Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.150
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.150 2002/11/19 01:49:41 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/cdefs.h>
    117 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.150 2002/11/19 01:49:41 oster Exp $");
    118 
    119 #include <sys/param.h>
    120 #include <sys/errno.h>
    121 #include <sys/pool.h>
    122 #include <sys/queue.h>
    123 #include <sys/disk.h>
    124 #include <sys/device.h>
    125 #include <sys/stat.h>
    126 #include <sys/ioctl.h>
    127 #include <sys/fcntl.h>
    128 #include <sys/systm.h>
    129 #include <sys/namei.h>
    130 #include <sys/vnode.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 #include <sys/reboot.h>
    137 
    138 #include <dev/raidframe/raidframevar.h>
    139 #include <dev/raidframe/raidframeio.h>
    140 #include "raid.h"
    141 #include "opt_raid_autoconfig.h"
    142 #include "rf_raid.h"
    143 #include "rf_copyback.h"
    144 #include "rf_dag.h"
    145 #include "rf_dagflags.h"
    146 #include "rf_desc.h"
    147 #include "rf_diskqueue.h"
    148 #include "rf_etimer.h"
    149 #include "rf_general.h"
    150 #include "rf_kintf.h"
    151 #include "rf_options.h"
    152 #include "rf_driver.h"
    153 #include "rf_parityscan.h"
    154 #include "rf_threadstuff.h"
    155 
    156 #ifdef DEBUG
    157 int     rf_kdebug_level = 0;
    158 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    159 #else				/* DEBUG */
    160 #define db1_printf(a) { }
    161 #endif				/* DEBUG */
    162 
    163 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    164 
    165 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    166 
    167 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    168 						 * spare table */
    169 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    170 						 * installation process */
    171 
    172 /* prototypes */
    173 static void KernelWakeupFunc(struct buf * bp);
    174 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    175 		   dev_t dev, RF_SectorNum_t startSect,
    176 		   RF_SectorCount_t numSect, caddr_t buf,
    177 		   void (*cbFunc) (struct buf *), void *cbArg,
    178 		   int logBytesPerSector, struct proc * b_proc);
    179 static void raidinit(RF_Raid_t *);
    180 
    181 void raidattach(int);
    182 
    183 dev_type_open(raidopen);
    184 dev_type_close(raidclose);
    185 dev_type_read(raidread);
    186 dev_type_write(raidwrite);
    187 dev_type_ioctl(raidioctl);
    188 dev_type_strategy(raidstrategy);
    189 dev_type_dump(raiddump);
    190 dev_type_size(raidsize);
    191 
    192 const struct bdevsw raid_bdevsw = {
    193 	raidopen, raidclose, raidstrategy, raidioctl,
    194 	raiddump, raidsize, D_DISK
    195 };
    196 
    197 const struct cdevsw raid_cdevsw = {
    198 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    199 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    200 };
    201 
    202 /*
    203  * Pilfered from ccd.c
    204  */
    205 
    206 struct raidbuf {
    207 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    208 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    209 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    210 };
    211 
    212 /* component buffer pool */
    213 struct pool raidframe_cbufpool;
    214 
    215 /* XXX Not sure if the following should be replacing the raidPtrs above,
    216    or if it should be used in conjunction with that...
    217 */
    218 
    219 struct raid_softc {
    220 	int     sc_flags;	/* flags */
    221 	int     sc_cflags;	/* configuration flags */
    222 	size_t  sc_size;        /* size of the raid device */
    223 	char    sc_xname[20];	/* XXX external name */
    224 	struct disk sc_dkdev;	/* generic disk device info */
    225 	struct bufq_state buf_queue;	/* used for the device queue */
    226 };
    227 /* sc_flags */
    228 #define RAIDF_INITED	0x01	/* unit has been initialized */
    229 #define RAIDF_WLABEL	0x02	/* label area is writable */
    230 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    231 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    232 #define RAIDF_LOCKED	0x80	/* unit is locked */
    233 
    234 #define	raidunit(x)	DISKUNIT(x)
    235 int numraid = 0;
    236 
    237 /*
    238  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    239  * Be aware that large numbers can allow the driver to consume a lot of
    240  * kernel memory, especially on writes, and in degraded mode reads.
    241  *
    242  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    243  * a single 64K write will typically require 64K for the old data,
    244  * 64K for the old parity, and 64K for the new parity, for a total
    245  * of 192K (if the parity buffer is not re-used immediately).
    246  * Even it if is used immediately, that's still 128K, which when multiplied
    247  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    248  *
    249  * Now in degraded mode, for example, a 64K read on the above setup may
    250  * require data reconstruction, which will require *all* of the 4 remaining
    251  * disks to participate -- 4 * 32K/disk == 128K again.
    252  */
    253 
    254 #ifndef RAIDOUTSTANDING
    255 #define RAIDOUTSTANDING   6
    256 #endif
    257 
    258 #define RAIDLABELDEV(dev)	\
    259 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    260 
    261 /* declared here, and made public, for the benefit of KVM stuff.. */
    262 struct raid_softc *raid_softc;
    263 
    264 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    265 				     struct disklabel *);
    266 static void raidgetdisklabel(dev_t);
    267 static void raidmakedisklabel(struct raid_softc *);
    268 
    269 static int raidlock(struct raid_softc *);
    270 static void raidunlock(struct raid_softc *);
    271 
    272 static void rf_markalldirty(RF_Raid_t *);
    273 
    274 struct device *raidrootdev;
    275 
    276 void rf_ReconThread(struct rf_recon_req *);
    277 /* XXX what I want is: */
    278 /*void rf_ReconThread(RF_Raid_t *raidPtr);  */
    279 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    280 void rf_CopybackThread(RF_Raid_t *raidPtr);
    281 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    282 int rf_autoconfig(struct device *self);
    283 void rf_buildroothack(RF_ConfigSet_t *);
    284 
    285 RF_AutoConfig_t *rf_find_raid_components(void);
    286 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    287 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    288 static int rf_reasonable_label(RF_ComponentLabel_t *);
    289 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    290 int rf_set_autoconfig(RF_Raid_t *, int);
    291 int rf_set_rootpartition(RF_Raid_t *, int);
    292 void rf_release_all_vps(RF_ConfigSet_t *);
    293 void rf_cleanup_config_set(RF_ConfigSet_t *);
    294 int rf_have_enough_components(RF_ConfigSet_t *);
    295 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    296 
    297 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    298 				  allow autoconfig to take place.
    299 			          Note that this is overridden by having
    300 			          RAID_AUTOCONFIG as an option in the
    301 			          kernel config file.  */
    302 
    303 void
    304 raidattach(num)
    305 	int     num;
    306 {
    307 	int raidID;
    308 	int i, rc;
    309 
    310 #ifdef DEBUG
    311 	printf("raidattach: Asked for %d units\n", num);
    312 #endif
    313 
    314 	if (num <= 0) {
    315 #ifdef DIAGNOSTIC
    316 		panic("raidattach: count <= 0");
    317 #endif
    318 		return;
    319 	}
    320 	/* This is where all the initialization stuff gets done. */
    321 
    322 	numraid = num;
    323 
    324 	/* Make some space for requested number of units... */
    325 
    326 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    327 	if (raidPtrs == NULL) {
    328 		panic("raidPtrs is NULL!!");
    329 	}
    330 
    331 	/* Initialize the component buffer pool. */
    332 	pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
    333 	    0, 0, "raidpl", NULL);
    334 
    335 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    336 	if (rc) {
    337 		RF_PANIC();
    338 	}
    339 
    340 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    341 
    342 	for (i = 0; i < num; i++)
    343 		raidPtrs[i] = NULL;
    344 	rc = rf_BootRaidframe();
    345 	if (rc == 0)
    346 		printf("Kernelized RAIDframe activated\n");
    347 	else
    348 		panic("Serious error booting RAID!!");
    349 
    350 	/* put together some datastructures like the CCD device does.. This
    351 	 * lets us lock the device and what-not when it gets opened. */
    352 
    353 	raid_softc = (struct raid_softc *)
    354 		malloc(num * sizeof(struct raid_softc),
    355 		       M_RAIDFRAME, M_NOWAIT);
    356 	if (raid_softc == NULL) {
    357 		printf("WARNING: no memory for RAIDframe driver\n");
    358 		return;
    359 	}
    360 
    361 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    362 
    363 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    364 					      M_RAIDFRAME, M_NOWAIT);
    365 	if (raidrootdev == NULL) {
    366 		panic("No memory for RAIDframe driver!!?!?!");
    367 	}
    368 
    369 	for (raidID = 0; raidID < num; raidID++) {
    370 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    371 
    372 		raidrootdev[raidID].dv_class  = DV_DISK;
    373 		raidrootdev[raidID].dv_cfdata = NULL;
    374 		raidrootdev[raidID].dv_unit   = raidID;
    375 		raidrootdev[raidID].dv_parent = NULL;
    376 		raidrootdev[raidID].dv_flags  = 0;
    377 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    378 
    379 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    380 			  (RF_Raid_t *));
    381 		if (raidPtrs[raidID] == NULL) {
    382 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    383 			numraid = raidID;
    384 			return;
    385 		}
    386 	}
    387 
    388 #ifdef RAID_AUTOCONFIG
    389 	raidautoconfig = 1;
    390 #endif
    391 
    392 	/*
    393 	 * Register a finalizer which will be used to auto-config RAID
    394 	 * sets once all real hardware devices have been found.
    395 	 */
    396 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    397 		printf("WARNING: unable to register RAIDframe finalizer\n");
    398 }
    399 
    400 int
    401 rf_autoconfig(struct device *self)
    402 {
    403 	RF_AutoConfig_t *ac_list;
    404 	RF_ConfigSet_t *config_sets;
    405 
    406 	if (raidautoconfig == 0)
    407 		return (0);
    408 
    409 	/* XXX This code can only be run once. */
    410 	raidautoconfig = 0;
    411 
    412 	/* 1. locate all RAID components on the system */
    413 #ifdef DEBUG
    414 	printf("Searching for RAID components...\n");
    415 #endif
    416 	ac_list = rf_find_raid_components();
    417 
    418 	/* 2. Sort them into their respective sets. */
    419 	config_sets = rf_create_auto_sets(ac_list);
    420 
    421 	/*
    422 	 * 3. Evaluate each set andconfigure the valid ones.
    423 	 * This gets done in rf_buildroothack().
    424 	 */
    425 	rf_buildroothack(config_sets);
    426 
    427 	return (1);
    428 }
    429 
    430 void
    431 rf_buildroothack(RF_ConfigSet_t *config_sets)
    432 {
    433 	RF_ConfigSet_t *cset;
    434 	RF_ConfigSet_t *next_cset;
    435 	int retcode;
    436 	int raidID;
    437 	int rootID;
    438 	int num_root;
    439 
    440 	rootID = 0;
    441 	num_root = 0;
    442 	cset = config_sets;
    443 	while(cset != NULL ) {
    444 		next_cset = cset->next;
    445 		if (rf_have_enough_components(cset) &&
    446 		    cset->ac->clabel->autoconfigure==1) {
    447 			retcode = rf_auto_config_set(cset,&raidID);
    448 			if (!retcode) {
    449 				if (cset->rootable) {
    450 					rootID = raidID;
    451 					num_root++;
    452 				}
    453 			} else {
    454 				/* The autoconfig didn't work :( */
    455 #if DEBUG
    456 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    457 #endif
    458 				rf_release_all_vps(cset);
    459 			}
    460 		} else {
    461 			/* we're not autoconfiguring this set...
    462 			   release the associated resources */
    463 			rf_release_all_vps(cset);
    464 		}
    465 		/* cleanup */
    466 		rf_cleanup_config_set(cset);
    467 		cset = next_cset;
    468 	}
    469 
    470 	/* we found something bootable... */
    471 
    472 	if (num_root == 1) {
    473 		booted_device = &raidrootdev[rootID];
    474 	} else if (num_root > 1) {
    475 		/* we can't guess.. require the user to answer... */
    476 		boothowto |= RB_ASKNAME;
    477 	}
    478 }
    479 
    480 
    481 int
    482 raidsize(dev)
    483 	dev_t   dev;
    484 {
    485 	struct raid_softc *rs;
    486 	struct disklabel *lp;
    487 	int     part, unit, omask, size;
    488 
    489 	unit = raidunit(dev);
    490 	if (unit >= numraid)
    491 		return (-1);
    492 	rs = &raid_softc[unit];
    493 
    494 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    495 		return (-1);
    496 
    497 	part = DISKPART(dev);
    498 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    499 	lp = rs->sc_dkdev.dk_label;
    500 
    501 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    502 		return (-1);
    503 
    504 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    505 		size = -1;
    506 	else
    507 		size = lp->d_partitions[part].p_size *
    508 		    (lp->d_secsize / DEV_BSIZE);
    509 
    510 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    511 		return (-1);
    512 
    513 	return (size);
    514 
    515 }
    516 
    517 int
    518 raiddump(dev, blkno, va, size)
    519 	dev_t   dev;
    520 	daddr_t blkno;
    521 	caddr_t va;
    522 	size_t  size;
    523 {
    524 	/* Not implemented. */
    525 	return ENXIO;
    526 }
    527 /* ARGSUSED */
    528 int
    529 raidopen(dev, flags, fmt, p)
    530 	dev_t   dev;
    531 	int     flags, fmt;
    532 	struct proc *p;
    533 {
    534 	int     unit = raidunit(dev);
    535 	struct raid_softc *rs;
    536 	struct disklabel *lp;
    537 	int     part, pmask;
    538 	int     error = 0;
    539 
    540 	if (unit >= numraid)
    541 		return (ENXIO);
    542 	rs = &raid_softc[unit];
    543 
    544 	if ((error = raidlock(rs)) != 0)
    545 		return (error);
    546 	lp = rs->sc_dkdev.dk_label;
    547 
    548 	part = DISKPART(dev);
    549 	pmask = (1 << part);
    550 
    551 	if ((rs->sc_flags & RAIDF_INITED) &&
    552 	    (rs->sc_dkdev.dk_openmask == 0))
    553 		raidgetdisklabel(dev);
    554 
    555 	/* make sure that this partition exists */
    556 
    557 	if (part != RAW_PART) {
    558 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    559 		    ((part >= lp->d_npartitions) ||
    560 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    561 			error = ENXIO;
    562 			raidunlock(rs);
    563 			return (error);
    564 		}
    565 	}
    566 	/* Prevent this unit from being unconfigured while open. */
    567 	switch (fmt) {
    568 	case S_IFCHR:
    569 		rs->sc_dkdev.dk_copenmask |= pmask;
    570 		break;
    571 
    572 	case S_IFBLK:
    573 		rs->sc_dkdev.dk_bopenmask |= pmask;
    574 		break;
    575 	}
    576 
    577 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    578 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    579 		/* First one... mark things as dirty... Note that we *MUST*
    580 		 have done a configure before this.  I DO NOT WANT TO BE
    581 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    582 		 THAT THEY BELONG TOGETHER!!!!! */
    583 		/* XXX should check to see if we're only open for reading
    584 		   here... If so, we needn't do this, but then need some
    585 		   other way of keeping track of what's happened.. */
    586 
    587 		rf_markalldirty( raidPtrs[unit] );
    588 	}
    589 
    590 
    591 	rs->sc_dkdev.dk_openmask =
    592 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    593 
    594 	raidunlock(rs);
    595 
    596 	return (error);
    597 
    598 
    599 }
    600 /* ARGSUSED */
    601 int
    602 raidclose(dev, flags, fmt, p)
    603 	dev_t   dev;
    604 	int     flags, fmt;
    605 	struct proc *p;
    606 {
    607 	int     unit = raidunit(dev);
    608 	struct raid_softc *rs;
    609 	int     error = 0;
    610 	int     part;
    611 
    612 	if (unit >= numraid)
    613 		return (ENXIO);
    614 	rs = &raid_softc[unit];
    615 
    616 	if ((error = raidlock(rs)) != 0)
    617 		return (error);
    618 
    619 	part = DISKPART(dev);
    620 
    621 	/* ...that much closer to allowing unconfiguration... */
    622 	switch (fmt) {
    623 	case S_IFCHR:
    624 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    625 		break;
    626 
    627 	case S_IFBLK:
    628 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    629 		break;
    630 	}
    631 	rs->sc_dkdev.dk_openmask =
    632 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    633 
    634 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    635 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    636 		/* Last one... device is not unconfigured yet.
    637 		   Device shutdown has taken care of setting the
    638 		   clean bits if RAIDF_INITED is not set
    639 		   mark things as clean... */
    640 
    641 		rf_update_component_labels(raidPtrs[unit],
    642 						 RF_FINAL_COMPONENT_UPDATE);
    643 		if (doing_shutdown) {
    644 			/* last one, and we're going down, so
    645 			   lights out for this RAID set too. */
    646 			error = rf_Shutdown(raidPtrs[unit]);
    647 
    648 			/* It's no longer initialized... */
    649 			rs->sc_flags &= ~RAIDF_INITED;
    650 
    651 			/* Detach the disk. */
    652 			disk_detach(&rs->sc_dkdev);
    653 		}
    654 	}
    655 
    656 	raidunlock(rs);
    657 	return (0);
    658 
    659 }
    660 
    661 void
    662 raidstrategy(bp)
    663 	struct buf *bp;
    664 {
    665 	int s;
    666 
    667 	unsigned int raidID = raidunit(bp->b_dev);
    668 	RF_Raid_t *raidPtr;
    669 	struct raid_softc *rs = &raid_softc[raidID];
    670 	struct disklabel *lp;
    671 	int     wlabel;
    672 
    673 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    674 		bp->b_error = ENXIO;
    675 		bp->b_flags |= B_ERROR;
    676 		bp->b_resid = bp->b_bcount;
    677 		biodone(bp);
    678 		return;
    679 	}
    680 	if (raidID >= numraid || !raidPtrs[raidID]) {
    681 		bp->b_error = ENODEV;
    682 		bp->b_flags |= B_ERROR;
    683 		bp->b_resid = bp->b_bcount;
    684 		biodone(bp);
    685 		return;
    686 	}
    687 	raidPtr = raidPtrs[raidID];
    688 	if (!raidPtr->valid) {
    689 		bp->b_error = ENODEV;
    690 		bp->b_flags |= B_ERROR;
    691 		bp->b_resid = bp->b_bcount;
    692 		biodone(bp);
    693 		return;
    694 	}
    695 	if (bp->b_bcount == 0) {
    696 		db1_printf(("b_bcount is zero..\n"));
    697 		biodone(bp);
    698 		return;
    699 	}
    700 	lp = rs->sc_dkdev.dk_label;
    701 
    702 	/*
    703 	 * Do bounds checking and adjust transfer.  If there's an
    704 	 * error, the bounds check will flag that for us.
    705 	 */
    706 
    707 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    708 	if (DISKPART(bp->b_dev) != RAW_PART)
    709 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    710 			db1_printf(("Bounds check failed!!:%d %d\n",
    711 				(int) bp->b_blkno, (int) wlabel));
    712 			biodone(bp);
    713 			return;
    714 		}
    715 	s = splbio();
    716 
    717 	bp->b_resid = 0;
    718 
    719 	/* stuff it onto our queue */
    720 	BUFQ_PUT(&rs->buf_queue, bp);
    721 
    722 	raidstart(raidPtrs[raidID]);
    723 
    724 	splx(s);
    725 }
    726 /* ARGSUSED */
    727 int
    728 raidread(dev, uio, flags)
    729 	dev_t   dev;
    730 	struct uio *uio;
    731 	int     flags;
    732 {
    733 	int     unit = raidunit(dev);
    734 	struct raid_softc *rs;
    735 	int     part;
    736 
    737 	if (unit >= numraid)
    738 		return (ENXIO);
    739 	rs = &raid_softc[unit];
    740 
    741 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    742 		return (ENXIO);
    743 	part = DISKPART(dev);
    744 
    745 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    746 
    747 }
    748 /* ARGSUSED */
    749 int
    750 raidwrite(dev, uio, flags)
    751 	dev_t   dev;
    752 	struct uio *uio;
    753 	int     flags;
    754 {
    755 	int     unit = raidunit(dev);
    756 	struct raid_softc *rs;
    757 
    758 	if (unit >= numraid)
    759 		return (ENXIO);
    760 	rs = &raid_softc[unit];
    761 
    762 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    763 		return (ENXIO);
    764 
    765 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    766 
    767 }
    768 
    769 int
    770 raidioctl(dev, cmd, data, flag, p)
    771 	dev_t   dev;
    772 	u_long  cmd;
    773 	caddr_t data;
    774 	int     flag;
    775 	struct proc *p;
    776 {
    777 	int     unit = raidunit(dev);
    778 	int     error = 0;
    779 	int     part, pmask;
    780 	struct raid_softc *rs;
    781 	RF_Config_t *k_cfg, *u_cfg;
    782 	RF_Raid_t *raidPtr;
    783 	RF_RaidDisk_t *diskPtr;
    784 	RF_AccTotals_t *totals;
    785 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    786 	u_char *specific_buf;
    787 	int retcode = 0;
    788 	int row;
    789 	int column;
    790 	int raidid;
    791 	struct rf_recon_req *rrcopy, *rr;
    792 	RF_ComponentLabel_t *clabel;
    793 	RF_ComponentLabel_t ci_label;
    794 	RF_ComponentLabel_t **clabel_ptr;
    795 	RF_SingleComponent_t *sparePtr,*componentPtr;
    796 	RF_SingleComponent_t hot_spare;
    797 	RF_SingleComponent_t component;
    798 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    799 	int i, j, d;
    800 #ifdef __HAVE_OLD_DISKLABEL
    801 	struct disklabel newlabel;
    802 #endif
    803 
    804 	if (unit >= numraid)
    805 		return (ENXIO);
    806 	rs = &raid_softc[unit];
    807 	raidPtr = raidPtrs[unit];
    808 
    809 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    810 		(int) DISKPART(dev), (int) unit, (int) cmd));
    811 
    812 	/* Must be open for writes for these commands... */
    813 	switch (cmd) {
    814 	case DIOCSDINFO:
    815 	case DIOCWDINFO:
    816 #ifdef __HAVE_OLD_DISKLABEL
    817 	case ODIOCWDINFO:
    818 	case ODIOCSDINFO:
    819 #endif
    820 	case DIOCWLABEL:
    821 		if ((flag & FWRITE) == 0)
    822 			return (EBADF);
    823 	}
    824 
    825 	/* Must be initialized for these... */
    826 	switch (cmd) {
    827 	case DIOCGDINFO:
    828 	case DIOCSDINFO:
    829 	case DIOCWDINFO:
    830 #ifdef __HAVE_OLD_DISKLABEL
    831 	case ODIOCGDINFO:
    832 	case ODIOCWDINFO:
    833 	case ODIOCSDINFO:
    834 	case ODIOCGDEFLABEL:
    835 #endif
    836 	case DIOCGPART:
    837 	case DIOCWLABEL:
    838 	case DIOCGDEFLABEL:
    839 	case RAIDFRAME_SHUTDOWN:
    840 	case RAIDFRAME_REWRITEPARITY:
    841 	case RAIDFRAME_GET_INFO:
    842 	case RAIDFRAME_RESET_ACCTOTALS:
    843 	case RAIDFRAME_GET_ACCTOTALS:
    844 	case RAIDFRAME_KEEP_ACCTOTALS:
    845 	case RAIDFRAME_GET_SIZE:
    846 	case RAIDFRAME_FAIL_DISK:
    847 	case RAIDFRAME_COPYBACK:
    848 	case RAIDFRAME_CHECK_RECON_STATUS:
    849 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    850 	case RAIDFRAME_GET_COMPONENT_LABEL:
    851 	case RAIDFRAME_SET_COMPONENT_LABEL:
    852 	case RAIDFRAME_ADD_HOT_SPARE:
    853 	case RAIDFRAME_REMOVE_HOT_SPARE:
    854 	case RAIDFRAME_INIT_LABELS:
    855 	case RAIDFRAME_REBUILD_IN_PLACE:
    856 	case RAIDFRAME_CHECK_PARITY:
    857 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    858 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    859 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    860 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    861 	case RAIDFRAME_SET_AUTOCONFIG:
    862 	case RAIDFRAME_SET_ROOT:
    863 	case RAIDFRAME_DELETE_COMPONENT:
    864 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    865 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    866 			return (ENXIO);
    867 	}
    868 
    869 	switch (cmd) {
    870 
    871 		/* configure the system */
    872 	case RAIDFRAME_CONFIGURE:
    873 
    874 		if (raidPtr->valid) {
    875 			/* There is a valid RAID set running on this unit! */
    876 			printf("raid%d: Device already configured!\n",unit);
    877 			return(EINVAL);
    878 		}
    879 
    880 		/* copy-in the configuration information */
    881 		/* data points to a pointer to the configuration structure */
    882 
    883 		u_cfg = *((RF_Config_t **) data);
    884 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    885 		if (k_cfg == NULL) {
    886 			return (ENOMEM);
    887 		}
    888 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    889 		    sizeof(RF_Config_t));
    890 		if (retcode) {
    891 			RF_Free(k_cfg, sizeof(RF_Config_t));
    892 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    893 				retcode));
    894 			return (retcode);
    895 		}
    896 		/* allocate a buffer for the layout-specific data, and copy it
    897 		 * in */
    898 		if (k_cfg->layoutSpecificSize) {
    899 			if (k_cfg->layoutSpecificSize > 10000) {
    900 				/* sanity check */
    901 				RF_Free(k_cfg, sizeof(RF_Config_t));
    902 				return (EINVAL);
    903 			}
    904 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    905 			    (u_char *));
    906 			if (specific_buf == NULL) {
    907 				RF_Free(k_cfg, sizeof(RF_Config_t));
    908 				return (ENOMEM);
    909 			}
    910 			retcode = copyin(k_cfg->layoutSpecific,
    911 			    (caddr_t) specific_buf,
    912 			    k_cfg->layoutSpecificSize);
    913 			if (retcode) {
    914 				RF_Free(k_cfg, sizeof(RF_Config_t));
    915 				RF_Free(specific_buf,
    916 					k_cfg->layoutSpecificSize);
    917 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    918 					retcode));
    919 				return (retcode);
    920 			}
    921 		} else
    922 			specific_buf = NULL;
    923 		k_cfg->layoutSpecific = specific_buf;
    924 
    925 		/* should do some kind of sanity check on the configuration.
    926 		 * Store the sum of all the bytes in the last byte? */
    927 
    928 		/* configure the system */
    929 
    930 		/*
    931 		 * Clear the entire RAID descriptor, just to make sure
    932 		 *  there is no stale data left in the case of a
    933 		 *  reconfiguration
    934 		 */
    935 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    936 		raidPtr->raidid = unit;
    937 
    938 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    939 
    940 		if (retcode == 0) {
    941 
    942 			/* allow this many simultaneous IO's to
    943 			   this RAID device */
    944 			raidPtr->openings = RAIDOUTSTANDING;
    945 
    946 			raidinit(raidPtr);
    947 			rf_markalldirty(raidPtr);
    948 		}
    949 		/* free the buffers.  No return code here. */
    950 		if (k_cfg->layoutSpecificSize) {
    951 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    952 		}
    953 		RF_Free(k_cfg, sizeof(RF_Config_t));
    954 
    955 		return (retcode);
    956 
    957 		/* shutdown the system */
    958 	case RAIDFRAME_SHUTDOWN:
    959 
    960 		if ((error = raidlock(rs)) != 0)
    961 			return (error);
    962 
    963 		/*
    964 		 * If somebody has a partition mounted, we shouldn't
    965 		 * shutdown.
    966 		 */
    967 
    968 		part = DISKPART(dev);
    969 		pmask = (1 << part);
    970 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    971 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    972 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    973 			raidunlock(rs);
    974 			return (EBUSY);
    975 		}
    976 
    977 		retcode = rf_Shutdown(raidPtr);
    978 
    979 		/* It's no longer initialized... */
    980 		rs->sc_flags &= ~RAIDF_INITED;
    981 
    982 		/* Detach the disk. */
    983 		disk_detach(&rs->sc_dkdev);
    984 
    985 		raidunlock(rs);
    986 
    987 		return (retcode);
    988 	case RAIDFRAME_GET_COMPONENT_LABEL:
    989 		clabel_ptr = (RF_ComponentLabel_t **) data;
    990 		/* need to read the component label for the disk indicated
    991 		   by row,column in clabel */
    992 
    993 		/* For practice, let's get it directly fromdisk, rather
    994 		   than from the in-core copy */
    995 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    996 			   (RF_ComponentLabel_t *));
    997 		if (clabel == NULL)
    998 			return (ENOMEM);
    999 
   1000 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1001 
   1002 		retcode = copyin( *clabel_ptr, clabel,
   1003 				  sizeof(RF_ComponentLabel_t));
   1004 
   1005 		if (retcode) {
   1006 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1007 			return(retcode);
   1008 		}
   1009 
   1010 		row = clabel->row;
   1011 		column = clabel->column;
   1012 
   1013 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1014 		    (column < 0) || (column >= raidPtr->numCol +
   1015 				     raidPtr->numSpare)) {
   1016 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1017 			return(EINVAL);
   1018 		}
   1019 
   1020 		raidread_component_label(raidPtr->Disks[row][column].dev,
   1021 				raidPtr->raid_cinfo[row][column].ci_vp,
   1022 				clabel );
   1023 
   1024 		retcode = copyout((caddr_t) clabel,
   1025 				  (caddr_t) *clabel_ptr,
   1026 				  sizeof(RF_ComponentLabel_t));
   1027 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1028 		return (retcode);
   1029 
   1030 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1031 		clabel = (RF_ComponentLabel_t *) data;
   1032 
   1033 		/* XXX check the label for valid stuff... */
   1034 		/* Note that some things *should not* get modified --
   1035 		   the user should be re-initing the labels instead of
   1036 		   trying to patch things.
   1037 		   */
   1038 
   1039 		raidid = raidPtr->raidid;
   1040 		printf("raid%d: Got component label:\n", raidid);
   1041 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1042 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1043 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1044 		printf("raid%d: Row: %d\n", raidid, clabel->row);
   1045 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1046 		printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
   1047 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1048 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1049 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1050 
   1051 		row = clabel->row;
   1052 		column = clabel->column;
   1053 
   1054 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1055 		    (column < 0) || (column >= raidPtr->numCol)) {
   1056 			return(EINVAL);
   1057 		}
   1058 
   1059 		/* XXX this isn't allowed to do anything for now :-) */
   1060 
   1061 		/* XXX and before it is, we need to fill in the rest
   1062 		   of the fields!?!?!?! */
   1063 #if 0
   1064 		raidwrite_component_label(
   1065                             raidPtr->Disks[row][column].dev,
   1066 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1067 			    clabel );
   1068 #endif
   1069 		return (0);
   1070 
   1071 	case RAIDFRAME_INIT_LABELS:
   1072 		clabel = (RF_ComponentLabel_t *) data;
   1073 		/*
   1074 		   we only want the serial number from
   1075 		   the above.  We get all the rest of the information
   1076 		   from the config that was used to create this RAID
   1077 		   set.
   1078 		   */
   1079 
   1080 		raidPtr->serial_number = clabel->serial_number;
   1081 
   1082 		raid_init_component_label(raidPtr, &ci_label);
   1083 		ci_label.serial_number = clabel->serial_number;
   1084 
   1085 		for(row=0;row<raidPtr->numRow;row++) {
   1086 			ci_label.row = row;
   1087 			for(column=0;column<raidPtr->numCol;column++) {
   1088 				diskPtr = &raidPtr->Disks[row][column];
   1089 				if (!RF_DEAD_DISK(diskPtr->status)) {
   1090 					ci_label.partitionSize = diskPtr->partitionSize;
   1091 					ci_label.column = column;
   1092 					raidwrite_component_label(
   1093 					  raidPtr->Disks[row][column].dev,
   1094 					  raidPtr->raid_cinfo[row][column].ci_vp,
   1095 					  &ci_label );
   1096 				}
   1097 			}
   1098 		}
   1099 
   1100 		return (retcode);
   1101 	case RAIDFRAME_SET_AUTOCONFIG:
   1102 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1103 		printf("raid%d: New autoconfig value is: %d\n",
   1104 		       raidPtr->raidid, d);
   1105 		*(int *) data = d;
   1106 		return (retcode);
   1107 
   1108 	case RAIDFRAME_SET_ROOT:
   1109 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1110 		printf("raid%d: New rootpartition value is: %d\n",
   1111 		       raidPtr->raidid, d);
   1112 		*(int *) data = d;
   1113 		return (retcode);
   1114 
   1115 		/* initialize all parity */
   1116 	case RAIDFRAME_REWRITEPARITY:
   1117 
   1118 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1119 			/* Parity for RAID 0 is trivially correct */
   1120 			raidPtr->parity_good = RF_RAID_CLEAN;
   1121 			return(0);
   1122 		}
   1123 
   1124 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1125 			/* Re-write is already in progress! */
   1126 			return(EINVAL);
   1127 		}
   1128 
   1129 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1130 					   rf_RewriteParityThread,
   1131 					   raidPtr,"raid_parity");
   1132 		return (retcode);
   1133 
   1134 
   1135 	case RAIDFRAME_ADD_HOT_SPARE:
   1136 		sparePtr = (RF_SingleComponent_t *) data;
   1137 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1138 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1139 		return(retcode);
   1140 
   1141 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1142 		return(retcode);
   1143 
   1144 	case RAIDFRAME_DELETE_COMPONENT:
   1145 		componentPtr = (RF_SingleComponent_t *)data;
   1146 		memcpy( &component, componentPtr,
   1147 			sizeof(RF_SingleComponent_t));
   1148 		retcode = rf_delete_component(raidPtr, &component);
   1149 		return(retcode);
   1150 
   1151 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1152 		componentPtr = (RF_SingleComponent_t *)data;
   1153 		memcpy( &component, componentPtr,
   1154 			sizeof(RF_SingleComponent_t));
   1155 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1156 		return(retcode);
   1157 
   1158 	case RAIDFRAME_REBUILD_IN_PLACE:
   1159 
   1160 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1161 			/* Can't do this on a RAID 0!! */
   1162 			return(EINVAL);
   1163 		}
   1164 
   1165 		if (raidPtr->recon_in_progress == 1) {
   1166 			/* a reconstruct is already in progress! */
   1167 			return(EINVAL);
   1168 		}
   1169 
   1170 		componentPtr = (RF_SingleComponent_t *) data;
   1171 		memcpy( &component, componentPtr,
   1172 			sizeof(RF_SingleComponent_t));
   1173 		row = component.row;
   1174 		column = component.column;
   1175 
   1176 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1177 		    (column < 0) || (column >= raidPtr->numCol)) {
   1178 			return(EINVAL);
   1179 		}
   1180 
   1181 		RF_LOCK_MUTEX(raidPtr->mutex);
   1182 		if ((raidPtr->Disks[row][column].status == rf_ds_optimal) &&
   1183 		    (raidPtr->numFailures > 0)) {
   1184 			/* XXX 0 above shouldn't be constant!!! */
   1185 			/* some component other than this has failed.
   1186 			   Let's not make things worse than they already
   1187 			   are... */
   1188 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1189 			       raidPtr->raidid);
   1190 			printf("raid%d:     Row: %d Col: %d   Too many failures.\n",
   1191 			       raidPtr->raidid, row, column);
   1192 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1193 			return (EINVAL);
   1194 		}
   1195 		if (raidPtr->Disks[row][column].status ==
   1196 		    rf_ds_reconstructing) {
   1197 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1198 			       raidPtr->raidid);
   1199 			printf("raid%d:    Row: %d Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, row, column);
   1200 
   1201 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1202 			return (EINVAL);
   1203 		}
   1204 		if (raidPtr->Disks[row][column].status == rf_ds_spared) {
   1205 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1206 			return (EINVAL);
   1207 		}
   1208 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1209 
   1210 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1211 		if (rrcopy == NULL)
   1212 			return(ENOMEM);
   1213 
   1214 		rrcopy->raidPtr = (void *) raidPtr;
   1215 		rrcopy->row = row;
   1216 		rrcopy->col = column;
   1217 
   1218 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1219 					   rf_ReconstructInPlaceThread,
   1220 					   rrcopy,"raid_reconip");
   1221 		return(retcode);
   1222 
   1223 	case RAIDFRAME_GET_INFO:
   1224 		if (!raidPtr->valid)
   1225 			return (ENODEV);
   1226 		ucfgp = (RF_DeviceConfig_t **) data;
   1227 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1228 			  (RF_DeviceConfig_t *));
   1229 		if (d_cfg == NULL)
   1230 			return (ENOMEM);
   1231 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1232 		d_cfg->rows = raidPtr->numRow;
   1233 		d_cfg->cols = raidPtr->numCol;
   1234 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1235 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1236 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1237 			return (ENOMEM);
   1238 		}
   1239 		d_cfg->nspares = raidPtr->numSpare;
   1240 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1241 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1242 			return (ENOMEM);
   1243 		}
   1244 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1245 		d = 0;
   1246 		for (i = 0; i < d_cfg->rows; i++) {
   1247 			for (j = 0; j < d_cfg->cols; j++) {
   1248 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1249 				d++;
   1250 			}
   1251 		}
   1252 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1253 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1254 		}
   1255 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1256 				  sizeof(RF_DeviceConfig_t));
   1257 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1258 
   1259 		return (retcode);
   1260 
   1261 	case RAIDFRAME_CHECK_PARITY:
   1262 		*(int *) data = raidPtr->parity_good;
   1263 		return (0);
   1264 
   1265 	case RAIDFRAME_RESET_ACCTOTALS:
   1266 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1267 		return (0);
   1268 
   1269 	case RAIDFRAME_GET_ACCTOTALS:
   1270 		totals = (RF_AccTotals_t *) data;
   1271 		*totals = raidPtr->acc_totals;
   1272 		return (0);
   1273 
   1274 	case RAIDFRAME_KEEP_ACCTOTALS:
   1275 		raidPtr->keep_acc_totals = *(int *)data;
   1276 		return (0);
   1277 
   1278 	case RAIDFRAME_GET_SIZE:
   1279 		*(int *) data = raidPtr->totalSectors;
   1280 		return (0);
   1281 
   1282 		/* fail a disk & optionally start reconstruction */
   1283 	case RAIDFRAME_FAIL_DISK:
   1284 
   1285 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1286 			/* Can't do this on a RAID 0!! */
   1287 			return(EINVAL);
   1288 		}
   1289 
   1290 		rr = (struct rf_recon_req *) data;
   1291 
   1292 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1293 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1294 			return (EINVAL);
   1295 
   1296 
   1297 		RF_LOCK_MUTEX(raidPtr->mutex);
   1298 		if ((raidPtr->Disks[rr->row][rr->col].status ==
   1299 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1300 			/* some other component has failed.  Let's not make
   1301 			   things worse. XXX wrong for RAID6 */
   1302 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1303 			return (EINVAL);
   1304 		}
   1305 		if (raidPtr->Disks[rr->row][rr->col].status == rf_ds_spared) {
   1306 			/* Can't fail a spared disk! */
   1307 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1308 			return (EINVAL);
   1309 		}
   1310 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1311 
   1312 		/* make a copy of the recon request so that we don't rely on
   1313 		 * the user's buffer */
   1314 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1315 		if (rrcopy == NULL)
   1316 			return(ENOMEM);
   1317 		memcpy(rrcopy, rr, sizeof(*rr));
   1318 		rrcopy->raidPtr = (void *) raidPtr;
   1319 
   1320 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1321 					   rf_ReconThread,
   1322 					   rrcopy,"raid_recon");
   1323 		return (0);
   1324 
   1325 		/* invoke a copyback operation after recon on whatever disk
   1326 		 * needs it, if any */
   1327 	case RAIDFRAME_COPYBACK:
   1328 
   1329 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1330 			/* This makes no sense on a RAID 0!! */
   1331 			return(EINVAL);
   1332 		}
   1333 
   1334 		if (raidPtr->copyback_in_progress == 1) {
   1335 			/* Copyback is already in progress! */
   1336 			return(EINVAL);
   1337 		}
   1338 
   1339 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1340 					   rf_CopybackThread,
   1341 					   raidPtr,"raid_copyback");
   1342 		return (retcode);
   1343 
   1344 		/* return the percentage completion of reconstruction */
   1345 	case RAIDFRAME_CHECK_RECON_STATUS:
   1346 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1347 			/* This makes no sense on a RAID 0, so tell the
   1348 			   user it's done. */
   1349 			*(int *) data = 100;
   1350 			return(0);
   1351 		}
   1352 		row = 0; /* XXX we only consider a single row... */
   1353 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1354 			*(int *) data = 100;
   1355 		else
   1356 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1357 		return (0);
   1358 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1359 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1360 		row = 0; /* XXX we only consider a single row... */
   1361 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1362 			progressInfo.remaining = 0;
   1363 			progressInfo.completed = 100;
   1364 			progressInfo.total = 100;
   1365 		} else {
   1366 			progressInfo.total =
   1367 				raidPtr->reconControl[row]->numRUsTotal;
   1368 			progressInfo.completed =
   1369 				raidPtr->reconControl[row]->numRUsComplete;
   1370 			progressInfo.remaining = progressInfo.total -
   1371 				progressInfo.completed;
   1372 		}
   1373 		retcode = copyout((caddr_t) &progressInfo,
   1374 				  (caddr_t) *progressInfoPtr,
   1375 				  sizeof(RF_ProgressInfo_t));
   1376 		return (retcode);
   1377 
   1378 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1379 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1380 			/* This makes no sense on a RAID 0, so tell the
   1381 			   user it's done. */
   1382 			*(int *) data = 100;
   1383 			return(0);
   1384 		}
   1385 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1386 			*(int *) data = 100 *
   1387 				raidPtr->parity_rewrite_stripes_done /
   1388 				raidPtr->Layout.numStripe;
   1389 		} else {
   1390 			*(int *) data = 100;
   1391 		}
   1392 		return (0);
   1393 
   1394 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1395 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1396 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1397 			progressInfo.total = raidPtr->Layout.numStripe;
   1398 			progressInfo.completed =
   1399 				raidPtr->parity_rewrite_stripes_done;
   1400 			progressInfo.remaining = progressInfo.total -
   1401 				progressInfo.completed;
   1402 		} else {
   1403 			progressInfo.remaining = 0;
   1404 			progressInfo.completed = 100;
   1405 			progressInfo.total = 100;
   1406 		}
   1407 		retcode = copyout((caddr_t) &progressInfo,
   1408 				  (caddr_t) *progressInfoPtr,
   1409 				  sizeof(RF_ProgressInfo_t));
   1410 		return (retcode);
   1411 
   1412 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1413 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1414 			/* This makes no sense on a RAID 0 */
   1415 			*(int *) data = 100;
   1416 			return(0);
   1417 		}
   1418 		if (raidPtr->copyback_in_progress == 1) {
   1419 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1420 				raidPtr->Layout.numStripe;
   1421 		} else {
   1422 			*(int *) data = 100;
   1423 		}
   1424 		return (0);
   1425 
   1426 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1427 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1428 		if (raidPtr->copyback_in_progress == 1) {
   1429 			progressInfo.total = raidPtr->Layout.numStripe;
   1430 			progressInfo.completed =
   1431 				raidPtr->copyback_stripes_done;
   1432 			progressInfo.remaining = progressInfo.total -
   1433 				progressInfo.completed;
   1434 		} else {
   1435 			progressInfo.remaining = 0;
   1436 			progressInfo.completed = 100;
   1437 			progressInfo.total = 100;
   1438 		}
   1439 		retcode = copyout((caddr_t) &progressInfo,
   1440 				  (caddr_t) *progressInfoPtr,
   1441 				  sizeof(RF_ProgressInfo_t));
   1442 		return (retcode);
   1443 
   1444 		/* the sparetable daemon calls this to wait for the kernel to
   1445 		 * need a spare table. this ioctl does not return until a
   1446 		 * spare table is needed. XXX -- calling mpsleep here in the
   1447 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1448 		 * -- I should either compute the spare table in the kernel,
   1449 		 * or have a different -- XXX XXX -- interface (a different
   1450 		 * character device) for delivering the table     -- XXX */
   1451 #if 0
   1452 	case RAIDFRAME_SPARET_WAIT:
   1453 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1454 		while (!rf_sparet_wait_queue)
   1455 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1456 		waitreq = rf_sparet_wait_queue;
   1457 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1458 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1459 
   1460 		/* structure assignment */
   1461 		*((RF_SparetWait_t *) data) = *waitreq;
   1462 
   1463 		RF_Free(waitreq, sizeof(*waitreq));
   1464 		return (0);
   1465 
   1466 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1467 		 * code in it that will cause the dameon to exit */
   1468 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1469 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1470 		waitreq->fcol = -1;
   1471 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1472 		waitreq->next = rf_sparet_wait_queue;
   1473 		rf_sparet_wait_queue = waitreq;
   1474 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1475 		wakeup(&rf_sparet_wait_queue);
   1476 		return (0);
   1477 
   1478 		/* used by the spare table daemon to deliver a spare table
   1479 		 * into the kernel */
   1480 	case RAIDFRAME_SEND_SPARET:
   1481 
   1482 		/* install the spare table */
   1483 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1484 
   1485 		/* respond to the requestor.  the return status of the spare
   1486 		 * table installation is passed in the "fcol" field */
   1487 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1488 		waitreq->fcol = retcode;
   1489 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1490 		waitreq->next = rf_sparet_resp_queue;
   1491 		rf_sparet_resp_queue = waitreq;
   1492 		wakeup(&rf_sparet_resp_queue);
   1493 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1494 
   1495 		return (retcode);
   1496 #endif
   1497 
   1498 	default:
   1499 		break; /* fall through to the os-specific code below */
   1500 
   1501 	}
   1502 
   1503 	if (!raidPtr->valid)
   1504 		return (EINVAL);
   1505 
   1506 	/*
   1507 	 * Add support for "regular" device ioctls here.
   1508 	 */
   1509 
   1510 	switch (cmd) {
   1511 	case DIOCGDINFO:
   1512 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1513 		break;
   1514 #ifdef __HAVE_OLD_DISKLABEL
   1515 	case ODIOCGDINFO:
   1516 		newlabel = *(rs->sc_dkdev.dk_label);
   1517 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1518 			return ENOTTY;
   1519 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1520 		break;
   1521 #endif
   1522 
   1523 	case DIOCGPART:
   1524 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1525 		((struct partinfo *) data)->part =
   1526 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1527 		break;
   1528 
   1529 	case DIOCWDINFO:
   1530 	case DIOCSDINFO:
   1531 #ifdef __HAVE_OLD_DISKLABEL
   1532 	case ODIOCWDINFO:
   1533 	case ODIOCSDINFO:
   1534 #endif
   1535 	{
   1536 		struct disklabel *lp;
   1537 #ifdef __HAVE_OLD_DISKLABEL
   1538 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1539 			memset(&newlabel, 0, sizeof newlabel);
   1540 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1541 			lp = &newlabel;
   1542 		} else
   1543 #endif
   1544 		lp = (struct disklabel *)data;
   1545 
   1546 		if ((error = raidlock(rs)) != 0)
   1547 			return (error);
   1548 
   1549 		rs->sc_flags |= RAIDF_LABELLING;
   1550 
   1551 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1552 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1553 		if (error == 0) {
   1554 			if (cmd == DIOCWDINFO
   1555 #ifdef __HAVE_OLD_DISKLABEL
   1556 			    || cmd == ODIOCWDINFO
   1557 #endif
   1558 			   )
   1559 				error = writedisklabel(RAIDLABELDEV(dev),
   1560 				    raidstrategy, rs->sc_dkdev.dk_label,
   1561 				    rs->sc_dkdev.dk_cpulabel);
   1562 		}
   1563 		rs->sc_flags &= ~RAIDF_LABELLING;
   1564 
   1565 		raidunlock(rs);
   1566 
   1567 		if (error)
   1568 			return (error);
   1569 		break;
   1570 	}
   1571 
   1572 	case DIOCWLABEL:
   1573 		if (*(int *) data != 0)
   1574 			rs->sc_flags |= RAIDF_WLABEL;
   1575 		else
   1576 			rs->sc_flags &= ~RAIDF_WLABEL;
   1577 		break;
   1578 
   1579 	case DIOCGDEFLABEL:
   1580 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1581 		break;
   1582 
   1583 #ifdef __HAVE_OLD_DISKLABEL
   1584 	case ODIOCGDEFLABEL:
   1585 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1586 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1587 			return ENOTTY;
   1588 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1589 		break;
   1590 #endif
   1591 
   1592 	default:
   1593 		retcode = ENOTTY;
   1594 	}
   1595 	return (retcode);
   1596 
   1597 }
   1598 
   1599 
   1600 /* raidinit -- complete the rest of the initialization for the
   1601    RAIDframe device.  */
   1602 
   1603 
   1604 static void
   1605 raidinit(raidPtr)
   1606 	RF_Raid_t *raidPtr;
   1607 {
   1608 	struct raid_softc *rs;
   1609 	int     unit;
   1610 
   1611 	unit = raidPtr->raidid;
   1612 
   1613 	rs = &raid_softc[unit];
   1614 
   1615 	/* XXX should check return code first... */
   1616 	rs->sc_flags |= RAIDF_INITED;
   1617 
   1618 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1619 
   1620 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1621 
   1622 	/* disk_attach actually creates space for the CPU disklabel, among
   1623 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1624 	 * with disklabels. */
   1625 
   1626 	disk_attach(&rs->sc_dkdev);
   1627 
   1628 	/* XXX There may be a weird interaction here between this, and
   1629 	 * protectedSectors, as used in RAIDframe.  */
   1630 
   1631 	rs->sc_size = raidPtr->totalSectors;
   1632 
   1633 }
   1634 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1635 /* wake up the daemon & tell it to get us a spare table
   1636  * XXX
   1637  * the entries in the queues should be tagged with the raidPtr
   1638  * so that in the extremely rare case that two recons happen at once,
   1639  * we know for which device were requesting a spare table
   1640  * XXX
   1641  *
   1642  * XXX This code is not currently used. GO
   1643  */
   1644 int
   1645 rf_GetSpareTableFromDaemon(req)
   1646 	RF_SparetWait_t *req;
   1647 {
   1648 	int     retcode;
   1649 
   1650 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1651 	req->next = rf_sparet_wait_queue;
   1652 	rf_sparet_wait_queue = req;
   1653 	wakeup(&rf_sparet_wait_queue);
   1654 
   1655 	/* mpsleep unlocks the mutex */
   1656 	while (!rf_sparet_resp_queue) {
   1657 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1658 		    "raidframe getsparetable", 0);
   1659 	}
   1660 	req = rf_sparet_resp_queue;
   1661 	rf_sparet_resp_queue = req->next;
   1662 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1663 
   1664 	retcode = req->fcol;
   1665 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1666 					 * alloc'd */
   1667 	return (retcode);
   1668 }
   1669 #endif
   1670 
   1671 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1672  * bp & passes it down.
   1673  * any calls originating in the kernel must use non-blocking I/O
   1674  * do some extra sanity checking to return "appropriate" error values for
   1675  * certain conditions (to make some standard utilities work)
   1676  *
   1677  * Formerly known as: rf_DoAccessKernel
   1678  */
   1679 void
   1680 raidstart(raidPtr)
   1681 	RF_Raid_t *raidPtr;
   1682 {
   1683 	RF_SectorCount_t num_blocks, pb, sum;
   1684 	RF_RaidAddr_t raid_addr;
   1685 	int     retcode;
   1686 	struct partition *pp;
   1687 	daddr_t blocknum;
   1688 	int     unit;
   1689 	struct raid_softc *rs;
   1690 	int     do_async;
   1691 	struct buf *bp;
   1692 
   1693 	unit = raidPtr->raidid;
   1694 	rs = &raid_softc[unit];
   1695 
   1696 	/* quick check to see if anything has died recently */
   1697 	RF_LOCK_MUTEX(raidPtr->mutex);
   1698 	if (raidPtr->numNewFailures > 0) {
   1699 		rf_update_component_labels(raidPtr,
   1700 					   RF_NORMAL_COMPONENT_UPDATE);
   1701 		raidPtr->numNewFailures--;
   1702 	}
   1703 
   1704 	/* Check to see if we're at the limit... */
   1705 	while (raidPtr->openings > 0) {
   1706 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1707 
   1708 		/* get the next item, if any, from the queue */
   1709 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1710 			/* nothing more to do */
   1711 			return;
   1712 		}
   1713 
   1714 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1715 		 * partition.. Need to make it absolute to the underlying
   1716 		 * device.. */
   1717 
   1718 		blocknum = bp->b_blkno;
   1719 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1720 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1721 			blocknum += pp->p_offset;
   1722 		}
   1723 
   1724 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1725 			    (int) blocknum));
   1726 
   1727 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1728 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1729 
   1730 		/* *THIS* is where we adjust what block we're going to...
   1731 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1732 		raid_addr = blocknum;
   1733 
   1734 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1735 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1736 		sum = raid_addr + num_blocks + pb;
   1737 		if (1 || rf_debugKernelAccess) {
   1738 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1739 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1740 				    (int) pb, (int) bp->b_resid));
   1741 		}
   1742 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1743 		    || (sum < num_blocks) || (sum < pb)) {
   1744 			bp->b_error = ENOSPC;
   1745 			bp->b_flags |= B_ERROR;
   1746 			bp->b_resid = bp->b_bcount;
   1747 			biodone(bp);
   1748 			RF_LOCK_MUTEX(raidPtr->mutex);
   1749 			continue;
   1750 		}
   1751 		/*
   1752 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1753 		 */
   1754 
   1755 		if (bp->b_bcount & raidPtr->sectorMask) {
   1756 			bp->b_error = EINVAL;
   1757 			bp->b_flags |= B_ERROR;
   1758 			bp->b_resid = bp->b_bcount;
   1759 			biodone(bp);
   1760 			RF_LOCK_MUTEX(raidPtr->mutex);
   1761 			continue;
   1762 
   1763 		}
   1764 		db1_printf(("Calling DoAccess..\n"));
   1765 
   1766 
   1767 		RF_LOCK_MUTEX(raidPtr->mutex);
   1768 		raidPtr->openings--;
   1769 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1770 
   1771 		/*
   1772 		 * Everything is async.
   1773 		 */
   1774 		do_async = 1;
   1775 
   1776 		disk_busy(&rs->sc_dkdev);
   1777 
   1778 		/* XXX we're still at splbio() here... do we *really*
   1779 		   need to be? */
   1780 
   1781 		/* don't ever condition on bp->b_flags & B_WRITE.
   1782 		 * always condition on B_READ instead */
   1783 
   1784 		retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1785 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1786 				      do_async, raid_addr, num_blocks,
   1787 				      bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1788 
   1789 		RF_LOCK_MUTEX(raidPtr->mutex);
   1790 	}
   1791 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1792 }
   1793 
   1794 
   1795 
   1796 
   1797 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1798 
   1799 int
   1800 rf_DispatchKernelIO(queue, req)
   1801 	RF_DiskQueue_t *queue;
   1802 	RF_DiskQueueData_t *req;
   1803 {
   1804 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1805 	struct buf *bp;
   1806 	struct raidbuf *raidbp = NULL;
   1807 
   1808 	req->queue = queue;
   1809 
   1810 #if DIAGNOSTIC
   1811 	if (queue->raidPtr->raidid >= numraid) {
   1812 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1813 		    numraid);
   1814 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1815 	}
   1816 #endif
   1817 
   1818 	bp = req->bp;
   1819 #if 1
   1820 	/* XXX when there is a physical disk failure, someone is passing us a
   1821 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1822 	 * without taking a performance hit... (not sure where the real bug
   1823 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1824 
   1825 	if (bp->b_flags & B_ERROR) {
   1826 		bp->b_flags &= ~B_ERROR;
   1827 	}
   1828 	if (bp->b_error != 0) {
   1829 		bp->b_error = 0;
   1830 	}
   1831 #endif
   1832 	raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
   1833 
   1834 	/*
   1835 	 * context for raidiodone
   1836 	 */
   1837 	raidbp->rf_obp = bp;
   1838 	raidbp->req = req;
   1839 
   1840 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1841 
   1842 	switch (req->type) {
   1843 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1844 		/* XXX need to do something extra here.. */
   1845 		/* I'm leaving this in, as I've never actually seen it used,
   1846 		 * and I'd like folks to report it... GO */
   1847 		printf(("WAKEUP CALLED\n"));
   1848 		queue->numOutstanding++;
   1849 
   1850 		/* XXX need to glue the original buffer into this??  */
   1851 
   1852 		KernelWakeupFunc(&raidbp->rf_buf);
   1853 		break;
   1854 
   1855 	case RF_IO_TYPE_READ:
   1856 	case RF_IO_TYPE_WRITE:
   1857 
   1858 		if (req->tracerec) {
   1859 			RF_ETIMER_START(req->tracerec->timer);
   1860 		}
   1861 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1862 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1863 		    req->sectorOffset, req->numSector,
   1864 		    req->buf, KernelWakeupFunc, (void *) req,
   1865 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1866 
   1867 		if (rf_debugKernelAccess) {
   1868 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1869 				(long) bp->b_blkno));
   1870 		}
   1871 		queue->numOutstanding++;
   1872 		queue->last_deq_sector = req->sectorOffset;
   1873 		/* acc wouldn't have been let in if there were any pending
   1874 		 * reqs at any other priority */
   1875 		queue->curPriority = req->priority;
   1876 
   1877 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1878 			    req->type, queue->raidPtr->raidid,
   1879 			    queue->row, queue->col));
   1880 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1881 			(int) req->sectorOffset, (int) req->numSector,
   1882 			(int) (req->numSector <<
   1883 			    queue->raidPtr->logBytesPerSector),
   1884 			(int) queue->raidPtr->logBytesPerSector));
   1885 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1886 			raidbp->rf_buf.b_vp->v_numoutput++;
   1887 		}
   1888 		VOP_STRATEGY(&raidbp->rf_buf);
   1889 
   1890 		break;
   1891 
   1892 	default:
   1893 		panic("bad req->type in rf_DispatchKernelIO");
   1894 	}
   1895 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1896 
   1897 	return (0);
   1898 }
   1899 /* this is the callback function associated with a I/O invoked from
   1900    kernel code.
   1901  */
   1902 static void
   1903 KernelWakeupFunc(vbp)
   1904 	struct buf *vbp;
   1905 {
   1906 	RF_DiskQueueData_t *req = NULL;
   1907 	RF_DiskQueue_t *queue;
   1908 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1909 	struct buf *bp;
   1910 	int s;
   1911 
   1912 	s = splbio();
   1913 	db1_printf(("recovering the request queue:\n"));
   1914 	req = raidbp->req;
   1915 
   1916 	bp = raidbp->rf_obp;
   1917 
   1918 	queue = (RF_DiskQueue_t *) req->queue;
   1919 
   1920 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1921 		bp->b_flags |= B_ERROR;
   1922 		bp->b_error = raidbp->rf_buf.b_error ?
   1923 		    raidbp->rf_buf.b_error : EIO;
   1924 	}
   1925 
   1926 	/* XXX methinks this could be wrong... */
   1927 #if 1
   1928 	bp->b_resid = raidbp->rf_buf.b_resid;
   1929 #endif
   1930 
   1931 	if (req->tracerec) {
   1932 		RF_ETIMER_STOP(req->tracerec->timer);
   1933 		RF_ETIMER_EVAL(req->tracerec->timer);
   1934 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1935 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1936 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1937 		req->tracerec->num_phys_ios++;
   1938 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1939 	}
   1940 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1941 
   1942 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1943 	 * ballistic, and mark the component as hosed... */
   1944 
   1945 	if (bp->b_flags & B_ERROR) {
   1946 		/* Mark the disk as dead */
   1947 		/* but only mark it once... */
   1948 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1949 		    rf_ds_optimal) {
   1950 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1951 			       queue->raidPtr->raidid,
   1952 			       queue->raidPtr->Disks[queue->row][queue->col].devname);
   1953 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1954 			    rf_ds_failed;
   1955 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1956 			queue->raidPtr->numFailures++;
   1957 			queue->raidPtr->numNewFailures++;
   1958 		} else {	/* Disk is already dead... */
   1959 			/* printf("Disk already marked as dead!\n"); */
   1960 		}
   1961 
   1962 	}
   1963 
   1964 	pool_put(&raidframe_cbufpool, raidbp);
   1965 
   1966 	/* Fill in the error value */
   1967 
   1968 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1969 
   1970 	simple_lock(&queue->raidPtr->iodone_lock);
   1971 
   1972 	/* Drop this one on the "finished" queue... */
   1973 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1974 
   1975 	/* Let the raidio thread know there is work to be done. */
   1976 	wakeup(&(queue->raidPtr->iodone));
   1977 
   1978 	simple_unlock(&queue->raidPtr->iodone_lock);
   1979 
   1980 	splx(s);
   1981 }
   1982 
   1983 
   1984 
   1985 /*
   1986  * initialize a buf structure for doing an I/O in the kernel.
   1987  */
   1988 static void
   1989 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1990        logBytesPerSector, b_proc)
   1991 	struct buf *bp;
   1992 	struct vnode *b_vp;
   1993 	unsigned rw_flag;
   1994 	dev_t dev;
   1995 	RF_SectorNum_t startSect;
   1996 	RF_SectorCount_t numSect;
   1997 	caddr_t buf;
   1998 	void (*cbFunc) (struct buf *);
   1999 	void *cbArg;
   2000 	int logBytesPerSector;
   2001 	struct proc *b_proc;
   2002 {
   2003 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2004 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2005 	bp->b_bcount = numSect << logBytesPerSector;
   2006 	bp->b_bufsize = bp->b_bcount;
   2007 	bp->b_error = 0;
   2008 	bp->b_dev = dev;
   2009 	bp->b_data = buf;
   2010 	bp->b_blkno = startSect;
   2011 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2012 	if (bp->b_bcount == 0) {
   2013 		panic("bp->b_bcount is zero in InitBP!!");
   2014 	}
   2015 	bp->b_proc = b_proc;
   2016 	bp->b_iodone = cbFunc;
   2017 	bp->b_vp = b_vp;
   2018 
   2019 }
   2020 
   2021 static void
   2022 raidgetdefaultlabel(raidPtr, rs, lp)
   2023 	RF_Raid_t *raidPtr;
   2024 	struct raid_softc *rs;
   2025 	struct disklabel *lp;
   2026 {
   2027 	memset(lp, 0, sizeof(*lp));
   2028 
   2029 	/* fabricate a label... */
   2030 	lp->d_secperunit = raidPtr->totalSectors;
   2031 	lp->d_secsize = raidPtr->bytesPerSector;
   2032 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2033 	lp->d_ntracks = 4 * raidPtr->numCol;
   2034 	lp->d_ncylinders = raidPtr->totalSectors /
   2035 		(lp->d_nsectors * lp->d_ntracks);
   2036 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2037 
   2038 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2039 	lp->d_type = DTYPE_RAID;
   2040 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2041 	lp->d_rpm = 3600;
   2042 	lp->d_interleave = 1;
   2043 	lp->d_flags = 0;
   2044 
   2045 	lp->d_partitions[RAW_PART].p_offset = 0;
   2046 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2047 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2048 	lp->d_npartitions = RAW_PART + 1;
   2049 
   2050 	lp->d_magic = DISKMAGIC;
   2051 	lp->d_magic2 = DISKMAGIC;
   2052 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2053 
   2054 }
   2055 /*
   2056  * Read the disklabel from the raid device.  If one is not present, fake one
   2057  * up.
   2058  */
   2059 static void
   2060 raidgetdisklabel(dev)
   2061 	dev_t   dev;
   2062 {
   2063 	int     unit = raidunit(dev);
   2064 	struct raid_softc *rs = &raid_softc[unit];
   2065 	char   *errstring;
   2066 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2067 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2068 	RF_Raid_t *raidPtr;
   2069 
   2070 	db1_printf(("Getting the disklabel...\n"));
   2071 
   2072 	memset(clp, 0, sizeof(*clp));
   2073 
   2074 	raidPtr = raidPtrs[unit];
   2075 
   2076 	raidgetdefaultlabel(raidPtr, rs, lp);
   2077 
   2078 	/*
   2079 	 * Call the generic disklabel extraction routine.
   2080 	 */
   2081 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2082 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2083 	if (errstring)
   2084 		raidmakedisklabel(rs);
   2085 	else {
   2086 		int     i;
   2087 		struct partition *pp;
   2088 
   2089 		/*
   2090 		 * Sanity check whether the found disklabel is valid.
   2091 		 *
   2092 		 * This is necessary since total size of the raid device
   2093 		 * may vary when an interleave is changed even though exactly
   2094 		 * same componets are used, and old disklabel may used
   2095 		 * if that is found.
   2096 		 */
   2097 		if (lp->d_secperunit != rs->sc_size)
   2098 			printf("raid%d: WARNING: %s: "
   2099 			    "total sector size in disklabel (%d) != "
   2100 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2101 			    lp->d_secperunit, (long) rs->sc_size);
   2102 		for (i = 0; i < lp->d_npartitions; i++) {
   2103 			pp = &lp->d_partitions[i];
   2104 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2105 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2106 				       "exceeds the size of raid (%ld)\n",
   2107 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2108 		}
   2109 	}
   2110 
   2111 }
   2112 /*
   2113  * Take care of things one might want to take care of in the event
   2114  * that a disklabel isn't present.
   2115  */
   2116 static void
   2117 raidmakedisklabel(rs)
   2118 	struct raid_softc *rs;
   2119 {
   2120 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2121 	db1_printf(("Making a label..\n"));
   2122 
   2123 	/*
   2124 	 * For historical reasons, if there's no disklabel present
   2125 	 * the raw partition must be marked FS_BSDFFS.
   2126 	 */
   2127 
   2128 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2129 
   2130 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2131 
   2132 	lp->d_checksum = dkcksum(lp);
   2133 }
   2134 /*
   2135  * Lookup the provided name in the filesystem.  If the file exists,
   2136  * is a valid block device, and isn't being used by anyone else,
   2137  * set *vpp to the file's vnode.
   2138  * You'll find the original of this in ccd.c
   2139  */
   2140 int
   2141 raidlookup(path, p, vpp)
   2142 	char   *path;
   2143 	struct proc *p;
   2144 	struct vnode **vpp;	/* result */
   2145 {
   2146 	struct nameidata nd;
   2147 	struct vnode *vp;
   2148 	struct vattr va;
   2149 	int     error;
   2150 
   2151 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2152 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2153 		return (error);
   2154 	}
   2155 	vp = nd.ni_vp;
   2156 	if (vp->v_usecount > 1) {
   2157 		VOP_UNLOCK(vp, 0);
   2158 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2159 		return (EBUSY);
   2160 	}
   2161 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2162 		VOP_UNLOCK(vp, 0);
   2163 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2164 		return (error);
   2165 	}
   2166 	/* XXX: eventually we should handle VREG, too. */
   2167 	if (va.va_type != VBLK) {
   2168 		VOP_UNLOCK(vp, 0);
   2169 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2170 		return (ENOTBLK);
   2171 	}
   2172 	VOP_UNLOCK(vp, 0);
   2173 	*vpp = vp;
   2174 	return (0);
   2175 }
   2176 /*
   2177  * Wait interruptibly for an exclusive lock.
   2178  *
   2179  * XXX
   2180  * Several drivers do this; it should be abstracted and made MP-safe.
   2181  * (Hmm... where have we seen this warning before :->  GO )
   2182  */
   2183 static int
   2184 raidlock(rs)
   2185 	struct raid_softc *rs;
   2186 {
   2187 	int     error;
   2188 
   2189 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2190 		rs->sc_flags |= RAIDF_WANTED;
   2191 		if ((error =
   2192 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2193 			return (error);
   2194 	}
   2195 	rs->sc_flags |= RAIDF_LOCKED;
   2196 	return (0);
   2197 }
   2198 /*
   2199  * Unlock and wake up any waiters.
   2200  */
   2201 static void
   2202 raidunlock(rs)
   2203 	struct raid_softc *rs;
   2204 {
   2205 
   2206 	rs->sc_flags &= ~RAIDF_LOCKED;
   2207 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2208 		rs->sc_flags &= ~RAIDF_WANTED;
   2209 		wakeup(rs);
   2210 	}
   2211 }
   2212 
   2213 
   2214 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2215 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2216 
   2217 int
   2218 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2219 {
   2220 	RF_ComponentLabel_t clabel;
   2221 	raidread_component_label(dev, b_vp, &clabel);
   2222 	clabel.mod_counter = mod_counter;
   2223 	clabel.clean = RF_RAID_CLEAN;
   2224 	raidwrite_component_label(dev, b_vp, &clabel);
   2225 	return(0);
   2226 }
   2227 
   2228 
   2229 int
   2230 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2231 {
   2232 	RF_ComponentLabel_t clabel;
   2233 	raidread_component_label(dev, b_vp, &clabel);
   2234 	clabel.mod_counter = mod_counter;
   2235 	clabel.clean = RF_RAID_DIRTY;
   2236 	raidwrite_component_label(dev, b_vp, &clabel);
   2237 	return(0);
   2238 }
   2239 
   2240 /* ARGSUSED */
   2241 int
   2242 raidread_component_label(dev, b_vp, clabel)
   2243 	dev_t dev;
   2244 	struct vnode *b_vp;
   2245 	RF_ComponentLabel_t *clabel;
   2246 {
   2247 	struct buf *bp;
   2248 	const struct bdevsw *bdev;
   2249 	int error;
   2250 
   2251 	/* XXX should probably ensure that we don't try to do this if
   2252 	   someone has changed rf_protected_sectors. */
   2253 
   2254 	if (b_vp == NULL) {
   2255 		/* For whatever reason, this component is not valid.
   2256 		   Don't try to read a component label from it. */
   2257 		return(EINVAL);
   2258 	}
   2259 
   2260 	/* get a block of the appropriate size... */
   2261 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2262 	bp->b_dev = dev;
   2263 
   2264 	/* get our ducks in a row for the read */
   2265 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2266 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2267 	bp->b_flags |= B_READ;
   2268  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2269 
   2270 	bdev = bdevsw_lookup(bp->b_dev);
   2271 	if (bdev == NULL)
   2272 		return (ENXIO);
   2273 	(*bdev->d_strategy)(bp);
   2274 
   2275 	error = biowait(bp);
   2276 
   2277 	if (!error) {
   2278 		memcpy(clabel, bp->b_data,
   2279 		       sizeof(RF_ComponentLabel_t));
   2280         }
   2281 
   2282 	brelse(bp);
   2283 	return(error);
   2284 }
   2285 /* ARGSUSED */
   2286 int
   2287 raidwrite_component_label(dev, b_vp, clabel)
   2288 	dev_t dev;
   2289 	struct vnode *b_vp;
   2290 	RF_ComponentLabel_t *clabel;
   2291 {
   2292 	struct buf *bp;
   2293 	const struct bdevsw *bdev;
   2294 	int error;
   2295 
   2296 	/* get a block of the appropriate size... */
   2297 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2298 	bp->b_dev = dev;
   2299 
   2300 	/* get our ducks in a row for the write */
   2301 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2302 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2303 	bp->b_flags |= B_WRITE;
   2304  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2305 
   2306 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2307 
   2308 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2309 
   2310 	bdev = bdevsw_lookup(bp->b_dev);
   2311 	if (bdev == NULL)
   2312 		return (ENXIO);
   2313 	(*bdev->d_strategy)(bp);
   2314 	error = biowait(bp);
   2315 	brelse(bp);
   2316 	if (error) {
   2317 #if 1
   2318 		printf("Failed to write RAID component info!\n");
   2319 #endif
   2320 	}
   2321 
   2322 	return(error);
   2323 }
   2324 
   2325 void
   2326 rf_markalldirty(raidPtr)
   2327 	RF_Raid_t *raidPtr;
   2328 {
   2329 	RF_ComponentLabel_t clabel;
   2330 	int sparecol;
   2331 	int r,c;
   2332 	int i,j;
   2333 	int srow, scol;
   2334 
   2335 	raidPtr->mod_counter++;
   2336 	for (r = 0; r < raidPtr->numRow; r++) {
   2337 		for (c = 0; c < raidPtr->numCol; c++) {
   2338 			/* we don't want to touch (at all) a disk that has
   2339 			   failed */
   2340 			if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
   2341 				raidread_component_label(
   2342 					raidPtr->Disks[r][c].dev,
   2343 					raidPtr->raid_cinfo[r][c].ci_vp,
   2344 					&clabel);
   2345 				if (clabel.status == rf_ds_spared) {
   2346 					/* XXX do something special...
   2347 					 but whatever you do, don't
   2348 					 try to access it!! */
   2349 				} else {
   2350 					raidmarkdirty(
   2351 					      raidPtr->Disks[r][c].dev,
   2352 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2353 					      raidPtr->mod_counter);
   2354 				}
   2355 			}
   2356 		}
   2357 	}
   2358 
   2359 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2360 		sparecol = raidPtr->numCol + c;
   2361 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2362 			/*
   2363 
   2364 			   we claim this disk is "optimal" if it's
   2365 			   rf_ds_used_spare, as that means it should be
   2366 			   directly substitutable for the disk it replaced.
   2367 			   We note that too...
   2368 
   2369 			 */
   2370 
   2371 			for(i=0;i<raidPtr->numRow;i++) {
   2372 				for(j=0;j<raidPtr->numCol;j++) {
   2373 					if ((raidPtr->Disks[i][j].spareRow ==
   2374 					     0) &&
   2375 					    (raidPtr->Disks[i][j].spareCol ==
   2376 					     sparecol)) {
   2377 						srow = i;
   2378 						scol = j;
   2379 						break;
   2380 					}
   2381 				}
   2382 			}
   2383 
   2384 			raidread_component_label(
   2385 				 raidPtr->Disks[0][sparecol].dev,
   2386 				 raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2387 				 &clabel);
   2388 			/* make sure status is noted */
   2389 
   2390 			raid_init_component_label(raidPtr, &clabel);
   2391 
   2392 			clabel.row = srow;
   2393 			clabel.column = scol;
   2394 			/* Note: we *don't* change status from rf_ds_used_spare
   2395 			   to rf_ds_optimal */
   2396 			/* clabel.status = rf_ds_optimal; */
   2397 
   2398 			raidmarkdirty(raidPtr->Disks[0][sparecol].dev,
   2399 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2400 				      raidPtr->mod_counter);
   2401 		}
   2402 	}
   2403 }
   2404 
   2405 
   2406 void
   2407 rf_update_component_labels(raidPtr, final)
   2408 	RF_Raid_t *raidPtr;
   2409 	int final;
   2410 {
   2411 	RF_ComponentLabel_t clabel;
   2412 	int sparecol;
   2413 	int r,c;
   2414 	int i,j;
   2415 	int srow, scol;
   2416 
   2417 	srow = -1;
   2418 	scol = -1;
   2419 
   2420 	/* XXX should do extra checks to make sure things really are clean,
   2421 	   rather than blindly setting the clean bit... */
   2422 
   2423 	raidPtr->mod_counter++;
   2424 
   2425 	for (r = 0; r < raidPtr->numRow; r++) {
   2426 		for (c = 0; c < raidPtr->numCol; c++) {
   2427 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2428 				raidread_component_label(
   2429 					raidPtr->Disks[r][c].dev,
   2430 					raidPtr->raid_cinfo[r][c].ci_vp,
   2431 					&clabel);
   2432 				/* make sure status is noted */
   2433 				clabel.status = rf_ds_optimal;
   2434 				/* bump the counter */
   2435 				clabel.mod_counter = raidPtr->mod_counter;
   2436 
   2437 				raidwrite_component_label(
   2438 					raidPtr->Disks[r][c].dev,
   2439 					raidPtr->raid_cinfo[r][c].ci_vp,
   2440 					&clabel);
   2441 				if (final == RF_FINAL_COMPONENT_UPDATE) {
   2442 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2443 						raidmarkclean(
   2444 							      raidPtr->Disks[r][c].dev,
   2445 							      raidPtr->raid_cinfo[r][c].ci_vp,
   2446 							      raidPtr->mod_counter);
   2447 					}
   2448 				}
   2449 			}
   2450 			/* else we don't touch it.. */
   2451 		}
   2452 	}
   2453 
   2454 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2455 		sparecol = raidPtr->numCol + c;
   2456 		/* Need to ensure that the reconstruct actually completed! */
   2457 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2458 			/*
   2459 
   2460 			   we claim this disk is "optimal" if it's
   2461 			   rf_ds_used_spare, as that means it should be
   2462 			   directly substitutable for the disk it replaced.
   2463 			   We note that too...
   2464 
   2465 			 */
   2466 
   2467 			for(i=0;i<raidPtr->numRow;i++) {
   2468 				for(j=0;j<raidPtr->numCol;j++) {
   2469 					if ((raidPtr->Disks[i][j].spareRow ==
   2470 					     0) &&
   2471 					    (raidPtr->Disks[i][j].spareCol ==
   2472 					     sparecol)) {
   2473 						srow = i;
   2474 						scol = j;
   2475 						break;
   2476 					}
   2477 				}
   2478 			}
   2479 
   2480 			/* XXX shouldn't *really* need this... */
   2481 			raidread_component_label(
   2482 				      raidPtr->Disks[0][sparecol].dev,
   2483 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2484 				      &clabel);
   2485 			/* make sure status is noted */
   2486 
   2487 			raid_init_component_label(raidPtr, &clabel);
   2488 
   2489 			clabel.mod_counter = raidPtr->mod_counter;
   2490 			clabel.row = srow;
   2491 			clabel.column = scol;
   2492 			clabel.status = rf_ds_optimal;
   2493 
   2494 			raidwrite_component_label(
   2495 				      raidPtr->Disks[0][sparecol].dev,
   2496 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2497 				      &clabel);
   2498 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2499 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2500 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2501 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2502 						       raidPtr->mod_counter);
   2503 				}
   2504 			}
   2505 		}
   2506 	}
   2507 }
   2508 
   2509 void
   2510 rf_close_component(raidPtr, vp, auto_configured)
   2511 	RF_Raid_t *raidPtr;
   2512 	struct vnode *vp;
   2513 	int auto_configured;
   2514 {
   2515 	struct proc *p;
   2516 
   2517 	p = raidPtr->engine_thread;
   2518 
   2519 	if (vp != NULL) {
   2520 		if (auto_configured == 1) {
   2521 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2522 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2523 			vput(vp);
   2524 
   2525 		} else {
   2526 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2527 		}
   2528 	}
   2529 }
   2530 
   2531 
   2532 void
   2533 rf_UnconfigureVnodes(raidPtr)
   2534 	RF_Raid_t *raidPtr;
   2535 {
   2536 	int r,c;
   2537 	struct vnode *vp;
   2538 	int acd;
   2539 
   2540 
   2541 	/* We take this opportunity to close the vnodes like we should.. */
   2542 
   2543 	for (r = 0; r < raidPtr->numRow; r++) {
   2544 		for (c = 0; c < raidPtr->numCol; c++) {
   2545 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2546 			acd = raidPtr->Disks[r][c].auto_configured;
   2547 			rf_close_component(raidPtr, vp, acd);
   2548 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2549 			raidPtr->Disks[r][c].auto_configured = 0;
   2550 		}
   2551 	}
   2552 	for (r = 0; r < raidPtr->numSpare; r++) {
   2553 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2554 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2555 		rf_close_component(raidPtr, vp, acd);
   2556 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2557 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2558 	}
   2559 }
   2560 
   2561 
   2562 void
   2563 rf_ReconThread(req)
   2564 	struct rf_recon_req *req;
   2565 {
   2566 	int     s;
   2567 	RF_Raid_t *raidPtr;
   2568 
   2569 	s = splbio();
   2570 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2571 	raidPtr->recon_in_progress = 1;
   2572 
   2573 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2574 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2575 
   2576 	/* XXX get rid of this! we don't need it at all.. */
   2577 	RF_Free(req, sizeof(*req));
   2578 
   2579 	raidPtr->recon_in_progress = 0;
   2580 	splx(s);
   2581 
   2582 	/* That's all... */
   2583 	kthread_exit(0);        /* does not return */
   2584 }
   2585 
   2586 void
   2587 rf_RewriteParityThread(raidPtr)
   2588 	RF_Raid_t *raidPtr;
   2589 {
   2590 	int retcode;
   2591 	int s;
   2592 
   2593 	raidPtr->parity_rewrite_in_progress = 1;
   2594 	s = splbio();
   2595 	retcode = rf_RewriteParity(raidPtr);
   2596 	splx(s);
   2597 	if (retcode) {
   2598 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2599 	} else {
   2600 		/* set the clean bit!  If we shutdown correctly,
   2601 		   the clean bit on each component label will get
   2602 		   set */
   2603 		raidPtr->parity_good = RF_RAID_CLEAN;
   2604 	}
   2605 	raidPtr->parity_rewrite_in_progress = 0;
   2606 
   2607 	/* Anyone waiting for us to stop?  If so, inform them... */
   2608 	if (raidPtr->waitShutdown) {
   2609 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2610 	}
   2611 
   2612 	/* That's all... */
   2613 	kthread_exit(0);        /* does not return */
   2614 }
   2615 
   2616 
   2617 void
   2618 rf_CopybackThread(raidPtr)
   2619 	RF_Raid_t *raidPtr;
   2620 {
   2621 	int s;
   2622 
   2623 	raidPtr->copyback_in_progress = 1;
   2624 	s = splbio();
   2625 	rf_CopybackReconstructedData(raidPtr);
   2626 	splx(s);
   2627 	raidPtr->copyback_in_progress = 0;
   2628 
   2629 	/* That's all... */
   2630 	kthread_exit(0);        /* does not return */
   2631 }
   2632 
   2633 
   2634 void
   2635 rf_ReconstructInPlaceThread(req)
   2636 	struct rf_recon_req *req;
   2637 {
   2638 	int retcode;
   2639 	int s;
   2640 	RF_Raid_t *raidPtr;
   2641 
   2642 	s = splbio();
   2643 	raidPtr = req->raidPtr;
   2644 	raidPtr->recon_in_progress = 1;
   2645 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2646 	RF_Free(req, sizeof(*req));
   2647 	raidPtr->recon_in_progress = 0;
   2648 	splx(s);
   2649 
   2650 	/* That's all... */
   2651 	kthread_exit(0);        /* does not return */
   2652 }
   2653 
   2654 RF_AutoConfig_t *
   2655 rf_find_raid_components()
   2656 {
   2657 	struct vnode *vp;
   2658 	struct disklabel label;
   2659 	struct device *dv;
   2660 	dev_t dev;
   2661 	int bmajor;
   2662 	int error;
   2663 	int i;
   2664 	int good_one;
   2665 	RF_ComponentLabel_t *clabel;
   2666 	RF_AutoConfig_t *ac_list;
   2667 	RF_AutoConfig_t *ac;
   2668 
   2669 
   2670 	/* initialize the AutoConfig list */
   2671 	ac_list = NULL;
   2672 
   2673 	/* we begin by trolling through *all* the devices on the system */
   2674 
   2675 	for (dv = alldevs.tqh_first; dv != NULL;
   2676 	     dv = dv->dv_list.tqe_next) {
   2677 
   2678 		/* we are only interested in disks... */
   2679 		if (dv->dv_class != DV_DISK)
   2680 			continue;
   2681 
   2682 		/* we don't care about floppies... */
   2683 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2684 			continue;
   2685 		}
   2686 
   2687 		/* we don't care about CD's... */
   2688 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2689 			continue;
   2690 		}
   2691 
   2692 		/* hdfd is the Atari/Hades floppy driver */
   2693 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2694 			continue;
   2695 		}
   2696 		/* fdisa is the Atari/Milan floppy driver */
   2697 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2698 			continue;
   2699 		}
   2700 
   2701 		/* need to find the device_name_to_block_device_major stuff */
   2702 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2703 
   2704 		/* get a vnode for the raw partition of this disk */
   2705 
   2706 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2707 		if (bdevvp(dev, &vp))
   2708 			panic("RAID can't alloc vnode");
   2709 
   2710 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2711 
   2712 		if (error) {
   2713 			/* "Who cares."  Continue looking
   2714 			   for something that exists*/
   2715 			vput(vp);
   2716 			continue;
   2717 		}
   2718 
   2719 		/* Ok, the disk exists.  Go get the disklabel. */
   2720 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2721 				  FREAD, NOCRED, 0);
   2722 		if (error) {
   2723 			/*
   2724 			 * XXX can't happen - open() would
   2725 			 * have errored out (or faked up one)
   2726 			 */
   2727 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2728 			       dv->dv_xname, 'a' + RAW_PART, error);
   2729 		}
   2730 
   2731 		/* don't need this any more.  We'll allocate it again
   2732 		   a little later if we really do... */
   2733 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2734 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2735 		vput(vp);
   2736 
   2737 		for (i=0; i < label.d_npartitions; i++) {
   2738 			/* We only support partitions marked as RAID */
   2739 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2740 				continue;
   2741 
   2742 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2743 			if (bdevvp(dev, &vp))
   2744 				panic("RAID can't alloc vnode");
   2745 
   2746 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2747 			if (error) {
   2748 				/* Whatever... */
   2749 				vput(vp);
   2750 				continue;
   2751 			}
   2752 
   2753 			good_one = 0;
   2754 
   2755 			clabel = (RF_ComponentLabel_t *)
   2756 				malloc(sizeof(RF_ComponentLabel_t),
   2757 				       M_RAIDFRAME, M_NOWAIT);
   2758 			if (clabel == NULL) {
   2759 				/* XXX CLEANUP HERE */
   2760 				printf("RAID auto config: out of memory!\n");
   2761 				return(NULL); /* XXX probably should panic? */
   2762 			}
   2763 
   2764 			if (!raidread_component_label(dev, vp, clabel)) {
   2765 				/* Got the label.  Does it look reasonable? */
   2766 				if (rf_reasonable_label(clabel) &&
   2767 				    (clabel->partitionSize <=
   2768 				     label.d_partitions[i].p_size)) {
   2769 #if DEBUG
   2770 					printf("Component on: %s%c: %d\n",
   2771 					       dv->dv_xname, 'a'+i,
   2772 					       label.d_partitions[i].p_size);
   2773 					rf_print_component_label(clabel);
   2774 #endif
   2775 					/* if it's reasonable, add it,
   2776 					   else ignore it. */
   2777 					ac = (RF_AutoConfig_t *)
   2778 						malloc(sizeof(RF_AutoConfig_t),
   2779 						       M_RAIDFRAME,
   2780 						       M_NOWAIT);
   2781 					if (ac == NULL) {
   2782 						/* XXX should panic?? */
   2783 						return(NULL);
   2784 					}
   2785 
   2786 					sprintf(ac->devname, "%s%c",
   2787 						dv->dv_xname, 'a'+i);
   2788 					ac->dev = dev;
   2789 					ac->vp = vp;
   2790 					ac->clabel = clabel;
   2791 					ac->next = ac_list;
   2792 					ac_list = ac;
   2793 					good_one = 1;
   2794 				}
   2795 			}
   2796 			if (!good_one) {
   2797 				/* cleanup */
   2798 				free(clabel, M_RAIDFRAME);
   2799 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2800 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2801 				vput(vp);
   2802 			}
   2803 		}
   2804 	}
   2805 	return(ac_list);
   2806 }
   2807 
   2808 static int
   2809 rf_reasonable_label(clabel)
   2810 	RF_ComponentLabel_t *clabel;
   2811 {
   2812 
   2813 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2814 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2815 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2816 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2817 	    clabel->row >=0 &&
   2818 	    clabel->column >= 0 &&
   2819 	    clabel->num_rows > 0 &&
   2820 	    clabel->num_columns > 0 &&
   2821 	    clabel->row < clabel->num_rows &&
   2822 	    clabel->column < clabel->num_columns &&
   2823 	    clabel->blockSize > 0 &&
   2824 	    clabel->numBlocks > 0) {
   2825 		/* label looks reasonable enough... */
   2826 		return(1);
   2827 	}
   2828 	return(0);
   2829 }
   2830 
   2831 
   2832 #if DEBUG
   2833 void
   2834 rf_print_component_label(clabel)
   2835 	RF_ComponentLabel_t *clabel;
   2836 {
   2837 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2838 	       clabel->row, clabel->column,
   2839 	       clabel->num_rows, clabel->num_columns);
   2840 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2841 	       clabel->version, clabel->serial_number,
   2842 	       clabel->mod_counter);
   2843 	printf("   Clean: %s Status: %d\n",
   2844 	       clabel->clean ? "Yes" : "No", clabel->status );
   2845 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2846 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2847 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2848 	       (char) clabel->parityConfig, clabel->blockSize,
   2849 	       clabel->numBlocks);
   2850 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2851 	printf("   Contains root partition: %s\n",
   2852 	       clabel->root_partition ? "Yes" : "No" );
   2853 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2854 #if 0
   2855 	   printf("   Config order: %d\n", clabel->config_order);
   2856 #endif
   2857 
   2858 }
   2859 #endif
   2860 
   2861 RF_ConfigSet_t *
   2862 rf_create_auto_sets(ac_list)
   2863 	RF_AutoConfig_t *ac_list;
   2864 {
   2865 	RF_AutoConfig_t *ac;
   2866 	RF_ConfigSet_t *config_sets;
   2867 	RF_ConfigSet_t *cset;
   2868 	RF_AutoConfig_t *ac_next;
   2869 
   2870 
   2871 	config_sets = NULL;
   2872 
   2873 	/* Go through the AutoConfig list, and figure out which components
   2874 	   belong to what sets.  */
   2875 	ac = ac_list;
   2876 	while(ac!=NULL) {
   2877 		/* we're going to putz with ac->next, so save it here
   2878 		   for use at the end of the loop */
   2879 		ac_next = ac->next;
   2880 
   2881 		if (config_sets == NULL) {
   2882 			/* will need at least this one... */
   2883 			config_sets = (RF_ConfigSet_t *)
   2884 				malloc(sizeof(RF_ConfigSet_t),
   2885 				       M_RAIDFRAME, M_NOWAIT);
   2886 			if (config_sets == NULL) {
   2887 				panic("rf_create_auto_sets: No memory!");
   2888 			}
   2889 			/* this one is easy :) */
   2890 			config_sets->ac = ac;
   2891 			config_sets->next = NULL;
   2892 			config_sets->rootable = 0;
   2893 			ac->next = NULL;
   2894 		} else {
   2895 			/* which set does this component fit into? */
   2896 			cset = config_sets;
   2897 			while(cset!=NULL) {
   2898 				if (rf_does_it_fit(cset, ac)) {
   2899 					/* looks like it matches... */
   2900 					ac->next = cset->ac;
   2901 					cset->ac = ac;
   2902 					break;
   2903 				}
   2904 				cset = cset->next;
   2905 			}
   2906 			if (cset==NULL) {
   2907 				/* didn't find a match above... new set..*/
   2908 				cset = (RF_ConfigSet_t *)
   2909 					malloc(sizeof(RF_ConfigSet_t),
   2910 					       M_RAIDFRAME, M_NOWAIT);
   2911 				if (cset == NULL) {
   2912 					panic("rf_create_auto_sets: No memory!");
   2913 				}
   2914 				cset->ac = ac;
   2915 				ac->next = NULL;
   2916 				cset->next = config_sets;
   2917 				cset->rootable = 0;
   2918 				config_sets = cset;
   2919 			}
   2920 		}
   2921 		ac = ac_next;
   2922 	}
   2923 
   2924 
   2925 	return(config_sets);
   2926 }
   2927 
   2928 static int
   2929 rf_does_it_fit(cset, ac)
   2930 	RF_ConfigSet_t *cset;
   2931 	RF_AutoConfig_t *ac;
   2932 {
   2933 	RF_ComponentLabel_t *clabel1, *clabel2;
   2934 
   2935 	/* If this one matches the *first* one in the set, that's good
   2936 	   enough, since the other members of the set would have been
   2937 	   through here too... */
   2938 	/* note that we are not checking partitionSize here..
   2939 
   2940 	   Note that we are also not checking the mod_counters here.
   2941 	   If everything else matches execpt the mod_counter, that's
   2942 	   good enough for this test.  We will deal with the mod_counters
   2943 	   a little later in the autoconfiguration process.
   2944 
   2945 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2946 
   2947 	   The reason we don't check for this is that failed disks
   2948 	   will have lower modification counts.  If those disks are
   2949 	   not added to the set they used to belong to, then they will
   2950 	   form their own set, which may result in 2 different sets,
   2951 	   for example, competing to be configured at raid0, and
   2952 	   perhaps competing to be the root filesystem set.  If the
   2953 	   wrong ones get configured, or both attempt to become /,
   2954 	   weird behaviour and or serious lossage will occur.  Thus we
   2955 	   need to bring them into the fold here, and kick them out at
   2956 	   a later point.
   2957 
   2958 	*/
   2959 
   2960 	clabel1 = cset->ac->clabel;
   2961 	clabel2 = ac->clabel;
   2962 	if ((clabel1->version == clabel2->version) &&
   2963 	    (clabel1->serial_number == clabel2->serial_number) &&
   2964 	    (clabel1->num_rows == clabel2->num_rows) &&
   2965 	    (clabel1->num_columns == clabel2->num_columns) &&
   2966 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2967 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2968 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2969 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2970 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2971 	    (clabel1->blockSize == clabel2->blockSize) &&
   2972 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2973 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2974 	    (clabel1->root_partition == clabel2->root_partition) &&
   2975 	    (clabel1->last_unit == clabel2->last_unit) &&
   2976 	    (clabel1->config_order == clabel2->config_order)) {
   2977 		/* if it get's here, it almost *has* to be a match */
   2978 	} else {
   2979 		/* it's not consistent with somebody in the set..
   2980 		   punt */
   2981 		return(0);
   2982 	}
   2983 	/* all was fine.. it must fit... */
   2984 	return(1);
   2985 }
   2986 
   2987 int
   2988 rf_have_enough_components(cset)
   2989 	RF_ConfigSet_t *cset;
   2990 {
   2991 	RF_AutoConfig_t *ac;
   2992 	RF_AutoConfig_t *auto_config;
   2993 	RF_ComponentLabel_t *clabel;
   2994 	int r,c;
   2995 	int num_rows;
   2996 	int num_cols;
   2997 	int num_missing;
   2998 	int mod_counter;
   2999 	int mod_counter_found;
   3000 	int even_pair_failed;
   3001 	char parity_type;
   3002 
   3003 
   3004 	/* check to see that we have enough 'live' components
   3005 	   of this set.  If so, we can configure it if necessary */
   3006 
   3007 	num_rows = cset->ac->clabel->num_rows;
   3008 	num_cols = cset->ac->clabel->num_columns;
   3009 	parity_type = cset->ac->clabel->parityConfig;
   3010 
   3011 	/* XXX Check for duplicate components!?!?!? */
   3012 
   3013 	/* Determine what the mod_counter is supposed to be for this set. */
   3014 
   3015 	mod_counter_found = 0;
   3016 	mod_counter = 0;
   3017 	ac = cset->ac;
   3018 	while(ac!=NULL) {
   3019 		if (mod_counter_found==0) {
   3020 			mod_counter = ac->clabel->mod_counter;
   3021 			mod_counter_found = 1;
   3022 		} else {
   3023 			if (ac->clabel->mod_counter > mod_counter) {
   3024 				mod_counter = ac->clabel->mod_counter;
   3025 			}
   3026 		}
   3027 		ac = ac->next;
   3028 	}
   3029 
   3030 	num_missing = 0;
   3031 	auto_config = cset->ac;
   3032 
   3033 	for(r=0; r<num_rows; r++) {
   3034 		even_pair_failed = 0;
   3035 		for(c=0; c<num_cols; c++) {
   3036 			ac = auto_config;
   3037 			while(ac!=NULL) {
   3038 				if ((ac->clabel->row == r) &&
   3039 				    (ac->clabel->column == c) &&
   3040 				    (ac->clabel->mod_counter == mod_counter)) {
   3041 					/* it's this one... */
   3042 #if DEBUG
   3043 					printf("Found: %s at %d,%d\n",
   3044 					       ac->devname,r,c);
   3045 #endif
   3046 					break;
   3047 				}
   3048 				ac=ac->next;
   3049 			}
   3050 			if (ac==NULL) {
   3051 				/* Didn't find one here! */
   3052 				/* special case for RAID 1, especially
   3053 				   where there are more than 2
   3054 				   components (where RAIDframe treats
   3055 				   things a little differently :( ) */
   3056 				if (parity_type == '1') {
   3057 					if (c%2 == 0) { /* even component */
   3058 						even_pair_failed = 1;
   3059 					} else { /* odd component.  If
   3060                                                     we're failed, and
   3061                                                     so is the even
   3062                                                     component, it's
   3063                                                     "Good Night, Charlie" */
   3064 						if (even_pair_failed == 1) {
   3065 							return(0);
   3066 						}
   3067 					}
   3068 				} else {
   3069 					/* normal accounting */
   3070 					num_missing++;
   3071 				}
   3072 			}
   3073 			if ((parity_type == '1') && (c%2 == 1)) {
   3074 				/* Just did an even component, and we didn't
   3075 				   bail.. reset the even_pair_failed flag,
   3076 				   and go on to the next component.... */
   3077 				even_pair_failed = 0;
   3078 			}
   3079 		}
   3080 	}
   3081 
   3082 	clabel = cset->ac->clabel;
   3083 
   3084 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3085 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3086 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3087 		/* XXX this needs to be made *much* more general */
   3088 		/* Too many failures */
   3089 		return(0);
   3090 	}
   3091 	/* otherwise, all is well, and we've got enough to take a kick
   3092 	   at autoconfiguring this set */
   3093 	return(1);
   3094 }
   3095 
   3096 void
   3097 rf_create_configuration(ac,config,raidPtr)
   3098 	RF_AutoConfig_t *ac;
   3099 	RF_Config_t *config;
   3100 	RF_Raid_t *raidPtr;
   3101 {
   3102 	RF_ComponentLabel_t *clabel;
   3103 	int i;
   3104 
   3105 	clabel = ac->clabel;
   3106 
   3107 	/* 1. Fill in the common stuff */
   3108 	config->numRow = clabel->num_rows;
   3109 	config->numCol = clabel->num_columns;
   3110 	config->numSpare = 0; /* XXX should this be set here? */
   3111 	config->sectPerSU = clabel->sectPerSU;
   3112 	config->SUsPerPU = clabel->SUsPerPU;
   3113 	config->SUsPerRU = clabel->SUsPerRU;
   3114 	config->parityConfig = clabel->parityConfig;
   3115 	/* XXX... */
   3116 	strcpy(config->diskQueueType,"fifo");
   3117 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3118 	config->layoutSpecificSize = 0; /* XXX ?? */
   3119 
   3120 	while(ac!=NULL) {
   3121 		/* row/col values will be in range due to the checks
   3122 		   in reasonable_label() */
   3123 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3124 		       ac->devname);
   3125 		ac = ac->next;
   3126 	}
   3127 
   3128 	for(i=0;i<RF_MAXDBGV;i++) {
   3129 		config->debugVars[i][0] = NULL;
   3130 	}
   3131 }
   3132 
   3133 int
   3134 rf_set_autoconfig(raidPtr, new_value)
   3135 	RF_Raid_t *raidPtr;
   3136 	int new_value;
   3137 {
   3138 	RF_ComponentLabel_t clabel;
   3139 	struct vnode *vp;
   3140 	dev_t dev;
   3141 	int row, column;
   3142 	int sparecol;
   3143 
   3144 	raidPtr->autoconfigure = new_value;
   3145 	for(row=0; row<raidPtr->numRow; row++) {
   3146 		for(column=0; column<raidPtr->numCol; column++) {
   3147 			if (raidPtr->Disks[row][column].status ==
   3148 			    rf_ds_optimal) {
   3149 				dev = raidPtr->Disks[row][column].dev;
   3150 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3151 				raidread_component_label(dev, vp, &clabel);
   3152 				clabel.autoconfigure = new_value;
   3153 				raidwrite_component_label(dev, vp, &clabel);
   3154 			}
   3155 		}
   3156 	}
   3157 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3158 		sparecol = raidPtr->numCol + column;
   3159 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   3160 			dev = raidPtr->Disks[0][sparecol].dev;
   3161 			vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
   3162 			raidread_component_label(dev, vp, &clabel);
   3163 			clabel.autoconfigure = new_value;
   3164 			raidwrite_component_label(dev, vp, &clabel);
   3165 		}
   3166 	}
   3167 	return(new_value);
   3168 }
   3169 
   3170 int
   3171 rf_set_rootpartition(raidPtr, new_value)
   3172 	RF_Raid_t *raidPtr;
   3173 	int new_value;
   3174 {
   3175 	RF_ComponentLabel_t clabel;
   3176 	struct vnode *vp;
   3177 	dev_t dev;
   3178 	int row, column;
   3179 	int sparecol;
   3180 
   3181 	raidPtr->root_partition = new_value;
   3182 	for(row=0; row<raidPtr->numRow; row++) {
   3183 		for(column=0; column<raidPtr->numCol; column++) {
   3184 			if (raidPtr->Disks[row][column].status ==
   3185 			    rf_ds_optimal) {
   3186 				dev = raidPtr->Disks[row][column].dev;
   3187 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3188 				raidread_component_label(dev, vp, &clabel);
   3189 				clabel.root_partition = new_value;
   3190 				raidwrite_component_label(dev, vp, &clabel);
   3191 			}
   3192 		}
   3193 	}
   3194 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3195 		sparecol = raidPtr->numCol + column;
   3196 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   3197 			dev = raidPtr->Disks[0][sparecol].dev;
   3198 			vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
   3199 			raidread_component_label(dev, vp, &clabel);
   3200 			clabel.root_partition = new_value;
   3201 			raidwrite_component_label(dev, vp, &clabel);
   3202 		}
   3203 	}
   3204 	return(new_value);
   3205 }
   3206 
   3207 void
   3208 rf_release_all_vps(cset)
   3209 	RF_ConfigSet_t *cset;
   3210 {
   3211 	RF_AutoConfig_t *ac;
   3212 
   3213 	ac = cset->ac;
   3214 	while(ac!=NULL) {
   3215 		/* Close the vp, and give it back */
   3216 		if (ac->vp) {
   3217 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3218 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3219 			vput(ac->vp);
   3220 			ac->vp = NULL;
   3221 		}
   3222 		ac = ac->next;
   3223 	}
   3224 }
   3225 
   3226 
   3227 void
   3228 rf_cleanup_config_set(cset)
   3229 	RF_ConfigSet_t *cset;
   3230 {
   3231 	RF_AutoConfig_t *ac;
   3232 	RF_AutoConfig_t *next_ac;
   3233 
   3234 	ac = cset->ac;
   3235 	while(ac!=NULL) {
   3236 		next_ac = ac->next;
   3237 		/* nuke the label */
   3238 		free(ac->clabel, M_RAIDFRAME);
   3239 		/* cleanup the config structure */
   3240 		free(ac, M_RAIDFRAME);
   3241 		/* "next.." */
   3242 		ac = next_ac;
   3243 	}
   3244 	/* and, finally, nuke the config set */
   3245 	free(cset, M_RAIDFRAME);
   3246 }
   3247 
   3248 
   3249 void
   3250 raid_init_component_label(raidPtr, clabel)
   3251 	RF_Raid_t *raidPtr;
   3252 	RF_ComponentLabel_t *clabel;
   3253 {
   3254 	/* current version number */
   3255 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3256 	clabel->serial_number = raidPtr->serial_number;
   3257 	clabel->mod_counter = raidPtr->mod_counter;
   3258 	clabel->num_rows = raidPtr->numRow;
   3259 	clabel->num_columns = raidPtr->numCol;
   3260 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3261 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3262 
   3263 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3264 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3265 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3266 
   3267 	clabel->blockSize = raidPtr->bytesPerSector;
   3268 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3269 
   3270 	/* XXX not portable */
   3271 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3272 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3273 	clabel->autoconfigure = raidPtr->autoconfigure;
   3274 	clabel->root_partition = raidPtr->root_partition;
   3275 	clabel->last_unit = raidPtr->raidid;
   3276 	clabel->config_order = raidPtr->config_order;
   3277 }
   3278 
   3279 int
   3280 rf_auto_config_set(cset,unit)
   3281 	RF_ConfigSet_t *cset;
   3282 	int *unit;
   3283 {
   3284 	RF_Raid_t *raidPtr;
   3285 	RF_Config_t *config;
   3286 	int raidID;
   3287 	int retcode;
   3288 
   3289 #if DEBUG
   3290 	printf("RAID autoconfigure\n");
   3291 #endif
   3292 
   3293 	retcode = 0;
   3294 	*unit = -1;
   3295 
   3296 	/* 1. Create a config structure */
   3297 
   3298 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3299 				       M_RAIDFRAME,
   3300 				       M_NOWAIT);
   3301 	if (config==NULL) {
   3302 		printf("Out of mem!?!?\n");
   3303 				/* XXX do something more intelligent here. */
   3304 		return(1);
   3305 	}
   3306 
   3307 	memset(config, 0, sizeof(RF_Config_t));
   3308 
   3309 	/*
   3310 	   2. Figure out what RAID ID this one is supposed to live at
   3311 	   See if we can get the same RAID dev that it was configured
   3312 	   on last time..
   3313 	*/
   3314 
   3315 	raidID = cset->ac->clabel->last_unit;
   3316 	if ((raidID < 0) || (raidID >= numraid)) {
   3317 		/* let's not wander off into lala land. */
   3318 		raidID = numraid - 1;
   3319 	}
   3320 	if (raidPtrs[raidID]->valid != 0) {
   3321 
   3322 		/*
   3323 		   Nope... Go looking for an alternative...
   3324 		   Start high so we don't immediately use raid0 if that's
   3325 		   not taken.
   3326 		*/
   3327 
   3328 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3329 			if (raidPtrs[raidID]->valid == 0) {
   3330 				/* can use this one! */
   3331 				break;
   3332 			}
   3333 		}
   3334 	}
   3335 
   3336 	if (raidID < 0) {
   3337 		/* punt... */
   3338 		printf("Unable to auto configure this set!\n");
   3339 		printf("(Out of RAID devs!)\n");
   3340 		return(1);
   3341 	}
   3342 
   3343 #if DEBUG
   3344 	printf("Configuring raid%d:\n",raidID);
   3345 #endif
   3346 
   3347 	raidPtr = raidPtrs[raidID];
   3348 
   3349 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3350 	raidPtr->raidid = raidID;
   3351 	raidPtr->openings = RAIDOUTSTANDING;
   3352 
   3353 	/* 3. Build the configuration structure */
   3354 	rf_create_configuration(cset->ac, config, raidPtr);
   3355 
   3356 	/* 4. Do the configuration */
   3357 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3358 
   3359 	if (retcode == 0) {
   3360 
   3361 		raidinit(raidPtrs[raidID]);
   3362 
   3363 		rf_markalldirty(raidPtrs[raidID]);
   3364 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3365 		if (cset->ac->clabel->root_partition==1) {
   3366 			/* everything configured just fine.  Make a note
   3367 			   that this set is eligible to be root. */
   3368 			cset->rootable = 1;
   3369 			/* XXX do this here? */
   3370 			raidPtrs[raidID]->root_partition = 1;
   3371 		}
   3372 	}
   3373 
   3374 	/* 5. Cleanup */
   3375 	free(config, M_RAIDFRAME);
   3376 
   3377 	*unit = raidID;
   3378 	return(retcode);
   3379 }
   3380 
   3381 void
   3382 rf_disk_unbusy(desc)
   3383 	RF_RaidAccessDesc_t *desc;
   3384 {
   3385 	struct buf *bp;
   3386 
   3387 	bp = (struct buf *)desc->bp;
   3388 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3389 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3390 }
   3391