rf_netbsdkintf.c revision 1.125 1 /* $NetBSD: rf_netbsdkintf.c,v 1.125 2002/07/20 16:34:15 hannken Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1988 University of Utah.
40 * Copyright (c) 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software contributed to Berkeley by
44 * the Systems Programming Group of the University of Utah Computer
45 * Science Department.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * from: Utah $Hdr: cd.c 1.6 90/11/28$
76 *
77 * @(#)cd.c 8.2 (Berkeley) 11/16/93
78 */
79
80
81
82
83 /*
84 * Copyright (c) 1995 Carnegie-Mellon University.
85 * All rights reserved.
86 *
87 * Authors: Mark Holland, Jim Zelenka
88 *
89 * Permission to use, copy, modify and distribute this software and
90 * its documentation is hereby granted, provided that both the copyright
91 * notice and this permission notice appear in all copies of the
92 * software, derivative works or modified versions, and any portions
93 * thereof, and that both notices appear in supporting documentation.
94 *
95 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
96 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
97 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
98 *
99 * Carnegie Mellon requests users of this software to return to
100 *
101 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
102 * School of Computer Science
103 * Carnegie Mellon University
104 * Pittsburgh PA 15213-3890
105 *
106 * any improvements or extensions that they make and grant Carnegie the
107 * rights to redistribute these changes.
108 */
109
110 /***********************************************************
111 *
112 * rf_kintf.c -- the kernel interface routines for RAIDframe
113 *
114 ***********************************************************/
115
116 #include <sys/cdefs.h>
117 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.125 2002/07/20 16:34:15 hannken Exp $");
118
119 #include <sys/param.h>
120 #include <sys/errno.h>
121 #include <sys/pool.h>
122 #include <sys/queue.h>
123 #include <sys/disk.h>
124 #include <sys/device.h>
125 #include <sys/stat.h>
126 #include <sys/ioctl.h>
127 #include <sys/fcntl.h>
128 #include <sys/systm.h>
129 #include <sys/namei.h>
130 #include <sys/vnode.h>
131 #include <sys/disklabel.h>
132 #include <sys/conf.h>
133 #include <sys/lock.h>
134 #include <sys/buf.h>
135 #include <sys/user.h>
136 #include <sys/reboot.h>
137
138 #include <dev/raidframe/raidframevar.h>
139 #include <dev/raidframe/raidframeio.h>
140 #include "raid.h"
141 #include "opt_raid_autoconfig.h"
142 #include "rf_raid.h"
143 #include "rf_copyback.h"
144 #include "rf_dag.h"
145 #include "rf_dagflags.h"
146 #include "rf_desc.h"
147 #include "rf_diskqueue.h"
148 #include "rf_acctrace.h"
149 #include "rf_etimer.h"
150 #include "rf_general.h"
151 #include "rf_debugMem.h"
152 #include "rf_kintf.h"
153 #include "rf_options.h"
154 #include "rf_driver.h"
155 #include "rf_parityscan.h"
156 #include "rf_debugprint.h"
157 #include "rf_threadstuff.h"
158
159 int rf_kdebug_level = 0;
160
161 #ifdef DEBUG
162 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
163 #else /* DEBUG */
164 #define db1_printf(a) { }
165 #endif /* DEBUG */
166
167 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
168
169 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
170
171 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
172 * spare table */
173 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
174 * installation process */
175
176 /* prototypes */
177 static void KernelWakeupFunc(struct buf * bp);
178 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
179 dev_t dev, RF_SectorNum_t startSect,
180 RF_SectorCount_t numSect, caddr_t buf,
181 void (*cbFunc) (struct buf *), void *cbArg,
182 int logBytesPerSector, struct proc * b_proc);
183 static void raidinit(RF_Raid_t *);
184
185 void raidattach(int);
186 int raidsize(dev_t);
187 int raidopen(dev_t, int, int, struct proc *);
188 int raidclose(dev_t, int, int, struct proc *);
189 int raidioctl(dev_t, u_long, caddr_t, int, struct proc *);
190 int raidwrite(dev_t, struct uio *, int);
191 int raidread(dev_t, struct uio *, int);
192 void raidstrategy(struct buf *);
193 int raiddump(dev_t, daddr_t, caddr_t, size_t);
194
195 /*
196 * Pilfered from ccd.c
197 */
198
199 struct raidbuf {
200 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
201 struct buf *rf_obp; /* ptr. to original I/O buf */
202 int rf_flags; /* misc. flags */
203 RF_DiskQueueData_t *req;/* the request that this was part of.. */
204 };
205
206 /* component buffer pool */
207 struct pool raidframe_cbufpool;
208
209 #define RAIDGETBUF(rs) pool_get(&raidframe_cbufpool, PR_NOWAIT)
210 #define RAIDPUTBUF(rs, cbp) pool_put(&raidframe_cbufpool, cbp)
211
212 /* XXX Not sure if the following should be replacing the raidPtrs above,
213 or if it should be used in conjunction with that...
214 */
215
216 struct raid_softc {
217 int sc_flags; /* flags */
218 int sc_cflags; /* configuration flags */
219 size_t sc_size; /* size of the raid device */
220 char sc_xname[20]; /* XXX external name */
221 struct disk sc_dkdev; /* generic disk device info */
222 struct bufq_state buf_queue; /* used for the device queue */
223 };
224 /* sc_flags */
225 #define RAIDF_INITED 0x01 /* unit has been initialized */
226 #define RAIDF_WLABEL 0x02 /* label area is writable */
227 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
228 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
229 #define RAIDF_LOCKED 0x80 /* unit is locked */
230
231 #define raidunit(x) DISKUNIT(x)
232 int numraid = 0;
233
234 /*
235 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
236 * Be aware that large numbers can allow the driver to consume a lot of
237 * kernel memory, especially on writes, and in degraded mode reads.
238 *
239 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
240 * a single 64K write will typically require 64K for the old data,
241 * 64K for the old parity, and 64K for the new parity, for a total
242 * of 192K (if the parity buffer is not re-used immediately).
243 * Even it if is used immediately, that's still 128K, which when multiplied
244 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
245 *
246 * Now in degraded mode, for example, a 64K read on the above setup may
247 * require data reconstruction, which will require *all* of the 4 remaining
248 * disks to participate -- 4 * 32K/disk == 128K again.
249 */
250
251 #ifndef RAIDOUTSTANDING
252 #define RAIDOUTSTANDING 6
253 #endif
254
255 #define RAIDLABELDEV(dev) \
256 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
257
258 /* declared here, and made public, for the benefit of KVM stuff.. */
259 struct raid_softc *raid_softc;
260
261 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
262 struct disklabel *);
263 static void raidgetdisklabel(dev_t);
264 static void raidmakedisklabel(struct raid_softc *);
265
266 static int raidlock(struct raid_softc *);
267 static void raidunlock(struct raid_softc *);
268
269 static void rf_markalldirty(RF_Raid_t *);
270 void rf_mountroot_hook(struct device *);
271
272 struct device *raidrootdev;
273
274 void rf_ReconThread(struct rf_recon_req *);
275 /* XXX what I want is: */
276 /*void rf_ReconThread(RF_Raid_t *raidPtr); */
277 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
278 void rf_CopybackThread(RF_Raid_t *raidPtr);
279 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
280 void rf_buildroothack(void *);
281
282 RF_AutoConfig_t *rf_find_raid_components(void);
283 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
284 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
285 static int rf_reasonable_label(RF_ComponentLabel_t *);
286 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
287 int rf_set_autoconfig(RF_Raid_t *, int);
288 int rf_set_rootpartition(RF_Raid_t *, int);
289 void rf_release_all_vps(RF_ConfigSet_t *);
290 void rf_cleanup_config_set(RF_ConfigSet_t *);
291 int rf_have_enough_components(RF_ConfigSet_t *);
292 int rf_auto_config_set(RF_ConfigSet_t *, int *);
293
294 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
295 allow autoconfig to take place.
296 Note that this is overridden by having
297 RAID_AUTOCONFIG as an option in the
298 kernel config file. */
299
300 void
301 raidattach(num)
302 int num;
303 {
304 int raidID;
305 int i, rc;
306 RF_AutoConfig_t *ac_list; /* autoconfig list */
307 RF_ConfigSet_t *config_sets;
308
309 #ifdef DEBUG
310 printf("raidattach: Asked for %d units\n", num);
311 #endif
312
313 if (num <= 0) {
314 #ifdef DIAGNOSTIC
315 panic("raidattach: count <= 0");
316 #endif
317 return;
318 }
319 /* This is where all the initialization stuff gets done. */
320
321 numraid = num;
322
323 /* Make some space for requested number of units... */
324
325 RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
326 if (raidPtrs == NULL) {
327 panic("raidPtrs is NULL!!\n");
328 }
329
330 /* Initialize the component buffer pool. */
331 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
332 0, 0, "raidpl", NULL);
333
334 rc = rf_mutex_init(&rf_sparet_wait_mutex);
335 if (rc) {
336 RF_PANIC();
337 }
338
339 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
340
341 for (i = 0; i < num; i++)
342 raidPtrs[i] = NULL;
343 rc = rf_BootRaidframe();
344 if (rc == 0)
345 printf("Kernelized RAIDframe activated\n");
346 else
347 panic("Serious error booting RAID!!\n");
348
349 /* put together some datastructures like the CCD device does.. This
350 * lets us lock the device and what-not when it gets opened. */
351
352 raid_softc = (struct raid_softc *)
353 malloc(num * sizeof(struct raid_softc),
354 M_RAIDFRAME, M_NOWAIT);
355 if (raid_softc == NULL) {
356 printf("WARNING: no memory for RAIDframe driver\n");
357 return;
358 }
359
360 memset(raid_softc, 0, num * sizeof(struct raid_softc));
361
362 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
363 M_RAIDFRAME, M_NOWAIT);
364 if (raidrootdev == NULL) {
365 panic("No memory for RAIDframe driver!!?!?!\n");
366 }
367
368 for (raidID = 0; raidID < num; raidID++) {
369 bufq_init(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
370
371 raidrootdev[raidID].dv_class = DV_DISK;
372 raidrootdev[raidID].dv_cfdata = NULL;
373 raidrootdev[raidID].dv_unit = raidID;
374 raidrootdev[raidID].dv_parent = NULL;
375 raidrootdev[raidID].dv_flags = 0;
376 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
377
378 RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
379 (RF_Raid_t *));
380 if (raidPtrs[raidID] == NULL) {
381 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
382 numraid = raidID;
383 return;
384 }
385 }
386
387 #ifdef RAID_AUTOCONFIG
388 raidautoconfig = 1;
389 #endif
390
391 if (raidautoconfig) {
392 /* 1. locate all RAID components on the system */
393
394 #if DEBUG
395 printf("Searching for raid components...\n");
396 #endif
397 ac_list = rf_find_raid_components();
398
399 /* 2. sort them into their respective sets */
400
401 config_sets = rf_create_auto_sets(ac_list);
402
403 /* 3. evaluate each set and configure the valid ones
404 This gets done in rf_buildroothack() */
405
406 /* schedule the creation of the thread to do the
407 "/ on RAID" stuff */
408
409 kthread_create(rf_buildroothack,config_sets);
410
411 #if 0
412 mountroothook_establish(rf_mountroot_hook, &raidrootdev[0]);
413 #endif
414 }
415
416 }
417
418 void
419 rf_buildroothack(arg)
420 void *arg;
421 {
422 RF_ConfigSet_t *config_sets = arg;
423 RF_ConfigSet_t *cset;
424 RF_ConfigSet_t *next_cset;
425 int retcode;
426 int raidID;
427 int rootID;
428 int num_root;
429
430 rootID = 0;
431 num_root = 0;
432 cset = config_sets;
433 while(cset != NULL ) {
434 next_cset = cset->next;
435 if (rf_have_enough_components(cset) &&
436 cset->ac->clabel->autoconfigure==1) {
437 retcode = rf_auto_config_set(cset,&raidID);
438 if (!retcode) {
439 if (cset->rootable) {
440 rootID = raidID;
441 num_root++;
442 }
443 } else {
444 /* The autoconfig didn't work :( */
445 #if DEBUG
446 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
447 #endif
448 rf_release_all_vps(cset);
449 }
450 } else {
451 /* we're not autoconfiguring this set...
452 release the associated resources */
453 rf_release_all_vps(cset);
454 }
455 /* cleanup */
456 rf_cleanup_config_set(cset);
457 cset = next_cset;
458 }
459
460 /* we found something bootable... */
461
462 if (num_root == 1) {
463 booted_device = &raidrootdev[rootID];
464 } else if (num_root > 1) {
465 /* we can't guess.. require the user to answer... */
466 boothowto |= RB_ASKNAME;
467 }
468 }
469
470
471 int
472 raidsize(dev)
473 dev_t dev;
474 {
475 struct raid_softc *rs;
476 struct disklabel *lp;
477 int part, unit, omask, size;
478
479 unit = raidunit(dev);
480 if (unit >= numraid)
481 return (-1);
482 rs = &raid_softc[unit];
483
484 if ((rs->sc_flags & RAIDF_INITED) == 0)
485 return (-1);
486
487 part = DISKPART(dev);
488 omask = rs->sc_dkdev.dk_openmask & (1 << part);
489 lp = rs->sc_dkdev.dk_label;
490
491 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
492 return (-1);
493
494 if (lp->d_partitions[part].p_fstype != FS_SWAP)
495 size = -1;
496 else
497 size = lp->d_partitions[part].p_size *
498 (lp->d_secsize / DEV_BSIZE);
499
500 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
501 return (-1);
502
503 return (size);
504
505 }
506
507 int
508 raiddump(dev, blkno, va, size)
509 dev_t dev;
510 daddr_t blkno;
511 caddr_t va;
512 size_t size;
513 {
514 /* Not implemented. */
515 return ENXIO;
516 }
517 /* ARGSUSED */
518 int
519 raidopen(dev, flags, fmt, p)
520 dev_t dev;
521 int flags, fmt;
522 struct proc *p;
523 {
524 int unit = raidunit(dev);
525 struct raid_softc *rs;
526 struct disklabel *lp;
527 int part, pmask;
528 int error = 0;
529
530 if (unit >= numraid)
531 return (ENXIO);
532 rs = &raid_softc[unit];
533
534 if ((error = raidlock(rs)) != 0)
535 return (error);
536 lp = rs->sc_dkdev.dk_label;
537
538 part = DISKPART(dev);
539 pmask = (1 << part);
540
541 db1_printf(("Opening raid device number: %d partition: %d\n",
542 unit, part));
543
544
545 if ((rs->sc_flags & RAIDF_INITED) &&
546 (rs->sc_dkdev.dk_openmask == 0))
547 raidgetdisklabel(dev);
548
549 /* make sure that this partition exists */
550
551 if (part != RAW_PART) {
552 db1_printf(("Not a raw partition..\n"));
553 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
554 ((part >= lp->d_npartitions) ||
555 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
556 error = ENXIO;
557 raidunlock(rs);
558 db1_printf(("Bailing out...\n"));
559 return (error);
560 }
561 }
562 /* Prevent this unit from being unconfigured while open. */
563 switch (fmt) {
564 case S_IFCHR:
565 rs->sc_dkdev.dk_copenmask |= pmask;
566 break;
567
568 case S_IFBLK:
569 rs->sc_dkdev.dk_bopenmask |= pmask;
570 break;
571 }
572
573 if ((rs->sc_dkdev.dk_openmask == 0) &&
574 ((rs->sc_flags & RAIDF_INITED) != 0)) {
575 /* First one... mark things as dirty... Note that we *MUST*
576 have done a configure before this. I DO NOT WANT TO BE
577 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
578 THAT THEY BELONG TOGETHER!!!!! */
579 /* XXX should check to see if we're only open for reading
580 here... If so, we needn't do this, but then need some
581 other way of keeping track of what's happened.. */
582
583 rf_markalldirty( raidPtrs[unit] );
584 }
585
586
587 rs->sc_dkdev.dk_openmask =
588 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
589
590 raidunlock(rs);
591
592 return (error);
593
594
595 }
596 /* ARGSUSED */
597 int
598 raidclose(dev, flags, fmt, p)
599 dev_t dev;
600 int flags, fmt;
601 struct proc *p;
602 {
603 int unit = raidunit(dev);
604 struct raid_softc *rs;
605 int error = 0;
606 int part;
607
608 if (unit >= numraid)
609 return (ENXIO);
610 rs = &raid_softc[unit];
611
612 if ((error = raidlock(rs)) != 0)
613 return (error);
614
615 part = DISKPART(dev);
616
617 /* ...that much closer to allowing unconfiguration... */
618 switch (fmt) {
619 case S_IFCHR:
620 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
621 break;
622
623 case S_IFBLK:
624 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
625 break;
626 }
627 rs->sc_dkdev.dk_openmask =
628 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
629
630 if ((rs->sc_dkdev.dk_openmask == 0) &&
631 ((rs->sc_flags & RAIDF_INITED) != 0)) {
632 /* Last one... device is not unconfigured yet.
633 Device shutdown has taken care of setting the
634 clean bits if RAIDF_INITED is not set
635 mark things as clean... */
636 #if 0
637 printf("Last one on raid%d. Updating status.\n",unit);
638 #endif
639 rf_update_component_labels(raidPtrs[unit],
640 RF_FINAL_COMPONENT_UPDATE);
641 if (doing_shutdown) {
642 /* last one, and we're going down, so
643 lights out for this RAID set too. */
644 error = rf_Shutdown(raidPtrs[unit]);
645
646 /* It's no longer initialized... */
647 rs->sc_flags &= ~RAIDF_INITED;
648
649 /* Detach the disk. */
650 disk_detach(&rs->sc_dkdev);
651 }
652 }
653
654 raidunlock(rs);
655 return (0);
656
657 }
658
659 void
660 raidstrategy(bp)
661 struct buf *bp;
662 {
663 int s;
664
665 unsigned int raidID = raidunit(bp->b_dev);
666 RF_Raid_t *raidPtr;
667 struct raid_softc *rs = &raid_softc[raidID];
668 struct disklabel *lp;
669 int wlabel;
670
671 if ((rs->sc_flags & RAIDF_INITED) ==0) {
672 bp->b_error = ENXIO;
673 bp->b_flags |= B_ERROR;
674 bp->b_resid = bp->b_bcount;
675 biodone(bp);
676 return;
677 }
678 if (raidID >= numraid || !raidPtrs[raidID]) {
679 bp->b_error = ENODEV;
680 bp->b_flags |= B_ERROR;
681 bp->b_resid = bp->b_bcount;
682 biodone(bp);
683 return;
684 }
685 raidPtr = raidPtrs[raidID];
686 if (!raidPtr->valid) {
687 bp->b_error = ENODEV;
688 bp->b_flags |= B_ERROR;
689 bp->b_resid = bp->b_bcount;
690 biodone(bp);
691 return;
692 }
693 if (bp->b_bcount == 0) {
694 db1_printf(("b_bcount is zero..\n"));
695 biodone(bp);
696 return;
697 }
698 lp = rs->sc_dkdev.dk_label;
699
700 /*
701 * Do bounds checking and adjust transfer. If there's an
702 * error, the bounds check will flag that for us.
703 */
704
705 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
706 if (DISKPART(bp->b_dev) != RAW_PART)
707 if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
708 db1_printf(("Bounds check failed!!:%d %d\n",
709 (int) bp->b_blkno, (int) wlabel));
710 biodone(bp);
711 return;
712 }
713 s = splbio();
714
715 bp->b_resid = 0;
716
717 /* stuff it onto our queue */
718 BUFQ_PUT(&rs->buf_queue, bp);
719
720 raidstart(raidPtrs[raidID]);
721
722 splx(s);
723 }
724 /* ARGSUSED */
725 int
726 raidread(dev, uio, flags)
727 dev_t dev;
728 struct uio *uio;
729 int flags;
730 {
731 int unit = raidunit(dev);
732 struct raid_softc *rs;
733 int part;
734
735 if (unit >= numraid)
736 return (ENXIO);
737 rs = &raid_softc[unit];
738
739 if ((rs->sc_flags & RAIDF_INITED) == 0)
740 return (ENXIO);
741 part = DISKPART(dev);
742
743 db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
744
745 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
746
747 }
748 /* ARGSUSED */
749 int
750 raidwrite(dev, uio, flags)
751 dev_t dev;
752 struct uio *uio;
753 int flags;
754 {
755 int unit = raidunit(dev);
756 struct raid_softc *rs;
757
758 if (unit >= numraid)
759 return (ENXIO);
760 rs = &raid_softc[unit];
761
762 if ((rs->sc_flags & RAIDF_INITED) == 0)
763 return (ENXIO);
764 db1_printf(("raidwrite\n"));
765 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
766
767 }
768
769 int
770 raidioctl(dev, cmd, data, flag, p)
771 dev_t dev;
772 u_long cmd;
773 caddr_t data;
774 int flag;
775 struct proc *p;
776 {
777 int unit = raidunit(dev);
778 int error = 0;
779 int part, pmask;
780 struct raid_softc *rs;
781 RF_Config_t *k_cfg, *u_cfg;
782 RF_Raid_t *raidPtr;
783 RF_RaidDisk_t *diskPtr;
784 RF_AccTotals_t *totals;
785 RF_DeviceConfig_t *d_cfg, **ucfgp;
786 u_char *specific_buf;
787 int retcode = 0;
788 int row;
789 int column;
790 int raidid;
791 struct rf_recon_req *rrcopy, *rr;
792 RF_ComponentLabel_t *clabel;
793 RF_ComponentLabel_t ci_label;
794 RF_ComponentLabel_t **clabel_ptr;
795 RF_SingleComponent_t *sparePtr,*componentPtr;
796 RF_SingleComponent_t hot_spare;
797 RF_SingleComponent_t component;
798 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
799 int i, j, d;
800 #ifdef __HAVE_OLD_DISKLABEL
801 struct disklabel newlabel;
802 #endif
803
804 if (unit >= numraid)
805 return (ENXIO);
806 rs = &raid_softc[unit];
807 raidPtr = raidPtrs[unit];
808
809 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
810 (int) DISKPART(dev), (int) unit, (int) cmd));
811
812 /* Must be open for writes for these commands... */
813 switch (cmd) {
814 case DIOCSDINFO:
815 case DIOCWDINFO:
816 #ifdef __HAVE_OLD_DISKLABEL
817 case ODIOCWDINFO:
818 case ODIOCSDINFO:
819 #endif
820 case DIOCWLABEL:
821 if ((flag & FWRITE) == 0)
822 return (EBADF);
823 }
824
825 /* Must be initialized for these... */
826 switch (cmd) {
827 case DIOCGDINFO:
828 case DIOCSDINFO:
829 case DIOCWDINFO:
830 #ifdef __HAVE_OLD_DISKLABEL
831 case ODIOCGDINFO:
832 case ODIOCWDINFO:
833 case ODIOCSDINFO:
834 case ODIOCGDEFLABEL:
835 #endif
836 case DIOCGPART:
837 case DIOCWLABEL:
838 case DIOCGDEFLABEL:
839 case RAIDFRAME_SHUTDOWN:
840 case RAIDFRAME_REWRITEPARITY:
841 case RAIDFRAME_GET_INFO:
842 case RAIDFRAME_RESET_ACCTOTALS:
843 case RAIDFRAME_GET_ACCTOTALS:
844 case RAIDFRAME_KEEP_ACCTOTALS:
845 case RAIDFRAME_GET_SIZE:
846 case RAIDFRAME_FAIL_DISK:
847 case RAIDFRAME_COPYBACK:
848 case RAIDFRAME_CHECK_RECON_STATUS:
849 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
850 case RAIDFRAME_GET_COMPONENT_LABEL:
851 case RAIDFRAME_SET_COMPONENT_LABEL:
852 case RAIDFRAME_ADD_HOT_SPARE:
853 case RAIDFRAME_REMOVE_HOT_SPARE:
854 case RAIDFRAME_INIT_LABELS:
855 case RAIDFRAME_REBUILD_IN_PLACE:
856 case RAIDFRAME_CHECK_PARITY:
857 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
859 case RAIDFRAME_CHECK_COPYBACK_STATUS:
860 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
861 case RAIDFRAME_SET_AUTOCONFIG:
862 case RAIDFRAME_SET_ROOT:
863 case RAIDFRAME_DELETE_COMPONENT:
864 case RAIDFRAME_INCORPORATE_HOT_SPARE:
865 if ((rs->sc_flags & RAIDF_INITED) == 0)
866 return (ENXIO);
867 }
868
869 switch (cmd) {
870
871 /* configure the system */
872 case RAIDFRAME_CONFIGURE:
873
874 if (raidPtr->valid) {
875 /* There is a valid RAID set running on this unit! */
876 printf("raid%d: Device already configured!\n",unit);
877 return(EINVAL);
878 }
879
880 /* copy-in the configuration information */
881 /* data points to a pointer to the configuration structure */
882
883 u_cfg = *((RF_Config_t **) data);
884 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
885 if (k_cfg == NULL) {
886 return (ENOMEM);
887 }
888 retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
889 sizeof(RF_Config_t));
890 if (retcode) {
891 RF_Free(k_cfg, sizeof(RF_Config_t));
892 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
893 retcode));
894 return (retcode);
895 }
896 /* allocate a buffer for the layout-specific data, and copy it
897 * in */
898 if (k_cfg->layoutSpecificSize) {
899 if (k_cfg->layoutSpecificSize > 10000) {
900 /* sanity check */
901 RF_Free(k_cfg, sizeof(RF_Config_t));
902 return (EINVAL);
903 }
904 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
905 (u_char *));
906 if (specific_buf == NULL) {
907 RF_Free(k_cfg, sizeof(RF_Config_t));
908 return (ENOMEM);
909 }
910 retcode = copyin(k_cfg->layoutSpecific,
911 (caddr_t) specific_buf,
912 k_cfg->layoutSpecificSize);
913 if (retcode) {
914 RF_Free(k_cfg, sizeof(RF_Config_t));
915 RF_Free(specific_buf,
916 k_cfg->layoutSpecificSize);
917 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
918 retcode));
919 return (retcode);
920 }
921 } else
922 specific_buf = NULL;
923 k_cfg->layoutSpecific = specific_buf;
924
925 /* should do some kind of sanity check on the configuration.
926 * Store the sum of all the bytes in the last byte? */
927
928 /* configure the system */
929
930 /*
931 * Clear the entire RAID descriptor, just to make sure
932 * there is no stale data left in the case of a
933 * reconfiguration
934 */
935 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
936 raidPtr->raidid = unit;
937
938 retcode = rf_Configure(raidPtr, k_cfg, NULL);
939
940 if (retcode == 0) {
941
942 /* allow this many simultaneous IO's to
943 this RAID device */
944 raidPtr->openings = RAIDOUTSTANDING;
945
946 raidinit(raidPtr);
947 rf_markalldirty(raidPtr);
948 }
949 /* free the buffers. No return code here. */
950 if (k_cfg->layoutSpecificSize) {
951 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
952 }
953 RF_Free(k_cfg, sizeof(RF_Config_t));
954
955 return (retcode);
956
957 /* shutdown the system */
958 case RAIDFRAME_SHUTDOWN:
959
960 if ((error = raidlock(rs)) != 0)
961 return (error);
962
963 /*
964 * If somebody has a partition mounted, we shouldn't
965 * shutdown.
966 */
967
968 part = DISKPART(dev);
969 pmask = (1 << part);
970 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
971 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
972 (rs->sc_dkdev.dk_copenmask & pmask))) {
973 raidunlock(rs);
974 return (EBUSY);
975 }
976
977 retcode = rf_Shutdown(raidPtr);
978
979 /* It's no longer initialized... */
980 rs->sc_flags &= ~RAIDF_INITED;
981
982 /* Detach the disk. */
983 disk_detach(&rs->sc_dkdev);
984
985 raidunlock(rs);
986
987 return (retcode);
988 case RAIDFRAME_GET_COMPONENT_LABEL:
989 clabel_ptr = (RF_ComponentLabel_t **) data;
990 /* need to read the component label for the disk indicated
991 by row,column in clabel */
992
993 /* For practice, let's get it directly fromdisk, rather
994 than from the in-core copy */
995 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
996 (RF_ComponentLabel_t *));
997 if (clabel == NULL)
998 return (ENOMEM);
999
1000 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1001
1002 retcode = copyin( *clabel_ptr, clabel,
1003 sizeof(RF_ComponentLabel_t));
1004
1005 if (retcode) {
1006 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1007 return(retcode);
1008 }
1009
1010 row = clabel->row;
1011 column = clabel->column;
1012
1013 if ((row < 0) || (row >= raidPtr->numRow) ||
1014 (column < 0) || (column >= raidPtr->numCol +
1015 raidPtr->numSpare)) {
1016 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1017 return(EINVAL);
1018 }
1019
1020 raidread_component_label(raidPtr->Disks[row][column].dev,
1021 raidPtr->raid_cinfo[row][column].ci_vp,
1022 clabel );
1023
1024 retcode = copyout((caddr_t) clabel,
1025 (caddr_t) *clabel_ptr,
1026 sizeof(RF_ComponentLabel_t));
1027 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1028 return (retcode);
1029
1030 case RAIDFRAME_SET_COMPONENT_LABEL:
1031 clabel = (RF_ComponentLabel_t *) data;
1032
1033 /* XXX check the label for valid stuff... */
1034 /* Note that some things *should not* get modified --
1035 the user should be re-initing the labels instead of
1036 trying to patch things.
1037 */
1038
1039 raidid = raidPtr->raidid;
1040 printf("raid%d: Got component label:\n", raidid);
1041 printf("raid%d: Version: %d\n", raidid, clabel->version);
1042 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1043 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1044 printf("raid%d: Row: %d\n", raidid, clabel->row);
1045 printf("raid%d: Column: %d\n", raidid, clabel->column);
1046 printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
1047 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1048 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1049 printf("raid%d: Status: %d\n", raidid, clabel->status);
1050
1051 row = clabel->row;
1052 column = clabel->column;
1053
1054 if ((row < 0) || (row >= raidPtr->numRow) ||
1055 (column < 0) || (column >= raidPtr->numCol)) {
1056 return(EINVAL);
1057 }
1058
1059 /* XXX this isn't allowed to do anything for now :-) */
1060
1061 /* XXX and before it is, we need to fill in the rest
1062 of the fields!?!?!?! */
1063 #if 0
1064 raidwrite_component_label(
1065 raidPtr->Disks[row][column].dev,
1066 raidPtr->raid_cinfo[row][column].ci_vp,
1067 clabel );
1068 #endif
1069 return (0);
1070
1071 case RAIDFRAME_INIT_LABELS:
1072 clabel = (RF_ComponentLabel_t *) data;
1073 /*
1074 we only want the serial number from
1075 the above. We get all the rest of the information
1076 from the config that was used to create this RAID
1077 set.
1078 */
1079
1080 raidPtr->serial_number = clabel->serial_number;
1081
1082 raid_init_component_label(raidPtr, &ci_label);
1083 ci_label.serial_number = clabel->serial_number;
1084
1085 for(row=0;row<raidPtr->numRow;row++) {
1086 ci_label.row = row;
1087 for(column=0;column<raidPtr->numCol;column++) {
1088 diskPtr = &raidPtr->Disks[row][column];
1089 if (!RF_DEAD_DISK(diskPtr->status)) {
1090 ci_label.partitionSize = diskPtr->partitionSize;
1091 ci_label.column = column;
1092 raidwrite_component_label(
1093 raidPtr->Disks[row][column].dev,
1094 raidPtr->raid_cinfo[row][column].ci_vp,
1095 &ci_label );
1096 }
1097 }
1098 }
1099
1100 return (retcode);
1101 case RAIDFRAME_SET_AUTOCONFIG:
1102 d = rf_set_autoconfig(raidPtr, *(int *) data);
1103 printf("raid%d: New autoconfig value is: %d\n",
1104 raidPtr->raidid, d);
1105 *(int *) data = d;
1106 return (retcode);
1107
1108 case RAIDFRAME_SET_ROOT:
1109 d = rf_set_rootpartition(raidPtr, *(int *) data);
1110 printf("raid%d: New rootpartition value is: %d\n",
1111 raidPtr->raidid, d);
1112 *(int *) data = d;
1113 return (retcode);
1114
1115 /* initialize all parity */
1116 case RAIDFRAME_REWRITEPARITY:
1117
1118 if (raidPtr->Layout.map->faultsTolerated == 0) {
1119 /* Parity for RAID 0 is trivially correct */
1120 raidPtr->parity_good = RF_RAID_CLEAN;
1121 return(0);
1122 }
1123
1124 if (raidPtr->parity_rewrite_in_progress == 1) {
1125 /* Re-write is already in progress! */
1126 return(EINVAL);
1127 }
1128
1129 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1130 rf_RewriteParityThread,
1131 raidPtr,"raid_parity");
1132 return (retcode);
1133
1134
1135 case RAIDFRAME_ADD_HOT_SPARE:
1136 sparePtr = (RF_SingleComponent_t *) data;
1137 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1138 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1139 return(retcode);
1140
1141 case RAIDFRAME_REMOVE_HOT_SPARE:
1142 return(retcode);
1143
1144 case RAIDFRAME_DELETE_COMPONENT:
1145 componentPtr = (RF_SingleComponent_t *)data;
1146 memcpy( &component, componentPtr,
1147 sizeof(RF_SingleComponent_t));
1148 retcode = rf_delete_component(raidPtr, &component);
1149 return(retcode);
1150
1151 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1152 componentPtr = (RF_SingleComponent_t *)data;
1153 memcpy( &component, componentPtr,
1154 sizeof(RF_SingleComponent_t));
1155 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1156 return(retcode);
1157
1158 case RAIDFRAME_REBUILD_IN_PLACE:
1159
1160 if (raidPtr->Layout.map->faultsTolerated == 0) {
1161 /* Can't do this on a RAID 0!! */
1162 return(EINVAL);
1163 }
1164
1165 if (raidPtr->recon_in_progress == 1) {
1166 /* a reconstruct is already in progress! */
1167 return(EINVAL);
1168 }
1169
1170 componentPtr = (RF_SingleComponent_t *) data;
1171 memcpy( &component, componentPtr,
1172 sizeof(RF_SingleComponent_t));
1173 row = component.row;
1174 column = component.column;
1175 printf("raid%d: Rebuild: %d %d\n", raidPtr->raidid,
1176 row, column);
1177 if ((row < 0) || (row >= raidPtr->numRow) ||
1178 (column < 0) || (column >= raidPtr->numCol)) {
1179 return(EINVAL);
1180 }
1181
1182 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1183 if (rrcopy == NULL)
1184 return(ENOMEM);
1185
1186 rrcopy->raidPtr = (void *) raidPtr;
1187 rrcopy->row = row;
1188 rrcopy->col = column;
1189
1190 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1191 rf_ReconstructInPlaceThread,
1192 rrcopy,"raid_reconip");
1193 return(retcode);
1194
1195 case RAIDFRAME_GET_INFO:
1196 if (!raidPtr->valid)
1197 return (ENODEV);
1198 ucfgp = (RF_DeviceConfig_t **) data;
1199 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1200 (RF_DeviceConfig_t *));
1201 if (d_cfg == NULL)
1202 return (ENOMEM);
1203 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1204 d_cfg->rows = raidPtr->numRow;
1205 d_cfg->cols = raidPtr->numCol;
1206 d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1207 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1208 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1209 return (ENOMEM);
1210 }
1211 d_cfg->nspares = raidPtr->numSpare;
1212 if (d_cfg->nspares >= RF_MAX_DISKS) {
1213 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1214 return (ENOMEM);
1215 }
1216 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1217 d = 0;
1218 for (i = 0; i < d_cfg->rows; i++) {
1219 for (j = 0; j < d_cfg->cols; j++) {
1220 d_cfg->devs[d] = raidPtr->Disks[i][j];
1221 d++;
1222 }
1223 }
1224 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1225 d_cfg->spares[i] = raidPtr->Disks[0][j];
1226 }
1227 retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
1228 sizeof(RF_DeviceConfig_t));
1229 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1230
1231 return (retcode);
1232
1233 case RAIDFRAME_CHECK_PARITY:
1234 *(int *) data = raidPtr->parity_good;
1235 return (0);
1236
1237 case RAIDFRAME_RESET_ACCTOTALS:
1238 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1239 return (0);
1240
1241 case RAIDFRAME_GET_ACCTOTALS:
1242 totals = (RF_AccTotals_t *) data;
1243 *totals = raidPtr->acc_totals;
1244 return (0);
1245
1246 case RAIDFRAME_KEEP_ACCTOTALS:
1247 raidPtr->keep_acc_totals = *(int *)data;
1248 return (0);
1249
1250 case RAIDFRAME_GET_SIZE:
1251 *(int *) data = raidPtr->totalSectors;
1252 return (0);
1253
1254 /* fail a disk & optionally start reconstruction */
1255 case RAIDFRAME_FAIL_DISK:
1256
1257 if (raidPtr->Layout.map->faultsTolerated == 0) {
1258 /* Can't do this on a RAID 0!! */
1259 return(EINVAL);
1260 }
1261
1262 rr = (struct rf_recon_req *) data;
1263
1264 if (rr->row < 0 || rr->row >= raidPtr->numRow
1265 || rr->col < 0 || rr->col >= raidPtr->numCol)
1266 return (EINVAL);
1267
1268 printf("raid%d: Failing the disk: row: %d col: %d\n",
1269 unit, rr->row, rr->col);
1270
1271 /* make a copy of the recon request so that we don't rely on
1272 * the user's buffer */
1273 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1274 if (rrcopy == NULL)
1275 return(ENOMEM);
1276 memcpy(rrcopy, rr, sizeof(*rr));
1277 rrcopy->raidPtr = (void *) raidPtr;
1278
1279 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1280 rf_ReconThread,
1281 rrcopy,"raid_recon");
1282 return (0);
1283
1284 /* invoke a copyback operation after recon on whatever disk
1285 * needs it, if any */
1286 case RAIDFRAME_COPYBACK:
1287
1288 if (raidPtr->Layout.map->faultsTolerated == 0) {
1289 /* This makes no sense on a RAID 0!! */
1290 return(EINVAL);
1291 }
1292
1293 if (raidPtr->copyback_in_progress == 1) {
1294 /* Copyback is already in progress! */
1295 return(EINVAL);
1296 }
1297
1298 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1299 rf_CopybackThread,
1300 raidPtr,"raid_copyback");
1301 return (retcode);
1302
1303 /* return the percentage completion of reconstruction */
1304 case RAIDFRAME_CHECK_RECON_STATUS:
1305 if (raidPtr->Layout.map->faultsTolerated == 0) {
1306 /* This makes no sense on a RAID 0, so tell the
1307 user it's done. */
1308 *(int *) data = 100;
1309 return(0);
1310 }
1311 row = 0; /* XXX we only consider a single row... */
1312 if (raidPtr->status[row] != rf_rs_reconstructing)
1313 *(int *) data = 100;
1314 else
1315 *(int *) data = raidPtr->reconControl[row]->percentComplete;
1316 return (0);
1317 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1318 progressInfoPtr = (RF_ProgressInfo_t **) data;
1319 row = 0; /* XXX we only consider a single row... */
1320 if (raidPtr->status[row] != rf_rs_reconstructing) {
1321 progressInfo.remaining = 0;
1322 progressInfo.completed = 100;
1323 progressInfo.total = 100;
1324 } else {
1325 progressInfo.total =
1326 raidPtr->reconControl[row]->numRUsTotal;
1327 progressInfo.completed =
1328 raidPtr->reconControl[row]->numRUsComplete;
1329 progressInfo.remaining = progressInfo.total -
1330 progressInfo.completed;
1331 }
1332 retcode = copyout((caddr_t) &progressInfo,
1333 (caddr_t) *progressInfoPtr,
1334 sizeof(RF_ProgressInfo_t));
1335 return (retcode);
1336
1337 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1338 if (raidPtr->Layout.map->faultsTolerated == 0) {
1339 /* This makes no sense on a RAID 0, so tell the
1340 user it's done. */
1341 *(int *) data = 100;
1342 return(0);
1343 }
1344 if (raidPtr->parity_rewrite_in_progress == 1) {
1345 *(int *) data = 100 *
1346 raidPtr->parity_rewrite_stripes_done /
1347 raidPtr->Layout.numStripe;
1348 } else {
1349 *(int *) data = 100;
1350 }
1351 return (0);
1352
1353 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1354 progressInfoPtr = (RF_ProgressInfo_t **) data;
1355 if (raidPtr->parity_rewrite_in_progress == 1) {
1356 progressInfo.total = raidPtr->Layout.numStripe;
1357 progressInfo.completed =
1358 raidPtr->parity_rewrite_stripes_done;
1359 progressInfo.remaining = progressInfo.total -
1360 progressInfo.completed;
1361 } else {
1362 progressInfo.remaining = 0;
1363 progressInfo.completed = 100;
1364 progressInfo.total = 100;
1365 }
1366 retcode = copyout((caddr_t) &progressInfo,
1367 (caddr_t) *progressInfoPtr,
1368 sizeof(RF_ProgressInfo_t));
1369 return (retcode);
1370
1371 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1372 if (raidPtr->Layout.map->faultsTolerated == 0) {
1373 /* This makes no sense on a RAID 0 */
1374 *(int *) data = 100;
1375 return(0);
1376 }
1377 if (raidPtr->copyback_in_progress == 1) {
1378 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1379 raidPtr->Layout.numStripe;
1380 } else {
1381 *(int *) data = 100;
1382 }
1383 return (0);
1384
1385 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1386 progressInfoPtr = (RF_ProgressInfo_t **) data;
1387 if (raidPtr->copyback_in_progress == 1) {
1388 progressInfo.total = raidPtr->Layout.numStripe;
1389 progressInfo.completed =
1390 raidPtr->copyback_stripes_done;
1391 progressInfo.remaining = progressInfo.total -
1392 progressInfo.completed;
1393 } else {
1394 progressInfo.remaining = 0;
1395 progressInfo.completed = 100;
1396 progressInfo.total = 100;
1397 }
1398 retcode = copyout((caddr_t) &progressInfo,
1399 (caddr_t) *progressInfoPtr,
1400 sizeof(RF_ProgressInfo_t));
1401 return (retcode);
1402
1403 /* the sparetable daemon calls this to wait for the kernel to
1404 * need a spare table. this ioctl does not return until a
1405 * spare table is needed. XXX -- calling mpsleep here in the
1406 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1407 * -- I should either compute the spare table in the kernel,
1408 * or have a different -- XXX XXX -- interface (a different
1409 * character device) for delivering the table -- XXX */
1410 #if 0
1411 case RAIDFRAME_SPARET_WAIT:
1412 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1413 while (!rf_sparet_wait_queue)
1414 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1415 waitreq = rf_sparet_wait_queue;
1416 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1417 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1418
1419 /* structure assignment */
1420 *((RF_SparetWait_t *) data) = *waitreq;
1421
1422 RF_Free(waitreq, sizeof(*waitreq));
1423 return (0);
1424
1425 /* wakes up a process waiting on SPARET_WAIT and puts an error
1426 * code in it that will cause the dameon to exit */
1427 case RAIDFRAME_ABORT_SPARET_WAIT:
1428 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1429 waitreq->fcol = -1;
1430 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1431 waitreq->next = rf_sparet_wait_queue;
1432 rf_sparet_wait_queue = waitreq;
1433 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1434 wakeup(&rf_sparet_wait_queue);
1435 return (0);
1436
1437 /* used by the spare table daemon to deliver a spare table
1438 * into the kernel */
1439 case RAIDFRAME_SEND_SPARET:
1440
1441 /* install the spare table */
1442 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1443
1444 /* respond to the requestor. the return status of the spare
1445 * table installation is passed in the "fcol" field */
1446 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1447 waitreq->fcol = retcode;
1448 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1449 waitreq->next = rf_sparet_resp_queue;
1450 rf_sparet_resp_queue = waitreq;
1451 wakeup(&rf_sparet_resp_queue);
1452 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1453
1454 return (retcode);
1455 #endif
1456
1457 default:
1458 break; /* fall through to the os-specific code below */
1459
1460 }
1461
1462 if (!raidPtr->valid)
1463 return (EINVAL);
1464
1465 /*
1466 * Add support for "regular" device ioctls here.
1467 */
1468
1469 switch (cmd) {
1470 case DIOCGDINFO:
1471 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1472 break;
1473 #ifdef __HAVE_OLD_DISKLABEL
1474 case ODIOCGDINFO:
1475 newlabel = *(rs->sc_dkdev.dk_label);
1476 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1477 return ENOTTY;
1478 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1479 break;
1480 #endif
1481
1482 case DIOCGPART:
1483 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1484 ((struct partinfo *) data)->part =
1485 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1486 break;
1487
1488 case DIOCWDINFO:
1489 case DIOCSDINFO:
1490 #ifdef __HAVE_OLD_DISKLABEL
1491 case ODIOCWDINFO:
1492 case ODIOCSDINFO:
1493 #endif
1494 {
1495 struct disklabel *lp;
1496 #ifdef __HAVE_OLD_DISKLABEL
1497 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1498 memset(&newlabel, 0, sizeof newlabel);
1499 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1500 lp = &newlabel;
1501 } else
1502 #endif
1503 lp = (struct disklabel *)data;
1504
1505 if ((error = raidlock(rs)) != 0)
1506 return (error);
1507
1508 rs->sc_flags |= RAIDF_LABELLING;
1509
1510 error = setdisklabel(rs->sc_dkdev.dk_label,
1511 lp, 0, rs->sc_dkdev.dk_cpulabel);
1512 if (error == 0) {
1513 if (cmd == DIOCWDINFO
1514 #ifdef __HAVE_OLD_DISKLABEL
1515 || cmd == ODIOCWDINFO
1516 #endif
1517 )
1518 error = writedisklabel(RAIDLABELDEV(dev),
1519 raidstrategy, rs->sc_dkdev.dk_label,
1520 rs->sc_dkdev.dk_cpulabel);
1521 }
1522 rs->sc_flags &= ~RAIDF_LABELLING;
1523
1524 raidunlock(rs);
1525
1526 if (error)
1527 return (error);
1528 break;
1529 }
1530
1531 case DIOCWLABEL:
1532 if (*(int *) data != 0)
1533 rs->sc_flags |= RAIDF_WLABEL;
1534 else
1535 rs->sc_flags &= ~RAIDF_WLABEL;
1536 break;
1537
1538 case DIOCGDEFLABEL:
1539 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1540 break;
1541
1542 #ifdef __HAVE_OLD_DISKLABEL
1543 case ODIOCGDEFLABEL:
1544 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1545 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1546 return ENOTTY;
1547 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1548 break;
1549 #endif
1550
1551 default:
1552 retcode = ENOTTY;
1553 }
1554 return (retcode);
1555
1556 }
1557
1558
1559 /* raidinit -- complete the rest of the initialization for the
1560 RAIDframe device. */
1561
1562
1563 static void
1564 raidinit(raidPtr)
1565 RF_Raid_t *raidPtr;
1566 {
1567 struct raid_softc *rs;
1568 int unit;
1569
1570 unit = raidPtr->raidid;
1571
1572 rs = &raid_softc[unit];
1573
1574 /* XXX should check return code first... */
1575 rs->sc_flags |= RAIDF_INITED;
1576
1577 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1578
1579 rs->sc_dkdev.dk_name = rs->sc_xname;
1580
1581 /* disk_attach actually creates space for the CPU disklabel, among
1582 * other things, so it's critical to call this *BEFORE* we try putzing
1583 * with disklabels. */
1584
1585 disk_attach(&rs->sc_dkdev);
1586
1587 /* XXX There may be a weird interaction here between this, and
1588 * protectedSectors, as used in RAIDframe. */
1589
1590 rs->sc_size = raidPtr->totalSectors;
1591
1592 }
1593
1594 /* wake up the daemon & tell it to get us a spare table
1595 * XXX
1596 * the entries in the queues should be tagged with the raidPtr
1597 * so that in the extremely rare case that two recons happen at once,
1598 * we know for which device were requesting a spare table
1599 * XXX
1600 *
1601 * XXX This code is not currently used. GO
1602 */
1603 int
1604 rf_GetSpareTableFromDaemon(req)
1605 RF_SparetWait_t *req;
1606 {
1607 int retcode;
1608
1609 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1610 req->next = rf_sparet_wait_queue;
1611 rf_sparet_wait_queue = req;
1612 wakeup(&rf_sparet_wait_queue);
1613
1614 /* mpsleep unlocks the mutex */
1615 while (!rf_sparet_resp_queue) {
1616 tsleep(&rf_sparet_resp_queue, PRIBIO,
1617 "raidframe getsparetable", 0);
1618 }
1619 req = rf_sparet_resp_queue;
1620 rf_sparet_resp_queue = req->next;
1621 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1622
1623 retcode = req->fcol;
1624 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1625 * alloc'd */
1626 return (retcode);
1627 }
1628
1629 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1630 * bp & passes it down.
1631 * any calls originating in the kernel must use non-blocking I/O
1632 * do some extra sanity checking to return "appropriate" error values for
1633 * certain conditions (to make some standard utilities work)
1634 *
1635 * Formerly known as: rf_DoAccessKernel
1636 */
1637 void
1638 raidstart(raidPtr)
1639 RF_Raid_t *raidPtr;
1640 {
1641 RF_SectorCount_t num_blocks, pb, sum;
1642 RF_RaidAddr_t raid_addr;
1643 int retcode;
1644 struct partition *pp;
1645 daddr_t blocknum;
1646 int unit;
1647 struct raid_softc *rs;
1648 int do_async;
1649 struct buf *bp;
1650
1651 unit = raidPtr->raidid;
1652 rs = &raid_softc[unit];
1653
1654 /* quick check to see if anything has died recently */
1655 RF_LOCK_MUTEX(raidPtr->mutex);
1656 if (raidPtr->numNewFailures > 0) {
1657 rf_update_component_labels(raidPtr,
1658 RF_NORMAL_COMPONENT_UPDATE);
1659 raidPtr->numNewFailures--;
1660 }
1661
1662 /* Check to see if we're at the limit... */
1663 while (raidPtr->openings > 0) {
1664 RF_UNLOCK_MUTEX(raidPtr->mutex);
1665
1666 /* get the next item, if any, from the queue */
1667 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1668 /* nothing more to do */
1669 return;
1670 }
1671
1672 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1673 * partition.. Need to make it absolute to the underlying
1674 * device.. */
1675
1676 blocknum = bp->b_blkno;
1677 if (DISKPART(bp->b_dev) != RAW_PART) {
1678 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1679 blocknum += pp->p_offset;
1680 }
1681
1682 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1683 (int) blocknum));
1684
1685 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1686 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1687
1688 /* *THIS* is where we adjust what block we're going to...
1689 * but DO NOT TOUCH bp->b_blkno!!! */
1690 raid_addr = blocknum;
1691
1692 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1693 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1694 sum = raid_addr + num_blocks + pb;
1695 if (1 || rf_debugKernelAccess) {
1696 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1697 (int) raid_addr, (int) sum, (int) num_blocks,
1698 (int) pb, (int) bp->b_resid));
1699 }
1700 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1701 || (sum < num_blocks) || (sum < pb)) {
1702 bp->b_error = ENOSPC;
1703 bp->b_flags |= B_ERROR;
1704 bp->b_resid = bp->b_bcount;
1705 biodone(bp);
1706 RF_LOCK_MUTEX(raidPtr->mutex);
1707 continue;
1708 }
1709 /*
1710 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1711 */
1712
1713 if (bp->b_bcount & raidPtr->sectorMask) {
1714 bp->b_error = EINVAL;
1715 bp->b_flags |= B_ERROR;
1716 bp->b_resid = bp->b_bcount;
1717 biodone(bp);
1718 RF_LOCK_MUTEX(raidPtr->mutex);
1719 continue;
1720
1721 }
1722 db1_printf(("Calling DoAccess..\n"));
1723
1724
1725 RF_LOCK_MUTEX(raidPtr->mutex);
1726 raidPtr->openings--;
1727 RF_UNLOCK_MUTEX(raidPtr->mutex);
1728
1729 /*
1730 * Everything is async.
1731 */
1732 do_async = 1;
1733
1734 disk_busy(&rs->sc_dkdev);
1735
1736 /* XXX we're still at splbio() here... do we *really*
1737 need to be? */
1738
1739 /* don't ever condition on bp->b_flags & B_WRITE.
1740 * always condition on B_READ instead */
1741
1742 retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1743 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1744 do_async, raid_addr, num_blocks,
1745 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1746
1747 RF_LOCK_MUTEX(raidPtr->mutex);
1748 }
1749 RF_UNLOCK_MUTEX(raidPtr->mutex);
1750 }
1751
1752
1753
1754
1755 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1756
1757 int
1758 rf_DispatchKernelIO(queue, req)
1759 RF_DiskQueue_t *queue;
1760 RF_DiskQueueData_t *req;
1761 {
1762 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1763 struct buf *bp;
1764 struct raidbuf *raidbp = NULL;
1765 struct raid_softc *rs;
1766 int unit;
1767 int s;
1768
1769 s=0;
1770 /* s = splbio();*/ /* want to test this */
1771 /* XXX along with the vnode, we also need the softc associated with
1772 * this device.. */
1773
1774 req->queue = queue;
1775
1776 unit = queue->raidPtr->raidid;
1777
1778 db1_printf(("DispatchKernelIO unit: %d\n", unit));
1779
1780 if (unit >= numraid) {
1781 printf("Invalid unit number: %d %d\n", unit, numraid);
1782 panic("Invalid Unit number in rf_DispatchKernelIO\n");
1783 }
1784 rs = &raid_softc[unit];
1785
1786 bp = req->bp;
1787 #if 1
1788 /* XXX when there is a physical disk failure, someone is passing us a
1789 * buffer that contains old stuff!! Attempt to deal with this problem
1790 * without taking a performance hit... (not sure where the real bug
1791 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1792
1793 if (bp->b_flags & B_ERROR) {
1794 bp->b_flags &= ~B_ERROR;
1795 }
1796 if (bp->b_error != 0) {
1797 bp->b_error = 0;
1798 }
1799 #endif
1800 raidbp = RAIDGETBUF(rs);
1801
1802 raidbp->rf_flags = 0; /* XXX not really used anywhere... */
1803
1804 /*
1805 * context for raidiodone
1806 */
1807 raidbp->rf_obp = bp;
1808 raidbp->req = req;
1809
1810 LIST_INIT(&raidbp->rf_buf.b_dep);
1811
1812 switch (req->type) {
1813 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1814 /* XXX need to do something extra here.. */
1815 /* I'm leaving this in, as I've never actually seen it used,
1816 * and I'd like folks to report it... GO */
1817 printf(("WAKEUP CALLED\n"));
1818 queue->numOutstanding++;
1819
1820 /* XXX need to glue the original buffer into this?? */
1821
1822 KernelWakeupFunc(&raidbp->rf_buf);
1823 break;
1824
1825 case RF_IO_TYPE_READ:
1826 case RF_IO_TYPE_WRITE:
1827
1828 if (req->tracerec) {
1829 RF_ETIMER_START(req->tracerec->timer);
1830 }
1831 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1832 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1833 req->sectorOffset, req->numSector,
1834 req->buf, KernelWakeupFunc, (void *) req,
1835 queue->raidPtr->logBytesPerSector, req->b_proc);
1836
1837 if (rf_debugKernelAccess) {
1838 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1839 (long) bp->b_blkno));
1840 }
1841 queue->numOutstanding++;
1842 queue->last_deq_sector = req->sectorOffset;
1843 /* acc wouldn't have been let in if there were any pending
1844 * reqs at any other priority */
1845 queue->curPriority = req->priority;
1846
1847 db1_printf(("Going for %c to unit %d row %d col %d\n",
1848 req->type, unit, queue->row, queue->col));
1849 db1_printf(("sector %d count %d (%d bytes) %d\n",
1850 (int) req->sectorOffset, (int) req->numSector,
1851 (int) (req->numSector <<
1852 queue->raidPtr->logBytesPerSector),
1853 (int) queue->raidPtr->logBytesPerSector));
1854 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1855 raidbp->rf_buf.b_vp->v_numoutput++;
1856 }
1857 VOP_STRATEGY(&raidbp->rf_buf);
1858
1859 break;
1860
1861 default:
1862 panic("bad req->type in rf_DispatchKernelIO");
1863 }
1864 db1_printf(("Exiting from DispatchKernelIO\n"));
1865 /* splx(s); */ /* want to test this */
1866 return (0);
1867 }
1868 /* this is the callback function associated with a I/O invoked from
1869 kernel code.
1870 */
1871 static void
1872 KernelWakeupFunc(vbp)
1873 struct buf *vbp;
1874 {
1875 RF_DiskQueueData_t *req = NULL;
1876 RF_DiskQueue_t *queue;
1877 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1878 struct buf *bp;
1879 struct raid_softc *rs;
1880 int unit;
1881 int s;
1882
1883 s = splbio();
1884 db1_printf(("recovering the request queue:\n"));
1885 req = raidbp->req;
1886
1887 bp = raidbp->rf_obp;
1888
1889 queue = (RF_DiskQueue_t *) req->queue;
1890
1891 if (raidbp->rf_buf.b_flags & B_ERROR) {
1892 bp->b_flags |= B_ERROR;
1893 bp->b_error = raidbp->rf_buf.b_error ?
1894 raidbp->rf_buf.b_error : EIO;
1895 }
1896
1897 /* XXX methinks this could be wrong... */
1898 #if 1
1899 bp->b_resid = raidbp->rf_buf.b_resid;
1900 #endif
1901
1902 if (req->tracerec) {
1903 RF_ETIMER_STOP(req->tracerec->timer);
1904 RF_ETIMER_EVAL(req->tracerec->timer);
1905 RF_LOCK_MUTEX(rf_tracing_mutex);
1906 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1907 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1908 req->tracerec->num_phys_ios++;
1909 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1910 }
1911 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1912
1913 unit = queue->raidPtr->raidid; /* *Much* simpler :-> */
1914
1915
1916 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1917 * ballistic, and mark the component as hosed... */
1918
1919 if (bp->b_flags & B_ERROR) {
1920 /* Mark the disk as dead */
1921 /* but only mark it once... */
1922 if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1923 rf_ds_optimal) {
1924 printf("raid%d: IO Error. Marking %s as failed.\n",
1925 unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
1926 queue->raidPtr->Disks[queue->row][queue->col].status =
1927 rf_ds_failed;
1928 queue->raidPtr->status[queue->row] = rf_rs_degraded;
1929 queue->raidPtr->numFailures++;
1930 queue->raidPtr->numNewFailures++;
1931 } else { /* Disk is already dead... */
1932 /* printf("Disk already marked as dead!\n"); */
1933 }
1934
1935 }
1936
1937 rs = &raid_softc[unit];
1938 RAIDPUTBUF(rs, raidbp);
1939
1940 rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
1941 (req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
1942
1943 splx(s);
1944 }
1945
1946
1947
1948 /*
1949 * initialize a buf structure for doing an I/O in the kernel.
1950 */
1951 static void
1952 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1953 logBytesPerSector, b_proc)
1954 struct buf *bp;
1955 struct vnode *b_vp;
1956 unsigned rw_flag;
1957 dev_t dev;
1958 RF_SectorNum_t startSect;
1959 RF_SectorCount_t numSect;
1960 caddr_t buf;
1961 void (*cbFunc) (struct buf *);
1962 void *cbArg;
1963 int logBytesPerSector;
1964 struct proc *b_proc;
1965 {
1966 /* bp->b_flags = B_PHYS | rw_flag; */
1967 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
1968 bp->b_bcount = numSect << logBytesPerSector;
1969 bp->b_bufsize = bp->b_bcount;
1970 bp->b_error = 0;
1971 bp->b_dev = dev;
1972 bp->b_data = buf;
1973 bp->b_blkno = startSect;
1974 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
1975 if (bp->b_bcount == 0) {
1976 panic("bp->b_bcount is zero in InitBP!!\n");
1977 }
1978 bp->b_proc = b_proc;
1979 bp->b_iodone = cbFunc;
1980 bp->b_vp = b_vp;
1981
1982 }
1983
1984 static void
1985 raidgetdefaultlabel(raidPtr, rs, lp)
1986 RF_Raid_t *raidPtr;
1987 struct raid_softc *rs;
1988 struct disklabel *lp;
1989 {
1990 db1_printf(("Building a default label...\n"));
1991 memset(lp, 0, sizeof(*lp));
1992
1993 /* fabricate a label... */
1994 lp->d_secperunit = raidPtr->totalSectors;
1995 lp->d_secsize = raidPtr->bytesPerSector;
1996 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
1997 lp->d_ntracks = 4 * raidPtr->numCol;
1998 lp->d_ncylinders = raidPtr->totalSectors /
1999 (lp->d_nsectors * lp->d_ntracks);
2000 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2001
2002 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2003 lp->d_type = DTYPE_RAID;
2004 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2005 lp->d_rpm = 3600;
2006 lp->d_interleave = 1;
2007 lp->d_flags = 0;
2008
2009 lp->d_partitions[RAW_PART].p_offset = 0;
2010 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2011 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2012 lp->d_npartitions = RAW_PART + 1;
2013
2014 lp->d_magic = DISKMAGIC;
2015 lp->d_magic2 = DISKMAGIC;
2016 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2017
2018 }
2019 /*
2020 * Read the disklabel from the raid device. If one is not present, fake one
2021 * up.
2022 */
2023 static void
2024 raidgetdisklabel(dev)
2025 dev_t dev;
2026 {
2027 int unit = raidunit(dev);
2028 struct raid_softc *rs = &raid_softc[unit];
2029 char *errstring;
2030 struct disklabel *lp = rs->sc_dkdev.dk_label;
2031 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2032 RF_Raid_t *raidPtr;
2033
2034 db1_printf(("Getting the disklabel...\n"));
2035
2036 memset(clp, 0, sizeof(*clp));
2037
2038 raidPtr = raidPtrs[unit];
2039
2040 raidgetdefaultlabel(raidPtr, rs, lp);
2041
2042 /*
2043 * Call the generic disklabel extraction routine.
2044 */
2045 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2046 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2047 if (errstring)
2048 raidmakedisklabel(rs);
2049 else {
2050 int i;
2051 struct partition *pp;
2052
2053 /*
2054 * Sanity check whether the found disklabel is valid.
2055 *
2056 * This is necessary since total size of the raid device
2057 * may vary when an interleave is changed even though exactly
2058 * same componets are used, and old disklabel may used
2059 * if that is found.
2060 */
2061 if (lp->d_secperunit != rs->sc_size)
2062 printf("raid%d: WARNING: %s: "
2063 "total sector size in disklabel (%d) != "
2064 "the size of raid (%ld)\n", unit, rs->sc_xname,
2065 lp->d_secperunit, (long) rs->sc_size);
2066 for (i = 0; i < lp->d_npartitions; i++) {
2067 pp = &lp->d_partitions[i];
2068 if (pp->p_offset + pp->p_size > rs->sc_size)
2069 printf("raid%d: WARNING: %s: end of partition `%c' "
2070 "exceeds the size of raid (%ld)\n",
2071 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2072 }
2073 }
2074
2075 }
2076 /*
2077 * Take care of things one might want to take care of in the event
2078 * that a disklabel isn't present.
2079 */
2080 static void
2081 raidmakedisklabel(rs)
2082 struct raid_softc *rs;
2083 {
2084 struct disklabel *lp = rs->sc_dkdev.dk_label;
2085 db1_printf(("Making a label..\n"));
2086
2087 /*
2088 * For historical reasons, if there's no disklabel present
2089 * the raw partition must be marked FS_BSDFFS.
2090 */
2091
2092 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2093
2094 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2095
2096 lp->d_checksum = dkcksum(lp);
2097 }
2098 /*
2099 * Lookup the provided name in the filesystem. If the file exists,
2100 * is a valid block device, and isn't being used by anyone else,
2101 * set *vpp to the file's vnode.
2102 * You'll find the original of this in ccd.c
2103 */
2104 int
2105 raidlookup(path, p, vpp)
2106 char *path;
2107 struct proc *p;
2108 struct vnode **vpp; /* result */
2109 {
2110 struct nameidata nd;
2111 struct vnode *vp;
2112 struct vattr va;
2113 int error;
2114
2115 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2116 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2117 #if 0
2118 printf("RAIDframe: vn_open returned %d\n", error);
2119 #endif
2120 return (error);
2121 }
2122 vp = nd.ni_vp;
2123 if (vp->v_usecount > 1) {
2124 VOP_UNLOCK(vp, 0);
2125 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2126 return (EBUSY);
2127 }
2128 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2129 VOP_UNLOCK(vp, 0);
2130 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2131 return (error);
2132 }
2133 /* XXX: eventually we should handle VREG, too. */
2134 if (va.va_type != VBLK) {
2135 VOP_UNLOCK(vp, 0);
2136 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2137 return (ENOTBLK);
2138 }
2139 VOP_UNLOCK(vp, 0);
2140 *vpp = vp;
2141 return (0);
2142 }
2143 /*
2144 * Wait interruptibly for an exclusive lock.
2145 *
2146 * XXX
2147 * Several drivers do this; it should be abstracted and made MP-safe.
2148 * (Hmm... where have we seen this warning before :-> GO )
2149 */
2150 static int
2151 raidlock(rs)
2152 struct raid_softc *rs;
2153 {
2154 int error;
2155
2156 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2157 rs->sc_flags |= RAIDF_WANTED;
2158 if ((error =
2159 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2160 return (error);
2161 }
2162 rs->sc_flags |= RAIDF_LOCKED;
2163 return (0);
2164 }
2165 /*
2166 * Unlock and wake up any waiters.
2167 */
2168 static void
2169 raidunlock(rs)
2170 struct raid_softc *rs;
2171 {
2172
2173 rs->sc_flags &= ~RAIDF_LOCKED;
2174 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2175 rs->sc_flags &= ~RAIDF_WANTED;
2176 wakeup(rs);
2177 }
2178 }
2179
2180
2181 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2182 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2183
2184 int
2185 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2186 {
2187 RF_ComponentLabel_t clabel;
2188 raidread_component_label(dev, b_vp, &clabel);
2189 clabel.mod_counter = mod_counter;
2190 clabel.clean = RF_RAID_CLEAN;
2191 raidwrite_component_label(dev, b_vp, &clabel);
2192 return(0);
2193 }
2194
2195
2196 int
2197 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2198 {
2199 RF_ComponentLabel_t clabel;
2200 raidread_component_label(dev, b_vp, &clabel);
2201 clabel.mod_counter = mod_counter;
2202 clabel.clean = RF_RAID_DIRTY;
2203 raidwrite_component_label(dev, b_vp, &clabel);
2204 return(0);
2205 }
2206
2207 /* ARGSUSED */
2208 int
2209 raidread_component_label(dev, b_vp, clabel)
2210 dev_t dev;
2211 struct vnode *b_vp;
2212 RF_ComponentLabel_t *clabel;
2213 {
2214 struct buf *bp;
2215 int error;
2216
2217 /* XXX should probably ensure that we don't try to do this if
2218 someone has changed rf_protected_sectors. */
2219
2220 if (b_vp == NULL) {
2221 /* For whatever reason, this component is not valid.
2222 Don't try to read a component label from it. */
2223 return(EINVAL);
2224 }
2225
2226 /* get a block of the appropriate size... */
2227 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2228 bp->b_dev = dev;
2229
2230 /* get our ducks in a row for the read */
2231 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2232 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2233 bp->b_flags |= B_READ;
2234 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2235
2236 (*bdevsw[major(bp->b_dev)].d_strategy)(bp);
2237
2238 error = biowait(bp);
2239
2240 if (!error) {
2241 memcpy(clabel, bp->b_data,
2242 sizeof(RF_ComponentLabel_t));
2243 #if 0
2244 rf_print_component_label( clabel );
2245 #endif
2246 } else {
2247 #if 0
2248 printf("Failed to read RAID component label!\n");
2249 #endif
2250 }
2251
2252 brelse(bp);
2253 return(error);
2254 }
2255 /* ARGSUSED */
2256 int
2257 raidwrite_component_label(dev, b_vp, clabel)
2258 dev_t dev;
2259 struct vnode *b_vp;
2260 RF_ComponentLabel_t *clabel;
2261 {
2262 struct buf *bp;
2263 int error;
2264
2265 /* get a block of the appropriate size... */
2266 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2267 bp->b_dev = dev;
2268
2269 /* get our ducks in a row for the write */
2270 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2271 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2272 bp->b_flags |= B_WRITE;
2273 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2274
2275 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2276
2277 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2278
2279 (*bdevsw[major(bp->b_dev)].d_strategy)(bp);
2280 error = biowait(bp);
2281 brelse(bp);
2282 if (error) {
2283 #if 1
2284 printf("Failed to write RAID component info!\n");
2285 #endif
2286 }
2287
2288 return(error);
2289 }
2290
2291 void
2292 rf_markalldirty(raidPtr)
2293 RF_Raid_t *raidPtr;
2294 {
2295 RF_ComponentLabel_t clabel;
2296 int r,c;
2297
2298 raidPtr->mod_counter++;
2299 for (r = 0; r < raidPtr->numRow; r++) {
2300 for (c = 0; c < raidPtr->numCol; c++) {
2301 /* we don't want to touch (at all) a disk that has
2302 failed */
2303 if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2304 raidread_component_label(
2305 raidPtr->Disks[r][c].dev,
2306 raidPtr->raid_cinfo[r][c].ci_vp,
2307 &clabel);
2308 if (clabel.status == rf_ds_spared) {
2309 /* XXX do something special...
2310 but whatever you do, don't
2311 try to access it!! */
2312 } else {
2313 #if 0
2314 clabel.status =
2315 raidPtr->Disks[r][c].status;
2316 raidwrite_component_label(
2317 raidPtr->Disks[r][c].dev,
2318 raidPtr->raid_cinfo[r][c].ci_vp,
2319 &clabel);
2320 #endif
2321 raidmarkdirty(
2322 raidPtr->Disks[r][c].dev,
2323 raidPtr->raid_cinfo[r][c].ci_vp,
2324 raidPtr->mod_counter);
2325 }
2326 }
2327 }
2328 }
2329 /* printf("Component labels marked dirty.\n"); */
2330 #if 0
2331 for( c = 0; c < raidPtr->numSpare ; c++) {
2332 sparecol = raidPtr->numCol + c;
2333 if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
2334 /*
2335
2336 XXX this is where we get fancy and map this spare
2337 into it's correct spot in the array.
2338
2339 */
2340 /*
2341
2342 we claim this disk is "optimal" if it's
2343 rf_ds_used_spare, as that means it should be
2344 directly substitutable for the disk it replaced.
2345 We note that too...
2346
2347 */
2348
2349 for(i=0;i<raidPtr->numRow;i++) {
2350 for(j=0;j<raidPtr->numCol;j++) {
2351 if ((raidPtr->Disks[i][j].spareRow ==
2352 r) &&
2353 (raidPtr->Disks[i][j].spareCol ==
2354 sparecol)) {
2355 srow = r;
2356 scol = sparecol;
2357 break;
2358 }
2359 }
2360 }
2361
2362 raidread_component_label(
2363 raidPtr->Disks[r][sparecol].dev,
2364 raidPtr->raid_cinfo[r][sparecol].ci_vp,
2365 &clabel);
2366 /* make sure status is noted */
2367 clabel.version = RF_COMPONENT_LABEL_VERSION;
2368 clabel.mod_counter = raidPtr->mod_counter;
2369 clabel.serial_number = raidPtr->serial_number;
2370 clabel.row = srow;
2371 clabel.column = scol;
2372 clabel.num_rows = raidPtr->numRow;
2373 clabel.num_columns = raidPtr->numCol;
2374 clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
2375 clabel.status = rf_ds_optimal;
2376 raidwrite_component_label(
2377 raidPtr->Disks[r][sparecol].dev,
2378 raidPtr->raid_cinfo[r][sparecol].ci_vp,
2379 &clabel);
2380 raidmarkclean( raidPtr->Disks[r][sparecol].dev,
2381 raidPtr->raid_cinfo[r][sparecol].ci_vp);
2382 }
2383 }
2384
2385 #endif
2386 }
2387
2388
2389 void
2390 rf_update_component_labels(raidPtr, final)
2391 RF_Raid_t *raidPtr;
2392 int final;
2393 {
2394 RF_ComponentLabel_t clabel;
2395 int sparecol;
2396 int r,c;
2397 int i,j;
2398 int srow, scol;
2399
2400 srow = -1;
2401 scol = -1;
2402
2403 /* XXX should do extra checks to make sure things really are clean,
2404 rather than blindly setting the clean bit... */
2405
2406 raidPtr->mod_counter++;
2407
2408 for (r = 0; r < raidPtr->numRow; r++) {
2409 for (c = 0; c < raidPtr->numCol; c++) {
2410 if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2411 raidread_component_label(
2412 raidPtr->Disks[r][c].dev,
2413 raidPtr->raid_cinfo[r][c].ci_vp,
2414 &clabel);
2415 /* make sure status is noted */
2416 clabel.status = rf_ds_optimal;
2417 /* bump the counter */
2418 clabel.mod_counter = raidPtr->mod_counter;
2419
2420 raidwrite_component_label(
2421 raidPtr->Disks[r][c].dev,
2422 raidPtr->raid_cinfo[r][c].ci_vp,
2423 &clabel);
2424 if (final == RF_FINAL_COMPONENT_UPDATE) {
2425 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2426 raidmarkclean(
2427 raidPtr->Disks[r][c].dev,
2428 raidPtr->raid_cinfo[r][c].ci_vp,
2429 raidPtr->mod_counter);
2430 }
2431 }
2432 }
2433 /* else we don't touch it.. */
2434 }
2435 }
2436
2437 for( c = 0; c < raidPtr->numSpare ; c++) {
2438 sparecol = raidPtr->numCol + c;
2439 /* Need to ensure that the reconstruct actually completed! */
2440 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2441 /*
2442
2443 we claim this disk is "optimal" if it's
2444 rf_ds_used_spare, as that means it should be
2445 directly substitutable for the disk it replaced.
2446 We note that too...
2447
2448 */
2449
2450 for(i=0;i<raidPtr->numRow;i++) {
2451 for(j=0;j<raidPtr->numCol;j++) {
2452 if ((raidPtr->Disks[i][j].spareRow ==
2453 0) &&
2454 (raidPtr->Disks[i][j].spareCol ==
2455 sparecol)) {
2456 srow = i;
2457 scol = j;
2458 break;
2459 }
2460 }
2461 }
2462
2463 /* XXX shouldn't *really* need this... */
2464 raidread_component_label(
2465 raidPtr->Disks[0][sparecol].dev,
2466 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2467 &clabel);
2468 /* make sure status is noted */
2469
2470 raid_init_component_label(raidPtr, &clabel);
2471
2472 clabel.mod_counter = raidPtr->mod_counter;
2473 clabel.row = srow;
2474 clabel.column = scol;
2475 clabel.status = rf_ds_optimal;
2476
2477 raidwrite_component_label(
2478 raidPtr->Disks[0][sparecol].dev,
2479 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2480 &clabel);
2481 if (final == RF_FINAL_COMPONENT_UPDATE) {
2482 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2483 raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2484 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2485 raidPtr->mod_counter);
2486 }
2487 }
2488 }
2489 }
2490 /* printf("Component labels updated\n"); */
2491 }
2492
2493 void
2494 rf_close_component(raidPtr, vp, auto_configured)
2495 RF_Raid_t *raidPtr;
2496 struct vnode *vp;
2497 int auto_configured;
2498 {
2499 struct proc *p;
2500
2501 p = raidPtr->engine_thread;
2502
2503 if (vp != NULL) {
2504 if (auto_configured == 1) {
2505 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2506 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2507 vput(vp);
2508
2509 } else {
2510 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2511 }
2512 } else {
2513 #if 0
2514 printf("vnode was NULL\n");
2515 #endif
2516 }
2517 }
2518
2519
2520 void
2521 rf_UnconfigureVnodes(raidPtr)
2522 RF_Raid_t *raidPtr;
2523 {
2524 int r,c;
2525 struct proc *p;
2526 struct vnode *vp;
2527 int acd;
2528
2529
2530 /* We take this opportunity to close the vnodes like we should.. */
2531
2532 p = raidPtr->engine_thread;
2533
2534 for (r = 0; r < raidPtr->numRow; r++) {
2535 for (c = 0; c < raidPtr->numCol; c++) {
2536 #if 0
2537 printf("raid%d: Closing vnode for row: %d col: %d\n",
2538 raidPtr->raidid, r, c);
2539 #endif
2540 vp = raidPtr->raid_cinfo[r][c].ci_vp;
2541 acd = raidPtr->Disks[r][c].auto_configured;
2542 rf_close_component(raidPtr, vp, acd);
2543 raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2544 raidPtr->Disks[r][c].auto_configured = 0;
2545 }
2546 }
2547 for (r = 0; r < raidPtr->numSpare; r++) {
2548 #if 0
2549 printf("raid%d: Closing vnode for spare: %d\n",
2550 raidPtr->raidid, r);
2551 #endif
2552 vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2553 acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2554 rf_close_component(raidPtr, vp, acd);
2555 raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2556 raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2557 }
2558 }
2559
2560
2561 void
2562 rf_ReconThread(req)
2563 struct rf_recon_req *req;
2564 {
2565 int s;
2566 RF_Raid_t *raidPtr;
2567
2568 s = splbio();
2569 raidPtr = (RF_Raid_t *) req->raidPtr;
2570 raidPtr->recon_in_progress = 1;
2571
2572 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2573 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2574
2575 /* XXX get rid of this! we don't need it at all.. */
2576 RF_Free(req, sizeof(*req));
2577
2578 raidPtr->recon_in_progress = 0;
2579 splx(s);
2580
2581 /* That's all... */
2582 kthread_exit(0); /* does not return */
2583 }
2584
2585 void
2586 rf_RewriteParityThread(raidPtr)
2587 RF_Raid_t *raidPtr;
2588 {
2589 int retcode;
2590 int s;
2591
2592 raidPtr->parity_rewrite_in_progress = 1;
2593 s = splbio();
2594 retcode = rf_RewriteParity(raidPtr);
2595 splx(s);
2596 if (retcode) {
2597 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2598 } else {
2599 /* set the clean bit! If we shutdown correctly,
2600 the clean bit on each component label will get
2601 set */
2602 raidPtr->parity_good = RF_RAID_CLEAN;
2603 }
2604 raidPtr->parity_rewrite_in_progress = 0;
2605
2606 /* Anyone waiting for us to stop? If so, inform them... */
2607 if (raidPtr->waitShutdown) {
2608 wakeup(&raidPtr->parity_rewrite_in_progress);
2609 }
2610
2611 /* That's all... */
2612 kthread_exit(0); /* does not return */
2613 }
2614
2615
2616 void
2617 rf_CopybackThread(raidPtr)
2618 RF_Raid_t *raidPtr;
2619 {
2620 int s;
2621
2622 raidPtr->copyback_in_progress = 1;
2623 s = splbio();
2624 rf_CopybackReconstructedData(raidPtr);
2625 splx(s);
2626 raidPtr->copyback_in_progress = 0;
2627
2628 /* That's all... */
2629 kthread_exit(0); /* does not return */
2630 }
2631
2632
2633 void
2634 rf_ReconstructInPlaceThread(req)
2635 struct rf_recon_req *req;
2636 {
2637 int retcode;
2638 int s;
2639 RF_Raid_t *raidPtr;
2640
2641 s = splbio();
2642 raidPtr = req->raidPtr;
2643 raidPtr->recon_in_progress = 1;
2644 retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
2645 RF_Free(req, sizeof(*req));
2646 raidPtr->recon_in_progress = 0;
2647 splx(s);
2648
2649 /* That's all... */
2650 kthread_exit(0); /* does not return */
2651 }
2652
2653 void
2654 rf_mountroot_hook(dev)
2655 struct device *dev;
2656 {
2657
2658 }
2659
2660
2661 RF_AutoConfig_t *
2662 rf_find_raid_components()
2663 {
2664 struct devnametobdevmaj *dtobdm;
2665 struct vnode *vp;
2666 struct disklabel label;
2667 struct device *dv;
2668 char *cd_name;
2669 dev_t dev;
2670 int error;
2671 int i;
2672 int good_one;
2673 RF_ComponentLabel_t *clabel;
2674 RF_AutoConfig_t *ac_list;
2675 RF_AutoConfig_t *ac;
2676
2677
2678 /* initialize the AutoConfig list */
2679 ac_list = NULL;
2680
2681 /* we begin by trolling through *all* the devices on the system */
2682
2683 for (dv = alldevs.tqh_first; dv != NULL;
2684 dv = dv->dv_list.tqe_next) {
2685
2686 /* we are only interested in disks... */
2687 if (dv->dv_class != DV_DISK)
2688 continue;
2689
2690 /* we don't care about floppies... */
2691 if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fd")) {
2692 continue;
2693 }
2694 /* hdfd is the Atari/Hades floppy driver */
2695 if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"hdfd")) {
2696 continue;
2697 }
2698 /* fdisa is the Atari/Milan floppy driver */
2699 if (!strcmp(dv->dv_cfdata->cf_driver->cd_name,"fdisa")) {
2700 continue;
2701 }
2702
2703 /* need to find the device_name_to_block_device_major stuff */
2704 cd_name = dv->dv_cfdata->cf_driver->cd_name;
2705 dtobdm = dev_name2blk;
2706 while (dtobdm->d_name && strcmp(dtobdm->d_name, cd_name)) {
2707 dtobdm++;
2708 }
2709
2710 /* get a vnode for the raw partition of this disk */
2711
2712 dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, RAW_PART);
2713 if (bdevvp(dev, &vp))
2714 panic("RAID can't alloc vnode");
2715
2716 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2717
2718 if (error) {
2719 /* "Who cares." Continue looking
2720 for something that exists*/
2721 vput(vp);
2722 continue;
2723 }
2724
2725 /* Ok, the disk exists. Go get the disklabel. */
2726 error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
2727 FREAD, NOCRED, 0);
2728 if (error) {
2729 /*
2730 * XXX can't happen - open() would
2731 * have errored out (or faked up one)
2732 */
2733 printf("can't get label for dev %s%c (%d)!?!?\n",
2734 dv->dv_xname, 'a' + RAW_PART, error);
2735 }
2736
2737 /* don't need this any more. We'll allocate it again
2738 a little later if we really do... */
2739 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2740 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2741 vput(vp);
2742
2743 for (i=0; i < label.d_npartitions; i++) {
2744 /* We only support partitions marked as RAID */
2745 if (label.d_partitions[i].p_fstype != FS_RAID)
2746 continue;
2747
2748 dev = MAKEDISKDEV(dtobdm->d_maj, dv->dv_unit, i);
2749 if (bdevvp(dev, &vp))
2750 panic("RAID can't alloc vnode");
2751
2752 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2753 if (error) {
2754 /* Whatever... */
2755 vput(vp);
2756 continue;
2757 }
2758
2759 good_one = 0;
2760
2761 clabel = (RF_ComponentLabel_t *)
2762 malloc(sizeof(RF_ComponentLabel_t),
2763 M_RAIDFRAME, M_NOWAIT);
2764 if (clabel == NULL) {
2765 /* XXX CLEANUP HERE */
2766 printf("RAID auto config: out of memory!\n");
2767 return(NULL); /* XXX probably should panic? */
2768 }
2769
2770 if (!raidread_component_label(dev, vp, clabel)) {
2771 /* Got the label. Does it look reasonable? */
2772 if (rf_reasonable_label(clabel) &&
2773 (clabel->partitionSize <=
2774 label.d_partitions[i].p_size)) {
2775 #if DEBUG
2776 printf("Component on: %s%c: %d\n",
2777 dv->dv_xname, 'a'+i,
2778 label.d_partitions[i].p_size);
2779 rf_print_component_label(clabel);
2780 #endif
2781 /* if it's reasonable, add it,
2782 else ignore it. */
2783 ac = (RF_AutoConfig_t *)
2784 malloc(sizeof(RF_AutoConfig_t),
2785 M_RAIDFRAME,
2786 M_NOWAIT);
2787 if (ac == NULL) {
2788 /* XXX should panic?? */
2789 return(NULL);
2790 }
2791
2792 sprintf(ac->devname, "%s%c",
2793 dv->dv_xname, 'a'+i);
2794 ac->dev = dev;
2795 ac->vp = vp;
2796 ac->clabel = clabel;
2797 ac->next = ac_list;
2798 ac_list = ac;
2799 good_one = 1;
2800 }
2801 }
2802 if (!good_one) {
2803 /* cleanup */
2804 free(clabel, M_RAIDFRAME);
2805 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2806 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2807 vput(vp);
2808 }
2809 }
2810 }
2811 return(ac_list);
2812 }
2813
2814 static int
2815 rf_reasonable_label(clabel)
2816 RF_ComponentLabel_t *clabel;
2817 {
2818
2819 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2820 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2821 ((clabel->clean == RF_RAID_CLEAN) ||
2822 (clabel->clean == RF_RAID_DIRTY)) &&
2823 clabel->row >=0 &&
2824 clabel->column >= 0 &&
2825 clabel->num_rows > 0 &&
2826 clabel->num_columns > 0 &&
2827 clabel->row < clabel->num_rows &&
2828 clabel->column < clabel->num_columns &&
2829 clabel->blockSize > 0 &&
2830 clabel->numBlocks > 0) {
2831 /* label looks reasonable enough... */
2832 return(1);
2833 }
2834 return(0);
2835 }
2836
2837
2838 void
2839 rf_print_component_label(clabel)
2840 RF_ComponentLabel_t *clabel;
2841 {
2842 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2843 clabel->row, clabel->column,
2844 clabel->num_rows, clabel->num_columns);
2845 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2846 clabel->version, clabel->serial_number,
2847 clabel->mod_counter);
2848 printf(" Clean: %s Status: %d\n",
2849 clabel->clean ? "Yes" : "No", clabel->status );
2850 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2851 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2852 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2853 (char) clabel->parityConfig, clabel->blockSize,
2854 clabel->numBlocks);
2855 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2856 printf(" Contains root partition: %s\n",
2857 clabel->root_partition ? "Yes" : "No" );
2858 printf(" Last configured as: raid%d\n", clabel->last_unit );
2859 #if 0
2860 printf(" Config order: %d\n", clabel->config_order);
2861 #endif
2862
2863 }
2864
2865 RF_ConfigSet_t *
2866 rf_create_auto_sets(ac_list)
2867 RF_AutoConfig_t *ac_list;
2868 {
2869 RF_AutoConfig_t *ac;
2870 RF_ConfigSet_t *config_sets;
2871 RF_ConfigSet_t *cset;
2872 RF_AutoConfig_t *ac_next;
2873
2874
2875 config_sets = NULL;
2876
2877 /* Go through the AutoConfig list, and figure out which components
2878 belong to what sets. */
2879 ac = ac_list;
2880 while(ac!=NULL) {
2881 /* we're going to putz with ac->next, so save it here
2882 for use at the end of the loop */
2883 ac_next = ac->next;
2884
2885 if (config_sets == NULL) {
2886 /* will need at least this one... */
2887 config_sets = (RF_ConfigSet_t *)
2888 malloc(sizeof(RF_ConfigSet_t),
2889 M_RAIDFRAME, M_NOWAIT);
2890 if (config_sets == NULL) {
2891 panic("rf_create_auto_sets: No memory!\n");
2892 }
2893 /* this one is easy :) */
2894 config_sets->ac = ac;
2895 config_sets->next = NULL;
2896 config_sets->rootable = 0;
2897 ac->next = NULL;
2898 } else {
2899 /* which set does this component fit into? */
2900 cset = config_sets;
2901 while(cset!=NULL) {
2902 if (rf_does_it_fit(cset, ac)) {
2903 /* looks like it matches... */
2904 ac->next = cset->ac;
2905 cset->ac = ac;
2906 break;
2907 }
2908 cset = cset->next;
2909 }
2910 if (cset==NULL) {
2911 /* didn't find a match above... new set..*/
2912 cset = (RF_ConfigSet_t *)
2913 malloc(sizeof(RF_ConfigSet_t),
2914 M_RAIDFRAME, M_NOWAIT);
2915 if (cset == NULL) {
2916 panic("rf_create_auto_sets: No memory!\n");
2917 }
2918 cset->ac = ac;
2919 ac->next = NULL;
2920 cset->next = config_sets;
2921 cset->rootable = 0;
2922 config_sets = cset;
2923 }
2924 }
2925 ac = ac_next;
2926 }
2927
2928
2929 return(config_sets);
2930 }
2931
2932 static int
2933 rf_does_it_fit(cset, ac)
2934 RF_ConfigSet_t *cset;
2935 RF_AutoConfig_t *ac;
2936 {
2937 RF_ComponentLabel_t *clabel1, *clabel2;
2938
2939 /* If this one matches the *first* one in the set, that's good
2940 enough, since the other members of the set would have been
2941 through here too... */
2942 /* note that we are not checking partitionSize here..
2943
2944 Note that we are also not checking the mod_counters here.
2945 If everything else matches execpt the mod_counter, that's
2946 good enough for this test. We will deal with the mod_counters
2947 a little later in the autoconfiguration process.
2948
2949 (clabel1->mod_counter == clabel2->mod_counter) &&
2950
2951 The reason we don't check for this is that failed disks
2952 will have lower modification counts. If those disks are
2953 not added to the set they used to belong to, then they will
2954 form their own set, which may result in 2 different sets,
2955 for example, competing to be configured at raid0, and
2956 perhaps competing to be the root filesystem set. If the
2957 wrong ones get configured, or both attempt to become /,
2958 weird behaviour and or serious lossage will occur. Thus we
2959 need to bring them into the fold here, and kick them out at
2960 a later point.
2961
2962 */
2963
2964 clabel1 = cset->ac->clabel;
2965 clabel2 = ac->clabel;
2966 if ((clabel1->version == clabel2->version) &&
2967 (clabel1->serial_number == clabel2->serial_number) &&
2968 (clabel1->num_rows == clabel2->num_rows) &&
2969 (clabel1->num_columns == clabel2->num_columns) &&
2970 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2971 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2972 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2973 (clabel1->parityConfig == clabel2->parityConfig) &&
2974 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2975 (clabel1->blockSize == clabel2->blockSize) &&
2976 (clabel1->numBlocks == clabel2->numBlocks) &&
2977 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2978 (clabel1->root_partition == clabel2->root_partition) &&
2979 (clabel1->last_unit == clabel2->last_unit) &&
2980 (clabel1->config_order == clabel2->config_order)) {
2981 /* if it get's here, it almost *has* to be a match */
2982 } else {
2983 /* it's not consistent with somebody in the set..
2984 punt */
2985 return(0);
2986 }
2987 /* all was fine.. it must fit... */
2988 return(1);
2989 }
2990
2991 int
2992 rf_have_enough_components(cset)
2993 RF_ConfigSet_t *cset;
2994 {
2995 RF_AutoConfig_t *ac;
2996 RF_AutoConfig_t *auto_config;
2997 RF_ComponentLabel_t *clabel;
2998 int r,c;
2999 int num_rows;
3000 int num_cols;
3001 int num_missing;
3002 int mod_counter;
3003 int mod_counter_found;
3004 int even_pair_failed;
3005 char parity_type;
3006
3007
3008 /* check to see that we have enough 'live' components
3009 of this set. If so, we can configure it if necessary */
3010
3011 num_rows = cset->ac->clabel->num_rows;
3012 num_cols = cset->ac->clabel->num_columns;
3013 parity_type = cset->ac->clabel->parityConfig;
3014
3015 /* XXX Check for duplicate components!?!?!? */
3016
3017 /* Determine what the mod_counter is supposed to be for this set. */
3018
3019 mod_counter_found = 0;
3020 mod_counter = 0;
3021 ac = cset->ac;
3022 while(ac!=NULL) {
3023 if (mod_counter_found==0) {
3024 mod_counter = ac->clabel->mod_counter;
3025 mod_counter_found = 1;
3026 } else {
3027 if (ac->clabel->mod_counter > mod_counter) {
3028 mod_counter = ac->clabel->mod_counter;
3029 }
3030 }
3031 ac = ac->next;
3032 }
3033
3034 num_missing = 0;
3035 auto_config = cset->ac;
3036
3037 for(r=0; r<num_rows; r++) {
3038 even_pair_failed = 0;
3039 for(c=0; c<num_cols; c++) {
3040 ac = auto_config;
3041 while(ac!=NULL) {
3042 if ((ac->clabel->row == r) &&
3043 (ac->clabel->column == c) &&
3044 (ac->clabel->mod_counter == mod_counter)) {
3045 /* it's this one... */
3046 #if DEBUG
3047 printf("Found: %s at %d,%d\n",
3048 ac->devname,r,c);
3049 #endif
3050 break;
3051 }
3052 ac=ac->next;
3053 }
3054 if (ac==NULL) {
3055 /* Didn't find one here! */
3056 /* special case for RAID 1, especially
3057 where there are more than 2
3058 components (where RAIDframe treats
3059 things a little differently :( ) */
3060 if (parity_type == '1') {
3061 if (c%2 == 0) { /* even component */
3062 even_pair_failed = 1;
3063 } else { /* odd component. If
3064 we're failed, and
3065 so is the even
3066 component, it's
3067 "Good Night, Charlie" */
3068 if (even_pair_failed == 1) {
3069 return(0);
3070 }
3071 }
3072 } else {
3073 /* normal accounting */
3074 num_missing++;
3075 }
3076 }
3077 if ((parity_type == '1') && (c%2 == 1)) {
3078 /* Just did an even component, and we didn't
3079 bail.. reset the even_pair_failed flag,
3080 and go on to the next component.... */
3081 even_pair_failed = 0;
3082 }
3083 }
3084 }
3085
3086 clabel = cset->ac->clabel;
3087
3088 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3089 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3090 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3091 /* XXX this needs to be made *much* more general */
3092 /* Too many failures */
3093 return(0);
3094 }
3095 /* otherwise, all is well, and we've got enough to take a kick
3096 at autoconfiguring this set */
3097 return(1);
3098 }
3099
3100 void
3101 rf_create_configuration(ac,config,raidPtr)
3102 RF_AutoConfig_t *ac;
3103 RF_Config_t *config;
3104 RF_Raid_t *raidPtr;
3105 {
3106 RF_ComponentLabel_t *clabel;
3107 int i;
3108
3109 clabel = ac->clabel;
3110
3111 /* 1. Fill in the common stuff */
3112 config->numRow = clabel->num_rows;
3113 config->numCol = clabel->num_columns;
3114 config->numSpare = 0; /* XXX should this be set here? */
3115 config->sectPerSU = clabel->sectPerSU;
3116 config->SUsPerPU = clabel->SUsPerPU;
3117 config->SUsPerRU = clabel->SUsPerRU;
3118 config->parityConfig = clabel->parityConfig;
3119 /* XXX... */
3120 strcpy(config->diskQueueType,"fifo");
3121 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3122 config->layoutSpecificSize = 0; /* XXX ?? */
3123
3124 while(ac!=NULL) {
3125 /* row/col values will be in range due to the checks
3126 in reasonable_label() */
3127 strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3128 ac->devname);
3129 ac = ac->next;
3130 }
3131
3132 for(i=0;i<RF_MAXDBGV;i++) {
3133 config->debugVars[i][0] = NULL;
3134 }
3135 }
3136
3137 int
3138 rf_set_autoconfig(raidPtr, new_value)
3139 RF_Raid_t *raidPtr;
3140 int new_value;
3141 {
3142 RF_ComponentLabel_t clabel;
3143 struct vnode *vp;
3144 dev_t dev;
3145 int row, column;
3146
3147 raidPtr->autoconfigure = new_value;
3148 for(row=0; row<raidPtr->numRow; row++) {
3149 for(column=0; column<raidPtr->numCol; column++) {
3150 if (raidPtr->Disks[row][column].status ==
3151 rf_ds_optimal) {
3152 dev = raidPtr->Disks[row][column].dev;
3153 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3154 raidread_component_label(dev, vp, &clabel);
3155 clabel.autoconfigure = new_value;
3156 raidwrite_component_label(dev, vp, &clabel);
3157 }
3158 }
3159 }
3160 return(new_value);
3161 }
3162
3163 int
3164 rf_set_rootpartition(raidPtr, new_value)
3165 RF_Raid_t *raidPtr;
3166 int new_value;
3167 {
3168 RF_ComponentLabel_t clabel;
3169 struct vnode *vp;
3170 dev_t dev;
3171 int row, column;
3172
3173 raidPtr->root_partition = new_value;
3174 for(row=0; row<raidPtr->numRow; row++) {
3175 for(column=0; column<raidPtr->numCol; column++) {
3176 if (raidPtr->Disks[row][column].status ==
3177 rf_ds_optimal) {
3178 dev = raidPtr->Disks[row][column].dev;
3179 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3180 raidread_component_label(dev, vp, &clabel);
3181 clabel.root_partition = new_value;
3182 raidwrite_component_label(dev, vp, &clabel);
3183 }
3184 }
3185 }
3186 return(new_value);
3187 }
3188
3189 void
3190 rf_release_all_vps(cset)
3191 RF_ConfigSet_t *cset;
3192 {
3193 RF_AutoConfig_t *ac;
3194
3195 ac = cset->ac;
3196 while(ac!=NULL) {
3197 /* Close the vp, and give it back */
3198 if (ac->vp) {
3199 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3200 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3201 vput(ac->vp);
3202 ac->vp = NULL;
3203 }
3204 ac = ac->next;
3205 }
3206 }
3207
3208
3209 void
3210 rf_cleanup_config_set(cset)
3211 RF_ConfigSet_t *cset;
3212 {
3213 RF_AutoConfig_t *ac;
3214 RF_AutoConfig_t *next_ac;
3215
3216 ac = cset->ac;
3217 while(ac!=NULL) {
3218 next_ac = ac->next;
3219 /* nuke the label */
3220 free(ac->clabel, M_RAIDFRAME);
3221 /* cleanup the config structure */
3222 free(ac, M_RAIDFRAME);
3223 /* "next.." */
3224 ac = next_ac;
3225 }
3226 /* and, finally, nuke the config set */
3227 free(cset, M_RAIDFRAME);
3228 }
3229
3230
3231 void
3232 raid_init_component_label(raidPtr, clabel)
3233 RF_Raid_t *raidPtr;
3234 RF_ComponentLabel_t *clabel;
3235 {
3236 /* current version number */
3237 clabel->version = RF_COMPONENT_LABEL_VERSION;
3238 clabel->serial_number = raidPtr->serial_number;
3239 clabel->mod_counter = raidPtr->mod_counter;
3240 clabel->num_rows = raidPtr->numRow;
3241 clabel->num_columns = raidPtr->numCol;
3242 clabel->clean = RF_RAID_DIRTY; /* not clean */
3243 clabel->status = rf_ds_optimal; /* "It's good!" */
3244
3245 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3246 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3247 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3248
3249 clabel->blockSize = raidPtr->bytesPerSector;
3250 clabel->numBlocks = raidPtr->sectorsPerDisk;
3251
3252 /* XXX not portable */
3253 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3254 clabel->maxOutstanding = raidPtr->maxOutstanding;
3255 clabel->autoconfigure = raidPtr->autoconfigure;
3256 clabel->root_partition = raidPtr->root_partition;
3257 clabel->last_unit = raidPtr->raidid;
3258 clabel->config_order = raidPtr->config_order;
3259 }
3260
3261 int
3262 rf_auto_config_set(cset,unit)
3263 RF_ConfigSet_t *cset;
3264 int *unit;
3265 {
3266 RF_Raid_t *raidPtr;
3267 RF_Config_t *config;
3268 int raidID;
3269 int retcode;
3270
3271 printf("RAID autoconfigure\n");
3272
3273 retcode = 0;
3274 *unit = -1;
3275
3276 /* 1. Create a config structure */
3277
3278 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3279 M_RAIDFRAME,
3280 M_NOWAIT);
3281 if (config==NULL) {
3282 printf("Out of mem!?!?\n");
3283 /* XXX do something more intelligent here. */
3284 return(1);
3285 }
3286
3287 memset(config, 0, sizeof(RF_Config_t));
3288
3289 /* XXX raidID needs to be set correctly.. */
3290
3291 /*
3292 2. Figure out what RAID ID this one is supposed to live at
3293 See if we can get the same RAID dev that it was configured
3294 on last time..
3295 */
3296
3297 raidID = cset->ac->clabel->last_unit;
3298 if ((raidID < 0) || (raidID >= numraid)) {
3299 /* let's not wander off into lala land. */
3300 raidID = numraid - 1;
3301 }
3302 if (raidPtrs[raidID]->valid != 0) {
3303
3304 /*
3305 Nope... Go looking for an alternative...
3306 Start high so we don't immediately use raid0 if that's
3307 not taken.
3308 */
3309
3310 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3311 if (raidPtrs[raidID]->valid == 0) {
3312 /* can use this one! */
3313 break;
3314 }
3315 }
3316 }
3317
3318 if (raidID < 0) {
3319 /* punt... */
3320 printf("Unable to auto configure this set!\n");
3321 printf("(Out of RAID devs!)\n");
3322 return(1);
3323 }
3324 printf("Configuring raid%d:\n",raidID);
3325 raidPtr = raidPtrs[raidID];
3326
3327 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3328 raidPtr->raidid = raidID;
3329 raidPtr->openings = RAIDOUTSTANDING;
3330
3331 /* 3. Build the configuration structure */
3332 rf_create_configuration(cset->ac, config, raidPtr);
3333
3334 /* 4. Do the configuration */
3335 retcode = rf_Configure(raidPtr, config, cset->ac);
3336
3337 if (retcode == 0) {
3338
3339 raidinit(raidPtrs[raidID]);
3340
3341 rf_markalldirty(raidPtrs[raidID]);
3342 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3343 if (cset->ac->clabel->root_partition==1) {
3344 /* everything configured just fine. Make a note
3345 that this set is eligible to be root. */
3346 cset->rootable = 1;
3347 /* XXX do this here? */
3348 raidPtrs[raidID]->root_partition = 1;
3349 }
3350 }
3351
3352 /* 5. Cleanup */
3353 free(config, M_RAIDFRAME);
3354
3355 *unit = raidID;
3356 return(retcode);
3357 }
3358
3359 void
3360 rf_disk_unbusy(desc)
3361 RF_RaidAccessDesc_t *desc;
3362 {
3363 struct buf *bp;
3364
3365 bp = (struct buf *)desc->bp;
3366 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3367 (bp->b_bcount - bp->b_resid));
3368 }
3369