Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.111
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.111 2001/10/06 00:47:46 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include <dev/raidframe/raidframevar.h>
    139 #include <dev/raidframe/raidframeio.h>
    140 #include "raid.h"
    141 #include "opt_raid_autoconfig.h"
    142 #include "rf_raid.h"
    143 #include "rf_copyback.h"
    144 #include "rf_dag.h"
    145 #include "rf_dagflags.h"
    146 #include "rf_desc.h"
    147 #include "rf_diskqueue.h"
    148 #include "rf_acctrace.h"
    149 #include "rf_etimer.h"
    150 #include "rf_general.h"
    151 #include "rf_debugMem.h"
    152 #include "rf_kintf.h"
    153 #include "rf_options.h"
    154 #include "rf_driver.h"
    155 #include "rf_parityscan.h"
    156 #include "rf_debugprint.h"
    157 #include "rf_threadstuff.h"
    158 
    159 int     rf_kdebug_level = 0;
    160 
    161 #ifdef DEBUG
    162 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    163 #else				/* DEBUG */
    164 #define db1_printf(a) { }
    165 #endif				/* DEBUG */
    166 
    167 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    168 
    169 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    170 
    171 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    172 						 * spare table */
    173 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    174 						 * installation process */
    175 
    176 /* prototypes */
    177 static void KernelWakeupFunc(struct buf * bp);
    178 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    179 		   dev_t dev, RF_SectorNum_t startSect,
    180 		   RF_SectorCount_t numSect, caddr_t buf,
    181 		   void (*cbFunc) (struct buf *), void *cbArg,
    182 		   int logBytesPerSector, struct proc * b_proc);
    183 static void raidinit(RF_Raid_t *);
    184 
    185 void raidattach(int);
    186 int raidsize(dev_t);
    187 int raidopen(dev_t, int, int, struct proc *);
    188 int raidclose(dev_t, int, int, struct proc *);
    189 int raidioctl(dev_t, u_long, caddr_t, int, struct proc *);
    190 int raidwrite(dev_t, struct uio *, int);
    191 int raidread(dev_t, struct uio *, int);
    192 void raidstrategy(struct buf *);
    193 int raiddump(dev_t, daddr_t, caddr_t, size_t);
    194 
    195 /*
    196  * Pilfered from ccd.c
    197  */
    198 
    199 struct raidbuf {
    200 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    201 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    202 	int     rf_flags;	/* misc. flags */
    203 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    204 };
    205 
    206 
    207 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    208 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    209 
    210 /* XXX Not sure if the following should be replacing the raidPtrs above,
    211    or if it should be used in conjunction with that...
    212 */
    213 
    214 struct raid_softc {
    215 	int     sc_flags;	/* flags */
    216 	int     sc_cflags;	/* configuration flags */
    217 	size_t  sc_size;        /* size of the raid device */
    218 	char    sc_xname[20];	/* XXX external name */
    219 	struct disk sc_dkdev;	/* generic disk device info */
    220 	struct pool sc_cbufpool;	/* component buffer pool */
    221 	struct buf_queue buf_queue;	/* used for the device queue */
    222 };
    223 /* sc_flags */
    224 #define RAIDF_INITED	0x01	/* unit has been initialized */
    225 #define RAIDF_WLABEL	0x02	/* label area is writable */
    226 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    227 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    228 #define RAIDF_LOCKED	0x80	/* unit is locked */
    229 
    230 #define	raidunit(x)	DISKUNIT(x)
    231 int numraid = 0;
    232 
    233 /*
    234  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    235  * Be aware that large numbers can allow the driver to consume a lot of
    236  * kernel memory, especially on writes, and in degraded mode reads.
    237  *
    238  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    239  * a single 64K write will typically require 64K for the old data,
    240  * 64K for the old parity, and 64K for the new parity, for a total
    241  * of 192K (if the parity buffer is not re-used immediately).
    242  * Even it if is used immediately, that's still 128K, which when multiplied
    243  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    244  *
    245  * Now in degraded mode, for example, a 64K read on the above setup may
    246  * require data reconstruction, which will require *all* of the 4 remaining
    247  * disks to participate -- 4 * 32K/disk == 128K again.
    248  */
    249 
    250 #ifndef RAIDOUTSTANDING
    251 #define RAIDOUTSTANDING   6
    252 #endif
    253 
    254 #define RAIDLABELDEV(dev)	\
    255 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    256 
    257 /* declared here, and made public, for the benefit of KVM stuff.. */
    258 struct raid_softc *raid_softc;
    259 
    260 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    261 				     struct disklabel *);
    262 static void raidgetdisklabel(dev_t);
    263 static void raidmakedisklabel(struct raid_softc *);
    264 
    265 static int raidlock(struct raid_softc *);
    266 static void raidunlock(struct raid_softc *);
    267 
    268 static void rf_markalldirty(RF_Raid_t *);
    269 void rf_mountroot_hook(struct device *);
    270 
    271 struct device *raidrootdev;
    272 
    273 void rf_ReconThread(struct rf_recon_req *);
    274 /* XXX what I want is: */
    275 /*void rf_ReconThread(RF_Raid_t *raidPtr);  */
    276 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    277 void rf_CopybackThread(RF_Raid_t *raidPtr);
    278 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    279 void rf_buildroothack(void *);
    280 
    281 RF_AutoConfig_t *rf_find_raid_components(void);
    282 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    283 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    284 static int rf_reasonable_label(RF_ComponentLabel_t *);
    285 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    286 int rf_set_autoconfig(RF_Raid_t *, int);
    287 int rf_set_rootpartition(RF_Raid_t *, int);
    288 void rf_release_all_vps(RF_ConfigSet_t *);
    289 void rf_cleanup_config_set(RF_ConfigSet_t *);
    290 int rf_have_enough_components(RF_ConfigSet_t *);
    291 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    292 
    293 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    294 				  allow autoconfig to take place.
    295 			          Note that this is overridden by having
    296 			          RAID_AUTOCONFIG as an option in the
    297 			          kernel config file.  */
    298 
    299 void
    300 raidattach(num)
    301 	int     num;
    302 {
    303 	int raidID;
    304 	int i, rc;
    305 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    306 	RF_ConfigSet_t *config_sets;
    307 
    308 #ifdef DEBUG
    309 	printf("raidattach: Asked for %d units\n", num);
    310 #endif
    311 
    312 	if (num <= 0) {
    313 #ifdef DIAGNOSTIC
    314 		panic("raidattach: count <= 0");
    315 #endif
    316 		return;
    317 	}
    318 	/* This is where all the initialization stuff gets done. */
    319 
    320 	numraid = num;
    321 
    322 	/* Make some space for requested number of units... */
    323 
    324 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    325 	if (raidPtrs == NULL) {
    326 		panic("raidPtrs is NULL!!\n");
    327 	}
    328 
    329 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    330 	if (rc) {
    331 		RF_PANIC();
    332 	}
    333 
    334 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    335 
    336 	for (i = 0; i < num; i++)
    337 		raidPtrs[i] = NULL;
    338 	rc = rf_BootRaidframe();
    339 	if (rc == 0)
    340 		printf("Kernelized RAIDframe activated\n");
    341 	else
    342 		panic("Serious error booting RAID!!\n");
    343 
    344 	/* put together some datastructures like the CCD device does.. This
    345 	 * lets us lock the device and what-not when it gets opened. */
    346 
    347 	raid_softc = (struct raid_softc *)
    348 		malloc(num * sizeof(struct raid_softc),
    349 		       M_RAIDFRAME, M_NOWAIT);
    350 	if (raid_softc == NULL) {
    351 		printf("WARNING: no memory for RAIDframe driver\n");
    352 		return;
    353 	}
    354 
    355 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    356 
    357 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    358 					      M_RAIDFRAME, M_NOWAIT);
    359 	if (raidrootdev == NULL) {
    360 		panic("No memory for RAIDframe driver!!?!?!\n");
    361 	}
    362 
    363 	for (raidID = 0; raidID < num; raidID++) {
    364 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    365 
    366 		raidrootdev[raidID].dv_class  = DV_DISK;
    367 		raidrootdev[raidID].dv_cfdata = NULL;
    368 		raidrootdev[raidID].dv_unit   = raidID;
    369 		raidrootdev[raidID].dv_parent = NULL;
    370 		raidrootdev[raidID].dv_flags  = 0;
    371 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    372 
    373 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    374 			  (RF_Raid_t *));
    375 		if (raidPtrs[raidID] == NULL) {
    376 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    377 			numraid = raidID;
    378 			return;
    379 		}
    380 	}
    381 
    382 #if RAID_AUTOCONFIG
    383 	raidautoconfig = 1;
    384 #endif
    385 
    386 if (raidautoconfig) {
    387 	/* 1. locate all RAID components on the system */
    388 
    389 #if DEBUG
    390 	printf("Searching for raid components...\n");
    391 #endif
    392 	ac_list = rf_find_raid_components();
    393 
    394 	/* 2. sort them into their respective sets */
    395 
    396 	config_sets = rf_create_auto_sets(ac_list);
    397 
    398 	/* 3. evaluate each set and configure the valid ones
    399 	   This gets done in rf_buildroothack() */
    400 
    401 	/* schedule the creation of the thread to do the
    402 	   "/ on RAID" stuff */
    403 
    404 	kthread_create(rf_buildroothack,config_sets);
    405 
    406 #if 0
    407 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    408 #endif
    409 }
    410 
    411 }
    412 
    413 void
    414 rf_buildroothack(arg)
    415 	void *arg;
    416 {
    417 	RF_ConfigSet_t *config_sets = arg;
    418 	RF_ConfigSet_t *cset;
    419 	RF_ConfigSet_t *next_cset;
    420 	int retcode;
    421 	int raidID;
    422 	int rootID;
    423 	int num_root;
    424 
    425 	rootID = 0;
    426 	num_root = 0;
    427 	cset = config_sets;
    428 	while(cset != NULL ) {
    429 		next_cset = cset->next;
    430 		if (rf_have_enough_components(cset) &&
    431 		    cset->ac->clabel->autoconfigure==1) {
    432 			retcode = rf_auto_config_set(cset,&raidID);
    433 			if (!retcode) {
    434 				if (cset->rootable) {
    435 					rootID = raidID;
    436 					num_root++;
    437 				}
    438 			} else {
    439 				/* The autoconfig didn't work :( */
    440 #if DEBUG
    441 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    442 #endif
    443 				rf_release_all_vps(cset);
    444 			}
    445 		} else {
    446 			/* we're not autoconfiguring this set...
    447 			   release the associated resources */
    448 			rf_release_all_vps(cset);
    449 		}
    450 		/* cleanup */
    451 		rf_cleanup_config_set(cset);
    452 		cset = next_cset;
    453 	}
    454 	if (boothowto & RB_ASKNAME) {
    455 		/* We don't auto-config... */
    456 	} else {
    457 		/* They didn't ask, and we found something bootable... */
    458 
    459 		if (num_root == 1) {
    460 			booted_device = &raidrootdev[rootID];
    461 		} else if (num_root > 1) {
    462 			/* we can't guess.. require the user to answer... */
    463 			boothowto |= RB_ASKNAME;
    464 		}
    465 	}
    466 }
    467 
    468 
    469 int
    470 raidsize(dev)
    471 	dev_t   dev;
    472 {
    473 	struct raid_softc *rs;
    474 	struct disklabel *lp;
    475 	int     part, unit, omask, size;
    476 
    477 	unit = raidunit(dev);
    478 	if (unit >= numraid)
    479 		return (-1);
    480 	rs = &raid_softc[unit];
    481 
    482 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    483 		return (-1);
    484 
    485 	part = DISKPART(dev);
    486 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    487 	lp = rs->sc_dkdev.dk_label;
    488 
    489 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    490 		return (-1);
    491 
    492 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    493 		size = -1;
    494 	else
    495 		size = lp->d_partitions[part].p_size *
    496 		    (lp->d_secsize / DEV_BSIZE);
    497 
    498 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    499 		return (-1);
    500 
    501 	return (size);
    502 
    503 }
    504 
    505 int
    506 raiddump(dev, blkno, va, size)
    507 	dev_t   dev;
    508 	daddr_t blkno;
    509 	caddr_t va;
    510 	size_t  size;
    511 {
    512 	/* Not implemented. */
    513 	return ENXIO;
    514 }
    515 /* ARGSUSED */
    516 int
    517 raidopen(dev, flags, fmt, p)
    518 	dev_t   dev;
    519 	int     flags, fmt;
    520 	struct proc *p;
    521 {
    522 	int     unit = raidunit(dev);
    523 	struct raid_softc *rs;
    524 	struct disklabel *lp;
    525 	int     part, pmask;
    526 	int     error = 0;
    527 
    528 	if (unit >= numraid)
    529 		return (ENXIO);
    530 	rs = &raid_softc[unit];
    531 
    532 	if ((error = raidlock(rs)) != 0)
    533 		return (error);
    534 	lp = rs->sc_dkdev.dk_label;
    535 
    536 	part = DISKPART(dev);
    537 	pmask = (1 << part);
    538 
    539 	db1_printf(("Opening raid device number: %d partition: %d\n",
    540 		unit, part));
    541 
    542 
    543 	if ((rs->sc_flags & RAIDF_INITED) &&
    544 	    (rs->sc_dkdev.dk_openmask == 0))
    545 		raidgetdisklabel(dev);
    546 
    547 	/* make sure that this partition exists */
    548 
    549 	if (part != RAW_PART) {
    550 		db1_printf(("Not a raw partition..\n"));
    551 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    552 		    ((part >= lp->d_npartitions) ||
    553 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    554 			error = ENXIO;
    555 			raidunlock(rs);
    556 			db1_printf(("Bailing out...\n"));
    557 			return (error);
    558 		}
    559 	}
    560 	/* Prevent this unit from being unconfigured while open. */
    561 	switch (fmt) {
    562 	case S_IFCHR:
    563 		rs->sc_dkdev.dk_copenmask |= pmask;
    564 		break;
    565 
    566 	case S_IFBLK:
    567 		rs->sc_dkdev.dk_bopenmask |= pmask;
    568 		break;
    569 	}
    570 
    571 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    572 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    573 		/* First one... mark things as dirty... Note that we *MUST*
    574 		 have done a configure before this.  I DO NOT WANT TO BE
    575 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    576 		 THAT THEY BELONG TOGETHER!!!!! */
    577 		/* XXX should check to see if we're only open for reading
    578 		   here... If so, we needn't do this, but then need some
    579 		   other way of keeping track of what's happened.. */
    580 
    581 		rf_markalldirty( raidPtrs[unit] );
    582 	}
    583 
    584 
    585 	rs->sc_dkdev.dk_openmask =
    586 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    587 
    588 	raidunlock(rs);
    589 
    590 	return (error);
    591 
    592 
    593 }
    594 /* ARGSUSED */
    595 int
    596 raidclose(dev, flags, fmt, p)
    597 	dev_t   dev;
    598 	int     flags, fmt;
    599 	struct proc *p;
    600 {
    601 	int     unit = raidunit(dev);
    602 	struct raid_softc *rs;
    603 	int     error = 0;
    604 	int     part;
    605 
    606 	if (unit >= numraid)
    607 		return (ENXIO);
    608 	rs = &raid_softc[unit];
    609 
    610 	if ((error = raidlock(rs)) != 0)
    611 		return (error);
    612 
    613 	part = DISKPART(dev);
    614 
    615 	/* ...that much closer to allowing unconfiguration... */
    616 	switch (fmt) {
    617 	case S_IFCHR:
    618 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    619 		break;
    620 
    621 	case S_IFBLK:
    622 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    623 		break;
    624 	}
    625 	rs->sc_dkdev.dk_openmask =
    626 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    627 
    628 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    629 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    630 		/* Last one... device is not unconfigured yet.
    631 		   Device shutdown has taken care of setting the
    632 		   clean bits if RAIDF_INITED is not set
    633 		   mark things as clean... */
    634 #if 0
    635 		printf("Last one on raid%d.  Updating status.\n",unit);
    636 #endif
    637 		rf_update_component_labels(raidPtrs[unit],
    638 						 RF_FINAL_COMPONENT_UPDATE);
    639 		if (doing_shutdown) {
    640 			/* last one, and we're going down, so
    641 			   lights out for this RAID set too. */
    642 			error = rf_Shutdown(raidPtrs[unit]);
    643 			pool_destroy(&rs->sc_cbufpool);
    644 
    645 			/* It's no longer initialized... */
    646 			rs->sc_flags &= ~RAIDF_INITED;
    647 
    648 			/* Detach the disk. */
    649 			disk_detach(&rs->sc_dkdev);
    650 		}
    651 	}
    652 
    653 	raidunlock(rs);
    654 	return (0);
    655 
    656 }
    657 
    658 void
    659 raidstrategy(bp)
    660 	struct buf *bp;
    661 {
    662 	int s;
    663 
    664 	unsigned int raidID = raidunit(bp->b_dev);
    665 	RF_Raid_t *raidPtr;
    666 	struct raid_softc *rs = &raid_softc[raidID];
    667 	struct disklabel *lp;
    668 	int     wlabel;
    669 
    670 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    671 		bp->b_error = ENXIO;
    672 		bp->b_flags |= B_ERROR;
    673 		bp->b_resid = bp->b_bcount;
    674 		biodone(bp);
    675 		return;
    676 	}
    677 	if (raidID >= numraid || !raidPtrs[raidID]) {
    678 		bp->b_error = ENODEV;
    679 		bp->b_flags |= B_ERROR;
    680 		bp->b_resid = bp->b_bcount;
    681 		biodone(bp);
    682 		return;
    683 	}
    684 	raidPtr = raidPtrs[raidID];
    685 	if (!raidPtr->valid) {
    686 		bp->b_error = ENODEV;
    687 		bp->b_flags |= B_ERROR;
    688 		bp->b_resid = bp->b_bcount;
    689 		biodone(bp);
    690 		return;
    691 	}
    692 	if (bp->b_bcount == 0) {
    693 		db1_printf(("b_bcount is zero..\n"));
    694 		biodone(bp);
    695 		return;
    696 	}
    697 	lp = rs->sc_dkdev.dk_label;
    698 
    699 	/*
    700 	 * Do bounds checking and adjust transfer.  If there's an
    701 	 * error, the bounds check will flag that for us.
    702 	 */
    703 
    704 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    705 	if (DISKPART(bp->b_dev) != RAW_PART)
    706 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    707 			db1_printf(("Bounds check failed!!:%d %d\n",
    708 				(int) bp->b_blkno, (int) wlabel));
    709 			biodone(bp);
    710 			return;
    711 		}
    712 	s = splbio();
    713 
    714 	bp->b_resid = 0;
    715 
    716 	/* stuff it onto our queue */
    717 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    718 
    719 	raidstart(raidPtrs[raidID]);
    720 
    721 	splx(s);
    722 }
    723 /* ARGSUSED */
    724 int
    725 raidread(dev, uio, flags)
    726 	dev_t   dev;
    727 	struct uio *uio;
    728 	int     flags;
    729 {
    730 	int     unit = raidunit(dev);
    731 	struct raid_softc *rs;
    732 	int     part;
    733 
    734 	if (unit >= numraid)
    735 		return (ENXIO);
    736 	rs = &raid_softc[unit];
    737 
    738 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    739 		return (ENXIO);
    740 	part = DISKPART(dev);
    741 
    742 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    743 
    744 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    745 
    746 }
    747 /* ARGSUSED */
    748 int
    749 raidwrite(dev, uio, flags)
    750 	dev_t   dev;
    751 	struct uio *uio;
    752 	int     flags;
    753 {
    754 	int     unit = raidunit(dev);
    755 	struct raid_softc *rs;
    756 
    757 	if (unit >= numraid)
    758 		return (ENXIO);
    759 	rs = &raid_softc[unit];
    760 
    761 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    762 		return (ENXIO);
    763 	db1_printf(("raidwrite\n"));
    764 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    765 
    766 }
    767 
    768 int
    769 raidioctl(dev, cmd, data, flag, p)
    770 	dev_t   dev;
    771 	u_long  cmd;
    772 	caddr_t data;
    773 	int     flag;
    774 	struct proc *p;
    775 {
    776 	int     unit = raidunit(dev);
    777 	int     error = 0;
    778 	int     part, pmask;
    779 	struct raid_softc *rs;
    780 	RF_Config_t *k_cfg, *u_cfg;
    781 	RF_Raid_t *raidPtr;
    782 	RF_RaidDisk_t *diskPtr;
    783 	RF_AccTotals_t *totals;
    784 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    785 	u_char *specific_buf;
    786 	int retcode = 0;
    787 	int row;
    788 	int column;
    789 	struct rf_recon_req *rrcopy, *rr;
    790 	RF_ComponentLabel_t *clabel;
    791 	RF_ComponentLabel_t ci_label;
    792 	RF_ComponentLabel_t **clabel_ptr;
    793 	RF_SingleComponent_t *sparePtr,*componentPtr;
    794 	RF_SingleComponent_t hot_spare;
    795 	RF_SingleComponent_t component;
    796 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    797 	int i, j, d;
    798 #ifdef __HAVE_OLD_DISKLABEL
    799 	struct disklabel newlabel;
    800 #endif
    801 
    802 	if (unit >= numraid)
    803 		return (ENXIO);
    804 	rs = &raid_softc[unit];
    805 	raidPtr = raidPtrs[unit];
    806 
    807 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    808 		(int) DISKPART(dev), (int) unit, (int) cmd));
    809 
    810 	/* Must be open for writes for these commands... */
    811 	switch (cmd) {
    812 	case DIOCSDINFO:
    813 	case DIOCWDINFO:
    814 #ifdef __HAVE_OLD_DISKLABEL
    815 	case ODIOCWDINFO:
    816 	case ODIOCSDINFO:
    817 #endif
    818 	case DIOCWLABEL:
    819 		if ((flag & FWRITE) == 0)
    820 			return (EBADF);
    821 	}
    822 
    823 	/* Must be initialized for these... */
    824 	switch (cmd) {
    825 	case DIOCGDINFO:
    826 	case DIOCSDINFO:
    827 	case DIOCWDINFO:
    828 #ifdef __HAVE_OLD_DISKLABEL
    829 	case ODIOCGDINFO:
    830 	case ODIOCWDINFO:
    831 	case ODIOCSDINFO:
    832 	case ODIOCGDEFLABEL:
    833 #endif
    834 	case DIOCGPART:
    835 	case DIOCWLABEL:
    836 	case DIOCGDEFLABEL:
    837 	case RAIDFRAME_SHUTDOWN:
    838 	case RAIDFRAME_REWRITEPARITY:
    839 	case RAIDFRAME_GET_INFO:
    840 	case RAIDFRAME_RESET_ACCTOTALS:
    841 	case RAIDFRAME_GET_ACCTOTALS:
    842 	case RAIDFRAME_KEEP_ACCTOTALS:
    843 	case RAIDFRAME_GET_SIZE:
    844 	case RAIDFRAME_FAIL_DISK:
    845 	case RAIDFRAME_COPYBACK:
    846 	case RAIDFRAME_CHECK_RECON_STATUS:
    847 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    848 	case RAIDFRAME_GET_COMPONENT_LABEL:
    849 	case RAIDFRAME_SET_COMPONENT_LABEL:
    850 	case RAIDFRAME_ADD_HOT_SPARE:
    851 	case RAIDFRAME_REMOVE_HOT_SPARE:
    852 	case RAIDFRAME_INIT_LABELS:
    853 	case RAIDFRAME_REBUILD_IN_PLACE:
    854 	case RAIDFRAME_CHECK_PARITY:
    855 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    856 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    857 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    858 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    859 	case RAIDFRAME_SET_AUTOCONFIG:
    860 	case RAIDFRAME_SET_ROOT:
    861 	case RAIDFRAME_DELETE_COMPONENT:
    862 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    863 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    864 			return (ENXIO);
    865 	}
    866 
    867 	switch (cmd) {
    868 
    869 		/* configure the system */
    870 	case RAIDFRAME_CONFIGURE:
    871 
    872 		if (raidPtr->valid) {
    873 			/* There is a valid RAID set running on this unit! */
    874 			printf("raid%d: Device already configured!\n",unit);
    875 			return(EINVAL);
    876 		}
    877 
    878 		/* copy-in the configuration information */
    879 		/* data points to a pointer to the configuration structure */
    880 
    881 		u_cfg = *((RF_Config_t **) data);
    882 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    883 		if (k_cfg == NULL) {
    884 			return (ENOMEM);
    885 		}
    886 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    887 		    sizeof(RF_Config_t));
    888 		if (retcode) {
    889 			RF_Free(k_cfg, sizeof(RF_Config_t));
    890 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    891 				retcode));
    892 			return (retcode);
    893 		}
    894 		/* allocate a buffer for the layout-specific data, and copy it
    895 		 * in */
    896 		if (k_cfg->layoutSpecificSize) {
    897 			if (k_cfg->layoutSpecificSize > 10000) {
    898 				/* sanity check */
    899 				RF_Free(k_cfg, sizeof(RF_Config_t));
    900 				return (EINVAL);
    901 			}
    902 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    903 			    (u_char *));
    904 			if (specific_buf == NULL) {
    905 				RF_Free(k_cfg, sizeof(RF_Config_t));
    906 				return (ENOMEM);
    907 			}
    908 			retcode = copyin(k_cfg->layoutSpecific,
    909 			    (caddr_t) specific_buf,
    910 			    k_cfg->layoutSpecificSize);
    911 			if (retcode) {
    912 				RF_Free(k_cfg, sizeof(RF_Config_t));
    913 				RF_Free(specific_buf,
    914 					k_cfg->layoutSpecificSize);
    915 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    916 					retcode));
    917 				return (retcode);
    918 			}
    919 		} else
    920 			specific_buf = NULL;
    921 		k_cfg->layoutSpecific = specific_buf;
    922 
    923 		/* should do some kind of sanity check on the configuration.
    924 		 * Store the sum of all the bytes in the last byte? */
    925 
    926 		/* configure the system */
    927 
    928 		/*
    929 		 * Clear the entire RAID descriptor, just to make sure
    930 		 *  there is no stale data left in the case of a
    931 		 *  reconfiguration
    932 		 */
    933 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    934 		raidPtr->raidid = unit;
    935 
    936 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    937 
    938 		if (retcode == 0) {
    939 
    940 			/* allow this many simultaneous IO's to
    941 			   this RAID device */
    942 			raidPtr->openings = RAIDOUTSTANDING;
    943 
    944 			raidinit(raidPtr);
    945 			rf_markalldirty(raidPtr);
    946 		}
    947 		/* free the buffers.  No return code here. */
    948 		if (k_cfg->layoutSpecificSize) {
    949 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    950 		}
    951 		RF_Free(k_cfg, sizeof(RF_Config_t));
    952 
    953 		return (retcode);
    954 
    955 		/* shutdown the system */
    956 	case RAIDFRAME_SHUTDOWN:
    957 
    958 		if ((error = raidlock(rs)) != 0)
    959 			return (error);
    960 
    961 		/*
    962 		 * If somebody has a partition mounted, we shouldn't
    963 		 * shutdown.
    964 		 */
    965 
    966 		part = DISKPART(dev);
    967 		pmask = (1 << part);
    968 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    969 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    970 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    971 			raidunlock(rs);
    972 			return (EBUSY);
    973 		}
    974 
    975 		retcode = rf_Shutdown(raidPtr);
    976 
    977 		pool_destroy(&rs->sc_cbufpool);
    978 
    979 		/* It's no longer initialized... */
    980 		rs->sc_flags &= ~RAIDF_INITED;
    981 
    982 		/* Detach the disk. */
    983 		disk_detach(&rs->sc_dkdev);
    984 
    985 		raidunlock(rs);
    986 
    987 		return (retcode);
    988 	case RAIDFRAME_GET_COMPONENT_LABEL:
    989 		clabel_ptr = (RF_ComponentLabel_t **) data;
    990 		/* need to read the component label for the disk indicated
    991 		   by row,column in clabel */
    992 
    993 		/* For practice, let's get it directly fromdisk, rather
    994 		   than from the in-core copy */
    995 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    996 			   (RF_ComponentLabel_t *));
    997 		if (clabel == NULL)
    998 			return (ENOMEM);
    999 
   1000 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1001 
   1002 		retcode = copyin( *clabel_ptr, clabel,
   1003 				  sizeof(RF_ComponentLabel_t));
   1004 
   1005 		if (retcode) {
   1006 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1007 			return(retcode);
   1008 		}
   1009 
   1010 		row = clabel->row;
   1011 		column = clabel->column;
   1012 
   1013 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1014 		    (column < 0) || (column >= raidPtr->numCol +
   1015 				     raidPtr->numSpare)) {
   1016 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1017 			return(EINVAL);
   1018 		}
   1019 
   1020 		raidread_component_label(raidPtr->Disks[row][column].dev,
   1021 				raidPtr->raid_cinfo[row][column].ci_vp,
   1022 				clabel );
   1023 
   1024 		retcode = copyout((caddr_t) clabel,
   1025 				  (caddr_t) *clabel_ptr,
   1026 				  sizeof(RF_ComponentLabel_t));
   1027 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1028 		return (retcode);
   1029 
   1030 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1031 		clabel = (RF_ComponentLabel_t *) data;
   1032 
   1033 		/* XXX check the label for valid stuff... */
   1034 		/* Note that some things *should not* get modified --
   1035 		   the user should be re-initing the labels instead of
   1036 		   trying to patch things.
   1037 		   */
   1038 
   1039 		printf("Got component label:\n");
   1040 		printf("Version: %d\n",clabel->version);
   1041 		printf("Serial Number: %d\n",clabel->serial_number);
   1042 		printf("Mod counter: %d\n",clabel->mod_counter);
   1043 		printf("Row: %d\n", clabel->row);
   1044 		printf("Column: %d\n", clabel->column);
   1045 		printf("Num Rows: %d\n", clabel->num_rows);
   1046 		printf("Num Columns: %d\n", clabel->num_columns);
   1047 		printf("Clean: %d\n", clabel->clean);
   1048 		printf("Status: %d\n", clabel->status);
   1049 
   1050 		row = clabel->row;
   1051 		column = clabel->column;
   1052 
   1053 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1054 		    (column < 0) || (column >= raidPtr->numCol)) {
   1055 			return(EINVAL);
   1056 		}
   1057 
   1058 		/* XXX this isn't allowed to do anything for now :-) */
   1059 
   1060 		/* XXX and before it is, we need to fill in the rest
   1061 		   of the fields!?!?!?! */
   1062 #if 0
   1063 		raidwrite_component_label(
   1064                             raidPtr->Disks[row][column].dev,
   1065 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1066 			    clabel );
   1067 #endif
   1068 		return (0);
   1069 
   1070 	case RAIDFRAME_INIT_LABELS:
   1071 		clabel = (RF_ComponentLabel_t *) data;
   1072 		/*
   1073 		   we only want the serial number from
   1074 		   the above.  We get all the rest of the information
   1075 		   from the config that was used to create this RAID
   1076 		   set.
   1077 		   */
   1078 
   1079 		raidPtr->serial_number = clabel->serial_number;
   1080 
   1081 		raid_init_component_label(raidPtr, &ci_label);
   1082 		ci_label.serial_number = clabel->serial_number;
   1083 
   1084 		for(row=0;row<raidPtr->numRow;row++) {
   1085 			ci_label.row = row;
   1086 			for(column=0;column<raidPtr->numCol;column++) {
   1087 				diskPtr = &raidPtr->Disks[row][column];
   1088 				if (!RF_DEAD_DISK(diskPtr->status)) {
   1089 					ci_label.partitionSize = diskPtr->partitionSize;
   1090 					ci_label.column = column;
   1091 					raidwrite_component_label(
   1092 					  raidPtr->Disks[row][column].dev,
   1093 					  raidPtr->raid_cinfo[row][column].ci_vp,
   1094 					  &ci_label );
   1095 				}
   1096 			}
   1097 		}
   1098 
   1099 		return (retcode);
   1100 	case RAIDFRAME_SET_AUTOCONFIG:
   1101 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1102 		printf("New autoconfig value is: %d\n", d);
   1103 		*(int *) data = d;
   1104 		return (retcode);
   1105 
   1106 	case RAIDFRAME_SET_ROOT:
   1107 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1108 		printf("New rootpartition value is: %d\n", d);
   1109 		*(int *) data = d;
   1110 		return (retcode);
   1111 
   1112 		/* initialize all parity */
   1113 	case RAIDFRAME_REWRITEPARITY:
   1114 
   1115 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1116 			/* Parity for RAID 0 is trivially correct */
   1117 			raidPtr->parity_good = RF_RAID_CLEAN;
   1118 			return(0);
   1119 		}
   1120 
   1121 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1122 			/* Re-write is already in progress! */
   1123 			return(EINVAL);
   1124 		}
   1125 
   1126 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1127 					   rf_RewriteParityThread,
   1128 					   raidPtr,"raid_parity");
   1129 		return (retcode);
   1130 
   1131 
   1132 	case RAIDFRAME_ADD_HOT_SPARE:
   1133 		sparePtr = (RF_SingleComponent_t *) data;
   1134 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1135 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1136 		return(retcode);
   1137 
   1138 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1139 		return(retcode);
   1140 
   1141 	case RAIDFRAME_DELETE_COMPONENT:
   1142 		componentPtr = (RF_SingleComponent_t *)data;
   1143 		memcpy( &component, componentPtr,
   1144 			sizeof(RF_SingleComponent_t));
   1145 		retcode = rf_delete_component(raidPtr, &component);
   1146 		return(retcode);
   1147 
   1148 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1149 		componentPtr = (RF_SingleComponent_t *)data;
   1150 		memcpy( &component, componentPtr,
   1151 			sizeof(RF_SingleComponent_t));
   1152 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1153 		return(retcode);
   1154 
   1155 	case RAIDFRAME_REBUILD_IN_PLACE:
   1156 
   1157 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1158 			/* Can't do this on a RAID 0!! */
   1159 			return(EINVAL);
   1160 		}
   1161 
   1162 		if (raidPtr->recon_in_progress == 1) {
   1163 			/* a reconstruct is already in progress! */
   1164 			return(EINVAL);
   1165 		}
   1166 
   1167 		componentPtr = (RF_SingleComponent_t *) data;
   1168 		memcpy( &component, componentPtr,
   1169 			sizeof(RF_SingleComponent_t));
   1170 		row = component.row;
   1171 		column = component.column;
   1172 		printf("Rebuild: %d %d\n",row, column);
   1173 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1174 		    (column < 0) || (column >= raidPtr->numCol)) {
   1175 			return(EINVAL);
   1176 		}
   1177 
   1178 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1179 		if (rrcopy == NULL)
   1180 			return(ENOMEM);
   1181 
   1182 		rrcopy->raidPtr = (void *) raidPtr;
   1183 		rrcopy->row = row;
   1184 		rrcopy->col = column;
   1185 
   1186 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1187 					   rf_ReconstructInPlaceThread,
   1188 					   rrcopy,"raid_reconip");
   1189 		return(retcode);
   1190 
   1191 	case RAIDFRAME_GET_INFO:
   1192 		if (!raidPtr->valid)
   1193 			return (ENODEV);
   1194 		ucfgp = (RF_DeviceConfig_t **) data;
   1195 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1196 			  (RF_DeviceConfig_t *));
   1197 		if (d_cfg == NULL)
   1198 			return (ENOMEM);
   1199 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1200 		d_cfg->rows = raidPtr->numRow;
   1201 		d_cfg->cols = raidPtr->numCol;
   1202 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1203 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1204 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1205 			return (ENOMEM);
   1206 		}
   1207 		d_cfg->nspares = raidPtr->numSpare;
   1208 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1209 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1210 			return (ENOMEM);
   1211 		}
   1212 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1213 		d = 0;
   1214 		for (i = 0; i < d_cfg->rows; i++) {
   1215 			for (j = 0; j < d_cfg->cols; j++) {
   1216 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1217 				d++;
   1218 			}
   1219 		}
   1220 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1221 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1222 		}
   1223 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1224 				  sizeof(RF_DeviceConfig_t));
   1225 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1226 
   1227 		return (retcode);
   1228 
   1229 	case RAIDFRAME_CHECK_PARITY:
   1230 		*(int *) data = raidPtr->parity_good;
   1231 		return (0);
   1232 
   1233 	case RAIDFRAME_RESET_ACCTOTALS:
   1234 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1235 		return (0);
   1236 
   1237 	case RAIDFRAME_GET_ACCTOTALS:
   1238 		totals = (RF_AccTotals_t *) data;
   1239 		*totals = raidPtr->acc_totals;
   1240 		return (0);
   1241 
   1242 	case RAIDFRAME_KEEP_ACCTOTALS:
   1243 		raidPtr->keep_acc_totals = *(int *)data;
   1244 		return (0);
   1245 
   1246 	case RAIDFRAME_GET_SIZE:
   1247 		*(int *) data = raidPtr->totalSectors;
   1248 		return (0);
   1249 
   1250 		/* fail a disk & optionally start reconstruction */
   1251 	case RAIDFRAME_FAIL_DISK:
   1252 
   1253 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1254 			/* Can't do this on a RAID 0!! */
   1255 			return(EINVAL);
   1256 		}
   1257 
   1258 		rr = (struct rf_recon_req *) data;
   1259 
   1260 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1261 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1262 			return (EINVAL);
   1263 
   1264 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1265 		       unit, rr->row, rr->col);
   1266 
   1267 		/* make a copy of the recon request so that we don't rely on
   1268 		 * the user's buffer */
   1269 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1270 		if (rrcopy == NULL)
   1271 			return(ENOMEM);
   1272 		bcopy(rr, rrcopy, sizeof(*rr));
   1273 		rrcopy->raidPtr = (void *) raidPtr;
   1274 
   1275 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1276 					   rf_ReconThread,
   1277 					   rrcopy,"raid_recon");
   1278 		return (0);
   1279 
   1280 		/* invoke a copyback operation after recon on whatever disk
   1281 		 * needs it, if any */
   1282 	case RAIDFRAME_COPYBACK:
   1283 
   1284 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1285 			/* This makes no sense on a RAID 0!! */
   1286 			return(EINVAL);
   1287 		}
   1288 
   1289 		if (raidPtr->copyback_in_progress == 1) {
   1290 			/* Copyback is already in progress! */
   1291 			return(EINVAL);
   1292 		}
   1293 
   1294 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1295 					   rf_CopybackThread,
   1296 					   raidPtr,"raid_copyback");
   1297 		return (retcode);
   1298 
   1299 		/* return the percentage completion of reconstruction */
   1300 	case RAIDFRAME_CHECK_RECON_STATUS:
   1301 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1302 			/* This makes no sense on a RAID 0, so tell the
   1303 			   user it's done. */
   1304 			*(int *) data = 100;
   1305 			return(0);
   1306 		}
   1307 		row = 0; /* XXX we only consider a single row... */
   1308 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1309 			*(int *) data = 100;
   1310 		else
   1311 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1312 		return (0);
   1313 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1314 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1315 		row = 0; /* XXX we only consider a single row... */
   1316 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1317 			progressInfo.remaining = 0;
   1318 			progressInfo.completed = 100;
   1319 			progressInfo.total = 100;
   1320 		} else {
   1321 			progressInfo.total =
   1322 				raidPtr->reconControl[row]->numRUsTotal;
   1323 			progressInfo.completed =
   1324 				raidPtr->reconControl[row]->numRUsComplete;
   1325 			progressInfo.remaining = progressInfo.total -
   1326 				progressInfo.completed;
   1327 		}
   1328 		retcode = copyout((caddr_t) &progressInfo,
   1329 				  (caddr_t) *progressInfoPtr,
   1330 				  sizeof(RF_ProgressInfo_t));
   1331 		return (retcode);
   1332 
   1333 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1334 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1335 			/* This makes no sense on a RAID 0, so tell the
   1336 			   user it's done. */
   1337 			*(int *) data = 100;
   1338 			return(0);
   1339 		}
   1340 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1341 			*(int *) data = 100 *
   1342 				raidPtr->parity_rewrite_stripes_done /
   1343 				raidPtr->Layout.numStripe;
   1344 		} else {
   1345 			*(int *) data = 100;
   1346 		}
   1347 		return (0);
   1348 
   1349 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1350 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1351 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1352 			progressInfo.total = raidPtr->Layout.numStripe;
   1353 			progressInfo.completed =
   1354 				raidPtr->parity_rewrite_stripes_done;
   1355 			progressInfo.remaining = progressInfo.total -
   1356 				progressInfo.completed;
   1357 		} else {
   1358 			progressInfo.remaining = 0;
   1359 			progressInfo.completed = 100;
   1360 			progressInfo.total = 100;
   1361 		}
   1362 		retcode = copyout((caddr_t) &progressInfo,
   1363 				  (caddr_t) *progressInfoPtr,
   1364 				  sizeof(RF_ProgressInfo_t));
   1365 		return (retcode);
   1366 
   1367 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1368 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1369 			/* This makes no sense on a RAID 0 */
   1370 			*(int *) data = 100;
   1371 			return(0);
   1372 		}
   1373 		if (raidPtr->copyback_in_progress == 1) {
   1374 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1375 				raidPtr->Layout.numStripe;
   1376 		} else {
   1377 			*(int *) data = 100;
   1378 		}
   1379 		return (0);
   1380 
   1381 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1382 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1383 		if (raidPtr->copyback_in_progress == 1) {
   1384 			progressInfo.total = raidPtr->Layout.numStripe;
   1385 			progressInfo.completed =
   1386 				raidPtr->copyback_stripes_done;
   1387 			progressInfo.remaining = progressInfo.total -
   1388 				progressInfo.completed;
   1389 		} else {
   1390 			progressInfo.remaining = 0;
   1391 			progressInfo.completed = 100;
   1392 			progressInfo.total = 100;
   1393 		}
   1394 		retcode = copyout((caddr_t) &progressInfo,
   1395 				  (caddr_t) *progressInfoPtr,
   1396 				  sizeof(RF_ProgressInfo_t));
   1397 		return (retcode);
   1398 
   1399 		/* the sparetable daemon calls this to wait for the kernel to
   1400 		 * need a spare table. this ioctl does not return until a
   1401 		 * spare table is needed. XXX -- calling mpsleep here in the
   1402 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1403 		 * -- I should either compute the spare table in the kernel,
   1404 		 * or have a different -- XXX XXX -- interface (a different
   1405 		 * character device) for delivering the table     -- XXX */
   1406 #if 0
   1407 	case RAIDFRAME_SPARET_WAIT:
   1408 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1409 		while (!rf_sparet_wait_queue)
   1410 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1411 		waitreq = rf_sparet_wait_queue;
   1412 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1413 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1414 
   1415 		/* structure assignment */
   1416 		*((RF_SparetWait_t *) data) = *waitreq;
   1417 
   1418 		RF_Free(waitreq, sizeof(*waitreq));
   1419 		return (0);
   1420 
   1421 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1422 		 * code in it that will cause the dameon to exit */
   1423 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1424 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1425 		waitreq->fcol = -1;
   1426 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1427 		waitreq->next = rf_sparet_wait_queue;
   1428 		rf_sparet_wait_queue = waitreq;
   1429 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1430 		wakeup(&rf_sparet_wait_queue);
   1431 		return (0);
   1432 
   1433 		/* used by the spare table daemon to deliver a spare table
   1434 		 * into the kernel */
   1435 	case RAIDFRAME_SEND_SPARET:
   1436 
   1437 		/* install the spare table */
   1438 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1439 
   1440 		/* respond to the requestor.  the return status of the spare
   1441 		 * table installation is passed in the "fcol" field */
   1442 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1443 		waitreq->fcol = retcode;
   1444 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1445 		waitreq->next = rf_sparet_resp_queue;
   1446 		rf_sparet_resp_queue = waitreq;
   1447 		wakeup(&rf_sparet_resp_queue);
   1448 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1449 
   1450 		return (retcode);
   1451 #endif
   1452 
   1453 	default:
   1454 		break; /* fall through to the os-specific code below */
   1455 
   1456 	}
   1457 
   1458 	if (!raidPtr->valid)
   1459 		return (EINVAL);
   1460 
   1461 	/*
   1462 	 * Add support for "regular" device ioctls here.
   1463 	 */
   1464 
   1465 	switch (cmd) {
   1466 	case DIOCGDINFO:
   1467 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1468 		break;
   1469 #ifdef __HAVE_OLD_DISKLABEL
   1470 	case ODIOCGDINFO:
   1471 		newlabel = *(rs->sc_dkdev.dk_label);
   1472 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1473 			return ENOTTY;
   1474 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1475 		break;
   1476 #endif
   1477 
   1478 	case DIOCGPART:
   1479 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1480 		((struct partinfo *) data)->part =
   1481 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1482 		break;
   1483 
   1484 	case DIOCWDINFO:
   1485 	case DIOCSDINFO:
   1486 #ifdef __HAVE_OLD_DISKLABEL
   1487 	case ODIOCWDINFO:
   1488 	case ODIOCSDINFO:
   1489 #endif
   1490 	{
   1491 		struct disklabel *lp;
   1492 #ifdef __HAVE_OLD_DISKLABEL
   1493 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1494 			memset(&newlabel, 0, sizeof newlabel);
   1495 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1496 			lp = &newlabel;
   1497 		} else
   1498 #endif
   1499 		lp = (struct disklabel *)data;
   1500 
   1501 		if ((error = raidlock(rs)) != 0)
   1502 			return (error);
   1503 
   1504 		rs->sc_flags |= RAIDF_LABELLING;
   1505 
   1506 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1507 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1508 		if (error == 0) {
   1509 			if (cmd == DIOCWDINFO
   1510 #ifdef __HAVE_OLD_DISKLABEL
   1511 			    || cmd == ODIOCWDINFO
   1512 #endif
   1513 			   )
   1514 				error = writedisklabel(RAIDLABELDEV(dev),
   1515 				    raidstrategy, rs->sc_dkdev.dk_label,
   1516 				    rs->sc_dkdev.dk_cpulabel);
   1517 		}
   1518 		rs->sc_flags &= ~RAIDF_LABELLING;
   1519 
   1520 		raidunlock(rs);
   1521 
   1522 		if (error)
   1523 			return (error);
   1524 		break;
   1525 	}
   1526 
   1527 	case DIOCWLABEL:
   1528 		if (*(int *) data != 0)
   1529 			rs->sc_flags |= RAIDF_WLABEL;
   1530 		else
   1531 			rs->sc_flags &= ~RAIDF_WLABEL;
   1532 		break;
   1533 
   1534 	case DIOCGDEFLABEL:
   1535 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1536 		break;
   1537 
   1538 #ifdef __HAVE_OLD_DISKLABEL
   1539 	case ODIOCGDEFLABEL:
   1540 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1541 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1542 			return ENOTTY;
   1543 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1544 		break;
   1545 #endif
   1546 
   1547 	default:
   1548 		retcode = ENOTTY;
   1549 	}
   1550 	return (retcode);
   1551 
   1552 }
   1553 
   1554 
   1555 /* raidinit -- complete the rest of the initialization for the
   1556    RAIDframe device.  */
   1557 
   1558 
   1559 static void
   1560 raidinit(raidPtr)
   1561 	RF_Raid_t *raidPtr;
   1562 {
   1563 	struct raid_softc *rs;
   1564 	int     unit;
   1565 
   1566 	unit = raidPtr->raidid;
   1567 
   1568 	rs = &raid_softc[unit];
   1569 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1570 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1571 
   1572 
   1573 	/* XXX should check return code first... */
   1574 	rs->sc_flags |= RAIDF_INITED;
   1575 
   1576 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1577 
   1578 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1579 
   1580 	/* disk_attach actually creates space for the CPU disklabel, among
   1581 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1582 	 * with disklabels. */
   1583 
   1584 	disk_attach(&rs->sc_dkdev);
   1585 
   1586 	/* XXX There may be a weird interaction here between this, and
   1587 	 * protectedSectors, as used in RAIDframe.  */
   1588 
   1589 	rs->sc_size = raidPtr->totalSectors;
   1590 
   1591 }
   1592 
   1593 /* wake up the daemon & tell it to get us a spare table
   1594  * XXX
   1595  * the entries in the queues should be tagged with the raidPtr
   1596  * so that in the extremely rare case that two recons happen at once,
   1597  * we know for which device were requesting a spare table
   1598  * XXX
   1599  *
   1600  * XXX This code is not currently used. GO
   1601  */
   1602 int
   1603 rf_GetSpareTableFromDaemon(req)
   1604 	RF_SparetWait_t *req;
   1605 {
   1606 	int     retcode;
   1607 
   1608 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1609 	req->next = rf_sparet_wait_queue;
   1610 	rf_sparet_wait_queue = req;
   1611 	wakeup(&rf_sparet_wait_queue);
   1612 
   1613 	/* mpsleep unlocks the mutex */
   1614 	while (!rf_sparet_resp_queue) {
   1615 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1616 		    "raidframe getsparetable", 0);
   1617 	}
   1618 	req = rf_sparet_resp_queue;
   1619 	rf_sparet_resp_queue = req->next;
   1620 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1621 
   1622 	retcode = req->fcol;
   1623 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1624 					 * alloc'd */
   1625 	return (retcode);
   1626 }
   1627 
   1628 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1629  * bp & passes it down.
   1630  * any calls originating in the kernel must use non-blocking I/O
   1631  * do some extra sanity checking to return "appropriate" error values for
   1632  * certain conditions (to make some standard utilities work)
   1633  *
   1634  * Formerly known as: rf_DoAccessKernel
   1635  */
   1636 void
   1637 raidstart(raidPtr)
   1638 	RF_Raid_t *raidPtr;
   1639 {
   1640 	RF_SectorCount_t num_blocks, pb, sum;
   1641 	RF_RaidAddr_t raid_addr;
   1642 	int     retcode;
   1643 	struct partition *pp;
   1644 	daddr_t blocknum;
   1645 	int     unit;
   1646 	struct raid_softc *rs;
   1647 	int     do_async;
   1648 	struct buf *bp;
   1649 
   1650 	unit = raidPtr->raidid;
   1651 	rs = &raid_softc[unit];
   1652 
   1653 	/* quick check to see if anything has died recently */
   1654 	RF_LOCK_MUTEX(raidPtr->mutex);
   1655 	if (raidPtr->numNewFailures > 0) {
   1656 		rf_update_component_labels(raidPtr,
   1657 					   RF_NORMAL_COMPONENT_UPDATE);
   1658 		raidPtr->numNewFailures--;
   1659 	}
   1660 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1661 
   1662 	/* Check to see if we're at the limit... */
   1663 	RF_LOCK_MUTEX(raidPtr->mutex);
   1664 	while (raidPtr->openings > 0) {
   1665 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1666 
   1667 		/* get the next item, if any, from the queue */
   1668 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1669 			/* nothing more to do */
   1670 			return;
   1671 		}
   1672 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1673 
   1674 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1675 		 * partition.. Need to make it absolute to the underlying
   1676 		 * device.. */
   1677 
   1678 		blocknum = bp->b_blkno;
   1679 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1680 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1681 			blocknum += pp->p_offset;
   1682 		}
   1683 
   1684 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1685 			    (int) blocknum));
   1686 
   1687 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1688 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1689 
   1690 		/* *THIS* is where we adjust what block we're going to...
   1691 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1692 		raid_addr = blocknum;
   1693 
   1694 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1695 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1696 		sum = raid_addr + num_blocks + pb;
   1697 		if (1 || rf_debugKernelAccess) {
   1698 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1699 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1700 				    (int) pb, (int) bp->b_resid));
   1701 		}
   1702 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1703 		    || (sum < num_blocks) || (sum < pb)) {
   1704 			bp->b_error = ENOSPC;
   1705 			bp->b_flags |= B_ERROR;
   1706 			bp->b_resid = bp->b_bcount;
   1707 			biodone(bp);
   1708 			RF_LOCK_MUTEX(raidPtr->mutex);
   1709 			continue;
   1710 		}
   1711 		/*
   1712 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1713 		 */
   1714 
   1715 		if (bp->b_bcount & raidPtr->sectorMask) {
   1716 			bp->b_error = EINVAL;
   1717 			bp->b_flags |= B_ERROR;
   1718 			bp->b_resid = bp->b_bcount;
   1719 			biodone(bp);
   1720 			RF_LOCK_MUTEX(raidPtr->mutex);
   1721 			continue;
   1722 
   1723 		}
   1724 		db1_printf(("Calling DoAccess..\n"));
   1725 
   1726 
   1727 		RF_LOCK_MUTEX(raidPtr->mutex);
   1728 		raidPtr->openings--;
   1729 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1730 
   1731 		/*
   1732 		 * Everything is async.
   1733 		 */
   1734 		do_async = 1;
   1735 
   1736 		disk_busy(&rs->sc_dkdev);
   1737 
   1738 		/* XXX we're still at splbio() here... do we *really*
   1739 		   need to be? */
   1740 
   1741 		/* don't ever condition on bp->b_flags & B_WRITE.
   1742 		 * always condition on B_READ instead */
   1743 
   1744 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1745 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1746 				      do_async, raid_addr, num_blocks,
   1747 				      bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1748 
   1749 		RF_LOCK_MUTEX(raidPtr->mutex);
   1750 	}
   1751 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1752 }
   1753 
   1754 
   1755 
   1756 
   1757 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1758 
   1759 int
   1760 rf_DispatchKernelIO(queue, req)
   1761 	RF_DiskQueue_t *queue;
   1762 	RF_DiskQueueData_t *req;
   1763 {
   1764 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1765 	struct buf *bp;
   1766 	struct raidbuf *raidbp = NULL;
   1767 	struct raid_softc *rs;
   1768 	int     unit;
   1769 	int s;
   1770 
   1771 	s=0;
   1772 	/* s = splbio();*/ /* want to test this */
   1773 	/* XXX along with the vnode, we also need the softc associated with
   1774 	 * this device.. */
   1775 
   1776 	req->queue = queue;
   1777 
   1778 	unit = queue->raidPtr->raidid;
   1779 
   1780 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1781 
   1782 	if (unit >= numraid) {
   1783 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1784 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1785 	}
   1786 	rs = &raid_softc[unit];
   1787 
   1788 	bp = req->bp;
   1789 #if 1
   1790 	/* XXX when there is a physical disk failure, someone is passing us a
   1791 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1792 	 * without taking a performance hit... (not sure where the real bug
   1793 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1794 
   1795 	if (bp->b_flags & B_ERROR) {
   1796 		bp->b_flags &= ~B_ERROR;
   1797 	}
   1798 	if (bp->b_error != 0) {
   1799 		bp->b_error = 0;
   1800 	}
   1801 #endif
   1802 	raidbp = RAIDGETBUF(rs);
   1803 
   1804 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1805 
   1806 	/*
   1807 	 * context for raidiodone
   1808 	 */
   1809 	raidbp->rf_obp = bp;
   1810 	raidbp->req = req;
   1811 
   1812 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1813 
   1814 	switch (req->type) {
   1815 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1816 		/* XXX need to do something extra here.. */
   1817 		/* I'm leaving this in, as I've never actually seen it used,
   1818 		 * and I'd like folks to report it... GO */
   1819 		printf(("WAKEUP CALLED\n"));
   1820 		queue->numOutstanding++;
   1821 
   1822 		/* XXX need to glue the original buffer into this??  */
   1823 
   1824 		KernelWakeupFunc(&raidbp->rf_buf);
   1825 		break;
   1826 
   1827 	case RF_IO_TYPE_READ:
   1828 	case RF_IO_TYPE_WRITE:
   1829 
   1830 		if (req->tracerec) {
   1831 			RF_ETIMER_START(req->tracerec->timer);
   1832 		}
   1833 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1834 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1835 		    req->sectorOffset, req->numSector,
   1836 		    req->buf, KernelWakeupFunc, (void *) req,
   1837 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1838 
   1839 		if (rf_debugKernelAccess) {
   1840 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1841 				(long) bp->b_blkno));
   1842 		}
   1843 		queue->numOutstanding++;
   1844 		queue->last_deq_sector = req->sectorOffset;
   1845 		/* acc wouldn't have been let in if there were any pending
   1846 		 * reqs at any other priority */
   1847 		queue->curPriority = req->priority;
   1848 
   1849 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1850 			req->type, unit, queue->row, queue->col));
   1851 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1852 			(int) req->sectorOffset, (int) req->numSector,
   1853 			(int) (req->numSector <<
   1854 			    queue->raidPtr->logBytesPerSector),
   1855 			(int) queue->raidPtr->logBytesPerSector));
   1856 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1857 			raidbp->rf_buf.b_vp->v_numoutput++;
   1858 		}
   1859 		VOP_STRATEGY(&raidbp->rf_buf);
   1860 
   1861 		break;
   1862 
   1863 	default:
   1864 		panic("bad req->type in rf_DispatchKernelIO");
   1865 	}
   1866 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1867 	/* splx(s); */ /* want to test this */
   1868 	return (0);
   1869 }
   1870 /* this is the callback function associated with a I/O invoked from
   1871    kernel code.
   1872  */
   1873 static void
   1874 KernelWakeupFunc(vbp)
   1875 	struct buf *vbp;
   1876 {
   1877 	RF_DiskQueueData_t *req = NULL;
   1878 	RF_DiskQueue_t *queue;
   1879 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1880 	struct buf *bp;
   1881 	struct raid_softc *rs;
   1882 	int     unit;
   1883 	int s;
   1884 
   1885 	s = splbio();
   1886 	db1_printf(("recovering the request queue:\n"));
   1887 	req = raidbp->req;
   1888 
   1889 	bp = raidbp->rf_obp;
   1890 
   1891 	queue = (RF_DiskQueue_t *) req->queue;
   1892 
   1893 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1894 		bp->b_flags |= B_ERROR;
   1895 		bp->b_error = raidbp->rf_buf.b_error ?
   1896 		    raidbp->rf_buf.b_error : EIO;
   1897 	}
   1898 
   1899 	/* XXX methinks this could be wrong... */
   1900 #if 1
   1901 	bp->b_resid = raidbp->rf_buf.b_resid;
   1902 #endif
   1903 
   1904 	if (req->tracerec) {
   1905 		RF_ETIMER_STOP(req->tracerec->timer);
   1906 		RF_ETIMER_EVAL(req->tracerec->timer);
   1907 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1908 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1909 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1910 		req->tracerec->num_phys_ios++;
   1911 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1912 	}
   1913 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1914 
   1915 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1916 
   1917 
   1918 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1919 	 * ballistic, and mark the component as hosed... */
   1920 
   1921 	if (bp->b_flags & B_ERROR) {
   1922 		/* Mark the disk as dead */
   1923 		/* but only mark it once... */
   1924 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1925 		    rf_ds_optimal) {
   1926 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1927 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1928 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1929 			    rf_ds_failed;
   1930 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1931 			queue->raidPtr->numFailures++;
   1932 			queue->raidPtr->numNewFailures++;
   1933 		} else {	/* Disk is already dead... */
   1934 			/* printf("Disk already marked as dead!\n"); */
   1935 		}
   1936 
   1937 	}
   1938 
   1939 	rs = &raid_softc[unit];
   1940 	RAIDPUTBUF(rs, raidbp);
   1941 
   1942 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1943 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1944 
   1945 	splx(s);
   1946 }
   1947 
   1948 
   1949 
   1950 /*
   1951  * initialize a buf structure for doing an I/O in the kernel.
   1952  */
   1953 static void
   1954 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1955        logBytesPerSector, b_proc)
   1956 	struct buf *bp;
   1957 	struct vnode *b_vp;
   1958 	unsigned rw_flag;
   1959 	dev_t dev;
   1960 	RF_SectorNum_t startSect;
   1961 	RF_SectorCount_t numSect;
   1962 	caddr_t buf;
   1963 	void (*cbFunc) (struct buf *);
   1964 	void *cbArg;
   1965 	int logBytesPerSector;
   1966 	struct proc *b_proc;
   1967 {
   1968 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1969 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1970 	bp->b_bcount = numSect << logBytesPerSector;
   1971 	bp->b_bufsize = bp->b_bcount;
   1972 	bp->b_error = 0;
   1973 	bp->b_dev = dev;
   1974 	bp->b_data = buf;
   1975 	bp->b_blkno = startSect;
   1976 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1977 	if (bp->b_bcount == 0) {
   1978 		panic("bp->b_bcount is zero in InitBP!!\n");
   1979 	}
   1980 	bp->b_proc = b_proc;
   1981 	bp->b_iodone = cbFunc;
   1982 	bp->b_vp = b_vp;
   1983 
   1984 }
   1985 
   1986 static void
   1987 raidgetdefaultlabel(raidPtr, rs, lp)
   1988 	RF_Raid_t *raidPtr;
   1989 	struct raid_softc *rs;
   1990 	struct disklabel *lp;
   1991 {
   1992 	db1_printf(("Building a default label...\n"));
   1993 	memset(lp, 0, sizeof(*lp));
   1994 
   1995 	/* fabricate a label... */
   1996 	lp->d_secperunit = raidPtr->totalSectors;
   1997 	lp->d_secsize = raidPtr->bytesPerSector;
   1998 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1999 	lp->d_ntracks = 4 * raidPtr->numCol;
   2000 	lp->d_ncylinders = raidPtr->totalSectors /
   2001 		(lp->d_nsectors * lp->d_ntracks);
   2002 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2003 
   2004 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2005 	lp->d_type = DTYPE_RAID;
   2006 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2007 	lp->d_rpm = 3600;
   2008 	lp->d_interleave = 1;
   2009 	lp->d_flags = 0;
   2010 
   2011 	lp->d_partitions[RAW_PART].p_offset = 0;
   2012 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2013 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2014 	lp->d_npartitions = RAW_PART + 1;
   2015 
   2016 	lp->d_magic = DISKMAGIC;
   2017 	lp->d_magic2 = DISKMAGIC;
   2018 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2019 
   2020 }
   2021 /*
   2022  * Read the disklabel from the raid device.  If one is not present, fake one
   2023  * up.
   2024  */
   2025 static void
   2026 raidgetdisklabel(dev)
   2027 	dev_t   dev;
   2028 {
   2029 	int     unit = raidunit(dev);
   2030 	struct raid_softc *rs = &raid_softc[unit];
   2031 	char   *errstring;
   2032 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2033 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2034 	RF_Raid_t *raidPtr;
   2035 
   2036 	db1_printf(("Getting the disklabel...\n"));
   2037 
   2038 	memset(clp, 0, sizeof(*clp));
   2039 
   2040 	raidPtr = raidPtrs[unit];
   2041 
   2042 	raidgetdefaultlabel(raidPtr, rs, lp);
   2043 
   2044 	/*
   2045 	 * Call the generic disklabel extraction routine.
   2046 	 */
   2047 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2048 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2049 	if (errstring)
   2050 		raidmakedisklabel(rs);
   2051 	else {
   2052 		int     i;
   2053 		struct partition *pp;
   2054 
   2055 		/*
   2056 		 * Sanity check whether the found disklabel is valid.
   2057 		 *
   2058 		 * This is necessary since total size of the raid device
   2059 		 * may vary when an interleave is changed even though exactly
   2060 		 * same componets are used, and old disklabel may used
   2061 		 * if that is found.
   2062 		 */
   2063 		if (lp->d_secperunit != rs->sc_size)
   2064 			printf("WARNING: %s: "
   2065 			    "total sector size in disklabel (%d) != "
   2066 			    "the size of raid (%ld)\n", rs->sc_xname,
   2067 			    lp->d_secperunit, (long) rs->sc_size);
   2068 		for (i = 0; i < lp->d_npartitions; i++) {
   2069 			pp = &lp->d_partitions[i];
   2070 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2071 				printf("WARNING: %s: end of partition `%c' "
   2072 				    "exceeds the size of raid (%ld)\n",
   2073 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2074 		}
   2075 	}
   2076 
   2077 }
   2078 /*
   2079  * Take care of things one might want to take care of in the event
   2080  * that a disklabel isn't present.
   2081  */
   2082 static void
   2083 raidmakedisklabel(rs)
   2084 	struct raid_softc *rs;
   2085 {
   2086 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2087 	db1_printf(("Making a label..\n"));
   2088 
   2089 	/*
   2090 	 * For historical reasons, if there's no disklabel present
   2091 	 * the raw partition must be marked FS_BSDFFS.
   2092 	 */
   2093 
   2094 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2095 
   2096 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2097 
   2098 	lp->d_checksum = dkcksum(lp);
   2099 }
   2100 /*
   2101  * Lookup the provided name in the filesystem.  If the file exists,
   2102  * is a valid block device, and isn't being used by anyone else,
   2103  * set *vpp to the file's vnode.
   2104  * You'll find the original of this in ccd.c
   2105  */
   2106 int
   2107 raidlookup(path, p, vpp)
   2108 	char   *path;
   2109 	struct proc *p;
   2110 	struct vnode **vpp;	/* result */
   2111 {
   2112 	struct nameidata nd;
   2113 	struct vnode *vp;
   2114 	struct vattr va;
   2115 	int     error;
   2116 
   2117 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2118 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2119 #ifdef DEBUG
   2120 		printf("RAIDframe: vn_open returned %d\n", error);
   2121 #endif
   2122 		return (error);
   2123 	}
   2124 	vp = nd.ni_vp;
   2125 	if (vp->v_usecount > 1) {
   2126 		VOP_UNLOCK(vp, 0);
   2127 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2128 		return (EBUSY);
   2129 	}
   2130 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2131 		VOP_UNLOCK(vp, 0);
   2132 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2133 		return (error);
   2134 	}
   2135 	/* XXX: eventually we should handle VREG, too. */
   2136 	if (va.va_type != VBLK) {
   2137 		VOP_UNLOCK(vp, 0);
   2138 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2139 		return (ENOTBLK);
   2140 	}
   2141 	VOP_UNLOCK(vp, 0);
   2142 	*vpp = vp;
   2143 	return (0);
   2144 }
   2145 /*
   2146  * Wait interruptibly for an exclusive lock.
   2147  *
   2148  * XXX
   2149  * Several drivers do this; it should be abstracted and made MP-safe.
   2150  * (Hmm... where have we seen this warning before :->  GO )
   2151  */
   2152 static int
   2153 raidlock(rs)
   2154 	struct raid_softc *rs;
   2155 {
   2156 	int     error;
   2157 
   2158 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2159 		rs->sc_flags |= RAIDF_WANTED;
   2160 		if ((error =
   2161 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2162 			return (error);
   2163 	}
   2164 	rs->sc_flags |= RAIDF_LOCKED;
   2165 	return (0);
   2166 }
   2167 /*
   2168  * Unlock and wake up any waiters.
   2169  */
   2170 static void
   2171 raidunlock(rs)
   2172 	struct raid_softc *rs;
   2173 {
   2174 
   2175 	rs->sc_flags &= ~RAIDF_LOCKED;
   2176 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2177 		rs->sc_flags &= ~RAIDF_WANTED;
   2178 		wakeup(rs);
   2179 	}
   2180 }
   2181 
   2182 
   2183 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2184 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2185 
   2186 int
   2187 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2188 {
   2189 	RF_ComponentLabel_t clabel;
   2190 	raidread_component_label(dev, b_vp, &clabel);
   2191 	clabel.mod_counter = mod_counter;
   2192 	clabel.clean = RF_RAID_CLEAN;
   2193 	raidwrite_component_label(dev, b_vp, &clabel);
   2194 	return(0);
   2195 }
   2196 
   2197 
   2198 int
   2199 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2200 {
   2201 	RF_ComponentLabel_t clabel;
   2202 	raidread_component_label(dev, b_vp, &clabel);
   2203 	clabel.mod_counter = mod_counter;
   2204 	clabel.clean = RF_RAID_DIRTY;
   2205 	raidwrite_component_label(dev, b_vp, &clabel);
   2206 	return(0);
   2207 }
   2208 
   2209 /* ARGSUSED */
   2210 int
   2211 raidread_component_label(dev, b_vp, clabel)
   2212 	dev_t dev;
   2213 	struct vnode *b_vp;
   2214 	RF_ComponentLabel_t *clabel;
   2215 {
   2216 	struct buf *bp;
   2217 	int error;
   2218 
   2219 	/* XXX should probably ensure that we don't try to do this if
   2220 	   someone has changed rf_protected_sectors. */
   2221 
   2222 	if (b_vp == NULL) {
   2223 		/* For whatever reason, this component is not valid.
   2224 		   Don't try to read a component label from it. */
   2225 		return(EINVAL);
   2226 	}
   2227 
   2228 	/* get a block of the appropriate size... */
   2229 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2230 	bp->b_dev = dev;
   2231 
   2232 	/* get our ducks in a row for the read */
   2233 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2234 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2235 	bp->b_flags |= B_READ;
   2236  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2237 
   2238 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2239 
   2240 	error = biowait(bp);
   2241 
   2242 	if (!error) {
   2243 		memcpy(clabel, bp->b_data,
   2244 		       sizeof(RF_ComponentLabel_t));
   2245 #if 0
   2246 		rf_print_component_label( clabel );
   2247 #endif
   2248         } else {
   2249 #if 0
   2250 		printf("Failed to read RAID component label!\n");
   2251 #endif
   2252 	}
   2253 
   2254 	brelse(bp);
   2255 	return(error);
   2256 }
   2257 /* ARGSUSED */
   2258 int
   2259 raidwrite_component_label(dev, b_vp, clabel)
   2260 	dev_t dev;
   2261 	struct vnode *b_vp;
   2262 	RF_ComponentLabel_t *clabel;
   2263 {
   2264 	struct buf *bp;
   2265 	int error;
   2266 
   2267 	/* get a block of the appropriate size... */
   2268 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2269 	bp->b_dev = dev;
   2270 
   2271 	/* get our ducks in a row for the write */
   2272 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2273 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2274 	bp->b_flags |= B_WRITE;
   2275  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2276 
   2277 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2278 
   2279 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2280 
   2281 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2282 	error = biowait(bp);
   2283 	brelse(bp);
   2284 	if (error) {
   2285 #if 1
   2286 		printf("Failed to write RAID component info!\n");
   2287 #endif
   2288 	}
   2289 
   2290 	return(error);
   2291 }
   2292 
   2293 void
   2294 rf_markalldirty(raidPtr)
   2295 	RF_Raid_t *raidPtr;
   2296 {
   2297 	RF_ComponentLabel_t clabel;
   2298 	int r,c;
   2299 
   2300 	raidPtr->mod_counter++;
   2301 	for (r = 0; r < raidPtr->numRow; r++) {
   2302 		for (c = 0; c < raidPtr->numCol; c++) {
   2303 			/* we don't want to touch (at all) a disk that has
   2304 			   failed */
   2305 			if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
   2306 				raidread_component_label(
   2307 					raidPtr->Disks[r][c].dev,
   2308 					raidPtr->raid_cinfo[r][c].ci_vp,
   2309 					&clabel);
   2310 				if (clabel.status == rf_ds_spared) {
   2311 					/* XXX do something special...
   2312 					 but whatever you do, don't
   2313 					 try to access it!! */
   2314 				} else {
   2315 #if 0
   2316 				clabel.status =
   2317 					raidPtr->Disks[r][c].status;
   2318 				raidwrite_component_label(
   2319 					raidPtr->Disks[r][c].dev,
   2320 					raidPtr->raid_cinfo[r][c].ci_vp,
   2321 					&clabel);
   2322 #endif
   2323 				raidmarkdirty(
   2324 				       raidPtr->Disks[r][c].dev,
   2325 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2326 				       raidPtr->mod_counter);
   2327 				}
   2328 			}
   2329 		}
   2330 	}
   2331 	/* printf("Component labels marked dirty.\n"); */
   2332 #if 0
   2333 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2334 		sparecol = raidPtr->numCol + c;
   2335 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2336 			/*
   2337 
   2338 			   XXX this is where we get fancy and map this spare
   2339 			   into it's correct spot in the array.
   2340 
   2341 			 */
   2342 			/*
   2343 
   2344 			   we claim this disk is "optimal" if it's
   2345 			   rf_ds_used_spare, as that means it should be
   2346 			   directly substitutable for the disk it replaced.
   2347 			   We note that too...
   2348 
   2349 			 */
   2350 
   2351 			for(i=0;i<raidPtr->numRow;i++) {
   2352 				for(j=0;j<raidPtr->numCol;j++) {
   2353 					if ((raidPtr->Disks[i][j].spareRow ==
   2354 					     r) &&
   2355 					    (raidPtr->Disks[i][j].spareCol ==
   2356 					     sparecol)) {
   2357 						srow = r;
   2358 						scol = sparecol;
   2359 						break;
   2360 					}
   2361 				}
   2362 			}
   2363 
   2364 			raidread_component_label(
   2365 				      raidPtr->Disks[r][sparecol].dev,
   2366 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2367 				      &clabel);
   2368 			/* make sure status is noted */
   2369 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2370 			clabel.mod_counter = raidPtr->mod_counter;
   2371 			clabel.serial_number = raidPtr->serial_number;
   2372 			clabel.row = srow;
   2373 			clabel.column = scol;
   2374 			clabel.num_rows = raidPtr->numRow;
   2375 			clabel.num_columns = raidPtr->numCol;
   2376 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2377 			clabel.status = rf_ds_optimal;
   2378 			raidwrite_component_label(
   2379 				      raidPtr->Disks[r][sparecol].dev,
   2380 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2381 				      &clabel);
   2382 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2383 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2384 		}
   2385 	}
   2386 
   2387 #endif
   2388 }
   2389 
   2390 
   2391 void
   2392 rf_update_component_labels(raidPtr, final)
   2393 	RF_Raid_t *raidPtr;
   2394 	int final;
   2395 {
   2396 	RF_ComponentLabel_t clabel;
   2397 	int sparecol;
   2398 	int r,c;
   2399 	int i,j;
   2400 	int srow, scol;
   2401 
   2402 	srow = -1;
   2403 	scol = -1;
   2404 
   2405 	/* XXX should do extra checks to make sure things really are clean,
   2406 	   rather than blindly setting the clean bit... */
   2407 
   2408 	raidPtr->mod_counter++;
   2409 
   2410 	for (r = 0; r < raidPtr->numRow; r++) {
   2411 		for (c = 0; c < raidPtr->numCol; c++) {
   2412 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2413 				raidread_component_label(
   2414 					raidPtr->Disks[r][c].dev,
   2415 					raidPtr->raid_cinfo[r][c].ci_vp,
   2416 					&clabel);
   2417 				/* make sure status is noted */
   2418 				clabel.status = rf_ds_optimal;
   2419 				/* bump the counter */
   2420 				clabel.mod_counter = raidPtr->mod_counter;
   2421 
   2422 				raidwrite_component_label(
   2423 					raidPtr->Disks[r][c].dev,
   2424 					raidPtr->raid_cinfo[r][c].ci_vp,
   2425 					&clabel);
   2426 				if (final == RF_FINAL_COMPONENT_UPDATE) {
   2427 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2428 						raidmarkclean(
   2429 							      raidPtr->Disks[r][c].dev,
   2430 							      raidPtr->raid_cinfo[r][c].ci_vp,
   2431 							      raidPtr->mod_counter);
   2432 					}
   2433 				}
   2434 			}
   2435 			/* else we don't touch it.. */
   2436 		}
   2437 	}
   2438 
   2439 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2440 		sparecol = raidPtr->numCol + c;
   2441 		/* Need to ensure that the reconstruct actually completed! */
   2442 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2443 			/*
   2444 
   2445 			   we claim this disk is "optimal" if it's
   2446 			   rf_ds_used_spare, as that means it should be
   2447 			   directly substitutable for the disk it replaced.
   2448 			   We note that too...
   2449 
   2450 			 */
   2451 
   2452 			for(i=0;i<raidPtr->numRow;i++) {
   2453 				for(j=0;j<raidPtr->numCol;j++) {
   2454 					if ((raidPtr->Disks[i][j].spareRow ==
   2455 					     0) &&
   2456 					    (raidPtr->Disks[i][j].spareCol ==
   2457 					     sparecol)) {
   2458 						srow = i;
   2459 						scol = j;
   2460 						break;
   2461 					}
   2462 				}
   2463 			}
   2464 
   2465 			/* XXX shouldn't *really* need this... */
   2466 			raidread_component_label(
   2467 				      raidPtr->Disks[0][sparecol].dev,
   2468 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2469 				      &clabel);
   2470 			/* make sure status is noted */
   2471 
   2472 			raid_init_component_label(raidPtr, &clabel);
   2473 
   2474 			clabel.mod_counter = raidPtr->mod_counter;
   2475 			clabel.row = srow;
   2476 			clabel.column = scol;
   2477 			clabel.status = rf_ds_optimal;
   2478 
   2479 			raidwrite_component_label(
   2480 				      raidPtr->Disks[0][sparecol].dev,
   2481 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2482 				      &clabel);
   2483 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2484 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2485 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2486 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2487 						       raidPtr->mod_counter);
   2488 				}
   2489 			}
   2490 		}
   2491 	}
   2492 	/* 	printf("Component labels updated\n"); */
   2493 }
   2494 
   2495 void
   2496 rf_close_component(raidPtr, vp, auto_configured)
   2497 	RF_Raid_t *raidPtr;
   2498 	struct vnode *vp;
   2499 	int auto_configured;
   2500 {
   2501 	struct proc *p;
   2502 
   2503 	p = raidPtr->engine_thread;
   2504 
   2505 	if (vp != NULL) {
   2506 		if (auto_configured == 1) {
   2507 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2508 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2509 			vput(vp);
   2510 
   2511 		} else {
   2512 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2513 		}
   2514 	} else {
   2515 		printf("vnode was NULL\n");
   2516 	}
   2517 }
   2518 
   2519 
   2520 void
   2521 rf_UnconfigureVnodes(raidPtr)
   2522 	RF_Raid_t *raidPtr;
   2523 {
   2524 	int r,c;
   2525 	struct proc *p;
   2526 	struct vnode *vp;
   2527 	int acd;
   2528 
   2529 
   2530 	/* We take this opportunity to close the vnodes like we should.. */
   2531 
   2532 	p = raidPtr->engine_thread;
   2533 
   2534 	for (r = 0; r < raidPtr->numRow; r++) {
   2535 		for (c = 0; c < raidPtr->numCol; c++) {
   2536 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2537 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2538 			acd = raidPtr->Disks[r][c].auto_configured;
   2539 			rf_close_component(raidPtr, vp, acd);
   2540 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2541 			raidPtr->Disks[r][c].auto_configured = 0;
   2542 		}
   2543 	}
   2544 	for (r = 0; r < raidPtr->numSpare; r++) {
   2545 		printf("Closing vnode for spare: %d\n", r);
   2546 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2547 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2548 		rf_close_component(raidPtr, vp, acd);
   2549 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2550 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2551 	}
   2552 }
   2553 
   2554 
   2555 void
   2556 rf_ReconThread(req)
   2557 	struct rf_recon_req *req;
   2558 {
   2559 	int     s;
   2560 	RF_Raid_t *raidPtr;
   2561 
   2562 	s = splbio();
   2563 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2564 	raidPtr->recon_in_progress = 1;
   2565 
   2566 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2567 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2568 
   2569 	/* XXX get rid of this! we don't need it at all.. */
   2570 	RF_Free(req, sizeof(*req));
   2571 
   2572 	raidPtr->recon_in_progress = 0;
   2573 	splx(s);
   2574 
   2575 	/* That's all... */
   2576 	kthread_exit(0);        /* does not return */
   2577 }
   2578 
   2579 void
   2580 rf_RewriteParityThread(raidPtr)
   2581 	RF_Raid_t *raidPtr;
   2582 {
   2583 	int retcode;
   2584 	int s;
   2585 
   2586 	raidPtr->parity_rewrite_in_progress = 1;
   2587 	s = splbio();
   2588 	retcode = rf_RewriteParity(raidPtr);
   2589 	splx(s);
   2590 	if (retcode) {
   2591 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2592 	} else {
   2593 		/* set the clean bit!  If we shutdown correctly,
   2594 		   the clean bit on each component label will get
   2595 		   set */
   2596 		raidPtr->parity_good = RF_RAID_CLEAN;
   2597 	}
   2598 	raidPtr->parity_rewrite_in_progress = 0;
   2599 
   2600 	/* Anyone waiting for us to stop?  If so, inform them... */
   2601 	if (raidPtr->waitShutdown) {
   2602 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2603 	}
   2604 
   2605 	/* That's all... */
   2606 	kthread_exit(0);        /* does not return */
   2607 }
   2608 
   2609 
   2610 void
   2611 rf_CopybackThread(raidPtr)
   2612 	RF_Raid_t *raidPtr;
   2613 {
   2614 	int s;
   2615 
   2616 	raidPtr->copyback_in_progress = 1;
   2617 	s = splbio();
   2618 	rf_CopybackReconstructedData(raidPtr);
   2619 	splx(s);
   2620 	raidPtr->copyback_in_progress = 0;
   2621 
   2622 	/* That's all... */
   2623 	kthread_exit(0);        /* does not return */
   2624 }
   2625 
   2626 
   2627 void
   2628 rf_ReconstructInPlaceThread(req)
   2629 	struct rf_recon_req *req;
   2630 {
   2631 	int retcode;
   2632 	int s;
   2633 	RF_Raid_t *raidPtr;
   2634 
   2635 	s = splbio();
   2636 	raidPtr = req->raidPtr;
   2637 	raidPtr->recon_in_progress = 1;
   2638 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2639 	RF_Free(req, sizeof(*req));
   2640 	raidPtr->recon_in_progress = 0;
   2641 	splx(s);
   2642 
   2643 	/* That's all... */
   2644 	kthread_exit(0);        /* does not return */
   2645 }
   2646 
   2647 void
   2648 rf_mountroot_hook(dev)
   2649 	struct device *dev;
   2650 {
   2651 
   2652 }
   2653 
   2654 
   2655 RF_AutoConfig_t *
   2656 rf_find_raid_components()
   2657 {
   2658 	struct devnametobdevmaj *dtobdm;
   2659 	struct vnode *vp;
   2660 	struct disklabel label;
   2661 	struct device *dv;
   2662 	char *cd_name;
   2663 	dev_t dev;
   2664 	int error;
   2665 	int i;
   2666 	int good_one;
   2667 	RF_ComponentLabel_t *clabel;
   2668 	RF_AutoConfig_t *ac_list;
   2669 	RF_AutoConfig_t *ac;
   2670 
   2671 
   2672 	/* initialize the AutoConfig list */
   2673 	ac_list = NULL;
   2674 
   2675 	/* we begin by trolling through *all* the devices on the system */
   2676 
   2677 	for (dv = alldevs.tqh_first; dv != NULL;
   2678 	     dv = dv->dv_list.tqe_next) {
   2679 
   2680 		/* we are only interested in disks... */
   2681 		if (dv->dv_class != DV_DISK)
   2682 			continue;
   2683 
   2684 		/* we don't care about floppies... */
   2685 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2686 			continue;
   2687 		}
   2688 
   2689 		/* need to find the device_name_to_block_device_major stuff */
   2690 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2691 		dtobdm = dev_name2blk;
   2692 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2693 			dtobdm++;
   2694 		}
   2695 
   2696 		/* get a vnode for the raw partition of this disk */
   2697 
   2698 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2699 		if (bdevvp(dev, &vp))
   2700 			panic("RAID can't alloc vnode");
   2701 
   2702 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2703 
   2704 		if (error) {
   2705 			/* "Who cares."  Continue looking
   2706 			   for something that exists*/
   2707 			vput(vp);
   2708 			continue;
   2709 		}
   2710 
   2711 		/* Ok, the disk exists.  Go get the disklabel. */
   2712 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2713 				  FREAD, NOCRED, 0);
   2714 		if (error) {
   2715 			/*
   2716 			 * XXX can't happen - open() would
   2717 			 * have errored out (or faked up one)
   2718 			 */
   2719 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2720 			       dv->dv_xname, 'a' + RAW_PART, error);
   2721 		}
   2722 
   2723 		/* don't need this any more.  We'll allocate it again
   2724 		   a little later if we really do... */
   2725 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2726 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2727 		vput(vp);
   2728 
   2729 		for (i=0; i < label.d_npartitions; i++) {
   2730 			/* We only support partitions marked as RAID */
   2731 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2732 				continue;
   2733 
   2734 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2735 			if (bdevvp(dev, &vp))
   2736 				panic("RAID can't alloc vnode");
   2737 
   2738 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2739 			if (error) {
   2740 				/* Whatever... */
   2741 				vput(vp);
   2742 				continue;
   2743 			}
   2744 
   2745 			good_one = 0;
   2746 
   2747 			clabel = (RF_ComponentLabel_t *)
   2748 				malloc(sizeof(RF_ComponentLabel_t),
   2749 				       M_RAIDFRAME, M_NOWAIT);
   2750 			if (clabel == NULL) {
   2751 				/* XXX CLEANUP HERE */
   2752 				printf("RAID auto config: out of memory!\n");
   2753 				return(NULL); /* XXX probably should panic? */
   2754 			}
   2755 
   2756 			if (!raidread_component_label(dev, vp, clabel)) {
   2757 				/* Got the label.  Does it look reasonable? */
   2758 				if (rf_reasonable_label(clabel) &&
   2759 				    (clabel->partitionSize <=
   2760 				     label.d_partitions[i].p_size)) {
   2761 #if DEBUG
   2762 					printf("Component on: %s%c: %d\n",
   2763 					       dv->dv_xname, 'a'+i,
   2764 					       label.d_partitions[i].p_size);
   2765 					rf_print_component_label(clabel);
   2766 #endif
   2767 					/* if it's reasonable, add it,
   2768 					   else ignore it. */
   2769 					ac = (RF_AutoConfig_t *)
   2770 						malloc(sizeof(RF_AutoConfig_t),
   2771 						       M_RAIDFRAME,
   2772 						       M_NOWAIT);
   2773 					if (ac == NULL) {
   2774 						/* XXX should panic?? */
   2775 						return(NULL);
   2776 					}
   2777 
   2778 					sprintf(ac->devname, "%s%c",
   2779 						dv->dv_xname, 'a'+i);
   2780 					ac->dev = dev;
   2781 					ac->vp = vp;
   2782 					ac->clabel = clabel;
   2783 					ac->next = ac_list;
   2784 					ac_list = ac;
   2785 					good_one = 1;
   2786 				}
   2787 			}
   2788 			if (!good_one) {
   2789 				/* cleanup */
   2790 				free(clabel, M_RAIDFRAME);
   2791 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2792 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2793 				vput(vp);
   2794 			}
   2795 		}
   2796 	}
   2797 	return(ac_list);
   2798 }
   2799 
   2800 static int
   2801 rf_reasonable_label(clabel)
   2802 	RF_ComponentLabel_t *clabel;
   2803 {
   2804 
   2805 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2806 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2807 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2808 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2809 	    clabel->row >=0 &&
   2810 	    clabel->column >= 0 &&
   2811 	    clabel->num_rows > 0 &&
   2812 	    clabel->num_columns > 0 &&
   2813 	    clabel->row < clabel->num_rows &&
   2814 	    clabel->column < clabel->num_columns &&
   2815 	    clabel->blockSize > 0 &&
   2816 	    clabel->numBlocks > 0) {
   2817 		/* label looks reasonable enough... */
   2818 		return(1);
   2819 	}
   2820 	return(0);
   2821 }
   2822 
   2823 
   2824 void
   2825 rf_print_component_label(clabel)
   2826 	RF_ComponentLabel_t *clabel;
   2827 {
   2828 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2829 	       clabel->row, clabel->column,
   2830 	       clabel->num_rows, clabel->num_columns);
   2831 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2832 	       clabel->version, clabel->serial_number,
   2833 	       clabel->mod_counter);
   2834 	printf("   Clean: %s Status: %d\n",
   2835 	       clabel->clean ? "Yes" : "No", clabel->status );
   2836 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2837 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2838 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2839 	       (char) clabel->parityConfig, clabel->blockSize,
   2840 	       clabel->numBlocks);
   2841 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2842 	printf("   Contains root partition: %s\n",
   2843 	       clabel->root_partition ? "Yes" : "No" );
   2844 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2845 #if 0
   2846 	   printf("   Config order: %d\n", clabel->config_order);
   2847 #endif
   2848 
   2849 }
   2850 
   2851 RF_ConfigSet_t *
   2852 rf_create_auto_sets(ac_list)
   2853 	RF_AutoConfig_t *ac_list;
   2854 {
   2855 	RF_AutoConfig_t *ac;
   2856 	RF_ConfigSet_t *config_sets;
   2857 	RF_ConfigSet_t *cset;
   2858 	RF_AutoConfig_t *ac_next;
   2859 
   2860 
   2861 	config_sets = NULL;
   2862 
   2863 	/* Go through the AutoConfig list, and figure out which components
   2864 	   belong to what sets.  */
   2865 	ac = ac_list;
   2866 	while(ac!=NULL) {
   2867 		/* we're going to putz with ac->next, so save it here
   2868 		   for use at the end of the loop */
   2869 		ac_next = ac->next;
   2870 
   2871 		if (config_sets == NULL) {
   2872 			/* will need at least this one... */
   2873 			config_sets = (RF_ConfigSet_t *)
   2874 				malloc(sizeof(RF_ConfigSet_t),
   2875 				       M_RAIDFRAME, M_NOWAIT);
   2876 			if (config_sets == NULL) {
   2877 				panic("rf_create_auto_sets: No memory!\n");
   2878 			}
   2879 			/* this one is easy :) */
   2880 			config_sets->ac = ac;
   2881 			config_sets->next = NULL;
   2882 			config_sets->rootable = 0;
   2883 			ac->next = NULL;
   2884 		} else {
   2885 			/* which set does this component fit into? */
   2886 			cset = config_sets;
   2887 			while(cset!=NULL) {
   2888 				if (rf_does_it_fit(cset, ac)) {
   2889 					/* looks like it matches... */
   2890 					ac->next = cset->ac;
   2891 					cset->ac = ac;
   2892 					break;
   2893 				}
   2894 				cset = cset->next;
   2895 			}
   2896 			if (cset==NULL) {
   2897 				/* didn't find a match above... new set..*/
   2898 				cset = (RF_ConfigSet_t *)
   2899 					malloc(sizeof(RF_ConfigSet_t),
   2900 					       M_RAIDFRAME, M_NOWAIT);
   2901 				if (cset == NULL) {
   2902 					panic("rf_create_auto_sets: No memory!\n");
   2903 				}
   2904 				cset->ac = ac;
   2905 				ac->next = NULL;
   2906 				cset->next = config_sets;
   2907 				cset->rootable = 0;
   2908 				config_sets = cset;
   2909 			}
   2910 		}
   2911 		ac = ac_next;
   2912 	}
   2913 
   2914 
   2915 	return(config_sets);
   2916 }
   2917 
   2918 static int
   2919 rf_does_it_fit(cset, ac)
   2920 	RF_ConfigSet_t *cset;
   2921 	RF_AutoConfig_t *ac;
   2922 {
   2923 	RF_ComponentLabel_t *clabel1, *clabel2;
   2924 
   2925 	/* If this one matches the *first* one in the set, that's good
   2926 	   enough, since the other members of the set would have been
   2927 	   through here too... */
   2928 	/* note that we are not checking partitionSize here..
   2929 
   2930 	   Note that we are also not checking the mod_counters here.
   2931 	   If everything else matches execpt the mod_counter, that's
   2932 	   good enough for this test.  We will deal with the mod_counters
   2933 	   a little later in the autoconfiguration process.
   2934 
   2935 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2936 
   2937 	   The reason we don't check for this is that failed disks
   2938 	   will have lower modification counts.  If those disks are
   2939 	   not added to the set they used to belong to, then they will
   2940 	   form their own set, which may result in 2 different sets,
   2941 	   for example, competing to be configured at raid0, and
   2942 	   perhaps competing to be the root filesystem set.  If the
   2943 	   wrong ones get configured, or both attempt to become /,
   2944 	   weird behaviour and or serious lossage will occur.  Thus we
   2945 	   need to bring them into the fold here, and kick them out at
   2946 	   a later point.
   2947 
   2948 	*/
   2949 
   2950 	clabel1 = cset->ac->clabel;
   2951 	clabel2 = ac->clabel;
   2952 	if ((clabel1->version == clabel2->version) &&
   2953 	    (clabel1->serial_number == clabel2->serial_number) &&
   2954 	    (clabel1->num_rows == clabel2->num_rows) &&
   2955 	    (clabel1->num_columns == clabel2->num_columns) &&
   2956 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2957 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2958 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2959 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2960 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2961 	    (clabel1->blockSize == clabel2->blockSize) &&
   2962 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2963 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2964 	    (clabel1->root_partition == clabel2->root_partition) &&
   2965 	    (clabel1->last_unit == clabel2->last_unit) &&
   2966 	    (clabel1->config_order == clabel2->config_order)) {
   2967 		/* if it get's here, it almost *has* to be a match */
   2968 	} else {
   2969 		/* it's not consistent with somebody in the set..
   2970 		   punt */
   2971 		return(0);
   2972 	}
   2973 	/* all was fine.. it must fit... */
   2974 	return(1);
   2975 }
   2976 
   2977 int
   2978 rf_have_enough_components(cset)
   2979 	RF_ConfigSet_t *cset;
   2980 {
   2981 	RF_AutoConfig_t *ac;
   2982 	RF_AutoConfig_t *auto_config;
   2983 	RF_ComponentLabel_t *clabel;
   2984 	int r,c;
   2985 	int num_rows;
   2986 	int num_cols;
   2987 	int num_missing;
   2988 	int mod_counter;
   2989 	int mod_counter_found;
   2990 	int even_pair_failed;
   2991 	char parity_type;
   2992 
   2993 
   2994 	/* check to see that we have enough 'live' components
   2995 	   of this set.  If so, we can configure it if necessary */
   2996 
   2997 	num_rows = cset->ac->clabel->num_rows;
   2998 	num_cols = cset->ac->clabel->num_columns;
   2999 	parity_type = cset->ac->clabel->parityConfig;
   3000 
   3001 	/* XXX Check for duplicate components!?!?!? */
   3002 
   3003 	/* Determine what the mod_counter is supposed to be for this set. */
   3004 
   3005 	mod_counter_found = 0;
   3006 	mod_counter = 0;
   3007 	ac = cset->ac;
   3008 	while(ac!=NULL) {
   3009 		if (mod_counter_found==0) {
   3010 			mod_counter = ac->clabel->mod_counter;
   3011 			mod_counter_found = 1;
   3012 		} else {
   3013 			if (ac->clabel->mod_counter > mod_counter) {
   3014 				mod_counter = ac->clabel->mod_counter;
   3015 			}
   3016 		}
   3017 		ac = ac->next;
   3018 	}
   3019 
   3020 	num_missing = 0;
   3021 	auto_config = cset->ac;
   3022 
   3023 	for(r=0; r<num_rows; r++) {
   3024 		even_pair_failed = 0;
   3025 		for(c=0; c<num_cols; c++) {
   3026 			ac = auto_config;
   3027 			while(ac!=NULL) {
   3028 				if ((ac->clabel->row == r) &&
   3029 				    (ac->clabel->column == c) &&
   3030 				    (ac->clabel->mod_counter == mod_counter)) {
   3031 					/* it's this one... */
   3032 #if DEBUG
   3033 					printf("Found: %s at %d,%d\n",
   3034 					       ac->devname,r,c);
   3035 #endif
   3036 					break;
   3037 				}
   3038 				ac=ac->next;
   3039 			}
   3040 			if (ac==NULL) {
   3041 				/* Didn't find one here! */
   3042 				/* special case for RAID 1, especially
   3043 				   where there are more than 2
   3044 				   components (where RAIDframe treats
   3045 				   things a little differently :( ) */
   3046 				if (parity_type == '1') {
   3047 					if (c%2 == 0) { /* even component */
   3048 						even_pair_failed = 1;
   3049 					} else { /* odd component.  If
   3050                                                     we're failed, and
   3051                                                     so is the even
   3052                                                     component, it's
   3053                                                     "Good Night, Charlie" */
   3054 						if (even_pair_failed == 1) {
   3055 							return(0);
   3056 						}
   3057 					}
   3058 				} else {
   3059 					/* normal accounting */
   3060 					num_missing++;
   3061 				}
   3062 			}
   3063 			if ((parity_type == '1') && (c%2 == 1)) {
   3064 				/* Just did an even component, and we didn't
   3065 				   bail.. reset the even_pair_failed flag,
   3066 				   and go on to the next component.... */
   3067 				even_pair_failed = 0;
   3068 			}
   3069 		}
   3070 	}
   3071 
   3072 	clabel = cset->ac->clabel;
   3073 
   3074 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3075 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3076 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3077 		/* XXX this needs to be made *much* more general */
   3078 		/* Too many failures */
   3079 		return(0);
   3080 	}
   3081 	/* otherwise, all is well, and we've got enough to take a kick
   3082 	   at autoconfiguring this set */
   3083 	return(1);
   3084 }
   3085 
   3086 void
   3087 rf_create_configuration(ac,config,raidPtr)
   3088 	RF_AutoConfig_t *ac;
   3089 	RF_Config_t *config;
   3090 	RF_Raid_t *raidPtr;
   3091 {
   3092 	RF_ComponentLabel_t *clabel;
   3093 	int i;
   3094 
   3095 	clabel = ac->clabel;
   3096 
   3097 	/* 1. Fill in the common stuff */
   3098 	config->numRow = clabel->num_rows;
   3099 	config->numCol = clabel->num_columns;
   3100 	config->numSpare = 0; /* XXX should this be set here? */
   3101 	config->sectPerSU = clabel->sectPerSU;
   3102 	config->SUsPerPU = clabel->SUsPerPU;
   3103 	config->SUsPerRU = clabel->SUsPerRU;
   3104 	config->parityConfig = clabel->parityConfig;
   3105 	/* XXX... */
   3106 	strcpy(config->diskQueueType,"fifo");
   3107 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3108 	config->layoutSpecificSize = 0; /* XXX ?? */
   3109 
   3110 	while(ac!=NULL) {
   3111 		/* row/col values will be in range due to the checks
   3112 		   in reasonable_label() */
   3113 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3114 		       ac->devname);
   3115 		ac = ac->next;
   3116 	}
   3117 
   3118 	for(i=0;i<RF_MAXDBGV;i++) {
   3119 		config->debugVars[i][0] = NULL;
   3120 	}
   3121 }
   3122 
   3123 int
   3124 rf_set_autoconfig(raidPtr, new_value)
   3125 	RF_Raid_t *raidPtr;
   3126 	int new_value;
   3127 {
   3128 	RF_ComponentLabel_t clabel;
   3129 	struct vnode *vp;
   3130 	dev_t dev;
   3131 	int row, column;
   3132 
   3133 	raidPtr->autoconfigure = new_value;
   3134 	for(row=0; row<raidPtr->numRow; row++) {
   3135 		for(column=0; column<raidPtr->numCol; column++) {
   3136 			if (raidPtr->Disks[row][column].status ==
   3137 			    rf_ds_optimal) {
   3138 				dev = raidPtr->Disks[row][column].dev;
   3139 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3140 				raidread_component_label(dev, vp, &clabel);
   3141 				clabel.autoconfigure = new_value;
   3142 				raidwrite_component_label(dev, vp, &clabel);
   3143 			}
   3144 		}
   3145 	}
   3146 	return(new_value);
   3147 }
   3148 
   3149 int
   3150 rf_set_rootpartition(raidPtr, new_value)
   3151 	RF_Raid_t *raidPtr;
   3152 	int new_value;
   3153 {
   3154 	RF_ComponentLabel_t clabel;
   3155 	struct vnode *vp;
   3156 	dev_t dev;
   3157 	int row, column;
   3158 
   3159 	raidPtr->root_partition = new_value;
   3160 	for(row=0; row<raidPtr->numRow; row++) {
   3161 		for(column=0; column<raidPtr->numCol; column++) {
   3162 			if (raidPtr->Disks[row][column].status ==
   3163 			    rf_ds_optimal) {
   3164 				dev = raidPtr->Disks[row][column].dev;
   3165 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3166 				raidread_component_label(dev, vp, &clabel);
   3167 				clabel.root_partition = new_value;
   3168 				raidwrite_component_label(dev, vp, &clabel);
   3169 			}
   3170 		}
   3171 	}
   3172 	return(new_value);
   3173 }
   3174 
   3175 void
   3176 rf_release_all_vps(cset)
   3177 	RF_ConfigSet_t *cset;
   3178 {
   3179 	RF_AutoConfig_t *ac;
   3180 
   3181 	ac = cset->ac;
   3182 	while(ac!=NULL) {
   3183 		/* Close the vp, and give it back */
   3184 		if (ac->vp) {
   3185 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3186 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3187 			vput(ac->vp);
   3188 			ac->vp = NULL;
   3189 		}
   3190 		ac = ac->next;
   3191 	}
   3192 }
   3193 
   3194 
   3195 void
   3196 rf_cleanup_config_set(cset)
   3197 	RF_ConfigSet_t *cset;
   3198 {
   3199 	RF_AutoConfig_t *ac;
   3200 	RF_AutoConfig_t *next_ac;
   3201 
   3202 	ac = cset->ac;
   3203 	while(ac!=NULL) {
   3204 		next_ac = ac->next;
   3205 		/* nuke the label */
   3206 		free(ac->clabel, M_RAIDFRAME);
   3207 		/* cleanup the config structure */
   3208 		free(ac, M_RAIDFRAME);
   3209 		/* "next.." */
   3210 		ac = next_ac;
   3211 	}
   3212 	/* and, finally, nuke the config set */
   3213 	free(cset, M_RAIDFRAME);
   3214 }
   3215 
   3216 
   3217 void
   3218 raid_init_component_label(raidPtr, clabel)
   3219 	RF_Raid_t *raidPtr;
   3220 	RF_ComponentLabel_t *clabel;
   3221 {
   3222 	/* current version number */
   3223 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3224 	clabel->serial_number = raidPtr->serial_number;
   3225 	clabel->mod_counter = raidPtr->mod_counter;
   3226 	clabel->num_rows = raidPtr->numRow;
   3227 	clabel->num_columns = raidPtr->numCol;
   3228 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3229 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3230 
   3231 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3232 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3233 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3234 
   3235 	clabel->blockSize = raidPtr->bytesPerSector;
   3236 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3237 
   3238 	/* XXX not portable */
   3239 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3240 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3241 	clabel->autoconfigure = raidPtr->autoconfigure;
   3242 	clabel->root_partition = raidPtr->root_partition;
   3243 	clabel->last_unit = raidPtr->raidid;
   3244 	clabel->config_order = raidPtr->config_order;
   3245 }
   3246 
   3247 int
   3248 rf_auto_config_set(cset,unit)
   3249 	RF_ConfigSet_t *cset;
   3250 	int *unit;
   3251 {
   3252 	RF_Raid_t *raidPtr;
   3253 	RF_Config_t *config;
   3254 	int raidID;
   3255 	int retcode;
   3256 
   3257 	printf("RAID autoconfigure\n");
   3258 
   3259 	retcode = 0;
   3260 	*unit = -1;
   3261 
   3262 	/* 1. Create a config structure */
   3263 
   3264 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3265 				       M_RAIDFRAME,
   3266 				       M_NOWAIT);
   3267 	if (config==NULL) {
   3268 		printf("Out of mem!?!?\n");
   3269 				/* XXX do something more intelligent here. */
   3270 		return(1);
   3271 	}
   3272 
   3273 	memset(config, 0, sizeof(RF_Config_t));
   3274 
   3275 	/* XXX raidID needs to be set correctly.. */
   3276 
   3277 	/*
   3278 	   2. Figure out what RAID ID this one is supposed to live at
   3279 	   See if we can get the same RAID dev that it was configured
   3280 	   on last time..
   3281 	*/
   3282 
   3283 	raidID = cset->ac->clabel->last_unit;
   3284 	if ((raidID < 0) || (raidID >= numraid)) {
   3285 		/* let's not wander off into lala land. */
   3286 		raidID = numraid - 1;
   3287 	}
   3288 	if (raidPtrs[raidID]->valid != 0) {
   3289 
   3290 		/*
   3291 		   Nope... Go looking for an alternative...
   3292 		   Start high so we don't immediately use raid0 if that's
   3293 		   not taken.
   3294 		*/
   3295 
   3296 		for(raidID = numraid; raidID >= 0; raidID--) {
   3297 			if (raidPtrs[raidID]->valid == 0) {
   3298 				/* can use this one! */
   3299 				break;
   3300 			}
   3301 		}
   3302 	}
   3303 
   3304 	if (raidID < 0) {
   3305 		/* punt... */
   3306 		printf("Unable to auto configure this set!\n");
   3307 		printf("(Out of RAID devs!)\n");
   3308 		return(1);
   3309 	}
   3310 	printf("Configuring raid%d:\n",raidID);
   3311 	raidPtr = raidPtrs[raidID];
   3312 
   3313 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3314 	raidPtr->raidid = raidID;
   3315 	raidPtr->openings = RAIDOUTSTANDING;
   3316 
   3317 	/* 3. Build the configuration structure */
   3318 	rf_create_configuration(cset->ac, config, raidPtr);
   3319 
   3320 	/* 4. Do the configuration */
   3321 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3322 
   3323 	if (retcode == 0) {
   3324 
   3325 		raidinit(raidPtrs[raidID]);
   3326 
   3327 		rf_markalldirty(raidPtrs[raidID]);
   3328 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3329 		if (cset->ac->clabel->root_partition==1) {
   3330 			/* everything configured just fine.  Make a note
   3331 			   that this set is eligible to be root. */
   3332 			cset->rootable = 1;
   3333 			/* XXX do this here? */
   3334 			raidPtrs[raidID]->root_partition = 1;
   3335 		}
   3336 	}
   3337 
   3338 	/* 5. Cleanup */
   3339 	free(config, M_RAIDFRAME);
   3340 
   3341 	*unit = raidID;
   3342 	return(retcode);
   3343 }
   3344 
   3345 void
   3346 rf_disk_unbusy(desc)
   3347 	RF_RaidAccessDesc_t *desc;
   3348 {
   3349 	struct buf *bp;
   3350 
   3351 	bp = (struct buf *)desc->bp;
   3352 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3353 			    (bp->b_bcount - bp->b_resid));
   3354 }
   3355