sc = r->softc;
    470  1.306  christos 			aprint_debug("raid%d includes boot device %s\n",
    471  1.306  christos 			    sc->sc_unit, devname);
    472  1.306  christos 			return 1;
    473  1.306  christos 		}
    474  1.306  christos 	}
    475  1.306  christos 	return 0;
    476  1.306  christos }
    477  1.306  christos 
    478  1.398     oster static int
    479  1.398     oster rf_rescan(void)
    480  1.398     oster {
    481  1.398     oster 	RF_AutoConfig_t *ac_list;
    482  1.398     oster 	RF_ConfigSet_t *config_sets, *cset, *next_cset;
    483  1.398     oster 	struct raid_softc *sc;
    484  1.398     oster 	int raid_added;
    485  1.398     oster 
    486  1.398     oster 	ac_list = rf_find_raid_components();
    487  1.398     oster 	config_sets = rf_create_auto_sets(ac_list);
    488  1.398     oster 
    489  1.398     oster 	raid_added = 1;
    490  1.398     oster 	while (raid_added > 0) {
    491  1.398     oster 		raid_added = 0;
    492  1.398     oster 		cset = config_sets;
    493  1.398     oster 		while (cset != NULL) {
    494  1.398     oster 			next_cset = cset->next;
    495  1.398     oster 			if (rf_have_enough_components(cset) &&
    496  1.398     oster 			    cset->ac->clabel->autoconfigure == 1) {
    497  1.398     oster 				sc = rf_auto_config_set(cset);
    498  1.398     oster 				if (sc != NULL) {
    499  1.398     oster 					aprint_debug("raid%d: configured ok, rootable %d\n",
    500  1.398     oster 						     sc->sc_unit, cset->rootable);
    501  1.398     oster 					/* We added one RAID set */
    502  1.398     oster 					raid_added++;
    503  1.398     oster 				} else {
    504  1.398     oster 					/* The autoconfig didn't work :( */
    505  1.398     oster 					aprint_debug("Autoconfig failed\n");
    506  1.398     oster 					rf_release_all_vps(cset);
    507  1.398     oster 				}
    508  1.398     oster 			} else {
    509  1.398     oster 				/* we're not autoconfiguring this set...
    510  1.398     oster 				   release the associated resources */
    511  1.398     oster 				rf_release_all_vps(cset);
    512  1.398     oster 			}
    513  1.398     oster 			/* cleanup */
    514  1.398     oster 			rf_cleanup_config_set(cset);
    515  1.398     oster 			cset = next_cset;
    516  1.398     oster 		}
    517  1.398     oster 		if (raid_added > 0) {
    518  1.398     oster 			/* We added at least one RAID set, so re-scan for recursive RAID */
    519  1.398     oster 			ac_list = rf_find_raid_components();
    520  1.398     oster 			config_sets = rf_create_auto_sets(ac_list);
    521  1.398     oster 		}
    522  1.398     oster 	}
    523  1.398     oster 
    524  1.398     oster 	return 0;
    525  1.398     oster }
    526  1.398     oster 
    527  1.398     oster 
    528  1.393       mrg static void
    529  1.142   thorpej rf_buildroothack(RF_ConfigSet_t *config_sets)
    530   1.48     oster {
    531  1.397     oster 	RF_AutoConfig_t *ac_list;
    532   1.48     oster 	RF_ConfigSet_t *cset;
    533   1.48     oster 	RF_ConfigSet_t *next_cset;
    534   1.51     oster 	int num_root;
    535  1.397     oster 	int raid_added;
    536  1.300  christos 	struct raid_softc *sc, *rsc;
    537  1.378    martin 	struct dk_softc *dksc = NULL;	/* XXX gcc -Os: may be used uninit. */
    538   1.48     oster 
    539  1.300  christos 	sc = rsc = NULL;
    540   1.51     oster 	num_root = 0;
    541  1.397     oster 
    542  1.397     oster 	raid_added = 1;
    543  1.397     oster 	while (raid_added > 0) {
    544  1.397     oster 		raid_added = 0;
    545  1.397     oster 		cset = config_sets;
    546  1.397     oster 		while (cset != NULL) {
    547  1.397     oster 			next_cset = cset->next;
    548  1.397     oster 			if (rf_have_enough_components(cset) &&
    549  1.397     oster 			    cset->ac->clabel->autoconfigure == 1) {
    550  1.397     oster 				sc = rf_auto_config_set(cset);
    551  1.397     oster 				if (sc != NULL) {
    552  1.397     oster 					aprint_debug("raid%d: configured ok, rootable %d\n",
    553  1.397     oster 						     sc->sc_unit, cset->rootable);
    554  1.397     oster 					/* We added one RAID set */
    555  1.397     oster 					raid_added++;
    556  1.397     oster 					if (cset->rootable) {
    557  1.397     oster 						rsc = sc;
    558  1.397     oster 						num_root++;
    559  1.397     oster 					}
    560  1.397     oster 				} else {
    561  1.397     oster 					/* The autoconfig didn't work :( */
    562  1.397     oster 					aprint_debug("Autoconfig failed\n");
    563  1.397     oster 					rf_release_all_vps(cset);
    564   1.51     oster 				}
    565   1.51     oster 			} else {
    566  1.397     oster 				/* we're not autoconfiguring this set...
    567  1.397     oster 				   release the associated resources */
    568   1.51     oster 				rf_release_all_vps(cset);
    569   1.48     oster 			}
    570  1.397     oster 			/* cleanup */
    571  1.397     oster 			rf_cleanup_config_set(cset);
    572  1.397     oster 			cset = next_cset;
    573  1.397     oster 		}
    574  1.397     oster 		if (raid_added > 0) {
    575  1.397     oster 			/* We added at least one RAID set, so re-scan for recursive RAID */
    576  1.397     oster 			ac_list = rf_find_raid_components();
    577  1.397     oster 			config_sets = rf_create_auto_sets(ac_list);
    578   1.48     oster 		}
    579   1.48     oster 	}
    580  1.397     oster 
    581  1.223     oster 	/* if the user has specified what the root device should be
    582  1.223     oster 	   then we don't touch booted_device or boothowto... */
    583  1.223     oster 
    584  1.359       bad 	if (rootspec != NULL) {
    585  1.403       mrg 		aprint_debug("%s: rootspec %s\n", __func__, rootspec);
    586  1.223     oster 		return;
    587  1.359       bad 	}
    588  1.223     oster 
    589  1.122     oster 	/* we found something bootable... */
    590  1.122     oster 
    591  1.310  christos 	/*
    592  1.310  christos 	 * XXX: The following code assumes that the root raid
    593  1.310  christos 	 * is the first ('a') partition. This is about the best
    594  1.310  christos 	 * we can do with a BSD disklabel, but we might be able
    595  1.310  christos 	 * to do better with a GPT label, by setting a specified
    596  1.310  christos 	 * attribute to indicate the root partition. We can then
    597  1.310  christos 	 * stash the partition number in the r->root_partition
    598  1.310  christos 	 * high bits (the bottom 2 bits are already used). For
    599  1.310  christos 	 * now we just set booted_partition to 0 when we override
    600  1.310  christos 	 * root.
    601  1.310  christos 	 */
    602  1.122     oster 	if (num_root == 1) {
    603  1.306  christos 		device_t candidate_root;
    604  1.377      maxv 		dksc = &rsc->sc_dksc;
    605  1.335   mlelstv 		if (dksc->sc_dkdev.dk_nwedges != 0) {
    606  1.297  christos 			char cname[sizeof(cset->ac->devname)];
    607  1.344  christos 			/* XXX: assume partition 'a' first */
    608  1.297  christos 			snprintf(cname, sizeof(cname), "%s%c",
    609  1.335   mlelstv 			    device_xname(dksc->sc_dev), 'a');
    610  1.306  christos 			candidate_root = dkwedge_find_by_wname(cname);
    611  1.403       mrg 			aprint_debug("%s: candidate wedge root=%s\n", __func__,
    612  1.344  christos 			    cname);
    613  1.344  christos 			if (candidate_root == NULL) {
    614  1.344  christos 				/*
    615  1.344  christos 				 * If that is not found, because we don't use
    616  1.344  christos 				 * disklabel, return the first dk child
    617  1.344  christos 				 * XXX: we can skip the 'a' check above
    618  1.344  christos 				 * and always do this...
    619  1.344  christos 				 */
    620  1.344  christos 				size_t i = 0;
    621  1.344  christos 				candidate_root = dkwedge_find_by_parent(
    622  1.344  christos 				    device_xname(dksc->sc_dev), &i);
    623  1.344  christos 			}
    624  1.403       mrg 			aprint_debug("%s: candidate wedge root=%p\n", __func__,
    625  1.344  christos 			    candidate_root);
    626  1.297  christos 		} else
    627  1.335   mlelstv 			candidate_root = dksc->sc_dev;
    628  1.403       mrg 		aprint_debug("%s: candidate root=%p booted_device=%p "
    629  1.403       mrg 			     "root_partition=%d contains_boot=%d\n",
    630  1.402       mrg 		    __func__, candidate_root, booted_device,
    631  1.402       mrg 		    rsc->sc_r.root_partition,
    632  1.402       mrg 		    rf_containsboot(&rsc->sc_r, booted_device));
    633  1.359       bad 		/* XXX the check for booted_device == NULL can probably be
    634  1.359       bad 		 * dropped, now that rf_containsboot handles that case.
    635  1.359       bad 		 */
    636  1.308  christos 		if (booted_device == NULL ||
    637  1.308  christos 		    rsc->sc_r.root_partition == 1 ||
    638  1.310  christos 		    rf_containsboot(&rsc->sc_r, booted_device)) {
    639  1.308  christos 			booted_device = candidate_root;
    640  1.351  christos 			booted_method = "raidframe/single";
    641  1.310  christos 			booted_partition = 0;	/* XXX assume 'a' */
    642  1.403       mrg 			aprint_debug("%s: set booted_device=%s(%p)\n", __func__,
    643  1.392       mrg 			    device_xname(booted_device), booted_device);
    644  1.310  christos 		}
    645  1.122     oster 	} else if (num_root > 1) {
    646  1.403       mrg 		aprint_debug("%s: many roots=%d, %p\n", __func__, num_root,
    647  1.344  christos 		    booted_device);
    648  1.226     oster 
    649  1.385  riastrad 		/*
    650  1.226     oster 		 * Maybe the MD code can help. If it cannot, then
    651  1.226     oster 		 * setroot() will discover that we have no
    652  1.226     oster 		 * booted_device and will ask the user if nothing was
    653  1.385  riastrad 		 * hardwired in the kernel config file
    654  1.226     oster 		 */
    655  1.385  riastrad 		if (booted_device == NULL)
    656  1.226     oster 			return;
    657  1.226     oster 
    658  1.226     oster 		num_root = 0;
    659  1.300  christos 		mutex_enter(&raid_lock);
    660  1.300  christos 		LIST_FOREACH(sc, &raids, sc_link) {
    661  1.300  christos 			RF_Raid_t *r = &sc->sc_r;
    662  1.300  christos 			if (r->valid == 0)
    663  1.226     oster 				continue;
    664  1.226     oster 
    665  1.300  christos 			if (r->root_partition == 0)
    666  1.226     oster 				continue;
    667  1.226     oster 
    668  1.306  christos 			if (rf_containsboot(r, booted_device)) {
    669  1.226     oster 				num_root++;
    670  1.300  christos 				rsc = sc;
    671  1.335   mlelstv 				dksc = &rsc->sc_dksc;
    672  1.226     oster 			}
    673  1.226     oster 		}
    674  1.300  christos 		mutex_exit(&raid_lock);
    675  1.295       erh 
    676  1.226     oster 		if (num_root == 1) {
    677  1.335   mlelstv 			booted_device = dksc->sc_dev;
    678  1.351  christos 			booted_method = "raidframe/multi";
    679  1.310  christos 			booted_partition = 0;	/* XXX assume 'a' */
    680  1.226     oster 		} else {
    681  1.226     oster 			/* we can't guess.. require the user to answer... */
    682  1.226     oster 			boothowto |= RB_ASKNAME;
    683  1.226     oster 		}
    684   1.51     oster 	}
    685    1.1     oster }
    686    1.1     oster 
    687  1.324       mrg static int
    688  1.169     oster raidsize(dev_t dev)
    689    1.1     oster {
    690    1.1     oster 	struct raid_softc *rs;
    691  1.335   mlelstv 	struct dk_softc *dksc;
    692  1.335   mlelstv 	unsigned int unit;
    693    1.1     oster 
    694    1.1     oster 	unit = raidunit(dev);
    695  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    696  1.336   mlelstv 		return -1;
    697  1.335   mlelstv 	dksc = &rs->sc_dksc;
    698  1.335   mlelstv 
    699    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    700  1.336   mlelstv 		return -1;
    701    1.1     oster 
    702  1.335   mlelstv 	return dk_size(dksc, dev);
    703  1.335   mlelstv }
    704    1.1     oster 
    705  1.335   mlelstv static int
    706  1.335   mlelstv raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    707  1.335   mlelstv {
    708  1.335   mlelstv 	unsigned int unit;
    709  1.335   mlelstv 	struct raid_softc *rs;
    710  1.335   mlelstv 	struct dk_softc *dksc;
    711    1.1     oster 
    712  1.335   mlelstv 	unit = raidunit(dev);
    713  1.335   mlelstv 	if ((rs = raidget(unit, false)) == NULL)
    714  1.335   mlelstv 		return ENXIO;
    715  1.335   mlelstv 	dksc = &rs->sc_dksc;
    716    1.1     oster 
    717  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    718  1.335   mlelstv 		return ENODEV;
    719    1.1     oster 
    720  1.336   mlelstv         /*
    721  1.336   mlelstv            Note that blkno is relative to this particular partition.
    722  1.336   mlelstv            By adding adding RF_PROTECTED_SECTORS, we get a value that
    723  1.336   mlelstv 	   is relative to the partition used for the underlying component.
    724  1.336   mlelstv         */
    725  1.336   mlelstv 	blkno += RF_PROTECTED_SECTORS;
    726  1.336   mlelstv 
    727  1.380  riastrad 	return dk_dump(dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE);
    728    1.1     oster }
    729    1.1     oster 
    730  1.324       mrg static int
    731  1.335   mlelstv raid_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
    732    1.1     oster {
    733  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(dev);
    734  1.231     oster 	const struct bdevsw *bdev;
    735  1.231     oster 	RF_Raid_t *raidPtr;
    736  1.335   mlelstv 	int     c, sparecol, j, scol, dumpto;
    737  1.231     oster 	int     error = 0;
    738  1.231     oster 
    739  1.300  christos 	raidPtr = &rs->sc_r;
    740  1.231     oster 
    741  1.231     oster 	/* we only support dumping to RAID 1 sets */
    742  1.385  riastrad 	if (raidPtr->Layout.numDataCol != 1 ||
    743  1.231     oster 	    raidPtr->Layout.numParityCol != 1)
    744  1.231     oster 		return EINVAL;
    745  1.231     oster 
    746  1.231     oster 	if ((error = raidlock(rs)) != 0)
    747  1.231     oster 		return error;
    748  1.231     oster 
    749  1.231     oster 	/* figure out what device is alive.. */
    750  1.231     oster 
    751  1.385  riastrad 	/*
    752  1.231     oster 	   Look for a component to dump to.  The preference for the
    753  1.231     oster 	   component to dump to is as follows:
    754  1.383     oster 	   1) the first component
    755  1.383     oster 	   2) a used_spare of the first component
    756  1.383     oster 	   3) the second component
    757  1.383     oster 	   4) a used_spare of the second component
    758  1.231     oster 	*/
    759  1.231     oster 
    760  1.231     oster 	dumpto = -1;
    761  1.231     oster 	for (c = 0; c < raidPtr->numCol; c++) {
    762  1.231     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    763  1.231     oster 			/* this might be the one */
    764  1.231     oster 			dumpto = c;
    765  1.231     oster 			break;
    766  1.231     oster 		}
    767  1.231     oster 	}
    768  1.385  riastrad 
    769  1.385  riastrad 	/*
    770  1.383     oster 	   At this point we have possibly selected a live component.
    771  1.383     oster 	   If we didn't find a live ocmponent, we now check to see
    772  1.383     oster 	   if there is a relevant spared component.
    773  1.231     oster 	*/
    774  1.231     oster 
    775  1.231     oster 	for (c = 0; c < raidPtr->numSpare; c++) {
    776  1.231     oster 		sparecol = raidPtr->numCol + c;
    777  1.231     oster 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    778  1.231     oster 			/* How about this one? */
    779  1.231     oster 			scol = -1;
    780  1.231     oster 			for(j=0;j<raidPtr->numCol;j++) {
    781  1.231     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
    782  1.231     oster 					scol = j;
    783  1.231     oster 					break;
    784  1.231     oster 				}
    785  1.231     oster 			}
    786  1.231     oster 			if (scol == 0) {
    787  1.385  riastrad 				/*
    788  1.383     oster 				   We must have found a spared first
    789  1.383     oster 				   component!  We'll take that over
    790  1.383     oster 				   anything else found so far.  (We
    791  1.383     oster 				   couldn't have found a real first
    792  1.383     oster 				   component before, since this is a
    793  1.383     oster 				   used spare, and it's saying that
    794  1.383     oster 				   it's replacing the first
    795  1.383     oster 				   component.)  On reboot (with
    796  1.231     oster 				   autoconfiguration turned on)
    797  1.383     oster 				   sparecol will become the first
    798  1.383     oster 				   component (component0) of this set.
    799  1.231     oster 				*/
    800  1.231     oster 				dumpto = sparecol;
    801  1.231     oster 				break;
    802  1.231     oster 			} else if (scol != -1) {
    803  1.385  riastrad 				/*
    804  1.385  riastrad 				   Must be a spared second component.
    805  1.385  riastrad 				   We'll dump to that if we havn't found
    806  1.385  riastrad 				   anything else so far.
    807  1.231     oster 				*/
    808  1.231     oster 				if (dumpto == -1)
    809  1.231     oster 					dumpto = sparecol;
    810  1.231     oster 			}
    811  1.231     oster 		}
    812  1.231     oster 	}
    813  1.385  riastrad 
    814  1.231     oster 	if (dumpto == -1) {
    815  1.231     oster 		/* we couldn't find any live components to dump to!?!?
    816  1.231     oster 		 */
    817  1.231     oster 		error = EINVAL;
    818  1.231     oster 		goto out;
    819  1.231     oster 	}
    820  1.231     oster 
    821  1.231     oster 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    822  1.342   mlelstv 	if (bdev == NULL) {
    823  1.342   mlelstv 		error = ENXIO;
    824  1.342   mlelstv 		goto out;
    825  1.342   mlelstv 	}
    826  1.231     oster 
    827  1.385  riastrad 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    828  1.336   mlelstv 				blkno, va, nblk * raidPtr->bytesPerSector);
    829  1.385  riastrad 
    830  1.231     oster out:
    831  1.231     oster 	raidunlock(rs);
    832  1.385  riastrad 
    833  1.231     oster 	return error;
    834    1.1     oster }
    835  1.324       mrg 
    836    1.1     oster /* ARGSUSED */
    837  1.324       mrg static int
    838  1.222  christos raidopen(dev_t dev, int flags, int fmt,
    839  1.222  christos     struct lwp *l)
    840    1.1     oster {
    841    1.9     oster 	int     unit = raidunit(dev);
    842    1.1     oster 	struct raid_softc *rs;
    843  1.335   mlelstv 	struct dk_softc *dksc;
    844  1.335   mlelstv 	int     error = 0;
    845    1.9     oster 	int     part, pmask;
    846    1.9     oster 
    847  1.327  pgoyette 	if ((rs = raidget(unit, true)) == NULL)
    848  1.300  christos 		return ENXIO;
    849    1.1     oster 	if ((error = raidlock(rs)) != 0)
    850  1.389     skrll 		return error;
    851  1.266    dyoung 
    852  1.266    dyoung 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0) {
    853  1.266    dyoung 		error = EBUSY;
    854  1.266    dyoung 		goto bad;
    855  1.266    dyoung 	}
    856  1.266    dyoung 
    857  1.335   mlelstv 	dksc = &rs->sc_dksc;
    858    1.1     oster 
    859    1.1     oster 	part = DISKPART(dev);
    860    1.1     oster 	pmask = (1 << part);
    861    1.1     oster 
    862  1.335   mlelstv 	if (!DK_BUSY(dksc, pmask) &&
    863   1.13     oster 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    864   1.13     oster 		/* First one... mark things as dirty... Note that we *MUST*
    865   1.13     oster 		 have done a configure before this.  I DO NOT WANT TO BE
    866   1.13     oster 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    867   1.13     oster 		 THAT THEY BELONG TOGETHER!!!!! */
    868   1.13     oster 		/* XXX should check to see if we're only open for reading
    869   1.13     oster 		   here... If so, we needn't do this, but then need some
    870   1.13     oster 		   other way of keeping track of what's happened.. */
    871   1.13     oster 
    872  1.300  christos 		rf_markalldirty(&rs->sc_r);
    873   1.13     oster 	}
    874   1.13     oster 
    875  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) != 0)
    876  1.335   mlelstv 		error = dk_open(dksc, dev, flags, fmt, l);
    877    1.1     oster 
    878  1.213  christos bad:
    879    1.1     oster 	raidunlock(rs);
    880    1.1     oster 
    881  1.389     skrll 	return error;
    882    1.1     oster 
    883    1.1     oster 
    884    1.1     oster }
    885  1.324       mrg 
    886  1.335   mlelstv static int
    887  1.335   mlelstv raid_lastclose(device_t self)
    888  1.335   mlelstv {
    889  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(self);
    890  1.335   mlelstv 
    891  1.335   mlelstv 	/* Last one... device is not unconfigured yet.
    892  1.335   mlelstv 	   Device shutdown has taken care of setting the
    893  1.335   mlelstv 	   clean bits if RAIDF_INITED is not set
    894  1.335   mlelstv 	   mark things as clean... */
    895  1.335   mlelstv 
    896  1.335   mlelstv 	rf_update_component_labels(&rs->sc_r,
    897  1.335   mlelstv 	    RF_FINAL_COMPONENT_UPDATE);
    898  1.335   mlelstv 
    899  1.335   mlelstv 	/* pass to unlocked code */
    900  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
    901  1.335   mlelstv 		rs->sc_flags |= RAIDF_DETACH;
    902  1.335   mlelstv 
    903  1.335   mlelstv 	return 0;
    904  1.335   mlelstv }
    905  1.335   mlelstv 
    906    1.1     oster /* ARGSUSED */
    907  1.324       mrg static int
    908  1.222  christos raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    909    1.1     oster {
    910    1.9     oster 	int     unit = raidunit(dev);
    911    1.1     oster 	struct raid_softc *rs;
    912  1.335   mlelstv 	struct dk_softc *dksc;
    913  1.335   mlelstv 	cfdata_t cf;
    914  1.335   mlelstv 	int     error = 0, do_detach = 0, do_put = 0;
    915    1.1     oster 
    916  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
    917  1.300  christos 		return ENXIO;
    918  1.335   mlelstv 	dksc = &rs->sc_dksc;
    919    1.1     oster 
    920    1.1     oster 	if ((error = raidlock(rs)) != 0)
    921  1.389     skrll 		return error;
    922    1.1     oster 
    923  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) != 0) {
    924  1.335   mlelstv 		error = dk_close(dksc, dev, flags, fmt, l);
    925  1.335   mlelstv 		if ((rs->sc_flags & RAIDF_DETACH) != 0)
    926  1.335   mlelstv 			do_detach = 1;
    927  1.335   mlelstv 	} else if ((rs->sc_flags & RAIDF_SHUTDOWN) != 0)
    928  1.335   mlelstv 		do_put = 1;
    929    1.1     oster 
    930  1.335   mlelstv 	raidunlock(rs);
    931    1.1     oster 
    932  1.335   mlelstv 	if (do_detach) {
    933  1.335   mlelstv 		/* free the pseudo device attach bits */
    934  1.335   mlelstv 		cf = device_cfdata(dksc->sc_dev);
    935  1.335   mlelstv 		error = config_detach(dksc->sc_dev, 0);
    936  1.385  riastrad 		if (error == 0)
    937  1.335   mlelstv 			free(cf, M_RAIDFRAME);
    938  1.335   mlelstv 	} else if (do_put) {
    939  1.335   mlelstv 		raidput(rs);
    940    1.1     oster 	}
    941  1.186     perry 
    942  1.389     skrll 	return error;
    943  1.147     oster 
    944  1.335   mlelstv }
    945  1.327  pgoyette 
    946  1.335   mlelstv static void
    947  1.335   mlelstv raid_wakeup(RF_Raid_t *raidPtr)
    948  1.335   mlelstv {
    949  1.335   mlelstv 	rf_lock_mutex2(raidPtr->iodone_lock);
    950  1.335   mlelstv 	rf_signal_cond2(raidPtr->iodone_cv);
    951  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->iodone_lock);
    952    1.1     oster }
    953    1.1     oster 
    954  1.324       mrg static void
    955  1.169     oster raidstrategy(struct buf *bp)
    956    1.1     oster {
    957  1.335   mlelstv 	unsigned int unit;
    958  1.335   mlelstv 	struct raid_softc *rs;
    959  1.335   mlelstv 	struct dk_softc *dksc;
    960    1.1     oster 	RF_Raid_t *raidPtr;
    961    1.1     oster 
    962  1.335   mlelstv 	unit = raidunit(bp->b_dev);
    963  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL) {
    964   1.30     oster 		bp->b_error = ENXIO;
    965  1.335   mlelstv 		goto fail;
    966   1.30     oster 	}
    967  1.300  christos 	if ((rs->sc_flags & RAIDF_INITED) == 0) {
    968  1.300  christos 		bp->b_error = ENXIO;
    969  1.335   mlelstv 		goto fail;
    970    1.1     oster 	}
    971  1.335   mlelstv 	dksc = &rs->sc_dksc;
    972  1.300  christos 	raidPtr = &rs->sc_r;
    973  1.335   mlelstv 
    974  1.335   mlelstv 	/* Queue IO only */
    975  1.335   mlelstv 	if (dk_strategy_defer(dksc, bp))
    976  1.196      yamt 		goto done;
    977    1.1     oster 
    978  1.335   mlelstv 	/* schedule the IO to happen at the next convenient time */
    979  1.335   mlelstv 	raid_wakeup(raidPtr);
    980  1.335   mlelstv 
    981  1.335   mlelstv done:
    982  1.335   mlelstv 	return;
    983  1.335   mlelstv 
    984  1.335   mlelstv fail:
    985  1.335   mlelstv 	bp->b_resid = bp->b_bcount;
    986  1.335   mlelstv 	biodone(bp);
    987  1.335   mlelstv }
    988  1.335   mlelstv 
    989  1.335   mlelstv static int
    990  1.335   mlelstv raid_diskstart(device_t dev, struct buf *bp)
    991  1.335   mlelstv {
    992  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(dev);
    993  1.335   mlelstv 	RF_Raid_t *raidPtr;
    994    1.1     oster 
    995  1.335   mlelstv 	raidPtr = &rs->sc_r;
    996  1.335   mlelstv 	if (!raidPtr->valid) {
    997  1.335   mlelstv 		db1_printf(("raid is not valid..\n"));
    998  1.335   mlelstv 		return ENODEV;
    999  1.196      yamt 	}
   1000  1.285       mrg 
   1001  1.335   mlelstv 	/* XXX */
   1002  1.335   mlelstv 	bp->b_resid = 0;
   1003  1.335   mlelstv 
   1004  1.335   mlelstv 	return raiddoaccess(raidPtr, bp);
   1005  1.335   mlelstv }
   1006    1.1     oster 
   1007  1.335   mlelstv void
   1008  1.335   mlelstv raiddone(RF_Raid_t *raidPtr, struct buf *bp)
   1009  1.335   mlelstv {
   1010  1.335   mlelstv 	struct raid_softc *rs;
   1011  1.335   mlelstv 	struct dk_softc *dksc;
   1012   1.34     oster 
   1013  1.335   mlelstv 	rs = raidPtr->softc;
   1014  1.335   mlelstv 	dksc = &rs->sc_dksc;
   1015   1.34     oster 
   1016  1.335   mlelstv 	dk_done(dksc, bp);
   1017   1.34     oster 
   1018  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
   1019  1.335   mlelstv 	raidPtr->openings++;
   1020  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
   1021  1.196      yamt 
   1022  1.335   mlelstv 	/* schedule more IO */
   1023  1.335   mlelstv 	raid_wakeup(raidPtr);
   1024    1.1     oster }
   1025  1.324       mrg 
   1026    1.1     oster /* ARGSUSED */
   1027  1.324       mrg static int
   1028  1.222  christos raidread(dev_t dev, struct uio *uio, int flags)
   1029    1.1     oster {
   1030    1.9     oster 	int     unit = raidunit(dev);
   1031    1.1     oster 	struct raid_softc *rs;
   1032    1.1     oster 
   1033  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
   1034  1.300  christos 		return ENXIO;
   1035    1.1     oster 
   1036    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
   1037  1.389     skrll 		return ENXIO;
   1038    1.1     oster 
   1039  1.389     skrll 	return physio(raidstrategy, NULL, dev, B_READ, minphys, uio);
   1040    1.1     oster 
   1041    1.1     oster }
   1042  1.324       mrg 
   1043    1.1     oster /* ARGSUSED */
   1044  1.324       mrg static int
   1045  1.222  christos raidwrite(dev_t dev, struct uio *uio, int flags)
   1046    1.1     oster {
   1047    1.9     oster 	int     unit = raidunit(dev);
   1048    1.1     oster 	struct raid_softc *rs;
   1049    1.1     oster 
   1050  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
   1051  1.300  christos 		return ENXIO;
   1052    1.1     oster 
   1053    1.1     oster 	if ((rs->sc_flags & RAIDF_INITED) == 0)
   1054  1.389     skrll 		return ENXIO;
   1055  1.147     oster 
   1056  1.389     skrll 	return physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio);
   1057    1.1     oster 
   1058    1.1     oster }
   1059    1.1     oster 
   1060  1.266    dyoung static int
   1061  1.266    dyoung raid_detach_unlocked(struct raid_softc *rs)
   1062  1.266    dyoung {
   1063  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   1064  1.335   mlelstv 	RF_Raid_t *raidPtr;
   1065  1.266    dyoung 	int error;
   1066  1.266    dyoung 
   1067  1.300  christos 	raidPtr = &rs->sc_r;
   1068  1.266    dyoung 
   1069  1.337   mlelstv 	if (DK_BUSY(dksc, 0) ||
   1070  1.337   mlelstv 	    raidPtr->recon_in_progress != 0 ||
   1071  1.337   mlelstv 	    raidPtr->parity_rewrite_in_progress != 0 ||
   1072  1.337   mlelstv 	    raidPtr->copyback_in_progress != 0)
   1073  1.266    dyoung 		return EBUSY;
   1074  1.266    dyoung 
   1075  1.266    dyoung 	if ((rs->sc_flags & RAIDF_INITED) == 0)
   1076  1.333   mlelstv 		return 0;
   1077  1.333   mlelstv 
   1078  1.333   mlelstv 	rs->sc_flags &= ~RAIDF_SHUTDOWN;
   1079  1.333   mlelstv 
   1080  1.333   mlelstv 	if ((error = rf_Shutdown(raidPtr)) != 0)
   1081  1.266    dyoung 		return error;
   1082  1.266    dyoung 
   1083  1.335   mlelstv 	rs->sc_flags &= ~RAIDF_INITED;
   1084  1.335   mlelstv 
   1085  1.335   mlelstv 	/* Kill off any queued buffers */
   1086  1.335   mlelstv 	dk_drain(dksc);
   1087  1.335   mlelstv 	bufq_free(dksc->sc_bufq);
   1088  1.335   mlelstv 
   1089  1.266    dyoung 	/* Detach the disk. */
   1090  1.335   mlelstv 	dkwedge_delall(&dksc->sc_dkdev);
   1091  1.335   mlelstv 	disk_detach(&dksc->sc_dkdev);
   1092  1.335   mlelstv 	disk_destroy(&dksc->sc_dkdev);
   1093  1.335   mlelstv 	dk_detach(dksc);
   1094  1.333   mlelstv 
   1095  1.266    dyoung 	return 0;
   1096  1.266    dyoung }
   1097  1.266    dyoung 
   1098  1.366  christos static bool
   1099  1.366  christos rf_must_be_initialized(const struct raid_softc *rs, u_long cmd)
   1100  1.366  christos {
   1101  1.366  christos 	switch (cmd) {
   1102  1.366  christos 	case RAIDFRAME_ADD_HOT_SPARE:
   1103  1.366  christos 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1104  1.366  christos 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1105  1.366  christos 	case RAIDFRAME_CHECK_PARITY:
   1106  1.366  christos 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1107  1.366  christos 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1108  1.366  christos 	case RAIDFRAME_CHECK_RECON_STATUS:
   1109  1.366  christos 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1110  1.366  christos 	case RAIDFRAME_COPYBACK:
   1111  1.366  christos 	case RAIDFRAME_DELETE_COMPONENT:
   1112  1.366  christos 	case RAIDFRAME_FAIL_DISK:
   1113  1.366  christos 	case RAIDFRAME_GET_ACCTOTALS:
   1114  1.366  christos 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1115  1.366  christos 	case RAIDFRAME_GET_INFO:
   1116  1.366  christos 	case RAIDFRAME_GET_SIZE:
   1117  1.366  christos 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1118  1.366  christos 	case RAIDFRAME_INIT_LABELS:
   1119  1.366  christos 	case RAIDFRAME_KEEP_ACCTOTALS:
   1120  1.366  christos 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1121  1.366  christos 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1122  1.366  christos 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1123  1.366  christos 	case RAIDFRAME_PARITYMAP_STATUS:
   1124  1.366  christos 	case RAIDFRAME_REBUILD_IN_PLACE:
   1125  1.366  christos 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1126  1.366  christos 	case RAIDFRAME_RESET_ACCTOTALS:
   1127  1.366  christos 	case RAIDFRAME_REWRITEPARITY:
   1128  1.366  christos 	case RAIDFRAME_SET_AUTOCONFIG:
   1129  1.366  christos 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1130  1.366  christos 	case RAIDFRAME_SET_ROOT:
   1131  1.369     oster 		return (rs->sc_flags & RAIDF_INITED) == 0;
   1132  1.366  christos 	}
   1133  1.366  christos 	return false;
   1134  1.366  christos }
   1135  1.366  christos 
   1136  1.366  christos int
   1137  1.366  christos rf_fail_disk(RF_Raid_t *raidPtr, struct rf_recon_req *rr)
   1138  1.366  christos {
   1139  1.366  christos 	struct rf_recon_req_internal *rrint;
   1140  1.366  christos 
   1141  1.366  christos 	if (raidPtr->Layout.map->faultsTolerated == 0) {
   1142  1.366  christos 		/* Can't do this on a RAID 0!! */
   1143  1.366  christos 		return EINVAL;
   1144  1.366  christos 	}
   1145  1.366  christos 
   1146  1.366  christos 	if (rr->col < 0 || rr->col >= raidPtr->numCol) {
   1147  1.366  christos 		/* bad column */
   1148  1.366  christos 		return EINVAL;
   1149  1.366  christos 	}
   1150  1.366  christos 
   1151  1.366  christos 	rf_lock_mutex2(raidPtr->mutex);
   1152  1.366  christos 	if (raidPtr->status == rf_rs_reconstructing) {
   1153  1.366  christos 		/* you can't fail a disk while we're reconstructing! */
   1154  1.366  christos 		/* XXX wrong for RAID6 */
   1155  1.366  christos 		goto out;
   1156  1.366  christos 	}
   1157  1.366  christos 	if ((raidPtr->Disks[rr->col].status == rf_ds_optimal) &&
   1158  1.366  christos 	    (raidPtr->numFailures > 0)) {
   1159  1.366  christos 		/* some other component has failed.  Let's not make
   1160  1.366  christos 		   things worse. XXX wrong for RAID6 */
   1161  1.366  christos 		goto out;
   1162  1.366  christos 	}
   1163  1.366  christos 	if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1164  1.366  christos 		/* Can't fail a spared disk! */
   1165  1.366  christos 		goto out;
   1166  1.366  christos 	}
   1167  1.366  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1168  1.366  christos 
   1169  1.366  christos 	/* make a copy of the recon request so that we don't rely on
   1170  1.366  christos 	 * the user's buffer */
   1171  1.374  christos 	rrint = RF_Malloc(sizeof(*rrint));
   1172  1.366  christos 	if (rrint == NULL)
   1173  1.366  christos 		return(ENOMEM);
   1174  1.366  christos 	rrint->col = rr->col;
   1175  1.366  christos 	rrint->flags = rr->flags;
   1176  1.366  christos 	rrint->raidPtr = raidPtr;
   1177  1.366  christos 
   1178  1.366  christos 	return RF_CREATE_THREAD(raidPtr->recon_thread, rf_ReconThread,
   1179  1.366  christos 	    rrint, "raid_recon");
   1180  1.366  christos out:
   1181  1.366  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1182  1.366  christos 	return EINVAL;
   1183  1.366  christos }
   1184  1.366  christos 
   1185  1.324       mrg static int
   1186  1.367  christos rf_copyinspecificbuf(RF_Config_t *k_cfg)
   1187  1.367  christos {
   1188  1.367  christos 	/* allocate a buffer for the layout-specific data, and copy it in */
   1189  1.367  christos 	if (k_cfg->layoutSpecificSize == 0)
   1190  1.367  christos 		return 0;
   1191  1.367  christos 
   1192  1.367  christos 	if (k_cfg->layoutSpecificSize > 10000) {
   1193  1.367  christos 	    /* sanity check */
   1194  1.367  christos 	    return EINVAL;
   1195  1.367  christos 	}
   1196  1.367  christos 
   1197  1.367  christos 	u_char *specific_buf;
   1198  1.374  christos 	specific_buf =  RF_Malloc(k_cfg->layoutSpecificSize);
   1199  1.367  christos 	if (specific_buf == NULL)
   1200  1.367  christos 		return ENOMEM;
   1201  1.367  christos 
   1202  1.367  christos 	int retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1203  1.367  christos 	    k_cfg->layoutSpecificSize);
   1204  1.367  christos 	if (retcode) {
   1205  1.367  christos 		RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1206  1.367  christos 		db1_printf(("%s: retcode=%d copyin.2\n", __func__, retcode));
   1207  1.367  christos 		return retcode;
   1208  1.367  christos 	}
   1209  1.367  christos 
   1210  1.367  christos 	k_cfg->layoutSpecific = specific_buf;
   1211  1.367  christos 	return 0;
   1212  1.367  christos }
   1213  1.367  christos 
   1214  1.367  christos static int
   1215  1.367  christos rf_getConfiguration(struct raid_softc *rs, void *data, RF_Config_t **k_cfg)
   1216  1.367  christos {
   1217  1.372  christos 	RF_Config_t *u_cfg = *((RF_Config_t **) data);
   1218  1.372  christos 
   1219  1.367  christos 	if (rs->sc_r.valid) {
   1220  1.367  christos 		/* There is a valid RAID set running on this unit! */
   1221  1.367  christos 		printf("raid%d: Device already configured!\n", rs->sc_unit);
   1222  1.367  christos 		return EINVAL;
   1223  1.367  christos 	}
   1224  1.367  christos 
   1225  1.367  christos 	/* copy-in the configuration information */
   1226  1.367  christos 	/* data points to a pointer to the configuration structure */
   1227  1.374  christos 	*k_cfg = RF_Malloc(sizeof(**k_cfg));
   1228  1.367  christos 	if (*k_cfg == NULL) {
   1229  1.367  christos 		return ENOMEM;
   1230  1.367  christos 	}
   1231  1.373  christos 	int retcode = copyin(u_cfg, *k_cfg, sizeof(RF_Config_t));
   1232  1.367  christos 	if (retcode == 0)
   1233  1.367  christos 		return 0;
   1234  1.367  christos 	RF_Free(*k_cfg, sizeof(RF_Config_t));
   1235  1.367  christos 	db1_printf(("%s: retcode=%d copyin.1\n", __func__, retcode));
   1236  1.367  christos 	rs->sc_flags |= RAIDF_SHUTDOWN;
   1237  1.367  christos 	return retcode;
   1238  1.367  christos }
   1239  1.367  christos 
   1240  1.367  christos int
   1241  1.367  christos rf_construct(struct raid_softc *rs, RF_Config_t *k_cfg)
   1242  1.367  christos {
   1243  1.408       mrg 	int retcode, i;
   1244  1.367  christos 	RF_Raid_t *raidPtr = &rs->sc_r;
   1245  1.367  christos 
   1246  1.367  christos 	rs->sc_flags &= ~RAIDF_SHUTDOWN;
   1247  1.367  christos 
   1248  1.367  christos 	if ((retcode = rf_copyinspecificbuf(k_cfg)) != 0)
   1249  1.367  christos 		goto out;
   1250  1.367  christos 
   1251  1.367  christos 	/* should do some kind of sanity check on the configuration.
   1252  1.367  christos 	 * Store the sum of all the bytes in the last byte? */
   1253  1.367  christos 
   1254  1.408       mrg 	/* Force nul-termination on all strings. */
   1255  1.408       mrg #define ZERO_FINAL(s)	do { s[sizeof(s) - 1] = '\0'; } while (0)
   1256  1.408       mrg 	for (i = 0; i < RF_MAXCOL; i++) {
   1257  1.408       mrg 		ZERO_FINAL(k_cfg->devnames[0][i]);
   1258  1.408       mrg 	}
   1259  1.408       mrg 	for (i = 0; i < RF_MAXSPARE; i++) {
   1260  1.408       mrg 		ZERO_FINAL(k_cfg->spare_names[i]);
   1261  1.408       mrg 	}
   1262  1.408       mrg 	for (i = 0; i < RF_MAXDBGV; i++) {
   1263  1.408       mrg 		ZERO_FINAL(k_cfg->debugVars[i]);
   1264  1.408       mrg 	}
   1265  1.408       mrg #undef ZERO_FINAL
   1266  1.408       mrg 
   1267  1.408       mrg 	/* Check some basic limits. */
   1268  1.408       mrg 	if (k_cfg->numCol >= RF_MAXCOL || k_cfg->numCol < 0) {
   1269  1.408       mrg 		retcode = EINVAL;
   1270  1.408       mrg 		goto out;
   1271  1.408       mrg 	}
   1272  1.408       mrg 	if (k_cfg->numSpare >= RF_MAXSPARE || k_cfg->numSpare < 0) {
   1273  1.408       mrg 		retcode = EINVAL;
   1274  1.408       mrg 		goto out;
   1275  1.408       mrg 	}
   1276  1.408       mrg 
   1277  1.367  christos 	/* configure the system */
   1278  1.367  christos 
   1279  1.367  christos 	/*
   1280  1.367  christos 	 * Clear the entire RAID descriptor, just to make sure
   1281  1.367  christos 	 *  there is no stale data left in the case of a
   1282  1.367  christos 	 *  reconfiguration
   1283  1.367  christos 	 */
   1284  1.367  christos 	memset(raidPtr, 0, sizeof(*raidPtr));
   1285  1.367  christos 	raidPtr->softc = rs;
   1286  1.367  christos 	raidPtr->raidid = rs->sc_unit;
   1287  1.367  christos 
   1288  1.367  christos 	retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1289  1.367  christos 
   1290  1.367  christos 	if (retcode == 0) {
   1291  1.367  christos 		/* allow this many simultaneous IO's to
   1292  1.367  christos 		   this RAID device */
   1293  1.367  christos 		raidPtr->openings = RAIDOUTSTANDING;
   1294  1.367  christos 
   1295  1.367  christos 		raidinit(rs);
   1296  1.367  christos 		raid_wakeup(raidPtr);
   1297  1.367  christos 		rf_markalldirty(raidPtr);
   1298  1.367  christos 	}
   1299  1.367  christos 
   1300  1.367  christos 	/* free the buffers.  No return code here. */
   1301  1.367  christos 	if (k_cfg->layoutSpecificSize) {
   1302  1.367  christos 		RF_Free(k_cfg->layoutSpecific, k_cfg->layoutSpecificSize);
   1303  1.367  christos 	}
   1304  1.367  christos out:
   1305  1.367  christos 	RF_Free(k_cfg, sizeof(RF_Config_t));
   1306  1.367  christos 	if (retcode) {
   1307  1.367  christos 		/*
   1308  1.367  christos 		 * If configuration failed, set sc_flags so that we
   1309  1.367  christos 		 * will detach the device when we close it.
   1310  1.367  christos 		 */
   1311  1.367  christos 		rs->sc_flags |= RAIDF_SHUTDOWN;
   1312  1.367  christos 	}
   1313  1.367  christos 	return retcode;
   1314  1.367  christos }
   1315  1.367  christos 
   1316  1.367  christos #if RF_DISABLED
   1317  1.367  christos static int
   1318  1.367  christos rf_set_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   1319  1.367  christos {
   1320  1.367  christos 
   1321  1.367  christos 	/* XXX check the label for valid stuff... */
   1322  1.367  christos 	/* Note that some things *should not* get modified --
   1323  1.367  christos 	   the user should be re-initing the labels instead of
   1324  1.367  christos 	   trying to patch things.
   1325  1.367  christos 	   */
   1326  1.367  christos #ifdef DEBUG
   1327  1.367  christos 	int raidid = raidPtr->raidid;
   1328  1.367  christos 	printf("raid%d: Got component label:\n", raidid);
   1329  1.367  christos 	printf("raid%d: Version: %d\n", raidid, clabel->version);
   1330  1.367  christos 	printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1331  1.367  christos 	printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1332  1.367  christos 	printf("raid%d: Column: %d\n", raidid, clabel->column);
   1333  1.367  christos 	printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1334  1.367  christos 	printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1335  1.367  christos 	printf("raid%d: Status: %d\n", raidid, clabel->status);
   1336  1.367  christos #endif	/* DEBUG */
   1337  1.367  christos 	clabel->row = 0;
   1338  1.367  christos 	int column = clabel->column;
   1339  1.367  christos 
   1340  1.367  christos 	if ((column < 0) || (column >= raidPtr->numCol)) {
   1341  1.367  christos 		return(EINVAL);
   1342  1.367  christos 	}
   1343  1.367  christos 
   1344  1.367  christos 	/* XXX this isn't allowed to do anything for now :-) */
   1345  1.367  christos 
   1346  1.367  christos 	/* XXX and before it is, we need to fill in the rest
   1347  1.367  christos 	   of the fields!?!?!?! */
   1348  1.367  christos 	memcpy(raidget_component_label(raidPtr, column),
   1349  1.367  christos 	    clabel, sizeof(*clabel));
   1350  1.367  christos 	raidflush_component_label(raidPtr, column);
   1351  1.367  christos 	return 0;
   1352  1.367  christos }
   1353  1.367  christos #endif
   1354  1.367  christos 
   1355  1.367  christos static int
   1356  1.367  christos rf_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   1357  1.367  christos {
   1358  1.367  christos 	/*
   1359  1.367  christos 	   we only want the serial number from
   1360  1.367  christos 	   the above.  We get all the rest of the information
   1361  1.367  christos 	   from the config that was used to create this RAID
   1362  1.367  christos 	   set.
   1363  1.367  christos 	   */
   1364  1.367  christos 
   1365  1.367  christos 	raidPtr->serial_number = clabel->serial_number;
   1366  1.367  christos 
   1367  1.367  christos 	for (int column = 0; column < raidPtr->numCol; column++) {
   1368  1.367  christos 		RF_RaidDisk_t *diskPtr = &raidPtr->Disks[column];
   1369  1.367  christos 		if (RF_DEAD_DISK(diskPtr->status))
   1370  1.367  christos 			continue;
   1371  1.367  christos 		RF_ComponentLabel_t *ci_label = raidget_component_label(
   1372  1.367  christos 		    raidPtr, column);
   1373  1.367  christos 		/* Zeroing this is important. */
   1374  1.367  christos 		memset(ci_label, 0, sizeof(*ci_label));
   1375  1.367  christos 		raid_init_component_label(raidPtr, ci_label);
   1376  1.367  christos 		ci_label->serial_number = raidPtr->serial_number;
   1377  1.367  christos 		ci_label->row = 0; /* we dont' pretend to support more */
   1378  1.367  christos 		rf_component_label_set_partitionsize(ci_label,
   1379  1.367  christos 		    diskPtr->partitionSize);
   1380  1.367  christos 		ci_label->column = column;
   1381  1.367  christos 		raidflush_component_label(raidPtr, column);
   1382  1.367  christos 		/* XXXjld what about the spares? */
   1383  1.367  christos 	}
   1384  1.385  riastrad 
   1385  1.367  christos 	return 0;
   1386  1.367  christos }
   1387  1.367  christos 
   1388  1.367  christos static int
   1389  1.367  christos rf_rebuild_in_place(RF_Raid_t *raidPtr, RF_SingleComponent_t *componentPtr)
   1390  1.367  christos {
   1391  1.367  christos 
   1392  1.367  christos 	if (raidPtr->Layout.map->faultsTolerated == 0) {
   1393  1.367  christos 		/* Can't do this on a RAID 0!! */
   1394  1.367  christos 		return EINVAL;
   1395  1.367  christos 	}
   1396  1.367  christos 
   1397  1.367  christos 	if (raidPtr->recon_in_progress == 1) {
   1398  1.367  christos 		/* a reconstruct is already in progress! */
   1399  1.367  christos 		return EINVAL;
   1400  1.367  christos 	}
   1401  1.367  christos 
   1402  1.367  christos 	RF_SingleComponent_t component;
   1403  1.367  christos 	memcpy(&component, componentPtr, sizeof(RF_SingleComponent_t));
   1404  1.367  christos 	component.row = 0; /* we don't support any more */
   1405  1.367  christos 	int column = component.column;
   1406  1.367  christos 
   1407  1.367  christos 	if ((column < 0) || (column >= raidPtr->numCol)) {
   1408  1.367  christos 		return EINVAL;
   1409  1.367  christos 	}
   1410  1.367  christos 
   1411  1.367  christos 	rf_lock_mutex2(raidPtr->mutex);
   1412  1.367  christos 	if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1413  1.367  christos 	    (raidPtr->numFailures > 0)) {
   1414  1.367  christos 		/* XXX 0 above shouldn't be constant!!! */
   1415  1.367  christos 		/* some component other than this has failed.
   1416  1.367  christos 		   Let's not make things worse than they already
   1417  1.367  christos 		   are... */
   1418  1.367  christos 		printf("raid%d: Unable to reconstruct to disk at:\n",
   1419  1.367  christos 		       raidPtr->raidid);
   1420  1.367  christos 		printf("raid%d:     Col: %d   Too many failures.\n",
   1421  1.367  christos 		       raidPtr->raidid, column);
   1422  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1423  1.367  christos 		return EINVAL;
   1424  1.367  christos 	}
   1425  1.367  christos 
   1426  1.367  christos 	if (raidPtr->Disks[column].status == rf_ds_reconstructing) {
   1427  1.367  christos 		printf("raid%d: Unable to reconstruct to disk at:\n",
   1428  1.367  christos 		       raidPtr->raidid);
   1429  1.367  christos 		printf("raid%d:    Col: %d   "
   1430  1.367  christos 		    "Reconstruction already occurring!\n",
   1431  1.367  christos 		    raidPtr->raidid, column);
   1432  1.367  christos 
   1433  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1434  1.367  christos 		return EINVAL;
   1435  1.367  christos 	}
   1436  1.367  christos 
   1437  1.367  christos 	if (raidPtr->Disks[column].status == rf_ds_spared) {
   1438  1.367  christos 		rf_unlock_mutex2(raidPtr->mutex);
   1439  1.367  christos 		return EINVAL;
   1440  1.367  christos 	}
   1441  1.367  christos 
   1442  1.367  christos 	rf_unlock_mutex2(raidPtr->mutex);
   1443  1.367  christos 
   1444  1.367  christos 	struct rf_recon_req_internal *rrint;
   1445  1.374  christos 	rrint = RF_Malloc(sizeof(*rrint));
   1446  1.367  christos 	if (rrint == NULL)
   1447  1.367  christos 		return ENOMEM;
   1448  1.367  christos 
   1449  1.367  christos 	rrint->col = column;
   1450  1.367  christos 	rrint->raidPtr = raidPtr;
   1451  1.367  christos 
   1452  1.367  christos 	return RF_CREATE_THREAD(raidPtr->recon_thread,
   1453  1.367  christos 	    rf_ReconstructInPlaceThread, rrint, "raid_reconip");
   1454  1.367  christos }
   1455  1.367  christos 
   1456  1.367  christos static int
   1457  1.367  christos rf_check_recon_status(RF_Raid_t *raidPtr, int *data)
   1458  1.367  christos {
   1459  1.367  christos 	/*
   1460  1.367  christos 	 * This makes no sense on a RAID 0, or if we are not reconstructing
   1461  1.367  christos 	 * so tell the user it's done.
   1462  1.367  christos 	 */
   1463  1.367  christos 	if (raidPtr->Layout.map->faultsTolerated == 0 ||
   1464  1.367  christos 	    raidPtr->status != rf_rs_reconstructing) {
   1465  1.367  christos 		*data = 100;
   1466  1.367  christos 		return 0;
   1467  1.367  christos 	}
   1468  1.367  christos 	if (raidPtr->reconControl->numRUsTotal == 0) {
   1469  1.367  christos 		*data = 0;
   1470  1.367  christos 		return 0;
   1471  1.367  christos 	}
   1472  1.367  christos 	*data = (raidPtr->reconControl->numRUsComplete * 100
   1473  1.367  christos 	    / raidPtr->reconControl->numRUsTotal);
   1474  1.367  christos 	return 0;
   1475  1.367  christos }
   1476  1.367  christos 
   1477  1.408       mrg /*
   1478  1.408       mrg  * Copy a RF_SingleComponent_t from 'data', ensuring nul-termination
   1479  1.408       mrg  * on the component_name[] array.
   1480  1.408       mrg  */
   1481  1.408       mrg static void
   1482  1.408       mrg rf_copy_single_component(RF_SingleComponent_t *component, void *data)
   1483  1.408       mrg {
   1484  1.408       mrg 
   1485  1.408       mrg 	memcpy(component, data, sizeof *component);
   1486  1.408       mrg 	component->component_name[sizeof(component->component_name) - 1] = '\0';
   1487  1.408       mrg }
   1488  1.408       mrg 
   1489  1.367  christos static int
   1490  1.225  christos raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1491    1.1     oster {
   1492    1.9     oster 	int     unit = raidunit(dev);
   1493  1.335   mlelstv 	int     part, pmask;
   1494    1.1     oster 	struct raid_softc *rs;
   1495  1.335   mlelstv 	struct dk_softc *dksc;
   1496  1.367  christos 	RF_Config_t *k_cfg;
   1497   1.42     oster 	RF_Raid_t *raidPtr;
   1498   1.41     oster 	RF_AccTotals_t *totals;
   1499  1.367  christos 	RF_SingleComponent_t component;
   1500  1.371     oster 	RF_DeviceConfig_t *d_cfg, *ucfgp;
   1501   1.11     oster 	int retcode = 0;
   1502   1.11     oster 	int column;
   1503   1.48     oster 	RF_ComponentLabel_t *clabel;
   1504  1.353       mrg 	int d;
   1505    1.1     oster 
   1506  1.327  pgoyette 	if ((rs = raidget(unit, false)) == NULL)
   1507  1.300  christos 		return ENXIO;
   1508  1.366  christos 
   1509  1.335   mlelstv 	dksc = &rs->sc_dksc;
   1510  1.300  christos 	raidPtr = &rs->sc_r;
   1511    1.1     oster 
   1512  1.276       mrg 	db1_printf(("raidioctl: %d %d %d %lu\n", (int) dev,
   1513  1.366  christos 	    (int) DISKPART(dev), (int) unit, cmd));
   1514    1.1     oster 
   1515    1.1     oster 	/* Must be initialized for these... */
   1516  1.366  christos 	if (rf_must_be_initialized(rs, cmd))
   1517  1.366  christos 		return ENXIO;
   1518    1.9     oster 
   1519  1.358  pgoyette 	switch (cmd) {
   1520    1.1     oster 		/* configure the system */
   1521    1.1     oster 	case RAIDFRAME_CONFIGURE:
   1522  1.367  christos 		if ((retcode = rf_getConfiguration(rs, data, &k_cfg)) != 0)
   1523  1.367  christos 			return retcode;
   1524  1.367  christos 		return rf_construct(rs, k_cfg);
   1525    1.9     oster 
   1526    1.9     oster 		/* shutdown the system */
   1527    1.1     oster 	case RAIDFRAME_SHUTDOWN:
   1528    1.9     oster 
   1529  1.266    dyoung 		part = DISKPART(dev);
   1530  1.266    dyoung 		pmask = (1 << part);
   1531  1.266    dyoung 
   1532  1.367  christos 		if ((retcode = raidlock(rs)) != 0)
   1533  1.367  christos 			return retcode;
   1534    1.1     oster 
   1535  1.337   mlelstv 		if (DK_BUSY(dksc, pmask) ||
   1536  1.337   mlelstv 		    raidPtr->recon_in_progress != 0 ||
   1537  1.337   mlelstv 		    raidPtr->parity_rewrite_in_progress != 0 ||
   1538  1.337   mlelstv 		    raidPtr->copyback_in_progress != 0)
   1539  1.266    dyoung 			retcode = EBUSY;
   1540  1.266    dyoung 		else {
   1541  1.335   mlelstv 			/* detach and free on close */
   1542  1.266    dyoung 			rs->sc_flags |= RAIDF_SHUTDOWN;
   1543  1.266    dyoung 			retcode = 0;
   1544    1.9     oster 		}
   1545   1.11     oster 
   1546  1.266    dyoung 		raidunlock(rs);
   1547    1.1     oster 
   1548  1.367  christos 		return retcode;
   1549   1.11     oster 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1550  1.353       mrg 		return rf_get_component_label(raidPtr, data);
   1551   1.11     oster 
   1552  1.367  christos #if RF_DISABLED
   1553   1.11     oster 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1554  1.367  christos 		return rf_set_component_label(raidPtr, data);
   1555  1.367  christos #endif
   1556   1.11     oster 
   1557  1.367  christos 	case RAIDFRAME_INIT_LABELS:
   1558  1.367  christos 		return rf_init_component_label(raidPtr, data);
   1559   1.12     oster 
   1560   1.48     oster 	case RAIDFRAME_SET_AUTOCONFIG:
   1561   1.78   minoura 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1562  1.186     perry 		printf("raid%d: New autoconfig value is: %d\n",
   1563  1.123     oster 		       raidPtr->raidid, d);
   1564   1.78   minoura 		*(int *) data = d;
   1565  1.367  christos 		return retcode;
   1566   1.48     oster 
   1567   1.48     oster 	case RAIDFRAME_SET_ROOT:
   1568   1.78   minoura 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1569  1.186     perry 		printf("raid%d: New rootpartition value is: %d\n",
   1570  1.123     oster 		       raidPtr->raidid, d);
   1571   1.78   minoura 		*(int *) data = d;
   1572  1.367  christos 		return retcode;
   1573    1.9     oster 
   1574    1.1     oster 		/* initialize all parity */
   1575    1.1     oster 	case RAIDFRAME_REWRITEPARITY:
   1576    1.1     oster 
   1577   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1578   1.17     oster 			/* Parity for RAID 0 is trivially correct */
   1579   1.42     oster 			raidPtr->parity_good = RF_RAID_CLEAN;
   1580  1.367  christos 			return 0;
   1581   1.17     oster 		}
   1582  1.186     perry 
   1583   1.42     oster 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1584   1.37     oster 			/* Re-write is already in progress! */
   1585  1.367  christos 			return EINVAL;
   1586   1.37     oster 		}
   1587   1.27     oster 
   1588  1.367  christos 		return RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1589  1.367  christos 		    rf_RewriteParityThread, raidPtr,"raid_parity");
   1590   1.11     oster 
   1591   1.11     oster 	case RAIDFRAME_ADD_HOT_SPARE:
   1592  1.408       mrg 		rf_copy_single_component(&component, data);
   1593  1.367  christos 		return rf_add_hot_spare(raidPtr, &component);
   1594   1.11     oster 
   1595   1.11     oster 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1596  1.367  christos 		return retcode;
   1597   1.73     oster 
   1598   1.73     oster 	case RAIDFRAME_DELETE_COMPONENT:
   1599  1.408       mrg 		rf_copy_single_component(&component, data);
   1600  1.367  christos 		return rf_delete_component(raidPtr, &component);
   1601   1.73     oster 
   1602   1.73     oster 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1603  1.408       mrg 		rf_copy_single_component(&component, data);
   1604  1.367  christos 		return rf_incorporate_hot_spare(raidPtr, &component);
   1605   1.11     oster 
   1606   1.12     oster 	case RAIDFRAME_REBUILD_IN_PLACE:
   1607  1.367  christos 		return rf_rebuild_in_place(raidPtr, data);
   1608  1.398     oster 
   1609  1.366  christos 	case RAIDFRAME_GET_INFO:
   1610  1.371     oster 		ucfgp = *(RF_DeviceConfig_t **)data;
   1611  1.374  christos 		d_cfg = RF_Malloc(sizeof(*d_cfg));
   1612   1.41     oster 		if (d_cfg == NULL)
   1613  1.366  christos 			return ENOMEM;
   1614  1.353       mrg 		retcode = rf_get_info(raidPtr, d_cfg);
   1615  1.353       mrg 		if (retcode == 0) {
   1616  1.371     oster 			retcode = copyout(d_cfg, ucfgp, sizeof(*d_cfg));
   1617   1.41     oster 		}
   1618   1.41     oster 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1619  1.366  christos 		return retcode;
   1620    1.9     oster 
   1621   1.22     oster 	case RAIDFRAME_CHECK_PARITY:
   1622   1.42     oster 		*(int *) data = raidPtr->parity_good;
   1623  1.367  christos 		return 0;
   1624   1.41     oster 
   1625  1.269       jld 	case RAIDFRAME_PARITYMAP_STATUS:
   1626  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1627  1.273       jld 			return EINVAL;
   1628  1.367  christos 		rf_paritymap_status(raidPtr->parity_map, data);
   1629  1.269       jld 		return 0;
   1630  1.269       jld 
   1631  1.269       jld 	case RAIDFRAME_PARITYMAP_SET_PARAMS:
   1632  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1633  1.273       jld 			return EINVAL;
   1634  1.269       jld 		if (raidPtr->parity_map == NULL)
   1635  1.269       jld 			return ENOENT; /* ??? */
   1636  1.367  christos 		if (rf_paritymap_set_params(raidPtr->parity_map, data, 1) != 0)
   1637  1.269       jld 			return EINVAL;
   1638  1.269       jld 		return 0;
   1639  1.269       jld 
   1640  1.269       jld 	case RAIDFRAME_PARITYMAP_GET_DISABLE:
   1641  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1642  1.273       jld 			return EINVAL;
   1643  1.269       jld 		*(int *) data = rf_paritymap_get_disable(raidPtr);
   1644  1.269       jld 		return 0;
   1645  1.269       jld 
   1646  1.269       jld 	case RAIDFRAME_PARITYMAP_SET_DISABLE:
   1647  1.273       jld 		if (rf_paritymap_ineligible(raidPtr))
   1648  1.273       jld 			return EINVAL;
   1649  1.269       jld 		rf_paritymap_set_disable(raidPtr, *(int *)data);
   1650  1.269       jld 		/* XXX should errors be passed up? */
   1651  1.269       jld 		return 0;
   1652  1.269       jld 
   1653  1.398     oster 	case RAIDFRAME_RESCAN:
   1654  1.398     oster 		return rf_rescan();
   1655  1.398     oster 
   1656    1.1     oster 	case RAIDFRAME_RESET_ACCTOTALS:
   1657  1.108   thorpej 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1658  1.367  christos 		return 0;
   1659    1.9     oster 
   1660    1.1     oster 	case RAIDFRAME_GET_ACCTOTALS:
   1661   1.41     oster 		totals = (RF_AccTotals_t *) data;
   1662   1.42     oster 		*totals = raidPtr->acc_totals;
   1663  1.366  christos 		return 0;
   1664    1.9     oster 
   1665    1.1     oster 	case RAIDFRAME_KEEP_ACCTOTALS:
   1666   1.42     oster 		raidPtr->keep_acc_totals = *(int *)data;
   1667  1.366  christos 		return 0;
   1668    1.9     oster 
   1669    1.1     oster 	case RAIDFRAME_GET_SIZE:
   1670   1.42     oster 		*(int *) data = raidPtr->totalSectors;
   1671  1.366  christos 		return 0;
   1672    1.1     oster 
   1673    1.1     oster 	case RAIDFRAME_FAIL_DISK:
   1674  1.366  christos 		return rf_fail_disk(raidPtr, data);
   1675    1.9     oster 
   1676    1.9     oster 		/* invoke a copyback operation after recon on whatever disk
   1677    1.9     oster 		 * needs it, if any */
   1678    1.9     oster 	case RAIDFRAME_COPYBACK:
   1679   1.24     oster 
   1680   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1681   1.24     oster 			/* This makes no sense on a RAID 0!! */
   1682  1.367  christos 			return EINVAL;
   1683   1.24     oster 		}
   1684   1.24     oster 
   1685   1.42     oster 		if (raidPtr->copyback_in_progress == 1) {
   1686   1.37     oster 			/* Copyback is already in progress! */
   1687  1.367  christos 			return EINVAL;
   1688   1.37     oster 		}
   1689   1.27     oster 
   1690  1.367  christos 		return RF_CREATE_THREAD(raidPtr->copyback_thread,
   1691  1.367  christos 		    rf_CopybackThread, raidPtr, "raid_copyback");
   1692    1.9     oster 
   1693    1.1     oster 		/* return the percentage completion of reconstruction */
   1694   1.37     oster 	case RAIDFRAME_CHECK_RECON_STATUS:
   1695  1.367  christos 		return rf_check_recon_status(raidPtr, data);
   1696  1.367  christos 
   1697   1.83     oster 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1698  1.353       mrg 		rf_check_recon_status_ext(raidPtr, data);
   1699  1.367  christos 		return 0;
   1700    1.9     oster 
   1701   1.37     oster 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1702   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1703   1.80     oster 			/* This makes no sense on a RAID 0, so tell the
   1704   1.80     oster 			   user it's done. */
   1705   1.80     oster 			*(int *) data = 100;
   1706  1.367  christos 			return 0;
   1707   1.37     oster 		}
   1708   1.42     oster 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1709  1.186     perry 			*(int *) data = 100 *
   1710  1.186     perry 				raidPtr->parity_rewrite_stripes_done /
   1711   1.83     oster 				raidPtr->Layout.numStripe;
   1712   1.37     oster 		} else {
   1713   1.37     oster 			*(int *) data = 100;
   1714   1.37     oster 		}
   1715  1.367  christos 		return 0;
   1716   1.37     oster 
   1717   1.83     oster 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1718  1.353       mrg 		rf_check_parityrewrite_status_ext(raidPtr, data);
   1719  1.367  christos 		return 0;
   1720   1.83     oster 
   1721   1.37     oster 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1722   1.42     oster 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1723   1.37     oster 			/* This makes no sense on a RAID 0 */
   1724   1.83     oster 			*(int *) data = 100;
   1725  1.367  christos 			return 0;
   1726   1.37     oster 		}
   1727   1.42     oster 		if (raidPtr->copyback_in_progress == 1) {
   1728   1.42     oster 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1729   1.42     oster 				raidPtr->Layout.numStripe;
   1730   1.37     oster 		} else {
   1731   1.37     oster 			*(int *) data = 100;
   1732   1.37     oster 		}
   1733  1.367  christos 		return 0;
   1734   1.37     oster 
   1735   1.83     oster 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1736  1.353       mrg 		rf_check_copyback_status_ext(raidPtr, data);
   1737  1.353       mrg 		return 0;
   1738   1.37     oster 
   1739  1.341  christos 	case RAIDFRAME_SET_LAST_UNIT:
   1740  1.341  christos 		for (column = 0; column < raidPtr->numCol; column++)
   1741  1.341  christos 			if (raidPtr->Disks[column].status != rf_ds_optimal)
   1742  1.341  christos 				return EBUSY;
   1743  1.341  christos 
   1744  1.341  christos 		for (column = 0; column < raidPtr->numCol; column++) {
   1745  1.341  christos 			clabel = raidget_component_label(raidPtr, column);
   1746  1.341  christos 			clabel->last_unit = *(int *)data;
   1747  1.341  christos 			raidflush_component_label(raidPtr, column);
   1748  1.341  christos 		}
   1749  1.341  christos 		rs->sc_cflags |= RAIDF_UNIT_CHANGED;
   1750  1.341  christos 		return 0;
   1751  1.341  christos 
   1752    1.9     oster 		/* the sparetable daemon calls this to wait for the kernel to
   1753    1.9     oster 		 * need a spare table. this ioctl does not return until a
   1754    1.9     oster 		 * spare table is needed. XXX -- calling mpsleep here in the
   1755    1.9     oster 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1756    1.9     oster 		 * -- I should either compute the spare table in the kernel,
   1757    1.9     oster 		 * or have a different -- XXX XXX -- interface (a different
   1758   1.42     oster 		 * character device) for delivering the table     -- XXX */
   1759  1.367  christos #if RF_DISABLED
   1760    1.1     oster 	case RAIDFRAME_SPARET_WAIT:
   1761  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1762    1.9     oster 		while (!rf_sparet_wait_queue)
   1763  1.287       mrg 			rf_wait_cond2(rf_sparet_wait_cv, rf_sparet_wait_mutex);
   1764  1.367  christos 		RF_SparetWait_t *waitreq = rf_sparet_wait_queue;
   1765    1.1     oster 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1766  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1767    1.9     oster 
   1768   1.42     oster 		/* structure assignment */
   1769  1.186     perry 		*((RF_SparetWait_t *) data) = *waitreq;
   1770    1.9     oster 
   1771    1.1     oster 		RF_Free(waitreq, sizeof(*waitreq));
   1772  1.367  christos 		return 0;
   1773    1.9     oster 
   1774    1.9     oster 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1775    1.9     oster 		 * code in it that will cause the dameon to exit */
   1776    1.1     oster 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1777  1.374  christos 		waitreq = RF_Malloc(sizeof(*waitreq));
   1778    1.1     oster 		waitreq->fcol = -1;
   1779  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1780    1.1     oster 		waitreq->next = rf_sparet_wait_queue;
   1781    1.1     oster 		rf_sparet_wait_queue = waitreq;
   1782  1.367  christos 		rf_broadcast_cond2(rf_sparet_wait_cv);
   1783  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1784  1.367  christos 		return 0;
   1785    1.1     oster 
   1786    1.9     oster 		/* used by the spare table daemon to deliver a spare table
   1787    1.9     oster 		 * into the kernel */
   1788    1.1     oster 	case RAIDFRAME_SEND_SPARET:
   1789    1.9     oster 
   1790    1.1     oster 		/* install the spare table */
   1791   1.42     oster 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1792    1.9     oster 
   1793    1.9     oster 		/* respond to the requestor.  the return status of the spare
   1794    1.9     oster 		 * table installation is passed in the "fcol" field */
   1795  1.374  christos 		waitred = RF_Malloc(sizeof(*waitreq));
   1796    1.1     oster 		waitreq->fcol = retcode;
   1797  1.287       mrg 		rf_lock_mutex2(rf_sparet_wait_mutex);
   1798    1.1     oster 		waitreq->next = rf_sparet_resp_queue;
   1799    1.1     oster 		rf_sparet_resp_queue = waitreq;
   1800  1.287       mrg 		rf_broadcast_cond2(rf_sparet_resp_cv);
   1801  1.287       mrg 		rf_unlock_mutex2(rf_sparet_wait_mutex);
   1802    1.9     oster 
   1803  1.367  christos 		return retcode;
   1804  1.367  christos #endif
   1805  1.367  christos 	default:
   1806  1.372  christos 		/*
   1807  1.372  christos 		 * Don't bother trying to load compat modules
   1808  1.372  christos 		 * if it is not our ioctl. This is more efficient
   1809  1.372  christos 		 * and makes rump tests not depend on compat code
   1810  1.372  christos 		 */
   1811  1.372  christos 		if (IOCGROUP(cmd) != 'r')
   1812  1.372  christos 			break;
   1813  1.367  christos #ifdef _LP64
   1814  1.367  christos 		if ((l->l_proc->p_flag & PK_32) != 0) {
   1815  1.367  christos 			module_autoload("compat_netbsd32_raid",
   1816  1.367  christos 			    MODULE_CLASS_EXEC);
   1817  1.376  pgoyette 			MODULE_HOOK_CALL(raidframe_netbsd32_ioctl_hook,
   1818  1.367  christos 			    (rs, cmd, data), enosys(), retcode);
   1819  1.367  christos 			if (retcode != EPASSTHROUGH)
   1820  1.367  christos 				return retcode;
   1821  1.367  christos 		}
   1822    1.1     oster #endif
   1823  1.367  christos 		module_autoload("compat_raid_80", MODULE_CLASS_EXEC);
   1824  1.376  pgoyette 		MODULE_HOOK_CALL(raidframe_ioctl_80_hook,
   1825  1.367  christos 		    (rs, cmd, data), enosys(), retcode);
   1826  1.367  christos 		if (retcode != EPASSTHROUGH)
   1827  1.367  christos 			return retcode;
   1828    1.1     oster 
   1829  1.367  christos 		module_autoload("compat_raid_50", MODULE_CLASS_EXEC);
   1830  1.376  pgoyette 		MODULE_HOOK_CALL(raidframe_ioctl_50_hook,
   1831  1.367  christos 		    (rs, cmd, data), enosys(), retcode);
   1832  1.367  christos 		if (retcode != EPASSTHROUGH)
   1833  1.367  christos 			return retcode;
   1834   1.36     oster 		break; /* fall through to the os-specific code below */
   1835    1.1     oster 
   1836    1.1     oster 	}
   1837    1.9     oster 
   1838   1.42     oster 	if (!raidPtr->valid)
   1839  1.389     skrll 		return EINVAL;
   1840    1.9     oster 
   1841    1.1     oster 	/*
   1842    1.1     oster 	 * Add support for "regular" device ioctls here.
   1843    1.1     oster 	 */
   1844  1.385  riastrad 
   1845    1.1     oster 	switch (cmd) {
   1846  1.348  jdolecek 	case DIOCGCACHE:
   1847  1.348  jdolecek 		retcode = rf_get_component_caches(raidPtr, (int *)data);
   1848  1.348  jdolecek 		break;
   1849  1.348  jdolecek 
   1850  1.252     oster 	case DIOCCACHESYNC:
   1851  1.390  christos 		retcode = rf_sync_component_caches(raidPtr, *(int *)data);
   1852  1.347  jdolecek 		break;
   1853  1.298    buhrow 
   1854    1.1     oster 	default:
   1855  1.346  jdolecek 		retcode = dk_ioctl(dksc, dev, cmd, data, flag, l);
   1856  1.347  jdolecek 		break;
   1857    1.1     oster 	}
   1858  1.346  jdolecek 
   1859  1.389     skrll 	return retcode;
   1860    1.1     oster 
   1861    1.1     oster }
   1862    1.1     oster 
   1863    1.1     oster 
   1864    1.9     oster /* raidinit -- complete the rest of the initialization for the
   1865    1.1     oster    RAIDframe device.  */
   1866    1.1     oster 
   1867    1.1     oster 
   1868   1.59     oster static void
   1869  1.300  christos raidinit(struct raid_softc *rs)
   1870    1.1     oster {
   1871  1.262    cegger 	cfdata_t cf;
   1872  1.335   mlelstv 	unsigned int unit;
   1873  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   1874  1.300  christos 	RF_Raid_t *raidPtr = &rs->sc_r;
   1875  1.335   mlelstv 	device_t dev;
   1876    1.1     oster 
   1877   1.59     oster 	unit = raidPtr->raidid;
   1878    1.1     oster 
   1879  1.179    itojun 	/* XXX doesn't check bounds. */
   1880  1.335   mlelstv 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%u", unit);
   1881    1.1     oster 
   1882  1.217     oster 	/* attach the pseudo device */
   1883  1.217     oster 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1884  1.217     oster 	cf->cf_name = raid_cd.cd_name;
   1885  1.217     oster 	cf->cf_atname = raid_cd.cd_name;
   1886  1.217     oster 	cf->cf_unit = unit;
   1887  1.217     oster 	cf->cf_fstate = FSTATE_STAR;
   1888  1.217     oster 
   1889  1.335   mlelstv 	dev = config_attach_pseudo(cf);
   1890  1.335   mlelstv 	if (dev == NULL) {
   1891  1.217     oster 		printf("raid%d: config_attach_pseudo failed\n",
   1892  1.270  christos 		    raidPtr->raidid);
   1893  1.265     pooka 		free(cf, M_RAIDFRAME);
   1894  1.265     pooka 		return;
   1895  1.217     oster 	}
   1896  1.217     oster 
   1897  1.335   mlelstv 	/* provide a backpointer to the real softc */
   1898  1.335   mlelstv 	raidsoftc(dev) = rs;
   1899  1.335   mlelstv 
   1900    1.1     oster 	/* disk_attach actually creates space for the CPU disklabel, among
   1901    1.9     oster 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1902    1.9     oster 	 * with disklabels. */
   1903  1.335   mlelstv 	dk_init(dksc, dev, DKTYPE_RAID);
   1904  1.335   mlelstv 	disk_init(&dksc->sc_dkdev, rs->sc_xname, &rf_dkdriver);
   1905    1.1     oster 
   1906    1.1     oster 	/* XXX There may be a weird interaction here between this, and
   1907    1.9     oster 	 * protectedSectors, as used in RAIDframe.  */
   1908   1.11     oster 
   1909    1.9     oster 	rs->sc_size = raidPtr->totalSectors;
   1910  1.234     oster 
   1911  1.335   mlelstv 	/* Attach dk and disk subsystems */
   1912  1.335   mlelstv 	dk_attach(dksc);
   1913  1.335   mlelstv 	disk_attach(&dksc->sc_dkdev);
   1914  1.318   mlelstv 	rf_set_geometry(rs, raidPtr);
   1915  1.318   mlelstv 
   1916  1.335   mlelstv 	bufq_alloc(&dksc->sc_bufq, "fcfs", BUFQ_SORT_RAWBLOCK);
   1917  1.335   mlelstv 
   1918  1.335   mlelstv 	/* mark unit as usuable */
   1919  1.335   mlelstv 	rs->sc_flags |= RAIDF_INITED;
   1920  1.234     oster 
   1921  1.335   mlelstv 	dkwedge_discover(&dksc->sc_dkdev);
   1922    1.1     oster }
   1923  1.335   mlelstv 
   1924  1.150     oster #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1925    1.1     oster /* wake up the daemon & tell it to get us a spare table
   1926    1.1     oster  * XXX
   1927    1.9     oster  * the entries in the queues should be tagged with the raidPtr
   1928  1.186     perry  * so that in the extremely rare case that two recons happen at once,
   1929   1.11     oster  * we know for which device were requesting a spare table
   1930    1.1     oster  * XXX
   1931  1.186     perry  *
   1932   1.39     oster  * XXX This code is not currently used. GO
   1933    1.1     oster  */
   1934  1.186     perry int
   1935  1.169     oster rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1936    1.9     oster {
   1937    1.9     oster 	int     retcode;
   1938    1.9     oster 
   1939  1.287       mrg 	rf_lock_mutex2(rf_sparet_wait_mutex);
   1940    1.9     oster 	req->next = rf_sparet_wait_queue;
   1941    1.9     oster 	rf_sparet_wait_queue = req;
   1942  1.289       mrg 	rf_broadcast_cond2(rf_sparet_wait_cv);
   1943    1.9     oster 
   1944    1.9     oster 	/* mpsleep unlocks the mutex */
   1945    1.9     oster 	while (!rf_sparet_resp_queue) {
   1946  1.289       mrg 		rf_wait_cond2(rf_sparet_resp_cv, rf_sparet_wait_mutex);
   1947    1.9     oster 	}
   1948    1.9     oster 	req = rf_sparet_resp_queue;
   1949    1.9     oster 	rf_sparet_resp_queue = req->next;
   1950  1.287       mrg 	rf_unlock_mutex2(rf_sparet_wait_mutex);
   1951    1.9     oster 
   1952    1.9     oster 	retcode = req->fcol;
   1953    1.9     oster 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1954    1.9     oster 					 * alloc'd */
   1955  1.389     skrll 	return retcode;
   1956    1.1     oster }
   1957  1.150     oster #endif
   1958   1.39     oster 
   1959  1.186     perry /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1960   1.11     oster  * bp & passes it down.
   1961    1.1     oster  * any calls originating in the kernel must use non-blocking I/O
   1962    1.1     oster  * do some extra sanity checking to return "appropriate" error values for
   1963    1.1     oster  * certain conditions (to make some standard utilities work)
   1964  1.186     perry  *
   1965   1.34     oster  * Formerly known as: rf_DoAccessKernel
   1966    1.1     oster  */
   1967   1.34     oster void
   1968  1.169     oster raidstart(RF_Raid_t *raidPtr)
   1969    1.1     oster {
   1970    1.1     oster 	struct raid_softc *rs;
   1971  1.335   mlelstv 	struct dk_softc *dksc;
   1972    1.1     oster 
   1973  1.300  christos 	rs = raidPtr->softc;
   1974  1.335   mlelstv 	dksc = &rs->sc_dksc;
   1975   1.56     oster 	/* quick check to see if anything has died recently */
   1976  1.291       mrg 	rf_lock_mutex2(raidPtr->mutex);
   1977   1.56     oster 	if (raidPtr->numNewFailures > 0) {
   1978  1.291       mrg 		rf_unlock_mutex2(raidPtr->mutex);
   1979  1.186     perry 		rf_update_component_labels(raidPtr,
   1980   1.91     oster 					   RF_NORMAL_COMPONENT_UPDATE);
   1981  1.291       mrg 		rf_lock_mutex2(raidPtr->mutex);
   1982   1.56     oster 		raidPtr->numNewFailures--;
   1983   1.56     oster 	}
   1984  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
   1985   1.56     oster 
   1986  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0) {
   1987  1.335   mlelstv 		printf("raid%d: raidstart not ready\n", raidPtr->raidid);
   1988  1.335   mlelstv 		return;
   1989  1.335   mlelstv 	}
   1990   1.34     oster 
   1991  1.335   mlelstv 	dk_start(dksc, NULL);
   1992  1.335   mlelstv }
   1993   1.34     oster 
   1994  1.335   mlelstv static int
   1995  1.335   mlelstv raiddoaccess(RF_Raid_t *raidPtr, struct buf *bp)
   1996  1.335   mlelstv {
   1997  1.335   mlelstv 	RF_SectorCount_t num_blocks, pb, sum;
   1998  1.335   mlelstv 	RF_RaidAddr_t raid_addr;
   1999  1.335   mlelstv 	daddr_t blocknum;
   2000  1.335   mlelstv 	int rc;
   2001  1.186     perry 
   2002  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
   2003  1.335   mlelstv 	if (raidPtr->openings == 0) {
   2004  1.335   mlelstv 		rf_unlock_mutex2(raidPtr->mutex);
   2005  1.335   mlelstv 		return EAGAIN;
   2006  1.335   mlelstv 	}
   2007  1.335   mlelstv 	rf_unlock_mutex2(raidPtr->mutex);
   2008  1.186     perry 
   2009  1.335   mlelstv 	blocknum = bp->b_rawblkno;
   2010  1.186     perry 
   2011  1.335   mlelstv 	db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   2012  1.335   mlelstv 		    (int) blocknum));
   2013    1.1     oster 
   2014  1.335   mlelstv 	db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   2015  1.335   mlelstv 	db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   2016    1.1     oster 
   2017  1.335   mlelstv 	/* *THIS* is where we adjust what block we're going to...
   2018  1.335   mlelstv 	 * but DO NOT TOUCH bp->b_blkno!!! */
   2019  1.335   mlelstv 	raid_addr = blocknum;
   2020  1.335   mlelstv 
   2021  1.335   mlelstv 	num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   2022  1.335   mlelstv 	pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   2023  1.335   mlelstv 	sum = raid_addr + num_blocks + pb;
   2024  1.335   mlelstv 	if (1 || rf_debugKernelAccess) {
   2025  1.335   mlelstv 		db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   2026  1.335   mlelstv 			    (int) raid_addr, (int) sum, (int) num_blocks,
   2027  1.335   mlelstv 			    (int) pb, (int) bp->b_resid));
   2028  1.335   mlelstv 	}
   2029  1.335   mlelstv 	if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   2030  1.335   mlelstv 	    || (sum < num_blocks) || (sum < pb)) {
   2031  1.335   mlelstv 		rc = ENOSPC;
   2032  1.335   mlelstv 		goto done;
   2033  1.335   mlelstv 	}
   2034  1.335   mlelstv 	/*
   2035  1.335   mlelstv 	 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   2036  1.335   mlelstv 	 */
   2037  1.186     perry 
   2038  1.335   mlelstv 	if (bp->b_bcount & raidPtr->sectorMask) {
   2039  1.335   mlelstv 		rc = ENOSPC;
   2040  1.335   mlelstv 		goto done;
   2041  1.335   mlelstv 	}
   2042  1.335   mlelstv 	db1_printf(("Calling DoAccess..\n"));
   2043   1.99     oster 
   2044   1.20     oster 
   2045  1.335   mlelstv 	rf_lock_mutex2(raidPtr->mutex);
   2046  1.335   mlelstv 	raidPtr->openings--;
   2047  1.291       mrg 	rf_unlock_mutex2(raidPtr->mutex);
   2048   1.20     oster 
   2049  1.335   mlelstv 	/* don't ever condition on bp->b_flags & B_WRITE.
   2050  1.335   mlelstv 	 * always condition on B_READ instead */
   2051    1.7  explorer 
   2052  1.335   mlelstv 	rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2053  1.335   mlelstv 			 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2054  1.396     oster 			 raid_addr, num_blocks,
   2055  1.335   mlelstv 			 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2056  1.335   mlelstv 
   2057  1.335   mlelstv done:
   2058  1.335   mlelstv 	return rc;
   2059  1.335   mlelstv }
   2060    1.7  explorer 
   2061    1.1     oster /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2062    1.1     oster 
   2063  1.186     perry int
   2064  1.169     oster rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2065    1.1     oster {
   2066    1.9     oster 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2067    1.1     oster 	struct buf *bp;
   2068    1.9     oster 
   2069    1.1     oster 	req->queue = queue;
   2070    1.1     oster 	bp = req->bp;
   2071    1.1     oster 
   2072    1.1     oster 	switch (req->type) {
   2073    1.9     oster 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2074    1.1     oster 		/* XXX need to do something extra here.. */
   2075    1.9     oster 		/* I'm leaving this in, as I've never actually seen it used,
   2076    1.9     oster 		 * and I'd like folks to report it... GO */
   2077  1.391       mrg 		printf("%s: WAKEUP CALLED\n", __func__);
   2078    1.1     oster 		queue->numOutstanding++;
   2079    1.1     oster 
   2080  1.197     oster 		bp->b_flags = 0;
   2081  1.207    simonb 		bp->b_private = req;
   2082    1.1     oster 
   2083  1.194     oster 		KernelWakeupFunc(bp);
   2084    1.1     oster 		break;
   2085    1.9     oster 
   2086    1.1     oster 	case RF_IO_TYPE_READ:
   2087    1.1     oster 	case RF_IO_TYPE_WRITE:
   2088  1.175     oster #if RF_ACC_TRACE > 0
   2089    1.1     oster 		if (req->tracerec) {
   2090    1.1     oster 			RF_ETIMER_START(req->tracerec->timer);
   2091    1.1     oster 		}
   2092  1.175     oster #endif
   2093  1.194     oster 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2094  1.197     oster 		    op, queue->rf_cinfo->ci_dev,
   2095    1.9     oster 		    req->sectorOffset, req->numSector,
   2096    1.9     oster 		    req->buf, KernelWakeupFunc, (void *) req,
   2097  1.384  jdolecek 		    queue->raidPtr->logBytesPerSector);
   2098    1.1     oster 
   2099    1.1     oster 		if (rf_debugKernelAccess) {
   2100    1.9     oster 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2101    1.9     oster 				(long) bp->b_blkno));
   2102    1.1     oster 		}
   2103    1.1     oster 		queue->numOutstanding++;
   2104    1.1     oster 		queue->last_deq_sector = req->sectorOffset;
   2105    1.9     oster 		/* acc wouldn't have been let in if there were any pending
   2106    1.9     oster 		 * reqs at any other priority */
   2107    1.1     oster 		queue->curPriority = req->priority;
   2108    1.1     oster 
   2109  1.166     oster 		db1_printf(("Going for %c to unit %d col %d\n",
   2110  1.186     perry 			    req->type, queue->raidPtr->raidid,
   2111  1.166     oster 			    queue->col));
   2112    1.1     oster 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2113    1.9     oster 			(int) req->sectorOffset, (int) req->numSector,
   2114    1.9     oster 			(int) (req->numSector <<
   2115    1.9     oster 			    queue->raidPtr->logBytesPerSector),
   2116    1.9     oster 			(int) queue->raidPtr->logBytesPerSector));
   2117  1.256     oster 
   2118  1.256     oster 		/*
   2119  1.385  riastrad 		 * XXX: drop lock here since this can block at
   2120  1.256     oster 		 * least with backing SCSI devices.  Retake it
   2121  1.256     oster 		 * to minimize fuss with calling interfaces.
   2122  1.256     oster 		 */
   2123  1.256     oster 
   2124  1.256     oster 		RF_UNLOCK_QUEUE_MUTEX(queue, "unusedparam");
   2125  1.247     oster 		bdev_strategy(bp);
   2126  1.256     oster 		RF_LOCK_QUEUE_MUTEX(queue, "unusedparam");
   2127    1.1     oster 		break;
   2128    1.9     oster 
   2129    1.1     oster 	default:
   2130    1.1     oster 		panic("bad req->type in rf_DispatchKernelIO");
   2131    1.1     oster 	}
   2132    1.1     oster 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2133  1.134     oster 
   2134  1.389     skrll 	return 0;
   2135    1.1     oster }
   2136    1.9     oster /* this is the callback function associated with a I/O invoked from
   2137    1.1     oster    kernel code.
   2138    1.1     oster  */
   2139  1.186     perry static void
   2140  1.194     oster KernelWakeupFunc(struct buf *bp)
   2141    1.9     oster {
   2142    1.9     oster 	RF_DiskQueueData_t *req = NULL;
   2143    1.9     oster 	RF_DiskQueue_t *queue;
   2144    1.9     oster 
   2145    1.9     oster 	db1_printf(("recovering the request queue:\n"));
   2146  1.285       mrg 
   2147  1.207    simonb 	req = bp->b_private;
   2148    1.1     oster 
   2149    1.9     oster 	queue = (RF_DiskQueue_t *) req->queue;
   2150    1.1     oster 
   2151  1.286       mrg 	rf_lock_mutex2(queue->raidPtr->iodone_lock);
   2152  1.285       mrg 
   2153  1.175     oster #if RF_ACC_TRACE > 0
   2154    1.9     oster 	if (req->tracerec) {
   2155    1.9     oster 		RF_ETIMER_STOP(req->tracerec->timer);
   2156    1.9     oster 		RF_ETIMER_EVAL(req->tracerec->timer);
   2157  1.288       mrg 		rf_lock_mutex2(rf_tracing_mutex);
   2158    1.9     oster 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2159    1.9     oster 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2160    1.9     oster 		req->tracerec->num_phys_ios++;
   2161  1.288       mrg 		rf_unlock_mutex2(rf_tracing_mutex);
   2162    1.9     oster 	}
   2163  1.175     oster #endif
   2164    1.1     oster 
   2165  1.230        ad 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2166    1.9     oster 	 * ballistic, and mark the component as hosed... */
   2167   1.36     oster 
   2168  1.230        ad 	if (bp->b_error != 0) {
   2169    1.9     oster 		/* Mark the disk as dead */
   2170    1.9     oster 		/* but only mark it once... */
   2171  1.186     perry 		/* and only if it wouldn't leave this RAID set
   2172  1.183     oster 		   completely broken */
   2173  1.193     oster 		if (((queue->raidPtr->Disks[queue->col].status ==
   2174  1.193     oster 		      rf_ds_optimal) ||
   2175  1.193     oster 		     (queue->raidPtr->Disks[queue->col].status ==
   2176  1.385  riastrad 		      rf_ds_used_spare)) &&
   2177  1.193     oster 		     (queue->raidPtr->numFailures <
   2178  1.204    simonb 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2179  1.322     prlw1 			printf("raid%d: IO Error (%d). Marking %s as failed.\n",
   2180  1.136     oster 			       queue->raidPtr->raidid,
   2181  1.322     prlw1 			       bp->b_error,
   2182  1.166     oster 			       queue->raidPtr->Disks[queue->col].devname);
   2183  1.166     oster 			queue->raidPtr->Disks[queue->col].status =
   2184    1.9     oster 			    rf_ds_failed;
   2185  1.166     oster 			queue->raidPtr->status = rf_rs_degraded;
   2186    1.9     oster 			queue->raidPtr->numFailures++;
   2187   1.56     oster 			queue->raidPtr->numNewFailures++;
   2188    1.9     oster 		} else {	/* Disk is already dead... */
   2189    1.9     oster 			/* printf("Disk already marked as dead!\n"); */
   2190    1.9     oster 		}
   2191    1.4     oster 
   2192    1.9     oster 	}
   2193    1.4     oster 
   2194  1.143     oster 	/* Fill in the error value */
   2195  1.230        ad 	req->error = bp->b_error;
   2196  1.143     oster 
   2197  1.143     oster 	/* Drop this one on the "finished" queue... */
   2198  1.143     oster 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2199  1.143     oster 
   2200  1.143     oster 	/* Let the raidio thread know there is work to be done. */
   2201  1.286       mrg 	rf_signal_cond2(queue->raidPtr->iodone_cv);
   2202  1.143     oster 
   2203  1.286       mrg 	rf_unlock_mutex2(queue->raidPtr->iodone_lock);
   2204    1.1     oster }
   2205    1.1     oster 
   2206    1.1     oster 
   2207    1.1     oster /*
   2208    1.1     oster  * initialize a buf structure for doing an I/O in the kernel.
   2209    1.1     oster  */
   2210  1.186     perry static void
   2211  1.169     oster InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2212  1.225  christos        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2213  1.384  jdolecek        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector)
   2214    1.9     oster {
   2215  1.384  jdolecek 	bp->b_flags = rw_flag | (bp->b_flags & rf_b_pass);
   2216  1.242        ad 	bp->b_oflags = 0;
   2217  1.242        ad 	bp->b_cflags = 0;
   2218    1.9     oster 	bp->b_bcount = numSect << logBytesPerSector;
   2219    1.9     oster 	bp->b_bufsize = bp->b_bcount;
   2220    1.9     oster 	bp->b_error = 0;
   2221    1.9     oster 	bp->b_dev = dev;
   2222  1.187  christos 	bp->b_data = bf;
   2223  1.275       mrg 	bp->b_blkno = startSect << logBytesPerSector >> DEV_BSHIFT;
   2224    1.9     oster 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2225    1.1     oster 	if (bp->b_bcount == 0) {
   2226  1.141    provos 		panic("bp->b_bcount is zero in InitBP!!");
   2227    1.1     oster 	}
   2228    1.9     oster 	bp->b_iodone = cbFunc;
   2229  1.207    simonb 	bp->b_private = cbArg;
   2230    1.1     oster }
   2231    1.1     oster 
   2232    1.1     oster /*
   2233    1.1     oster  * Wait interruptibly for an exclusive lock.
   2234    1.1     oster  *
   2235    1.1     oster  * XXX
   2236    1.1     oster  * Several drivers do this; it should be abstracted and made MP-safe.
   2237    1.1     oster  * (Hmm... where have we seen this warning before :->  GO )
   2238    1.1     oster  */
   2239    1.1     oster static int
   2240  1.169     oster raidlock(struct raid_softc *rs)
   2241    1.1     oster {
   2242    1.9     oster 	int     error;
   2243    1.1     oster 
   2244  1.335   mlelstv 	error = 0;
   2245  1.327  pgoyette 	mutex_enter(&rs->sc_mutex);
   2246    1.1     oster 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2247    1.1     oster 		rs->sc_flags |= RAIDF_WANTED;
   2248  1.327  pgoyette 		error = cv_wait_sig(&rs->sc_cv, &rs->sc_mutex);
   2249  1.327  pgoyette 		if (error != 0)
   2250  1.335   mlelstv 			goto done;
   2251    1.1     oster 	}
   2252    1.1     oster 	rs->sc_flags |= RAIDF_LOCKED;
   2253  1.335   mlelstv done:
   2254  1.327  pgoyette 	mutex_exit(&rs->sc_mutex);
   2255  1.389     skrll 	return error;
   2256    1.1     oster }
   2257    1.1     oster /*
   2258    1.1     oster  * Unlock and wake up any waiters.
   2259    1.1     oster  */
   2260    1.1     oster static void
   2261  1.169     oster raidunlock(struct raid_softc *rs)
   2262    1.1     oster {
   2263    1.1     oster 
   2264  1.327  pgoyette 	mutex_enter(&rs->sc_mutex);
   2265    1.1     oster 	rs->sc_flags &= ~RAIDF_LOCKED;
   2266    1.1     oster 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2267    1.1     oster 		rs->sc_flags &= ~RAIDF_WANTED;
   2268  1.327  pgoyette 		cv_broadcast(&rs->sc_cv);
   2269    1.1     oster 	}
   2270  1.327  pgoyette 	mutex_exit(&rs->sc_mutex);
   2271   1.11     oster }
   2272  1.186     perry 
   2273   1.11     oster 
   2274   1.11     oster #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2275   1.11     oster #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2276  1.269       jld #define RF_PARITY_MAP_SIZE   RF_PARITYMAP_NBYTE
   2277   1.11     oster 
   2278  1.276       mrg static daddr_t
   2279  1.276       mrg rf_component_info_offset(void)
   2280  1.276       mrg {
   2281  1.276       mrg 
   2282  1.276       mrg 	return RF_COMPONENT_INFO_OFFSET;
   2283  1.276       mrg }
   2284  1.276       mrg 
   2285  1.276       mrg static daddr_t
   2286  1.276       mrg rf_component_info_size(unsigned secsize)
   2287  1.276       mrg {
   2288  1.276       mrg 	daddr_t info_size;
   2289  1.276       mrg 
   2290  1.276       mrg 	KASSERT(secsize);
   2291  1.276       mrg 	if (secsize > RF_COMPONENT_INFO_SIZE)
   2292  1.276       mrg 		info_size = secsize;
   2293  1.276       mrg 	else
   2294  1.276       mrg 		info_size = RF_COMPONENT_INFO_SIZE;
   2295  1.276       mrg 
   2296  1.276       mrg 	return info_size;
   2297  1.276       mrg }
   2298  1.276       mrg 
   2299  1.276       mrg static daddr_t
   2300  1.276       mrg rf_parity_map_offset(RF_Raid_t *raidPtr)
   2301  1.276       mrg {
   2302  1.276       mrg 	daddr_t map_offset;
   2303  1.276       mrg 
   2304  1.276       mrg 	KASSERT(raidPtr->bytesPerSector);
   2305  1.276       mrg 	if (raidPtr->bytesPerSector > RF_COMPONENT_INFO_SIZE)
   2306  1.276       mrg 		map_offset = raidPtr->bytesPerSector;
   2307  1.276       mrg 	else
   2308  1.276       mrg 		map_offset = RF_COMPONENT_INFO_SIZE;
   2309  1.276       mrg 	map_offset += rf_component_info_offset();
   2310  1.276       mrg 
   2311  1.276       mrg 	return map_offset;
   2312  1.276       mrg }
   2313  1.276       mrg 
   2314  1.276       mrg static daddr_t
   2315  1.276       mrg rf_parity_map_size(RF_Raid_t *raidPtr)
   2316  1.276       mrg {
   2317  1.276       mrg 	daddr_t map_size;
   2318  1.276       mrg 
   2319  1.276       mrg 	if (raidPtr->bytesPerSector > RF_PARITY_MAP_SIZE)
   2320  1.276       mrg 		map_size = raidPtr->bytesPerSector;
   2321  1.276       mrg 	else
   2322  1.276       mrg 		map_size = RF_PARITY_MAP_SIZE;
   2323  1.276       mrg 
   2324  1.276       mrg 	return map_size;
   2325  1.276       mrg }
   2326  1.276       mrg 
   2327  1.186     perry int
   2328  1.269       jld raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2329   1.12     oster {
   2330  1.269       jld 	RF_ComponentLabel_t *clabel;
   2331  1.269       jld 
   2332  1.269       jld 	clabel = raidget_component_label(raidPtr, col);
   2333  1.269       jld 	clabel->clean = RF_RAID_CLEAN;
   2334  1.269       jld 	raidflush_component_label(raidPtr, col);
   2335   1.12     oster 	return(0);
   2336   1.12     oster }
   2337   1.12     oster 
   2338   1.12     oster 
   2339  1.186     perry int
   2340  1.269       jld raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2341   1.11     oster {
   2342  1.269       jld 	RF_ComponentLabel_t *clabel;
   2343  1.269       jld 
   2344  1.269       jld 	clabel = raidget_component_label(raidPtr, col);
   2345  1.269       jld 	clabel->clean = RF_RAID_DIRTY;
   2346  1.269       jld 	raidflush_component_label(raidPtr, col);
   2347   1.11     oster 	return(0);
   2348   1.11     oster }
   2349   1.11     oster 
   2350   1.11     oster int
   2351  1.269       jld raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2352  1.269       jld {
   2353  1.276       mrg 	KASSERT(raidPtr->bytesPerSector);
   2354  1.394       mrg 
   2355  1.276       mrg 	return raidread_component_label(raidPtr->bytesPerSector,
   2356  1.276       mrg 	    raidPtr->Disks[col].dev,
   2357  1.385  riastrad 	    raidPtr->raid_cinfo[col].ci_vp,
   2358  1.269       jld 	    &raidPtr->raid_cinfo[col].ci_label);
   2359  1.269       jld }
   2360  1.269       jld 
   2361  1.269       jld RF_ComponentLabel_t *
   2362  1.269       jld raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2363  1.269       jld {
   2364  1.269       jld 	return &raidPtr->raid_cinfo[col].ci_label;
   2365  1.269       jld }
   2366  1.269       jld 
   2367  1.269       jld int
   2368  1.269       jld raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
   2369  1.269       jld {
   2370  1.269       jld 	RF_ComponentLabel_t *label;
   2371  1.269       jld 
   2372  1.269       jld 	label = &raidPtr->raid_cinfo[col].ci_label;
   2373  1.269       jld 	label->mod_counter = raidPtr->mod_counter;
   2374  1.269       jld #ifndef RF_NO_PARITY_MAP
   2375  1.269       jld 	label->parity_map_modcount = label->mod_counter;
   2376  1.269       jld #endif
   2377  1.276       mrg 	return raidwrite_component_label(raidPtr->bytesPerSector,
   2378  1.276       mrg 	    raidPtr->Disks[col].dev,
   2379  1.269       jld 	    raidPtr->raid_cinfo[col].ci_vp, label);
   2380  1.269       jld }
   2381  1.269       jld 
   2382  1.394       mrg /*
   2383  1.394       mrg  * Swap the label endianness.
   2384  1.394       mrg  *
   2385  1.394       mrg  * Everything in the component label is 4-byte-swapped except the version,
   2386  1.394       mrg  * which is kept in the byte-swapped version at all times, and indicates
   2387  1.394       mrg  * for the writer that a swap is necessary.
   2388  1.394       mrg  *
   2389  1.394       mrg  * For reads it is expected that out_label == clabel, but writes expect
   2390  1.394       mrg  * separate labels so only the re-swapped label is written out to disk,
   2391  1.394       mrg  * leaving the swapped-except-version internally.
   2392  1.394       mrg  *
   2393  1.394       mrg  * Only support swapping label version 2.
   2394  1.394       mrg  */
   2395  1.394       mrg static void
   2396  1.394       mrg rf_swap_label(RF_ComponentLabel_t *clabel, RF_ComponentLabel_t *out_label)
   2397  1.394       mrg {
   2398  1.394       mrg 	int	*in, *out, *in_last;
   2399  1.394       mrg 
   2400  1.394       mrg 	KASSERT(clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION));
   2401  1.394       mrg 
   2402  1.394       mrg 	/* Don't swap the label, but do copy it. */
   2403  1.394       mrg 	out_label->version = clabel->version;
   2404  1.394       mrg 
   2405  1.394       mrg 	in = &clabel->serial_number;
   2406  1.394       mrg 	in_last = &clabel->future_use2[42];
   2407  1.394       mrg 	out = &out_label->serial_number;
   2408  1.394       mrg 
   2409  1.394       mrg 	for (; in < in_last; in++, out++)
   2410  1.394       mrg 		*out = bswap32(*in);
   2411  1.394       mrg }
   2412  1.269       jld 
   2413  1.269       jld static int
   2414  1.276       mrg raidread_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
   2415  1.269       jld     RF_ComponentLabel_t *clabel)
   2416  1.269       jld {
   2417  1.394       mrg 	int error;
   2418  1.394       mrg 
   2419  1.394       mrg 	error = raidread_component_area(dev, b_vp, clabel,
   2420  1.269       jld 	    sizeof(RF_ComponentLabel_t),
   2421  1.276       mrg 	    rf_component_info_offset(),
   2422  1.276       mrg 	    rf_component_info_size(secsize));
   2423  1.394       mrg 
   2424  1.394       mrg 	if (error == 0 &&
   2425  1.394       mrg 	    clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)) {
   2426  1.394       mrg 		rf_swap_label(clabel, clabel);
   2427  1.394       mrg 	}
   2428  1.394       mrg 
   2429  1.394       mrg 	return error;
   2430  1.269       jld }
   2431  1.269       jld 
   2432  1.269       jld /* ARGSUSED */
   2433  1.269       jld static int
   2434  1.269       jld raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2435  1.269       jld     size_t msize, daddr_t offset, daddr_t dsize)
   2436   1.11     oster {
   2437   1.11     oster 	struct buf *bp;
   2438   1.11     oster 	int error;
   2439  1.186     perry 
   2440   1.11     oster 	/* XXX should probably ensure that we don't try to do this if
   2441  1.186     perry 	   someone has changed rf_protected_sectors. */
   2442   1.11     oster 
   2443   1.98     oster 	if (b_vp == NULL) {
   2444   1.98     oster 		/* For whatever reason, this component is not valid.
   2445   1.98     oster 		   Don't try to read a component label from it. */
   2446   1.98     oster 		return(EINVAL);
   2447   1.98     oster 	}
   2448   1.98     oster 
   2449   1.11     oster 	/* get a block of the appropriate size... */
   2450  1.269       jld 	bp = geteblk((int)dsize);
   2451   1.11     oster 	bp->b_dev = dev;
   2452   1.11     oster 
   2453   1.11     oster 	/* get our ducks in a row for the read */
   2454  1.269       jld 	bp->b_blkno = offset / DEV_BSIZE;
   2455  1.269       jld 	bp->b_bcount = dsize;
   2456  1.100       chs 	bp->b_flags |= B_READ;
   2457  1.269       jld  	bp->b_resid = dsize;
   2458   1.11     oster 
   2459  1.331   mlelstv 	bdev_strategy(bp);
   2460  1.340  christos 	error = biowait(bp);
   2461   1.11     oster 
   2462   1.11     oster 	if (!error) {
   2463  1.269       jld 		memcpy(data, bp->b_data, msize);
   2464  1.204    simonb 	}
   2465   1.11     oster 
   2466  1.233        ad 	brelse(bp, 0);
   2467   1.11     oster 	return(error);
   2468   1.11     oster }
   2469  1.269       jld 
   2470  1.269       jld static int
   2471  1.276       mrg raidwrite_component_label(unsigned secsize, dev_t dev, struct vnode *b_vp,
   2472  1.276       mrg     RF_ComponentLabel_t *clabel)
   2473  1.269       jld {
   2474  1.394       mrg 	RF_ComponentLabel_t *clabel_write = clabel;
   2475  1.394       mrg 	RF_ComponentLabel_t lclabel;
   2476  1.394       mrg 	int error;
   2477  1.394       mrg 
   2478  1.394       mrg 	if (clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)) {
   2479  1.394       mrg 		clabel_write = &lclabel;
   2480  1.394       mrg 		rf_swap_label(clabel, clabel_write);
   2481  1.394       mrg 	}
   2482  1.394       mrg 	error = raidwrite_component_area(dev, b_vp, clabel_write,
   2483  1.269       jld 	    sizeof(RF_ComponentLabel_t),
   2484  1.276       mrg 	    rf_component_info_offset(),
   2485  1.276       mrg 	    rf_component_info_size(secsize), 0);
   2486  1.394       mrg 
   2487  1.394       mrg 	return error;
   2488  1.269       jld }
   2489  1.269       jld 
   2490   1.11     oster /* ARGSUSED */
   2491  1.269       jld static int
   2492  1.385  riastrad raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
   2493  1.269       jld     size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
   2494   1.11     oster {
   2495   1.11     oster 	struct buf *bp;
   2496   1.11     oster 	int error;
   2497   1.11     oster 
   2498   1.11     oster 	/* get a block of the appropriate size... */
   2499  1.269       jld 	bp = geteblk((int)dsize);
   2500   1.11     oster 	bp->b_dev = dev;
   2501   1.11     oster 
   2502   1.11     oster 	/* get our ducks in a row for the write */
   2503  1.269       jld 	bp->b_blkno = offset / DEV_BSIZE;
   2504  1.269       jld 	bp->b_bcount = dsize;
   2505  1.269       jld 	bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
   2506  1.269       jld  	bp->b_resid = dsize;
   2507   1.11     oster 
   2508  1.269       jld 	memset(bp->b_data, 0, dsize);
   2509  1.269       jld 	memcpy(bp->b_data, data, msize);
   2510   1.11     oster 
   2511  1.331   mlelstv 	bdev_strategy(bp);
   2512  1.269       jld 	if (asyncp)
   2513  1.269       jld 		return 0;
   2514  1.340  christos 	error = biowait(bp);
   2515  1.233        ad 	brelse(bp, 0);
   2516   1.11     oster 	if (error) {
   2517   1.48     oster #if 1
   2518   1.11     oster 		printf("Failed to write RAID component info!\n");
   2519   1.48     oster #endif
   2520   1.11     oster 	}
   2521   1.11     oster 
   2522   1.11     oster 	return(error);
   2523    1.1     oster }
   2524   1.12     oster 
   2525  1.186     perry void
   2526  1.269       jld rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2527  1.269       jld {
   2528  1.269       jld 	int c;
   2529  1.269       jld 
   2530  1.269       jld 	for (c = 0; c < raidPtr->numCol; c++) {
   2531  1.269       jld 		/* Skip dead disks. */
   2532  1.269       jld 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2533  1.269       jld 			continue;
   2534  1.269       jld 		/* XXXjld: what if an error occurs here? */
   2535  1.269       jld 		raidwrite_component_area(raidPtr->Disks[c].dev,
   2536  1.269       jld 		    raidPtr->raid_cinfo[c].ci_vp, map,
   2537  1.269       jld 		    RF_PARITYMAP_NBYTE,
   2538  1.276       mrg 		    rf_parity_map_offset(raidPtr),
   2539  1.276       mrg 		    rf_parity_map_size(raidPtr), 0);
   2540  1.269       jld 	}
   2541  1.269       jld }
   2542  1.269       jld 
   2543  1.269       jld void
   2544  1.269       jld rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
   2545  1.269       jld {
   2546  1.269       jld 	struct rf_paritymap_ondisk tmp;
   2547  1.272     oster 	int c,first;
   2548  1.269       jld 
   2549  1.272     oster 	first=1;
   2550  1.269       jld 	for (c = 0; c < raidPtr->numCol; c++) {
   2551  1.269       jld 		/* Skip dead disks. */
   2552  1.269       jld 		if (RF_DEAD_DISK(raidPtr->Disks[c].status))
   2553  1.269       jld 			continue;
   2554  1.269       jld 		raidread_component_area(raidPtr->Disks[c].dev,
   2555  1.269       jld 		    raidPtr->raid_cinfo[c].ci_vp, &tmp,
   2556  1.269       jld 		    RF_PARITYMAP_NBYTE,
   2557  1.276       mrg 		    rf_parity_map_offset(raidPtr),
   2558  1.276       mrg 		    rf_parity_map_size(raidPtr));
   2559  1.272     oster 		if (first) {
   2560  1.269       jld 			memcpy(map, &tmp, sizeof(*map));
   2561  1.272     oster 			first = 0;
   2562  1.269       jld 		} else {
   2563  1.269       jld 			rf_paritymap_merge(map, &tmp);
   2564  1.269       jld 		}
   2565  1.269       jld 	}
   2566  1.269       jld }
   2567  1.269       jld 
   2568  1.269       jld void
   2569  1.169     oster rf_markalldirty(RF_Raid_t *raidPtr)
   2570   1.12     oster {
   2571  1.269       jld 	RF_ComponentLabel_t *clabel;
   2572  1.146     oster 	int sparecol;
   2573  1.166     oster 	int c;
   2574  1.166     oster 	int j;
   2575  1.166     oster 	int scol = -1;
   2576   1.12     oster 
   2577   1.12     oster 	raidPtr->mod_counter++;
   2578  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2579  1.166     oster 		/* we don't want to touch (at all) a disk that has
   2580  1.166     oster 		   failed */
   2581  1.166     oster 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2582  1.269       jld 			clabel = raidget_component_label(raidPtr, c);
   2583  1.269       jld 			if (clabel->status == rf_ds_spared) {
   2584  1.186     perry 				/* XXX do something special...
   2585  1.186     perry 				   but whatever you do, don't
   2586  1.166     oster 				   try to access it!! */
   2587  1.166     oster 			} else {
   2588  1.269       jld 				raidmarkdirty(raidPtr, c);
   2589   1.12     oster 			}
   2590  1.166     oster 		}
   2591  1.186     perry 	}
   2592  1.146     oster 
   2593   1.12     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2594   1.12     oster 		sparecol = raidPtr->numCol + c;
   2595  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2596  1.186     perry 			/*
   2597  1.186     perry 
   2598  1.186     perry 			   we claim this disk is "optimal" if it's
   2599  1.186     perry 			   rf_ds_used_spare, as that means it should be
   2600  1.186     perry 			   directly substitutable for the disk it replaced.
   2601   1.12     oster 			   We note that too...
   2602   1.12     oster 
   2603   1.12     oster 			 */
   2604   1.12     oster 
   2605  1.166     oster 			for(j=0;j<raidPtr->numCol;j++) {
   2606  1.166     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2607  1.166     oster 					scol = j;
   2608  1.166     oster 					break;
   2609   1.12     oster 				}
   2610   1.12     oster 			}
   2611  1.186     perry 
   2612  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   2613   1.12     oster 			/* make sure status is noted */
   2614  1.146     oster 
   2615  1.269       jld 			raid_init_component_label(raidPtr, clabel);
   2616  1.146     oster 
   2617  1.269       jld 			clabel->row = 0;
   2618  1.269       jld 			clabel->column = scol;
   2619  1.146     oster 			/* Note: we *don't* change status from rf_ds_used_spare
   2620  1.146     oster 			   to rf_ds_optimal */
   2621  1.146     oster 			/* clabel.status = rf_ds_optimal; */
   2622  1.186     perry 
   2623  1.269       jld 			raidmarkdirty(raidPtr, sparecol);
   2624   1.12     oster 		}
   2625   1.12     oster 	}
   2626   1.12     oster }
   2627   1.12     oster 
   2628   1.13     oster 
   2629   1.13     oster void
   2630  1.169     oster rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2631   1.13     oster {
   2632  1.269       jld 	RF_ComponentLabel_t *clabel;
   2633   1.13     oster 	int sparecol;
   2634  1.166     oster 	int c;
   2635  1.166     oster 	int j;
   2636  1.166     oster 	int scol;
   2637  1.341  christos 	struct raid_softc *rs = raidPtr->softc;
   2638   1.13     oster 
   2639   1.13     oster 	scol = -1;
   2640   1.13     oster 
   2641  1.186     perry 	/* XXX should do extra checks to make sure things really are clean,
   2642   1.13     oster 	   rather than blindly setting the clean bit... */
   2643   1.13     oster 
   2644   1.13     oster 	raidPtr->mod_counter++;
   2645   1.13     oster 
   2646  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2647  1.166     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2648  1.269       jld 			clabel = raidget_component_label(raidPtr, c);
   2649  1.201     oster 			/* make sure status is noted */
   2650  1.269       jld 			clabel->status = rf_ds_optimal;
   2651  1.385  riastrad 
   2652  1.214     oster 			/* note what unit we are configured as */
   2653  1.341  christos 			if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
   2654  1.341  christos 				clabel->last_unit = raidPtr->raidid;
   2655  1.214     oster 
   2656  1.269       jld 			raidflush_component_label(raidPtr, c);
   2657  1.166     oster 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2658  1.166     oster 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2659  1.269       jld 					raidmarkclean(raidPtr, c);
   2660   1.91     oster 				}
   2661  1.166     oster 			}
   2662  1.186     perry 		}
   2663  1.166     oster 		/* else we don't touch it.. */
   2664  1.186     perry 	}
   2665   1.63     oster 
   2666   1.63     oster 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2667   1.63     oster 		sparecol = raidPtr->numCol + c;
   2668  1.110     oster 		/* Need to ensure that the reconstruct actually completed! */
   2669  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2670  1.186     perry 			/*
   2671  1.186     perry 
   2672  1.186     perry 			   we claim this disk is "optimal" if it's
   2673  1.186     perry 			   rf_ds_used_spare, as that means it should be
   2674  1.186     perry 			   directly substitutable for the disk it replaced.
   2675   1.63     oster 			   We note that too...
   2676   1.63     oster 
   2677   1.63     oster 			 */
   2678   1.63     oster 
   2679  1.166     oster 			for(j=0;j<raidPtr->numCol;j++) {
   2680  1.166     oster 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2681  1.166     oster 					scol = j;
   2682  1.166     oster 					break;
   2683   1.63     oster 				}
   2684   1.63     oster 			}
   2685  1.186     perry 
   2686   1.63     oster 			/* XXX shouldn't *really* need this... */
   2687  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   2688   1.63     oster 			/* make sure status is noted */
   2689   1.63     oster 
   2690  1.269       jld 			raid_init_component_label(raidPtr, clabel);
   2691  1.269       jld 
   2692  1.269       jld 			clabel->column = scol;
   2693  1.269       jld 			clabel->status = rf_ds_optimal;
   2694  1.341  christos 			if ((rs->sc_cflags & RAIDF_UNIT_CHANGED) == 0)
   2695  1.341  christos 				clabel->last_unit = raidPtr->raidid;
   2696   1.63     oster 
   2697  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   2698   1.91     oster 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2699   1.13     oster 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2700  1.269       jld 					raidmarkclean(raidPtr, sparecol);
   2701   1.13     oster 				}
   2702   1.13     oster 			}
   2703   1.13     oster 		}
   2704   1.13     oster 	}
   2705   1.68     oster }
   2706   1.68     oster 
   2707   1.68     oster void
   2708  1.169     oster rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2709   1.69     oster {
   2710   1.69     oster 
   2711   1.69     oster 	if (vp != NULL) {
   2712   1.69     oster 		if (auto_configured == 1) {
   2713   1.96     oster 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2714  1.238     pooka 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2715   1.69     oster 			vput(vp);
   2716  1.186     perry 
   2717  1.186     perry 		} else {
   2718  1.244        ad 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred);
   2719   1.69     oster 		}
   2720  1.186     perry 	}
   2721   1.69     oster }
   2722   1.69     oster 
   2723   1.69     oster 
   2724   1.69     oster void
   2725  1.169     oster rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2726   1.68     oster {
   2727  1.186     perry 	int r,c;
   2728   1.69     oster 	struct vnode *vp;
   2729   1.69     oster 	int acd;
   2730   1.68     oster 
   2731   1.68     oster 
   2732   1.68     oster 	/* We take this opportunity to close the vnodes like we should.. */
   2733   1.68     oster 
   2734  1.166     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   2735  1.166     oster 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2736  1.166     oster 		acd = raidPtr->Disks[c].auto_configured;
   2737  1.166     oster 		rf_close_component(raidPtr, vp, acd);
   2738  1.166     oster 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2739  1.166     oster 		raidPtr->Disks[c].auto_configured = 0;
   2740   1.68     oster 	}
   2741  1.166     oster 
   2742   1.68     oster 	for (r = 0; r < raidPtr->numSpare; r++) {
   2743  1.166     oster 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2744  1.166     oster 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2745   1.69     oster 		rf_close_component(raidPtr, vp, acd);
   2746  1.166     oster 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2747  1.166     oster 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2748   1.68     oster 	}
   2749   1.37     oster }
   2750   1.63     oster 
   2751   1.37     oster 
   2752  1.393       mrg static void
   2753  1.353       mrg rf_ReconThread(struct rf_recon_req_internal *req)
   2754   1.37     oster {
   2755   1.37     oster 	int     s;
   2756   1.37     oster 	RF_Raid_t *raidPtr;
   2757   1.37     oster 
   2758   1.37     oster 	s = splbio();
   2759   1.37     oster 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2760   1.37     oster 	raidPtr->recon_in_progress = 1;
   2761   1.37     oster 
   2762  1.398     oster 	if (req->flags & RF_FDFLAGS_RECON_FORCE) {
   2763  1.398     oster 		raidPtr->forceRecon = 1;
   2764  1.398     oster 	}
   2765  1.398     oster 
   2766  1.166     oster 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2767   1.37     oster 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2768   1.37     oster 
   2769  1.398     oster 	if (req->flags & RF_FDFLAGS_RECON_FORCE) {
   2770  1.398     oster 		raidPtr->forceRecon = 0;
   2771  1.398     oster 	}
   2772  1.398     oster 
   2773   1.37     oster 	RF_Free(req, sizeof(*req));
   2774   1.37     oster 
   2775   1.37     oster 	raidPtr->recon_in_progress = 0;
   2776   1.37     oster 	splx(s);
   2777   1.37     oster 
   2778   1.37     oster 	/* That's all... */
   2779  1.204    simonb 	kthread_exit(0);	/* does not return */
   2780   1.37     oster }
   2781   1.37     oster 
   2782  1.393       mrg static void
   2783  1.169     oster rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2784   1.37     oster {
   2785   1.37     oster 	int retcode;
   2786   1.37     oster 	int s;
   2787   1.37     oster 
   2788  1.184     oster 	raidPtr->parity_rewrite_stripes_done = 0;
   2789   1.37     oster 	raidPtr->parity_rewrite_in_progress = 1;
   2790   1.37     oster 	s = splbio();
   2791   1.37     oster 	retcode = rf_RewriteParity(raidPtr);
   2792   1.37     oster 	splx(s);
   2793   1.37     oster 	if (retcode) {
   2794  1.279  christos 		printf("raid%d: Error re-writing parity (%d)!\n",
   2795  1.279  christos 		    raidPtr->raidid, retcode);
   2796   1.37     oster 	} else {
   2797   1.37     oster 		/* set the clean bit!  If we shutdown correctly,
   2798   1.37     oster 		   the clean bit on each component label will get
   2799   1.37     oster 		   set */
   2800   1.37     oster 		raidPtr->parity_good = RF_RAID_CLEAN;
   2801   1.37     oster 	}
   2802   1.37     oster 	raidPtr->parity_rewrite_in_progress = 0;
   2803   1.85     oster 
   2804   1.85     oster 	/* Anyone waiting for us to stop?  If so, inform them... */
   2805   1.85     oster 	if (raidPtr->waitShutdown) {
   2806  1.357       mrg 		rf_lock_mutex2(raidPtr->rad_lock);
   2807  1.357       mrg 		cv_broadcast(&raidPtr->parity_rewrite_cv);
   2808  1.357       mrg 		rf_unlock_mutex2(raidPtr->rad_lock);
   2809   1.85     oster 	}
   2810   1.37     oster 
   2811   1.37     oster 	/* That's all... */
   2812  1.204    simonb 	kthread_exit(0);	/* does not return */
   2813   1.37     oster }
   2814   1.37     oster 
   2815   1.37     oster 
   2816  1.393       mrg static void
   2817  1.169     oster rf_CopybackThread(RF_Raid_t *raidPtr)
   2818   1.37     oster {
   2819   1.37     oster 	int s;
   2820   1.37     oster 
   2821   1.37     oster 	raidPtr->copyback_in_progress = 1;
   2822   1.37     oster 	s = splbio();
   2823   1.37     oster 	rf_CopybackReconstructedData(raidPtr);
   2824   1.37     oster 	splx(s);
   2825   1.37     oster 	raidPtr->copyback_in_progress = 0;
   2826   1.37     oster 
   2827   1.37     oster 	/* That's all... */
   2828  1.204    simonb 	kthread_exit(0);	/* does not return */
   2829   1.37     oster }
   2830   1.37     oster 
   2831   1.37     oster 
   2832  1.393       mrg static void
   2833  1.353       mrg rf_ReconstructInPlaceThread(struct rf_recon_req_internal *req)
   2834   1.37     oster {
   2835   1.37     oster 	int s;
   2836   1.37     oster 	RF_Raid_t *raidPtr;
   2837  1.186     perry 
   2838   1.37     oster 	s = splbio();
   2839   1.37     oster 	raidPtr = req->raidPtr;
   2840   1.37     oster 	raidPtr->recon_in_progress = 1;
   2841  1.398     oster 
   2842  1.398     oster 	if (req->flags & RF_FDFLAGS_RECON_FORCE) {
   2843  1.398     oster 		raidPtr->forceRecon = 1;
   2844  1.398     oster 	}
   2845  1.398     oster 
   2846  1.166     oster 	rf_ReconstructInPlace(raidPtr, req->col);
   2847  1.398     oster 
   2848  1.398     oster 	if (req->flags & RF_FDFLAGS_RECON_FORCE) {
   2849  1.398     oster 		raidPtr->forceRecon = 0;
   2850  1.398     oster 	}
   2851  1.398     oster 
   2852   1.37     oster 	RF_Free(req, sizeof(*req));
   2853   1.37     oster 	raidPtr->recon_in_progress = 0;
   2854   1.37     oster 	splx(s);
   2855   1.37     oster 
   2856   1.37     oster 	/* That's all... */
   2857  1.204    simonb 	kthread_exit(0);	/* does not return */
   2858   1.48     oster }
   2859   1.48     oster 
   2860  1.213  christos static RF_AutoConfig_t *
   2861  1.213  christos rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2862  1.276       mrg     const char *cname, RF_SectorCount_t size, uint64_t numsecs,
   2863  1.276       mrg     unsigned secsize)
   2864  1.213  christos {
   2865  1.213  christos 	int good_one = 0;
   2866  1.385  riastrad 	RF_ComponentLabel_t *clabel;
   2867  1.213  christos 	RF_AutoConfig_t *ac;
   2868  1.213  christos 
   2869  1.379       chs 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_WAITOK);
   2870  1.213  christos 
   2871  1.276       mrg 	if (!raidread_component_label(secsize, dev, vp, clabel)) {
   2872  1.276       mrg 		/* Got the label.  Does it look reasonable? */
   2873  1.385  riastrad 		if (rf_reasonable_label(clabel, numsecs) &&
   2874  1.282     enami 		    (rf_component_label_partitionsize(clabel) <= size)) {
   2875  1.224     oster #ifdef DEBUG
   2876  1.276       mrg 			printf("Component on: %s: %llu\n",
   2877  1.213  christos 				cname, (unsigned long long)size);
   2878  1.276       mrg 			rf_print_component_label(clabel);
   2879  1.213  christos #endif
   2880  1.276       mrg 			/* if it's reasonable, add it, else ignore it. */
   2881  1.276       mrg 			ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2882  1.379       chs 				M_WAITOK);
   2883  1.276       mrg 			strlcpy(ac->devname, cname, sizeof(ac->devname));
   2884  1.276       mrg 			ac->dev = dev;
   2885  1.276       mrg 			ac->vp = vp;
   2886  1.276       mrg 			ac->clabel = clabel;
   2887  1.276       mrg 			ac->next = ac_list;
   2888  1.276       mrg 			ac_list = ac;
   2889  1.276       mrg 			good_one = 1;
   2890  1.276       mrg 		}
   2891  1.213  christos 	}
   2892  1.213  christos 	if (!good_one) {
   2893  1.213  christos 		/* cleanup */
   2894  1.213  christos 		free(clabel, M_RAIDFRAME);
   2895  1.213  christos 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2896  1.238     pooka 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   2897  1.213  christos 		vput(vp);
   2898  1.213  christos 	}
   2899  1.213  christos 	return ac_list;
   2900  1.213  christos }
   2901  1.213  christos 
   2902  1.393       mrg static RF_AutoConfig_t *
   2903  1.259    cegger rf_find_raid_components(void)
   2904   1.48     oster {
   2905   1.48     oster 	struct vnode *vp;
   2906   1.48     oster 	struct disklabel label;
   2907  1.261    dyoung 	device_t dv;
   2908  1.268    dyoung 	deviter_t di;
   2909   1.48     oster 	dev_t dev;
   2910  1.296    buhrow 	int bmajor, bminor, wedge, rf_part_found;
   2911   1.48     oster 	int error;
   2912   1.48     oster 	int i;
   2913   1.48     oster 	RF_AutoConfig_t *ac_list;
   2914  1.276       mrg 	uint64_t numsecs;
   2915  1.276       mrg 	unsigned secsize;
   2916  1.335   mlelstv 	int dowedges;
   2917   1.48     oster 
   2918   1.48     oster 	/* initialize the AutoConfig list */
   2919   1.48     oster 	ac_list = NULL;
   2920   1.48     oster 
   2921  1.335   mlelstv 	/*
   2922  1.335   mlelstv 	 * we begin by trolling through *all* the devices on the system *twice*
   2923  1.335   mlelstv 	 * first we scan for wedges, second for other devices. This avoids
   2924  1.335   mlelstv 	 * using a raw partition instead of a wedge that covers the whole disk
   2925  1.335   mlelstv 	 */
   2926   1.48     oster 
   2927  1.335   mlelstv 	for (dowedges=1; dowedges>=0; --dowedges) {
   2928  1.335   mlelstv 		for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL;
   2929  1.335   mlelstv 		     dv = deviter_next(&di)) {
   2930   1.48     oster 
   2931  1.393       mrg 			/* we are only interested in disks */
   2932  1.335   mlelstv 			if (device_class(dv) != DV_DISK)
   2933  1.335   mlelstv 				continue;
   2934   1.48     oster 
   2935  1.393       mrg 			/* we don't care about floppies */
   2936  1.335   mlelstv 			if (device_is_a(dv, "fd")) {
   2937  1.335   mlelstv 				continue;
   2938  1.335   mlelstv 			}
   2939  1.129     oster 
   2940  1.393       mrg 			/* we don't care about CDs. */
   2941  1.335   mlelstv 			if (device_is_a(dv, "cd")) {
   2942  1.335   mlelstv 				continue;
   2943  1.335   mlelstv 			}
   2944  1.129     oster 
   2945  1.393       mrg 			/* we don't care about md. */
   2946  1.335   mlelstv 			if (device_is_a(dv, "md")) {
   2947  1.335   mlelstv 				continue;
   2948  1.335   mlelstv 			}
   2949  1.248     oster 
   2950  1.335   mlelstv 			/* hdfd is the Atari/Hades floppy driver */
   2951  1.335   mlelstv 			if (device_is_a(dv, "hdfd")) {
   2952  1.335   mlelstv 				continue;
   2953  1.335   mlelstv 			}
   2954  1.206   thorpej 
   2955  1.335   mlelstv 			/* fdisa is the Atari/Milan floppy driver */
   2956  1.335   mlelstv 			if (device_is_a(dv, "fdisa")) {
   2957  1.335   mlelstv 				continue;
   2958  1.335   mlelstv 			}
   2959  1.186     perry 
   2960  1.393       mrg 			/* we don't care about spiflash */
   2961  1.393       mrg 			if (device_is_a(dv, "spiflash")) {
   2962  1.393       mrg 				continue;
   2963  1.393       mrg 			}
   2964  1.393       mrg 
   2965  1.335   mlelstv 			/* are we in the wedges pass ? */
   2966  1.335   mlelstv 			wedge = device_is_a(dv, "dk");
   2967  1.335   mlelstv 			if (wedge != dowedges) {
   2968  1.335   mlelstv 				continue;
   2969  1.335   mlelstv 			}
   2970   1.48     oster 
   2971  1.335   mlelstv 			/* need to find the device_name_to_block_device_major stuff */
   2972  1.335   mlelstv 			bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
   2973  1.296    buhrow 
   2974  1.335   mlelstv 			rf_part_found = 0; /*No raid partition as yet*/
   2975   1.48     oster 
   2976  1.335   mlelstv 			/* get a vnode for the raw partition of this disk */
   2977  1.335   mlelstv 			bminor = minor(device_unit(dv));
   2978  1.335   mlelstv 			dev = wedge ? makedev(bmajor, bminor) :
   2979  1.335   mlelstv 			    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2980  1.335   mlelstv 			if (bdevvp(dev, &vp))
   2981  1.335   mlelstv 				panic("RAID can't alloc vnode");
   2982   1.48     oster 
   2983  1.375   hannken 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2984  1.335   mlelstv 			error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   2985   1.48     oster 
   2986  1.335   mlelstv 			if (error) {
   2987  1.335   mlelstv 				/* "Who cares."  Continue looking
   2988  1.335   mlelstv 				   for something that exists*/
   2989  1.335   mlelstv 				vput(vp);
   2990  1.335   mlelstv 				continue;
   2991  1.335   mlelstv 			}
   2992   1.48     oster 
   2993  1.407    andvar 			VOP_UNLOCK(vp);
   2994  1.335   mlelstv 			error = getdisksize(vp, &numsecs, &secsize);
   2995  1.213  christos 			if (error) {
   2996  1.339   mlelstv 				/*
   2997  1.339   mlelstv 				 * Pseudo devices like vnd and cgd can be
   2998  1.339   mlelstv 				 * opened but may still need some configuration.
   2999  1.339   mlelstv 				 * Ignore these quietly.
   3000  1.339   mlelstv 				 */
   3001  1.339   mlelstv 				if (error != ENXIO)
   3002  1.339   mlelstv 					printf("RAIDframe: can't get disk size"
   3003  1.339   mlelstv 					    " for dev %s (%d)\n",
   3004  1.339   mlelstv 					    device_xname(dv), error);
   3005  1.406   hannken 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3006  1.241     oster 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3007  1.241     oster 				vput(vp);
   3008  1.213  christos 				continue;
   3009  1.213  christos 			}
   3010  1.335   mlelstv 			if (wedge) {
   3011  1.335   mlelstv 				struct dkwedge_info dkw;
   3012  1.335   mlelstv 				error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   3013  1.335   mlelstv 				    NOCRED);
   3014  1.335   mlelstv 				if (error) {
   3015  1.335   mlelstv 					printf("RAIDframe: can't get wedge info for "
   3016  1.335   mlelstv 					    "dev %s (%d)\n", device_xname(dv), error);
   3017  1.406   hannken 					vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3018  1.335   mlelstv 					VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3019  1.335   mlelstv 					vput(vp);
   3020  1.335   mlelstv 					continue;
   3021  1.335   mlelstv 				}
   3022  1.213  christos 
   3023  1.335   mlelstv 				if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0) {
   3024  1.406   hannken 					vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3025  1.335   mlelstv 					VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3026  1.335   mlelstv 					vput(vp);
   3027  1.335   mlelstv 					continue;
   3028  1.335   mlelstv 				}
   3029  1.385  riastrad 
   3030  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp,
   3031  1.335   mlelstv 				    device_xname(dv), dkw.dkw_size, numsecs, secsize);
   3032  1.335   mlelstv 				rf_part_found = 1; /*There is a raid component on this disk*/
   3033  1.228  christos 				continue;
   3034  1.241     oster 			}
   3035  1.213  christos 
   3036  1.335   mlelstv 			/* Ok, the disk exists.  Go get the disklabel. */
   3037  1.335   mlelstv 			error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED);
   3038  1.335   mlelstv 			if (error) {
   3039  1.335   mlelstv 				/*
   3040  1.335   mlelstv 				 * XXX can't happen - open() would
   3041  1.335   mlelstv 				 * have errored out (or faked up one)
   3042  1.335   mlelstv 				 */
   3043  1.335   mlelstv 				if (error != ENOTTY)
   3044  1.335   mlelstv 					printf("RAIDframe: can't get label for dev "
   3045  1.335   mlelstv 					    "%s (%d)\n", device_xname(dv), error);
   3046  1.335   mlelstv 			}
   3047   1.48     oster 
   3048  1.335   mlelstv 			/* don't need this any more.  We'll allocate it again
   3049  1.335   mlelstv 			   a little later if we really do... */
   3050  1.406   hannken 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3051  1.335   mlelstv 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED);
   3052  1.335   mlelstv 			vput(vp);
   3053   1.48     oster 
   3054  1.335   mlelstv 			if (error)
   3055   1.48     oster 				continue;
   3056   1.48     oster 
   3057  1.335   mlelstv 			rf_part_found = 0; /*No raid partitions yet*/
   3058  1.335   mlelstv 			for (i = 0; i < label.d_npartitions; i++) {
   3059  1.335   mlelstv 				char cname[sizeof(ac_list->devname)];
   3060  1.335   mlelstv 
   3061  1.335   mlelstv 				/* We only support partitions marked as RAID */
   3062  1.335   mlelstv 				if (label.d_partitions[i].p_fstype != FS_RAID)
   3063  1.335   mlelstv 					continue;
   3064  1.335   mlelstv 
   3065  1.335   mlelstv 				dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   3066  1.335   mlelstv 				if (bdevvp(dev, &vp))
   3067  1.335   mlelstv 					panic("RAID can't alloc vnode");
   3068  1.335   mlelstv 
   3069  1.375   hannken 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3070  1.335   mlelstv 				error = VOP_OPEN(vp, FREAD, NOCRED);
   3071  1.335   mlelstv 				if (error) {
   3072  1.400     oster 					/* Not quite a 'whatever'.  In
   3073  1.400     oster 					 * this situation we know
   3074  1.400     oster 					 * there is a FS_RAID
   3075  1.400     oster 					 * partition, but we can't
   3076  1.400     oster 					 * open it.  The most likely
   3077  1.400     oster 					 * reason is that the
   3078  1.400     oster 					 * partition is already in
   3079  1.400     oster 					 * use by another RAID set.
   3080  1.400     oster 					 * So note that we've already
   3081  1.400     oster 					 * found a partition on this
   3082  1.400     oster 					 * disk so we don't attempt
   3083  1.400     oster 					 * to use the raw disk later. */
   3084  1.400     oster 					rf_part_found = 1;
   3085  1.335   mlelstv 					vput(vp);
   3086  1.335   mlelstv 					continue;
   3087  1.335   mlelstv 				}
   3088  1.375   hannken 				VOP_UNLOCK(vp);
   3089  1.335   mlelstv 				snprintf(cname, sizeof(cname), "%s%c",
   3090  1.335   mlelstv 				    device_xname(dv), 'a' + i);
   3091  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp, cname,
   3092  1.335   mlelstv 					label.d_partitions[i].p_size, numsecs, secsize);
   3093  1.335   mlelstv 				rf_part_found = 1; /*There is at least one raid partition on this disk*/
   3094   1.48     oster 			}
   3095  1.296    buhrow 
   3096  1.335   mlelstv 			/*
   3097  1.335   mlelstv 			 *If there is no raid component on this disk, either in a
   3098  1.335   mlelstv 			 *disklabel or inside a wedge, check the raw partition as well,
   3099  1.335   mlelstv 			 *as it is possible to configure raid components on raw disk
   3100  1.335   mlelstv 			 *devices.
   3101  1.335   mlelstv 			 */
   3102  1.296    buhrow 
   3103  1.335   mlelstv 			if (!rf_part_found) {
   3104  1.335   mlelstv 				char cname[sizeof(ac_list->devname)];
   3105  1.296    buhrow 
   3106  1.335   mlelstv 				dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
   3107  1.335   mlelstv 				if (bdevvp(dev, &vp))
   3108  1.335   mlelstv 					panic("RAID can't alloc vnode");
   3109  1.335   mlelstv 
   3110  1.375   hannken 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   3111  1.375   hannken 
   3112  1.335   mlelstv 				error = VOP_OPEN(vp, FREAD, NOCRED);
   3113  1.335   mlelstv 				if (error) {
   3114  1.335   mlelstv 					/* Whatever... */
   3115  1.335   mlelstv 					vput(vp);
   3116  1.335   mlelstv 					continue;
   3117  1.335   mlelstv 				}
   3118  1.375   hannken 				VOP_UNLOCK(vp);
   3119  1.335   mlelstv 				snprintf(cname, sizeof(cname), "%s%c",
   3120  1.335   mlelstv 				    device_xname(dv), 'a' + RAW_PART);
   3121  1.335   mlelstv 				ac_list = rf_get_component(ac_list, dev, vp, cname,
   3122  1.335   mlelstv 					label.d_partitions[RAW_PART].p_size, numsecs, secsize);
   3123  1.296    buhrow 			}
   3124   1.48     oster 		}
   3125  1.335   mlelstv 		deviter_release(&di);
   3126   1.48     oster 	}
   3127  1.213  christos 	return ac_list;
   3128   1.48     oster }
   3129  1.186     perry 
   3130  1.292     oster int
   3131  1.284       mrg rf_reasonable_label(RF_ComponentLabel_t *clabel, uint64_t numsecs)
   3132   1.48     oster {
   3133  1.186     perry 
   3134  1.393       mrg 	if ((clabel->version==RF_COMPONENT_LABEL_VERSION_1 ||
   3135  1.394       mrg 	     clabel->version==RF_COMPONENT_LABEL_VERSION ||
   3136  1.394       mrg 	     clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION)) &&
   3137  1.393       mrg 	    (clabel->clean == RF_RAID_CLEAN ||
   3138  1.393       mrg 	     clabel->clean == RF_RAID_DIRTY) &&
   3139  1.186     perry 	    clabel->row >=0 &&
   3140  1.186     perry 	    clabel->column >= 0 &&
   3141   1.48     oster 	    clabel->num_rows > 0 &&
   3142   1.48     oster 	    clabel->num_columns > 0 &&
   3143  1.186     perry 	    clabel->row < clabel->num_rows &&
   3144   1.48     oster 	    clabel->column < clabel->num_columns &&
   3145   1.48     oster 	    clabel->blockSize > 0 &&
   3146  1.282     enami 	    /*
   3147  1.282     enami 	     * numBlocksHi may contain garbage, but it is ok since
   3148  1.282     enami 	     * the type is unsigned.  If it is really garbage,
   3149  1.282     enami 	     * rf_fix_old_label_size() will fix it.
   3150  1.282     enami 	     */
   3151  1.282     enami 	    rf_component_label_numblocks(clabel) > 0) {
   3152  1.284       mrg 		/*
   3153  1.284       mrg 		 * label looks reasonable enough...
   3154  1.284       mrg 		 * let's make sure it has no old garbage.
   3155  1.284       mrg 		 */
   3156  1.292     oster 		if (numsecs)
   3157  1.292     oster 			rf_fix_old_label_size(clabel, numsecs);
   3158   1.48     oster 		return(1);
   3159   1.48     oster 	}
   3160   1.48     oster 	return(0);
   3161   1.48     oster }
   3162   1.48     oster 
   3163   1.48     oster 
   3164  1.278       mrg /*
   3165  1.278       mrg  * For reasons yet unknown, some old component labels have garbage in
   3166  1.278       mrg  * the newer numBlocksHi region, and this causes lossage.  Since those
   3167  1.278       mrg  * disks will also have numsecs set to less than 32 bits of sectors,
   3168  1.299     oster  * we can determine when this corruption has occurred, and fix it.
   3169  1.284       mrg  *
   3170  1.284       mrg  * The exact same problem, with the same unknown reason, happens to
   3171  1.284       mrg  * the partitionSizeHi member as well.
   3172  1.278       mrg  */
   3173  1.278       mrg static void
   3174  1.278       mrg rf_fix_old_label_size(RF_ComponentLabel_t *clabel, uint64_t numsecs)
   3175  1.278       mrg {
   3176  1.278       mrg 
   3177  1.284       mrg 	if (numsecs < ((uint64_t)1 << 32)) {
   3178  1.284       mrg 		if (clabel->numBlocksHi) {
   3179  1.284       mrg 			printf("WARNING: total sectors < 32 bits, yet "
   3180  1.284       mrg 			       "numBlocksHi set\n"
   3181  1.284       mrg 			       "WARNING: resetting numBlocksHi to zero.\n");
   3182  1.284       mrg 			clabel->numBlocksHi = 0;
   3183  1.284       mrg 		}
   3184  1.284       mrg 
   3185  1.284       mrg 		if (clabel->partitionSizeHi) {
   3186  1.284       mrg 			printf("WARNING: total sectors < 32 bits, yet "
   3187  1.284       mrg 			       "partitionSizeHi set\n"
   3188  1.284       mrg 			       "WARNING: resetting partitionSizeHi to zero.\n");
   3189  1.284       mrg 			clabel->partitionSizeHi = 0;
   3190  1.284       mrg 		}
   3191  1.278       mrg 	}
   3192  1.278       mrg }
   3193  1.278       mrg 
   3194  1.278       mrg 
   3195  1.224     oster #ifdef DEBUG
   3196   1.48     oster void
   3197  1.169     oster rf_print_component_label(RF_ComponentLabel_t *clabel)
   3198   1.48     oster {
   3199  1.282     enami 	uint64_t numBlocks;
   3200  1.308  christos 	static const char *rp[] = {
   3201  1.308  christos 	    "No", "Force", "Soft", "*invalid*"
   3202  1.308  christos 	};
   3203  1.308  christos 
   3204  1.275       mrg 
   3205  1.282     enami 	numBlocks = rf_component_label_numblocks(clabel);
   3206  1.275       mrg 
   3207   1.48     oster 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3208  1.186     perry 	       clabel->row, clabel->column,
   3209   1.48     oster 	       clabel->num_rows, clabel->num_columns);
   3210   1.48     oster 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3211   1.48     oster 	       clabel->version, clabel->serial_number,
   3212   1.48     oster 	       clabel->mod_counter);
   3213   1.48     oster 	printf("   Clean: %s Status: %d\n",
   3214  1.271    dyoung 	       clabel->clean ? "Yes" : "No", clabel->status);
   3215   1.48     oster 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3216   1.48     oster 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3217  1.275       mrg 	printf("   RAID Level: %c  blocksize: %d numBlocks: %"PRIu64"\n",
   3218  1.275       mrg 	       (char) clabel->parityConfig, clabel->blockSize, numBlocks);
   3219  1.271    dyoung 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No");
   3220  1.308  christos 	printf("   Root partition: %s\n", rp[clabel->root_partition & 3]);
   3221  1.271    dyoung 	printf("   Last configured as: raid%d\n", clabel->last_unit);
   3222   1.51     oster #if 0
   3223   1.51     oster 	   printf("   Config order: %d\n", clabel->config_order);
   3224   1.51     oster #endif
   3225  1.186     perry 
   3226   1.48     oster }
   3227  1.133     oster #endif
   3228   1.48     oster 
   3229  1.393       mrg static RF_ConfigSet_t *
   3230  1.169     oster rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3231   1.48     oster {
   3232   1.48     oster 	RF_AutoConfig_t *ac;
   3233   1.48     oster 	RF_ConfigSet_t *config_sets;
   3234   1.48     oster 	RF_ConfigSet_t *cset;
   3235   1.48     oster 	RF_AutoConfig_t *ac_next;
   3236   1.48     oster 
   3237   1.48     oster 
   3238   1.48     oster 	config_sets = NULL;
   3239   1.48     oster 
   3240   1.48     oster 	/* Go through the AutoConfig list, and figure out which components
   3241   1.48     oster 	   belong to what sets.  */
   3242   1.48     oster 	ac = ac_list;
   3243   1.48     oster 	while(ac!=NULL) {
   3244   1.48     oster 		/* we're going to putz with ac->next, so save it here
   3245   1.48     oster 		   for use at the end of the loop */
   3246   1.48     oster 		ac_next = ac->next;
   3247   1.48     oster 
   3248   1.48     oster 		if (config_sets == NULL) {
   3249   1.48     oster 			/* will need at least this one... */
   3250  1.379       chs 			config_sets = malloc(sizeof(RF_ConfigSet_t),
   3251  1.379       chs 				       M_RAIDFRAME, M_WAITOK);
   3252   1.48     oster 			/* this one is easy :) */
   3253   1.48     oster 			config_sets->ac = ac;
   3254   1.48     oster 			config_sets->next = NULL;
   3255   1.51     oster 			config_sets->rootable = 0;
   3256   1.48     oster 			ac->next = NULL;
   3257   1.48     oster 		} else {
   3258   1.48     oster 			/* which set does this component fit into? */
   3259   1.48     oster 			cset = config_sets;
   3260   1.48     oster 			while(cset!=NULL) {
   3261   1.49     oster 				if (rf_does_it_fit(cset, ac)) {
   3262   1.86     oster 					/* looks like it matches... */
   3263   1.86     oster 					ac->next = cset->ac;
   3264   1.86     oster 					cset->ac = ac;
   3265   1.48     oster 					break;
   3266   1.48     oster 				}
   3267   1.48     oster 				cset = cset->next;
   3268   1.48     oster 			}
   3269   1.48     oster 			if (cset==NULL) {
   3270   1.48     oster 				/* didn't find a match above... new set..*/
   3271  1.379       chs 				cset = malloc(sizeof(RF_ConfigSet_t),
   3272  1.379       chs 					       M_RAIDFRAME, M_WAITOK);
   3273   1.48     oster 				cset->ac = ac;
   3274   1.48     oster 				ac->next = NULL;
   3275   1.48     oster 				cset->next = config_sets;
   3276   1.51     oster 				cset->rootable = 0;
   3277   1.48     oster 				config_sets = cset;
   3278   1.48     oster 			}
   3279   1.48     oster 		}
   3280   1.48     oster 		ac = ac_next;
   3281   1.48     oster 	}
   3282   1.48     oster 
   3283   1.48     oster 
   3284   1.48     oster 	return(config_sets);
   3285   1.48     oster }
   3286   1.48     oster 
   3287   1.48     oster static int
   3288  1.169     oster rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3289   1.48     oster {
   3290   1.48     oster 	RF_ComponentLabel_t *clabel1, *clabel2;
   3291   1.48     oster 
   3292   1.48     oster 	/* If this one matches the *first* one in the set, that's good
   3293   1.48     oster 	   enough, since the other members of the set would have been
   3294   1.48     oster 	   through here too... */
   3295   1.60     oster 	/* note that we are not checking partitionSize here..
   3296   1.60     oster 
   3297   1.60     oster 	   Note that we are also not checking the mod_counters here.
   3298  1.299     oster 	   If everything else matches except the mod_counter, that's
   3299   1.60     oster 	   good enough for this test.  We will deal with the mod_counters
   3300  1.186     perry 	   a little later in the autoconfiguration process.
   3301   1.60     oster 
   3302   1.60     oster 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3303   1.81     oster 
   3304   1.81     oster 	   The reason we don't check for this is that failed disks
   3305   1.81     oster 	   will have lower modification counts.  If those disks are
   3306   1.81     oster 	   not added to the set they used to belong to, then they will
   3307   1.81     oster 	   form their own set, which may result in 2 different sets,
   3308   1.81     oster 	   for example, competing to be configured at raid0, and
   3309   1.81     oster 	   perhaps competing to be the root filesystem set.  If the
   3310   1.81     oster 	   wrong ones get configured, or both attempt to become /,
   3311   1.81     oster 	   weird behaviour and or serious lossage will occur.  Thus we
   3312   1.81     oster 	   need to bring them into the fold here, and kick them out at
   3313   1.81     oster 	   a later point.
   3314   1.60     oster 
   3315   1.60     oster 	*/
   3316   1.48     oster 
   3317   1.48     oster 	clabel1 = cset->ac->clabel;
   3318   1.48     oster 	clabel2 = ac->clabel;
   3319   1.48     oster 	if ((clabel1->version == clabel2->version) &&
   3320   1.48     oster 	    (clabel1->serial_number == clabel2->serial_number) &&
   3321   1.48     oster 	    (clabel1->num_rows == clabel2->num_rows) &&
   3322   1.48     oster 	    (clabel1->num_columns == clabel2->num_columns) &&
   3323   1.48     oster 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3324   1.48     oster 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3325   1.48     oster 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3326   1.48     oster 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3327   1.48     oster 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3328   1.48     oster 	    (clabel1->blockSize == clabel2->blockSize) &&
   3329  1.282     enami 	    rf_component_label_numblocks(clabel1) ==
   3330  1.282     enami 	    rf_component_label_numblocks(clabel2) &&
   3331   1.48     oster 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3332   1.48     oster 	    (clabel1->root_partition == clabel2->root_partition) &&
   3333   1.48     oster 	    (clabel1->last_unit == clabel2->last_unit) &&
   3334   1.48     oster 	    (clabel1->config_order == clabel2->config_order)) {
   3335   1.48     oster 		/* if it get's here, it almost *has* to be a match */
   3336   1.48     oster 	} else {
   3337  1.186     perry 		/* it's not consistent with somebody in the set..
   3338   1.48     oster 		   punt */
   3339   1.48     oster 		return(0);
   3340   1.48     oster 	}
   3341   1.48     oster 	/* all was fine.. it must fit... */
   3342   1.48     oster 	return(1);
   3343   1.48     oster }
   3344   1.48     oster 
   3345  1.393       mrg static int
   3346  1.169     oster rf_have_enough_components(RF_ConfigSet_t *cset)
   3347   1.48     oster {
   3348   1.51     oster 	RF_AutoConfig_t *ac;
   3349   1.51     oster 	RF_AutoConfig_t *auto_config;
   3350   1.51     oster 	RF_ComponentLabel_t *clabel;
   3351  1.166     oster 	int c;
   3352   1.51     oster 	int num_cols;
   3353   1.51     oster 	int num_missing;
   3354   1.86     oster 	int mod_counter;
   3355   1.87     oster 	int mod_counter_found;
   3356   1.88     oster 	int even_pair_failed;
   3357   1.88     oster 	char parity_type;
   3358  1.186     perry 
   3359   1.51     oster 
   3360   1.48     oster 	/* check to see that we have enough 'live' components
   3361   1.48     oster 	   of this set.  If so, we can configure it if necessary */
   3362   1.48     oster 
   3363   1.51     oster 	num_cols = cset->ac->clabel->num_columns;
   3364   1.88     oster 	parity_type = cset->ac->clabel->parityConfig;
   3365   1.51     oster 
   3366   1.51     oster 	/* XXX Check for duplicate components!?!?!? */
   3367   1.51     oster 
   3368   1.86     oster 	/* Determine what the mod_counter is supposed to be for this set. */
   3369   1.86     oster 
   3370   1.87     oster 	mod_counter_found = 0;
   3371  1.101     oster 	mod_counter = 0;
   3372   1.86     oster 	ac = cset->ac;
   3373   1.86     oster 	while(ac!=NULL) {
   3374   1.87     oster 		if (mod_counter_found==0) {
   3375   1.86     oster 			mod_counter = ac->clabel->mod_counter;
   3376   1.87     oster 			mod_counter_found = 1;
   3377   1.87     oster 		} else {
   3378   1.87     oster 			if (ac->clabel->mod_counter > mod_counter) {
   3379   1.87     oster 				mod_counter = ac->clabel->mod_counter;
   3380   1.87     oster 			}
   3381   1.86     oster 		}
   3382   1.86     oster 		ac = ac->next;
   3383   1.86     oster 	}
   3384   1.86     oster 
   3385   1.51     oster 	num_missing = 0;
   3386   1.51     oster 	auto_config = cset->ac;
   3387   1.51     oster 
   3388  1.166     oster 	even_pair_failed = 0;
   3389  1.166     oster 	for(c=0; c<num_cols; c++) {
   3390  1.166     oster 		ac = auto_config;
   3391  1.166     oster 		while(ac!=NULL) {
   3392  1.186     perry 			if ((ac->clabel->column == c) &&
   3393  1.166     oster 			    (ac->clabel->mod_counter == mod_counter)) {
   3394  1.166     oster 				/* it's this one... */
   3395  1.224     oster #ifdef DEBUG
   3396  1.166     oster 				printf("Found: %s at %d\n",
   3397  1.166     oster 				       ac->devname,c);
   3398   1.51     oster #endif
   3399  1.166     oster 				break;
   3400   1.51     oster 			}
   3401  1.166     oster 			ac=ac->next;
   3402  1.166     oster 		}
   3403  1.166     oster 		if (ac==NULL) {
   3404   1.51     oster 				/* Didn't find one here! */
   3405   1.88     oster 				/* special case for RAID 1, especially
   3406   1.88     oster 				   where there are more than 2
   3407   1.88     oster 				   components (where RAIDframe treats
   3408   1.88     oster 				   things a little differently :( ) */
   3409  1.166     oster 			if (parity_type == '1') {
   3410  1.166     oster 				if (c%2 == 0) { /* even component */
   3411  1.166     oster 					even_pair_failed = 1;
   3412  1.166     oster 				} else { /* odd component.  If
   3413  1.166     oster 					    we're failed, and
   3414  1.166     oster 					    so is the even
   3415  1.166     oster 					    component, it's
   3416  1.166     oster 					    "Good Night, Charlie" */
   3417  1.166     oster 					if (even_pair_failed == 1) {
   3418  1.166     oster 						return(0);
   3419   1.88     oster 					}
   3420   1.88     oster 				}
   3421  1.166     oster 			} else {
   3422  1.166     oster 				/* normal accounting */
   3423  1.166     oster 				num_missing++;
   3424   1.88     oster 			}
   3425  1.166     oster 		}
   3426  1.166     oster 		if ((parity_type == '1') && (c%2 == 1)) {
   3427   1.88     oster 				/* Just did an even component, and we didn't
   3428  1.186     perry 				   bail.. reset the even_pair_failed flag,
   3429   1.88     oster 				   and go on to the next component.... */
   3430  1.166     oster 			even_pair_failed = 0;
   3431   1.51     oster 		}
   3432   1.51     oster 	}
   3433   1.51     oster 
   3434   1.51     oster 	clabel = cset->ac->clabel;
   3435   1.51     oster 
   3436   1.51     oster 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3437   1.51     oster 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3438   1.51     oster 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3439   1.51     oster 		/* XXX this needs to be made *much* more general */
   3440   1.51     oster 		/* Too many failures */
   3441   1.51     oster 		return(0);
   3442   1.51     oster 	}
   3443   1.51     oster 	/* otherwise, all is well, and we've got enough to take a kick
   3444   1.51     oster 	   at autoconfiguring this set */
   3445   1.51     oster 	return(1);
   3446   1.48     oster }
   3447   1.48     oster 
   3448  1.393       mrg static void
   3449  1.169     oster rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3450  1.222  christos 			RF_Raid_t *raidPtr)
   3451   1.48     oster {
   3452   1.48     oster 	RF_ComponentLabel_t *clabel;
   3453   1.77     oster 	int i;
   3454   1.48     oster 
   3455   1.48     oster 	clabel = ac->clabel;
   3456   1.48     oster 
   3457   1.48     oster 	/* 1. Fill in the common stuff */
   3458   1.48     oster 	config->numCol = clabel->num_columns;
   3459   1.48     oster 	config->numSpare = 0; /* XXX should this be set here? */
   3460   1.48     oster 	config->sectPerSU = clabel->sectPerSU;
   3461   1.48     oster 	config->SUsPerPU = clabel->SUsPerPU;
   3462   1.48     oster 	config->SUsPerRU = clabel->SUsPerRU;
   3463   1.48     oster 	config->parityConfig = clabel->parityConfig;
   3464   1.48     oster 	/* XXX... */
   3465   1.48     oster 	strcpy(config->diskQueueType,"fifo");
   3466   1.48     oster 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3467   1.48     oster 	config->layoutSpecificSize = 0; /* XXX ?? */
   3468   1.48     oster 
   3469   1.48     oster 	while(ac!=NULL) {
   3470   1.48     oster 		/* row/col values will be in range due to the checks
   3471   1.48     oster 		   in reasonable_label() */
   3472  1.166     oster 		strcpy(config->devnames[0][ac->clabel->column],
   3473   1.48     oster 		       ac->devname);
   3474   1.48     oster 		ac = ac->next;
   3475   1.48     oster 	}
   3476   1.48     oster 
   3477   1.77     oster 	for(i=0;i<RF_MAXDBGV;i++) {
   3478  1.163      fvdl 		config->debugVars[i][0] = 0;
   3479   1.77     oster 	}
   3480   1.48     oster }
   3481   1.48     oster 
   3482  1.393       mrg static int
   3483  1.169     oster rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3484   1.48     oster {
   3485  1.269       jld 	RF_ComponentLabel_t *clabel;
   3486  1.166     oster 	int column;
   3487  1.148     oster 	int sparecol;
   3488   1.48     oster 
   3489   1.54     oster 	raidPtr->autoconfigure = new_value;
   3490  1.166     oster 
   3491  1.166     oster 	for(column=0; column<raidPtr->numCol; column++) {
   3492  1.166     oster 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3493  1.269       jld 			clabel = raidget_component_label(raidPtr, column);
   3494  1.269       jld 			clabel->autoconfigure = new_value;
   3495  1.269       jld 			raidflush_component_label(raidPtr, column);
   3496   1.48     oster 		}
   3497   1.48     oster 	}
   3498  1.148     oster 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3499  1.148     oster 		sparecol = raidPtr->numCol + column;
   3500  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3501  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   3502  1.269       jld 			clabel->autoconfigure = new_value;
   3503  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   3504  1.148     oster 		}
   3505  1.148     oster 	}
   3506   1.48     oster 	return(new_value);
   3507   1.48     oster }
   3508   1.48     oster 
   3509  1.393       mrg static int
   3510  1.169     oster rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3511   1.48     oster {
   3512  1.269       jld 	RF_ComponentLabel_t *clabel;
   3513  1.166     oster 	int column;
   3514  1.148     oster 	int sparecol;
   3515   1.48     oster 
   3516   1.54     oster 	raidPtr->root_partition = new_value;
   3517  1.166     oster 	for(column=0; column<raidPtr->numCol; column++) {
   3518  1.166     oster 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3519  1.269       jld 			clabel = raidget_component_label(raidPtr, column);
   3520  1.269       jld 			clabel->root_partition = new_value;
   3521  1.269       jld 			raidflush_component_label(raidPtr, column);
   3522  1.148     oster 		}
   3523  1.148     oster 	}
   3524  1.148     oster 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3525  1.148     oster 		sparecol = raidPtr->numCol + column;
   3526  1.166     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3527  1.269       jld 			clabel = raidget_component_label(raidPtr, sparecol);
   3528  1.269       jld 			clabel->root_partition = new_value;
   3529  1.269       jld 			raidflush_component_label(raidPtr, sparecol);
   3530   1.48     oster 		}
   3531   1.48     oster 	}
   3532   1.48     oster 	return(new_value);
   3533   1.48     oster }
   3534   1.48     oster 
   3535  1.393       mrg static void
   3536  1.169     oster rf_release_all_vps(RF_ConfigSet_t *cset)
   3537   1.48     oster {
   3538   1.48     oster 	RF_AutoConfig_t *ac;
   3539  1.186     perry 
   3540   1.48     oster 	ac = cset->ac;
   3541   1.48     oster 	while(ac!=NULL) {
   3542   1.48     oster 		/* Close the vp, and give it back */
   3543   1.48     oster 		if (ac->vp) {
   3544   1.96     oster 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3545  1.335   mlelstv 			VOP_CLOSE(ac->vp, FREAD | FWRITE, NOCRED);
   3546   1.48     oster 			vput(ac->vp);
   3547   1.86     oster 			ac->vp = NULL;
   3548   1.48     oster 		}
   3549   1.48     oster 		ac = ac->next;
   3550   1.48     oster 	}
   3551   1.48     oster }
   3552   1.48     oster 
   3553   1.48     oster 
   3554  1.393       mrg static void
   3555  1.169     oster rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3556   1.48     oster {
   3557   1.48     oster 	RF_AutoConfig_t *ac;
   3558   1.48     oster 	RF_AutoConfig_t *next_ac;
   3559  1.186     perry 
   3560   1.48     oster 	ac = cset->ac;
   3561   1.48     oster 	while(ac!=NULL) {
   3562   1.48     oster 		next_ac = ac->next;
   3563   1.48     oster 		/* nuke the label */
   3564   1.48     oster 		free(ac->clabel, M_RAIDFRAME);
   3565   1.48     oster 		/* cleanup the config structure */
   3566   1.48     oster 		free(ac, M_RAIDFRAME);
   3567   1.48     oster 		/* "next.." */
   3568   1.48     oster 		ac = next_ac;
   3569   1.48     oster 	}
   3570   1.48     oster 	/* and, finally, nuke the config set */
   3571   1.48     oster 	free(cset, M_RAIDFRAME);
   3572   1.48     oster }
   3573   1.48     oster 
   3574   1.48     oster 
   3575   1.48     oster void
   3576  1.169     oster raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3577   1.48     oster {
   3578  1.394       mrg 	/* avoid over-writing byteswapped version. */
   3579  1.394       mrg 	if (clabel->version != bswap32(RF_COMPONENT_LABEL_VERSION))
   3580  1.394       mrg 		clabel->version = RF_COMPONENT_LABEL_VERSION;
   3581   1.57     oster 	clabel->serial_number = raidPtr->serial_number;
   3582   1.48     oster 	clabel->mod_counter = raidPtr->mod_counter;
   3583  1.269       jld 
   3584  1.166     oster 	clabel->num_rows = 1;
   3585   1.48     oster 	clabel->num_columns = raidPtr->numCol;
   3586   1.48     oster 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3587   1.48     oster 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3588  1.186     perry 
   3589   1.48     oster 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3590   1.48     oster 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3591   1.48     oster 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3592   1.54     oster 
   3593   1.54     oster 	clabel->blockSize = raidPtr->bytesPerSector;
   3594  1.282     enami 	rf_component_label_set_numblocks(clabel, raidPtr->sectorsPerDisk);
   3595   1.54     oster 
   3596   1.48     oster 	/* XXX not portable */
   3597   1.48     oster 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3598   1.54     oster 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3599   1.54     oster 	clabel->autoconfigure = raidPtr->autoconfigure;
   3600   1.54     oster 	clabel->root_partition = raidPtr->root_partition;
   3601   1.48     oster 	clabel->last_unit = raidPtr->raidid;
   3602   1.54     oster 	clabel->config_order = raidPtr->config_order;
   3603  1.269       jld 
   3604  1.269       jld #ifndef RF_NO_PARITY_MAP
   3605  1.269       jld 	rf_paritymap_init_label(raidPtr->parity_map, clabel);
   3606  1.269       jld #endif
   3607   1.51     oster }
   3608   1.51     oster 
   3609  1.393       mrg static struct raid_softc *
   3610  1.300  christos rf_auto_config_set(RF_ConfigSet_t *cset)
   3611   1.51     oster {
   3612   1.51     oster 	RF_Raid_t *raidPtr;
   3613   1.51     oster 	RF_Config_t *config;
   3614   1.51     oster 	int raidID;
   3615  1.300  christos 	struct raid_softc *sc;
   3616   1.51     oster 
   3617  1.224     oster #ifdef DEBUG
   3618   1.72     oster 	printf("RAID autoconfigure\n");
   3619  1.127     oster #endif
   3620   1.51     oster 
   3621   1.51     oster 	/* 1. Create a config structure */
   3622  1.379       chs 	config = malloc(sizeof(*config), M_RAIDFRAME, M_WAITOK|M_ZERO);
   3623   1.77     oster 
   3624  1.186     perry 	/*
   3625  1.186     perry 	   2. Figure out what RAID ID this one is supposed to live at
   3626   1.51     oster 	   See if we can get the same RAID dev that it was configured
   3627  1.186     perry 	   on last time..
   3628   1.51     oster 	*/
   3629   1.51     oster 
   3630   1.51     oster 	raidID = cset->ac->clabel->last_unit;
   3631  1.327  pgoyette 	for (sc = raidget(raidID, false); sc && sc->sc_r.valid != 0;
   3632  1.327  pgoyette 	     sc = raidget(++raidID, false))
   3633  1.300  christos 		continue;
   3634  1.224     oster #ifdef DEBUG
   3635   1.72     oster 	printf("Configuring raid%d:\n",raidID);
   3636  1.127     oster #endif
   3637  1.127     oster 
   3638  1.327  pgoyette 	if (sc == NULL)
   3639  1.327  pgoyette 		sc = raidget(raidID, true);
   3640  1.300  christos 	raidPtr = &sc->sc_r;
   3641   1.51     oster 
   3642   1.51     oster 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3643  1.302  christos 	raidPtr->softc = sc;
   3644   1.51     oster 	raidPtr->raidid = raidID;
   3645   1.51     oster 	raidPtr->openings = RAIDOUTSTANDING;
   3646   1.51     oster 
   3647   1.51     oster 	/* 3. Build the configuration structure */
   3648   1.51     oster 	rf_create_configuration(cset->ac, config, raidPtr);
   3649   1.51     oster 
   3650   1.51     oster 	/* 4. Do the configuration */
   3651  1.300  christos 	if (rf_Configure(raidPtr, config, cset->ac) == 0) {
   3652  1.300  christos 		raidinit(sc);
   3653  1.186     perry 
   3654  1.300  christos 		rf_markalldirty(raidPtr);
   3655  1.300  christos 		raidPtr->autoconfigure = 1; /* XXX do this here? */
   3656  1.308  christos 		switch (cset->ac->clabel->root_partition) {
   3657  1.308  christos 		case 1:	/* Force Root */
   3658  1.308  christos 		case 2:	/* Soft Root: root when boot partition part of raid */
   3659  1.308  christos 			/*
   3660  1.308  christos 			 * everything configured just fine.  Make a note
   3661  1.308  christos 			 * that this set is eligible to be root,
   3662  1.308  christos 			 * or forced to be root
   3663  1.308  christos 			 */
   3664  1.308  christos 			cset->rootable = cset->ac->clabel->root_partition;
   3665   1.54     oster 			/* XXX do this here? */
   3666  1.308  christos 			raidPtr->root_partition = cset->rootable;
   3667  1.308  christos 			break;
   3668  1.308  christos 		default:
   3669  1.308  christos 			break;
   3670   1.51     oster 		}
   3671  1.300  christos 	} else {
   3672  1.300  christos 		raidput(sc);
   3673  1.300  christos 		sc = NULL;
   3674   1.51     oster 	}
   3675   1.51     oster 
   3676   1.51     oster 	/* 5. Cleanup */
   3677   1.51     oster 	free(config, M_RAIDFRAME);
   3678  1.300  christos 	return sc;
   3679   1.99     oster }
   3680   1.99     oster 
   3681   1.99     oster void
   3682  1.395     oster rf_pool_init(RF_Raid_t *raidPtr, char *w_chan, struct pool *p, size_t size, const char *pool_name,
   3683  1.187  christos 	     size_t xmin, size_t xmax)
   3684  1.177     oster {
   3685  1.352  christos 
   3686  1.395     oster 	/* Format: raid%d_foo */
   3687  1.395     oster 	snprintf(w_chan, RF_MAX_POOLNAMELEN, "raid%d_%s", raidPtr->raidid, pool_name);
   3688  1.395     oster 
   3689  1.227        ad 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3690  1.187  christos 	pool_sethiwat(p, xmax);
   3691  1.382       chs 	pool_prime(p, xmin);
   3692  1.177     oster }
   3693  1.190     oster 
   3694  1.395     oster 
   3695  1.190     oster /*
   3696  1.335   mlelstv  * rf_buf_queue_check(RF_Raid_t raidPtr) -- looks into the buffer queue
   3697  1.335   mlelstv  * to see if there is IO pending and if that IO could possibly be done
   3698  1.335   mlelstv  * for a given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3699  1.190     oster  * otherwise.
   3700  1.190     oster  *
   3701  1.190     oster  */
   3702  1.190     oster int
   3703  1.300  christos rf_buf_queue_check(RF_Raid_t *raidPtr)
   3704  1.190     oster {
   3705  1.335   mlelstv 	struct raid_softc *rs;
   3706  1.335   mlelstv 	struct dk_softc *dksc;
   3707  1.335   mlelstv 
   3708  1.335   mlelstv 	rs = raidPtr->softc;
   3709  1.335   mlelstv 	dksc = &rs->sc_dksc;
   3710  1.335   mlelstv 
   3711  1.335   mlelstv 	if ((rs->sc_flags & RAIDF_INITED) == 0)
   3712  1.335   mlelstv 		return 1;
   3713  1.335   mlelstv 
   3714  1.335   mlelstv 	if (dk_strategy_pending(dksc) && raidPtr->openings > 0) {
   3715  1.190     oster 		/* there is work to do */
   3716  1.190     oster 		return 0;
   3717  1.335   mlelstv 	}
   3718  1.190     oster 	/* default is nothing to do */
   3719  1.190     oster 	return 1;
   3720  1.190     oster }
   3721  1.213  christos 
   3722  1.213  christos int
   3723  1.294     oster rf_getdisksize(struct vnode *vp, RF_RaidDisk_t *diskPtr)
   3724  1.213  christos {
   3725  1.275       mrg 	uint64_t numsecs;
   3726  1.275       mrg 	unsigned secsize;
   3727  1.213  christos 	int error;
   3728  1.213  christos 
   3729  1.275       mrg 	error = getdisksize(vp, &numsecs, &secsize);
   3730  1.213  christos 	if (error == 0) {
   3731  1.275       mrg 		diskPtr->blockSize = secsize;
   3732  1.275       mrg 		diskPtr->numBlocks = numsecs - rf_protectedSectors;
   3733  1.275       mrg 		diskPtr->partitionSize = numsecs;
   3734  1.213  christos 		return 0;
   3735  1.213  christos 	}
   3736  1.213  christos 	return error;
   3737  1.213  christos }
   3738  1.217     oster 
   3739  1.217     oster static int
   3740  1.261    dyoung raid_match(device_t self, cfdata_t cfdata, void *aux)
   3741  1.217     oster {
   3742  1.217     oster 	return 1;
   3743  1.217     oster }
   3744  1.217     oster 
   3745  1.217     oster static void
   3746  1.261    dyoung raid_attach(device_t parent, device_t self, void *aux)
   3747  1.217     oster {
   3748  1.217     oster }
   3749  1.217     oster 
   3750  1.217     oster 
   3751  1.217     oster static int
   3752  1.261    dyoung raid_detach(device_t self, int flags)
   3753  1.217     oster {
   3754  1.266    dyoung 	int error;
   3755  1.335   mlelstv 	struct raid_softc *rs = raidsoftc(self);
   3756  1.303  christos 
   3757  1.303  christos 	if (rs == NULL)
   3758  1.303  christos 		return ENXIO;
   3759  1.266    dyoung 
   3760  1.266    dyoung 	if ((error = raidlock(rs)) != 0)
   3761  1.389     skrll 		return error;
   3762  1.217     oster 
   3763  1.266    dyoung 	error = raid_detach_unlocked(rs);
   3764  1.266    dyoung 
   3765  1.332   mlelstv 	raidunlock(rs);
   3766  1.332   mlelstv 
   3767  1.332   mlelstv 	/* XXX raid can be referenced here */
   3768  1.332   mlelstv 
   3769  1.332   mlelstv 	if (error)
   3770  1.332   mlelstv 		return error;
   3771  1.332   mlelstv 
   3772  1.332   mlelstv 	/* Free the softc */
   3773  1.332   mlelstv 	raidput(rs);
   3774  1.332   mlelstv 
   3775  1.332   mlelstv 	return 0;
   3776  1.217     oster }
   3777  1.217     oster 
   3778  1.234     oster static void
   3779  1.304  christos rf_set_geometry(struct raid_softc *rs, RF_Raid_t *raidPtr)
   3780  1.234     oster {
   3781  1.335   mlelstv 	struct dk_softc *dksc = &rs->sc_dksc;
   3782  1.335   mlelstv 	struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
   3783  1.304  christos 
   3784  1.304  christos 	memset(dg, 0, sizeof(*dg));
   3785  1.304  christos 
   3786  1.304  christos 	dg->dg_secperunit = raidPtr->totalSectors;
   3787  1.304  christos 	dg->dg_secsize = raidPtr->bytesPerSector;
   3788  1.304  christos 	dg->dg_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   3789  1.304  christos 	dg->dg_ntracks = 4 * raidPtr->numCol;
   3790  1.304  christos 
   3791  1.335   mlelstv 	disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
   3792  1.234     oster }
   3793  1.252     oster 
   3794  1.348  jdolecek /*
   3795  1.348  jdolecek  * Get cache info for all the components (including spares).
   3796  1.348  jdolecek  * Returns intersection of all the cache flags of all disks, or first
   3797  1.348  jdolecek  * error if any encountered.
   3798  1.348  jdolecek  * XXXfua feature flags can change as spares are added - lock down somehow
   3799  1.348  jdolecek  */
   3800  1.348  jdolecek static int
   3801  1.348  jdolecek rf_get_component_caches(RF_Raid_t *raidPtr, int *data)
   3802  1.348  jdolecek {
   3803  1.348  jdolecek 	int c;
   3804  1.348  jdolecek 	int error;
   3805  1.348  jdolecek 	int dkwhole = 0, dkpart;
   3806  1.385  riastrad 
   3807  1.348  jdolecek 	for (c = 0; c < raidPtr->numCol + raidPtr->numSpare; c++) {
   3808  1.348  jdolecek 		/*
   3809  1.348  jdolecek 		 * Check any non-dead disk, even when currently being
   3810  1.348  jdolecek 		 * reconstructed.
   3811  1.348  jdolecek 		 */
   3812  1.348  jdolecek 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)
   3813  1.348  jdolecek 		    || raidPtr->Disks[c].status == rf_ds_reconstructing) {
   3814  1.348  jdolecek 			error = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp,
   3815  1.348  jdolecek 			    DIOCGCACHE, &dkpart, FREAD, NOCRED);
   3816  1.348  jdolecek 			if (error) {
   3817  1.348  jdolecek 				if (error != ENODEV) {
   3818  1.348  jdolecek 					printf("raid%d: get cache for component %s failed\n",
   3819  1.348  jdolecek 					    raidPtr->raidid,
   3820  1.348  jdolecek 					    raidPtr->Disks[c].devname);
   3821  1.348  jdolecek 				}
   3822  1.348  jdolecek 
   3823  1.348  jdolecek 				return error;
   3824  1.348  jdolecek 			}
   3825  1.348  jdolecek 
   3826  1.348  jdolecek 			if (c == 0)
   3827  1.348  jdolecek 				dkwhole = dkpart;
   3828  1.348  jdolecek 			else
   3829  1.348  jdolecek 				dkwhole = DKCACHE_COMBINE(dkwhole, dkpart);
   3830  1.348  jdolecek 		}
   3831  1.348  jdolecek 	}
   3832  1.348  jdolecek 
   3833  1.349  jdolecek 	*data = dkwhole;
   3834  1.348  jdolecek 
   3835  1.348  jdolecek 	return 0;
   3836  1.348  jdolecek }
   3837  1.348  jdolecek 
   3838  1.385  riastrad /*
   3839  1.252     oster  * Implement forwarding of the DIOCCACHESYNC ioctl to each of the components.
   3840  1.252     oster  * We end up returning whatever error was returned by the first cache flush
   3841  1.252     oster  * that fails.
   3842  1.252     oster  */
   3843  1.252     oster 
   3844  1.386  christos static int
   3845  1.390  christos rf_sync_component_cache(RF_Raid_t *raidPtr, int c, int force)
   3846  1.386  christos {
   3847  1.386  christos 	int e = 0;
   3848  1.386  christos 	for (int i = 0; i < 5; i++) {
   3849  1.386  christos 		e = VOP_IOCTL(raidPtr->raid_cinfo[c].ci_vp, DIOCCACHESYNC,
   3850  1.386  christos 		    &force, FWRITE, NOCRED);
   3851  1.386  christos 		if (!e || e == ENODEV)
   3852  1.386  christos 			return e;
   3853  1.386  christos 		printf("raid%d: cache flush[%d] to component %s failed (%d)\n",
   3854  1.386  christos 		    raidPtr->raidid, i, raidPtr->Disks[c].devname, e);
   3855  1.386  christos 	}
   3856  1.387  christos 	return e;
   3857  1.386  christos }
   3858  1.386  christos 
   3859  1.269       jld int
   3860  1.390  christos rf_sync_component_caches(RF_Raid_t *raidPtr, int force)
   3861  1.252     oster {
   3862  1.386  christos 	int c, error;
   3863  1.385  riastrad 
   3864  1.252     oster 	error = 0;
   3865  1.252     oster 	for (c = 0; c < raidPtr->numCol; c++) {
   3866  1.252     oster 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   3867  1.390  christos 			int e = rf_sync_component_cache(raidPtr, c, force);
   3868  1.387  christos 			if (e && !error)
   3869  1.386  christos 				error = e;
   3870  1.252     oster 		}
   3871  1.252     oster 	}
   3872  1.252     oster 
   3873  1.386  christos 	for (c = 0; c < raidPtr->numSpare ; c++) {
   3874  1.386  christos 		int sparecol = raidPtr->numCol + c;
   3875  1.252     oster 		/* Need to ensure that the reconstruct actually completed! */
   3876  1.252     oster 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3877  1.390  christos 			int e = rf_sync_component_cache(raidPtr, sparecol,
   3878  1.390  christos 			    force);
   3879  1.387  christos 			if (e && !error)
   3880  1.386  christos 				error = e;
   3881  1.252     oster 		}
   3882  1.252     oster 	}
   3883  1.252     oster 	return error;
   3884  1.252     oster }
   3885  1.327  pgoyette 
   3886  1.353       mrg /* Fill in info with the current status */
   3887  1.353       mrg void
   3888  1.353       mrg rf_check_recon_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3889  1.353       mrg {
   3890  1.353       mrg 
   3891  1.401  riastrad 	memset(info, 0, sizeof(*info));
   3892  1.401  riastrad 
   3893  1.353       mrg 	if (raidPtr->status != rf_rs_reconstructing) {
   3894  1.353       mrg 		info->total = 100;
   3895  1.353       mrg 		info->completed = 100;
   3896  1.353       mrg 	} else {
   3897  1.353       mrg 		info->total = raidPtr->reconControl->numRUsTotal;
   3898  1.353       mrg 		info->completed = raidPtr->reconControl->numRUsComplete;
   3899  1.353       mrg 	}
   3900  1.353       mrg 	info->remaining = info->total - info->completed;
   3901  1.353       mrg }
   3902  1.353       mrg 
   3903  1.353       mrg /* Fill in info with the current status */
   3904  1.353       mrg void
   3905  1.353       mrg rf_check_parityrewrite_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3906  1.353       mrg {
   3907  1.353       mrg 
   3908  1.401  riastrad 	memset(info, 0, sizeof(*info));
   3909  1.401  riastrad 
   3910  1.353       mrg 	if (raidPtr->parity_rewrite_in_progress == 1) {
   3911  1.353       mrg 		info->total = raidPtr->Layout.numStripe;
   3912  1.353       mrg 		info->completed = raidPtr->parity_rewrite_stripes_done;
   3913  1.353       mrg 	} else {
   3914  1.353       mrg 		info->completed = 100;
   3915  1.353       mrg 		info->total = 100;
   3916  1.353       mrg 	}
   3917  1.353       mrg 	info->remaining = info->total - info->completed;
   3918  1.353       mrg }
   3919  1.353       mrg 
   3920  1.353       mrg /* Fill in info with the current status */
   3921  1.353       mrg void
   3922  1.353       mrg rf_check_copyback_status_ext(RF_Raid_t *raidPtr, RF_ProgressInfo_t *info)
   3923  1.353       mrg {
   3924  1.353       mrg 
   3925  1.401  riastrad 	memset(info, 0, sizeof(*info));
   3926  1.401  riastrad 
   3927  1.353       mrg 	if (raidPtr->copyback_in_progress == 1) {
   3928  1.353       mrg 		info->total = raidPtr->Layout.numStripe;
   3929  1.353       mrg 		info->completed = raidPtr->copyback_stripes_done;
   3930  1.353       mrg 		info->remaining = info->total - info->completed;
   3931  1.353       mrg 	} else {
   3932  1.353       mrg 		info->remaining = 0;
   3933  1.353       mrg 		info->completed = 100;
   3934  1.353       mrg 		info->total = 100;
   3935  1.353       mrg 	}
   3936  1.353       mrg }
   3937  1.353       mrg 
   3938  1.353       mrg /* Fill in config with the current info */
   3939  1.353       mrg int
   3940  1.353       mrg rf_get_info(RF_Raid_t *raidPtr, RF_DeviceConfig_t *config)
   3941  1.353       mrg {
   3942  1.353       mrg 	int	d, i, j;
   3943  1.353       mrg 
   3944  1.353       mrg 	if (!raidPtr->valid)
   3945  1.389     skrll 		return ENODEV;
   3946  1.353       mrg 	config->cols = raidPtr->numCol;
   3947  1.353       mrg 	config->ndevs = raidPtr->numCol;
   3948  1.353       mrg 	if (config->ndevs >= RF_MAX_DISKS)
   3949  1.389     skrll 		return ENOMEM;
   3950  1.353       mrg 	config->nspares = raidPtr->numSpare;
   3951  1.353       mrg 	if (config->nspares >= RF_MAX_DISKS)
   3952  1.389     skrll 		return ENOMEM;
   3953  1.353       mrg 	config->maxqdepth = raidPtr->maxQueueDepth;
   3954  1.353       mrg 	d = 0;
   3955  1.353       mrg 	for (j = 0; j < config->cols; j++) {
   3956  1.353       mrg 		config->devs[d] = raidPtr->Disks[j];
   3957  1.353       mrg 		d++;
   3958  1.353       mrg 	}
   3959  1.353       mrg 	for (j = config->cols, i = 0; i < config->nspares; i++, j++) {
   3960  1.353       mrg 		config->spares[i] = raidPtr->Disks[j];
   3961  1.353       mrg 		if (config->spares[i].status == rf_ds_rebuilding_spare) {
   3962  1.353       mrg 			/* XXX: raidctl(8) expects to see this as a used spare */
   3963  1.353       mrg 			config->spares[i].status = rf_ds_used_spare;
   3964  1.353       mrg 		}
   3965  1.353       mrg 	}
   3966  1.353       mrg 	return 0;
   3967  1.353       mrg }
   3968  1.353       mrg 
   3969  1.353       mrg int
   3970  1.353       mrg rf_get_component_label(RF_Raid_t *raidPtr, void *data)
   3971  1.353       mrg {
   3972  1.353       mrg 	RF_ComponentLabel_t *clabel = (RF_ComponentLabel_t *)data;
   3973  1.353       mrg 	RF_ComponentLabel_t *raid_clabel;
   3974  1.353       mrg 	int column = clabel->column;
   3975  1.353       mrg 
   3976  1.353       mrg 	if ((column < 0) || (column >= raidPtr->numCol + raidPtr->numSpare))
   3977  1.353       mrg 		return EINVAL;
   3978  1.353       mrg 	raid_clabel = raidget_component_label(raidPtr, column);
   3979  1.353       mrg 	memcpy(clabel, raid_clabel, sizeof *clabel);
   3980  1.394       mrg 	/* Fix-up for userland. */
   3981  1.394       mrg 	if (clabel->version == bswap32(RF_COMPONENT_LABEL_VERSION))
   3982  1.394       mrg 		clabel->version = RF_COMPONENT_LABEL_VERSION;
   3983  1.353       mrg 
   3984  1.353       mrg 	return 0;
   3985  1.353       mrg }
   3986  1.353       mrg 
   3987  1.327  pgoyette /*
   3988  1.327  pgoyette  * Module interface
   3989  1.327  pgoyette  */
   3990  1.327  pgoyette 
   3991  1.356  pgoyette MODULE(MODULE_CLASS_DRIVER, raid, "dk_subr,bufq_fcfs");
   3992  1.327  pgoyette 
   3993  1.327  pgoyette #ifdef _MODULE
   3994  1.327  pgoyette CFDRIVER_DECL(raid, DV_DISK, NULL);
   3995  1.327  pgoyette #endif
   3996  1.327  pgoyette 
   3997  1.327  pgoyette static int raid_modcmd(modcmd_t, void *);
   3998  1.327  pgoyette static int raid_modcmd_init(void);
   3999  1.327  pgoyette static int raid_modcmd_fini(void);
   4000  1.327  pgoyette 
   4001  1.327  pgoyette static int
   4002  1.327  pgoyette raid_modcmd(modcmd_t cmd, void *data)
   4003  1.327  pgoyette {
   4004  1.327  pgoyette 	int error;
   4005  1.327  pgoyette 
   4006  1.327  pgoyette 	error = 0;
   4007  1.327  pgoyette 	switch (cmd) {
   4008  1.327  pgoyette 	case MODULE_CMD_INIT:
   4009  1.327  pgoyette 		error = raid_modcmd_init();
   4010  1.327  pgoyette 		break;
   4011  1.327  pgoyette 	case MODULE_CMD_FINI:
   4012  1.327  pgoyette 		error = raid_modcmd_fini();
   4013  1.327  pgoyette 		break;
   4014  1.327  pgoyette 	default:
   4015  1.327  pgoyette 		error = ENOTTY;
   4016  1.327  pgoyette 		break;
   4017  1.327  pgoyette 	}
   4018  1.327  pgoyette 	return error;
   4019  1.327  pgoyette }
   4020  1.327  pgoyette 
   4021  1.327  pgoyette static int
   4022  1.327  pgoyette raid_modcmd_init(void)
   4023  1.327  pgoyette {
   4024  1.327  pgoyette 	int error;
   4025  1.327  pgoyette 	int bmajor, cmajor;
   4026  1.327  pgoyette 
   4027  1.327  pgoyette 	mutex_init(&raid_lock, MUTEX_DEFAULT, IPL_NONE);
   4028  1.327  pgoyette 	mutex_enter(&raid_lock);
   4029  1.327  pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   4030  1.327  pgoyette 	rf_init_mutex2(rf_sparet_wait_mutex, IPL_VM);
   4031  1.327  pgoyette 	rf_init_cond2(rf_sparet_wait_cv, "sparetw");
   4032  1.327  pgoyette 	rf_init_cond2(rf_sparet_resp_cv, "rfgst");
   4033  1.327  pgoyette 
   4034  1.327  pgoyette 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
   4035  1.327  pgoyette #endif
   4036  1.327  pgoyette 
   4037  1.327  pgoyette 	bmajor = cmajor = -1;
   4038  1.327  pgoyette 	error = devsw_attach("raid", &raid_bdevsw, &bmajor,
   4039  1.327  pgoyette 	    &raid_cdevsw, &cmajor);
   4040  1.327  pgoyette 	if (error != 0 && error != EEXIST) {
   4041  1.327  pgoyette 		aprint_error("%s: devsw_attach failed %d\n", __func__, error);
   4042  1.327  pgoyette 		mutex_exit(&raid_lock);
   4043  1.327  pgoyette 		return error;
   4044  1.327  pgoyette 	}
   4045  1.327  pgoyette #ifdef _MODULE
   4046  1.327  pgoyette 	error = config_cfdriver_attach(&raid_cd);
   4047  1.327  pgoyette 	if (error != 0) {
   4048  1.327  pgoyette 		aprint_error("%s: config_cfdriver_attach failed %d\n",
   4049  1.327  pgoyette 		    __func__, error);
   4050  1.327  pgoyette 		devsw_detach(&raid_bdevsw, &raid_cdevsw);
   4051  1.327  pgoyette 		mutex_exit(&raid_lock);
   4052  1.327  pgoyette 		return error;
   4053  1.327  pgoyette 	}
   4054  1.327  pgoyette #endif
   4055  1.327  pgoyette 	error = config_cfattach_attach(raid_cd.cd_name, &raid_ca);
   4056  1.327  pgoyette 	if (error != 0) {
   4057  1.327  pgoyette 		aprint_error("%s: config_cfattach_attach failed %d\n",
   4058  1.327  pgoyette 		    __func__, error);
   4059  1.327  pgoyette #ifdef _MODULE
   4060  1.327  pgoyette 		config_cfdriver_detach(&raid_cd);
   4061  1.327  pgoyette #endif
   4062  1.327  pgoyette 		devsw_detach(&raid_bdevsw, &raid_cdevsw);
   4063  1.327  pgoyette 		mutex_exit(&raid_lock);
   4064  1.327  pgoyette 		return error;
   4065  1.327  pgoyette 	}
   4066  1.327  pgoyette 
   4067  1.327  pgoyette 	raidautoconfigdone = false;
   4068  1.327  pgoyette 
   4069  1.327  pgoyette 	mutex_exit(&raid_lock);
   4070  1.327  pgoyette 
   4071  1.327  pgoyette 	if (error == 0) {
   4072  1.327  pgoyette 		if (rf_BootRaidframe(true) == 0)
   4073  1.327  pgoyette 			aprint_verbose("Kernelized RAIDframe activated\n");
   4074  1.327  pgoyette 		else
   4075  1.327  pgoyette 			panic("Serious error activating RAID!!");
   4076  1.327  pgoyette 	}
   4077  1.327  pgoyette 
   4078  1.327  pgoyette 	/*
   4079  1.327  pgoyette 	 * Register a finalizer which will be used to auto-config RAID
   4080  1.327  pgoyette 	 * sets once all real hardware devices have been found.
   4081  1.327  pgoyette 	 */
   4082  1.327  pgoyette 	error = config_finalize_register(NULL, rf_autoconfig);
   4083  1.327  pgoyette 	if (error != 0) {
   4084  1.327  pgoyette 		aprint_error("WARNING: unable to register RAIDframe "
   4085  1.327  pgoyette 		    "finalizer\n");
   4086  1.329  pgoyette 		error = 0;
   4087  1.327  pgoyette 	}
   4088  1.327  pgoyette 
   4089  1.327  pgoyette 	return error;
   4090  1.327  pgoyette }
   4091  1.327  pgoyette 
   4092  1.327  pgoyette static int
   4093  1.327  pgoyette raid_modcmd_fini(void)
   4094  1.327  pgoyette {
   4095  1.327  pgoyette 	int error;
   4096  1.327  pgoyette 
   4097  1.327  pgoyette 	mutex_enter(&raid_lock);
   4098  1.327  pgoyette 
   4099  1.327  pgoyette 	/* Don't allow unload if raid device(s) exist.  */
   4100  1.327  pgoyette 	if (!LIST_EMPTY(&raids)) {
   4101  1.327  pgoyette 		mutex_exit(&raid_lock);
   4102  1.327  pgoyette 		return EBUSY;
   4103  1.327  pgoyette 	}
   4104  1.327  pgoyette 
   4105  1.327  pgoyette 	error = config_cfattach_detach(raid_cd.cd_name, &raid_ca);
   4106  1.327  pgoyette 	if (error != 0) {
   4107  1.335   mlelstv 		aprint_error("%s: cannot detach cfattach\n",__func__);
   4108  1.327  pgoyette 		mutex_exit(&raid_lock);
   4109  1.327  pgoyette 		return error;
   4110  1.327  pgoyette 	}
   4111  1.327  pgoyette #ifdef _MODULE
   4112  1.327  pgoyette 	error = config_cfdriver_detach(&raid_cd);
   4113  1.327  pgoyette 	if (error != 0) {
   4114  1.335   mlelstv 		aprint_error("%s: cannot detach cfdriver\n",__func__);
   4115  1.327  pgoyette 		config_cfattach_attach(raid_cd.cd_name, &raid_ca);
   4116  1.327  pgoyette 		mutex_exit(&raid_lock);
   4117  1.327  pgoyette 		return error;
   4118  1.327  pgoyette 	}
   4119  1.327  pgoyette #endif
   4120  1.404  riastrad 	devsw_detach(&raid_bdevsw, &raid_cdevsw);
   4121  1.327  pgoyette 	rf_BootRaidframe(false);
   4122  1.327  pgoyette #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   4123  1.327  pgoyette 	rf_destroy_mutex2(rf_sparet_wait_mutex);
   4124  1.327  pgoyette 	rf_destroy_cond2(rf_sparet_wait_cv);
   4125  1.327  pgoyette 	rf_destroy_cond2(rf_sparet_resp_cv);
   4126  1.327  pgoyette #endif
   4127  1.327  pgoyette 	mutex_exit(&raid_lock);
   4128  1.327  pgoyette 	mutex_destroy(&raid_lock);
   4129  1.327  pgoyette 
   4130  1.327  pgoyette 	return error;
   4131  1.327  pgoyette }
   4132