Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.122
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.122 2002/07/13 17:04:09 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/cdefs.h>
    117 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.122 2002/07/13 17:04:09 oster Exp $");
    118 
    119 #include <sys/param.h>
    120 #include <sys/errno.h>
    121 #include <sys/pool.h>
    122 #include <sys/queue.h>
    123 #include <sys/disk.h>
    124 #include <sys/device.h>
    125 #include <sys/stat.h>
    126 #include <sys/ioctl.h>
    127 #include <sys/fcntl.h>
    128 #include <sys/systm.h>
    129 #include <sys/namei.h>
    130 #include <sys/vnode.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include <dev/raidframe/raidframevar.h>
    139 #include <dev/raidframe/raidframeio.h>
    140 #include "raid.h"
    141 #include "opt_raid_autoconfig.h"
    142 #include "rf_raid.h"
    143 #include "rf_copyback.h"
    144 #include "rf_dag.h"
    145 #include "rf_dagflags.h"
    146 #include "rf_desc.h"
    147 #include "rf_diskqueue.h"
    148 #include "rf_acctrace.h"
    149 #include "rf_etimer.h"
    150 #include "rf_general.h"
    151 #include "rf_debugMem.h"
    152 #include "rf_kintf.h"
    153 #include "rf_options.h"
    154 #include "rf_driver.h"
    155 #include "rf_parityscan.h"
    156 #include "rf_debugprint.h"
    157 #include "rf_threadstuff.h"
    158 
    159 int     rf_kdebug_level = 0;
    160 
    161 #ifdef DEBUG
    162 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    163 #else				/* DEBUG */
    164 #define db1_printf(a) { }
    165 #endif				/* DEBUG */
    166 
    167 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    168 
    169 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    170 
    171 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    172 						 * spare table */
    173 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    174 						 * installation process */
    175 
    176 /* prototypes */
    177 static void KernelWakeupFunc(struct buf * bp);
    178 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    179 		   dev_t dev, RF_SectorNum_t startSect,
    180 		   RF_SectorCount_t numSect, caddr_t buf,
    181 		   void (*cbFunc) (struct buf *), void *cbArg,
    182 		   int logBytesPerSector, struct proc * b_proc);
    183 static void raidinit(RF_Raid_t *);
    184 
    185 void raidattach(int);
    186 int raidsize(dev_t);
    187 int raidopen(dev_t, int, int, struct proc *);
    188 int raidclose(dev_t, int, int, struct proc *);
    189 int raidioctl(dev_t, u_long, caddr_t, int, struct proc *);
    190 int raidwrite(dev_t, struct uio *, int);
    191 int raidread(dev_t, struct uio *, int);
    192 void raidstrategy(struct buf *);
    193 int raiddump(dev_t, daddr_t, caddr_t, size_t);
    194 
    195 /*
    196  * Pilfered from ccd.c
    197  */
    198 
    199 struct raidbuf {
    200 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    201 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    202 	int     rf_flags;	/* misc. flags */
    203 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    204 };
    205 
    206 /* component buffer pool */
    207 struct pool raidframe_cbufpool;
    208 
    209 #define RAIDGETBUF(rs) pool_get(&raidframe_cbufpool, PR_NOWAIT)
    210 #define	RAIDPUTBUF(rs, cbp) pool_put(&raidframe_cbufpool, cbp)
    211 
    212 /* XXX Not sure if the following should be replacing the raidPtrs above,
    213    or if it should be used in conjunction with that...
    214 */
    215 
    216 struct raid_softc {
    217 	int     sc_flags;	/* flags */
    218 	int     sc_cflags;	/* configuration flags */
    219 	size_t  sc_size;        /* size of the raid device */
    220 	char    sc_xname[20];	/* XXX external name */
    221 	struct disk sc_dkdev;	/* generic disk device info */
    222 	struct buf_queue buf_queue;	/* used for the device queue */
    223 };
    224 /* sc_flags */
    225 #define RAIDF_INITED	0x01	/* unit has been initialized */
    226 #define RAIDF_WLABEL	0x02	/* label area is writable */
    227 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    228 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    229 #define RAIDF_LOCKED	0x80	/* unit is locked */
    230 
    231 #define	raidunit(x)	DISKUNIT(x)
    232 int numraid = 0;
    233 
    234 /*
    235  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    236  * Be aware that large numbers can allow the driver to consume a lot of
    237  * kernel memory, especially on writes, and in degraded mode reads.
    238  *
    239  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    240  * a single 64K write will typically require 64K for the old data,
    241  * 64K for the old parity, and 64K for the new parity, for a total
    242  * of 192K (if the parity buffer is not re-used immediately).
    243  * Even it if is used immediately, that's still 128K, which when multiplied
    244  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    245  *
    246  * Now in degraded mode, for example, a 64K read on the above setup may
    247  * require data reconstruction, which will require *all* of the 4 remaining
    248  * disks to participate -- 4 * 32K/disk == 128K again.
    249  */
    250 
    251 #ifndef RAIDOUTSTANDING
    252 #define RAIDOUTSTANDING   6
    253 #endif
    254 
    255 #define RAIDLABELDEV(dev)	\
    256 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    257 
    258 /* declared here, and made public, for the benefit of KVM stuff.. */
    259 struct raid_softc *raid_softc;
    260 
    261 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    262 				     struct disklabel *);
    263 static void raidgetdisklabel(dev_t);
    264 static void raidmakedisklabel(struct raid_softc *);
    265 
    266 static int raidlock(struct raid_softc *);
    267 static void raidunlock(struct raid_softc *);
    268 
    269 static void rf_markalldirty(RF_Raid_t *);
    270 void rf_mountroot_hook(struct device *);
    271 
    272 struct device *raidrootdev;
    273 
    274 void rf_ReconThread(struct rf_recon_req *);
    275 /* XXX what I want is: */
    276 /*void rf_ReconThread(RF_Raid_t *raidPtr);  */
    277 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    278 void rf_CopybackThread(RF_Raid_t *raidPtr);
    279 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    280 void rf_buildroothack(void *);
    281 
    282 RF_AutoConfig_t *rf_find_raid_components(void);
    283 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    284 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    285 static int rf_reasonable_label(RF_ComponentLabel_t *);
    286 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    287 int rf_set_autoconfig(RF_Raid_t *, int);
    288 int rf_set_rootpartition(RF_Raid_t *, int);
    289 void rf_release_all_vps(RF_ConfigSet_t *);
    290 void rf_cleanup_config_set(RF_ConfigSet_t *);
    291 int rf_have_enough_components(RF_ConfigSet_t *);
    292 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    293 
    294 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    295 				  allow autoconfig to take place.
    296 			          Note that this is overridden by having
    297 			          RAID_AUTOCONFIG as an option in the
    298 			          kernel config file.  */
    299 
    300 void
    301 raidattach(num)
    302 	int     num;
    303 {
    304 	int raidID;
    305 	int i, rc;
    306 	RF_AutoConfig_t *ac_list; /* autoconfig list */
    307 	RF_ConfigSet_t *config_sets;
    308 
    309 #ifdef DEBUG
    310 	printf("raidattach: Asked for %d units\n", num);
    311 #endif
    312 
    313 	if (num <= 0) {
    314 #ifdef DIAGNOSTIC
    315 		panic("raidattach: count <= 0");
    316 #endif
    317 		return;
    318 	}
    319 	/* This is where all the initialization stuff gets done. */
    320 
    321 	numraid = num;
    322 
    323 	/* Make some space for requested number of units... */
    324 
    325 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    326 	if (raidPtrs == NULL) {
    327 		panic("raidPtrs is NULL!!\n");
    328 	}
    329 
    330 	/* Initialize the component buffer pool. */
    331 	pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
    332 	    0, 0, "raidpl", NULL);
    333 
    334 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    335 	if (rc) {
    336 		RF_PANIC();
    337 	}
    338 
    339 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    340 
    341 	for (i = 0; i < num; i++)
    342 		raidPtrs[i] = NULL;
    343 	rc = rf_BootRaidframe();
    344 	if (rc == 0)
    345 		printf("Kernelized RAIDframe activated\n");
    346 	else
    347 		panic("Serious error booting RAID!!\n");
    348 
    349 	/* put together some datastructures like the CCD device does.. This
    350 	 * lets us lock the device and what-not when it gets opened. */
    351 
    352 	raid_softc = (struct raid_softc *)
    353 		malloc(num * sizeof(struct raid_softc),
    354 		       M_RAIDFRAME, M_NOWAIT);
    355 	if (raid_softc == NULL) {
    356 		printf("WARNING: no memory for RAIDframe driver\n");
    357 		return;
    358 	}
    359 
    360 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    361 
    362 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    363 					      M_RAIDFRAME, M_NOWAIT);
    364 	if (raidrootdev == NULL) {
    365 		panic("No memory for RAIDframe driver!!?!?!\n");
    366 	}
    367 
    368 	for (raidID = 0; raidID < num; raidID++) {
    369 		BUFQ_INIT(&raid_softc[raidID].buf_queue);
    370 
    371 		raidrootdev[raidID].dv_class  = DV_DISK;
    372 		raidrootdev[raidID].dv_cfdata = NULL;
    373 		raidrootdev[raidID].dv_unit   = raidID;
    374 		raidrootdev[raidID].dv_parent = NULL;
    375 		raidrootdev[raidID].dv_flags  = 0;
    376 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    377 
    378 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    379 			  (RF_Raid_t *));
    380 		if (raidPtrs[raidID] == NULL) {
    381 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    382 			numraid = raidID;
    383 			return;
    384 		}
    385 	}
    386 
    387 #ifdef RAID_AUTOCONFIG
    388 	raidautoconfig = 1;
    389 #endif
    390 
    391 if (raidautoconfig) {
    392 	/* 1. locate all RAID components on the system */
    393 
    394 #if DEBUG
    395 	printf("Searching for raid components...\n");
    396 #endif
    397 	ac_list = rf_find_raid_components();
    398 
    399 	/* 2. sort them into their respective sets */
    400 
    401 	config_sets = rf_create_auto_sets(ac_list);
    402 
    403 	/* 3. evaluate each set and configure the valid ones
    404 	   This gets done in rf_buildroothack() */
    405 
    406 	/* schedule the creation of the thread to do the
    407 	   "/ on RAID" stuff */
    408 
    409 	kthread_create(rf_buildroothack,config_sets);
    410 
    411 #if 0
    412 	mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
    413 #endif
    414 }
    415 
    416 }
    417 
    418 void
    419 rf_buildroothack(arg)
    420 	void *arg;
    421 {
    422 	RF_ConfigSet_t *config_sets = arg;
    423 	RF_ConfigSet_t *cset;
    424 	RF_ConfigSet_t *next_cset;
    425 	int retcode;
    426 	int raidID;
    427 	int rootID;
    428 	int num_root;
    429 
    430 	rootID = 0;
    431 	num_root = 0;
    432 	cset = config_sets;
    433 	while(cset != NULL ) {
    434 		next_cset = cset->next;
    435 		if (rf_have_enough_components(cset) &&
    436 		    cset->ac->clabel->autoconfigure==1) {
    437 			retcode = rf_auto_config_set(cset,&raidID);
    438 			if (!retcode) {
    439 				if (cset->rootable) {
    440 					rootID = raidID;
    441 					num_root++;
    442 				}
    443 			} else {
    444 				/* The autoconfig didn't work :( */
    445 #if DEBUG
    446 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    447 #endif
    448 				rf_release_all_vps(cset);
    449 			}
    450 		} else {
    451 			/* we're not autoconfiguring this set...
    452 			   release the associated resources */
    453 			rf_release_all_vps(cset);
    454 		}
    455 		/* cleanup */
    456 		rf_cleanup_config_set(cset);
    457 		cset = next_cset;
    458 	}
    459 
    460 	/* we found something bootable... */
    461 
    462 	if (num_root == 1) {
    463 		booted_device = &raidrootdev[rootID];
    464 	} else if (num_root > 1) {
    465 		/* we can't guess.. require the user to answer... */
    466 		boothowto |= RB_ASKNAME;
    467 	}
    468 }
    469 
    470 
    471 int
    472 raidsize(dev)
    473 	dev_t   dev;
    474 {
    475 	struct raid_softc *rs;
    476 	struct disklabel *lp;
    477 	int     part, unit, omask, size;
    478 
    479 	unit = raidunit(dev);
    480 	if (unit >= numraid)
    481 		return (-1);
    482 	rs = &raid_softc[unit];
    483 
    484 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    485 		return (-1);
    486 
    487 	part = DISKPART(dev);
    488 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    489 	lp = rs->sc_dkdev.dk_label;
    490 
    491 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    492 		return (-1);
    493 
    494 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    495 		size = -1;
    496 	else
    497 		size = lp->d_partitions[part].p_size *
    498 		    (lp->d_secsize / DEV_BSIZE);
    499 
    500 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    501 		return (-1);
    502 
    503 	return (size);
    504 
    505 }
    506 
    507 int
    508 raiddump(dev, blkno, va, size)
    509 	dev_t   dev;
    510 	daddr_t blkno;
    511 	caddr_t va;
    512 	size_t  size;
    513 {
    514 	/* Not implemented. */
    515 	return ENXIO;
    516 }
    517 /* ARGSUSED */
    518 int
    519 raidopen(dev, flags, fmt, p)
    520 	dev_t   dev;
    521 	int     flags, fmt;
    522 	struct proc *p;
    523 {
    524 	int     unit = raidunit(dev);
    525 	struct raid_softc *rs;
    526 	struct disklabel *lp;
    527 	int     part, pmask;
    528 	int     error = 0;
    529 
    530 	if (unit >= numraid)
    531 		return (ENXIO);
    532 	rs = &raid_softc[unit];
    533 
    534 	if ((error = raidlock(rs)) != 0)
    535 		return (error);
    536 	lp = rs->sc_dkdev.dk_label;
    537 
    538 	part = DISKPART(dev);
    539 	pmask = (1 << part);
    540 
    541 	db1_printf(("Opening raid device number: %d partition: %d\n",
    542 		unit, part));
    543 
    544 
    545 	if ((rs->sc_flags & RAIDF_INITED) &&
    546 	    (rs->sc_dkdev.dk_openmask == 0))
    547 		raidgetdisklabel(dev);
    548 
    549 	/* make sure that this partition exists */
    550 
    551 	if (part != RAW_PART) {
    552 		db1_printf(("Not a raw partition..\n"));
    553 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    554 		    ((part >= lp->d_npartitions) ||
    555 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    556 			error = ENXIO;
    557 			raidunlock(rs);
    558 			db1_printf(("Bailing out...\n"));
    559 			return (error);
    560 		}
    561 	}
    562 	/* Prevent this unit from being unconfigured while open. */
    563 	switch (fmt) {
    564 	case S_IFCHR:
    565 		rs->sc_dkdev.dk_copenmask |= pmask;
    566 		break;
    567 
    568 	case S_IFBLK:
    569 		rs->sc_dkdev.dk_bopenmask |= pmask;
    570 		break;
    571 	}
    572 
    573 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    574 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    575 		/* First one... mark things as dirty... Note that we *MUST*
    576 		 have done a configure before this.  I DO NOT WANT TO BE
    577 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    578 		 THAT THEY BELONG TOGETHER!!!!! */
    579 		/* XXX should check to see if we're only open for reading
    580 		   here... If so, we needn't do this, but then need some
    581 		   other way of keeping track of what's happened.. */
    582 
    583 		rf_markalldirty( raidPtrs[unit] );
    584 	}
    585 
    586 
    587 	rs->sc_dkdev.dk_openmask =
    588 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    589 
    590 	raidunlock(rs);
    591 
    592 	return (error);
    593 
    594 
    595 }
    596 /* ARGSUSED */
    597 int
    598 raidclose(dev, flags, fmt, p)
    599 	dev_t   dev;
    600 	int     flags, fmt;
    601 	struct proc *p;
    602 {
    603 	int     unit = raidunit(dev);
    604 	struct raid_softc *rs;
    605 	int     error = 0;
    606 	int     part;
    607 
    608 	if (unit >= numraid)
    609 		return (ENXIO);
    610 	rs = &raid_softc[unit];
    611 
    612 	if ((error = raidlock(rs)) != 0)
    613 		return (error);
    614 
    615 	part = DISKPART(dev);
    616 
    617 	/* ...that much closer to allowing unconfiguration... */
    618 	switch (fmt) {
    619 	case S_IFCHR:
    620 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    621 		break;
    622 
    623 	case S_IFBLK:
    624 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    625 		break;
    626 	}
    627 	rs->sc_dkdev.dk_openmask =
    628 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    629 
    630 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    631 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    632 		/* Last one... device is not unconfigured yet.
    633 		   Device shutdown has taken care of setting the
    634 		   clean bits if RAIDF_INITED is not set
    635 		   mark things as clean... */
    636 #if 0
    637 		printf("Last one on raid%d.  Updating status.\n",unit);
    638 #endif
    639 		rf_update_component_labels(raidPtrs[unit],
    640 						 RF_FINAL_COMPONENT_UPDATE);
    641 		if (doing_shutdown) {
    642 			/* last one, and we're going down, so
    643 			   lights out for this RAID set too. */
    644 			error = rf_Shutdown(raidPtrs[unit]);
    645 
    646 			/* It's no longer initialized... */
    647 			rs->sc_flags &= ~RAIDF_INITED;
    648 
    649 			/* Detach the disk. */
    650 			disk_detach(&rs->sc_dkdev);
    651 		}
    652 	}
    653 
    654 	raidunlock(rs);
    655 	return (0);
    656 
    657 }
    658 
    659 void
    660 raidstrategy(bp)
    661 	struct buf *bp;
    662 {
    663 	int s;
    664 
    665 	unsigned int raidID = raidunit(bp->b_dev);
    666 	RF_Raid_t *raidPtr;
    667 	struct raid_softc *rs = &raid_softc[raidID];
    668 	struct disklabel *lp;
    669 	int     wlabel;
    670 
    671 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    672 		bp->b_error = ENXIO;
    673 		bp->b_flags |= B_ERROR;
    674 		bp->b_resid = bp->b_bcount;
    675 		biodone(bp);
    676 		return;
    677 	}
    678 	if (raidID >= numraid || !raidPtrs[raidID]) {
    679 		bp->b_error = ENODEV;
    680 		bp->b_flags |= B_ERROR;
    681 		bp->b_resid = bp->b_bcount;
    682 		biodone(bp);
    683 		return;
    684 	}
    685 	raidPtr = raidPtrs[raidID];
    686 	if (!raidPtr->valid) {
    687 		bp->b_error = ENODEV;
    688 		bp->b_flags |= B_ERROR;
    689 		bp->b_resid = bp->b_bcount;
    690 		biodone(bp);
    691 		return;
    692 	}
    693 	if (bp->b_bcount == 0) {
    694 		db1_printf(("b_bcount is zero..\n"));
    695 		biodone(bp);
    696 		return;
    697 	}
    698 	lp = rs->sc_dkdev.dk_label;
    699 
    700 	/*
    701 	 * Do bounds checking and adjust transfer.  If there's an
    702 	 * error, the bounds check will flag that for us.
    703 	 */
    704 
    705 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    706 	if (DISKPART(bp->b_dev) != RAW_PART)
    707 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    708 			db1_printf(("Bounds check failed!!:%d %d\n",
    709 				(int) bp->b_blkno, (int) wlabel));
    710 			biodone(bp);
    711 			return;
    712 		}
    713 	s = splbio();
    714 
    715 	bp->b_resid = 0;
    716 
    717 	/* stuff it onto our queue */
    718 	BUFQ_INSERT_TAIL(&rs->buf_queue, bp);
    719 
    720 	raidstart(raidPtrs[raidID]);
    721 
    722 	splx(s);
    723 }
    724 /* ARGSUSED */
    725 int
    726 raidread(dev, uio, flags)
    727 	dev_t   dev;
    728 	struct uio *uio;
    729 	int     flags;
    730 {
    731 	int     unit = raidunit(dev);
    732 	struct raid_softc *rs;
    733 	int     part;
    734 
    735 	if (unit >= numraid)
    736 		return (ENXIO);
    737 	rs = &raid_softc[unit];
    738 
    739 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    740 		return (ENXIO);
    741 	part = DISKPART(dev);
    742 
    743 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    744 
    745 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    746 
    747 }
    748 /* ARGSUSED */
    749 int
    750 raidwrite(dev, uio, flags)
    751 	dev_t   dev;
    752 	struct uio *uio;
    753 	int     flags;
    754 {
    755 	int     unit = raidunit(dev);
    756 	struct raid_softc *rs;
    757 
    758 	if (unit >= numraid)
    759 		return (ENXIO);
    760 	rs = &raid_softc[unit];
    761 
    762 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    763 		return (ENXIO);
    764 	db1_printf(("raidwrite\n"));
    765 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    766 
    767 }
    768 
    769 int
    770 raidioctl(dev, cmd, data, flag, p)
    771 	dev_t   dev;
    772 	u_long  cmd;
    773 	caddr_t data;
    774 	int     flag;
    775 	struct proc *p;
    776 {
    777 	int     unit = raidunit(dev);
    778 	int     error = 0;
    779 	int     part, pmask;
    780 	struct raid_softc *rs;
    781 	RF_Config_t *k_cfg, *u_cfg;
    782 	RF_Raid_t *raidPtr;
    783 	RF_RaidDisk_t *diskPtr;
    784 	RF_AccTotals_t *totals;
    785 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    786 	u_char *specific_buf;
    787 	int retcode = 0;
    788 	int row;
    789 	int column;
    790 	struct rf_recon_req *rrcopy, *rr;
    791 	RF_ComponentLabel_t *clabel;
    792 	RF_ComponentLabel_t ci_label;
    793 	RF_ComponentLabel_t **clabel_ptr;
    794 	RF_SingleComponent_t *sparePtr,*componentPtr;
    795 	RF_SingleComponent_t hot_spare;
    796 	RF_SingleComponent_t component;
    797 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    798 	int i, j, d;
    799 #ifdef __HAVE_OLD_DISKLABEL
    800 	struct disklabel newlabel;
    801 #endif
    802 
    803 	if (unit >= numraid)
    804 		return (ENXIO);
    805 	rs = &raid_softc[unit];
    806 	raidPtr = raidPtrs[unit];
    807 
    808 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    809 		(int) DISKPART(dev), (int) unit, (int) cmd));
    810 
    811 	/* Must be open for writes for these commands... */
    812 	switch (cmd) {
    813 	case DIOCSDINFO:
    814 	case DIOCWDINFO:
    815 #ifdef __HAVE_OLD_DISKLABEL
    816 	case ODIOCWDINFO:
    817 	case ODIOCSDINFO:
    818 #endif
    819 	case DIOCWLABEL:
    820 		if ((flag & FWRITE) == 0)
    821 			return (EBADF);
    822 	}
    823 
    824 	/* Must be initialized for these... */
    825 	switch (cmd) {
    826 	case DIOCGDINFO:
    827 	case DIOCSDINFO:
    828 	case DIOCWDINFO:
    829 #ifdef __HAVE_OLD_DISKLABEL
    830 	case ODIOCGDINFO:
    831 	case ODIOCWDINFO:
    832 	case ODIOCSDINFO:
    833 	case ODIOCGDEFLABEL:
    834 #endif
    835 	case DIOCGPART:
    836 	case DIOCWLABEL:
    837 	case DIOCGDEFLABEL:
    838 	case RAIDFRAME_SHUTDOWN:
    839 	case RAIDFRAME_REWRITEPARITY:
    840 	case RAIDFRAME_GET_INFO:
    841 	case RAIDFRAME_RESET_ACCTOTALS:
    842 	case RAIDFRAME_GET_ACCTOTALS:
    843 	case RAIDFRAME_KEEP_ACCTOTALS:
    844 	case RAIDFRAME_GET_SIZE:
    845 	case RAIDFRAME_FAIL_DISK:
    846 	case RAIDFRAME_COPYBACK:
    847 	case RAIDFRAME_CHECK_RECON_STATUS:
    848 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    849 	case RAIDFRAME_GET_COMPONENT_LABEL:
    850 	case RAIDFRAME_SET_COMPONENT_LABEL:
    851 	case RAIDFRAME_ADD_HOT_SPARE:
    852 	case RAIDFRAME_REMOVE_HOT_SPARE:
    853 	case RAIDFRAME_INIT_LABELS:
    854 	case RAIDFRAME_REBUILD_IN_PLACE:
    855 	case RAIDFRAME_CHECK_PARITY:
    856 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    857 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    858 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    859 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    860 	case RAIDFRAME_SET_AUTOCONFIG:
    861 	case RAIDFRAME_SET_ROOT:
    862 	case RAIDFRAME_DELETE_COMPONENT:
    863 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    864 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    865 			return (ENXIO);
    866 	}
    867 
    868 	switch (cmd) {
    869 
    870 		/* configure the system */
    871 	case RAIDFRAME_CONFIGURE:
    872 
    873 		if (raidPtr->valid) {
    874 			/* There is a valid RAID set running on this unit! */
    875 			printf("raid%d: Device already configured!\n",unit);
    876 			return(EINVAL);
    877 		}
    878 
    879 		/* copy-in the configuration information */
    880 		/* data points to a pointer to the configuration structure */
    881 
    882 		u_cfg = *((RF_Config_t **) data);
    883 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    884 		if (k_cfg == NULL) {
    885 			return (ENOMEM);
    886 		}
    887 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    888 		    sizeof(RF_Config_t));
    889 		if (retcode) {
    890 			RF_Free(k_cfg, sizeof(RF_Config_t));
    891 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    892 				retcode));
    893 			return (retcode);
    894 		}
    895 		/* allocate a buffer for the layout-specific data, and copy it
    896 		 * in */
    897 		if (k_cfg->layoutSpecificSize) {
    898 			if (k_cfg->layoutSpecificSize > 10000) {
    899 				/* sanity check */
    900 				RF_Free(k_cfg, sizeof(RF_Config_t));
    901 				return (EINVAL);
    902 			}
    903 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    904 			    (u_char *));
    905 			if (specific_buf == NULL) {
    906 				RF_Free(k_cfg, sizeof(RF_Config_t));
    907 				return (ENOMEM);
    908 			}
    909 			retcode = copyin(k_cfg->layoutSpecific,
    910 			    (caddr_t) specific_buf,
    911 			    k_cfg->layoutSpecificSize);
    912 			if (retcode) {
    913 				RF_Free(k_cfg, sizeof(RF_Config_t));
    914 				RF_Free(specific_buf,
    915 					k_cfg->layoutSpecificSize);
    916 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    917 					retcode));
    918 				return (retcode);
    919 			}
    920 		} else
    921 			specific_buf = NULL;
    922 		k_cfg->layoutSpecific = specific_buf;
    923 
    924 		/* should do some kind of sanity check on the configuration.
    925 		 * Store the sum of all the bytes in the last byte? */
    926 
    927 		/* configure the system */
    928 
    929 		/*
    930 		 * Clear the entire RAID descriptor, just to make sure
    931 		 *  there is no stale data left in the case of a
    932 		 *  reconfiguration
    933 		 */
    934 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    935 		raidPtr->raidid = unit;
    936 
    937 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    938 
    939 		if (retcode == 0) {
    940 
    941 			/* allow this many simultaneous IO's to
    942 			   this RAID device */
    943 			raidPtr->openings = RAIDOUTSTANDING;
    944 
    945 			raidinit(raidPtr);
    946 			rf_markalldirty(raidPtr);
    947 		}
    948 		/* free the buffers.  No return code here. */
    949 		if (k_cfg->layoutSpecificSize) {
    950 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    951 		}
    952 		RF_Free(k_cfg, sizeof(RF_Config_t));
    953 
    954 		return (retcode);
    955 
    956 		/* shutdown the system */
    957 	case RAIDFRAME_SHUTDOWN:
    958 
    959 		if ((error = raidlock(rs)) != 0)
    960 			return (error);
    961 
    962 		/*
    963 		 * If somebody has a partition mounted, we shouldn't
    964 		 * shutdown.
    965 		 */
    966 
    967 		part = DISKPART(dev);
    968 		pmask = (1 << part);
    969 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    970 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    971 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    972 			raidunlock(rs);
    973 			return (EBUSY);
    974 		}
    975 
    976 		retcode = rf_Shutdown(raidPtr);
    977 
    978 		/* It's no longer initialized... */
    979 		rs->sc_flags &= ~RAIDF_INITED;
    980 
    981 		/* Detach the disk. */
    982 		disk_detach(&rs->sc_dkdev);
    983 
    984 		raidunlock(rs);
    985 
    986 		return (retcode);
    987 	case RAIDFRAME_GET_COMPONENT_LABEL:
    988 		clabel_ptr = (RF_ComponentLabel_t **) data;
    989 		/* need to read the component label for the disk indicated
    990 		   by row,column in clabel */
    991 
    992 		/* For practice, let's get it directly fromdisk, rather
    993 		   than from the in-core copy */
    994 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    995 			   (RF_ComponentLabel_t *));
    996 		if (clabel == NULL)
    997 			return (ENOMEM);
    998 
    999 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1000 
   1001 		retcode = copyin( *clabel_ptr, clabel,
   1002 				  sizeof(RF_ComponentLabel_t));
   1003 
   1004 		if (retcode) {
   1005 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1006 			return(retcode);
   1007 		}
   1008 
   1009 		row = clabel->row;
   1010 		column = clabel->column;
   1011 
   1012 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1013 		    (column < 0) || (column >= raidPtr->numCol +
   1014 				     raidPtr->numSpare)) {
   1015 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1016 			return(EINVAL);
   1017 		}
   1018 
   1019 		raidread_component_label(raidPtr->Disks[row][column].dev,
   1020 				raidPtr->raid_cinfo[row][column].ci_vp,
   1021 				clabel );
   1022 
   1023 		retcode = copyout((caddr_t) clabel,
   1024 				  (caddr_t) *clabel_ptr,
   1025 				  sizeof(RF_ComponentLabel_t));
   1026 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1027 		return (retcode);
   1028 
   1029 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1030 		clabel = (RF_ComponentLabel_t *) data;
   1031 
   1032 		/* XXX check the label for valid stuff... */
   1033 		/* Note that some things *should not* get modified --
   1034 		   the user should be re-initing the labels instead of
   1035 		   trying to patch things.
   1036 		   */
   1037 
   1038 		printf("Got component label:\n");
   1039 		printf("Version: %d\n",clabel->version);
   1040 		printf("Serial Number: %d\n",clabel->serial_number);
   1041 		printf("Mod counter: %d\n",clabel->mod_counter);
   1042 		printf("Row: %d\n", clabel->row);
   1043 		printf("Column: %d\n", clabel->column);
   1044 		printf("Num Rows: %d\n", clabel->num_rows);
   1045 		printf("Num Columns: %d\n", clabel->num_columns);
   1046 		printf("Clean: %d\n", clabel->clean);
   1047 		printf("Status: %d\n", clabel->status);
   1048 
   1049 		row = clabel->row;
   1050 		column = clabel->column;
   1051 
   1052 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1053 		    (column < 0) || (column >= raidPtr->numCol)) {
   1054 			return(EINVAL);
   1055 		}
   1056 
   1057 		/* XXX this isn't allowed to do anything for now :-) */
   1058 
   1059 		/* XXX and before it is, we need to fill in the rest
   1060 		   of the fields!?!?!?! */
   1061 #if 0
   1062 		raidwrite_component_label(
   1063                             raidPtr->Disks[row][column].dev,
   1064 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1065 			    clabel );
   1066 #endif
   1067 		return (0);
   1068 
   1069 	case RAIDFRAME_INIT_LABELS:
   1070 		clabel = (RF_ComponentLabel_t *) data;
   1071 		/*
   1072 		   we only want the serial number from
   1073 		   the above.  We get all the rest of the information
   1074 		   from the config that was used to create this RAID
   1075 		   set.
   1076 		   */
   1077 
   1078 		raidPtr->serial_number = clabel->serial_number;
   1079 
   1080 		raid_init_component_label(raidPtr, &ci_label);
   1081 		ci_label.serial_number = clabel->serial_number;
   1082 
   1083 		for(row=0;row<raidPtr->numRow;row++) {
   1084 			ci_label.row = row;
   1085 			for(column=0;column<raidPtr->numCol;column++) {
   1086 				diskPtr = &raidPtr->Disks[row][column];
   1087 				if (!RF_DEAD_DISK(diskPtr->status)) {
   1088 					ci_label.partitionSize = diskPtr->partitionSize;
   1089 					ci_label.column = column;
   1090 					raidwrite_component_label(
   1091 					  raidPtr->Disks[row][column].dev,
   1092 					  raidPtr->raid_cinfo[row][column].ci_vp,
   1093 					  &ci_label );
   1094 				}
   1095 			}
   1096 		}
   1097 
   1098 		return (retcode);
   1099 	case RAIDFRAME_SET_AUTOCONFIG:
   1100 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1101 		printf("New autoconfig value is: %d\n", d);
   1102 		*(int *) data = d;
   1103 		return (retcode);
   1104 
   1105 	case RAIDFRAME_SET_ROOT:
   1106 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1107 		printf("New rootpartition value is: %d\n", d);
   1108 		*(int *) data = d;
   1109 		return (retcode);
   1110 
   1111 		/* initialize all parity */
   1112 	case RAIDFRAME_REWRITEPARITY:
   1113 
   1114 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1115 			/* Parity for RAID 0 is trivially correct */
   1116 			raidPtr->parity_good = RF_RAID_CLEAN;
   1117 			return(0);
   1118 		}
   1119 
   1120 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1121 			/* Re-write is already in progress! */
   1122 			return(EINVAL);
   1123 		}
   1124 
   1125 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1126 					   rf_RewriteParityThread,
   1127 					   raidPtr,"raid_parity");
   1128 		return (retcode);
   1129 
   1130 
   1131 	case RAIDFRAME_ADD_HOT_SPARE:
   1132 		sparePtr = (RF_SingleComponent_t *) data;
   1133 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1134 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1135 		return(retcode);
   1136 
   1137 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1138 		return(retcode);
   1139 
   1140 	case RAIDFRAME_DELETE_COMPONENT:
   1141 		componentPtr = (RF_SingleComponent_t *)data;
   1142 		memcpy( &component, componentPtr,
   1143 			sizeof(RF_SingleComponent_t));
   1144 		retcode = rf_delete_component(raidPtr, &component);
   1145 		return(retcode);
   1146 
   1147 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1148 		componentPtr = (RF_SingleComponent_t *)data;
   1149 		memcpy( &component, componentPtr,
   1150 			sizeof(RF_SingleComponent_t));
   1151 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1152 		return(retcode);
   1153 
   1154 	case RAIDFRAME_REBUILD_IN_PLACE:
   1155 
   1156 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1157 			/* Can't do this on a RAID 0!! */
   1158 			return(EINVAL);
   1159 		}
   1160 
   1161 		if (raidPtr->recon_in_progress == 1) {
   1162 			/* a reconstruct is already in progress! */
   1163 			return(EINVAL);
   1164 		}
   1165 
   1166 		componentPtr = (RF_SingleComponent_t *) data;
   1167 		memcpy( &component, componentPtr,
   1168 			sizeof(RF_SingleComponent_t));
   1169 		row = component.row;
   1170 		column = component.column;
   1171 		printf("Rebuild: %d %d\n",row, column);
   1172 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1173 		    (column < 0) || (column >= raidPtr->numCol)) {
   1174 			return(EINVAL);
   1175 		}
   1176 
   1177 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1178 		if (rrcopy == NULL)
   1179 			return(ENOMEM);
   1180 
   1181 		rrcopy->raidPtr = (void *) raidPtr;
   1182 		rrcopy->row = row;
   1183 		rrcopy->col = column;
   1184 
   1185 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1186 					   rf_ReconstructInPlaceThread,
   1187 					   rrcopy,"raid_reconip");
   1188 		return(retcode);
   1189 
   1190 	case RAIDFRAME_GET_INFO:
   1191 		if (!raidPtr->valid)
   1192 			return (ENODEV);
   1193 		ucfgp = (RF_DeviceConfig_t **) data;
   1194 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1195 			  (RF_DeviceConfig_t *));
   1196 		if (d_cfg == NULL)
   1197 			return (ENOMEM);
   1198 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1199 		d_cfg->rows = raidPtr->numRow;
   1200 		d_cfg->cols = raidPtr->numCol;
   1201 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1202 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1203 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1204 			return (ENOMEM);
   1205 		}
   1206 		d_cfg->nspares = raidPtr->numSpare;
   1207 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1208 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1209 			return (ENOMEM);
   1210 		}
   1211 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1212 		d = 0;
   1213 		for (i = 0; i < d_cfg->rows; i++) {
   1214 			for (j = 0; j < d_cfg->cols; j++) {
   1215 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1216 				d++;
   1217 			}
   1218 		}
   1219 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1220 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1221 		}
   1222 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1223 				  sizeof(RF_DeviceConfig_t));
   1224 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1225 
   1226 		return (retcode);
   1227 
   1228 	case RAIDFRAME_CHECK_PARITY:
   1229 		*(int *) data = raidPtr->parity_good;
   1230 		return (0);
   1231 
   1232 	case RAIDFRAME_RESET_ACCTOTALS:
   1233 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1234 		return (0);
   1235 
   1236 	case RAIDFRAME_GET_ACCTOTALS:
   1237 		totals = (RF_AccTotals_t *) data;
   1238 		*totals = raidPtr->acc_totals;
   1239 		return (0);
   1240 
   1241 	case RAIDFRAME_KEEP_ACCTOTALS:
   1242 		raidPtr->keep_acc_totals = *(int *)data;
   1243 		return (0);
   1244 
   1245 	case RAIDFRAME_GET_SIZE:
   1246 		*(int *) data = raidPtr->totalSectors;
   1247 		return (0);
   1248 
   1249 		/* fail a disk & optionally start reconstruction */
   1250 	case RAIDFRAME_FAIL_DISK:
   1251 
   1252 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1253 			/* Can't do this on a RAID 0!! */
   1254 			return(EINVAL);
   1255 		}
   1256 
   1257 		rr = (struct rf_recon_req *) data;
   1258 
   1259 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1260 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1261 			return (EINVAL);
   1262 
   1263 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1264 		       unit, rr->row, rr->col);
   1265 
   1266 		/* make a copy of the recon request so that we don't rely on
   1267 		 * the user's buffer */
   1268 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1269 		if (rrcopy == NULL)
   1270 			return(ENOMEM);
   1271 		memcpy(rrcopy, rr, sizeof(*rr));
   1272 		rrcopy->raidPtr = (void *) raidPtr;
   1273 
   1274 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1275 					   rf_ReconThread,
   1276 					   rrcopy,"raid_recon");
   1277 		return (0);
   1278 
   1279 		/* invoke a copyback operation after recon on whatever disk
   1280 		 * needs it, if any */
   1281 	case RAIDFRAME_COPYBACK:
   1282 
   1283 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1284 			/* This makes no sense on a RAID 0!! */
   1285 			return(EINVAL);
   1286 		}
   1287 
   1288 		if (raidPtr->copyback_in_progress == 1) {
   1289 			/* Copyback is already in progress! */
   1290 			return(EINVAL);
   1291 		}
   1292 
   1293 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1294 					   rf_CopybackThread,
   1295 					   raidPtr,"raid_copyback");
   1296 		return (retcode);
   1297 
   1298 		/* return the percentage completion of reconstruction */
   1299 	case RAIDFRAME_CHECK_RECON_STATUS:
   1300 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1301 			/* This makes no sense on a RAID 0, so tell the
   1302 			   user it's done. */
   1303 			*(int *) data = 100;
   1304 			return(0);
   1305 		}
   1306 		row = 0; /* XXX we only consider a single row... */
   1307 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1308 			*(int *) data = 100;
   1309 		else
   1310 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1311 		return (0);
   1312 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1313 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1314 		row = 0; /* XXX we only consider a single row... */
   1315 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1316 			progressInfo.remaining = 0;
   1317 			progressInfo.completed = 100;
   1318 			progressInfo.total = 100;
   1319 		} else {
   1320 			progressInfo.total =
   1321 				raidPtr->reconControl[row]->numRUsTotal;
   1322 			progressInfo.completed =
   1323 				raidPtr->reconControl[row]->numRUsComplete;
   1324 			progressInfo.remaining = progressInfo.total -
   1325 				progressInfo.completed;
   1326 		}
   1327 		retcode = copyout((caddr_t) &progressInfo,
   1328 				  (caddr_t) *progressInfoPtr,
   1329 				  sizeof(RF_ProgressInfo_t));
   1330 		return (retcode);
   1331 
   1332 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1333 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1334 			/* This makes no sense on a RAID 0, so tell the
   1335 			   user it's done. */
   1336 			*(int *) data = 100;
   1337 			return(0);
   1338 		}
   1339 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1340 			*(int *) data = 100 *
   1341 				raidPtr->parity_rewrite_stripes_done /
   1342 				raidPtr->Layout.numStripe;
   1343 		} else {
   1344 			*(int *) data = 100;
   1345 		}
   1346 		return (0);
   1347 
   1348 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1349 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1350 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1351 			progressInfo.total = raidPtr->Layout.numStripe;
   1352 			progressInfo.completed =
   1353 				raidPtr->parity_rewrite_stripes_done;
   1354 			progressInfo.remaining = progressInfo.total -
   1355 				progressInfo.completed;
   1356 		} else {
   1357 			progressInfo.remaining = 0;
   1358 			progressInfo.completed = 100;
   1359 			progressInfo.total = 100;
   1360 		}
   1361 		retcode = copyout((caddr_t) &progressInfo,
   1362 				  (caddr_t) *progressInfoPtr,
   1363 				  sizeof(RF_ProgressInfo_t));
   1364 		return (retcode);
   1365 
   1366 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1367 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1368 			/* This makes no sense on a RAID 0 */
   1369 			*(int *) data = 100;
   1370 			return(0);
   1371 		}
   1372 		if (raidPtr->copyback_in_progress == 1) {
   1373 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1374 				raidPtr->Layout.numStripe;
   1375 		} else {
   1376 			*(int *) data = 100;
   1377 		}
   1378 		return (0);
   1379 
   1380 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1381 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1382 		if (raidPtr->copyback_in_progress == 1) {
   1383 			progressInfo.total = raidPtr->Layout.numStripe;
   1384 			progressInfo.completed =
   1385 				raidPtr->copyback_stripes_done;
   1386 			progressInfo.remaining = progressInfo.total -
   1387 				progressInfo.completed;
   1388 		} else {
   1389 			progressInfo.remaining = 0;
   1390 			progressInfo.completed = 100;
   1391 			progressInfo.total = 100;
   1392 		}
   1393 		retcode = copyout((caddr_t) &progressInfo,
   1394 				  (caddr_t) *progressInfoPtr,
   1395 				  sizeof(RF_ProgressInfo_t));
   1396 		return (retcode);
   1397 
   1398 		/* the sparetable daemon calls this to wait for the kernel to
   1399 		 * need a spare table. this ioctl does not return until a
   1400 		 * spare table is needed. XXX -- calling mpsleep here in the
   1401 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1402 		 * -- I should either compute the spare table in the kernel,
   1403 		 * or have a different -- XXX XXX -- interface (a different
   1404 		 * character device) for delivering the table     -- XXX */
   1405 #if 0
   1406 	case RAIDFRAME_SPARET_WAIT:
   1407 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1408 		while (!rf_sparet_wait_queue)
   1409 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1410 		waitreq = rf_sparet_wait_queue;
   1411 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1412 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1413 
   1414 		/* structure assignment */
   1415 		*((RF_SparetWait_t *) data) = *waitreq;
   1416 
   1417 		RF_Free(waitreq, sizeof(*waitreq));
   1418 		return (0);
   1419 
   1420 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1421 		 * code in it that will cause the dameon to exit */
   1422 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1423 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1424 		waitreq->fcol = -1;
   1425 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1426 		waitreq->next = rf_sparet_wait_queue;
   1427 		rf_sparet_wait_queue = waitreq;
   1428 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1429 		wakeup(&rf_sparet_wait_queue);
   1430 		return (0);
   1431 
   1432 		/* used by the spare table daemon to deliver a spare table
   1433 		 * into the kernel */
   1434 	case RAIDFRAME_SEND_SPARET:
   1435 
   1436 		/* install the spare table */
   1437 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1438 
   1439 		/* respond to the requestor.  the return status of the spare
   1440 		 * table installation is passed in the "fcol" field */
   1441 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1442 		waitreq->fcol = retcode;
   1443 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1444 		waitreq->next = rf_sparet_resp_queue;
   1445 		rf_sparet_resp_queue = waitreq;
   1446 		wakeup(&rf_sparet_resp_queue);
   1447 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1448 
   1449 		return (retcode);
   1450 #endif
   1451 
   1452 	default:
   1453 		break; /* fall through to the os-specific code below */
   1454 
   1455 	}
   1456 
   1457 	if (!raidPtr->valid)
   1458 		return (EINVAL);
   1459 
   1460 	/*
   1461 	 * Add support for "regular" device ioctls here.
   1462 	 */
   1463 
   1464 	switch (cmd) {
   1465 	case DIOCGDINFO:
   1466 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1467 		break;
   1468 #ifdef __HAVE_OLD_DISKLABEL
   1469 	case ODIOCGDINFO:
   1470 		newlabel = *(rs->sc_dkdev.dk_label);
   1471 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1472 			return ENOTTY;
   1473 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1474 		break;
   1475 #endif
   1476 
   1477 	case DIOCGPART:
   1478 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1479 		((struct partinfo *) data)->part =
   1480 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1481 		break;
   1482 
   1483 	case DIOCWDINFO:
   1484 	case DIOCSDINFO:
   1485 #ifdef __HAVE_OLD_DISKLABEL
   1486 	case ODIOCWDINFO:
   1487 	case ODIOCSDINFO:
   1488 #endif
   1489 	{
   1490 		struct disklabel *lp;
   1491 #ifdef __HAVE_OLD_DISKLABEL
   1492 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1493 			memset(&newlabel, 0, sizeof newlabel);
   1494 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1495 			lp = &newlabel;
   1496 		} else
   1497 #endif
   1498 		lp = (struct disklabel *)data;
   1499 
   1500 		if ((error = raidlock(rs)) != 0)
   1501 			return (error);
   1502 
   1503 		rs->sc_flags |= RAIDF_LABELLING;
   1504 
   1505 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1506 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1507 		if (error == 0) {
   1508 			if (cmd == DIOCWDINFO
   1509 #ifdef __HAVE_OLD_DISKLABEL
   1510 			    || cmd == ODIOCWDINFO
   1511 #endif
   1512 			   )
   1513 				error = writedisklabel(RAIDLABELDEV(dev),
   1514 				    raidstrategy, rs->sc_dkdev.dk_label,
   1515 				    rs->sc_dkdev.dk_cpulabel);
   1516 		}
   1517 		rs->sc_flags &= ~RAIDF_LABELLING;
   1518 
   1519 		raidunlock(rs);
   1520 
   1521 		if (error)
   1522 			return (error);
   1523 		break;
   1524 	}
   1525 
   1526 	case DIOCWLABEL:
   1527 		if (*(int *) data != 0)
   1528 			rs->sc_flags |= RAIDF_WLABEL;
   1529 		else
   1530 			rs->sc_flags &= ~RAIDF_WLABEL;
   1531 		break;
   1532 
   1533 	case DIOCGDEFLABEL:
   1534 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1535 		break;
   1536 
   1537 #ifdef __HAVE_OLD_DISKLABEL
   1538 	case ODIOCGDEFLABEL:
   1539 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1540 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1541 			return ENOTTY;
   1542 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1543 		break;
   1544 #endif
   1545 
   1546 	default:
   1547 		retcode = ENOTTY;
   1548 	}
   1549 	return (retcode);
   1550 
   1551 }
   1552 
   1553 
   1554 /* raidinit -- complete the rest of the initialization for the
   1555    RAIDframe device.  */
   1556 
   1557 
   1558 static void
   1559 raidinit(raidPtr)
   1560 	RF_Raid_t *raidPtr;
   1561 {
   1562 	struct raid_softc *rs;
   1563 	int     unit;
   1564 
   1565 	unit = raidPtr->raidid;
   1566 
   1567 	rs = &raid_softc[unit];
   1568 
   1569 	/* XXX should check return code first... */
   1570 	rs->sc_flags |= RAIDF_INITED;
   1571 
   1572 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1573 
   1574 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1575 
   1576 	/* disk_attach actually creates space for the CPU disklabel, among
   1577 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1578 	 * with disklabels. */
   1579 
   1580 	disk_attach(&rs->sc_dkdev);
   1581 
   1582 	/* XXX There may be a weird interaction here between this, and
   1583 	 * protectedSectors, as used in RAIDframe.  */
   1584 
   1585 	rs->sc_size = raidPtr->totalSectors;
   1586 
   1587 }
   1588 
   1589 /* wake up the daemon & tell it to get us a spare table
   1590  * XXX
   1591  * the entries in the queues should be tagged with the raidPtr
   1592  * so that in the extremely rare case that two recons happen at once,
   1593  * we know for which device were requesting a spare table
   1594  * XXX
   1595  *
   1596  * XXX This code is not currently used. GO
   1597  */
   1598 int
   1599 rf_GetSpareTableFromDaemon(req)
   1600 	RF_SparetWait_t *req;
   1601 {
   1602 	int     retcode;
   1603 
   1604 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1605 	req->next = rf_sparet_wait_queue;
   1606 	rf_sparet_wait_queue = req;
   1607 	wakeup(&rf_sparet_wait_queue);
   1608 
   1609 	/* mpsleep unlocks the mutex */
   1610 	while (!rf_sparet_resp_queue) {
   1611 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1612 		    "raidframe getsparetable", 0);
   1613 	}
   1614 	req = rf_sparet_resp_queue;
   1615 	rf_sparet_resp_queue = req->next;
   1616 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1617 
   1618 	retcode = req->fcol;
   1619 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1620 					 * alloc'd */
   1621 	return (retcode);
   1622 }
   1623 
   1624 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1625  * bp & passes it down.
   1626  * any calls originating in the kernel must use non-blocking I/O
   1627  * do some extra sanity checking to return "appropriate" error values for
   1628  * certain conditions (to make some standard utilities work)
   1629  *
   1630  * Formerly known as: rf_DoAccessKernel
   1631  */
   1632 void
   1633 raidstart(raidPtr)
   1634 	RF_Raid_t *raidPtr;
   1635 {
   1636 	RF_SectorCount_t num_blocks, pb, sum;
   1637 	RF_RaidAddr_t raid_addr;
   1638 	int     retcode;
   1639 	struct partition *pp;
   1640 	daddr_t blocknum;
   1641 	int     unit;
   1642 	struct raid_softc *rs;
   1643 	int     do_async;
   1644 	struct buf *bp;
   1645 
   1646 	unit = raidPtr->raidid;
   1647 	rs = &raid_softc[unit];
   1648 
   1649 	/* quick check to see if anything has died recently */
   1650 	RF_LOCK_MUTEX(raidPtr->mutex);
   1651 	if (raidPtr->numNewFailures > 0) {
   1652 		rf_update_component_labels(raidPtr,
   1653 					   RF_NORMAL_COMPONENT_UPDATE);
   1654 		raidPtr->numNewFailures--;
   1655 	}
   1656 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1657 
   1658 	/* Check to see if we're at the limit... */
   1659 	RF_LOCK_MUTEX(raidPtr->mutex);
   1660 	while (raidPtr->openings > 0) {
   1661 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1662 
   1663 		/* get the next item, if any, from the queue */
   1664 		if ((bp = BUFQ_FIRST(&rs->buf_queue)) == NULL) {
   1665 			/* nothing more to do */
   1666 			return;
   1667 		}
   1668 		BUFQ_REMOVE(&rs->buf_queue, bp);
   1669 
   1670 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1671 		 * partition.. Need to make it absolute to the underlying
   1672 		 * device.. */
   1673 
   1674 		blocknum = bp->b_blkno;
   1675 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1676 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1677 			blocknum += pp->p_offset;
   1678 		}
   1679 
   1680 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1681 			    (int) blocknum));
   1682 
   1683 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1684 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1685 
   1686 		/* *THIS* is where we adjust what block we're going to...
   1687 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1688 		raid_addr = blocknum;
   1689 
   1690 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1691 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1692 		sum = raid_addr + num_blocks + pb;
   1693 		if (1 || rf_debugKernelAccess) {
   1694 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1695 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1696 				    (int) pb, (int) bp->b_resid));
   1697 		}
   1698 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1699 		    || (sum < num_blocks) || (sum < pb)) {
   1700 			bp->b_error = ENOSPC;
   1701 			bp->b_flags |= B_ERROR;
   1702 			bp->b_resid = bp->b_bcount;
   1703 			biodone(bp);
   1704 			RF_LOCK_MUTEX(raidPtr->mutex);
   1705 			continue;
   1706 		}
   1707 		/*
   1708 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1709 		 */
   1710 
   1711 		if (bp->b_bcount & raidPtr->sectorMask) {
   1712 			bp->b_error = EINVAL;
   1713 			bp->b_flags |= B_ERROR;
   1714 			bp->b_resid = bp->b_bcount;
   1715 			biodone(bp);
   1716 			RF_LOCK_MUTEX(raidPtr->mutex);
   1717 			continue;
   1718 
   1719 		}
   1720 		db1_printf(("Calling DoAccess..\n"));
   1721 
   1722 
   1723 		RF_LOCK_MUTEX(raidPtr->mutex);
   1724 		raidPtr->openings--;
   1725 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1726 
   1727 		/*
   1728 		 * Everything is async.
   1729 		 */
   1730 		do_async = 1;
   1731 
   1732 		disk_busy(&rs->sc_dkdev);
   1733 
   1734 		/* XXX we're still at splbio() here... do we *really*
   1735 		   need to be? */
   1736 
   1737 		/* don't ever condition on bp->b_flags & B_WRITE.
   1738 		 * always condition on B_READ instead */
   1739 
   1740 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1741 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1742 				      do_async, raid_addr, num_blocks,
   1743 				      bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1744 
   1745 		RF_LOCK_MUTEX(raidPtr->mutex);
   1746 	}
   1747 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1748 }
   1749 
   1750 
   1751 
   1752 
   1753 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1754 
   1755 int
   1756 rf_DispatchKernelIO(queue, req)
   1757 	RF_DiskQueue_t *queue;
   1758 	RF_DiskQueueData_t *req;
   1759 {
   1760 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1761 	struct buf *bp;
   1762 	struct raidbuf *raidbp = NULL;
   1763 	struct raid_softc *rs;
   1764 	int     unit;
   1765 	int s;
   1766 
   1767 	s=0;
   1768 	/* s = splbio();*/ /* want to test this */
   1769 	/* XXX along with the vnode, we also need the softc associated with
   1770 	 * this device.. */
   1771 
   1772 	req->queue = queue;
   1773 
   1774 	unit = queue->raidPtr->raidid;
   1775 
   1776 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1777 
   1778 	if (unit >= numraid) {
   1779 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1780 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1781 	}
   1782 	rs = &raid_softc[unit];
   1783 
   1784 	bp = req->bp;
   1785 #if 1
   1786 	/* XXX when there is a physical disk failure, someone is passing us a
   1787 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1788 	 * without taking a performance hit... (not sure where the real bug
   1789 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1790 
   1791 	if (bp->b_flags & B_ERROR) {
   1792 		bp->b_flags &= ~B_ERROR;
   1793 	}
   1794 	if (bp->b_error != 0) {
   1795 		bp->b_error = 0;
   1796 	}
   1797 #endif
   1798 	raidbp = RAIDGETBUF(rs);
   1799 
   1800 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1801 
   1802 	/*
   1803 	 * context for raidiodone
   1804 	 */
   1805 	raidbp->rf_obp = bp;
   1806 	raidbp->req = req;
   1807 
   1808 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1809 
   1810 	switch (req->type) {
   1811 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1812 		/* XXX need to do something extra here.. */
   1813 		/* I'm leaving this in, as I've never actually seen it used,
   1814 		 * and I'd like folks to report it... GO */
   1815 		printf(("WAKEUP CALLED\n"));
   1816 		queue->numOutstanding++;
   1817 
   1818 		/* XXX need to glue the original buffer into this??  */
   1819 
   1820 		KernelWakeupFunc(&raidbp->rf_buf);
   1821 		break;
   1822 
   1823 	case RF_IO_TYPE_READ:
   1824 	case RF_IO_TYPE_WRITE:
   1825 
   1826 		if (req->tracerec) {
   1827 			RF_ETIMER_START(req->tracerec->timer);
   1828 		}
   1829 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1830 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1831 		    req->sectorOffset, req->numSector,
   1832 		    req->buf, KernelWakeupFunc, (void *) req,
   1833 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1834 
   1835 		if (rf_debugKernelAccess) {
   1836 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1837 				(long) bp->b_blkno));
   1838 		}
   1839 		queue->numOutstanding++;
   1840 		queue->last_deq_sector = req->sectorOffset;
   1841 		/* acc wouldn't have been let in if there were any pending
   1842 		 * reqs at any other priority */
   1843 		queue->curPriority = req->priority;
   1844 
   1845 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1846 			req->type, unit, queue->row, queue->col));
   1847 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1848 			(int) req->sectorOffset, (int) req->numSector,
   1849 			(int) (req->numSector <<
   1850 			    queue->raidPtr->logBytesPerSector),
   1851 			(int) queue->raidPtr->logBytesPerSector));
   1852 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1853 			raidbp->rf_buf.b_vp->v_numoutput++;
   1854 		}
   1855 		VOP_STRATEGY(&raidbp->rf_buf);
   1856 
   1857 		break;
   1858 
   1859 	default:
   1860 		panic("bad req->type in rf_DispatchKernelIO");
   1861 	}
   1862 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1863 	/* splx(s); */ /* want to test this */
   1864 	return (0);
   1865 }
   1866 /* this is the callback function associated with a I/O invoked from
   1867    kernel code.
   1868  */
   1869 static void
   1870 KernelWakeupFunc(vbp)
   1871 	struct buf *vbp;
   1872 {
   1873 	RF_DiskQueueData_t *req = NULL;
   1874 	RF_DiskQueue_t *queue;
   1875 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1876 	struct buf *bp;
   1877 	struct raid_softc *rs;
   1878 	int     unit;
   1879 	int s;
   1880 
   1881 	s = splbio();
   1882 	db1_printf(("recovering the request queue:\n"));
   1883 	req = raidbp->req;
   1884 
   1885 	bp = raidbp->rf_obp;
   1886 
   1887 	queue = (RF_DiskQueue_t *) req->queue;
   1888 
   1889 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1890 		bp->b_flags |= B_ERROR;
   1891 		bp->b_error = raidbp->rf_buf.b_error ?
   1892 		    raidbp->rf_buf.b_error : EIO;
   1893 	}
   1894 
   1895 	/* XXX methinks this could be wrong... */
   1896 #if 1
   1897 	bp->b_resid = raidbp->rf_buf.b_resid;
   1898 #endif
   1899 
   1900 	if (req->tracerec) {
   1901 		RF_ETIMER_STOP(req->tracerec->timer);
   1902 		RF_ETIMER_EVAL(req->tracerec->timer);
   1903 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1904 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1905 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1906 		req->tracerec->num_phys_ios++;
   1907 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1908 	}
   1909 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1910 
   1911 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1912 
   1913 
   1914 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1915 	 * ballistic, and mark the component as hosed... */
   1916 
   1917 	if (bp->b_flags & B_ERROR) {
   1918 		/* Mark the disk as dead */
   1919 		/* but only mark it once... */
   1920 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1921 		    rf_ds_optimal) {
   1922 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1923 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1924 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1925 			    rf_ds_failed;
   1926 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1927 			queue->raidPtr->numFailures++;
   1928 			queue->raidPtr->numNewFailures++;
   1929 		} else {	/* Disk is already dead... */
   1930 			/* printf("Disk already marked as dead!\n"); */
   1931 		}
   1932 
   1933 	}
   1934 
   1935 	rs = &raid_softc[unit];
   1936 	RAIDPUTBUF(rs, raidbp);
   1937 
   1938 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1939 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1940 
   1941 	splx(s);
   1942 }
   1943 
   1944 
   1945 
   1946 /*
   1947  * initialize a buf structure for doing an I/O in the kernel.
   1948  */
   1949 static void
   1950 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1951        logBytesPerSector, b_proc)
   1952 	struct buf *bp;
   1953 	struct vnode *b_vp;
   1954 	unsigned rw_flag;
   1955 	dev_t dev;
   1956 	RF_SectorNum_t startSect;
   1957 	RF_SectorCount_t numSect;
   1958 	caddr_t buf;
   1959 	void (*cbFunc) (struct buf *);
   1960 	void *cbArg;
   1961 	int logBytesPerSector;
   1962 	struct proc *b_proc;
   1963 {
   1964 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1965 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1966 	bp->b_bcount = numSect << logBytesPerSector;
   1967 	bp->b_bufsize = bp->b_bcount;
   1968 	bp->b_error = 0;
   1969 	bp->b_dev = dev;
   1970 	bp->b_data = buf;
   1971 	bp->b_blkno = startSect;
   1972 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1973 	if (bp->b_bcount == 0) {
   1974 		panic("bp->b_bcount is zero in InitBP!!\n");
   1975 	}
   1976 	bp->b_proc = b_proc;
   1977 	bp->b_iodone = cbFunc;
   1978 	bp->b_vp = b_vp;
   1979 
   1980 }
   1981 
   1982 static void
   1983 raidgetdefaultlabel(raidPtr, rs, lp)
   1984 	RF_Raid_t *raidPtr;
   1985 	struct raid_softc *rs;
   1986 	struct disklabel *lp;
   1987 {
   1988 	db1_printf(("Building a default label...\n"));
   1989 	memset(lp, 0, sizeof(*lp));
   1990 
   1991 	/* fabricate a label... */
   1992 	lp->d_secperunit = raidPtr->totalSectors;
   1993 	lp->d_secsize = raidPtr->bytesPerSector;
   1994 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1995 	lp->d_ntracks = 4 * raidPtr->numCol;
   1996 	lp->d_ncylinders = raidPtr->totalSectors /
   1997 		(lp->d_nsectors * lp->d_ntracks);
   1998 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1999 
   2000 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2001 	lp->d_type = DTYPE_RAID;
   2002 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2003 	lp->d_rpm = 3600;
   2004 	lp->d_interleave = 1;
   2005 	lp->d_flags = 0;
   2006 
   2007 	lp->d_partitions[RAW_PART].p_offset = 0;
   2008 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2009 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2010 	lp->d_npartitions = RAW_PART + 1;
   2011 
   2012 	lp->d_magic = DISKMAGIC;
   2013 	lp->d_magic2 = DISKMAGIC;
   2014 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2015 
   2016 }
   2017 /*
   2018  * Read the disklabel from the raid device.  If one is not present, fake one
   2019  * up.
   2020  */
   2021 static void
   2022 raidgetdisklabel(dev)
   2023 	dev_t   dev;
   2024 {
   2025 	int     unit = raidunit(dev);
   2026 	struct raid_softc *rs = &raid_softc[unit];
   2027 	char   *errstring;
   2028 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2029 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2030 	RF_Raid_t *raidPtr;
   2031 
   2032 	db1_printf(("Getting the disklabel...\n"));
   2033 
   2034 	memset(clp, 0, sizeof(*clp));
   2035 
   2036 	raidPtr = raidPtrs[unit];
   2037 
   2038 	raidgetdefaultlabel(raidPtr, rs, lp);
   2039 
   2040 	/*
   2041 	 * Call the generic disklabel extraction routine.
   2042 	 */
   2043 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2044 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2045 	if (errstring)
   2046 		raidmakedisklabel(rs);
   2047 	else {
   2048 		int     i;
   2049 		struct partition *pp;
   2050 
   2051 		/*
   2052 		 * Sanity check whether the found disklabel is valid.
   2053 		 *
   2054 		 * This is necessary since total size of the raid device
   2055 		 * may vary when an interleave is changed even though exactly
   2056 		 * same componets are used, and old disklabel may used
   2057 		 * if that is found.
   2058 		 */
   2059 		if (lp->d_secperunit != rs->sc_size)
   2060 			printf("WARNING: %s: "
   2061 			    "total sector size in disklabel (%d) != "
   2062 			    "the size of raid (%ld)\n", rs->sc_xname,
   2063 			    lp->d_secperunit, (long) rs->sc_size);
   2064 		for (i = 0; i < lp->d_npartitions; i++) {
   2065 			pp = &lp->d_partitions[i];
   2066 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2067 				printf("WARNING: %s: end of partition `%c' "
   2068 				    "exceeds the size of raid (%ld)\n",
   2069 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2070 		}
   2071 	}
   2072 
   2073 }
   2074 /*
   2075  * Take care of things one might want to take care of in the event
   2076  * that a disklabel isn't present.
   2077  */
   2078 static void
   2079 raidmakedisklabel(rs)
   2080 	struct raid_softc *rs;
   2081 {
   2082 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2083 	db1_printf(("Making a label..\n"));
   2084 
   2085 	/*
   2086 	 * For historical reasons, if there's no disklabel present
   2087 	 * the raw partition must be marked FS_BSDFFS.
   2088 	 */
   2089 
   2090 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2091 
   2092 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2093 
   2094 	lp->d_checksum = dkcksum(lp);
   2095 }
   2096 /*
   2097  * Lookup the provided name in the filesystem.  If the file exists,
   2098  * is a valid block device, and isn't being used by anyone else,
   2099  * set *vpp to the file's vnode.
   2100  * You'll find the original of this in ccd.c
   2101  */
   2102 int
   2103 raidlookup(path, p, vpp)
   2104 	char   *path;
   2105 	struct proc *p;
   2106 	struct vnode **vpp;	/* result */
   2107 {
   2108 	struct nameidata nd;
   2109 	struct vnode *vp;
   2110 	struct vattr va;
   2111 	int     error;
   2112 
   2113 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2114 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2115 #ifdef DEBUG
   2116 		printf("RAIDframe: vn_open returned %d\n", error);
   2117 #endif
   2118 		return (error);
   2119 	}
   2120 	vp = nd.ni_vp;
   2121 	if (vp->v_usecount > 1) {
   2122 		VOP_UNLOCK(vp, 0);
   2123 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2124 		return (EBUSY);
   2125 	}
   2126 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2127 		VOP_UNLOCK(vp, 0);
   2128 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2129 		return (error);
   2130 	}
   2131 	/* XXX: eventually we should handle VREG, too. */
   2132 	if (va.va_type != VBLK) {
   2133 		VOP_UNLOCK(vp, 0);
   2134 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2135 		return (ENOTBLK);
   2136 	}
   2137 	VOP_UNLOCK(vp, 0);
   2138 	*vpp = vp;
   2139 	return (0);
   2140 }
   2141 /*
   2142  * Wait interruptibly for an exclusive lock.
   2143  *
   2144  * XXX
   2145  * Several drivers do this; it should be abstracted and made MP-safe.
   2146  * (Hmm... where have we seen this warning before :->  GO )
   2147  */
   2148 static int
   2149 raidlock(rs)
   2150 	struct raid_softc *rs;
   2151 {
   2152 	int     error;
   2153 
   2154 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2155 		rs->sc_flags |= RAIDF_WANTED;
   2156 		if ((error =
   2157 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2158 			return (error);
   2159 	}
   2160 	rs->sc_flags |= RAIDF_LOCKED;
   2161 	return (0);
   2162 }
   2163 /*
   2164  * Unlock and wake up any waiters.
   2165  */
   2166 static void
   2167 raidunlock(rs)
   2168 	struct raid_softc *rs;
   2169 {
   2170 
   2171 	rs->sc_flags &= ~RAIDF_LOCKED;
   2172 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2173 		rs->sc_flags &= ~RAIDF_WANTED;
   2174 		wakeup(rs);
   2175 	}
   2176 }
   2177 
   2178 
   2179 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2180 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2181 
   2182 int
   2183 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2184 {
   2185 	RF_ComponentLabel_t clabel;
   2186 	raidread_component_label(dev, b_vp, &clabel);
   2187 	clabel.mod_counter = mod_counter;
   2188 	clabel.clean = RF_RAID_CLEAN;
   2189 	raidwrite_component_label(dev, b_vp, &clabel);
   2190 	return(0);
   2191 }
   2192 
   2193 
   2194 int
   2195 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2196 {
   2197 	RF_ComponentLabel_t clabel;
   2198 	raidread_component_label(dev, b_vp, &clabel);
   2199 	clabel.mod_counter = mod_counter;
   2200 	clabel.clean = RF_RAID_DIRTY;
   2201 	raidwrite_component_label(dev, b_vp, &clabel);
   2202 	return(0);
   2203 }
   2204 
   2205 /* ARGSUSED */
   2206 int
   2207 raidread_component_label(dev, b_vp, clabel)
   2208 	dev_t dev;
   2209 	struct vnode *b_vp;
   2210 	RF_ComponentLabel_t *clabel;
   2211 {
   2212 	struct buf *bp;
   2213 	int error;
   2214 
   2215 	/* XXX should probably ensure that we don't try to do this if
   2216 	   someone has changed rf_protected_sectors. */
   2217 
   2218 	if (b_vp == NULL) {
   2219 		/* For whatever reason, this component is not valid.
   2220 		   Don't try to read a component label from it. */
   2221 		return(EINVAL);
   2222 	}
   2223 
   2224 	/* get a block of the appropriate size... */
   2225 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2226 	bp->b_dev = dev;
   2227 
   2228 	/* get our ducks in a row for the read */
   2229 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2230 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2231 	bp->b_flags |= B_READ;
   2232  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2233 
   2234 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2235 
   2236 	error = biowait(bp);
   2237 
   2238 	if (!error) {
   2239 		memcpy(clabel, bp->b_data,
   2240 		       sizeof(RF_ComponentLabel_t));
   2241 #if 0
   2242 		rf_print_component_label( clabel );
   2243 #endif
   2244         } else {
   2245 #if 0
   2246 		printf("Failed to read RAID component label!\n");
   2247 #endif
   2248 	}
   2249 
   2250 	brelse(bp);
   2251 	return(error);
   2252 }
   2253 /* ARGSUSED */
   2254 int
   2255 raidwrite_component_label(dev, b_vp, clabel)
   2256 	dev_t dev;
   2257 	struct vnode *b_vp;
   2258 	RF_ComponentLabel_t *clabel;
   2259 {
   2260 	struct buf *bp;
   2261 	int error;
   2262 
   2263 	/* get a block of the appropriate size... */
   2264 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2265 	bp->b_dev = dev;
   2266 
   2267 	/* get our ducks in a row for the write */
   2268 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2269 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2270 	bp->b_flags |= B_WRITE;
   2271  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2272 
   2273 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2274 
   2275 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2276 
   2277 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2278 	error = biowait(bp);
   2279 	brelse(bp);
   2280 	if (error) {
   2281 #if 1
   2282 		printf("Failed to write RAID component info!\n");
   2283 #endif
   2284 	}
   2285 
   2286 	return(error);
   2287 }
   2288 
   2289 void
   2290 rf_markalldirty(raidPtr)
   2291 	RF_Raid_t *raidPtr;
   2292 {
   2293 	RF_ComponentLabel_t clabel;
   2294 	int r,c;
   2295 
   2296 	raidPtr->mod_counter++;
   2297 	for (r = 0; r < raidPtr->numRow; r++) {
   2298 		for (c = 0; c < raidPtr->numCol; c++) {
   2299 			/* we don't want to touch (at all) a disk that has
   2300 			   failed */
   2301 			if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
   2302 				raidread_component_label(
   2303 					raidPtr->Disks[r][c].dev,
   2304 					raidPtr->raid_cinfo[r][c].ci_vp,
   2305 					&clabel);
   2306 				if (clabel.status == rf_ds_spared) {
   2307 					/* XXX do something special...
   2308 					 but whatever you do, don't
   2309 					 try to access it!! */
   2310 				} else {
   2311 #if 0
   2312 				clabel.status =
   2313 					raidPtr->Disks[r][c].status;
   2314 				raidwrite_component_label(
   2315 					raidPtr->Disks[r][c].dev,
   2316 					raidPtr->raid_cinfo[r][c].ci_vp,
   2317 					&clabel);
   2318 #endif
   2319 				raidmarkdirty(
   2320 				       raidPtr->Disks[r][c].dev,
   2321 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2322 				       raidPtr->mod_counter);
   2323 				}
   2324 			}
   2325 		}
   2326 	}
   2327 	/* printf("Component labels marked dirty.\n"); */
   2328 #if 0
   2329 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2330 		sparecol = raidPtr->numCol + c;
   2331 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2332 			/*
   2333 
   2334 			   XXX this is where we get fancy and map this spare
   2335 			   into it's correct spot in the array.
   2336 
   2337 			 */
   2338 			/*
   2339 
   2340 			   we claim this disk is "optimal" if it's
   2341 			   rf_ds_used_spare, as that means it should be
   2342 			   directly substitutable for the disk it replaced.
   2343 			   We note that too...
   2344 
   2345 			 */
   2346 
   2347 			for(i=0;i<raidPtr->numRow;i++) {
   2348 				for(j=0;j<raidPtr->numCol;j++) {
   2349 					if ((raidPtr->Disks[i][j].spareRow ==
   2350 					     r) &&
   2351 					    (raidPtr->Disks[i][j].spareCol ==
   2352 					     sparecol)) {
   2353 						srow = r;
   2354 						scol = sparecol;
   2355 						break;
   2356 					}
   2357 				}
   2358 			}
   2359 
   2360 			raidread_component_label(
   2361 				      raidPtr->Disks[r][sparecol].dev,
   2362 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2363 				      &clabel);
   2364 			/* make sure status is noted */
   2365 			clabel.version = RF_COMPONENT_LABEL_VERSION;
   2366 			clabel.mod_counter = raidPtr->mod_counter;
   2367 			clabel.serial_number = raidPtr->serial_number;
   2368 			clabel.row = srow;
   2369 			clabel.column = scol;
   2370 			clabel.num_rows = raidPtr->numRow;
   2371 			clabel.num_columns = raidPtr->numCol;
   2372 			clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2373 			clabel.status = rf_ds_optimal;
   2374 			raidwrite_component_label(
   2375 				      raidPtr->Disks[r][sparecol].dev,
   2376 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2377 				      &clabel);
   2378 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2379 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2380 		}
   2381 	}
   2382 
   2383 #endif
   2384 }
   2385 
   2386 
   2387 void
   2388 rf_update_component_labels(raidPtr, final)
   2389 	RF_Raid_t *raidPtr;
   2390 	int final;
   2391 {
   2392 	RF_ComponentLabel_t clabel;
   2393 	int sparecol;
   2394 	int r,c;
   2395 	int i,j;
   2396 	int srow, scol;
   2397 
   2398 	srow = -1;
   2399 	scol = -1;
   2400 
   2401 	/* XXX should do extra checks to make sure things really are clean,
   2402 	   rather than blindly setting the clean bit... */
   2403 
   2404 	raidPtr->mod_counter++;
   2405 
   2406 	for (r = 0; r < raidPtr->numRow; r++) {
   2407 		for (c = 0; c < raidPtr->numCol; c++) {
   2408 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2409 				raidread_component_label(
   2410 					raidPtr->Disks[r][c].dev,
   2411 					raidPtr->raid_cinfo[r][c].ci_vp,
   2412 					&clabel);
   2413 				/* make sure status is noted */
   2414 				clabel.status = rf_ds_optimal;
   2415 				/* bump the counter */
   2416 				clabel.mod_counter = raidPtr->mod_counter;
   2417 
   2418 				raidwrite_component_label(
   2419 					raidPtr->Disks[r][c].dev,
   2420 					raidPtr->raid_cinfo[r][c].ci_vp,
   2421 					&clabel);
   2422 				if (final == RF_FINAL_COMPONENT_UPDATE) {
   2423 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2424 						raidmarkclean(
   2425 							      raidPtr->Disks[r][c].dev,
   2426 							      raidPtr->raid_cinfo[r][c].ci_vp,
   2427 							      raidPtr->mod_counter);
   2428 					}
   2429 				}
   2430 			}
   2431 			/* else we don't touch it.. */
   2432 		}
   2433 	}
   2434 
   2435 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2436 		sparecol = raidPtr->numCol + c;
   2437 		/* Need to ensure that the reconstruct actually completed! */
   2438 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2439 			/*
   2440 
   2441 			   we claim this disk is "optimal" if it's
   2442 			   rf_ds_used_spare, as that means it should be
   2443 			   directly substitutable for the disk it replaced.
   2444 			   We note that too...
   2445 
   2446 			 */
   2447 
   2448 			for(i=0;i<raidPtr->numRow;i++) {
   2449 				for(j=0;j<raidPtr->numCol;j++) {
   2450 					if ((raidPtr->Disks[i][j].spareRow ==
   2451 					     0) &&
   2452 					    (raidPtr->Disks[i][j].spareCol ==
   2453 					     sparecol)) {
   2454 						srow = i;
   2455 						scol = j;
   2456 						break;
   2457 					}
   2458 				}
   2459 			}
   2460 
   2461 			/* XXX shouldn't *really* need this... */
   2462 			raidread_component_label(
   2463 				      raidPtr->Disks[0][sparecol].dev,
   2464 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2465 				      &clabel);
   2466 			/* make sure status is noted */
   2467 
   2468 			raid_init_component_label(raidPtr, &clabel);
   2469 
   2470 			clabel.mod_counter = raidPtr->mod_counter;
   2471 			clabel.row = srow;
   2472 			clabel.column = scol;
   2473 			clabel.status = rf_ds_optimal;
   2474 
   2475 			raidwrite_component_label(
   2476 				      raidPtr->Disks[0][sparecol].dev,
   2477 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2478 				      &clabel);
   2479 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2480 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2481 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2482 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2483 						       raidPtr->mod_counter);
   2484 				}
   2485 			}
   2486 		}
   2487 	}
   2488 	/* 	printf("Component labels updated\n"); */
   2489 }
   2490 
   2491 void
   2492 rf_close_component(raidPtr, vp, auto_configured)
   2493 	RF_Raid_t *raidPtr;
   2494 	struct vnode *vp;
   2495 	int auto_configured;
   2496 {
   2497 	struct proc *p;
   2498 
   2499 	p = raidPtr->engine_thread;
   2500 
   2501 	if (vp != NULL) {
   2502 		if (auto_configured == 1) {
   2503 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2504 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2505 			vput(vp);
   2506 
   2507 		} else {
   2508 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2509 		}
   2510 	} else {
   2511 		printf("vnode was NULL\n");
   2512 	}
   2513 }
   2514 
   2515 
   2516 void
   2517 rf_UnconfigureVnodes(raidPtr)
   2518 	RF_Raid_t *raidPtr;
   2519 {
   2520 	int r,c;
   2521 	struct proc *p;
   2522 	struct vnode *vp;
   2523 	int acd;
   2524 
   2525 
   2526 	/* We take this opportunity to close the vnodes like we should.. */
   2527 
   2528 	p = raidPtr->engine_thread;
   2529 
   2530 	for (r = 0; r < raidPtr->numRow; r++) {
   2531 		for (c = 0; c < raidPtr->numCol; c++) {
   2532 			printf("Closing vnode for row: %d col: %d\n", r, c);
   2533 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2534 			acd = raidPtr->Disks[r][c].auto_configured;
   2535 			rf_close_component(raidPtr, vp, acd);
   2536 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2537 			raidPtr->Disks[r][c].auto_configured = 0;
   2538 		}
   2539 	}
   2540 	for (r = 0; r < raidPtr->numSpare; r++) {
   2541 		printf("Closing vnode for spare: %d\n", r);
   2542 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2543 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2544 		rf_close_component(raidPtr, vp, acd);
   2545 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2546 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2547 	}
   2548 }
   2549 
   2550 
   2551 void
   2552 rf_ReconThread(req)
   2553 	struct rf_recon_req *req;
   2554 {
   2555 	int     s;
   2556 	RF_Raid_t *raidPtr;
   2557 
   2558 	s = splbio();
   2559 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2560 	raidPtr->recon_in_progress = 1;
   2561 
   2562 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2563 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2564 
   2565 	/* XXX get rid of this! we don't need it at all.. */
   2566 	RF_Free(req, sizeof(*req));
   2567 
   2568 	raidPtr->recon_in_progress = 0;
   2569 	splx(s);
   2570 
   2571 	/* That's all... */
   2572 	kthread_exit(0);        /* does not return */
   2573 }
   2574 
   2575 void
   2576 rf_RewriteParityThread(raidPtr)
   2577 	RF_Raid_t *raidPtr;
   2578 {
   2579 	int retcode;
   2580 	int s;
   2581 
   2582 	raidPtr->parity_rewrite_in_progress = 1;
   2583 	s = splbio();
   2584 	retcode = rf_RewriteParity(raidPtr);
   2585 	splx(s);
   2586 	if (retcode) {
   2587 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2588 	} else {
   2589 		/* set the clean bit!  If we shutdown correctly,
   2590 		   the clean bit on each component label will get
   2591 		   set */
   2592 		raidPtr->parity_good = RF_RAID_CLEAN;
   2593 	}
   2594 	raidPtr->parity_rewrite_in_progress = 0;
   2595 
   2596 	/* Anyone waiting for us to stop?  If so, inform them... */
   2597 	if (raidPtr->waitShutdown) {
   2598 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2599 	}
   2600 
   2601 	/* That's all... */
   2602 	kthread_exit(0);        /* does not return */
   2603 }
   2604 
   2605 
   2606 void
   2607 rf_CopybackThread(raidPtr)
   2608 	RF_Raid_t *raidPtr;
   2609 {
   2610 	int s;
   2611 
   2612 	raidPtr->copyback_in_progress = 1;
   2613 	s = splbio();
   2614 	rf_CopybackReconstructedData(raidPtr);
   2615 	splx(s);
   2616 	raidPtr->copyback_in_progress = 0;
   2617 
   2618 	/* That's all... */
   2619 	kthread_exit(0);        /* does not return */
   2620 }
   2621 
   2622 
   2623 void
   2624 rf_ReconstructInPlaceThread(req)
   2625 	struct rf_recon_req *req;
   2626 {
   2627 	int retcode;
   2628 	int s;
   2629 	RF_Raid_t *raidPtr;
   2630 
   2631 	s = splbio();
   2632 	raidPtr = req->raidPtr;
   2633 	raidPtr->recon_in_progress = 1;
   2634 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2635 	RF_Free(req, sizeof(*req));
   2636 	raidPtr->recon_in_progress = 0;
   2637 	splx(s);
   2638 
   2639 	/* That's all... */
   2640 	kthread_exit(0);        /* does not return */
   2641 }
   2642 
   2643 void
   2644 rf_mountroot_hook(dev)
   2645 	struct device *dev;
   2646 {
   2647 
   2648 }
   2649 
   2650 
   2651 RF_AutoConfig_t *
   2652 rf_find_raid_components()
   2653 {
   2654 	struct devnametobdevmaj *dtobdm;
   2655 	struct vnode *vp;
   2656 	struct disklabel label;
   2657 	struct device *dv;
   2658 	char *cd_name;
   2659 	dev_t dev;
   2660 	int error;
   2661 	int i;
   2662 	int good_one;
   2663 	RF_ComponentLabel_t *clabel;
   2664 	RF_AutoConfig_t *ac_list;
   2665 	RF_AutoConfig_t *ac;
   2666 
   2667 
   2668 	/* initialize the AutoConfig list */
   2669 	ac_list = NULL;
   2670 
   2671 	/* we begin by trolling through *all* the devices on the system */
   2672 
   2673 	for (dv = alldevs.tqh_first; dv != NULL;
   2674 	     dv = dv->dv_list.tqe_next) {
   2675 
   2676 		/* we are only interested in disks... */
   2677 		if (dv->dv_class != DV_DISK)
   2678 			continue;
   2679 
   2680 		/* we don't care about floppies... */
   2681 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
   2682 			continue;
   2683 		}
   2684 		/* hdfd is the Atari/Hades floppy driver */
   2685 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"hdfd")) {
   2686 			continue;
   2687 		}
   2688 		/* fdisa is the Atari/Milan floppy driver */
   2689 		if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fdisa")) {
   2690 			continue;
   2691 		}
   2692 
   2693 		/* need to find the device_name_to_block_device_major stuff */
   2694 		cd_name = dv->dv_cfdata->cf_driver->cd_name;
   2695 		dtobdm = dev_name2blk;
   2696 		while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
   2697 			dtobdm++;
   2698 		}
   2699 
   2700 		/* get a vnode for the raw partition of this disk */
   2701 
   2702 		dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
   2703 		if (bdevvp(dev, &vp))
   2704 			panic("RAID can't alloc vnode");
   2705 
   2706 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2707 
   2708 		if (error) {
   2709 			/* "Who cares."  Continue looking
   2710 			   for something that exists*/
   2711 			vput(vp);
   2712 			continue;
   2713 		}
   2714 
   2715 		/* Ok, the disk exists.  Go get the disklabel. */
   2716 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2717 				  FREAD, NOCRED, 0);
   2718 		if (error) {
   2719 			/*
   2720 			 * XXX can't happen - open() would
   2721 			 * have errored out (or faked up one)
   2722 			 */
   2723 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2724 			       dv->dv_xname, 'a' + RAW_PART, error);
   2725 		}
   2726 
   2727 		/* don't need this any more.  We'll allocate it again
   2728 		   a little later if we really do... */
   2729 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2730 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2731 		vput(vp);
   2732 
   2733 		for (i=0; i < label.d_npartitions; i++) {
   2734 			/* We only support partitions marked as RAID */
   2735 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2736 				continue;
   2737 
   2738 			dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
   2739 			if (bdevvp(dev, &vp))
   2740 				panic("RAID can't alloc vnode");
   2741 
   2742 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2743 			if (error) {
   2744 				/* Whatever... */
   2745 				vput(vp);
   2746 				continue;
   2747 			}
   2748 
   2749 			good_one = 0;
   2750 
   2751 			clabel = (RF_ComponentLabel_t *)
   2752 				malloc(sizeof(RF_ComponentLabel_t),
   2753 				       M_RAIDFRAME, M_NOWAIT);
   2754 			if (clabel == NULL) {
   2755 				/* XXX CLEANUP HERE */
   2756 				printf("RAID auto config: out of memory!\n");
   2757 				return(NULL); /* XXX probably should panic? */
   2758 			}
   2759 
   2760 			if (!raidread_component_label(dev, vp, clabel)) {
   2761 				/* Got the label.  Does it look reasonable? */
   2762 				if (rf_reasonable_label(clabel) &&
   2763 				    (clabel->partitionSize <=
   2764 				     label.d_partitions[i].p_size)) {
   2765 #if DEBUG
   2766 					printf("Component on: %s%c: %d\n",
   2767 					       dv->dv_xname, 'a'+i,
   2768 					       label.d_partitions[i].p_size);
   2769 					rf_print_component_label(clabel);
   2770 #endif
   2771 					/* if it's reasonable, add it,
   2772 					   else ignore it. */
   2773 					ac = (RF_AutoConfig_t *)
   2774 						malloc(sizeof(RF_AutoConfig_t),
   2775 						       M_RAIDFRAME,
   2776 						       M_NOWAIT);
   2777 					if (ac == NULL) {
   2778 						/* XXX should panic?? */
   2779 						return(NULL);
   2780 					}
   2781 
   2782 					sprintf(ac->devname, "%s%c",
   2783 						dv->dv_xname, 'a'+i);
   2784 					ac->dev = dev;
   2785 					ac->vp = vp;
   2786 					ac->clabel = clabel;
   2787 					ac->next = ac_list;
   2788 					ac_list = ac;
   2789 					good_one = 1;
   2790 				}
   2791 			}
   2792 			if (!good_one) {
   2793 				/* cleanup */
   2794 				free(clabel, M_RAIDFRAME);
   2795 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2796 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2797 				vput(vp);
   2798 			}
   2799 		}
   2800 	}
   2801 	return(ac_list);
   2802 }
   2803 
   2804 static int
   2805 rf_reasonable_label(clabel)
   2806 	RF_ComponentLabel_t *clabel;
   2807 {
   2808 
   2809 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2810 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2811 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2812 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2813 	    clabel->row >=0 &&
   2814 	    clabel->column >= 0 &&
   2815 	    clabel->num_rows > 0 &&
   2816 	    clabel->num_columns > 0 &&
   2817 	    clabel->row < clabel->num_rows &&
   2818 	    clabel->column < clabel->num_columns &&
   2819 	    clabel->blockSize > 0 &&
   2820 	    clabel->numBlocks > 0) {
   2821 		/* label looks reasonable enough... */
   2822 		return(1);
   2823 	}
   2824 	return(0);
   2825 }
   2826 
   2827 
   2828 void
   2829 rf_print_component_label(clabel)
   2830 	RF_ComponentLabel_t *clabel;
   2831 {
   2832 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2833 	       clabel->row, clabel->column,
   2834 	       clabel->num_rows, clabel->num_columns);
   2835 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2836 	       clabel->version, clabel->serial_number,
   2837 	       clabel->mod_counter);
   2838 	printf("   Clean: %s Status: %d\n",
   2839 	       clabel->clean ? "Yes" : "No", clabel->status );
   2840 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2841 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2842 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2843 	       (char) clabel->parityConfig, clabel->blockSize,
   2844 	       clabel->numBlocks);
   2845 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2846 	printf("   Contains root partition: %s\n",
   2847 	       clabel->root_partition ? "Yes" : "No" );
   2848 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2849 #if 0
   2850 	   printf("   Config order: %d\n", clabel->config_order);
   2851 #endif
   2852 
   2853 }
   2854 
   2855 RF_ConfigSet_t *
   2856 rf_create_auto_sets(ac_list)
   2857 	RF_AutoConfig_t *ac_list;
   2858 {
   2859 	RF_AutoConfig_t *ac;
   2860 	RF_ConfigSet_t *config_sets;
   2861 	RF_ConfigSet_t *cset;
   2862 	RF_AutoConfig_t *ac_next;
   2863 
   2864 
   2865 	config_sets = NULL;
   2866 
   2867 	/* Go through the AutoConfig list, and figure out which components
   2868 	   belong to what sets.  */
   2869 	ac = ac_list;
   2870 	while(ac!=NULL) {
   2871 		/* we're going to putz with ac->next, so save it here
   2872 		   for use at the end of the loop */
   2873 		ac_next = ac->next;
   2874 
   2875 		if (config_sets == NULL) {
   2876 			/* will need at least this one... */
   2877 			config_sets = (RF_ConfigSet_t *)
   2878 				malloc(sizeof(RF_ConfigSet_t),
   2879 				       M_RAIDFRAME, M_NOWAIT);
   2880 			if (config_sets == NULL) {
   2881 				panic("rf_create_auto_sets: No memory!\n");
   2882 			}
   2883 			/* this one is easy :) */
   2884 			config_sets->ac = ac;
   2885 			config_sets->next = NULL;
   2886 			config_sets->rootable = 0;
   2887 			ac->next = NULL;
   2888 		} else {
   2889 			/* which set does this component fit into? */
   2890 			cset = config_sets;
   2891 			while(cset!=NULL) {
   2892 				if (rf_does_it_fit(cset, ac)) {
   2893 					/* looks like it matches... */
   2894 					ac->next = cset->ac;
   2895 					cset->ac = ac;
   2896 					break;
   2897 				}
   2898 				cset = cset->next;
   2899 			}
   2900 			if (cset==NULL) {
   2901 				/* didn't find a match above... new set..*/
   2902 				cset = (RF_ConfigSet_t *)
   2903 					malloc(sizeof(RF_ConfigSet_t),
   2904 					       M_RAIDFRAME, M_NOWAIT);
   2905 				if (cset == NULL) {
   2906 					panic("rf_create_auto_sets: No memory!\n");
   2907 				}
   2908 				cset->ac = ac;
   2909 				ac->next = NULL;
   2910 				cset->next = config_sets;
   2911 				cset->rootable = 0;
   2912 				config_sets = cset;
   2913 			}
   2914 		}
   2915 		ac = ac_next;
   2916 	}
   2917 
   2918 
   2919 	return(config_sets);
   2920 }
   2921 
   2922 static int
   2923 rf_does_it_fit(cset, ac)
   2924 	RF_ConfigSet_t *cset;
   2925 	RF_AutoConfig_t *ac;
   2926 {
   2927 	RF_ComponentLabel_t *clabel1, *clabel2;
   2928 
   2929 	/* If this one matches the *first* one in the set, that's good
   2930 	   enough, since the other members of the set would have been
   2931 	   through here too... */
   2932 	/* note that we are not checking partitionSize here..
   2933 
   2934 	   Note that we are also not checking the mod_counters here.
   2935 	   If everything else matches execpt the mod_counter, that's
   2936 	   good enough for this test.  We will deal with the mod_counters
   2937 	   a little later in the autoconfiguration process.
   2938 
   2939 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2940 
   2941 	   The reason we don't check for this is that failed disks
   2942 	   will have lower modification counts.  If those disks are
   2943 	   not added to the set they used to belong to, then they will
   2944 	   form their own set, which may result in 2 different sets,
   2945 	   for example, competing to be configured at raid0, and
   2946 	   perhaps competing to be the root filesystem set.  If the
   2947 	   wrong ones get configured, or both attempt to become /,
   2948 	   weird behaviour and or serious lossage will occur.  Thus we
   2949 	   need to bring them into the fold here, and kick them out at
   2950 	   a later point.
   2951 
   2952 	*/
   2953 
   2954 	clabel1 = cset->ac->clabel;
   2955 	clabel2 = ac->clabel;
   2956 	if ((clabel1->version == clabel2->version) &&
   2957 	    (clabel1->serial_number == clabel2->serial_number) &&
   2958 	    (clabel1->num_rows == clabel2->num_rows) &&
   2959 	    (clabel1->num_columns == clabel2->num_columns) &&
   2960 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2961 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2962 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2963 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2964 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2965 	    (clabel1->blockSize == clabel2->blockSize) &&
   2966 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2967 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2968 	    (clabel1->root_partition == clabel2->root_partition) &&
   2969 	    (clabel1->last_unit == clabel2->last_unit) &&
   2970 	    (clabel1->config_order == clabel2->config_order)) {
   2971 		/* if it get's here, it almost *has* to be a match */
   2972 	} else {
   2973 		/* it's not consistent with somebody in the set..
   2974 		   punt */
   2975 		return(0);
   2976 	}
   2977 	/* all was fine.. it must fit... */
   2978 	return(1);
   2979 }
   2980 
   2981 int
   2982 rf_have_enough_components(cset)
   2983 	RF_ConfigSet_t *cset;
   2984 {
   2985 	RF_AutoConfig_t *ac;
   2986 	RF_AutoConfig_t *auto_config;
   2987 	RF_ComponentLabel_t *clabel;
   2988 	int r,c;
   2989 	int num_rows;
   2990 	int num_cols;
   2991 	int num_missing;
   2992 	int mod_counter;
   2993 	int mod_counter_found;
   2994 	int even_pair_failed;
   2995 	char parity_type;
   2996 
   2997 
   2998 	/* check to see that we have enough 'live' components
   2999 	   of this set.  If so, we can configure it if necessary */
   3000 
   3001 	num_rows = cset->ac->clabel->num_rows;
   3002 	num_cols = cset->ac->clabel->num_columns;
   3003 	parity_type = cset->ac->clabel->parityConfig;
   3004 
   3005 	/* XXX Check for duplicate components!?!?!? */
   3006 
   3007 	/* Determine what the mod_counter is supposed to be for this set. */
   3008 
   3009 	mod_counter_found = 0;
   3010 	mod_counter = 0;
   3011 	ac = cset->ac;
   3012 	while(ac!=NULL) {
   3013 		if (mod_counter_found==0) {
   3014 			mod_counter = ac->clabel->mod_counter;
   3015 			mod_counter_found = 1;
   3016 		} else {
   3017 			if (ac->clabel->mod_counter > mod_counter) {
   3018 				mod_counter = ac->clabel->mod_counter;
   3019 			}
   3020 		}
   3021 		ac = ac->next;
   3022 	}
   3023 
   3024 	num_missing = 0;
   3025 	auto_config = cset->ac;
   3026 
   3027 	for(r=0; r<num_rows; r++) {
   3028 		even_pair_failed = 0;
   3029 		for(c=0; c<num_cols; c++) {
   3030 			ac = auto_config;
   3031 			while(ac!=NULL) {
   3032 				if ((ac->clabel->row == r) &&
   3033 				    (ac->clabel->column == c) &&
   3034 				    (ac->clabel->mod_counter == mod_counter)) {
   3035 					/* it's this one... */
   3036 #if DEBUG
   3037 					printf("Found: %s at %d,%d\n",
   3038 					       ac->devname,r,c);
   3039 #endif
   3040 					break;
   3041 				}
   3042 				ac=ac->next;
   3043 			}
   3044 			if (ac==NULL) {
   3045 				/* Didn't find one here! */
   3046 				/* special case for RAID 1, especially
   3047 				   where there are more than 2
   3048 				   components (where RAIDframe treats
   3049 				   things a little differently :( ) */
   3050 				if (parity_type == '1') {
   3051 					if (c%2 == 0) { /* even component */
   3052 						even_pair_failed = 1;
   3053 					} else { /* odd component.  If
   3054                                                     we're failed, and
   3055                                                     so is the even
   3056                                                     component, it's
   3057                                                     "Good Night, Charlie" */
   3058 						if (even_pair_failed == 1) {
   3059 							return(0);
   3060 						}
   3061 					}
   3062 				} else {
   3063 					/* normal accounting */
   3064 					num_missing++;
   3065 				}
   3066 			}
   3067 			if ((parity_type == '1') && (c%2 == 1)) {
   3068 				/* Just did an even component, and we didn't
   3069 				   bail.. reset the even_pair_failed flag,
   3070 				   and go on to the next component.... */
   3071 				even_pair_failed = 0;
   3072 			}
   3073 		}
   3074 	}
   3075 
   3076 	clabel = cset->ac->clabel;
   3077 
   3078 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3079 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3080 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3081 		/* XXX this needs to be made *much* more general */
   3082 		/* Too many failures */
   3083 		return(0);
   3084 	}
   3085 	/* otherwise, all is well, and we've got enough to take a kick
   3086 	   at autoconfiguring this set */
   3087 	return(1);
   3088 }
   3089 
   3090 void
   3091 rf_create_configuration(ac,config,raidPtr)
   3092 	RF_AutoConfig_t *ac;
   3093 	RF_Config_t *config;
   3094 	RF_Raid_t *raidPtr;
   3095 {
   3096 	RF_ComponentLabel_t *clabel;
   3097 	int i;
   3098 
   3099 	clabel = ac->clabel;
   3100 
   3101 	/* 1. Fill in the common stuff */
   3102 	config->numRow = clabel->num_rows;
   3103 	config->numCol = clabel->num_columns;
   3104 	config->numSpare = 0; /* XXX should this be set here? */
   3105 	config->sectPerSU = clabel->sectPerSU;
   3106 	config->SUsPerPU = clabel->SUsPerPU;
   3107 	config->SUsPerRU = clabel->SUsPerRU;
   3108 	config->parityConfig = clabel->parityConfig;
   3109 	/* XXX... */
   3110 	strcpy(config->diskQueueType,"fifo");
   3111 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3112 	config->layoutSpecificSize = 0; /* XXX ?? */
   3113 
   3114 	while(ac!=NULL) {
   3115 		/* row/col values will be in range due to the checks
   3116 		   in reasonable_label() */
   3117 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3118 		       ac->devname);
   3119 		ac = ac->next;
   3120 	}
   3121 
   3122 	for(i=0;i<RF_MAXDBGV;i++) {
   3123 		config->debugVars[i][0] = NULL;
   3124 	}
   3125 }
   3126 
   3127 int
   3128 rf_set_autoconfig(raidPtr, new_value)
   3129 	RF_Raid_t *raidPtr;
   3130 	int new_value;
   3131 {
   3132 	RF_ComponentLabel_t clabel;
   3133 	struct vnode *vp;
   3134 	dev_t dev;
   3135 	int row, column;
   3136 
   3137 	raidPtr->autoconfigure = new_value;
   3138 	for(row=0; row<raidPtr->numRow; row++) {
   3139 		for(column=0; column<raidPtr->numCol; column++) {
   3140 			if (raidPtr->Disks[row][column].status ==
   3141 			    rf_ds_optimal) {
   3142 				dev = raidPtr->Disks[row][column].dev;
   3143 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3144 				raidread_component_label(dev, vp, &clabel);
   3145 				clabel.autoconfigure = new_value;
   3146 				raidwrite_component_label(dev, vp, &clabel);
   3147 			}
   3148 		}
   3149 	}
   3150 	return(new_value);
   3151 }
   3152 
   3153 int
   3154 rf_set_rootpartition(raidPtr, new_value)
   3155 	RF_Raid_t *raidPtr;
   3156 	int new_value;
   3157 {
   3158 	RF_ComponentLabel_t clabel;
   3159 	struct vnode *vp;
   3160 	dev_t dev;
   3161 	int row, column;
   3162 
   3163 	raidPtr->root_partition = new_value;
   3164 	for(row=0; row<raidPtr->numRow; row++) {
   3165 		for(column=0; column<raidPtr->numCol; column++) {
   3166 			if (raidPtr->Disks[row][column].status ==
   3167 			    rf_ds_optimal) {
   3168 				dev = raidPtr->Disks[row][column].dev;
   3169 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3170 				raidread_component_label(dev, vp, &clabel);
   3171 				clabel.root_partition = new_value;
   3172 				raidwrite_component_label(dev, vp, &clabel);
   3173 			}
   3174 		}
   3175 	}
   3176 	return(new_value);
   3177 }
   3178 
   3179 void
   3180 rf_release_all_vps(cset)
   3181 	RF_ConfigSet_t *cset;
   3182 {
   3183 	RF_AutoConfig_t *ac;
   3184 
   3185 	ac = cset->ac;
   3186 	while(ac!=NULL) {
   3187 		/* Close the vp, and give it back */
   3188 		if (ac->vp) {
   3189 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3190 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3191 			vput(ac->vp);
   3192 			ac->vp = NULL;
   3193 		}
   3194 		ac = ac->next;
   3195 	}
   3196 }
   3197 
   3198 
   3199 void
   3200 rf_cleanup_config_set(cset)
   3201 	RF_ConfigSet_t *cset;
   3202 {
   3203 	RF_AutoConfig_t *ac;
   3204 	RF_AutoConfig_t *next_ac;
   3205 
   3206 	ac = cset->ac;
   3207 	while(ac!=NULL) {
   3208 		next_ac = ac->next;
   3209 		/* nuke the label */
   3210 		free(ac->clabel, M_RAIDFRAME);
   3211 		/* cleanup the config structure */
   3212 		free(ac, M_RAIDFRAME);
   3213 		/* "next.." */
   3214 		ac = next_ac;
   3215 	}
   3216 	/* and, finally, nuke the config set */
   3217 	free(cset, M_RAIDFRAME);
   3218 }
   3219 
   3220 
   3221 void
   3222 raid_init_component_label(raidPtr, clabel)
   3223 	RF_Raid_t *raidPtr;
   3224 	RF_ComponentLabel_t *clabel;
   3225 {
   3226 	/* current version number */
   3227 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3228 	clabel->serial_number = raidPtr->serial_number;
   3229 	clabel->mod_counter = raidPtr->mod_counter;
   3230 	clabel->num_rows = raidPtr->numRow;
   3231 	clabel->num_columns = raidPtr->numCol;
   3232 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3233 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3234 
   3235 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3236 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3237 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3238 
   3239 	clabel->blockSize = raidPtr->bytesPerSector;
   3240 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3241 
   3242 	/* XXX not portable */
   3243 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3244 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3245 	clabel->autoconfigure = raidPtr->autoconfigure;
   3246 	clabel->root_partition = raidPtr->root_partition;
   3247 	clabel->last_unit = raidPtr->raidid;
   3248 	clabel->config_order = raidPtr->config_order;
   3249 }
   3250 
   3251 int
   3252 rf_auto_config_set(cset,unit)
   3253 	RF_ConfigSet_t *cset;
   3254 	int *unit;
   3255 {
   3256 	RF_Raid_t *raidPtr;
   3257 	RF_Config_t *config;
   3258 	int raidID;
   3259 	int retcode;
   3260 
   3261 	printf("RAID autoconfigure\n");
   3262 
   3263 	retcode = 0;
   3264 	*unit = -1;
   3265 
   3266 	/* 1. Create a config structure */
   3267 
   3268 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3269 				       M_RAIDFRAME,
   3270 				       M_NOWAIT);
   3271 	if (config==NULL) {
   3272 		printf("Out of mem!?!?\n");
   3273 				/* XXX do something more intelligent here. */
   3274 		return(1);
   3275 	}
   3276 
   3277 	memset(config, 0, sizeof(RF_Config_t));
   3278 
   3279 	/* XXX raidID needs to be set correctly.. */
   3280 
   3281 	/*
   3282 	   2. Figure out what RAID ID this one is supposed to live at
   3283 	   See if we can get the same RAID dev that it was configured
   3284 	   on last time..
   3285 	*/
   3286 
   3287 	raidID = cset->ac->clabel->last_unit;
   3288 	if ((raidID < 0) || (raidID >= numraid)) {
   3289 		/* let's not wander off into lala land. */
   3290 		raidID = numraid - 1;
   3291 	}
   3292 	if (raidPtrs[raidID]->valid != 0) {
   3293 
   3294 		/*
   3295 		   Nope... Go looking for an alternative...
   3296 		   Start high so we don't immediately use raid0 if that's
   3297 		   not taken.
   3298 		*/
   3299 
   3300 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3301 			if (raidPtrs[raidID]->valid == 0) {
   3302 				/* can use this one! */
   3303 				break;
   3304 			}
   3305 		}
   3306 	}
   3307 
   3308 	if (raidID < 0) {
   3309 		/* punt... */
   3310 		printf("Unable to auto configure this set!\n");
   3311 		printf("(Out of RAID devs!)\n");
   3312 		return(1);
   3313 	}
   3314 	printf("Configuring raid%d:\n",raidID);
   3315 	raidPtr = raidPtrs[raidID];
   3316 
   3317 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3318 	raidPtr->raidid = raidID;
   3319 	raidPtr->openings = RAIDOUTSTANDING;
   3320 
   3321 	/* 3. Build the configuration structure */
   3322 	rf_create_configuration(cset->ac, config, raidPtr);
   3323 
   3324 	/* 4. Do the configuration */
   3325 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3326 
   3327 	if (retcode == 0) {
   3328 
   3329 		raidinit(raidPtrs[raidID]);
   3330 
   3331 		rf_markalldirty(raidPtrs[raidID]);
   3332 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3333 		if (cset->ac->clabel->root_partition==1) {
   3334 			/* everything configured just fine.  Make a note
   3335 			   that this set is eligible to be root. */
   3336 			cset->rootable = 1;
   3337 			/* XXX do this here? */
   3338 			raidPtrs[raidID]->root_partition = 1;
   3339 		}
   3340 	}
   3341 
   3342 	/* 5. Cleanup */
   3343 	free(config, M_RAIDFRAME);
   3344 
   3345 	*unit = raidID;
   3346 	return(retcode);
   3347 }
   3348 
   3349 void
   3350 rf_disk_unbusy(desc)
   3351 	RF_RaidAccessDesc_t *desc;
   3352 {
   3353 	struct buf *bp;
   3354 
   3355 	bp = (struct buf *)desc->bp;
   3356 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3357 			    (bp->b_bcount - bp->b_resid));
   3358 }
   3359