rf_netbsdkintf.c revision 1.150 1 /* $NetBSD: rf_netbsdkintf.c,v 1.150 2002/11/19 01:49:41 oster Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1988 University of Utah.
40 * Copyright (c) 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software contributed to Berkeley by
44 * the Systems Programming Group of the University of Utah Computer
45 * Science Department.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * from: Utah $Hdr: cd.c 1.6 90/11/28$
76 *
77 * @(#)cd.c 8.2 (Berkeley) 11/16/93
78 */
79
80
81
82
83 /*
84 * Copyright (c) 1995 Carnegie-Mellon University.
85 * All rights reserved.
86 *
87 * Authors: Mark Holland, Jim Zelenka
88 *
89 * Permission to use, copy, modify and distribute this software and
90 * its documentation is hereby granted, provided that both the copyright
91 * notice and this permission notice appear in all copies of the
92 * software, derivative works or modified versions, and any portions
93 * thereof, and that both notices appear in supporting documentation.
94 *
95 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
96 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
97 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
98 *
99 * Carnegie Mellon requests users of this software to return to
100 *
101 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
102 * School of Computer Science
103 * Carnegie Mellon University
104 * Pittsburgh PA 15213-3890
105 *
106 * any improvements or extensions that they make and grant Carnegie the
107 * rights to redistribute these changes.
108 */
109
110 /***********************************************************
111 *
112 * rf_kintf.c -- the kernel interface routines for RAIDframe
113 *
114 ***********************************************************/
115
116 #include <sys/cdefs.h>
117 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.150 2002/11/19 01:49:41 oster Exp $");
118
119 #include <sys/param.h>
120 #include <sys/errno.h>
121 #include <sys/pool.h>
122 #include <sys/queue.h>
123 #include <sys/disk.h>
124 #include <sys/device.h>
125 #include <sys/stat.h>
126 #include <sys/ioctl.h>
127 #include <sys/fcntl.h>
128 #include <sys/systm.h>
129 #include <sys/namei.h>
130 #include <sys/vnode.h>
131 #include <sys/disklabel.h>
132 #include <sys/conf.h>
133 #include <sys/lock.h>
134 #include <sys/buf.h>
135 #include <sys/user.h>
136 #include <sys/reboot.h>
137
138 #include <dev/raidframe/raidframevar.h>
139 #include <dev/raidframe/raidframeio.h>
140 #include "raid.h"
141 #include "opt_raid_autoconfig.h"
142 #include "rf_raid.h"
143 #include "rf_copyback.h"
144 #include "rf_dag.h"
145 #include "rf_dagflags.h"
146 #include "rf_desc.h"
147 #include "rf_diskqueue.h"
148 #include "rf_etimer.h"
149 #include "rf_general.h"
150 #include "rf_kintf.h"
151 #include "rf_options.h"
152 #include "rf_driver.h"
153 #include "rf_parityscan.h"
154 #include "rf_threadstuff.h"
155
156 #ifdef DEBUG
157 int rf_kdebug_level = 0;
158 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
159 #else /* DEBUG */
160 #define db1_printf(a) { }
161 #endif /* DEBUG */
162
163 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
164
165 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
166
167 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
168 * spare table */
169 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
170 * installation process */
171
172 /* prototypes */
173 static void KernelWakeupFunc(struct buf * bp);
174 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
175 dev_t dev, RF_SectorNum_t startSect,
176 RF_SectorCount_t numSect, caddr_t buf,
177 void (*cbFunc) (struct buf *), void *cbArg,
178 int logBytesPerSector, struct proc * b_proc);
179 static void raidinit(RF_Raid_t *);
180
181 void raidattach(int);
182
183 dev_type_open(raidopen);
184 dev_type_close(raidclose);
185 dev_type_read(raidread);
186 dev_type_write(raidwrite);
187 dev_type_ioctl(raidioctl);
188 dev_type_strategy(raidstrategy);
189 dev_type_dump(raiddump);
190 dev_type_size(raidsize);
191
192 const struct bdevsw raid_bdevsw = {
193 raidopen, raidclose, raidstrategy, raidioctl,
194 raiddump, raidsize, D_DISK
195 };
196
197 const struct cdevsw raid_cdevsw = {
198 raidopen, raidclose, raidread, raidwrite, raidioctl,
199 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
200 };
201
202 /*
203 * Pilfered from ccd.c
204 */
205
206 struct raidbuf {
207 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
208 struct buf *rf_obp; /* ptr. to original I/O buf */
209 RF_DiskQueueData_t *req;/* the request that this was part of.. */
210 };
211
212 /* component buffer pool */
213 struct pool raidframe_cbufpool;
214
215 /* XXX Not sure if the following should be replacing the raidPtrs above,
216 or if it should be used in conjunction with that...
217 */
218
219 struct raid_softc {
220 int sc_flags; /* flags */
221 int sc_cflags; /* configuration flags */
222 size_t sc_size; /* size of the raid device */
223 char sc_xname[20]; /* XXX external name */
224 struct disk sc_dkdev; /* generic disk device info */
225 struct bufq_state buf_queue; /* used for the device queue */
226 };
227 /* sc_flags */
228 #define RAIDF_INITED 0x01 /* unit has been initialized */
229 #define RAIDF_WLABEL 0x02 /* label area is writable */
230 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
231 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
232 #define RAIDF_LOCKED 0x80 /* unit is locked */
233
234 #define raidunit(x) DISKUNIT(x)
235 int numraid = 0;
236
237 /*
238 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
239 * Be aware that large numbers can allow the driver to consume a lot of
240 * kernel memory, especially on writes, and in degraded mode reads.
241 *
242 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
243 * a single 64K write will typically require 64K for the old data,
244 * 64K for the old parity, and 64K for the new parity, for a total
245 * of 192K (if the parity buffer is not re-used immediately).
246 * Even it if is used immediately, that's still 128K, which when multiplied
247 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
248 *
249 * Now in degraded mode, for example, a 64K read on the above setup may
250 * require data reconstruction, which will require *all* of the 4 remaining
251 * disks to participate -- 4 * 32K/disk == 128K again.
252 */
253
254 #ifndef RAIDOUTSTANDING
255 #define RAIDOUTSTANDING 6
256 #endif
257
258 #define RAIDLABELDEV(dev) \
259 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
260
261 /* declared here, and made public, for the benefit of KVM stuff.. */
262 struct raid_softc *raid_softc;
263
264 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
265 struct disklabel *);
266 static void raidgetdisklabel(dev_t);
267 static void raidmakedisklabel(struct raid_softc *);
268
269 static int raidlock(struct raid_softc *);
270 static void raidunlock(struct raid_softc *);
271
272 static void rf_markalldirty(RF_Raid_t *);
273
274 struct device *raidrootdev;
275
276 void rf_ReconThread(struct rf_recon_req *);
277 /* XXX what I want is: */
278 /*void rf_ReconThread(RF_Raid_t *raidPtr); */
279 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
280 void rf_CopybackThread(RF_Raid_t *raidPtr);
281 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
282 int rf_autoconfig(struct device *self);
283 void rf_buildroothack(RF_ConfigSet_t *);
284
285 RF_AutoConfig_t *rf_find_raid_components(void);
286 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
287 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
288 static int rf_reasonable_label(RF_ComponentLabel_t *);
289 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
290 int rf_set_autoconfig(RF_Raid_t *, int);
291 int rf_set_rootpartition(RF_Raid_t *, int);
292 void rf_release_all_vps(RF_ConfigSet_t *);
293 void rf_cleanup_config_set(RF_ConfigSet_t *);
294 int rf_have_enough_components(RF_ConfigSet_t *);
295 int rf_auto_config_set(RF_ConfigSet_t *, int *);
296
297 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
298 allow autoconfig to take place.
299 Note that this is overridden by having
300 RAID_AUTOCONFIG as an option in the
301 kernel config file. */
302
303 void
304 raidattach(num)
305 int num;
306 {
307 int raidID;
308 int i, rc;
309
310 #ifdef DEBUG
311 printf("raidattach: Asked for %d units\n", num);
312 #endif
313
314 if (num <= 0) {
315 #ifdef DIAGNOSTIC
316 panic("raidattach: count <= 0");
317 #endif
318 return;
319 }
320 /* This is where all the initialization stuff gets done. */
321
322 numraid = num;
323
324 /* Make some space for requested number of units... */
325
326 RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
327 if (raidPtrs == NULL) {
328 panic("raidPtrs is NULL!!");
329 }
330
331 /* Initialize the component buffer pool. */
332 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
333 0, 0, "raidpl", NULL);
334
335 rc = rf_mutex_init(&rf_sparet_wait_mutex);
336 if (rc) {
337 RF_PANIC();
338 }
339
340 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
341
342 for (i = 0; i < num; i++)
343 raidPtrs[i] = NULL;
344 rc = rf_BootRaidframe();
345 if (rc == 0)
346 printf("Kernelized RAIDframe activated\n");
347 else
348 panic("Serious error booting RAID!!");
349
350 /* put together some datastructures like the CCD device does.. This
351 * lets us lock the device and what-not when it gets opened. */
352
353 raid_softc = (struct raid_softc *)
354 malloc(num * sizeof(struct raid_softc),
355 M_RAIDFRAME, M_NOWAIT);
356 if (raid_softc == NULL) {
357 printf("WARNING: no memory for RAIDframe driver\n");
358 return;
359 }
360
361 memset(raid_softc, 0, num * sizeof(struct raid_softc));
362
363 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
364 M_RAIDFRAME, M_NOWAIT);
365 if (raidrootdev == NULL) {
366 panic("No memory for RAIDframe driver!!?!?!");
367 }
368
369 for (raidID = 0; raidID < num; raidID++) {
370 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
371
372 raidrootdev[raidID].dv_class = DV_DISK;
373 raidrootdev[raidID].dv_cfdata = NULL;
374 raidrootdev[raidID].dv_unit = raidID;
375 raidrootdev[raidID].dv_parent = NULL;
376 raidrootdev[raidID].dv_flags = 0;
377 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
378
379 RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
380 (RF_Raid_t *));
381 if (raidPtrs[raidID] == NULL) {
382 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
383 numraid = raidID;
384 return;
385 }
386 }
387
388 #ifdef RAID_AUTOCONFIG
389 raidautoconfig = 1;
390 #endif
391
392 /*
393 * Register a finalizer which will be used to auto-config RAID
394 * sets once all real hardware devices have been found.
395 */
396 if (config_finalize_register(NULL, rf_autoconfig) != 0)
397 printf("WARNING: unable to register RAIDframe finalizer\n");
398 }
399
400 int
401 rf_autoconfig(struct device *self)
402 {
403 RF_AutoConfig_t *ac_list;
404 RF_ConfigSet_t *config_sets;
405
406 if (raidautoconfig == 0)
407 return (0);
408
409 /* XXX This code can only be run once. */
410 raidautoconfig = 0;
411
412 /* 1. locate all RAID components on the system */
413 #ifdef DEBUG
414 printf("Searching for RAID components...\n");
415 #endif
416 ac_list = rf_find_raid_components();
417
418 /* 2. Sort them into their respective sets. */
419 config_sets = rf_create_auto_sets(ac_list);
420
421 /*
422 * 3. Evaluate each set andconfigure the valid ones.
423 * This gets done in rf_buildroothack().
424 */
425 rf_buildroothack(config_sets);
426
427 return (1);
428 }
429
430 void
431 rf_buildroothack(RF_ConfigSet_t *config_sets)
432 {
433 RF_ConfigSet_t *cset;
434 RF_ConfigSet_t *next_cset;
435 int retcode;
436 int raidID;
437 int rootID;
438 int num_root;
439
440 rootID = 0;
441 num_root = 0;
442 cset = config_sets;
443 while(cset != NULL ) {
444 next_cset = cset->next;
445 if (rf_have_enough_components(cset) &&
446 cset->ac->clabel->autoconfigure==1) {
447 retcode = rf_auto_config_set(cset,&raidID);
448 if (!retcode) {
449 if (cset->rootable) {
450 rootID = raidID;
451 num_root++;
452 }
453 } else {
454 /* The autoconfig didn't work :( */
455 #if DEBUG
456 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
457 #endif
458 rf_release_all_vps(cset);
459 }
460 } else {
461 /* we're not autoconfiguring this set...
462 release the associated resources */
463 rf_release_all_vps(cset);
464 }
465 /* cleanup */
466 rf_cleanup_config_set(cset);
467 cset = next_cset;
468 }
469
470 /* we found something bootable... */
471
472 if (num_root == 1) {
473 booted_device = &raidrootdev[rootID];
474 } else if (num_root > 1) {
475 /* we can't guess.. require the user to answer... */
476 boothowto |= RB_ASKNAME;
477 }
478 }
479
480
481 int
482 raidsize(dev)
483 dev_t dev;
484 {
485 struct raid_softc *rs;
486 struct disklabel *lp;
487 int part, unit, omask, size;
488
489 unit = raidunit(dev);
490 if (unit >= numraid)
491 return (-1);
492 rs = &raid_softc[unit];
493
494 if ((rs->sc_flags & RAIDF_INITED) == 0)
495 return (-1);
496
497 part = DISKPART(dev);
498 omask = rs->sc_dkdev.dk_openmask & (1 << part);
499 lp = rs->sc_dkdev.dk_label;
500
501 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
502 return (-1);
503
504 if (lp->d_partitions[part].p_fstype != FS_SWAP)
505 size = -1;
506 else
507 size = lp->d_partitions[part].p_size *
508 (lp->d_secsize / DEV_BSIZE);
509
510 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
511 return (-1);
512
513 return (size);
514
515 }
516
517 int
518 raiddump(dev, blkno, va, size)
519 dev_t dev;
520 daddr_t blkno;
521 caddr_t va;
522 size_t size;
523 {
524 /* Not implemented. */
525 return ENXIO;
526 }
527 /* ARGSUSED */
528 int
529 raidopen(dev, flags, fmt, p)
530 dev_t dev;
531 int flags, fmt;
532 struct proc *p;
533 {
534 int unit = raidunit(dev);
535 struct raid_softc *rs;
536 struct disklabel *lp;
537 int part, pmask;
538 int error = 0;
539
540 if (unit >= numraid)
541 return (ENXIO);
542 rs = &raid_softc[unit];
543
544 if ((error = raidlock(rs)) != 0)
545 return (error);
546 lp = rs->sc_dkdev.dk_label;
547
548 part = DISKPART(dev);
549 pmask = (1 << part);
550
551 if ((rs->sc_flags & RAIDF_INITED) &&
552 (rs->sc_dkdev.dk_openmask == 0))
553 raidgetdisklabel(dev);
554
555 /* make sure that this partition exists */
556
557 if (part != RAW_PART) {
558 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
559 ((part >= lp->d_npartitions) ||
560 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
561 error = ENXIO;
562 raidunlock(rs);
563 return (error);
564 }
565 }
566 /* Prevent this unit from being unconfigured while open. */
567 switch (fmt) {
568 case S_IFCHR:
569 rs->sc_dkdev.dk_copenmask |= pmask;
570 break;
571
572 case S_IFBLK:
573 rs->sc_dkdev.dk_bopenmask |= pmask;
574 break;
575 }
576
577 if ((rs->sc_dkdev.dk_openmask == 0) &&
578 ((rs->sc_flags & RAIDF_INITED) != 0)) {
579 /* First one... mark things as dirty... Note that we *MUST*
580 have done a configure before this. I DO NOT WANT TO BE
581 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
582 THAT THEY BELONG TOGETHER!!!!! */
583 /* XXX should check to see if we're only open for reading
584 here... If so, we needn't do this, but then need some
585 other way of keeping track of what's happened.. */
586
587 rf_markalldirty( raidPtrs[unit] );
588 }
589
590
591 rs->sc_dkdev.dk_openmask =
592 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
593
594 raidunlock(rs);
595
596 return (error);
597
598
599 }
600 /* ARGSUSED */
601 int
602 raidclose(dev, flags, fmt, p)
603 dev_t dev;
604 int flags, fmt;
605 struct proc *p;
606 {
607 int unit = raidunit(dev);
608 struct raid_softc *rs;
609 int error = 0;
610 int part;
611
612 if (unit >= numraid)
613 return (ENXIO);
614 rs = &raid_softc[unit];
615
616 if ((error = raidlock(rs)) != 0)
617 return (error);
618
619 part = DISKPART(dev);
620
621 /* ...that much closer to allowing unconfiguration... */
622 switch (fmt) {
623 case S_IFCHR:
624 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
625 break;
626
627 case S_IFBLK:
628 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
629 break;
630 }
631 rs->sc_dkdev.dk_openmask =
632 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
633
634 if ((rs->sc_dkdev.dk_openmask == 0) &&
635 ((rs->sc_flags & RAIDF_INITED) != 0)) {
636 /* Last one... device is not unconfigured yet.
637 Device shutdown has taken care of setting the
638 clean bits if RAIDF_INITED is not set
639 mark things as clean... */
640
641 rf_update_component_labels(raidPtrs[unit],
642 RF_FINAL_COMPONENT_UPDATE);
643 if (doing_shutdown) {
644 /* last one, and we're going down, so
645 lights out for this RAID set too. */
646 error = rf_Shutdown(raidPtrs[unit]);
647
648 /* It's no longer initialized... */
649 rs->sc_flags &= ~RAIDF_INITED;
650
651 /* Detach the disk. */
652 disk_detach(&rs->sc_dkdev);
653 }
654 }
655
656 raidunlock(rs);
657 return (0);
658
659 }
660
661 void
662 raidstrategy(bp)
663 struct buf *bp;
664 {
665 int s;
666
667 unsigned int raidID = raidunit(bp->b_dev);
668 RF_Raid_t *raidPtr;
669 struct raid_softc *rs = &raid_softc[raidID];
670 struct disklabel *lp;
671 int wlabel;
672
673 if ((rs->sc_flags & RAIDF_INITED) ==0) {
674 bp->b_error = ENXIO;
675 bp->b_flags |= B_ERROR;
676 bp->b_resid = bp->b_bcount;
677 biodone(bp);
678 return;
679 }
680 if (raidID >= numraid || !raidPtrs[raidID]) {
681 bp->b_error = ENODEV;
682 bp->b_flags |= B_ERROR;
683 bp->b_resid = bp->b_bcount;
684 biodone(bp);
685 return;
686 }
687 raidPtr = raidPtrs[raidID];
688 if (!raidPtr->valid) {
689 bp->b_error = ENODEV;
690 bp->b_flags |= B_ERROR;
691 bp->b_resid = bp->b_bcount;
692 biodone(bp);
693 return;
694 }
695 if (bp->b_bcount == 0) {
696 db1_printf(("b_bcount is zero..\n"));
697 biodone(bp);
698 return;
699 }
700 lp = rs->sc_dkdev.dk_label;
701
702 /*
703 * Do bounds checking and adjust transfer. If there's an
704 * error, the bounds check will flag that for us.
705 */
706
707 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
708 if (DISKPART(bp->b_dev) != RAW_PART)
709 if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
710 db1_printf(("Bounds check failed!!:%d %d\n",
711 (int) bp->b_blkno, (int) wlabel));
712 biodone(bp);
713 return;
714 }
715 s = splbio();
716
717 bp->b_resid = 0;
718
719 /* stuff it onto our queue */
720 BUFQ_PUT(&rs->buf_queue, bp);
721
722 raidstart(raidPtrs[raidID]);
723
724 splx(s);
725 }
726 /* ARGSUSED */
727 int
728 raidread(dev, uio, flags)
729 dev_t dev;
730 struct uio *uio;
731 int flags;
732 {
733 int unit = raidunit(dev);
734 struct raid_softc *rs;
735 int part;
736
737 if (unit >= numraid)
738 return (ENXIO);
739 rs = &raid_softc[unit];
740
741 if ((rs->sc_flags & RAIDF_INITED) == 0)
742 return (ENXIO);
743 part = DISKPART(dev);
744
745 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
746
747 }
748 /* ARGSUSED */
749 int
750 raidwrite(dev, uio, flags)
751 dev_t dev;
752 struct uio *uio;
753 int flags;
754 {
755 int unit = raidunit(dev);
756 struct raid_softc *rs;
757
758 if (unit >= numraid)
759 return (ENXIO);
760 rs = &raid_softc[unit];
761
762 if ((rs->sc_flags & RAIDF_INITED) == 0)
763 return (ENXIO);
764
765 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
766
767 }
768
769 int
770 raidioctl(dev, cmd, data, flag, p)
771 dev_t dev;
772 u_long cmd;
773 caddr_t data;
774 int flag;
775 struct proc *p;
776 {
777 int unit = raidunit(dev);
778 int error = 0;
779 int part, pmask;
780 struct raid_softc *rs;
781 RF_Config_t *k_cfg, *u_cfg;
782 RF_Raid_t *raidPtr;
783 RF_RaidDisk_t *diskPtr;
784 RF_AccTotals_t *totals;
785 RF_DeviceConfig_t *d_cfg, **ucfgp;
786 u_char *specific_buf;
787 int retcode = 0;
788 int row;
789 int column;
790 int raidid;
791 struct rf_recon_req *rrcopy, *rr;
792 RF_ComponentLabel_t *clabel;
793 RF_ComponentLabel_t ci_label;
794 RF_ComponentLabel_t **clabel_ptr;
795 RF_SingleComponent_t *sparePtr,*componentPtr;
796 RF_SingleComponent_t hot_spare;
797 RF_SingleComponent_t component;
798 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
799 int i, j, d;
800 #ifdef __HAVE_OLD_DISKLABEL
801 struct disklabel newlabel;
802 #endif
803
804 if (unit >= numraid)
805 return (ENXIO);
806 rs = &raid_softc[unit];
807 raidPtr = raidPtrs[unit];
808
809 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
810 (int) DISKPART(dev), (int) unit, (int) cmd));
811
812 /* Must be open for writes for these commands... */
813 switch (cmd) {
814 case DIOCSDINFO:
815 case DIOCWDINFO:
816 #ifdef __HAVE_OLD_DISKLABEL
817 case ODIOCWDINFO:
818 case ODIOCSDINFO:
819 #endif
820 case DIOCWLABEL:
821 if ((flag & FWRITE) == 0)
822 return (EBADF);
823 }
824
825 /* Must be initialized for these... */
826 switch (cmd) {
827 case DIOCGDINFO:
828 case DIOCSDINFO:
829 case DIOCWDINFO:
830 #ifdef __HAVE_OLD_DISKLABEL
831 case ODIOCGDINFO:
832 case ODIOCWDINFO:
833 case ODIOCSDINFO:
834 case ODIOCGDEFLABEL:
835 #endif
836 case DIOCGPART:
837 case DIOCWLABEL:
838 case DIOCGDEFLABEL:
839 case RAIDFRAME_SHUTDOWN:
840 case RAIDFRAME_REWRITEPARITY:
841 case RAIDFRAME_GET_INFO:
842 case RAIDFRAME_RESET_ACCTOTALS:
843 case RAIDFRAME_GET_ACCTOTALS:
844 case RAIDFRAME_KEEP_ACCTOTALS:
845 case RAIDFRAME_GET_SIZE:
846 case RAIDFRAME_FAIL_DISK:
847 case RAIDFRAME_COPYBACK:
848 case RAIDFRAME_CHECK_RECON_STATUS:
849 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
850 case RAIDFRAME_GET_COMPONENT_LABEL:
851 case RAIDFRAME_SET_COMPONENT_LABEL:
852 case RAIDFRAME_ADD_HOT_SPARE:
853 case RAIDFRAME_REMOVE_HOT_SPARE:
854 case RAIDFRAME_INIT_LABELS:
855 case RAIDFRAME_REBUILD_IN_PLACE:
856 case RAIDFRAME_CHECK_PARITY:
857 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
859 case RAIDFRAME_CHECK_COPYBACK_STATUS:
860 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
861 case RAIDFRAME_SET_AUTOCONFIG:
862 case RAIDFRAME_SET_ROOT:
863 case RAIDFRAME_DELETE_COMPONENT:
864 case RAIDFRAME_INCORPORATE_HOT_SPARE:
865 if ((rs->sc_flags & RAIDF_INITED) == 0)
866 return (ENXIO);
867 }
868
869 switch (cmd) {
870
871 /* configure the system */
872 case RAIDFRAME_CONFIGURE:
873
874 if (raidPtr->valid) {
875 /* There is a valid RAID set running on this unit! */
876 printf("raid%d: Device already configured!\n",unit);
877 return(EINVAL);
878 }
879
880 /* copy-in the configuration information */
881 /* data points to a pointer to the configuration structure */
882
883 u_cfg = *((RF_Config_t **) data);
884 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
885 if (k_cfg == NULL) {
886 return (ENOMEM);
887 }
888 retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
889 sizeof(RF_Config_t));
890 if (retcode) {
891 RF_Free(k_cfg, sizeof(RF_Config_t));
892 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
893 retcode));
894 return (retcode);
895 }
896 /* allocate a buffer for the layout-specific data, and copy it
897 * in */
898 if (k_cfg->layoutSpecificSize) {
899 if (k_cfg->layoutSpecificSize > 10000) {
900 /* sanity check */
901 RF_Free(k_cfg, sizeof(RF_Config_t));
902 return (EINVAL);
903 }
904 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
905 (u_char *));
906 if (specific_buf == NULL) {
907 RF_Free(k_cfg, sizeof(RF_Config_t));
908 return (ENOMEM);
909 }
910 retcode = copyin(k_cfg->layoutSpecific,
911 (caddr_t) specific_buf,
912 k_cfg->layoutSpecificSize);
913 if (retcode) {
914 RF_Free(k_cfg, sizeof(RF_Config_t));
915 RF_Free(specific_buf,
916 k_cfg->layoutSpecificSize);
917 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
918 retcode));
919 return (retcode);
920 }
921 } else
922 specific_buf = NULL;
923 k_cfg->layoutSpecific = specific_buf;
924
925 /* should do some kind of sanity check on the configuration.
926 * Store the sum of all the bytes in the last byte? */
927
928 /* configure the system */
929
930 /*
931 * Clear the entire RAID descriptor, just to make sure
932 * there is no stale data left in the case of a
933 * reconfiguration
934 */
935 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
936 raidPtr->raidid = unit;
937
938 retcode = rf_Configure(raidPtr, k_cfg, NULL);
939
940 if (retcode == 0) {
941
942 /* allow this many simultaneous IO's to
943 this RAID device */
944 raidPtr->openings = RAIDOUTSTANDING;
945
946 raidinit(raidPtr);
947 rf_markalldirty(raidPtr);
948 }
949 /* free the buffers. No return code here. */
950 if (k_cfg->layoutSpecificSize) {
951 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
952 }
953 RF_Free(k_cfg, sizeof(RF_Config_t));
954
955 return (retcode);
956
957 /* shutdown the system */
958 case RAIDFRAME_SHUTDOWN:
959
960 if ((error = raidlock(rs)) != 0)
961 return (error);
962
963 /*
964 * If somebody has a partition mounted, we shouldn't
965 * shutdown.
966 */
967
968 part = DISKPART(dev);
969 pmask = (1 << part);
970 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
971 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
972 (rs->sc_dkdev.dk_copenmask & pmask))) {
973 raidunlock(rs);
974 return (EBUSY);
975 }
976
977 retcode = rf_Shutdown(raidPtr);
978
979 /* It's no longer initialized... */
980 rs->sc_flags &= ~RAIDF_INITED;
981
982 /* Detach the disk. */
983 disk_detach(&rs->sc_dkdev);
984
985 raidunlock(rs);
986
987 return (retcode);
988 case RAIDFRAME_GET_COMPONENT_LABEL:
989 clabel_ptr = (RF_ComponentLabel_t **) data;
990 /* need to read the component label for the disk indicated
991 by row,column in clabel */
992
993 /* For practice, let's get it directly fromdisk, rather
994 than from the in-core copy */
995 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
996 (RF_ComponentLabel_t *));
997 if (clabel == NULL)
998 return (ENOMEM);
999
1000 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1001
1002 retcode = copyin( *clabel_ptr, clabel,
1003 sizeof(RF_ComponentLabel_t));
1004
1005 if (retcode) {
1006 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1007 return(retcode);
1008 }
1009
1010 row = clabel->row;
1011 column = clabel->column;
1012
1013 if ((row < 0) || (row >= raidPtr->numRow) ||
1014 (column < 0) || (column >= raidPtr->numCol +
1015 raidPtr->numSpare)) {
1016 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1017 return(EINVAL);
1018 }
1019
1020 raidread_component_label(raidPtr->Disks[row][column].dev,
1021 raidPtr->raid_cinfo[row][column].ci_vp,
1022 clabel );
1023
1024 retcode = copyout((caddr_t) clabel,
1025 (caddr_t) *clabel_ptr,
1026 sizeof(RF_ComponentLabel_t));
1027 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1028 return (retcode);
1029
1030 case RAIDFRAME_SET_COMPONENT_LABEL:
1031 clabel = (RF_ComponentLabel_t *) data;
1032
1033 /* XXX check the label for valid stuff... */
1034 /* Note that some things *should not* get modified --
1035 the user should be re-initing the labels instead of
1036 trying to patch things.
1037 */
1038
1039 raidid = raidPtr->raidid;
1040 printf("raid%d: Got component label:\n", raidid);
1041 printf("raid%d: Version: %d\n", raidid, clabel->version);
1042 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1043 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1044 printf("raid%d: Row: %d\n", raidid, clabel->row);
1045 printf("raid%d: Column: %d\n", raidid, clabel->column);
1046 printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
1047 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1048 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1049 printf("raid%d: Status: %d\n", raidid, clabel->status);
1050
1051 row = clabel->row;
1052 column = clabel->column;
1053
1054 if ((row < 0) || (row >= raidPtr->numRow) ||
1055 (column < 0) || (column >= raidPtr->numCol)) {
1056 return(EINVAL);
1057 }
1058
1059 /* XXX this isn't allowed to do anything for now :-) */
1060
1061 /* XXX and before it is, we need to fill in the rest
1062 of the fields!?!?!?! */
1063 #if 0
1064 raidwrite_component_label(
1065 raidPtr->Disks[row][column].dev,
1066 raidPtr->raid_cinfo[row][column].ci_vp,
1067 clabel );
1068 #endif
1069 return (0);
1070
1071 case RAIDFRAME_INIT_LABELS:
1072 clabel = (RF_ComponentLabel_t *) data;
1073 /*
1074 we only want the serial number from
1075 the above. We get all the rest of the information
1076 from the config that was used to create this RAID
1077 set.
1078 */
1079
1080 raidPtr->serial_number = clabel->serial_number;
1081
1082 raid_init_component_label(raidPtr, &ci_label);
1083 ci_label.serial_number = clabel->serial_number;
1084
1085 for(row=0;row<raidPtr->numRow;row++) {
1086 ci_label.row = row;
1087 for(column=0;column<raidPtr->numCol;column++) {
1088 diskPtr = &raidPtr->Disks[row][column];
1089 if (!RF_DEAD_DISK(diskPtr->status)) {
1090 ci_label.partitionSize = diskPtr->partitionSize;
1091 ci_label.column = column;
1092 raidwrite_component_label(
1093 raidPtr->Disks[row][column].dev,
1094 raidPtr->raid_cinfo[row][column].ci_vp,
1095 &ci_label );
1096 }
1097 }
1098 }
1099
1100 return (retcode);
1101 case RAIDFRAME_SET_AUTOCONFIG:
1102 d = rf_set_autoconfig(raidPtr, *(int *) data);
1103 printf("raid%d: New autoconfig value is: %d\n",
1104 raidPtr->raidid, d);
1105 *(int *) data = d;
1106 return (retcode);
1107
1108 case RAIDFRAME_SET_ROOT:
1109 d = rf_set_rootpartition(raidPtr, *(int *) data);
1110 printf("raid%d: New rootpartition value is: %d\n",
1111 raidPtr->raidid, d);
1112 *(int *) data = d;
1113 return (retcode);
1114
1115 /* initialize all parity */
1116 case RAIDFRAME_REWRITEPARITY:
1117
1118 if (raidPtr->Layout.map->faultsTolerated == 0) {
1119 /* Parity for RAID 0 is trivially correct */
1120 raidPtr->parity_good = RF_RAID_CLEAN;
1121 return(0);
1122 }
1123
1124 if (raidPtr->parity_rewrite_in_progress == 1) {
1125 /* Re-write is already in progress! */
1126 return(EINVAL);
1127 }
1128
1129 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1130 rf_RewriteParityThread,
1131 raidPtr,"raid_parity");
1132 return (retcode);
1133
1134
1135 case RAIDFRAME_ADD_HOT_SPARE:
1136 sparePtr = (RF_SingleComponent_t *) data;
1137 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1138 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1139 return(retcode);
1140
1141 case RAIDFRAME_REMOVE_HOT_SPARE:
1142 return(retcode);
1143
1144 case RAIDFRAME_DELETE_COMPONENT:
1145 componentPtr = (RF_SingleComponent_t *)data;
1146 memcpy( &component, componentPtr,
1147 sizeof(RF_SingleComponent_t));
1148 retcode = rf_delete_component(raidPtr, &component);
1149 return(retcode);
1150
1151 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1152 componentPtr = (RF_SingleComponent_t *)data;
1153 memcpy( &component, componentPtr,
1154 sizeof(RF_SingleComponent_t));
1155 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1156 return(retcode);
1157
1158 case RAIDFRAME_REBUILD_IN_PLACE:
1159
1160 if (raidPtr->Layout.map->faultsTolerated == 0) {
1161 /* Can't do this on a RAID 0!! */
1162 return(EINVAL);
1163 }
1164
1165 if (raidPtr->recon_in_progress == 1) {
1166 /* a reconstruct is already in progress! */
1167 return(EINVAL);
1168 }
1169
1170 componentPtr = (RF_SingleComponent_t *) data;
1171 memcpy( &component, componentPtr,
1172 sizeof(RF_SingleComponent_t));
1173 row = component.row;
1174 column = component.column;
1175
1176 if ((row < 0) || (row >= raidPtr->numRow) ||
1177 (column < 0) || (column >= raidPtr->numCol)) {
1178 return(EINVAL);
1179 }
1180
1181 RF_LOCK_MUTEX(raidPtr->mutex);
1182 if ((raidPtr->Disks[row][column].status == rf_ds_optimal) &&
1183 (raidPtr->numFailures > 0)) {
1184 /* XXX 0 above shouldn't be constant!!! */
1185 /* some component other than this has failed.
1186 Let's not make things worse than they already
1187 are... */
1188 printf("raid%d: Unable to reconstruct to disk at:\n",
1189 raidPtr->raidid);
1190 printf("raid%d: Row: %d Col: %d Too many failures.\n",
1191 raidPtr->raidid, row, column);
1192 RF_UNLOCK_MUTEX(raidPtr->mutex);
1193 return (EINVAL);
1194 }
1195 if (raidPtr->Disks[row][column].status ==
1196 rf_ds_reconstructing) {
1197 printf("raid%d: Unable to reconstruct to disk at:\n",
1198 raidPtr->raidid);
1199 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, column);
1200
1201 RF_UNLOCK_MUTEX(raidPtr->mutex);
1202 return (EINVAL);
1203 }
1204 if (raidPtr->Disks[row][column].status == rf_ds_spared) {
1205 RF_UNLOCK_MUTEX(raidPtr->mutex);
1206 return (EINVAL);
1207 }
1208 RF_UNLOCK_MUTEX(raidPtr->mutex);
1209
1210 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1211 if (rrcopy == NULL)
1212 return(ENOMEM);
1213
1214 rrcopy->raidPtr = (void *) raidPtr;
1215 rrcopy->row = row;
1216 rrcopy->col = column;
1217
1218 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1219 rf_ReconstructInPlaceThread,
1220 rrcopy,"raid_reconip");
1221 return(retcode);
1222
1223 case RAIDFRAME_GET_INFO:
1224 if (!raidPtr->valid)
1225 return (ENODEV);
1226 ucfgp = (RF_DeviceConfig_t **) data;
1227 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1228 (RF_DeviceConfig_t *));
1229 if (d_cfg == NULL)
1230 return (ENOMEM);
1231 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1232 d_cfg->rows = raidPtr->numRow;
1233 d_cfg->cols = raidPtr->numCol;
1234 d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1235 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1236 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1237 return (ENOMEM);
1238 }
1239 d_cfg->nspares = raidPtr->numSpare;
1240 if (d_cfg->nspares >= RF_MAX_DISKS) {
1241 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1242 return (ENOMEM);
1243 }
1244 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1245 d = 0;
1246 for (i = 0; i < d_cfg->rows; i++) {
1247 for (j = 0; j < d_cfg->cols; j++) {
1248 d_cfg->devs[d] = raidPtr->Disks[i][j];
1249 d++;
1250 }
1251 }
1252 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1253 d_cfg->spares[i] = raidPtr->Disks[0][j];
1254 }
1255 retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
1256 sizeof(RF_DeviceConfig_t));
1257 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1258
1259 return (retcode);
1260
1261 case RAIDFRAME_CHECK_PARITY:
1262 *(int *) data = raidPtr->parity_good;
1263 return (0);
1264
1265 case RAIDFRAME_RESET_ACCTOTALS:
1266 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1267 return (0);
1268
1269 case RAIDFRAME_GET_ACCTOTALS:
1270 totals = (RF_AccTotals_t *) data;
1271 *totals = raidPtr->acc_totals;
1272 return (0);
1273
1274 case RAIDFRAME_KEEP_ACCTOTALS:
1275 raidPtr->keep_acc_totals = *(int *)data;
1276 return (0);
1277
1278 case RAIDFRAME_GET_SIZE:
1279 *(int *) data = raidPtr->totalSectors;
1280 return (0);
1281
1282 /* fail a disk & optionally start reconstruction */
1283 case RAIDFRAME_FAIL_DISK:
1284
1285 if (raidPtr->Layout.map->faultsTolerated == 0) {
1286 /* Can't do this on a RAID 0!! */
1287 return(EINVAL);
1288 }
1289
1290 rr = (struct rf_recon_req *) data;
1291
1292 if (rr->row < 0 || rr->row >= raidPtr->numRow
1293 || rr->col < 0 || rr->col >= raidPtr->numCol)
1294 return (EINVAL);
1295
1296
1297 RF_LOCK_MUTEX(raidPtr->mutex);
1298 if ((raidPtr->Disks[rr->row][rr->col].status ==
1299 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1300 /* some other component has failed. Let's not make
1301 things worse. XXX wrong for RAID6 */
1302 RF_UNLOCK_MUTEX(raidPtr->mutex);
1303 return (EINVAL);
1304 }
1305 if (raidPtr->Disks[rr->row][rr->col].status == rf_ds_spared) {
1306 /* Can't fail a spared disk! */
1307 RF_UNLOCK_MUTEX(raidPtr->mutex);
1308 return (EINVAL);
1309 }
1310 RF_UNLOCK_MUTEX(raidPtr->mutex);
1311
1312 /* make a copy of the recon request so that we don't rely on
1313 * the user's buffer */
1314 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1315 if (rrcopy == NULL)
1316 return(ENOMEM);
1317 memcpy(rrcopy, rr, sizeof(*rr));
1318 rrcopy->raidPtr = (void *) raidPtr;
1319
1320 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1321 rf_ReconThread,
1322 rrcopy,"raid_recon");
1323 return (0);
1324
1325 /* invoke a copyback operation after recon on whatever disk
1326 * needs it, if any */
1327 case RAIDFRAME_COPYBACK:
1328
1329 if (raidPtr->Layout.map->faultsTolerated == 0) {
1330 /* This makes no sense on a RAID 0!! */
1331 return(EINVAL);
1332 }
1333
1334 if (raidPtr->copyback_in_progress == 1) {
1335 /* Copyback is already in progress! */
1336 return(EINVAL);
1337 }
1338
1339 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1340 rf_CopybackThread,
1341 raidPtr,"raid_copyback");
1342 return (retcode);
1343
1344 /* return the percentage completion of reconstruction */
1345 case RAIDFRAME_CHECK_RECON_STATUS:
1346 if (raidPtr->Layout.map->faultsTolerated == 0) {
1347 /* This makes no sense on a RAID 0, so tell the
1348 user it's done. */
1349 *(int *) data = 100;
1350 return(0);
1351 }
1352 row = 0; /* XXX we only consider a single row... */
1353 if (raidPtr->status[row] != rf_rs_reconstructing)
1354 *(int *) data = 100;
1355 else
1356 *(int *) data = raidPtr->reconControl[row]->percentComplete;
1357 return (0);
1358 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1359 progressInfoPtr = (RF_ProgressInfo_t **) data;
1360 row = 0; /* XXX we only consider a single row... */
1361 if (raidPtr->status[row] != rf_rs_reconstructing) {
1362 progressInfo.remaining = 0;
1363 progressInfo.completed = 100;
1364 progressInfo.total = 100;
1365 } else {
1366 progressInfo.total =
1367 raidPtr->reconControl[row]->numRUsTotal;
1368 progressInfo.completed =
1369 raidPtr->reconControl[row]->numRUsComplete;
1370 progressInfo.remaining = progressInfo.total -
1371 progressInfo.completed;
1372 }
1373 retcode = copyout((caddr_t) &progressInfo,
1374 (caddr_t) *progressInfoPtr,
1375 sizeof(RF_ProgressInfo_t));
1376 return (retcode);
1377
1378 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1379 if (raidPtr->Layout.map->faultsTolerated == 0) {
1380 /* This makes no sense on a RAID 0, so tell the
1381 user it's done. */
1382 *(int *) data = 100;
1383 return(0);
1384 }
1385 if (raidPtr->parity_rewrite_in_progress == 1) {
1386 *(int *) data = 100 *
1387 raidPtr->parity_rewrite_stripes_done /
1388 raidPtr->Layout.numStripe;
1389 } else {
1390 *(int *) data = 100;
1391 }
1392 return (0);
1393
1394 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1395 progressInfoPtr = (RF_ProgressInfo_t **) data;
1396 if (raidPtr->parity_rewrite_in_progress == 1) {
1397 progressInfo.total = raidPtr->Layout.numStripe;
1398 progressInfo.completed =
1399 raidPtr->parity_rewrite_stripes_done;
1400 progressInfo.remaining = progressInfo.total -
1401 progressInfo.completed;
1402 } else {
1403 progressInfo.remaining = 0;
1404 progressInfo.completed = 100;
1405 progressInfo.total = 100;
1406 }
1407 retcode = copyout((caddr_t) &progressInfo,
1408 (caddr_t) *progressInfoPtr,
1409 sizeof(RF_ProgressInfo_t));
1410 return (retcode);
1411
1412 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1413 if (raidPtr->Layout.map->faultsTolerated == 0) {
1414 /* This makes no sense on a RAID 0 */
1415 *(int *) data = 100;
1416 return(0);
1417 }
1418 if (raidPtr->copyback_in_progress == 1) {
1419 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1420 raidPtr->Layout.numStripe;
1421 } else {
1422 *(int *) data = 100;
1423 }
1424 return (0);
1425
1426 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1427 progressInfoPtr = (RF_ProgressInfo_t **) data;
1428 if (raidPtr->copyback_in_progress == 1) {
1429 progressInfo.total = raidPtr->Layout.numStripe;
1430 progressInfo.completed =
1431 raidPtr->copyback_stripes_done;
1432 progressInfo.remaining = progressInfo.total -
1433 progressInfo.completed;
1434 } else {
1435 progressInfo.remaining = 0;
1436 progressInfo.completed = 100;
1437 progressInfo.total = 100;
1438 }
1439 retcode = copyout((caddr_t) &progressInfo,
1440 (caddr_t) *progressInfoPtr,
1441 sizeof(RF_ProgressInfo_t));
1442 return (retcode);
1443
1444 /* the sparetable daemon calls this to wait for the kernel to
1445 * need a spare table. this ioctl does not return until a
1446 * spare table is needed. XXX -- calling mpsleep here in the
1447 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1448 * -- I should either compute the spare table in the kernel,
1449 * or have a different -- XXX XXX -- interface (a different
1450 * character device) for delivering the table -- XXX */
1451 #if 0
1452 case RAIDFRAME_SPARET_WAIT:
1453 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1454 while (!rf_sparet_wait_queue)
1455 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1456 waitreq = rf_sparet_wait_queue;
1457 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1458 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1459
1460 /* structure assignment */
1461 *((RF_SparetWait_t *) data) = *waitreq;
1462
1463 RF_Free(waitreq, sizeof(*waitreq));
1464 return (0);
1465
1466 /* wakes up a process waiting on SPARET_WAIT and puts an error
1467 * code in it that will cause the dameon to exit */
1468 case RAIDFRAME_ABORT_SPARET_WAIT:
1469 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1470 waitreq->fcol = -1;
1471 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1472 waitreq->next = rf_sparet_wait_queue;
1473 rf_sparet_wait_queue = waitreq;
1474 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1475 wakeup(&rf_sparet_wait_queue);
1476 return (0);
1477
1478 /* used by the spare table daemon to deliver a spare table
1479 * into the kernel */
1480 case RAIDFRAME_SEND_SPARET:
1481
1482 /* install the spare table */
1483 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1484
1485 /* respond to the requestor. the return status of the spare
1486 * table installation is passed in the "fcol" field */
1487 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1488 waitreq->fcol = retcode;
1489 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1490 waitreq->next = rf_sparet_resp_queue;
1491 rf_sparet_resp_queue = waitreq;
1492 wakeup(&rf_sparet_resp_queue);
1493 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1494
1495 return (retcode);
1496 #endif
1497
1498 default:
1499 break; /* fall through to the os-specific code below */
1500
1501 }
1502
1503 if (!raidPtr->valid)
1504 return (EINVAL);
1505
1506 /*
1507 * Add support for "regular" device ioctls here.
1508 */
1509
1510 switch (cmd) {
1511 case DIOCGDINFO:
1512 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1513 break;
1514 #ifdef __HAVE_OLD_DISKLABEL
1515 case ODIOCGDINFO:
1516 newlabel = *(rs->sc_dkdev.dk_label);
1517 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1518 return ENOTTY;
1519 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1520 break;
1521 #endif
1522
1523 case DIOCGPART:
1524 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1525 ((struct partinfo *) data)->part =
1526 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1527 break;
1528
1529 case DIOCWDINFO:
1530 case DIOCSDINFO:
1531 #ifdef __HAVE_OLD_DISKLABEL
1532 case ODIOCWDINFO:
1533 case ODIOCSDINFO:
1534 #endif
1535 {
1536 struct disklabel *lp;
1537 #ifdef __HAVE_OLD_DISKLABEL
1538 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1539 memset(&newlabel, 0, sizeof newlabel);
1540 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1541 lp = &newlabel;
1542 } else
1543 #endif
1544 lp = (struct disklabel *)data;
1545
1546 if ((error = raidlock(rs)) != 0)
1547 return (error);
1548
1549 rs->sc_flags |= RAIDF_LABELLING;
1550
1551 error = setdisklabel(rs->sc_dkdev.dk_label,
1552 lp, 0, rs->sc_dkdev.dk_cpulabel);
1553 if (error == 0) {
1554 if (cmd == DIOCWDINFO
1555 #ifdef __HAVE_OLD_DISKLABEL
1556 || cmd == ODIOCWDINFO
1557 #endif
1558 )
1559 error = writedisklabel(RAIDLABELDEV(dev),
1560 raidstrategy, rs->sc_dkdev.dk_label,
1561 rs->sc_dkdev.dk_cpulabel);
1562 }
1563 rs->sc_flags &= ~RAIDF_LABELLING;
1564
1565 raidunlock(rs);
1566
1567 if (error)
1568 return (error);
1569 break;
1570 }
1571
1572 case DIOCWLABEL:
1573 if (*(int *) data != 0)
1574 rs->sc_flags |= RAIDF_WLABEL;
1575 else
1576 rs->sc_flags &= ~RAIDF_WLABEL;
1577 break;
1578
1579 case DIOCGDEFLABEL:
1580 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1581 break;
1582
1583 #ifdef __HAVE_OLD_DISKLABEL
1584 case ODIOCGDEFLABEL:
1585 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1586 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1587 return ENOTTY;
1588 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1589 break;
1590 #endif
1591
1592 default:
1593 retcode = ENOTTY;
1594 }
1595 return (retcode);
1596
1597 }
1598
1599
1600 /* raidinit -- complete the rest of the initialization for the
1601 RAIDframe device. */
1602
1603
1604 static void
1605 raidinit(raidPtr)
1606 RF_Raid_t *raidPtr;
1607 {
1608 struct raid_softc *rs;
1609 int unit;
1610
1611 unit = raidPtr->raidid;
1612
1613 rs = &raid_softc[unit];
1614
1615 /* XXX should check return code first... */
1616 rs->sc_flags |= RAIDF_INITED;
1617
1618 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1619
1620 rs->sc_dkdev.dk_name = rs->sc_xname;
1621
1622 /* disk_attach actually creates space for the CPU disklabel, among
1623 * other things, so it's critical to call this *BEFORE* we try putzing
1624 * with disklabels. */
1625
1626 disk_attach(&rs->sc_dkdev);
1627
1628 /* XXX There may be a weird interaction here between this, and
1629 * protectedSectors, as used in RAIDframe. */
1630
1631 rs->sc_size = raidPtr->totalSectors;
1632
1633 }
1634 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1635 /* wake up the daemon & tell it to get us a spare table
1636 * XXX
1637 * the entries in the queues should be tagged with the raidPtr
1638 * so that in the extremely rare case that two recons happen at once,
1639 * we know for which device were requesting a spare table
1640 * XXX
1641 *
1642 * XXX This code is not currently used. GO
1643 */
1644 int
1645 rf_GetSpareTableFromDaemon(req)
1646 RF_SparetWait_t *req;
1647 {
1648 int retcode;
1649
1650 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1651 req->next = rf_sparet_wait_queue;
1652 rf_sparet_wait_queue = req;
1653 wakeup(&rf_sparet_wait_queue);
1654
1655 /* mpsleep unlocks the mutex */
1656 while (!rf_sparet_resp_queue) {
1657 tsleep(&rf_sparet_resp_queue, PRIBIO,
1658 "raidframe getsparetable", 0);
1659 }
1660 req = rf_sparet_resp_queue;
1661 rf_sparet_resp_queue = req->next;
1662 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1663
1664 retcode = req->fcol;
1665 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1666 * alloc'd */
1667 return (retcode);
1668 }
1669 #endif
1670
1671 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1672 * bp & passes it down.
1673 * any calls originating in the kernel must use non-blocking I/O
1674 * do some extra sanity checking to return "appropriate" error values for
1675 * certain conditions (to make some standard utilities work)
1676 *
1677 * Formerly known as: rf_DoAccessKernel
1678 */
1679 void
1680 raidstart(raidPtr)
1681 RF_Raid_t *raidPtr;
1682 {
1683 RF_SectorCount_t num_blocks, pb, sum;
1684 RF_RaidAddr_t raid_addr;
1685 int retcode;
1686 struct partition *pp;
1687 daddr_t blocknum;
1688 int unit;
1689 struct raid_softc *rs;
1690 int do_async;
1691 struct buf *bp;
1692
1693 unit = raidPtr->raidid;
1694 rs = &raid_softc[unit];
1695
1696 /* quick check to see if anything has died recently */
1697 RF_LOCK_MUTEX(raidPtr->mutex);
1698 if (raidPtr->numNewFailures > 0) {
1699 rf_update_component_labels(raidPtr,
1700 RF_NORMAL_COMPONENT_UPDATE);
1701 raidPtr->numNewFailures--;
1702 }
1703
1704 /* Check to see if we're at the limit... */
1705 while (raidPtr->openings > 0) {
1706 RF_UNLOCK_MUTEX(raidPtr->mutex);
1707
1708 /* get the next item, if any, from the queue */
1709 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1710 /* nothing more to do */
1711 return;
1712 }
1713
1714 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1715 * partition.. Need to make it absolute to the underlying
1716 * device.. */
1717
1718 blocknum = bp->b_blkno;
1719 if (DISKPART(bp->b_dev) != RAW_PART) {
1720 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1721 blocknum += pp->p_offset;
1722 }
1723
1724 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1725 (int) blocknum));
1726
1727 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1728 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1729
1730 /* *THIS* is where we adjust what block we're going to...
1731 * but DO NOT TOUCH bp->b_blkno!!! */
1732 raid_addr = blocknum;
1733
1734 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1735 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1736 sum = raid_addr + num_blocks + pb;
1737 if (1 || rf_debugKernelAccess) {
1738 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1739 (int) raid_addr, (int) sum, (int) num_blocks,
1740 (int) pb, (int) bp->b_resid));
1741 }
1742 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1743 || (sum < num_blocks) || (sum < pb)) {
1744 bp->b_error = ENOSPC;
1745 bp->b_flags |= B_ERROR;
1746 bp->b_resid = bp->b_bcount;
1747 biodone(bp);
1748 RF_LOCK_MUTEX(raidPtr->mutex);
1749 continue;
1750 }
1751 /*
1752 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1753 */
1754
1755 if (bp->b_bcount & raidPtr->sectorMask) {
1756 bp->b_error = EINVAL;
1757 bp->b_flags |= B_ERROR;
1758 bp->b_resid = bp->b_bcount;
1759 biodone(bp);
1760 RF_LOCK_MUTEX(raidPtr->mutex);
1761 continue;
1762
1763 }
1764 db1_printf(("Calling DoAccess..\n"));
1765
1766
1767 RF_LOCK_MUTEX(raidPtr->mutex);
1768 raidPtr->openings--;
1769 RF_UNLOCK_MUTEX(raidPtr->mutex);
1770
1771 /*
1772 * Everything is async.
1773 */
1774 do_async = 1;
1775
1776 disk_busy(&rs->sc_dkdev);
1777
1778 /* XXX we're still at splbio() here... do we *really*
1779 need to be? */
1780
1781 /* don't ever condition on bp->b_flags & B_WRITE.
1782 * always condition on B_READ instead */
1783
1784 retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1785 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1786 do_async, raid_addr, num_blocks,
1787 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1788
1789 RF_LOCK_MUTEX(raidPtr->mutex);
1790 }
1791 RF_UNLOCK_MUTEX(raidPtr->mutex);
1792 }
1793
1794
1795
1796
1797 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1798
1799 int
1800 rf_DispatchKernelIO(queue, req)
1801 RF_DiskQueue_t *queue;
1802 RF_DiskQueueData_t *req;
1803 {
1804 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1805 struct buf *bp;
1806 struct raidbuf *raidbp = NULL;
1807
1808 req->queue = queue;
1809
1810 #if DIAGNOSTIC
1811 if (queue->raidPtr->raidid >= numraid) {
1812 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1813 numraid);
1814 panic("Invalid Unit number in rf_DispatchKernelIO");
1815 }
1816 #endif
1817
1818 bp = req->bp;
1819 #if 1
1820 /* XXX when there is a physical disk failure, someone is passing us a
1821 * buffer that contains old stuff!! Attempt to deal with this problem
1822 * without taking a performance hit... (not sure where the real bug
1823 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1824
1825 if (bp->b_flags & B_ERROR) {
1826 bp->b_flags &= ~B_ERROR;
1827 }
1828 if (bp->b_error != 0) {
1829 bp->b_error = 0;
1830 }
1831 #endif
1832 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1833
1834 /*
1835 * context for raidiodone
1836 */
1837 raidbp->rf_obp = bp;
1838 raidbp->req = req;
1839
1840 LIST_INIT(&raidbp->rf_buf.b_dep);
1841
1842 switch (req->type) {
1843 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1844 /* XXX need to do something extra here.. */
1845 /* I'm leaving this in, as I've never actually seen it used,
1846 * and I'd like folks to report it... GO */
1847 printf(("WAKEUP CALLED\n"));
1848 queue->numOutstanding++;
1849
1850 /* XXX need to glue the original buffer into this?? */
1851
1852 KernelWakeupFunc(&raidbp->rf_buf);
1853 break;
1854
1855 case RF_IO_TYPE_READ:
1856 case RF_IO_TYPE_WRITE:
1857
1858 if (req->tracerec) {
1859 RF_ETIMER_START(req->tracerec->timer);
1860 }
1861 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1862 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1863 req->sectorOffset, req->numSector,
1864 req->buf, KernelWakeupFunc, (void *) req,
1865 queue->raidPtr->logBytesPerSector, req->b_proc);
1866
1867 if (rf_debugKernelAccess) {
1868 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1869 (long) bp->b_blkno));
1870 }
1871 queue->numOutstanding++;
1872 queue->last_deq_sector = req->sectorOffset;
1873 /* acc wouldn't have been let in if there were any pending
1874 * reqs at any other priority */
1875 queue->curPriority = req->priority;
1876
1877 db1_printf(("Going for %c to unit %d row %d col %d\n",
1878 req->type, queue->raidPtr->raidid,
1879 queue->row, queue->col));
1880 db1_printf(("sector %d count %d (%d bytes) %d\n",
1881 (int) req->sectorOffset, (int) req->numSector,
1882 (int) (req->numSector <<
1883 queue->raidPtr->logBytesPerSector),
1884 (int) queue->raidPtr->logBytesPerSector));
1885 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1886 raidbp->rf_buf.b_vp->v_numoutput++;
1887 }
1888 VOP_STRATEGY(&raidbp->rf_buf);
1889
1890 break;
1891
1892 default:
1893 panic("bad req->type in rf_DispatchKernelIO");
1894 }
1895 db1_printf(("Exiting from DispatchKernelIO\n"));
1896
1897 return (0);
1898 }
1899 /* this is the callback function associated with a I/O invoked from
1900 kernel code.
1901 */
1902 static void
1903 KernelWakeupFunc(vbp)
1904 struct buf *vbp;
1905 {
1906 RF_DiskQueueData_t *req = NULL;
1907 RF_DiskQueue_t *queue;
1908 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1909 struct buf *bp;
1910 int s;
1911
1912 s = splbio();
1913 db1_printf(("recovering the request queue:\n"));
1914 req = raidbp->req;
1915
1916 bp = raidbp->rf_obp;
1917
1918 queue = (RF_DiskQueue_t *) req->queue;
1919
1920 if (raidbp->rf_buf.b_flags & B_ERROR) {
1921 bp->b_flags |= B_ERROR;
1922 bp->b_error = raidbp->rf_buf.b_error ?
1923 raidbp->rf_buf.b_error : EIO;
1924 }
1925
1926 /* XXX methinks this could be wrong... */
1927 #if 1
1928 bp->b_resid = raidbp->rf_buf.b_resid;
1929 #endif
1930
1931 if (req->tracerec) {
1932 RF_ETIMER_STOP(req->tracerec->timer);
1933 RF_ETIMER_EVAL(req->tracerec->timer);
1934 RF_LOCK_MUTEX(rf_tracing_mutex);
1935 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1936 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1937 req->tracerec->num_phys_ios++;
1938 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1939 }
1940 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1941
1942 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1943 * ballistic, and mark the component as hosed... */
1944
1945 if (bp->b_flags & B_ERROR) {
1946 /* Mark the disk as dead */
1947 /* but only mark it once... */
1948 if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1949 rf_ds_optimal) {
1950 printf("raid%d: IO Error. Marking %s as failed.\n",
1951 queue->raidPtr->raidid,
1952 queue->raidPtr->Disks[queue->row][queue->col].devname);
1953 queue->raidPtr->Disks[queue->row][queue->col].status =
1954 rf_ds_failed;
1955 queue->raidPtr->status[queue->row] = rf_rs_degraded;
1956 queue->raidPtr->numFailures++;
1957 queue->raidPtr->numNewFailures++;
1958 } else { /* Disk is already dead... */
1959 /* printf("Disk already marked as dead!\n"); */
1960 }
1961
1962 }
1963
1964 pool_put(&raidframe_cbufpool, raidbp);
1965
1966 /* Fill in the error value */
1967
1968 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1969
1970 simple_lock(&queue->raidPtr->iodone_lock);
1971
1972 /* Drop this one on the "finished" queue... */
1973 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1974
1975 /* Let the raidio thread know there is work to be done. */
1976 wakeup(&(queue->raidPtr->iodone));
1977
1978 simple_unlock(&queue->raidPtr->iodone_lock);
1979
1980 splx(s);
1981 }
1982
1983
1984
1985 /*
1986 * initialize a buf structure for doing an I/O in the kernel.
1987 */
1988 static void
1989 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1990 logBytesPerSector, b_proc)
1991 struct buf *bp;
1992 struct vnode *b_vp;
1993 unsigned rw_flag;
1994 dev_t dev;
1995 RF_SectorNum_t startSect;
1996 RF_SectorCount_t numSect;
1997 caddr_t buf;
1998 void (*cbFunc) (struct buf *);
1999 void *cbArg;
2000 int logBytesPerSector;
2001 struct proc *b_proc;
2002 {
2003 /* bp->b_flags = B_PHYS | rw_flag; */
2004 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2005 bp->b_bcount = numSect << logBytesPerSector;
2006 bp->b_bufsize = bp->b_bcount;
2007 bp->b_error = 0;
2008 bp->b_dev = dev;
2009 bp->b_data = buf;
2010 bp->b_blkno = startSect;
2011 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2012 if (bp->b_bcount == 0) {
2013 panic("bp->b_bcount is zero in InitBP!!");
2014 }
2015 bp->b_proc = b_proc;
2016 bp->b_iodone = cbFunc;
2017 bp->b_vp = b_vp;
2018
2019 }
2020
2021 static void
2022 raidgetdefaultlabel(raidPtr, rs, lp)
2023 RF_Raid_t *raidPtr;
2024 struct raid_softc *rs;
2025 struct disklabel *lp;
2026 {
2027 memset(lp, 0, sizeof(*lp));
2028
2029 /* fabricate a label... */
2030 lp->d_secperunit = raidPtr->totalSectors;
2031 lp->d_secsize = raidPtr->bytesPerSector;
2032 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2033 lp->d_ntracks = 4 * raidPtr->numCol;
2034 lp->d_ncylinders = raidPtr->totalSectors /
2035 (lp->d_nsectors * lp->d_ntracks);
2036 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2037
2038 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2039 lp->d_type = DTYPE_RAID;
2040 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2041 lp->d_rpm = 3600;
2042 lp->d_interleave = 1;
2043 lp->d_flags = 0;
2044
2045 lp->d_partitions[RAW_PART].p_offset = 0;
2046 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2047 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2048 lp->d_npartitions = RAW_PART + 1;
2049
2050 lp->d_magic = DISKMAGIC;
2051 lp->d_magic2 = DISKMAGIC;
2052 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2053
2054 }
2055 /*
2056 * Read the disklabel from the raid device. If one is not present, fake one
2057 * up.
2058 */
2059 static void
2060 raidgetdisklabel(dev)
2061 dev_t dev;
2062 {
2063 int unit = raidunit(dev);
2064 struct raid_softc *rs = &raid_softc[unit];
2065 char *errstring;
2066 struct disklabel *lp = rs->sc_dkdev.dk_label;
2067 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2068 RF_Raid_t *raidPtr;
2069
2070 db1_printf(("Getting the disklabel...\n"));
2071
2072 memset(clp, 0, sizeof(*clp));
2073
2074 raidPtr = raidPtrs[unit];
2075
2076 raidgetdefaultlabel(raidPtr, rs, lp);
2077
2078 /*
2079 * Call the generic disklabel extraction routine.
2080 */
2081 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2082 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2083 if (errstring)
2084 raidmakedisklabel(rs);
2085 else {
2086 int i;
2087 struct partition *pp;
2088
2089 /*
2090 * Sanity check whether the found disklabel is valid.
2091 *
2092 * This is necessary since total size of the raid device
2093 * may vary when an interleave is changed even though exactly
2094 * same componets are used, and old disklabel may used
2095 * if that is found.
2096 */
2097 if (lp->d_secperunit != rs->sc_size)
2098 printf("raid%d: WARNING: %s: "
2099 "total sector size in disklabel (%d) != "
2100 "the size of raid (%ld)\n", unit, rs->sc_xname,
2101 lp->d_secperunit, (long) rs->sc_size);
2102 for (i = 0; i < lp->d_npartitions; i++) {
2103 pp = &lp->d_partitions[i];
2104 if (pp->p_offset + pp->p_size > rs->sc_size)
2105 printf("raid%d: WARNING: %s: end of partition `%c' "
2106 "exceeds the size of raid (%ld)\n",
2107 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2108 }
2109 }
2110
2111 }
2112 /*
2113 * Take care of things one might want to take care of in the event
2114 * that a disklabel isn't present.
2115 */
2116 static void
2117 raidmakedisklabel(rs)
2118 struct raid_softc *rs;
2119 {
2120 struct disklabel *lp = rs->sc_dkdev.dk_label;
2121 db1_printf(("Making a label..\n"));
2122
2123 /*
2124 * For historical reasons, if there's no disklabel present
2125 * the raw partition must be marked FS_BSDFFS.
2126 */
2127
2128 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2129
2130 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2131
2132 lp->d_checksum = dkcksum(lp);
2133 }
2134 /*
2135 * Lookup the provided name in the filesystem. If the file exists,
2136 * is a valid block device, and isn't being used by anyone else,
2137 * set *vpp to the file's vnode.
2138 * You'll find the original of this in ccd.c
2139 */
2140 int
2141 raidlookup(path, p, vpp)
2142 char *path;
2143 struct proc *p;
2144 struct vnode **vpp; /* result */
2145 {
2146 struct nameidata nd;
2147 struct vnode *vp;
2148 struct vattr va;
2149 int error;
2150
2151 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2152 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2153 return (error);
2154 }
2155 vp = nd.ni_vp;
2156 if (vp->v_usecount > 1) {
2157 VOP_UNLOCK(vp, 0);
2158 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2159 return (EBUSY);
2160 }
2161 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2162 VOP_UNLOCK(vp, 0);
2163 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2164 return (error);
2165 }
2166 /* XXX: eventually we should handle VREG, too. */
2167 if (va.va_type != VBLK) {
2168 VOP_UNLOCK(vp, 0);
2169 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2170 return (ENOTBLK);
2171 }
2172 VOP_UNLOCK(vp, 0);
2173 *vpp = vp;
2174 return (0);
2175 }
2176 /*
2177 * Wait interruptibly for an exclusive lock.
2178 *
2179 * XXX
2180 * Several drivers do this; it should be abstracted and made MP-safe.
2181 * (Hmm... where have we seen this warning before :-> GO )
2182 */
2183 static int
2184 raidlock(rs)
2185 struct raid_softc *rs;
2186 {
2187 int error;
2188
2189 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2190 rs->sc_flags |= RAIDF_WANTED;
2191 if ((error =
2192 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2193 return (error);
2194 }
2195 rs->sc_flags |= RAIDF_LOCKED;
2196 return (0);
2197 }
2198 /*
2199 * Unlock and wake up any waiters.
2200 */
2201 static void
2202 raidunlock(rs)
2203 struct raid_softc *rs;
2204 {
2205
2206 rs->sc_flags &= ~RAIDF_LOCKED;
2207 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2208 rs->sc_flags &= ~RAIDF_WANTED;
2209 wakeup(rs);
2210 }
2211 }
2212
2213
2214 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2215 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2216
2217 int
2218 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2219 {
2220 RF_ComponentLabel_t clabel;
2221 raidread_component_label(dev, b_vp, &clabel);
2222 clabel.mod_counter = mod_counter;
2223 clabel.clean = RF_RAID_CLEAN;
2224 raidwrite_component_label(dev, b_vp, &clabel);
2225 return(0);
2226 }
2227
2228
2229 int
2230 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2231 {
2232 RF_ComponentLabel_t clabel;
2233 raidread_component_label(dev, b_vp, &clabel);
2234 clabel.mod_counter = mod_counter;
2235 clabel.clean = RF_RAID_DIRTY;
2236 raidwrite_component_label(dev, b_vp, &clabel);
2237 return(0);
2238 }
2239
2240 /* ARGSUSED */
2241 int
2242 raidread_component_label(dev, b_vp, clabel)
2243 dev_t dev;
2244 struct vnode *b_vp;
2245 RF_ComponentLabel_t *clabel;
2246 {
2247 struct buf *bp;
2248 const struct bdevsw *bdev;
2249 int error;
2250
2251 /* XXX should probably ensure that we don't try to do this if
2252 someone has changed rf_protected_sectors. */
2253
2254 if (b_vp == NULL) {
2255 /* For whatever reason, this component is not valid.
2256 Don't try to read a component label from it. */
2257 return(EINVAL);
2258 }
2259
2260 /* get a block of the appropriate size... */
2261 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2262 bp->b_dev = dev;
2263
2264 /* get our ducks in a row for the read */
2265 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2266 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2267 bp->b_flags |= B_READ;
2268 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2269
2270 bdev = bdevsw_lookup(bp->b_dev);
2271 if (bdev == NULL)
2272 return (ENXIO);
2273 (*bdev->d_strategy)(bp);
2274
2275 error = biowait(bp);
2276
2277 if (!error) {
2278 memcpy(clabel, bp->b_data,
2279 sizeof(RF_ComponentLabel_t));
2280 }
2281
2282 brelse(bp);
2283 return(error);
2284 }
2285 /* ARGSUSED */
2286 int
2287 raidwrite_component_label(dev, b_vp, clabel)
2288 dev_t dev;
2289 struct vnode *b_vp;
2290 RF_ComponentLabel_t *clabel;
2291 {
2292 struct buf *bp;
2293 const struct bdevsw *bdev;
2294 int error;
2295
2296 /* get a block of the appropriate size... */
2297 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2298 bp->b_dev = dev;
2299
2300 /* get our ducks in a row for the write */
2301 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2302 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2303 bp->b_flags |= B_WRITE;
2304 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2305
2306 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2307
2308 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2309
2310 bdev = bdevsw_lookup(bp->b_dev);
2311 if (bdev == NULL)
2312 return (ENXIO);
2313 (*bdev->d_strategy)(bp);
2314 error = biowait(bp);
2315 brelse(bp);
2316 if (error) {
2317 #if 1
2318 printf("Failed to write RAID component info!\n");
2319 #endif
2320 }
2321
2322 return(error);
2323 }
2324
2325 void
2326 rf_markalldirty(raidPtr)
2327 RF_Raid_t *raidPtr;
2328 {
2329 RF_ComponentLabel_t clabel;
2330 int sparecol;
2331 int r,c;
2332 int i,j;
2333 int srow, scol;
2334
2335 raidPtr->mod_counter++;
2336 for (r = 0; r < raidPtr->numRow; r++) {
2337 for (c = 0; c < raidPtr->numCol; c++) {
2338 /* we don't want to touch (at all) a disk that has
2339 failed */
2340 if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2341 raidread_component_label(
2342 raidPtr->Disks[r][c].dev,
2343 raidPtr->raid_cinfo[r][c].ci_vp,
2344 &clabel);
2345 if (clabel.status == rf_ds_spared) {
2346 /* XXX do something special...
2347 but whatever you do, don't
2348 try to access it!! */
2349 } else {
2350 raidmarkdirty(
2351 raidPtr->Disks[r][c].dev,
2352 raidPtr->raid_cinfo[r][c].ci_vp,
2353 raidPtr->mod_counter);
2354 }
2355 }
2356 }
2357 }
2358
2359 for( c = 0; c < raidPtr->numSpare ; c++) {
2360 sparecol = raidPtr->numCol + c;
2361 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2362 /*
2363
2364 we claim this disk is "optimal" if it's
2365 rf_ds_used_spare, as that means it should be
2366 directly substitutable for the disk it replaced.
2367 We note that too...
2368
2369 */
2370
2371 for(i=0;i<raidPtr->numRow;i++) {
2372 for(j=0;j<raidPtr->numCol;j++) {
2373 if ((raidPtr->Disks[i][j].spareRow ==
2374 0) &&
2375 (raidPtr->Disks[i][j].spareCol ==
2376 sparecol)) {
2377 srow = i;
2378 scol = j;
2379 break;
2380 }
2381 }
2382 }
2383
2384 raidread_component_label(
2385 raidPtr->Disks[0][sparecol].dev,
2386 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2387 &clabel);
2388 /* make sure status is noted */
2389
2390 raid_init_component_label(raidPtr, &clabel);
2391
2392 clabel.row = srow;
2393 clabel.column = scol;
2394 /* Note: we *don't* change status from rf_ds_used_spare
2395 to rf_ds_optimal */
2396 /* clabel.status = rf_ds_optimal; */
2397
2398 raidmarkdirty(raidPtr->Disks[0][sparecol].dev,
2399 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2400 raidPtr->mod_counter);
2401 }
2402 }
2403 }
2404
2405
2406 void
2407 rf_update_component_labels(raidPtr, final)
2408 RF_Raid_t *raidPtr;
2409 int final;
2410 {
2411 RF_ComponentLabel_t clabel;
2412 int sparecol;
2413 int r,c;
2414 int i,j;
2415 int srow, scol;
2416
2417 srow = -1;
2418 scol = -1;
2419
2420 /* XXX should do extra checks to make sure things really are clean,
2421 rather than blindly setting the clean bit... */
2422
2423 raidPtr->mod_counter++;
2424
2425 for (r = 0; r < raidPtr->numRow; r++) {
2426 for (c = 0; c < raidPtr->numCol; c++) {
2427 if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2428 raidread_component_label(
2429 raidPtr->Disks[r][c].dev,
2430 raidPtr->raid_cinfo[r][c].ci_vp,
2431 &clabel);
2432 /* make sure status is noted */
2433 clabel.status = rf_ds_optimal;
2434 /* bump the counter */
2435 clabel.mod_counter = raidPtr->mod_counter;
2436
2437 raidwrite_component_label(
2438 raidPtr->Disks[r][c].dev,
2439 raidPtr->raid_cinfo[r][c].ci_vp,
2440 &clabel);
2441 if (final == RF_FINAL_COMPONENT_UPDATE) {
2442 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2443 raidmarkclean(
2444 raidPtr->Disks[r][c].dev,
2445 raidPtr->raid_cinfo[r][c].ci_vp,
2446 raidPtr->mod_counter);
2447 }
2448 }
2449 }
2450 /* else we don't touch it.. */
2451 }
2452 }
2453
2454 for( c = 0; c < raidPtr->numSpare ; c++) {
2455 sparecol = raidPtr->numCol + c;
2456 /* Need to ensure that the reconstruct actually completed! */
2457 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2458 /*
2459
2460 we claim this disk is "optimal" if it's
2461 rf_ds_used_spare, as that means it should be
2462 directly substitutable for the disk it replaced.
2463 We note that too...
2464
2465 */
2466
2467 for(i=0;i<raidPtr->numRow;i++) {
2468 for(j=0;j<raidPtr->numCol;j++) {
2469 if ((raidPtr->Disks[i][j].spareRow ==
2470 0) &&
2471 (raidPtr->Disks[i][j].spareCol ==
2472 sparecol)) {
2473 srow = i;
2474 scol = j;
2475 break;
2476 }
2477 }
2478 }
2479
2480 /* XXX shouldn't *really* need this... */
2481 raidread_component_label(
2482 raidPtr->Disks[0][sparecol].dev,
2483 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2484 &clabel);
2485 /* make sure status is noted */
2486
2487 raid_init_component_label(raidPtr, &clabel);
2488
2489 clabel.mod_counter = raidPtr->mod_counter;
2490 clabel.row = srow;
2491 clabel.column = scol;
2492 clabel.status = rf_ds_optimal;
2493
2494 raidwrite_component_label(
2495 raidPtr->Disks[0][sparecol].dev,
2496 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2497 &clabel);
2498 if (final == RF_FINAL_COMPONENT_UPDATE) {
2499 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2500 raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2501 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2502 raidPtr->mod_counter);
2503 }
2504 }
2505 }
2506 }
2507 }
2508
2509 void
2510 rf_close_component(raidPtr, vp, auto_configured)
2511 RF_Raid_t *raidPtr;
2512 struct vnode *vp;
2513 int auto_configured;
2514 {
2515 struct proc *p;
2516
2517 p = raidPtr->engine_thread;
2518
2519 if (vp != NULL) {
2520 if (auto_configured == 1) {
2521 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2522 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2523 vput(vp);
2524
2525 } else {
2526 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2527 }
2528 }
2529 }
2530
2531
2532 void
2533 rf_UnconfigureVnodes(raidPtr)
2534 RF_Raid_t *raidPtr;
2535 {
2536 int r,c;
2537 struct vnode *vp;
2538 int acd;
2539
2540
2541 /* We take this opportunity to close the vnodes like we should.. */
2542
2543 for (r = 0; r < raidPtr->numRow; r++) {
2544 for (c = 0; c < raidPtr->numCol; c++) {
2545 vp = raidPtr->raid_cinfo[r][c].ci_vp;
2546 acd = raidPtr->Disks[r][c].auto_configured;
2547 rf_close_component(raidPtr, vp, acd);
2548 raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2549 raidPtr->Disks[r][c].auto_configured = 0;
2550 }
2551 }
2552 for (r = 0; r < raidPtr->numSpare; r++) {
2553 vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2554 acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2555 rf_close_component(raidPtr, vp, acd);
2556 raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2557 raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2558 }
2559 }
2560
2561
2562 void
2563 rf_ReconThread(req)
2564 struct rf_recon_req *req;
2565 {
2566 int s;
2567 RF_Raid_t *raidPtr;
2568
2569 s = splbio();
2570 raidPtr = (RF_Raid_t *) req->raidPtr;
2571 raidPtr->recon_in_progress = 1;
2572
2573 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2574 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2575
2576 /* XXX get rid of this! we don't need it at all.. */
2577 RF_Free(req, sizeof(*req));
2578
2579 raidPtr->recon_in_progress = 0;
2580 splx(s);
2581
2582 /* That's all... */
2583 kthread_exit(0); /* does not return */
2584 }
2585
2586 void
2587 rf_RewriteParityThread(raidPtr)
2588 RF_Raid_t *raidPtr;
2589 {
2590 int retcode;
2591 int s;
2592
2593 raidPtr->parity_rewrite_in_progress = 1;
2594 s = splbio();
2595 retcode = rf_RewriteParity(raidPtr);
2596 splx(s);
2597 if (retcode) {
2598 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2599 } else {
2600 /* set the clean bit! If we shutdown correctly,
2601 the clean bit on each component label will get
2602 set */
2603 raidPtr->parity_good = RF_RAID_CLEAN;
2604 }
2605 raidPtr->parity_rewrite_in_progress = 0;
2606
2607 /* Anyone waiting for us to stop? If so, inform them... */
2608 if (raidPtr->waitShutdown) {
2609 wakeup(&raidPtr->parity_rewrite_in_progress);
2610 }
2611
2612 /* That's all... */
2613 kthread_exit(0); /* does not return */
2614 }
2615
2616
2617 void
2618 rf_CopybackThread(raidPtr)
2619 RF_Raid_t *raidPtr;
2620 {
2621 int s;
2622
2623 raidPtr->copyback_in_progress = 1;
2624 s = splbio();
2625 rf_CopybackReconstructedData(raidPtr);
2626 splx(s);
2627 raidPtr->copyback_in_progress = 0;
2628
2629 /* That's all... */
2630 kthread_exit(0); /* does not return */
2631 }
2632
2633
2634 void
2635 rf_ReconstructInPlaceThread(req)
2636 struct rf_recon_req *req;
2637 {
2638 int retcode;
2639 int s;
2640 RF_Raid_t *raidPtr;
2641
2642 s = splbio();
2643 raidPtr = req->raidPtr;
2644 raidPtr->recon_in_progress = 1;
2645 retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
2646 RF_Free(req, sizeof(*req));
2647 raidPtr->recon_in_progress = 0;
2648 splx(s);
2649
2650 /* That's all... */
2651 kthread_exit(0); /* does not return */
2652 }
2653
2654 RF_AutoConfig_t *
2655 rf_find_raid_components()
2656 {
2657 struct vnode *vp;
2658 struct disklabel label;
2659 struct device *dv;
2660 dev_t dev;
2661 int bmajor;
2662 int error;
2663 int i;
2664 int good_one;
2665 RF_ComponentLabel_t *clabel;
2666 RF_AutoConfig_t *ac_list;
2667 RF_AutoConfig_t *ac;
2668
2669
2670 /* initialize the AutoConfig list */
2671 ac_list = NULL;
2672
2673 /* we begin by trolling through *all* the devices on the system */
2674
2675 for (dv = alldevs.tqh_first; dv != NULL;
2676 dv = dv->dv_list.tqe_next) {
2677
2678 /* we are only interested in disks... */
2679 if (dv->dv_class != DV_DISK)
2680 continue;
2681
2682 /* we don't care about floppies... */
2683 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2684 continue;
2685 }
2686
2687 /* we don't care about CD's... */
2688 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2689 continue;
2690 }
2691
2692 /* hdfd is the Atari/Hades floppy driver */
2693 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2694 continue;
2695 }
2696 /* fdisa is the Atari/Milan floppy driver */
2697 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2698 continue;
2699 }
2700
2701 /* need to find the device_name_to_block_device_major stuff */
2702 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2703
2704 /* get a vnode for the raw partition of this disk */
2705
2706 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2707 if (bdevvp(dev, &vp))
2708 panic("RAID can't alloc vnode");
2709
2710 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2711
2712 if (error) {
2713 /* "Who cares." Continue looking
2714 for something that exists*/
2715 vput(vp);
2716 continue;
2717 }
2718
2719 /* Ok, the disk exists. Go get the disklabel. */
2720 error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
2721 FREAD, NOCRED, 0);
2722 if (error) {
2723 /*
2724 * XXX can't happen - open() would
2725 * have errored out (or faked up one)
2726 */
2727 printf("can't get label for dev %s%c (%d)!?!?\n",
2728 dv->dv_xname, 'a' + RAW_PART, error);
2729 }
2730
2731 /* don't need this any more. We'll allocate it again
2732 a little later if we really do... */
2733 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2734 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2735 vput(vp);
2736
2737 for (i=0; i < label.d_npartitions; i++) {
2738 /* We only support partitions marked as RAID */
2739 if (label.d_partitions[i].p_fstype != FS_RAID)
2740 continue;
2741
2742 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2743 if (bdevvp(dev, &vp))
2744 panic("RAID can't alloc vnode");
2745
2746 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2747 if (error) {
2748 /* Whatever... */
2749 vput(vp);
2750 continue;
2751 }
2752
2753 good_one = 0;
2754
2755 clabel = (RF_ComponentLabel_t *)
2756 malloc(sizeof(RF_ComponentLabel_t),
2757 M_RAIDFRAME, M_NOWAIT);
2758 if (clabel == NULL) {
2759 /* XXX CLEANUP HERE */
2760 printf("RAID auto config: out of memory!\n");
2761 return(NULL); /* XXX probably should panic? */
2762 }
2763
2764 if (!raidread_component_label(dev, vp, clabel)) {
2765 /* Got the label. Does it look reasonable? */
2766 if (rf_reasonable_label(clabel) &&
2767 (clabel->partitionSize <=
2768 label.d_partitions[i].p_size)) {
2769 #if DEBUG
2770 printf("Component on: %s%c: %d\n",
2771 dv->dv_xname, 'a'+i,
2772 label.d_partitions[i].p_size);
2773 rf_print_component_label(clabel);
2774 #endif
2775 /* if it's reasonable, add it,
2776 else ignore it. */
2777 ac = (RF_AutoConfig_t *)
2778 malloc(sizeof(RF_AutoConfig_t),
2779 M_RAIDFRAME,
2780 M_NOWAIT);
2781 if (ac == NULL) {
2782 /* XXX should panic?? */
2783 return(NULL);
2784 }
2785
2786 sprintf(ac->devname, "%s%c",
2787 dv->dv_xname, 'a'+i);
2788 ac->dev = dev;
2789 ac->vp = vp;
2790 ac->clabel = clabel;
2791 ac->next = ac_list;
2792 ac_list = ac;
2793 good_one = 1;
2794 }
2795 }
2796 if (!good_one) {
2797 /* cleanup */
2798 free(clabel, M_RAIDFRAME);
2799 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2800 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2801 vput(vp);
2802 }
2803 }
2804 }
2805 return(ac_list);
2806 }
2807
2808 static int
2809 rf_reasonable_label(clabel)
2810 RF_ComponentLabel_t *clabel;
2811 {
2812
2813 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2814 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2815 ((clabel->clean == RF_RAID_CLEAN) ||
2816 (clabel->clean == RF_RAID_DIRTY)) &&
2817 clabel->row >=0 &&
2818 clabel->column >= 0 &&
2819 clabel->num_rows > 0 &&
2820 clabel->num_columns > 0 &&
2821 clabel->row < clabel->num_rows &&
2822 clabel->column < clabel->num_columns &&
2823 clabel->blockSize > 0 &&
2824 clabel->numBlocks > 0) {
2825 /* label looks reasonable enough... */
2826 return(1);
2827 }
2828 return(0);
2829 }
2830
2831
2832 #if DEBUG
2833 void
2834 rf_print_component_label(clabel)
2835 RF_ComponentLabel_t *clabel;
2836 {
2837 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2838 clabel->row, clabel->column,
2839 clabel->num_rows, clabel->num_columns);
2840 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2841 clabel->version, clabel->serial_number,
2842 clabel->mod_counter);
2843 printf(" Clean: %s Status: %d\n",
2844 clabel->clean ? "Yes" : "No", clabel->status );
2845 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2846 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2847 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2848 (char) clabel->parityConfig, clabel->blockSize,
2849 clabel->numBlocks);
2850 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2851 printf(" Contains root partition: %s\n",
2852 clabel->root_partition ? "Yes" : "No" );
2853 printf(" Last configured as: raid%d\n", clabel->last_unit );
2854 #if 0
2855 printf(" Config order: %d\n", clabel->config_order);
2856 #endif
2857
2858 }
2859 #endif
2860
2861 RF_ConfigSet_t *
2862 rf_create_auto_sets(ac_list)
2863 RF_AutoConfig_t *ac_list;
2864 {
2865 RF_AutoConfig_t *ac;
2866 RF_ConfigSet_t *config_sets;
2867 RF_ConfigSet_t *cset;
2868 RF_AutoConfig_t *ac_next;
2869
2870
2871 config_sets = NULL;
2872
2873 /* Go through the AutoConfig list, and figure out which components
2874 belong to what sets. */
2875 ac = ac_list;
2876 while(ac!=NULL) {
2877 /* we're going to putz with ac->next, so save it here
2878 for use at the end of the loop */
2879 ac_next = ac->next;
2880
2881 if (config_sets == NULL) {
2882 /* will need at least this one... */
2883 config_sets = (RF_ConfigSet_t *)
2884 malloc(sizeof(RF_ConfigSet_t),
2885 M_RAIDFRAME, M_NOWAIT);
2886 if (config_sets == NULL) {
2887 panic("rf_create_auto_sets: No memory!");
2888 }
2889 /* this one is easy :) */
2890 config_sets->ac = ac;
2891 config_sets->next = NULL;
2892 config_sets->rootable = 0;
2893 ac->next = NULL;
2894 } else {
2895 /* which set does this component fit into? */
2896 cset = config_sets;
2897 while(cset!=NULL) {
2898 if (rf_does_it_fit(cset, ac)) {
2899 /* looks like it matches... */
2900 ac->next = cset->ac;
2901 cset->ac = ac;
2902 break;
2903 }
2904 cset = cset->next;
2905 }
2906 if (cset==NULL) {
2907 /* didn't find a match above... new set..*/
2908 cset = (RF_ConfigSet_t *)
2909 malloc(sizeof(RF_ConfigSet_t),
2910 M_RAIDFRAME, M_NOWAIT);
2911 if (cset == NULL) {
2912 panic("rf_create_auto_sets: No memory!");
2913 }
2914 cset->ac = ac;
2915 ac->next = NULL;
2916 cset->next = config_sets;
2917 cset->rootable = 0;
2918 config_sets = cset;
2919 }
2920 }
2921 ac = ac_next;
2922 }
2923
2924
2925 return(config_sets);
2926 }
2927
2928 static int
2929 rf_does_it_fit(cset, ac)
2930 RF_ConfigSet_t *cset;
2931 RF_AutoConfig_t *ac;
2932 {
2933 RF_ComponentLabel_t *clabel1, *clabel2;
2934
2935 /* If this one matches the *first* one in the set, that's good
2936 enough, since the other members of the set would have been
2937 through here too... */
2938 /* note that we are not checking partitionSize here..
2939
2940 Note that we are also not checking the mod_counters here.
2941 If everything else matches execpt the mod_counter, that's
2942 good enough for this test. We will deal with the mod_counters
2943 a little later in the autoconfiguration process.
2944
2945 (clabel1->mod_counter == clabel2->mod_counter) &&
2946
2947 The reason we don't check for this is that failed disks
2948 will have lower modification counts. If those disks are
2949 not added to the set they used to belong to, then they will
2950 form their own set, which may result in 2 different sets,
2951 for example, competing to be configured at raid0, and
2952 perhaps competing to be the root filesystem set. If the
2953 wrong ones get configured, or both attempt to become /,
2954 weird behaviour and or serious lossage will occur. Thus we
2955 need to bring them into the fold here, and kick them out at
2956 a later point.
2957
2958 */
2959
2960 clabel1 = cset->ac->clabel;
2961 clabel2 = ac->clabel;
2962 if ((clabel1->version == clabel2->version) &&
2963 (clabel1->serial_number == clabel2->serial_number) &&
2964 (clabel1->num_rows == clabel2->num_rows) &&
2965 (clabel1->num_columns == clabel2->num_columns) &&
2966 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2967 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2968 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2969 (clabel1->parityConfig == clabel2->parityConfig) &&
2970 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2971 (clabel1->blockSize == clabel2->blockSize) &&
2972 (clabel1->numBlocks == clabel2->numBlocks) &&
2973 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2974 (clabel1->root_partition == clabel2->root_partition) &&
2975 (clabel1->last_unit == clabel2->last_unit) &&
2976 (clabel1->config_order == clabel2->config_order)) {
2977 /* if it get's here, it almost *has* to be a match */
2978 } else {
2979 /* it's not consistent with somebody in the set..
2980 punt */
2981 return(0);
2982 }
2983 /* all was fine.. it must fit... */
2984 return(1);
2985 }
2986
2987 int
2988 rf_have_enough_components(cset)
2989 RF_ConfigSet_t *cset;
2990 {
2991 RF_AutoConfig_t *ac;
2992 RF_AutoConfig_t *auto_config;
2993 RF_ComponentLabel_t *clabel;
2994 int r,c;
2995 int num_rows;
2996 int num_cols;
2997 int num_missing;
2998 int mod_counter;
2999 int mod_counter_found;
3000 int even_pair_failed;
3001 char parity_type;
3002
3003
3004 /* check to see that we have enough 'live' components
3005 of this set. If so, we can configure it if necessary */
3006
3007 num_rows = cset->ac->clabel->num_rows;
3008 num_cols = cset->ac->clabel->num_columns;
3009 parity_type = cset->ac->clabel->parityConfig;
3010
3011 /* XXX Check for duplicate components!?!?!? */
3012
3013 /* Determine what the mod_counter is supposed to be for this set. */
3014
3015 mod_counter_found = 0;
3016 mod_counter = 0;
3017 ac = cset->ac;
3018 while(ac!=NULL) {
3019 if (mod_counter_found==0) {
3020 mod_counter = ac->clabel->mod_counter;
3021 mod_counter_found = 1;
3022 } else {
3023 if (ac->clabel->mod_counter > mod_counter) {
3024 mod_counter = ac->clabel->mod_counter;
3025 }
3026 }
3027 ac = ac->next;
3028 }
3029
3030 num_missing = 0;
3031 auto_config = cset->ac;
3032
3033 for(r=0; r<num_rows; r++) {
3034 even_pair_failed = 0;
3035 for(c=0; c<num_cols; c++) {
3036 ac = auto_config;
3037 while(ac!=NULL) {
3038 if ((ac->clabel->row == r) &&
3039 (ac->clabel->column == c) &&
3040 (ac->clabel->mod_counter == mod_counter)) {
3041 /* it's this one... */
3042 #if DEBUG
3043 printf("Found: %s at %d,%d\n",
3044 ac->devname,r,c);
3045 #endif
3046 break;
3047 }
3048 ac=ac->next;
3049 }
3050 if (ac==NULL) {
3051 /* Didn't find one here! */
3052 /* special case for RAID 1, especially
3053 where there are more than 2
3054 components (where RAIDframe treats
3055 things a little differently :( ) */
3056 if (parity_type == '1') {
3057 if (c%2 == 0) { /* even component */
3058 even_pair_failed = 1;
3059 } else { /* odd component. If
3060 we're failed, and
3061 so is the even
3062 component, it's
3063 "Good Night, Charlie" */
3064 if (even_pair_failed == 1) {
3065 return(0);
3066 }
3067 }
3068 } else {
3069 /* normal accounting */
3070 num_missing++;
3071 }
3072 }
3073 if ((parity_type == '1') && (c%2 == 1)) {
3074 /* Just did an even component, and we didn't
3075 bail.. reset the even_pair_failed flag,
3076 and go on to the next component.... */
3077 even_pair_failed = 0;
3078 }
3079 }
3080 }
3081
3082 clabel = cset->ac->clabel;
3083
3084 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3085 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3086 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3087 /* XXX this needs to be made *much* more general */
3088 /* Too many failures */
3089 return(0);
3090 }
3091 /* otherwise, all is well, and we've got enough to take a kick
3092 at autoconfiguring this set */
3093 return(1);
3094 }
3095
3096 void
3097 rf_create_configuration(ac,config,raidPtr)
3098 RF_AutoConfig_t *ac;
3099 RF_Config_t *config;
3100 RF_Raid_t *raidPtr;
3101 {
3102 RF_ComponentLabel_t *clabel;
3103 int i;
3104
3105 clabel = ac->clabel;
3106
3107 /* 1. Fill in the common stuff */
3108 config->numRow = clabel->num_rows;
3109 config->numCol = clabel->num_columns;
3110 config->numSpare = 0; /* XXX should this be set here? */
3111 config->sectPerSU = clabel->sectPerSU;
3112 config->SUsPerPU = clabel->SUsPerPU;
3113 config->SUsPerRU = clabel->SUsPerRU;
3114 config->parityConfig = clabel->parityConfig;
3115 /* XXX... */
3116 strcpy(config->diskQueueType,"fifo");
3117 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3118 config->layoutSpecificSize = 0; /* XXX ?? */
3119
3120 while(ac!=NULL) {
3121 /* row/col values will be in range due to the checks
3122 in reasonable_label() */
3123 strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3124 ac->devname);
3125 ac = ac->next;
3126 }
3127
3128 for(i=0;i<RF_MAXDBGV;i++) {
3129 config->debugVars[i][0] = NULL;
3130 }
3131 }
3132
3133 int
3134 rf_set_autoconfig(raidPtr, new_value)
3135 RF_Raid_t *raidPtr;
3136 int new_value;
3137 {
3138 RF_ComponentLabel_t clabel;
3139 struct vnode *vp;
3140 dev_t dev;
3141 int row, column;
3142 int sparecol;
3143
3144 raidPtr->autoconfigure = new_value;
3145 for(row=0; row<raidPtr->numRow; row++) {
3146 for(column=0; column<raidPtr->numCol; column++) {
3147 if (raidPtr->Disks[row][column].status ==
3148 rf_ds_optimal) {
3149 dev = raidPtr->Disks[row][column].dev;
3150 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3151 raidread_component_label(dev, vp, &clabel);
3152 clabel.autoconfigure = new_value;
3153 raidwrite_component_label(dev, vp, &clabel);
3154 }
3155 }
3156 }
3157 for(column = 0; column < raidPtr->numSpare ; column++) {
3158 sparecol = raidPtr->numCol + column;
3159 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3160 dev = raidPtr->Disks[0][sparecol].dev;
3161 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3162 raidread_component_label(dev, vp, &clabel);
3163 clabel.autoconfigure = new_value;
3164 raidwrite_component_label(dev, vp, &clabel);
3165 }
3166 }
3167 return(new_value);
3168 }
3169
3170 int
3171 rf_set_rootpartition(raidPtr, new_value)
3172 RF_Raid_t *raidPtr;
3173 int new_value;
3174 {
3175 RF_ComponentLabel_t clabel;
3176 struct vnode *vp;
3177 dev_t dev;
3178 int row, column;
3179 int sparecol;
3180
3181 raidPtr->root_partition = new_value;
3182 for(row=0; row<raidPtr->numRow; row++) {
3183 for(column=0; column<raidPtr->numCol; column++) {
3184 if (raidPtr->Disks[row][column].status ==
3185 rf_ds_optimal) {
3186 dev = raidPtr->Disks[row][column].dev;
3187 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3188 raidread_component_label(dev, vp, &clabel);
3189 clabel.root_partition = new_value;
3190 raidwrite_component_label(dev, vp, &clabel);
3191 }
3192 }
3193 }
3194 for(column = 0; column < raidPtr->numSpare ; column++) {
3195 sparecol = raidPtr->numCol + column;
3196 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3197 dev = raidPtr->Disks[0][sparecol].dev;
3198 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3199 raidread_component_label(dev, vp, &clabel);
3200 clabel.root_partition = new_value;
3201 raidwrite_component_label(dev, vp, &clabel);
3202 }
3203 }
3204 return(new_value);
3205 }
3206
3207 void
3208 rf_release_all_vps(cset)
3209 RF_ConfigSet_t *cset;
3210 {
3211 RF_AutoConfig_t *ac;
3212
3213 ac = cset->ac;
3214 while(ac!=NULL) {
3215 /* Close the vp, and give it back */
3216 if (ac->vp) {
3217 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3218 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3219 vput(ac->vp);
3220 ac->vp = NULL;
3221 }
3222 ac = ac->next;
3223 }
3224 }
3225
3226
3227 void
3228 rf_cleanup_config_set(cset)
3229 RF_ConfigSet_t *cset;
3230 {
3231 RF_AutoConfig_t *ac;
3232 RF_AutoConfig_t *next_ac;
3233
3234 ac = cset->ac;
3235 while(ac!=NULL) {
3236 next_ac = ac->next;
3237 /* nuke the label */
3238 free(ac->clabel, M_RAIDFRAME);
3239 /* cleanup the config structure */
3240 free(ac, M_RAIDFRAME);
3241 /* "next.." */
3242 ac = next_ac;
3243 }
3244 /* and, finally, nuke the config set */
3245 free(cset, M_RAIDFRAME);
3246 }
3247
3248
3249 void
3250 raid_init_component_label(raidPtr, clabel)
3251 RF_Raid_t *raidPtr;
3252 RF_ComponentLabel_t *clabel;
3253 {
3254 /* current version number */
3255 clabel->version = RF_COMPONENT_LABEL_VERSION;
3256 clabel->serial_number = raidPtr->serial_number;
3257 clabel->mod_counter = raidPtr->mod_counter;
3258 clabel->num_rows = raidPtr->numRow;
3259 clabel->num_columns = raidPtr->numCol;
3260 clabel->clean = RF_RAID_DIRTY; /* not clean */
3261 clabel->status = rf_ds_optimal; /* "It's good!" */
3262
3263 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3264 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3265 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3266
3267 clabel->blockSize = raidPtr->bytesPerSector;
3268 clabel->numBlocks = raidPtr->sectorsPerDisk;
3269
3270 /* XXX not portable */
3271 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3272 clabel->maxOutstanding = raidPtr->maxOutstanding;
3273 clabel->autoconfigure = raidPtr->autoconfigure;
3274 clabel->root_partition = raidPtr->root_partition;
3275 clabel->last_unit = raidPtr->raidid;
3276 clabel->config_order = raidPtr->config_order;
3277 }
3278
3279 int
3280 rf_auto_config_set(cset,unit)
3281 RF_ConfigSet_t *cset;
3282 int *unit;
3283 {
3284 RF_Raid_t *raidPtr;
3285 RF_Config_t *config;
3286 int raidID;
3287 int retcode;
3288
3289 #if DEBUG
3290 printf("RAID autoconfigure\n");
3291 #endif
3292
3293 retcode = 0;
3294 *unit = -1;
3295
3296 /* 1. Create a config structure */
3297
3298 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3299 M_RAIDFRAME,
3300 M_NOWAIT);
3301 if (config==NULL) {
3302 printf("Out of mem!?!?\n");
3303 /* XXX do something more intelligent here. */
3304 return(1);
3305 }
3306
3307 memset(config, 0, sizeof(RF_Config_t));
3308
3309 /*
3310 2. Figure out what RAID ID this one is supposed to live at
3311 See if we can get the same RAID dev that it was configured
3312 on last time..
3313 */
3314
3315 raidID = cset->ac->clabel->last_unit;
3316 if ((raidID < 0) || (raidID >= numraid)) {
3317 /* let's not wander off into lala land. */
3318 raidID = numraid - 1;
3319 }
3320 if (raidPtrs[raidID]->valid != 0) {
3321
3322 /*
3323 Nope... Go looking for an alternative...
3324 Start high so we don't immediately use raid0 if that's
3325 not taken.
3326 */
3327
3328 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3329 if (raidPtrs[raidID]->valid == 0) {
3330 /* can use this one! */
3331 break;
3332 }
3333 }
3334 }
3335
3336 if (raidID < 0) {
3337 /* punt... */
3338 printf("Unable to auto configure this set!\n");
3339 printf("(Out of RAID devs!)\n");
3340 return(1);
3341 }
3342
3343 #if DEBUG
3344 printf("Configuring raid%d:\n",raidID);
3345 #endif
3346
3347 raidPtr = raidPtrs[raidID];
3348
3349 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3350 raidPtr->raidid = raidID;
3351 raidPtr->openings = RAIDOUTSTANDING;
3352
3353 /* 3. Build the configuration structure */
3354 rf_create_configuration(cset->ac, config, raidPtr);
3355
3356 /* 4. Do the configuration */
3357 retcode = rf_Configure(raidPtr, config, cset->ac);
3358
3359 if (retcode == 0) {
3360
3361 raidinit(raidPtrs[raidID]);
3362
3363 rf_markalldirty(raidPtrs[raidID]);
3364 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3365 if (cset->ac->clabel->root_partition==1) {
3366 /* everything configured just fine. Make a note
3367 that this set is eligible to be root. */
3368 cset->rootable = 1;
3369 /* XXX do this here? */
3370 raidPtrs[raidID]->root_partition = 1;
3371 }
3372 }
3373
3374 /* 5. Cleanup */
3375 free(config, M_RAIDFRAME);
3376
3377 *unit = raidID;
3378 return(retcode);
3379 }
3380
3381 void
3382 rf_disk_unbusy(desc)
3383 RF_RaidAccessDesc_t *desc;
3384 {
3385 struct buf *bp;
3386
3387 bp = (struct buf *)desc->bp;
3388 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3389 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3390 }
3391