rf_netbsdkintf.c revision 1.145 1 /* $NetBSD: rf_netbsdkintf.c,v 1.145 2002/11/01 11:31:59 mrg Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1988 University of Utah.
40 * Copyright (c) 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software contributed to Berkeley by
44 * the Systems Programming Group of the University of Utah Computer
45 * Science Department.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * from: Utah $Hdr: cd.c 1.6 90/11/28$
76 *
77 * @(#)cd.c 8.2 (Berkeley) 11/16/93
78 */
79
80
81
82
83 /*
84 * Copyright (c) 1995 Carnegie-Mellon University.
85 * All rights reserved.
86 *
87 * Authors: Mark Holland, Jim Zelenka
88 *
89 * Permission to use, copy, modify and distribute this software and
90 * its documentation is hereby granted, provided that both the copyright
91 * notice and this permission notice appear in all copies of the
92 * software, derivative works or modified versions, and any portions
93 * thereof, and that both notices appear in supporting documentation.
94 *
95 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
96 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
97 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
98 *
99 * Carnegie Mellon requests users of this software to return to
100 *
101 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
102 * School of Computer Science
103 * Carnegie Mellon University
104 * Pittsburgh PA 15213-3890
105 *
106 * any improvements or extensions that they make and grant Carnegie the
107 * rights to redistribute these changes.
108 */
109
110 /***********************************************************
111 *
112 * rf_kintf.c -- the kernel interface routines for RAIDframe
113 *
114 ***********************************************************/
115
116 #include <sys/cdefs.h>
117 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.145 2002/11/01 11:31:59 mrg Exp $");
118
119 #include <sys/param.h>
120 #include <sys/errno.h>
121 #include <sys/pool.h>
122 #include <sys/queue.h>
123 #include <sys/disk.h>
124 #include <sys/device.h>
125 #include <sys/stat.h>
126 #include <sys/ioctl.h>
127 #include <sys/fcntl.h>
128 #include <sys/systm.h>
129 #include <sys/namei.h>
130 #include <sys/vnode.h>
131 #include <sys/disklabel.h>
132 #include <sys/conf.h>
133 #include <sys/lock.h>
134 #include <sys/buf.h>
135 #include <sys/user.h>
136 #include <sys/reboot.h>
137
138 #include <dev/raidframe/raidframevar.h>
139 #include <dev/raidframe/raidframeio.h>
140 #include "raid.h"
141 #include "opt_raid_autoconfig.h"
142 #include "rf_raid.h"
143 #include "rf_copyback.h"
144 #include "rf_dag.h"
145 #include "rf_dagflags.h"
146 #include "rf_desc.h"
147 #include "rf_diskqueue.h"
148 #include "rf_etimer.h"
149 #include "rf_general.h"
150 #include "rf_kintf.h"
151 #include "rf_options.h"
152 #include "rf_driver.h"
153 #include "rf_parityscan.h"
154 #include "rf_threadstuff.h"
155
156 #ifdef DEBUG
157 int rf_kdebug_level = 0;
158 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
159 #else /* DEBUG */
160 #define db1_printf(a) { }
161 #endif /* DEBUG */
162
163 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
164
165 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
166
167 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
168 * spare table */
169 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
170 * installation process */
171
172 /* prototypes */
173 static void KernelWakeupFunc(struct buf * bp);
174 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
175 dev_t dev, RF_SectorNum_t startSect,
176 RF_SectorCount_t numSect, caddr_t buf,
177 void (*cbFunc) (struct buf *), void *cbArg,
178 int logBytesPerSector, struct proc * b_proc);
179 static void raidinit(RF_Raid_t *);
180
181 void raidattach(int);
182
183 dev_type_open(raidopen);
184 dev_type_close(raidclose);
185 dev_type_read(raidread);
186 dev_type_write(raidwrite);
187 dev_type_ioctl(raidioctl);
188 dev_type_strategy(raidstrategy);
189 dev_type_dump(raiddump);
190 dev_type_size(raidsize);
191
192 const struct bdevsw raid_bdevsw = {
193 raidopen, raidclose, raidstrategy, raidioctl,
194 raiddump, raidsize, D_DISK
195 };
196
197 const struct cdevsw raid_cdevsw = {
198 raidopen, raidclose, raidread, raidwrite, raidioctl,
199 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
200 };
201
202 /*
203 * Pilfered from ccd.c
204 */
205
206 struct raidbuf {
207 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
208 struct buf *rf_obp; /* ptr. to original I/O buf */
209 RF_DiskQueueData_t *req;/* the request that this was part of.. */
210 };
211
212 /* component buffer pool */
213 struct pool raidframe_cbufpool;
214
215 /* XXX Not sure if the following should be replacing the raidPtrs above,
216 or if it should be used in conjunction with that...
217 */
218
219 struct raid_softc {
220 int sc_flags; /* flags */
221 int sc_cflags; /* configuration flags */
222 size_t sc_size; /* size of the raid device */
223 char sc_xname[20]; /* XXX external name */
224 struct disk sc_dkdev; /* generic disk device info */
225 struct bufq_state buf_queue; /* used for the device queue */
226 };
227 /* sc_flags */
228 #define RAIDF_INITED 0x01 /* unit has been initialized */
229 #define RAIDF_WLABEL 0x02 /* label area is writable */
230 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
231 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
232 #define RAIDF_LOCKED 0x80 /* unit is locked */
233
234 #define raidunit(x) DISKUNIT(x)
235 int numraid = 0;
236
237 /*
238 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
239 * Be aware that large numbers can allow the driver to consume a lot of
240 * kernel memory, especially on writes, and in degraded mode reads.
241 *
242 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
243 * a single 64K write will typically require 64K for the old data,
244 * 64K for the old parity, and 64K for the new parity, for a total
245 * of 192K (if the parity buffer is not re-used immediately).
246 * Even it if is used immediately, that's still 128K, which when multiplied
247 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
248 *
249 * Now in degraded mode, for example, a 64K read on the above setup may
250 * require data reconstruction, which will require *all* of the 4 remaining
251 * disks to participate -- 4 * 32K/disk == 128K again.
252 */
253
254 #ifndef RAIDOUTSTANDING
255 #define RAIDOUTSTANDING 6
256 #endif
257
258 #define RAIDLABELDEV(dev) \
259 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
260
261 /* declared here, and made public, for the benefit of KVM stuff.. */
262 struct raid_softc *raid_softc;
263
264 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
265 struct disklabel *);
266 static void raidgetdisklabel(dev_t);
267 static void raidmakedisklabel(struct raid_softc *);
268
269 static int raidlock(struct raid_softc *);
270 static void raidunlock(struct raid_softc *);
271
272 static void rf_markalldirty(RF_Raid_t *);
273
274 struct device *raidrootdev;
275
276 void rf_ReconThread(struct rf_recon_req *);
277 /* XXX what I want is: */
278 /*void rf_ReconThread(RF_Raid_t *raidPtr); */
279 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
280 void rf_CopybackThread(RF_Raid_t *raidPtr);
281 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
282 int rf_autoconfig(struct device *self);
283 void rf_buildroothack(RF_ConfigSet_t *);
284
285 RF_AutoConfig_t *rf_find_raid_components(void);
286 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
287 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
288 static int rf_reasonable_label(RF_ComponentLabel_t *);
289 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
290 int rf_set_autoconfig(RF_Raid_t *, int);
291 int rf_set_rootpartition(RF_Raid_t *, int);
292 void rf_release_all_vps(RF_ConfigSet_t *);
293 void rf_cleanup_config_set(RF_ConfigSet_t *);
294 int rf_have_enough_components(RF_ConfigSet_t *);
295 int rf_auto_config_set(RF_ConfigSet_t *, int *);
296
297 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
298 allow autoconfig to take place.
299 Note that this is overridden by having
300 RAID_AUTOCONFIG as an option in the
301 kernel config file. */
302
303 void
304 raidattach(num)
305 int num;
306 {
307 int raidID;
308 int i, rc;
309
310 #ifdef DEBUG
311 printf("raidattach: Asked for %d units\n", num);
312 #endif
313
314 if (num <= 0) {
315 #ifdef DIAGNOSTIC
316 panic("raidattach: count <= 0");
317 #endif
318 return;
319 }
320 /* This is where all the initialization stuff gets done. */
321
322 numraid = num;
323
324 /* Make some space for requested number of units... */
325
326 RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
327 if (raidPtrs == NULL) {
328 panic("raidPtrs is NULL!!");
329 }
330
331 /* Initialize the component buffer pool. */
332 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
333 0, 0, "raidpl", NULL);
334
335 rc = rf_mutex_init(&rf_sparet_wait_mutex);
336 if (rc) {
337 RF_PANIC();
338 }
339
340 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
341
342 for (i = 0; i < num; i++)
343 raidPtrs[i] = NULL;
344 rc = rf_BootRaidframe();
345 if (rc == 0)
346 printf("Kernelized RAIDframe activated\n");
347 else
348 panic("Serious error booting RAID!!");
349
350 /* put together some datastructures like the CCD device does.. This
351 * lets us lock the device and what-not when it gets opened. */
352
353 raid_softc = (struct raid_softc *)
354 malloc(num * sizeof(struct raid_softc),
355 M_RAIDFRAME, M_NOWAIT);
356 if (raid_softc == NULL) {
357 printf("WARNING: no memory for RAIDframe driver\n");
358 return;
359 }
360
361 memset(raid_softc, 0, num * sizeof(struct raid_softc));
362
363 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
364 M_RAIDFRAME, M_NOWAIT);
365 if (raidrootdev == NULL) {
366 panic("No memory for RAIDframe driver!!?!?!");
367 }
368
369 for (raidID = 0; raidID < num; raidID++) {
370 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
371
372 raidrootdev[raidID].dv_class = DV_DISK;
373 raidrootdev[raidID].dv_cfdata = NULL;
374 raidrootdev[raidID].dv_unit = raidID;
375 raidrootdev[raidID].dv_parent = NULL;
376 raidrootdev[raidID].dv_flags = 0;
377 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
378
379 RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
380 (RF_Raid_t *));
381 if (raidPtrs[raidID] == NULL) {
382 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
383 numraid = raidID;
384 return;
385 }
386 }
387
388 #ifdef RAID_AUTOCONFIG
389 raidautoconfig = 1;
390 #endif
391
392 /*
393 * Register a finalizer which will be used to auto-config RAID
394 * sets once all real hardware devices have been found.
395 */
396 if (config_finalize_register(NULL, rf_autoconfig) != 0)
397 printf("WARNING: unable to register RAIDframe finalizer\n");
398 }
399
400 int
401 rf_autoconfig(struct device *self)
402 {
403 RF_AutoConfig_t *ac_list;
404 RF_ConfigSet_t *config_sets;
405
406 if (raidautoconfig == 0)
407 return (0);
408
409 /* XXX This code can only be run once. */
410 raidautoconfig = 0;
411
412 /* 1. locate all RAID components on the system */
413 #ifdef DEBUG
414 printf("Searching for RAID components...\n");
415 #endif
416 ac_list = rf_find_raid_components();
417
418 /* 2. Sort them into their respective sets. */
419 config_sets = rf_create_auto_sets(ac_list);
420
421 /*
422 * 3. Evaluate each set andconfigure the valid ones.
423 * This gets done in rf_buildroothack().
424 */
425 rf_buildroothack(config_sets);
426
427 return (1);
428 }
429
430 void
431 rf_buildroothack(RF_ConfigSet_t *config_sets)
432 {
433 RF_ConfigSet_t *cset;
434 RF_ConfigSet_t *next_cset;
435 int retcode;
436 int raidID;
437 int rootID;
438 int num_root;
439
440 rootID = 0;
441 num_root = 0;
442 cset = config_sets;
443 while(cset != NULL ) {
444 next_cset = cset->next;
445 if (rf_have_enough_components(cset) &&
446 cset->ac->clabel->autoconfigure==1) {
447 retcode = rf_auto_config_set(cset,&raidID);
448 if (!retcode) {
449 if (cset->rootable) {
450 rootID = raidID;
451 num_root++;
452 }
453 } else {
454 /* The autoconfig didn't work :( */
455 #if DEBUG
456 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
457 #endif
458 rf_release_all_vps(cset);
459 }
460 } else {
461 /* we're not autoconfiguring this set...
462 release the associated resources */
463 rf_release_all_vps(cset);
464 }
465 /* cleanup */
466 rf_cleanup_config_set(cset);
467 cset = next_cset;
468 }
469
470 /* we found something bootable... */
471
472 if (num_root == 1) {
473 booted_device = &raidrootdev[rootID];
474 } else if (num_root > 1) {
475 /* we can't guess.. require the user to answer... */
476 boothowto |= RB_ASKNAME;
477 }
478 }
479
480
481 int
482 raidsize(dev)
483 dev_t dev;
484 {
485 struct raid_softc *rs;
486 struct disklabel *lp;
487 int part, unit, omask, size;
488
489 unit = raidunit(dev);
490 if (unit >= numraid)
491 return (-1);
492 rs = &raid_softc[unit];
493
494 if ((rs->sc_flags & RAIDF_INITED) == 0)
495 return (-1);
496
497 part = DISKPART(dev);
498 omask = rs->sc_dkdev.dk_openmask & (1 << part);
499 lp = rs->sc_dkdev.dk_label;
500
501 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
502 return (-1);
503
504 if (lp->d_partitions[part].p_fstype != FS_SWAP)
505 size = -1;
506 else
507 size = lp->d_partitions[part].p_size *
508 (lp->d_secsize / DEV_BSIZE);
509
510 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
511 return (-1);
512
513 return (size);
514
515 }
516
517 int
518 raiddump(dev, blkno, va, size)
519 dev_t dev;
520 daddr_t blkno;
521 caddr_t va;
522 size_t size;
523 {
524 /* Not implemented. */
525 return ENXIO;
526 }
527 /* ARGSUSED */
528 int
529 raidopen(dev, flags, fmt, p)
530 dev_t dev;
531 int flags, fmt;
532 struct proc *p;
533 {
534 int unit = raidunit(dev);
535 struct raid_softc *rs;
536 struct disklabel *lp;
537 int part, pmask;
538 int error = 0;
539
540 if (unit >= numraid)
541 return (ENXIO);
542 rs = &raid_softc[unit];
543
544 if ((error = raidlock(rs)) != 0)
545 return (error);
546 lp = rs->sc_dkdev.dk_label;
547
548 part = DISKPART(dev);
549 pmask = (1 << part);
550
551 db1_printf(("Opening raid device number: %d partition: %d\n",
552 unit, part));
553
554
555 if ((rs->sc_flags & RAIDF_INITED) &&
556 (rs->sc_dkdev.dk_openmask == 0))
557 raidgetdisklabel(dev);
558
559 /* make sure that this partition exists */
560
561 if (part != RAW_PART) {
562 db1_printf(("Not a raw partition..\n"));
563 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
564 ((part >= lp->d_npartitions) ||
565 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
566 error = ENXIO;
567 raidunlock(rs);
568 db1_printf(("Bailing out...\n"));
569 return (error);
570 }
571 }
572 /* Prevent this unit from being unconfigured while open. */
573 switch (fmt) {
574 case S_IFCHR:
575 rs->sc_dkdev.dk_copenmask |= pmask;
576 break;
577
578 case S_IFBLK:
579 rs->sc_dkdev.dk_bopenmask |= pmask;
580 break;
581 }
582
583 if ((rs->sc_dkdev.dk_openmask == 0) &&
584 ((rs->sc_flags & RAIDF_INITED) != 0)) {
585 /* First one... mark things as dirty... Note that we *MUST*
586 have done a configure before this. I DO NOT WANT TO BE
587 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
588 THAT THEY BELONG TOGETHER!!!!! */
589 /* XXX should check to see if we're only open for reading
590 here... If so, we needn't do this, but then need some
591 other way of keeping track of what's happened.. */
592
593 rf_markalldirty( raidPtrs[unit] );
594 }
595
596
597 rs->sc_dkdev.dk_openmask =
598 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
599
600 raidunlock(rs);
601
602 return (error);
603
604
605 }
606 /* ARGSUSED */
607 int
608 raidclose(dev, flags, fmt, p)
609 dev_t dev;
610 int flags, fmt;
611 struct proc *p;
612 {
613 int unit = raidunit(dev);
614 struct raid_softc *rs;
615 int error = 0;
616 int part;
617
618 if (unit >= numraid)
619 return (ENXIO);
620 rs = &raid_softc[unit];
621
622 if ((error = raidlock(rs)) != 0)
623 return (error);
624
625 part = DISKPART(dev);
626
627 /* ...that much closer to allowing unconfiguration... */
628 switch (fmt) {
629 case S_IFCHR:
630 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
631 break;
632
633 case S_IFBLK:
634 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
635 break;
636 }
637 rs->sc_dkdev.dk_openmask =
638 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
639
640 if ((rs->sc_dkdev.dk_openmask == 0) &&
641 ((rs->sc_flags & RAIDF_INITED) != 0)) {
642 /* Last one... device is not unconfigured yet.
643 Device shutdown has taken care of setting the
644 clean bits if RAIDF_INITED is not set
645 mark things as clean... */
646 #if 0
647 printf("Last one on raid%d. Updating status.\n",unit);
648 #endif
649 rf_update_component_labels(raidPtrs[unit],
650 RF_FINAL_COMPONENT_UPDATE);
651 if (doing_shutdown) {
652 /* last one, and we're going down, so
653 lights out for this RAID set too. */
654 error = rf_Shutdown(raidPtrs[unit]);
655
656 /* It's no longer initialized... */
657 rs->sc_flags &= ~RAIDF_INITED;
658
659 /* Detach the disk. */
660 disk_detach(&rs->sc_dkdev);
661 }
662 }
663
664 raidunlock(rs);
665 return (0);
666
667 }
668
669 void
670 raidstrategy(bp)
671 struct buf *bp;
672 {
673 int s;
674
675 unsigned int raidID = raidunit(bp->b_dev);
676 RF_Raid_t *raidPtr;
677 struct raid_softc *rs = &raid_softc[raidID];
678 struct disklabel *lp;
679 int wlabel;
680
681 if ((rs->sc_flags & RAIDF_INITED) ==0) {
682 bp->b_error = ENXIO;
683 bp->b_flags |= B_ERROR;
684 bp->b_resid = bp->b_bcount;
685 biodone(bp);
686 return;
687 }
688 if (raidID >= numraid || !raidPtrs[raidID]) {
689 bp->b_error = ENODEV;
690 bp->b_flags |= B_ERROR;
691 bp->b_resid = bp->b_bcount;
692 biodone(bp);
693 return;
694 }
695 raidPtr = raidPtrs[raidID];
696 if (!raidPtr->valid) {
697 bp->b_error = ENODEV;
698 bp->b_flags |= B_ERROR;
699 bp->b_resid = bp->b_bcount;
700 biodone(bp);
701 return;
702 }
703 if (bp->b_bcount == 0) {
704 db1_printf(("b_bcount is zero..\n"));
705 biodone(bp);
706 return;
707 }
708 lp = rs->sc_dkdev.dk_label;
709
710 /*
711 * Do bounds checking and adjust transfer. If there's an
712 * error, the bounds check will flag that for us.
713 */
714
715 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
716 if (DISKPART(bp->b_dev) != RAW_PART)
717 if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
718 db1_printf(("Bounds check failed!!:%d %d\n",
719 (int) bp->b_blkno, (int) wlabel));
720 biodone(bp);
721 return;
722 }
723 s = splbio();
724
725 bp->b_resid = 0;
726
727 /* stuff it onto our queue */
728 BUFQ_PUT(&rs->buf_queue, bp);
729
730 raidstart(raidPtrs[raidID]);
731
732 splx(s);
733 }
734 /* ARGSUSED */
735 int
736 raidread(dev, uio, flags)
737 dev_t dev;
738 struct uio *uio;
739 int flags;
740 {
741 int unit = raidunit(dev);
742 struct raid_softc *rs;
743 int part;
744
745 if (unit >= numraid)
746 return (ENXIO);
747 rs = &raid_softc[unit];
748
749 if ((rs->sc_flags & RAIDF_INITED) == 0)
750 return (ENXIO);
751 part = DISKPART(dev);
752
753 db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
754
755 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
756
757 }
758 /* ARGSUSED */
759 int
760 raidwrite(dev, uio, flags)
761 dev_t dev;
762 struct uio *uio;
763 int flags;
764 {
765 int unit = raidunit(dev);
766 struct raid_softc *rs;
767
768 if (unit >= numraid)
769 return (ENXIO);
770 rs = &raid_softc[unit];
771
772 if ((rs->sc_flags & RAIDF_INITED) == 0)
773 return (ENXIO);
774 db1_printf(("raidwrite\n"));
775 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
776
777 }
778
779 int
780 raidioctl(dev, cmd, data, flag, p)
781 dev_t dev;
782 u_long cmd;
783 caddr_t data;
784 int flag;
785 struct proc *p;
786 {
787 int unit = raidunit(dev);
788 int error = 0;
789 int part, pmask;
790 struct raid_softc *rs;
791 RF_Config_t *k_cfg, *u_cfg;
792 RF_Raid_t *raidPtr;
793 RF_RaidDisk_t *diskPtr;
794 RF_AccTotals_t *totals;
795 RF_DeviceConfig_t *d_cfg, **ucfgp;
796 u_char *specific_buf;
797 int retcode = 0;
798 int row;
799 int column;
800 int raidid;
801 struct rf_recon_req *rrcopy, *rr;
802 RF_ComponentLabel_t *clabel;
803 RF_ComponentLabel_t ci_label;
804 RF_ComponentLabel_t **clabel_ptr;
805 RF_SingleComponent_t *sparePtr,*componentPtr;
806 RF_SingleComponent_t hot_spare;
807 RF_SingleComponent_t component;
808 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
809 int i, j, d;
810 #ifdef __HAVE_OLD_DISKLABEL
811 struct disklabel newlabel;
812 #endif
813
814 if (unit >= numraid)
815 return (ENXIO);
816 rs = &raid_softc[unit];
817 raidPtr = raidPtrs[unit];
818
819 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
820 (int) DISKPART(dev), (int) unit, (int) cmd));
821
822 /* Must be open for writes for these commands... */
823 switch (cmd) {
824 case DIOCSDINFO:
825 case DIOCWDINFO:
826 #ifdef __HAVE_OLD_DISKLABEL
827 case ODIOCWDINFO:
828 case ODIOCSDINFO:
829 #endif
830 case DIOCWLABEL:
831 if ((flag & FWRITE) == 0)
832 return (EBADF);
833 }
834
835 /* Must be initialized for these... */
836 switch (cmd) {
837 case DIOCGDINFO:
838 case DIOCSDINFO:
839 case DIOCWDINFO:
840 #ifdef __HAVE_OLD_DISKLABEL
841 case ODIOCGDINFO:
842 case ODIOCWDINFO:
843 case ODIOCSDINFO:
844 case ODIOCGDEFLABEL:
845 #endif
846 case DIOCGPART:
847 case DIOCWLABEL:
848 case DIOCGDEFLABEL:
849 case RAIDFRAME_SHUTDOWN:
850 case RAIDFRAME_REWRITEPARITY:
851 case RAIDFRAME_GET_INFO:
852 case RAIDFRAME_RESET_ACCTOTALS:
853 case RAIDFRAME_GET_ACCTOTALS:
854 case RAIDFRAME_KEEP_ACCTOTALS:
855 case RAIDFRAME_GET_SIZE:
856 case RAIDFRAME_FAIL_DISK:
857 case RAIDFRAME_COPYBACK:
858 case RAIDFRAME_CHECK_RECON_STATUS:
859 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
860 case RAIDFRAME_GET_COMPONENT_LABEL:
861 case RAIDFRAME_SET_COMPONENT_LABEL:
862 case RAIDFRAME_ADD_HOT_SPARE:
863 case RAIDFRAME_REMOVE_HOT_SPARE:
864 case RAIDFRAME_INIT_LABELS:
865 case RAIDFRAME_REBUILD_IN_PLACE:
866 case RAIDFRAME_CHECK_PARITY:
867 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
868 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
869 case RAIDFRAME_CHECK_COPYBACK_STATUS:
870 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
871 case RAIDFRAME_SET_AUTOCONFIG:
872 case RAIDFRAME_SET_ROOT:
873 case RAIDFRAME_DELETE_COMPONENT:
874 case RAIDFRAME_INCORPORATE_HOT_SPARE:
875 if ((rs->sc_flags & RAIDF_INITED) == 0)
876 return (ENXIO);
877 }
878
879 switch (cmd) {
880
881 /* configure the system */
882 case RAIDFRAME_CONFIGURE:
883
884 if (raidPtr->valid) {
885 /* There is a valid RAID set running on this unit! */
886 printf("raid%d: Device already configured!\n",unit);
887 return(EINVAL);
888 }
889
890 /* copy-in the configuration information */
891 /* data points to a pointer to the configuration structure */
892
893 u_cfg = *((RF_Config_t **) data);
894 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
895 if (k_cfg == NULL) {
896 return (ENOMEM);
897 }
898 retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
899 sizeof(RF_Config_t));
900 if (retcode) {
901 RF_Free(k_cfg, sizeof(RF_Config_t));
902 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
903 retcode));
904 return (retcode);
905 }
906 /* allocate a buffer for the layout-specific data, and copy it
907 * in */
908 if (k_cfg->layoutSpecificSize) {
909 if (k_cfg->layoutSpecificSize > 10000) {
910 /* sanity check */
911 RF_Free(k_cfg, sizeof(RF_Config_t));
912 return (EINVAL);
913 }
914 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
915 (u_char *));
916 if (specific_buf == NULL) {
917 RF_Free(k_cfg, sizeof(RF_Config_t));
918 return (ENOMEM);
919 }
920 retcode = copyin(k_cfg->layoutSpecific,
921 (caddr_t) specific_buf,
922 k_cfg->layoutSpecificSize);
923 if (retcode) {
924 RF_Free(k_cfg, sizeof(RF_Config_t));
925 RF_Free(specific_buf,
926 k_cfg->layoutSpecificSize);
927 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
928 retcode));
929 return (retcode);
930 }
931 } else
932 specific_buf = NULL;
933 k_cfg->layoutSpecific = specific_buf;
934
935 /* should do some kind of sanity check on the configuration.
936 * Store the sum of all the bytes in the last byte? */
937
938 /* configure the system */
939
940 /*
941 * Clear the entire RAID descriptor, just to make sure
942 * there is no stale data left in the case of a
943 * reconfiguration
944 */
945 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
946 raidPtr->raidid = unit;
947
948 retcode = rf_Configure(raidPtr, k_cfg, NULL);
949
950 if (retcode == 0) {
951
952 /* allow this many simultaneous IO's to
953 this RAID device */
954 raidPtr->openings = RAIDOUTSTANDING;
955
956 raidinit(raidPtr);
957 rf_markalldirty(raidPtr);
958 }
959 /* free the buffers. No return code here. */
960 if (k_cfg->layoutSpecificSize) {
961 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
962 }
963 RF_Free(k_cfg, sizeof(RF_Config_t));
964
965 return (retcode);
966
967 /* shutdown the system */
968 case RAIDFRAME_SHUTDOWN:
969
970 if ((error = raidlock(rs)) != 0)
971 return (error);
972
973 /*
974 * If somebody has a partition mounted, we shouldn't
975 * shutdown.
976 */
977
978 part = DISKPART(dev);
979 pmask = (1 << part);
980 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
981 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
982 (rs->sc_dkdev.dk_copenmask & pmask))) {
983 raidunlock(rs);
984 return (EBUSY);
985 }
986
987 retcode = rf_Shutdown(raidPtr);
988
989 /* It's no longer initialized... */
990 rs->sc_flags &= ~RAIDF_INITED;
991
992 /* Detach the disk. */
993 disk_detach(&rs->sc_dkdev);
994
995 raidunlock(rs);
996
997 return (retcode);
998 case RAIDFRAME_GET_COMPONENT_LABEL:
999 clabel_ptr = (RF_ComponentLabel_t **) data;
1000 /* need to read the component label for the disk indicated
1001 by row,column in clabel */
1002
1003 /* For practice, let's get it directly fromdisk, rather
1004 than from the in-core copy */
1005 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1006 (RF_ComponentLabel_t *));
1007 if (clabel == NULL)
1008 return (ENOMEM);
1009
1010 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1011
1012 retcode = copyin( *clabel_ptr, clabel,
1013 sizeof(RF_ComponentLabel_t));
1014
1015 if (retcode) {
1016 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1017 return(retcode);
1018 }
1019
1020 row = clabel->row;
1021 column = clabel->column;
1022
1023 if ((row < 0) || (row >= raidPtr->numRow) ||
1024 (column < 0) || (column >= raidPtr->numCol +
1025 raidPtr->numSpare)) {
1026 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1027 return(EINVAL);
1028 }
1029
1030 raidread_component_label(raidPtr->Disks[row][column].dev,
1031 raidPtr->raid_cinfo[row][column].ci_vp,
1032 clabel );
1033
1034 retcode = copyout((caddr_t) clabel,
1035 (caddr_t) *clabel_ptr,
1036 sizeof(RF_ComponentLabel_t));
1037 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1038 return (retcode);
1039
1040 case RAIDFRAME_SET_COMPONENT_LABEL:
1041 clabel = (RF_ComponentLabel_t *) data;
1042
1043 /* XXX check the label for valid stuff... */
1044 /* Note that some things *should not* get modified --
1045 the user should be re-initing the labels instead of
1046 trying to patch things.
1047 */
1048
1049 raidid = raidPtr->raidid;
1050 printf("raid%d: Got component label:\n", raidid);
1051 printf("raid%d: Version: %d\n", raidid, clabel->version);
1052 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1053 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1054 printf("raid%d: Row: %d\n", raidid, clabel->row);
1055 printf("raid%d: Column: %d\n", raidid, clabel->column);
1056 printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
1057 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1058 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1059 printf("raid%d: Status: %d\n", raidid, clabel->status);
1060
1061 row = clabel->row;
1062 column = clabel->column;
1063
1064 if ((row < 0) || (row >= raidPtr->numRow) ||
1065 (column < 0) || (column >= raidPtr->numCol)) {
1066 return(EINVAL);
1067 }
1068
1069 /* XXX this isn't allowed to do anything for now :-) */
1070
1071 /* XXX and before it is, we need to fill in the rest
1072 of the fields!?!?!?! */
1073 #if 0
1074 raidwrite_component_label(
1075 raidPtr->Disks[row][column].dev,
1076 raidPtr->raid_cinfo[row][column].ci_vp,
1077 clabel );
1078 #endif
1079 return (0);
1080
1081 case RAIDFRAME_INIT_LABELS:
1082 clabel = (RF_ComponentLabel_t *) data;
1083 /*
1084 we only want the serial number from
1085 the above. We get all the rest of the information
1086 from the config that was used to create this RAID
1087 set.
1088 */
1089
1090 raidPtr->serial_number = clabel->serial_number;
1091
1092 raid_init_component_label(raidPtr, &ci_label);
1093 ci_label.serial_number = clabel->serial_number;
1094
1095 for(row=0;row<raidPtr->numRow;row++) {
1096 ci_label.row = row;
1097 for(column=0;column<raidPtr->numCol;column++) {
1098 diskPtr = &raidPtr->Disks[row][column];
1099 if (!RF_DEAD_DISK(diskPtr->status)) {
1100 ci_label.partitionSize = diskPtr->partitionSize;
1101 ci_label.column = column;
1102 raidwrite_component_label(
1103 raidPtr->Disks[row][column].dev,
1104 raidPtr->raid_cinfo[row][column].ci_vp,
1105 &ci_label );
1106 }
1107 }
1108 }
1109
1110 return (retcode);
1111 case RAIDFRAME_SET_AUTOCONFIG:
1112 d = rf_set_autoconfig(raidPtr, *(int *) data);
1113 printf("raid%d: New autoconfig value is: %d\n",
1114 raidPtr->raidid, d);
1115 *(int *) data = d;
1116 return (retcode);
1117
1118 case RAIDFRAME_SET_ROOT:
1119 d = rf_set_rootpartition(raidPtr, *(int *) data);
1120 printf("raid%d: New rootpartition value is: %d\n",
1121 raidPtr->raidid, d);
1122 *(int *) data = d;
1123 return (retcode);
1124
1125 /* initialize all parity */
1126 case RAIDFRAME_REWRITEPARITY:
1127
1128 if (raidPtr->Layout.map->faultsTolerated == 0) {
1129 /* Parity for RAID 0 is trivially correct */
1130 raidPtr->parity_good = RF_RAID_CLEAN;
1131 return(0);
1132 }
1133
1134 if (raidPtr->parity_rewrite_in_progress == 1) {
1135 /* Re-write is already in progress! */
1136 return(EINVAL);
1137 }
1138
1139 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1140 rf_RewriteParityThread,
1141 raidPtr,"raid_parity");
1142 return (retcode);
1143
1144
1145 case RAIDFRAME_ADD_HOT_SPARE:
1146 sparePtr = (RF_SingleComponent_t *) data;
1147 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1148 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1149 return(retcode);
1150
1151 case RAIDFRAME_REMOVE_HOT_SPARE:
1152 return(retcode);
1153
1154 case RAIDFRAME_DELETE_COMPONENT:
1155 componentPtr = (RF_SingleComponent_t *)data;
1156 memcpy( &component, componentPtr,
1157 sizeof(RF_SingleComponent_t));
1158 retcode = rf_delete_component(raidPtr, &component);
1159 return(retcode);
1160
1161 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1162 componentPtr = (RF_SingleComponent_t *)data;
1163 memcpy( &component, componentPtr,
1164 sizeof(RF_SingleComponent_t));
1165 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1166 return(retcode);
1167
1168 case RAIDFRAME_REBUILD_IN_PLACE:
1169
1170 if (raidPtr->Layout.map->faultsTolerated == 0) {
1171 /* Can't do this on a RAID 0!! */
1172 return(EINVAL);
1173 }
1174
1175 if (raidPtr->recon_in_progress == 1) {
1176 /* a reconstruct is already in progress! */
1177 return(EINVAL);
1178 }
1179
1180 componentPtr = (RF_SingleComponent_t *) data;
1181 memcpy( &component, componentPtr,
1182 sizeof(RF_SingleComponent_t));
1183 row = component.row;
1184 column = component.column;
1185 printf("raid%d: Rebuild: %d %d\n", raidPtr->raidid,
1186 row, column);
1187 if ((row < 0) || (row >= raidPtr->numRow) ||
1188 (column < 0) || (column >= raidPtr->numCol)) {
1189 return(EINVAL);
1190 }
1191
1192 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1193 if (rrcopy == NULL)
1194 return(ENOMEM);
1195
1196 rrcopy->raidPtr = (void *) raidPtr;
1197 rrcopy->row = row;
1198 rrcopy->col = column;
1199
1200 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1201 rf_ReconstructInPlaceThread,
1202 rrcopy,"raid_reconip");
1203 return(retcode);
1204
1205 case RAIDFRAME_GET_INFO:
1206 if (!raidPtr->valid)
1207 return (ENODEV);
1208 ucfgp = (RF_DeviceConfig_t **) data;
1209 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1210 (RF_DeviceConfig_t *));
1211 if (d_cfg == NULL)
1212 return (ENOMEM);
1213 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1214 d_cfg->rows = raidPtr->numRow;
1215 d_cfg->cols = raidPtr->numCol;
1216 d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1217 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1218 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1219 return (ENOMEM);
1220 }
1221 d_cfg->nspares = raidPtr->numSpare;
1222 if (d_cfg->nspares >= RF_MAX_DISKS) {
1223 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1224 return (ENOMEM);
1225 }
1226 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1227 d = 0;
1228 for (i = 0; i < d_cfg->rows; i++) {
1229 for (j = 0; j < d_cfg->cols; j++) {
1230 d_cfg->devs[d] = raidPtr->Disks[i][j];
1231 d++;
1232 }
1233 }
1234 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1235 d_cfg->spares[i] = raidPtr->Disks[0][j];
1236 }
1237 retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
1238 sizeof(RF_DeviceConfig_t));
1239 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1240
1241 return (retcode);
1242
1243 case RAIDFRAME_CHECK_PARITY:
1244 *(int *) data = raidPtr->parity_good;
1245 return (0);
1246
1247 case RAIDFRAME_RESET_ACCTOTALS:
1248 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1249 return (0);
1250
1251 case RAIDFRAME_GET_ACCTOTALS:
1252 totals = (RF_AccTotals_t *) data;
1253 *totals = raidPtr->acc_totals;
1254 return (0);
1255
1256 case RAIDFRAME_KEEP_ACCTOTALS:
1257 raidPtr->keep_acc_totals = *(int *)data;
1258 return (0);
1259
1260 case RAIDFRAME_GET_SIZE:
1261 *(int *) data = raidPtr->totalSectors;
1262 return (0);
1263
1264 /* fail a disk & optionally start reconstruction */
1265 case RAIDFRAME_FAIL_DISK:
1266
1267 if (raidPtr->Layout.map->faultsTolerated == 0) {
1268 /* Can't do this on a RAID 0!! */
1269 return(EINVAL);
1270 }
1271
1272 rr = (struct rf_recon_req *) data;
1273
1274 if (rr->row < 0 || rr->row >= raidPtr->numRow
1275 || rr->col < 0 || rr->col >= raidPtr->numCol)
1276 return (EINVAL);
1277
1278 printf("raid%d: Failing the disk: row: %d col: %d\n",
1279 unit, rr->row, rr->col);
1280
1281 /* make a copy of the recon request so that we don't rely on
1282 * the user's buffer */
1283 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1284 if (rrcopy == NULL)
1285 return(ENOMEM);
1286 memcpy(rrcopy, rr, sizeof(*rr));
1287 rrcopy->raidPtr = (void *) raidPtr;
1288
1289 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1290 rf_ReconThread,
1291 rrcopy,"raid_recon");
1292 return (0);
1293
1294 /* invoke a copyback operation after recon on whatever disk
1295 * needs it, if any */
1296 case RAIDFRAME_COPYBACK:
1297
1298 if (raidPtr->Layout.map->faultsTolerated == 0) {
1299 /* This makes no sense on a RAID 0!! */
1300 return(EINVAL);
1301 }
1302
1303 if (raidPtr->copyback_in_progress == 1) {
1304 /* Copyback is already in progress! */
1305 return(EINVAL);
1306 }
1307
1308 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1309 rf_CopybackThread,
1310 raidPtr,"raid_copyback");
1311 return (retcode);
1312
1313 /* return the percentage completion of reconstruction */
1314 case RAIDFRAME_CHECK_RECON_STATUS:
1315 if (raidPtr->Layout.map->faultsTolerated == 0) {
1316 /* This makes no sense on a RAID 0, so tell the
1317 user it's done. */
1318 *(int *) data = 100;
1319 return(0);
1320 }
1321 row = 0; /* XXX we only consider a single row... */
1322 if (raidPtr->status[row] != rf_rs_reconstructing)
1323 *(int *) data = 100;
1324 else
1325 *(int *) data = raidPtr->reconControl[row]->percentComplete;
1326 return (0);
1327 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1328 progressInfoPtr = (RF_ProgressInfo_t **) data;
1329 row = 0; /* XXX we only consider a single row... */
1330 if (raidPtr->status[row] != rf_rs_reconstructing) {
1331 progressInfo.remaining = 0;
1332 progressInfo.completed = 100;
1333 progressInfo.total = 100;
1334 } else {
1335 progressInfo.total =
1336 raidPtr->reconControl[row]->numRUsTotal;
1337 progressInfo.completed =
1338 raidPtr->reconControl[row]->numRUsComplete;
1339 progressInfo.remaining = progressInfo.total -
1340 progressInfo.completed;
1341 }
1342 retcode = copyout((caddr_t) &progressInfo,
1343 (caddr_t) *progressInfoPtr,
1344 sizeof(RF_ProgressInfo_t));
1345 return (retcode);
1346
1347 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1348 if (raidPtr->Layout.map->faultsTolerated == 0) {
1349 /* This makes no sense on a RAID 0, so tell the
1350 user it's done. */
1351 *(int *) data = 100;
1352 return(0);
1353 }
1354 if (raidPtr->parity_rewrite_in_progress == 1) {
1355 *(int *) data = 100 *
1356 raidPtr->parity_rewrite_stripes_done /
1357 raidPtr->Layout.numStripe;
1358 } else {
1359 *(int *) data = 100;
1360 }
1361 return (0);
1362
1363 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1364 progressInfoPtr = (RF_ProgressInfo_t **) data;
1365 if (raidPtr->parity_rewrite_in_progress == 1) {
1366 progressInfo.total = raidPtr->Layout.numStripe;
1367 progressInfo.completed =
1368 raidPtr->parity_rewrite_stripes_done;
1369 progressInfo.remaining = progressInfo.total -
1370 progressInfo.completed;
1371 } else {
1372 progressInfo.remaining = 0;
1373 progressInfo.completed = 100;
1374 progressInfo.total = 100;
1375 }
1376 retcode = copyout((caddr_t) &progressInfo,
1377 (caddr_t) *progressInfoPtr,
1378 sizeof(RF_ProgressInfo_t));
1379 return (retcode);
1380
1381 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1382 if (raidPtr->Layout.map->faultsTolerated == 0) {
1383 /* This makes no sense on a RAID 0 */
1384 *(int *) data = 100;
1385 return(0);
1386 }
1387 if (raidPtr->copyback_in_progress == 1) {
1388 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1389 raidPtr->Layout.numStripe;
1390 } else {
1391 *(int *) data = 100;
1392 }
1393 return (0);
1394
1395 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1396 progressInfoPtr = (RF_ProgressInfo_t **) data;
1397 if (raidPtr->copyback_in_progress == 1) {
1398 progressInfo.total = raidPtr->Layout.numStripe;
1399 progressInfo.completed =
1400 raidPtr->copyback_stripes_done;
1401 progressInfo.remaining = progressInfo.total -
1402 progressInfo.completed;
1403 } else {
1404 progressInfo.remaining = 0;
1405 progressInfo.completed = 100;
1406 progressInfo.total = 100;
1407 }
1408 retcode = copyout((caddr_t) &progressInfo,
1409 (caddr_t) *progressInfoPtr,
1410 sizeof(RF_ProgressInfo_t));
1411 return (retcode);
1412
1413 /* the sparetable daemon calls this to wait for the kernel to
1414 * need a spare table. this ioctl does not return until a
1415 * spare table is needed. XXX -- calling mpsleep here in the
1416 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1417 * -- I should either compute the spare table in the kernel,
1418 * or have a different -- XXX XXX -- interface (a different
1419 * character device) for delivering the table -- XXX */
1420 #if 0
1421 case RAIDFRAME_SPARET_WAIT:
1422 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1423 while (!rf_sparet_wait_queue)
1424 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1425 waitreq = rf_sparet_wait_queue;
1426 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1427 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1428
1429 /* structure assignment */
1430 *((RF_SparetWait_t *) data) = *waitreq;
1431
1432 RF_Free(waitreq, sizeof(*waitreq));
1433 return (0);
1434
1435 /* wakes up a process waiting on SPARET_WAIT and puts an error
1436 * code in it that will cause the dameon to exit */
1437 case RAIDFRAME_ABORT_SPARET_WAIT:
1438 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1439 waitreq->fcol = -1;
1440 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1441 waitreq->next = rf_sparet_wait_queue;
1442 rf_sparet_wait_queue = waitreq;
1443 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1444 wakeup(&rf_sparet_wait_queue);
1445 return (0);
1446
1447 /* used by the spare table daemon to deliver a spare table
1448 * into the kernel */
1449 case RAIDFRAME_SEND_SPARET:
1450
1451 /* install the spare table */
1452 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1453
1454 /* respond to the requestor. the return status of the spare
1455 * table installation is passed in the "fcol" field */
1456 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1457 waitreq->fcol = retcode;
1458 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1459 waitreq->next = rf_sparet_resp_queue;
1460 rf_sparet_resp_queue = waitreq;
1461 wakeup(&rf_sparet_resp_queue);
1462 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1463
1464 return (retcode);
1465 #endif
1466
1467 default:
1468 break; /* fall through to the os-specific code below */
1469
1470 }
1471
1472 if (!raidPtr->valid)
1473 return (EINVAL);
1474
1475 /*
1476 * Add support for "regular" device ioctls here.
1477 */
1478
1479 switch (cmd) {
1480 case DIOCGDINFO:
1481 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1482 break;
1483 #ifdef __HAVE_OLD_DISKLABEL
1484 case ODIOCGDINFO:
1485 newlabel = *(rs->sc_dkdev.dk_label);
1486 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1487 return ENOTTY;
1488 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1489 break;
1490 #endif
1491
1492 case DIOCGPART:
1493 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1494 ((struct partinfo *) data)->part =
1495 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1496 break;
1497
1498 case DIOCWDINFO:
1499 case DIOCSDINFO:
1500 #ifdef __HAVE_OLD_DISKLABEL
1501 case ODIOCWDINFO:
1502 case ODIOCSDINFO:
1503 #endif
1504 {
1505 struct disklabel *lp;
1506 #ifdef __HAVE_OLD_DISKLABEL
1507 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1508 memset(&newlabel, 0, sizeof newlabel);
1509 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1510 lp = &newlabel;
1511 } else
1512 #endif
1513 lp = (struct disklabel *)data;
1514
1515 if ((error = raidlock(rs)) != 0)
1516 return (error);
1517
1518 rs->sc_flags |= RAIDF_LABELLING;
1519
1520 error = setdisklabel(rs->sc_dkdev.dk_label,
1521 lp, 0, rs->sc_dkdev.dk_cpulabel);
1522 if (error == 0) {
1523 if (cmd == DIOCWDINFO
1524 #ifdef __HAVE_OLD_DISKLABEL
1525 || cmd == ODIOCWDINFO
1526 #endif
1527 )
1528 error = writedisklabel(RAIDLABELDEV(dev),
1529 raidstrategy, rs->sc_dkdev.dk_label,
1530 rs->sc_dkdev.dk_cpulabel);
1531 }
1532 rs->sc_flags &= ~RAIDF_LABELLING;
1533
1534 raidunlock(rs);
1535
1536 if (error)
1537 return (error);
1538 break;
1539 }
1540
1541 case DIOCWLABEL:
1542 if (*(int *) data != 0)
1543 rs->sc_flags |= RAIDF_WLABEL;
1544 else
1545 rs->sc_flags &= ~RAIDF_WLABEL;
1546 break;
1547
1548 case DIOCGDEFLABEL:
1549 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1550 break;
1551
1552 #ifdef __HAVE_OLD_DISKLABEL
1553 case ODIOCGDEFLABEL:
1554 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1555 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1556 return ENOTTY;
1557 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1558 break;
1559 #endif
1560
1561 default:
1562 retcode = ENOTTY;
1563 }
1564 return (retcode);
1565
1566 }
1567
1568
1569 /* raidinit -- complete the rest of the initialization for the
1570 RAIDframe device. */
1571
1572
1573 static void
1574 raidinit(raidPtr)
1575 RF_Raid_t *raidPtr;
1576 {
1577 struct raid_softc *rs;
1578 int unit;
1579
1580 unit = raidPtr->raidid;
1581
1582 rs = &raid_softc[unit];
1583
1584 /* XXX should check return code first... */
1585 rs->sc_flags |= RAIDF_INITED;
1586
1587 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1588
1589 rs->sc_dkdev.dk_name = rs->sc_xname;
1590
1591 /* disk_attach actually creates space for the CPU disklabel, among
1592 * other things, so it's critical to call this *BEFORE* we try putzing
1593 * with disklabels. */
1594
1595 disk_attach(&rs->sc_dkdev);
1596
1597 /* XXX There may be a weird interaction here between this, and
1598 * protectedSectors, as used in RAIDframe. */
1599
1600 rs->sc_size = raidPtr->totalSectors;
1601
1602 }
1603
1604 /* wake up the daemon & tell it to get us a spare table
1605 * XXX
1606 * the entries in the queues should be tagged with the raidPtr
1607 * so that in the extremely rare case that two recons happen at once,
1608 * we know for which device were requesting a spare table
1609 * XXX
1610 *
1611 * XXX This code is not currently used. GO
1612 */
1613 int
1614 rf_GetSpareTableFromDaemon(req)
1615 RF_SparetWait_t *req;
1616 {
1617 int retcode;
1618
1619 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1620 req->next = rf_sparet_wait_queue;
1621 rf_sparet_wait_queue = req;
1622 wakeup(&rf_sparet_wait_queue);
1623
1624 /* mpsleep unlocks the mutex */
1625 while (!rf_sparet_resp_queue) {
1626 tsleep(&rf_sparet_resp_queue, PRIBIO,
1627 "raidframe getsparetable", 0);
1628 }
1629 req = rf_sparet_resp_queue;
1630 rf_sparet_resp_queue = req->next;
1631 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1632
1633 retcode = req->fcol;
1634 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1635 * alloc'd */
1636 return (retcode);
1637 }
1638
1639 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1640 * bp & passes it down.
1641 * any calls originating in the kernel must use non-blocking I/O
1642 * do some extra sanity checking to return "appropriate" error values for
1643 * certain conditions (to make some standard utilities work)
1644 *
1645 * Formerly known as: rf_DoAccessKernel
1646 */
1647 void
1648 raidstart(raidPtr)
1649 RF_Raid_t *raidPtr;
1650 {
1651 RF_SectorCount_t num_blocks, pb, sum;
1652 RF_RaidAddr_t raid_addr;
1653 int retcode;
1654 struct partition *pp;
1655 daddr_t blocknum;
1656 int unit;
1657 struct raid_softc *rs;
1658 int do_async;
1659 struct buf *bp;
1660
1661 unit = raidPtr->raidid;
1662 rs = &raid_softc[unit];
1663
1664 /* quick check to see if anything has died recently */
1665 RF_LOCK_MUTEX(raidPtr->mutex);
1666 if (raidPtr->numNewFailures > 0) {
1667 rf_update_component_labels(raidPtr,
1668 RF_NORMAL_COMPONENT_UPDATE);
1669 raidPtr->numNewFailures--;
1670 }
1671
1672 /* Check to see if we're at the limit... */
1673 while (raidPtr->openings > 0) {
1674 RF_UNLOCK_MUTEX(raidPtr->mutex);
1675
1676 /* get the next item, if any, from the queue */
1677 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1678 /* nothing more to do */
1679 return;
1680 }
1681
1682 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1683 * partition.. Need to make it absolute to the underlying
1684 * device.. */
1685
1686 blocknum = bp->b_blkno;
1687 if (DISKPART(bp->b_dev) != RAW_PART) {
1688 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1689 blocknum += pp->p_offset;
1690 }
1691
1692 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1693 (int) blocknum));
1694
1695 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1696 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1697
1698 /* *THIS* is where we adjust what block we're going to...
1699 * but DO NOT TOUCH bp->b_blkno!!! */
1700 raid_addr = blocknum;
1701
1702 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1703 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1704 sum = raid_addr + num_blocks + pb;
1705 if (1 || rf_debugKernelAccess) {
1706 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1707 (int) raid_addr, (int) sum, (int) num_blocks,
1708 (int) pb, (int) bp->b_resid));
1709 }
1710 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1711 || (sum < num_blocks) || (sum < pb)) {
1712 bp->b_error = ENOSPC;
1713 bp->b_flags |= B_ERROR;
1714 bp->b_resid = bp->b_bcount;
1715 biodone(bp);
1716 RF_LOCK_MUTEX(raidPtr->mutex);
1717 continue;
1718 }
1719 /*
1720 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1721 */
1722
1723 if (bp->b_bcount & raidPtr->sectorMask) {
1724 bp->b_error = EINVAL;
1725 bp->b_flags |= B_ERROR;
1726 bp->b_resid = bp->b_bcount;
1727 biodone(bp);
1728 RF_LOCK_MUTEX(raidPtr->mutex);
1729 continue;
1730
1731 }
1732 db1_printf(("Calling DoAccess..\n"));
1733
1734
1735 RF_LOCK_MUTEX(raidPtr->mutex);
1736 raidPtr->openings--;
1737 RF_UNLOCK_MUTEX(raidPtr->mutex);
1738
1739 /*
1740 * Everything is async.
1741 */
1742 do_async = 1;
1743
1744 disk_busy(&rs->sc_dkdev);
1745
1746 /* XXX we're still at splbio() here... do we *really*
1747 need to be? */
1748
1749 /* don't ever condition on bp->b_flags & B_WRITE.
1750 * always condition on B_READ instead */
1751
1752 retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1753 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1754 do_async, raid_addr, num_blocks,
1755 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1756
1757 RF_LOCK_MUTEX(raidPtr->mutex);
1758 }
1759 RF_UNLOCK_MUTEX(raidPtr->mutex);
1760 }
1761
1762
1763
1764
1765 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1766
1767 int
1768 rf_DispatchKernelIO(queue, req)
1769 RF_DiskQueue_t *queue;
1770 RF_DiskQueueData_t *req;
1771 {
1772 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1773 struct buf *bp;
1774 struct raidbuf *raidbp = NULL;
1775
1776 req->queue = queue;
1777
1778 #if DIAGNOSTIC
1779 if (queue->raidPtr->raidid >= numraid) {
1780 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1781 numraid);
1782 panic("Invalid Unit number in rf_DispatchKernelIO");
1783 }
1784 #endif
1785
1786 bp = req->bp;
1787 #if 1
1788 /* XXX when there is a physical disk failure, someone is passing us a
1789 * buffer that contains old stuff!! Attempt to deal with this problem
1790 * without taking a performance hit... (not sure where the real bug
1791 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1792
1793 if (bp->b_flags & B_ERROR) {
1794 bp->b_flags &= ~B_ERROR;
1795 }
1796 if (bp->b_error != 0) {
1797 bp->b_error = 0;
1798 }
1799 #endif
1800 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1801
1802 /*
1803 * context for raidiodone
1804 */
1805 raidbp->rf_obp = bp;
1806 raidbp->req = req;
1807
1808 LIST_INIT(&raidbp->rf_buf.b_dep);
1809
1810 switch (req->type) {
1811 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1812 /* XXX need to do something extra here.. */
1813 /* I'm leaving this in, as I've never actually seen it used,
1814 * and I'd like folks to report it... GO */
1815 printf(("WAKEUP CALLED\n"));
1816 queue->numOutstanding++;
1817
1818 /* XXX need to glue the original buffer into this?? */
1819
1820 KernelWakeupFunc(&raidbp->rf_buf);
1821 break;
1822
1823 case RF_IO_TYPE_READ:
1824 case RF_IO_TYPE_WRITE:
1825
1826 if (req->tracerec) {
1827 RF_ETIMER_START(req->tracerec->timer);
1828 }
1829 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1830 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1831 req->sectorOffset, req->numSector,
1832 req->buf, KernelWakeupFunc, (void *) req,
1833 queue->raidPtr->logBytesPerSector, req->b_proc);
1834
1835 if (rf_debugKernelAccess) {
1836 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1837 (long) bp->b_blkno));
1838 }
1839 queue->numOutstanding++;
1840 queue->last_deq_sector = req->sectorOffset;
1841 /* acc wouldn't have been let in if there were any pending
1842 * reqs at any other priority */
1843 queue->curPriority = req->priority;
1844
1845 db1_printf(("Going for %c to unit %d row %d col %d\n",
1846 req->type, queue->raidPtr->raidid,
1847 queue->row, queue->col));
1848 db1_printf(("sector %d count %d (%d bytes) %d\n",
1849 (int) req->sectorOffset, (int) req->numSector,
1850 (int) (req->numSector <<
1851 queue->raidPtr->logBytesPerSector),
1852 (int) queue->raidPtr->logBytesPerSector));
1853 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1854 raidbp->rf_buf.b_vp->v_numoutput++;
1855 }
1856 VOP_STRATEGY(&raidbp->rf_buf);
1857
1858 break;
1859
1860 default:
1861 panic("bad req->type in rf_DispatchKernelIO");
1862 }
1863 db1_printf(("Exiting from DispatchKernelIO\n"));
1864
1865 return (0);
1866 }
1867 /* this is the callback function associated with a I/O invoked from
1868 kernel code.
1869 */
1870 static void
1871 KernelWakeupFunc(vbp)
1872 struct buf *vbp;
1873 {
1874 RF_DiskQueueData_t *req = NULL;
1875 RF_DiskQueue_t *queue;
1876 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1877 struct buf *bp;
1878 int s;
1879
1880 s = splbio();
1881 db1_printf(("recovering the request queue:\n"));
1882 req = raidbp->req;
1883
1884 bp = raidbp->rf_obp;
1885
1886 queue = (RF_DiskQueue_t *) req->queue;
1887
1888 if (raidbp->rf_buf.b_flags & B_ERROR) {
1889 bp->b_flags |= B_ERROR;
1890 bp->b_error = raidbp->rf_buf.b_error ?
1891 raidbp->rf_buf.b_error : EIO;
1892 }
1893
1894 /* XXX methinks this could be wrong... */
1895 #if 1
1896 bp->b_resid = raidbp->rf_buf.b_resid;
1897 #endif
1898
1899 if (req->tracerec) {
1900 RF_ETIMER_STOP(req->tracerec->timer);
1901 RF_ETIMER_EVAL(req->tracerec->timer);
1902 RF_LOCK_MUTEX(rf_tracing_mutex);
1903 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1904 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1905 req->tracerec->num_phys_ios++;
1906 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1907 }
1908 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1909
1910 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1911 * ballistic, and mark the component as hosed... */
1912
1913 if (bp->b_flags & B_ERROR) {
1914 /* Mark the disk as dead */
1915 /* but only mark it once... */
1916 if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1917 rf_ds_optimal) {
1918 printf("raid%d: IO Error. Marking %s as failed.\n",
1919 queue->raidPtr->raidid,
1920 queue->raidPtr->Disks[queue->row][queue->col].devname);
1921 queue->raidPtr->Disks[queue->row][queue->col].status =
1922 rf_ds_failed;
1923 queue->raidPtr->status[queue->row] = rf_rs_degraded;
1924 queue->raidPtr->numFailures++;
1925 queue->raidPtr->numNewFailures++;
1926 } else { /* Disk is already dead... */
1927 /* printf("Disk already marked as dead!\n"); */
1928 }
1929
1930 }
1931
1932 pool_put(&raidframe_cbufpool, raidbp);
1933
1934 /* Fill in the error value */
1935
1936 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1937
1938 simple_lock(&queue->raidPtr->iodone_lock);
1939
1940 /* Drop this one on the "finished" queue... */
1941 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1942
1943 /* Let the raidio thread know there is work to be done. */
1944 wakeup(&(queue->raidPtr->iodone));
1945
1946 simple_unlock(&queue->raidPtr->iodone_lock);
1947
1948 splx(s);
1949 }
1950
1951
1952
1953 /*
1954 * initialize a buf structure for doing an I/O in the kernel.
1955 */
1956 static void
1957 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1958 logBytesPerSector, b_proc)
1959 struct buf *bp;
1960 struct vnode *b_vp;
1961 unsigned rw_flag;
1962 dev_t dev;
1963 RF_SectorNum_t startSect;
1964 RF_SectorCount_t numSect;
1965 caddr_t buf;
1966 void (*cbFunc) (struct buf *);
1967 void *cbArg;
1968 int logBytesPerSector;
1969 struct proc *b_proc;
1970 {
1971 /* bp->b_flags = B_PHYS | rw_flag; */
1972 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
1973 bp->b_bcount = numSect << logBytesPerSector;
1974 bp->b_bufsize = bp->b_bcount;
1975 bp->b_error = 0;
1976 bp->b_dev = dev;
1977 bp->b_data = buf;
1978 bp->b_blkno = startSect;
1979 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
1980 if (bp->b_bcount == 0) {
1981 panic("bp->b_bcount is zero in InitBP!!");
1982 }
1983 bp->b_proc = b_proc;
1984 bp->b_iodone = cbFunc;
1985 bp->b_vp = b_vp;
1986
1987 }
1988
1989 static void
1990 raidgetdefaultlabel(raidPtr, rs, lp)
1991 RF_Raid_t *raidPtr;
1992 struct raid_softc *rs;
1993 struct disklabel *lp;
1994 {
1995 db1_printf(("Building a default label...\n"));
1996 memset(lp, 0, sizeof(*lp));
1997
1998 /* fabricate a label... */
1999 lp->d_secperunit = raidPtr->totalSectors;
2000 lp->d_secsize = raidPtr->bytesPerSector;
2001 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2002 lp->d_ntracks = 4 * raidPtr->numCol;
2003 lp->d_ncylinders = raidPtr->totalSectors /
2004 (lp->d_nsectors * lp->d_ntracks);
2005 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2006
2007 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2008 lp->d_type = DTYPE_RAID;
2009 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2010 lp->d_rpm = 3600;
2011 lp->d_interleave = 1;
2012 lp->d_flags = 0;
2013
2014 lp->d_partitions[RAW_PART].p_offset = 0;
2015 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2016 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2017 lp->d_npartitions = RAW_PART + 1;
2018
2019 lp->d_magic = DISKMAGIC;
2020 lp->d_magic2 = DISKMAGIC;
2021 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2022
2023 }
2024 /*
2025 * Read the disklabel from the raid device. If one is not present, fake one
2026 * up.
2027 */
2028 static void
2029 raidgetdisklabel(dev)
2030 dev_t dev;
2031 {
2032 int unit = raidunit(dev);
2033 struct raid_softc *rs = &raid_softc[unit];
2034 char *errstring;
2035 struct disklabel *lp = rs->sc_dkdev.dk_label;
2036 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2037 RF_Raid_t *raidPtr;
2038
2039 db1_printf(("Getting the disklabel...\n"));
2040
2041 memset(clp, 0, sizeof(*clp));
2042
2043 raidPtr = raidPtrs[unit];
2044
2045 raidgetdefaultlabel(raidPtr, rs, lp);
2046
2047 /*
2048 * Call the generic disklabel extraction routine.
2049 */
2050 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2051 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2052 if (errstring)
2053 raidmakedisklabel(rs);
2054 else {
2055 int i;
2056 struct partition *pp;
2057
2058 /*
2059 * Sanity check whether the found disklabel is valid.
2060 *
2061 * This is necessary since total size of the raid device
2062 * may vary when an interleave is changed even though exactly
2063 * same componets are used, and old disklabel may used
2064 * if that is found.
2065 */
2066 if (lp->d_secperunit != rs->sc_size)
2067 printf("raid%d: WARNING: %s: "
2068 "total sector size in disklabel (%d) != "
2069 "the size of raid (%ld)\n", unit, rs->sc_xname,
2070 lp->d_secperunit, (long) rs->sc_size);
2071 for (i = 0; i < lp->d_npartitions; i++) {
2072 pp = &lp->d_partitions[i];
2073 if (pp->p_offset + pp->p_size > rs->sc_size)
2074 printf("raid%d: WARNING: %s: end of partition `%c' "
2075 "exceeds the size of raid (%ld)\n",
2076 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2077 }
2078 }
2079
2080 }
2081 /*
2082 * Take care of things one might want to take care of in the event
2083 * that a disklabel isn't present.
2084 */
2085 static void
2086 raidmakedisklabel(rs)
2087 struct raid_softc *rs;
2088 {
2089 struct disklabel *lp = rs->sc_dkdev.dk_label;
2090 db1_printf(("Making a label..\n"));
2091
2092 /*
2093 * For historical reasons, if there's no disklabel present
2094 * the raw partition must be marked FS_BSDFFS.
2095 */
2096
2097 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2098
2099 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2100
2101 lp->d_checksum = dkcksum(lp);
2102 }
2103 /*
2104 * Lookup the provided name in the filesystem. If the file exists,
2105 * is a valid block device, and isn't being used by anyone else,
2106 * set *vpp to the file's vnode.
2107 * You'll find the original of this in ccd.c
2108 */
2109 int
2110 raidlookup(path, p, vpp)
2111 char *path;
2112 struct proc *p;
2113 struct vnode **vpp; /* result */
2114 {
2115 struct nameidata nd;
2116 struct vnode *vp;
2117 struct vattr va;
2118 int error;
2119
2120 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2121 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2122 #if 0
2123 printf("RAIDframe: vn_open returned %d\n", error);
2124 #endif
2125 return (error);
2126 }
2127 vp = nd.ni_vp;
2128 if (vp->v_usecount > 1) {
2129 VOP_UNLOCK(vp, 0);
2130 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2131 return (EBUSY);
2132 }
2133 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2134 VOP_UNLOCK(vp, 0);
2135 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2136 return (error);
2137 }
2138 /* XXX: eventually we should handle VREG, too. */
2139 if (va.va_type != VBLK) {
2140 VOP_UNLOCK(vp, 0);
2141 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2142 return (ENOTBLK);
2143 }
2144 VOP_UNLOCK(vp, 0);
2145 *vpp = vp;
2146 return (0);
2147 }
2148 /*
2149 * Wait interruptibly for an exclusive lock.
2150 *
2151 * XXX
2152 * Several drivers do this; it should be abstracted and made MP-safe.
2153 * (Hmm... where have we seen this warning before :-> GO )
2154 */
2155 static int
2156 raidlock(rs)
2157 struct raid_softc *rs;
2158 {
2159 int error;
2160
2161 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2162 rs->sc_flags |= RAIDF_WANTED;
2163 if ((error =
2164 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2165 return (error);
2166 }
2167 rs->sc_flags |= RAIDF_LOCKED;
2168 return (0);
2169 }
2170 /*
2171 * Unlock and wake up any waiters.
2172 */
2173 static void
2174 raidunlock(rs)
2175 struct raid_softc *rs;
2176 {
2177
2178 rs->sc_flags &= ~RAIDF_LOCKED;
2179 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2180 rs->sc_flags &= ~RAIDF_WANTED;
2181 wakeup(rs);
2182 }
2183 }
2184
2185
2186 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2187 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2188
2189 int
2190 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2191 {
2192 RF_ComponentLabel_t clabel;
2193 raidread_component_label(dev, b_vp, &clabel);
2194 clabel.mod_counter = mod_counter;
2195 clabel.clean = RF_RAID_CLEAN;
2196 raidwrite_component_label(dev, b_vp, &clabel);
2197 return(0);
2198 }
2199
2200
2201 int
2202 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2203 {
2204 RF_ComponentLabel_t clabel;
2205 raidread_component_label(dev, b_vp, &clabel);
2206 clabel.mod_counter = mod_counter;
2207 clabel.clean = RF_RAID_DIRTY;
2208 raidwrite_component_label(dev, b_vp, &clabel);
2209 return(0);
2210 }
2211
2212 /* ARGSUSED */
2213 int
2214 raidread_component_label(dev, b_vp, clabel)
2215 dev_t dev;
2216 struct vnode *b_vp;
2217 RF_ComponentLabel_t *clabel;
2218 {
2219 struct buf *bp;
2220 const struct bdevsw *bdev;
2221 int error;
2222
2223 /* XXX should probably ensure that we don't try to do this if
2224 someone has changed rf_protected_sectors. */
2225
2226 if (b_vp == NULL) {
2227 /* For whatever reason, this component is not valid.
2228 Don't try to read a component label from it. */
2229 return(EINVAL);
2230 }
2231
2232 /* get a block of the appropriate size... */
2233 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2234 bp->b_dev = dev;
2235
2236 /* get our ducks in a row for the read */
2237 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2238 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2239 bp->b_flags |= B_READ;
2240 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2241
2242 bdev = bdevsw_lookup(bp->b_dev);
2243 if (bdev == NULL)
2244 return (ENXIO);
2245 (*bdev->d_strategy)(bp);
2246
2247 error = biowait(bp);
2248
2249 if (!error) {
2250 memcpy(clabel, bp->b_data,
2251 sizeof(RF_ComponentLabel_t));
2252 #if 0
2253 rf_print_component_label( clabel );
2254 #endif
2255 } else {
2256 #if 0
2257 printf("Failed to read RAID component label!\n");
2258 #endif
2259 }
2260
2261 brelse(bp);
2262 return(error);
2263 }
2264 /* ARGSUSED */
2265 int
2266 raidwrite_component_label(dev, b_vp, clabel)
2267 dev_t dev;
2268 struct vnode *b_vp;
2269 RF_ComponentLabel_t *clabel;
2270 {
2271 struct buf *bp;
2272 const struct bdevsw *bdev;
2273 int error;
2274
2275 /* get a block of the appropriate size... */
2276 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2277 bp->b_dev = dev;
2278
2279 /* get our ducks in a row for the write */
2280 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2281 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2282 bp->b_flags |= B_WRITE;
2283 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2284
2285 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2286
2287 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2288
2289 bdev = bdevsw_lookup(bp->b_dev);
2290 if (bdev == NULL)
2291 return (ENXIO);
2292 (*bdev->d_strategy)(bp);
2293 error = biowait(bp);
2294 brelse(bp);
2295 if (error) {
2296 #if 1
2297 printf("Failed to write RAID component info!\n");
2298 #endif
2299 }
2300
2301 return(error);
2302 }
2303
2304 void
2305 rf_markalldirty(raidPtr)
2306 RF_Raid_t *raidPtr;
2307 {
2308 RF_ComponentLabel_t clabel;
2309 int r,c;
2310
2311 raidPtr->mod_counter++;
2312 for (r = 0; r < raidPtr->numRow; r++) {
2313 for (c = 0; c < raidPtr->numCol; c++) {
2314 /* we don't want to touch (at all) a disk that has
2315 failed */
2316 if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2317 raidread_component_label(
2318 raidPtr->Disks[r][c].dev,
2319 raidPtr->raid_cinfo[r][c].ci_vp,
2320 &clabel);
2321 if (clabel.status == rf_ds_spared) {
2322 /* XXX do something special...
2323 but whatever you do, don't
2324 try to access it!! */
2325 } else {
2326 #if 0
2327 clabel.status =
2328 raidPtr->Disks[r][c].status;
2329 raidwrite_component_label(
2330 raidPtr->Disks[r][c].dev,
2331 raidPtr->raid_cinfo[r][c].ci_vp,
2332 &clabel);
2333 #endif
2334 raidmarkdirty(
2335 raidPtr->Disks[r][c].dev,
2336 raidPtr->raid_cinfo[r][c].ci_vp,
2337 raidPtr->mod_counter);
2338 }
2339 }
2340 }
2341 }
2342 /* printf("Component labels marked dirty.\n"); */
2343 #if 0
2344 for( c = 0; c < raidPtr->numSpare ; c++) {
2345 sparecol = raidPtr->numCol + c;
2346 if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
2347 /*
2348
2349 XXX this is where we get fancy and map this spare
2350 into it's correct spot in the array.
2351
2352 */
2353 /*
2354
2355 we claim this disk is "optimal" if it's
2356 rf_ds_used_spare, as that means it should be
2357 directly substitutable for the disk it replaced.
2358 We note that too...
2359
2360 */
2361
2362 for(i=0;i<raidPtr->numRow;i++) {
2363 for(j=0;j<raidPtr->numCol;j++) {
2364 if ((raidPtr->Disks[i][j].spareRow ==
2365 r) &&
2366 (raidPtr->Disks[i][j].spareCol ==
2367 sparecol)) {
2368 srow = r;
2369 scol = sparecol;
2370 break;
2371 }
2372 }
2373 }
2374
2375 raidread_component_label(
2376 raidPtr->Disks[r][sparecol].dev,
2377 raidPtr->raid_cinfo[r][sparecol].ci_vp,
2378 &clabel);
2379 /* make sure status is noted */
2380 clabel.version = RF_COMPONENT_LABEL_VERSION;
2381 clabel.mod_counter = raidPtr->mod_counter;
2382 clabel.serial_number = raidPtr->serial_number;
2383 clabel.row = srow;
2384 clabel.column = scol;
2385 clabel.num_rows = raidPtr->numRow;
2386 clabel.num_columns = raidPtr->numCol;
2387 clabel.clean = RF_RAID_DIRTY; /* changed in a bit*/
2388 clabel.status = rf_ds_optimal;
2389 raidwrite_component_label(
2390 raidPtr->Disks[r][sparecol].dev,
2391 raidPtr->raid_cinfo[r][sparecol].ci_vp,
2392 &clabel);
2393 raidmarkclean( raidPtr->Disks[r][sparecol].dev,
2394 raidPtr->raid_cinfo[r][sparecol].ci_vp);
2395 }
2396 }
2397
2398 #endif
2399 }
2400
2401
2402 void
2403 rf_update_component_labels(raidPtr, final)
2404 RF_Raid_t *raidPtr;
2405 int final;
2406 {
2407 RF_ComponentLabel_t clabel;
2408 int sparecol;
2409 int r,c;
2410 int i,j;
2411 int srow, scol;
2412
2413 srow = -1;
2414 scol = -1;
2415
2416 /* XXX should do extra checks to make sure things really are clean,
2417 rather than blindly setting the clean bit... */
2418
2419 raidPtr->mod_counter++;
2420
2421 for (r = 0; r < raidPtr->numRow; r++) {
2422 for (c = 0; c < raidPtr->numCol; c++) {
2423 if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2424 raidread_component_label(
2425 raidPtr->Disks[r][c].dev,
2426 raidPtr->raid_cinfo[r][c].ci_vp,
2427 &clabel);
2428 /* make sure status is noted */
2429 clabel.status = rf_ds_optimal;
2430 /* bump the counter */
2431 clabel.mod_counter = raidPtr->mod_counter;
2432
2433 raidwrite_component_label(
2434 raidPtr->Disks[r][c].dev,
2435 raidPtr->raid_cinfo[r][c].ci_vp,
2436 &clabel);
2437 if (final == RF_FINAL_COMPONENT_UPDATE) {
2438 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2439 raidmarkclean(
2440 raidPtr->Disks[r][c].dev,
2441 raidPtr->raid_cinfo[r][c].ci_vp,
2442 raidPtr->mod_counter);
2443 }
2444 }
2445 }
2446 /* else we don't touch it.. */
2447 }
2448 }
2449
2450 for( c = 0; c < raidPtr->numSpare ; c++) {
2451 sparecol = raidPtr->numCol + c;
2452 /* Need to ensure that the reconstruct actually completed! */
2453 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2454 /*
2455
2456 we claim this disk is "optimal" if it's
2457 rf_ds_used_spare, as that means it should be
2458 directly substitutable for the disk it replaced.
2459 We note that too...
2460
2461 */
2462
2463 for(i=0;i<raidPtr->numRow;i++) {
2464 for(j=0;j<raidPtr->numCol;j++) {
2465 if ((raidPtr->Disks[i][j].spareRow ==
2466 0) &&
2467 (raidPtr->Disks[i][j].spareCol ==
2468 sparecol)) {
2469 srow = i;
2470 scol = j;
2471 break;
2472 }
2473 }
2474 }
2475
2476 /* XXX shouldn't *really* need this... */
2477 raidread_component_label(
2478 raidPtr->Disks[0][sparecol].dev,
2479 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2480 &clabel);
2481 /* make sure status is noted */
2482
2483 raid_init_component_label(raidPtr, &clabel);
2484
2485 clabel.mod_counter = raidPtr->mod_counter;
2486 clabel.row = srow;
2487 clabel.column = scol;
2488 clabel.status = rf_ds_optimal;
2489
2490 raidwrite_component_label(
2491 raidPtr->Disks[0][sparecol].dev,
2492 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2493 &clabel);
2494 if (final == RF_FINAL_COMPONENT_UPDATE) {
2495 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2496 raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2497 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2498 raidPtr->mod_counter);
2499 }
2500 }
2501 }
2502 }
2503 /* printf("Component labels updated\n"); */
2504 }
2505
2506 void
2507 rf_close_component(raidPtr, vp, auto_configured)
2508 RF_Raid_t *raidPtr;
2509 struct vnode *vp;
2510 int auto_configured;
2511 {
2512 struct proc *p;
2513
2514 p = raidPtr->engine_thread;
2515
2516 if (vp != NULL) {
2517 if (auto_configured == 1) {
2518 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2519 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2520 vput(vp);
2521
2522 } else {
2523 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2524 }
2525 } else {
2526 #if 0
2527 printf("vnode was NULL\n");
2528 #endif
2529 }
2530 }
2531
2532
2533 void
2534 rf_UnconfigureVnodes(raidPtr)
2535 RF_Raid_t *raidPtr;
2536 {
2537 int r,c;
2538 struct vnode *vp;
2539 int acd;
2540
2541
2542 /* We take this opportunity to close the vnodes like we should.. */
2543
2544 for (r = 0; r < raidPtr->numRow; r++) {
2545 for (c = 0; c < raidPtr->numCol; c++) {
2546 #if 0
2547 printf("raid%d: Closing vnode for row: %d col: %d\n",
2548 raidPtr->raidid, r, c);
2549 #endif
2550 vp = raidPtr->raid_cinfo[r][c].ci_vp;
2551 acd = raidPtr->Disks[r][c].auto_configured;
2552 rf_close_component(raidPtr, vp, acd);
2553 raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2554 raidPtr->Disks[r][c].auto_configured = 0;
2555 }
2556 }
2557 for (r = 0; r < raidPtr->numSpare; r++) {
2558 #if 0
2559 printf("raid%d: Closing vnode for spare: %d\n",
2560 raidPtr->raidid, r);
2561 #endif
2562 vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2563 acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2564 rf_close_component(raidPtr, vp, acd);
2565 raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2566 raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2567 }
2568 }
2569
2570
2571 void
2572 rf_ReconThread(req)
2573 struct rf_recon_req *req;
2574 {
2575 int s;
2576 RF_Raid_t *raidPtr;
2577
2578 s = splbio();
2579 raidPtr = (RF_Raid_t *) req->raidPtr;
2580 raidPtr->recon_in_progress = 1;
2581
2582 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2583 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2584
2585 /* XXX get rid of this! we don't need it at all.. */
2586 RF_Free(req, sizeof(*req));
2587
2588 raidPtr->recon_in_progress = 0;
2589 splx(s);
2590
2591 /* That's all... */
2592 kthread_exit(0); /* does not return */
2593 }
2594
2595 void
2596 rf_RewriteParityThread(raidPtr)
2597 RF_Raid_t *raidPtr;
2598 {
2599 int retcode;
2600 int s;
2601
2602 raidPtr->parity_rewrite_in_progress = 1;
2603 s = splbio();
2604 retcode = rf_RewriteParity(raidPtr);
2605 splx(s);
2606 if (retcode) {
2607 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2608 } else {
2609 /* set the clean bit! If we shutdown correctly,
2610 the clean bit on each component label will get
2611 set */
2612 raidPtr->parity_good = RF_RAID_CLEAN;
2613 }
2614 raidPtr->parity_rewrite_in_progress = 0;
2615
2616 /* Anyone waiting for us to stop? If so, inform them... */
2617 if (raidPtr->waitShutdown) {
2618 wakeup(&raidPtr->parity_rewrite_in_progress);
2619 }
2620
2621 /* That's all... */
2622 kthread_exit(0); /* does not return */
2623 }
2624
2625
2626 void
2627 rf_CopybackThread(raidPtr)
2628 RF_Raid_t *raidPtr;
2629 {
2630 int s;
2631
2632 raidPtr->copyback_in_progress = 1;
2633 s = splbio();
2634 rf_CopybackReconstructedData(raidPtr);
2635 splx(s);
2636 raidPtr->copyback_in_progress = 0;
2637
2638 /* That's all... */
2639 kthread_exit(0); /* does not return */
2640 }
2641
2642
2643 void
2644 rf_ReconstructInPlaceThread(req)
2645 struct rf_recon_req *req;
2646 {
2647 int retcode;
2648 int s;
2649 RF_Raid_t *raidPtr;
2650
2651 s = splbio();
2652 raidPtr = req->raidPtr;
2653 raidPtr->recon_in_progress = 1;
2654 retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
2655 RF_Free(req, sizeof(*req));
2656 raidPtr->recon_in_progress = 0;
2657 splx(s);
2658
2659 /* That's all... */
2660 kthread_exit(0); /* does not return */
2661 }
2662
2663 RF_AutoConfig_t *
2664 rf_find_raid_components()
2665 {
2666 struct vnode *vp;
2667 struct disklabel label;
2668 struct device *dv;
2669 dev_t dev;
2670 int bmajor;
2671 int error;
2672 int i;
2673 int good_one;
2674 RF_ComponentLabel_t *clabel;
2675 RF_AutoConfig_t *ac_list;
2676 RF_AutoConfig_t *ac;
2677
2678
2679 /* initialize the AutoConfig list */
2680 ac_list = NULL;
2681
2682 /* we begin by trolling through *all* the devices on the system */
2683
2684 for (dv = alldevs.tqh_first; dv != NULL;
2685 dv = dv->dv_list.tqe_next) {
2686
2687 /* we are only interested in disks... */
2688 if (dv->dv_class != DV_DISK)
2689 continue;
2690
2691 /* we don't care about floppies... */
2692 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2693 continue;
2694 }
2695
2696 /* we don't care about CD's... */
2697 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2698 continue;
2699 }
2700
2701 /* hdfd is the Atari/Hades floppy driver */
2702 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2703 continue;
2704 }
2705 /* fdisa is the Atari/Milan floppy driver */
2706 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2707 continue;
2708 }
2709
2710 /* need to find the device_name_to_block_device_major stuff */
2711 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2712
2713 /* get a vnode for the raw partition of this disk */
2714
2715 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2716 if (bdevvp(dev, &vp))
2717 panic("RAID can't alloc vnode");
2718
2719 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2720
2721 if (error) {
2722 /* "Who cares." Continue looking
2723 for something that exists*/
2724 vput(vp);
2725 continue;
2726 }
2727
2728 /* Ok, the disk exists. Go get the disklabel. */
2729 error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
2730 FREAD, NOCRED, 0);
2731 if (error) {
2732 /*
2733 * XXX can't happen - open() would
2734 * have errored out (or faked up one)
2735 */
2736 printf("can't get label for dev %s%c (%d)!?!?\n",
2737 dv->dv_xname, 'a' + RAW_PART, error);
2738 }
2739
2740 /* don't need this any more. We'll allocate it again
2741 a little later if we really do... */
2742 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2743 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2744 vput(vp);
2745
2746 for (i=0; i < label.d_npartitions; i++) {
2747 /* We only support partitions marked as RAID */
2748 if (label.d_partitions[i].p_fstype != FS_RAID)
2749 continue;
2750
2751 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2752 if (bdevvp(dev, &vp))
2753 panic("RAID can't alloc vnode");
2754
2755 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2756 if (error) {
2757 /* Whatever... */
2758 vput(vp);
2759 continue;
2760 }
2761
2762 good_one = 0;
2763
2764 clabel = (RF_ComponentLabel_t *)
2765 malloc(sizeof(RF_ComponentLabel_t),
2766 M_RAIDFRAME, M_NOWAIT);
2767 if (clabel == NULL) {
2768 /* XXX CLEANUP HERE */
2769 printf("RAID auto config: out of memory!\n");
2770 return(NULL); /* XXX probably should panic? */
2771 }
2772
2773 if (!raidread_component_label(dev, vp, clabel)) {
2774 /* Got the label. Does it look reasonable? */
2775 if (rf_reasonable_label(clabel) &&
2776 (clabel->partitionSize <=
2777 label.d_partitions[i].p_size)) {
2778 #if DEBUG
2779 printf("Component on: %s%c: %d\n",
2780 dv->dv_xname, 'a'+i,
2781 label.d_partitions[i].p_size);
2782 rf_print_component_label(clabel);
2783 #endif
2784 /* if it's reasonable, add it,
2785 else ignore it. */
2786 ac = (RF_AutoConfig_t *)
2787 malloc(sizeof(RF_AutoConfig_t),
2788 M_RAIDFRAME,
2789 M_NOWAIT);
2790 if (ac == NULL) {
2791 /* XXX should panic?? */
2792 return(NULL);
2793 }
2794
2795 sprintf(ac->devname, "%s%c",
2796 dv->dv_xname, 'a'+i);
2797 ac->dev = dev;
2798 ac->vp = vp;
2799 ac->clabel = clabel;
2800 ac->next = ac_list;
2801 ac_list = ac;
2802 good_one = 1;
2803 }
2804 }
2805 if (!good_one) {
2806 /* cleanup */
2807 free(clabel, M_RAIDFRAME);
2808 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2809 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2810 vput(vp);
2811 }
2812 }
2813 }
2814 return(ac_list);
2815 }
2816
2817 static int
2818 rf_reasonable_label(clabel)
2819 RF_ComponentLabel_t *clabel;
2820 {
2821
2822 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2823 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2824 ((clabel->clean == RF_RAID_CLEAN) ||
2825 (clabel->clean == RF_RAID_DIRTY)) &&
2826 clabel->row >=0 &&
2827 clabel->column >= 0 &&
2828 clabel->num_rows > 0 &&
2829 clabel->num_columns > 0 &&
2830 clabel->row < clabel->num_rows &&
2831 clabel->column < clabel->num_columns &&
2832 clabel->blockSize > 0 &&
2833 clabel->numBlocks > 0) {
2834 /* label looks reasonable enough... */
2835 return(1);
2836 }
2837 return(0);
2838 }
2839
2840
2841 #if DEBUG
2842 void
2843 rf_print_component_label(clabel)
2844 RF_ComponentLabel_t *clabel;
2845 {
2846 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2847 clabel->row, clabel->column,
2848 clabel->num_rows, clabel->num_columns);
2849 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2850 clabel->version, clabel->serial_number,
2851 clabel->mod_counter);
2852 printf(" Clean: %s Status: %d\n",
2853 clabel->clean ? "Yes" : "No", clabel->status );
2854 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2855 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2856 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2857 (char) clabel->parityConfig, clabel->blockSize,
2858 clabel->numBlocks);
2859 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2860 printf(" Contains root partition: %s\n",
2861 clabel->root_partition ? "Yes" : "No" );
2862 printf(" Last configured as: raid%d\n", clabel->last_unit );
2863 #if 0
2864 printf(" Config order: %d\n", clabel->config_order);
2865 #endif
2866
2867 }
2868 #endif
2869
2870 RF_ConfigSet_t *
2871 rf_create_auto_sets(ac_list)
2872 RF_AutoConfig_t *ac_list;
2873 {
2874 RF_AutoConfig_t *ac;
2875 RF_ConfigSet_t *config_sets;
2876 RF_ConfigSet_t *cset;
2877 RF_AutoConfig_t *ac_next;
2878
2879
2880 config_sets = NULL;
2881
2882 /* Go through the AutoConfig list, and figure out which components
2883 belong to what sets. */
2884 ac = ac_list;
2885 while(ac!=NULL) {
2886 /* we're going to putz with ac->next, so save it here
2887 for use at the end of the loop */
2888 ac_next = ac->next;
2889
2890 if (config_sets == NULL) {
2891 /* will need at least this one... */
2892 config_sets = (RF_ConfigSet_t *)
2893 malloc(sizeof(RF_ConfigSet_t),
2894 M_RAIDFRAME, M_NOWAIT);
2895 if (config_sets == NULL) {
2896 panic("rf_create_auto_sets: No memory!");
2897 }
2898 /* this one is easy :) */
2899 config_sets->ac = ac;
2900 config_sets->next = NULL;
2901 config_sets->rootable = 0;
2902 ac->next = NULL;
2903 } else {
2904 /* which set does this component fit into? */
2905 cset = config_sets;
2906 while(cset!=NULL) {
2907 if (rf_does_it_fit(cset, ac)) {
2908 /* looks like it matches... */
2909 ac->next = cset->ac;
2910 cset->ac = ac;
2911 break;
2912 }
2913 cset = cset->next;
2914 }
2915 if (cset==NULL) {
2916 /* didn't find a match above... new set..*/
2917 cset = (RF_ConfigSet_t *)
2918 malloc(sizeof(RF_ConfigSet_t),
2919 M_RAIDFRAME, M_NOWAIT);
2920 if (cset == NULL) {
2921 panic("rf_create_auto_sets: No memory!");
2922 }
2923 cset->ac = ac;
2924 ac->next = NULL;
2925 cset->next = config_sets;
2926 cset->rootable = 0;
2927 config_sets = cset;
2928 }
2929 }
2930 ac = ac_next;
2931 }
2932
2933
2934 return(config_sets);
2935 }
2936
2937 static int
2938 rf_does_it_fit(cset, ac)
2939 RF_ConfigSet_t *cset;
2940 RF_AutoConfig_t *ac;
2941 {
2942 RF_ComponentLabel_t *clabel1, *clabel2;
2943
2944 /* If this one matches the *first* one in the set, that's good
2945 enough, since the other members of the set would have been
2946 through here too... */
2947 /* note that we are not checking partitionSize here..
2948
2949 Note that we are also not checking the mod_counters here.
2950 If everything else matches execpt the mod_counter, that's
2951 good enough for this test. We will deal with the mod_counters
2952 a little later in the autoconfiguration process.
2953
2954 (clabel1->mod_counter == clabel2->mod_counter) &&
2955
2956 The reason we don't check for this is that failed disks
2957 will have lower modification counts. If those disks are
2958 not added to the set they used to belong to, then they will
2959 form their own set, which may result in 2 different sets,
2960 for example, competing to be configured at raid0, and
2961 perhaps competing to be the root filesystem set. If the
2962 wrong ones get configured, or both attempt to become /,
2963 weird behaviour and or serious lossage will occur. Thus we
2964 need to bring them into the fold here, and kick them out at
2965 a later point.
2966
2967 */
2968
2969 clabel1 = cset->ac->clabel;
2970 clabel2 = ac->clabel;
2971 if ((clabel1->version == clabel2->version) &&
2972 (clabel1->serial_number == clabel2->serial_number) &&
2973 (clabel1->num_rows == clabel2->num_rows) &&
2974 (clabel1->num_columns == clabel2->num_columns) &&
2975 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2976 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2977 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2978 (clabel1->parityConfig == clabel2->parityConfig) &&
2979 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2980 (clabel1->blockSize == clabel2->blockSize) &&
2981 (clabel1->numBlocks == clabel2->numBlocks) &&
2982 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2983 (clabel1->root_partition == clabel2->root_partition) &&
2984 (clabel1->last_unit == clabel2->last_unit) &&
2985 (clabel1->config_order == clabel2->config_order)) {
2986 /* if it get's here, it almost *has* to be a match */
2987 } else {
2988 /* it's not consistent with somebody in the set..
2989 punt */
2990 return(0);
2991 }
2992 /* all was fine.. it must fit... */
2993 return(1);
2994 }
2995
2996 int
2997 rf_have_enough_components(cset)
2998 RF_ConfigSet_t *cset;
2999 {
3000 RF_AutoConfig_t *ac;
3001 RF_AutoConfig_t *auto_config;
3002 RF_ComponentLabel_t *clabel;
3003 int r,c;
3004 int num_rows;
3005 int num_cols;
3006 int num_missing;
3007 int mod_counter;
3008 int mod_counter_found;
3009 int even_pair_failed;
3010 char parity_type;
3011
3012
3013 /* check to see that we have enough 'live' components
3014 of this set. If so, we can configure it if necessary */
3015
3016 num_rows = cset->ac->clabel->num_rows;
3017 num_cols = cset->ac->clabel->num_columns;
3018 parity_type = cset->ac->clabel->parityConfig;
3019
3020 /* XXX Check for duplicate components!?!?!? */
3021
3022 /* Determine what the mod_counter is supposed to be for this set. */
3023
3024 mod_counter_found = 0;
3025 mod_counter = 0;
3026 ac = cset->ac;
3027 while(ac!=NULL) {
3028 if (mod_counter_found==0) {
3029 mod_counter = ac->clabel->mod_counter;
3030 mod_counter_found = 1;
3031 } else {
3032 if (ac->clabel->mod_counter > mod_counter) {
3033 mod_counter = ac->clabel->mod_counter;
3034 }
3035 }
3036 ac = ac->next;
3037 }
3038
3039 num_missing = 0;
3040 auto_config = cset->ac;
3041
3042 for(r=0; r<num_rows; r++) {
3043 even_pair_failed = 0;
3044 for(c=0; c<num_cols; c++) {
3045 ac = auto_config;
3046 while(ac!=NULL) {
3047 if ((ac->clabel->row == r) &&
3048 (ac->clabel->column == c) &&
3049 (ac->clabel->mod_counter == mod_counter)) {
3050 /* it's this one... */
3051 #if DEBUG
3052 printf("Found: %s at %d,%d\n",
3053 ac->devname,r,c);
3054 #endif
3055 break;
3056 }
3057 ac=ac->next;
3058 }
3059 if (ac==NULL) {
3060 /* Didn't find one here! */
3061 /* special case for RAID 1, especially
3062 where there are more than 2
3063 components (where RAIDframe treats
3064 things a little differently :( ) */
3065 if (parity_type == '1') {
3066 if (c%2 == 0) { /* even component */
3067 even_pair_failed = 1;
3068 } else { /* odd component. If
3069 we're failed, and
3070 so is the even
3071 component, it's
3072 "Good Night, Charlie" */
3073 if (even_pair_failed == 1) {
3074 return(0);
3075 }
3076 }
3077 } else {
3078 /* normal accounting */
3079 num_missing++;
3080 }
3081 }
3082 if ((parity_type == '1') && (c%2 == 1)) {
3083 /* Just did an even component, and we didn't
3084 bail.. reset the even_pair_failed flag,
3085 and go on to the next component.... */
3086 even_pair_failed = 0;
3087 }
3088 }
3089 }
3090
3091 clabel = cset->ac->clabel;
3092
3093 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3094 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3095 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3096 /* XXX this needs to be made *much* more general */
3097 /* Too many failures */
3098 return(0);
3099 }
3100 /* otherwise, all is well, and we've got enough to take a kick
3101 at autoconfiguring this set */
3102 return(1);
3103 }
3104
3105 void
3106 rf_create_configuration(ac,config,raidPtr)
3107 RF_AutoConfig_t *ac;
3108 RF_Config_t *config;
3109 RF_Raid_t *raidPtr;
3110 {
3111 RF_ComponentLabel_t *clabel;
3112 int i;
3113
3114 clabel = ac->clabel;
3115
3116 /* 1. Fill in the common stuff */
3117 config->numRow = clabel->num_rows;
3118 config->numCol = clabel->num_columns;
3119 config->numSpare = 0; /* XXX should this be set here? */
3120 config->sectPerSU = clabel->sectPerSU;
3121 config->SUsPerPU = clabel->SUsPerPU;
3122 config->SUsPerRU = clabel->SUsPerRU;
3123 config->parityConfig = clabel->parityConfig;
3124 /* XXX... */
3125 strcpy(config->diskQueueType,"fifo");
3126 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3127 config->layoutSpecificSize = 0; /* XXX ?? */
3128
3129 while(ac!=NULL) {
3130 /* row/col values will be in range due to the checks
3131 in reasonable_label() */
3132 strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3133 ac->devname);
3134 ac = ac->next;
3135 }
3136
3137 for(i=0;i<RF_MAXDBGV;i++) {
3138 config->debugVars[i][0] = NULL;
3139 }
3140 }
3141
3142 int
3143 rf_set_autoconfig(raidPtr, new_value)
3144 RF_Raid_t *raidPtr;
3145 int new_value;
3146 {
3147 RF_ComponentLabel_t clabel;
3148 struct vnode *vp;
3149 dev_t dev;
3150 int row, column;
3151
3152 raidPtr->autoconfigure = new_value;
3153 for(row=0; row<raidPtr->numRow; row++) {
3154 for(column=0; column<raidPtr->numCol; column++) {
3155 if (raidPtr->Disks[row][column].status ==
3156 rf_ds_optimal) {
3157 dev = raidPtr->Disks[row][column].dev;
3158 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3159 raidread_component_label(dev, vp, &clabel);
3160 clabel.autoconfigure = new_value;
3161 raidwrite_component_label(dev, vp, &clabel);
3162 }
3163 }
3164 }
3165 return(new_value);
3166 }
3167
3168 int
3169 rf_set_rootpartition(raidPtr, new_value)
3170 RF_Raid_t *raidPtr;
3171 int new_value;
3172 {
3173 RF_ComponentLabel_t clabel;
3174 struct vnode *vp;
3175 dev_t dev;
3176 int row, column;
3177
3178 raidPtr->root_partition = new_value;
3179 for(row=0; row<raidPtr->numRow; row++) {
3180 for(column=0; column<raidPtr->numCol; column++) {
3181 if (raidPtr->Disks[row][column].status ==
3182 rf_ds_optimal) {
3183 dev = raidPtr->Disks[row][column].dev;
3184 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3185 raidread_component_label(dev, vp, &clabel);
3186 clabel.root_partition = new_value;
3187 raidwrite_component_label(dev, vp, &clabel);
3188 }
3189 }
3190 }
3191 return(new_value);
3192 }
3193
3194 void
3195 rf_release_all_vps(cset)
3196 RF_ConfigSet_t *cset;
3197 {
3198 RF_AutoConfig_t *ac;
3199
3200 ac = cset->ac;
3201 while(ac!=NULL) {
3202 /* Close the vp, and give it back */
3203 if (ac->vp) {
3204 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3205 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3206 vput(ac->vp);
3207 ac->vp = NULL;
3208 }
3209 ac = ac->next;
3210 }
3211 }
3212
3213
3214 void
3215 rf_cleanup_config_set(cset)
3216 RF_ConfigSet_t *cset;
3217 {
3218 RF_AutoConfig_t *ac;
3219 RF_AutoConfig_t *next_ac;
3220
3221 ac = cset->ac;
3222 while(ac!=NULL) {
3223 next_ac = ac->next;
3224 /* nuke the label */
3225 free(ac->clabel, M_RAIDFRAME);
3226 /* cleanup the config structure */
3227 free(ac, M_RAIDFRAME);
3228 /* "next.." */
3229 ac = next_ac;
3230 }
3231 /* and, finally, nuke the config set */
3232 free(cset, M_RAIDFRAME);
3233 }
3234
3235
3236 void
3237 raid_init_component_label(raidPtr, clabel)
3238 RF_Raid_t *raidPtr;
3239 RF_ComponentLabel_t *clabel;
3240 {
3241 /* current version number */
3242 clabel->version = RF_COMPONENT_LABEL_VERSION;
3243 clabel->serial_number = raidPtr->serial_number;
3244 clabel->mod_counter = raidPtr->mod_counter;
3245 clabel->num_rows = raidPtr->numRow;
3246 clabel->num_columns = raidPtr->numCol;
3247 clabel->clean = RF_RAID_DIRTY; /* not clean */
3248 clabel->status = rf_ds_optimal; /* "It's good!" */
3249
3250 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3251 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3252 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3253
3254 clabel->blockSize = raidPtr->bytesPerSector;
3255 clabel->numBlocks = raidPtr->sectorsPerDisk;
3256
3257 /* XXX not portable */
3258 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3259 clabel->maxOutstanding = raidPtr->maxOutstanding;
3260 clabel->autoconfigure = raidPtr->autoconfigure;
3261 clabel->root_partition = raidPtr->root_partition;
3262 clabel->last_unit = raidPtr->raidid;
3263 clabel->config_order = raidPtr->config_order;
3264 }
3265
3266 int
3267 rf_auto_config_set(cset,unit)
3268 RF_ConfigSet_t *cset;
3269 int *unit;
3270 {
3271 RF_Raid_t *raidPtr;
3272 RF_Config_t *config;
3273 int raidID;
3274 int retcode;
3275
3276 #if DEBUG
3277 printf("RAID autoconfigure\n");
3278 #endif
3279
3280 retcode = 0;
3281 *unit = -1;
3282
3283 /* 1. Create a config structure */
3284
3285 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3286 M_RAIDFRAME,
3287 M_NOWAIT);
3288 if (config==NULL) {
3289 printf("Out of mem!?!?\n");
3290 /* XXX do something more intelligent here. */
3291 return(1);
3292 }
3293
3294 memset(config, 0, sizeof(RF_Config_t));
3295
3296 /*
3297 2. Figure out what RAID ID this one is supposed to live at
3298 See if we can get the same RAID dev that it was configured
3299 on last time..
3300 */
3301
3302 raidID = cset->ac->clabel->last_unit;
3303 if ((raidID < 0) || (raidID >= numraid)) {
3304 /* let's not wander off into lala land. */
3305 raidID = numraid - 1;
3306 }
3307 if (raidPtrs[raidID]->valid != 0) {
3308
3309 /*
3310 Nope... Go looking for an alternative...
3311 Start high so we don't immediately use raid0 if that's
3312 not taken.
3313 */
3314
3315 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3316 if (raidPtrs[raidID]->valid == 0) {
3317 /* can use this one! */
3318 break;
3319 }
3320 }
3321 }
3322
3323 if (raidID < 0) {
3324 /* punt... */
3325 printf("Unable to auto configure this set!\n");
3326 printf("(Out of RAID devs!)\n");
3327 return(1);
3328 }
3329
3330 #if DEBUG
3331 printf("Configuring raid%d:\n",raidID);
3332 #endif
3333
3334 raidPtr = raidPtrs[raidID];
3335
3336 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3337 raidPtr->raidid = raidID;
3338 raidPtr->openings = RAIDOUTSTANDING;
3339
3340 /* 3. Build the configuration structure */
3341 rf_create_configuration(cset->ac, config, raidPtr);
3342
3343 /* 4. Do the configuration */
3344 retcode = rf_Configure(raidPtr, config, cset->ac);
3345
3346 if (retcode == 0) {
3347
3348 raidinit(raidPtrs[raidID]);
3349
3350 rf_markalldirty(raidPtrs[raidID]);
3351 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3352 if (cset->ac->clabel->root_partition==1) {
3353 /* everything configured just fine. Make a note
3354 that this set is eligible to be root. */
3355 cset->rootable = 1;
3356 /* XXX do this here? */
3357 raidPtrs[raidID]->root_partition = 1;
3358 }
3359 }
3360
3361 /* 5. Cleanup */
3362 free(config, M_RAIDFRAME);
3363
3364 *unit = raidID;
3365 return(retcode);
3366 }
3367
3368 void
3369 rf_disk_unbusy(desc)
3370 RF_RaidAccessDesc_t *desc;
3371 {
3372 struct buf *bp;
3373
3374 bp = (struct buf *)desc->bp;
3375 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3376 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3377 }
3378