Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.153
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.153 2003/02/01 06:23:40 thorpej Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 /*
     81  * Copyright (c) 1995 Carnegie-Mellon University.
     82  * All rights reserved.
     83  *
     84  * Authors: Mark Holland, Jim Zelenka
     85  *
     86  * Permission to use, copy, modify and distribute this software and
     87  * its documentation is hereby granted, provided that both the copyright
     88  * notice and this permission notice appear in all copies of the
     89  * software, derivative works or modified versions, and any portions
     90  * thereof, and that both notices appear in supporting documentation.
     91  *
     92  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     93  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     94  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     95  *
     96  * Carnegie Mellon requests users of this software to return to
     97  *
     98  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     99  *  School of Computer Science
    100  *  Carnegie Mellon University
    101  *  Pittsburgh PA 15213-3890
    102  *
    103  * any improvements or extensions that they make and grant Carnegie the
    104  * rights to redistribute these changes.
    105  */
    106 
    107 /***********************************************************
    108  *
    109  * rf_kintf.c -- the kernel interface routines for RAIDframe
    110  *
    111  ***********************************************************/
    112 
    113 #include <sys/cdefs.h>
    114 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.153 2003/02/01 06:23:40 thorpej Exp $");
    115 
    116 #include <sys/param.h>
    117 #include <sys/errno.h>
    118 #include <sys/pool.h>
    119 #include <sys/proc.h>
    120 #include <sys/queue.h>
    121 #include <sys/disk.h>
    122 #include <sys/device.h>
    123 #include <sys/stat.h>
    124 #include <sys/ioctl.h>
    125 #include <sys/fcntl.h>
    126 #include <sys/systm.h>
    127 #include <sys/namei.h>
    128 #include <sys/vnode.h>
    129 #include <sys/disklabel.h>
    130 #include <sys/conf.h>
    131 #include <sys/lock.h>
    132 #include <sys/buf.h>
    133 #include <sys/user.h>
    134 #include <sys/reboot.h>
    135 
    136 #include <dev/raidframe/raidframevar.h>
    137 #include <dev/raidframe/raidframeio.h>
    138 #include "raid.h"
    139 #include "opt_raid_autoconfig.h"
    140 #include "rf_raid.h"
    141 #include "rf_copyback.h"
    142 #include "rf_dag.h"
    143 #include "rf_dagflags.h"
    144 #include "rf_desc.h"
    145 #include "rf_diskqueue.h"
    146 #include "rf_etimer.h"
    147 #include "rf_general.h"
    148 #include "rf_kintf.h"
    149 #include "rf_options.h"
    150 #include "rf_driver.h"
    151 #include "rf_parityscan.h"
    152 #include "rf_threadstuff.h"
    153 
    154 #ifdef DEBUG
    155 int     rf_kdebug_level = 0;
    156 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    157 #else				/* DEBUG */
    158 #define db1_printf(a) { }
    159 #endif				/* DEBUG */
    160 
    161 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    162 
    163 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    164 
    165 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    166 						 * spare table */
    167 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    168 						 * installation process */
    169 
    170 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    171 
    172 /* prototypes */
    173 static void KernelWakeupFunc(struct buf * bp);
    174 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    175 		   dev_t dev, RF_SectorNum_t startSect,
    176 		   RF_SectorCount_t numSect, caddr_t buf,
    177 		   void (*cbFunc) (struct buf *), void *cbArg,
    178 		   int logBytesPerSector, struct proc * b_proc);
    179 static void raidinit(RF_Raid_t *);
    180 
    181 void raidattach(int);
    182 
    183 dev_type_open(raidopen);
    184 dev_type_close(raidclose);
    185 dev_type_read(raidread);
    186 dev_type_write(raidwrite);
    187 dev_type_ioctl(raidioctl);
    188 dev_type_strategy(raidstrategy);
    189 dev_type_dump(raiddump);
    190 dev_type_size(raidsize);
    191 
    192 const struct bdevsw raid_bdevsw = {
    193 	raidopen, raidclose, raidstrategy, raidioctl,
    194 	raiddump, raidsize, D_DISK
    195 };
    196 
    197 const struct cdevsw raid_cdevsw = {
    198 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    199 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    200 };
    201 
    202 /*
    203  * Pilfered from ccd.c
    204  */
    205 
    206 struct raidbuf {
    207 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    208 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    209 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    210 };
    211 
    212 /* component buffer pool */
    213 struct pool raidframe_cbufpool;
    214 
    215 /* XXX Not sure if the following should be replacing the raidPtrs above,
    216    or if it should be used in conjunction with that...
    217 */
    218 
    219 struct raid_softc {
    220 	int     sc_flags;	/* flags */
    221 	int     sc_cflags;	/* configuration flags */
    222 	size_t  sc_size;        /* size of the raid device */
    223 	char    sc_xname[20];	/* XXX external name */
    224 	struct disk sc_dkdev;	/* generic disk device info */
    225 	struct bufq_state buf_queue;	/* used for the device queue */
    226 };
    227 /* sc_flags */
    228 #define RAIDF_INITED	0x01	/* unit has been initialized */
    229 #define RAIDF_WLABEL	0x02	/* label area is writable */
    230 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    231 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    232 #define RAIDF_LOCKED	0x80	/* unit is locked */
    233 
    234 #define	raidunit(x)	DISKUNIT(x)
    235 int numraid = 0;
    236 
    237 /*
    238  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    239  * Be aware that large numbers can allow the driver to consume a lot of
    240  * kernel memory, especially on writes, and in degraded mode reads.
    241  *
    242  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    243  * a single 64K write will typically require 64K for the old data,
    244  * 64K for the old parity, and 64K for the new parity, for a total
    245  * of 192K (if the parity buffer is not re-used immediately).
    246  * Even it if is used immediately, that's still 128K, which when multiplied
    247  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    248  *
    249  * Now in degraded mode, for example, a 64K read on the above setup may
    250  * require data reconstruction, which will require *all* of the 4 remaining
    251  * disks to participate -- 4 * 32K/disk == 128K again.
    252  */
    253 
    254 #ifndef RAIDOUTSTANDING
    255 #define RAIDOUTSTANDING   6
    256 #endif
    257 
    258 #define RAIDLABELDEV(dev)	\
    259 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    260 
    261 /* declared here, and made public, for the benefit of KVM stuff.. */
    262 struct raid_softc *raid_softc;
    263 
    264 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    265 				     struct disklabel *);
    266 static void raidgetdisklabel(dev_t);
    267 static void raidmakedisklabel(struct raid_softc *);
    268 
    269 static int raidlock(struct raid_softc *);
    270 static void raidunlock(struct raid_softc *);
    271 
    272 static void rf_markalldirty(RF_Raid_t *);
    273 
    274 struct device *raidrootdev;
    275 
    276 void rf_ReconThread(struct rf_recon_req *);
    277 /* XXX what I want is: */
    278 /*void rf_ReconThread(RF_Raid_t *raidPtr);  */
    279 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    280 void rf_CopybackThread(RF_Raid_t *raidPtr);
    281 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    282 int rf_autoconfig(struct device *self);
    283 void rf_buildroothack(RF_ConfigSet_t *);
    284 
    285 RF_AutoConfig_t *rf_find_raid_components(void);
    286 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    287 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    288 static int rf_reasonable_label(RF_ComponentLabel_t *);
    289 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    290 int rf_set_autoconfig(RF_Raid_t *, int);
    291 int rf_set_rootpartition(RF_Raid_t *, int);
    292 void rf_release_all_vps(RF_ConfigSet_t *);
    293 void rf_cleanup_config_set(RF_ConfigSet_t *);
    294 int rf_have_enough_components(RF_ConfigSet_t *);
    295 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    296 
    297 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    298 				  allow autoconfig to take place.
    299 			          Note that this is overridden by having
    300 			          RAID_AUTOCONFIG as an option in the
    301 			          kernel config file.  */
    302 
    303 void
    304 raidattach(num)
    305 	int     num;
    306 {
    307 	int raidID;
    308 	int i, rc;
    309 
    310 #ifdef DEBUG
    311 	printf("raidattach: Asked for %d units\n", num);
    312 #endif
    313 
    314 	if (num <= 0) {
    315 #ifdef DIAGNOSTIC
    316 		panic("raidattach: count <= 0");
    317 #endif
    318 		return;
    319 	}
    320 	/* This is where all the initialization stuff gets done. */
    321 
    322 	numraid = num;
    323 
    324 	/* Make some space for requested number of units... */
    325 
    326 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    327 	if (raidPtrs == NULL) {
    328 		panic("raidPtrs is NULL!!");
    329 	}
    330 
    331 	/* Initialize the component buffer pool. */
    332 	pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
    333 	    0, 0, "raidpl", NULL);
    334 
    335 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    336 	if (rc) {
    337 		RF_PANIC();
    338 	}
    339 
    340 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    341 
    342 	for (i = 0; i < num; i++)
    343 		raidPtrs[i] = NULL;
    344 	rc = rf_BootRaidframe();
    345 	if (rc == 0)
    346 		printf("Kernelized RAIDframe activated\n");
    347 	else
    348 		panic("Serious error booting RAID!!");
    349 
    350 	/* put together some datastructures like the CCD device does.. This
    351 	 * lets us lock the device and what-not when it gets opened. */
    352 
    353 	raid_softc = (struct raid_softc *)
    354 		malloc(num * sizeof(struct raid_softc),
    355 		       M_RAIDFRAME, M_NOWAIT);
    356 	if (raid_softc == NULL) {
    357 		printf("WARNING: no memory for RAIDframe driver\n");
    358 		return;
    359 	}
    360 
    361 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    362 
    363 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    364 					      M_RAIDFRAME, M_NOWAIT);
    365 	if (raidrootdev == NULL) {
    366 		panic("No memory for RAIDframe driver!!?!?!");
    367 	}
    368 
    369 	for (raidID = 0; raidID < num; raidID++) {
    370 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    371 
    372 		raidrootdev[raidID].dv_class  = DV_DISK;
    373 		raidrootdev[raidID].dv_cfdata = NULL;
    374 		raidrootdev[raidID].dv_unit   = raidID;
    375 		raidrootdev[raidID].dv_parent = NULL;
    376 		raidrootdev[raidID].dv_flags  = 0;
    377 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    378 
    379 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    380 			  (RF_Raid_t *));
    381 		if (raidPtrs[raidID] == NULL) {
    382 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    383 			numraid = raidID;
    384 			return;
    385 		}
    386 	}
    387 
    388 #ifdef RAID_AUTOCONFIG
    389 	raidautoconfig = 1;
    390 #endif
    391 
    392 	/*
    393 	 * Register a finalizer which will be used to auto-config RAID
    394 	 * sets once all real hardware devices have been found.
    395 	 */
    396 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    397 		printf("WARNING: unable to register RAIDframe finalizer\n");
    398 }
    399 
    400 int
    401 rf_autoconfig(struct device *self)
    402 {
    403 	RF_AutoConfig_t *ac_list;
    404 	RF_ConfigSet_t *config_sets;
    405 
    406 	if (raidautoconfig == 0)
    407 		return (0);
    408 
    409 	/* XXX This code can only be run once. */
    410 	raidautoconfig = 0;
    411 
    412 	/* 1. locate all RAID components on the system */
    413 #ifdef DEBUG
    414 	printf("Searching for RAID components...\n");
    415 #endif
    416 	ac_list = rf_find_raid_components();
    417 
    418 	/* 2. Sort them into their respective sets. */
    419 	config_sets = rf_create_auto_sets(ac_list);
    420 
    421 	/*
    422 	 * 3. Evaluate each set andconfigure the valid ones.
    423 	 * This gets done in rf_buildroothack().
    424 	 */
    425 	rf_buildroothack(config_sets);
    426 
    427 	return (1);
    428 }
    429 
    430 void
    431 rf_buildroothack(RF_ConfigSet_t *config_sets)
    432 {
    433 	RF_ConfigSet_t *cset;
    434 	RF_ConfigSet_t *next_cset;
    435 	int retcode;
    436 	int raidID;
    437 	int rootID;
    438 	int num_root;
    439 
    440 	rootID = 0;
    441 	num_root = 0;
    442 	cset = config_sets;
    443 	while(cset != NULL ) {
    444 		next_cset = cset->next;
    445 		if (rf_have_enough_components(cset) &&
    446 		    cset->ac->clabel->autoconfigure==1) {
    447 			retcode = rf_auto_config_set(cset,&raidID);
    448 			if (!retcode) {
    449 				if (cset->rootable) {
    450 					rootID = raidID;
    451 					num_root++;
    452 				}
    453 			} else {
    454 				/* The autoconfig didn't work :( */
    455 #if DEBUG
    456 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    457 #endif
    458 				rf_release_all_vps(cset);
    459 			}
    460 		} else {
    461 			/* we're not autoconfiguring this set...
    462 			   release the associated resources */
    463 			rf_release_all_vps(cset);
    464 		}
    465 		/* cleanup */
    466 		rf_cleanup_config_set(cset);
    467 		cset = next_cset;
    468 	}
    469 
    470 	/* we found something bootable... */
    471 
    472 	if (num_root == 1) {
    473 		booted_device = &raidrootdev[rootID];
    474 	} else if (num_root > 1) {
    475 		/* we can't guess.. require the user to answer... */
    476 		boothowto |= RB_ASKNAME;
    477 	}
    478 }
    479 
    480 
    481 int
    482 raidsize(dev)
    483 	dev_t   dev;
    484 {
    485 	struct raid_softc *rs;
    486 	struct disklabel *lp;
    487 	int     part, unit, omask, size;
    488 
    489 	unit = raidunit(dev);
    490 	if (unit >= numraid)
    491 		return (-1);
    492 	rs = &raid_softc[unit];
    493 
    494 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    495 		return (-1);
    496 
    497 	part = DISKPART(dev);
    498 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    499 	lp = rs->sc_dkdev.dk_label;
    500 
    501 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    502 		return (-1);
    503 
    504 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    505 		size = -1;
    506 	else
    507 		size = lp->d_partitions[part].p_size *
    508 		    (lp->d_secsize / DEV_BSIZE);
    509 
    510 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    511 		return (-1);
    512 
    513 	return (size);
    514 
    515 }
    516 
    517 int
    518 raiddump(dev, blkno, va, size)
    519 	dev_t   dev;
    520 	daddr_t blkno;
    521 	caddr_t va;
    522 	size_t  size;
    523 {
    524 	/* Not implemented. */
    525 	return ENXIO;
    526 }
    527 /* ARGSUSED */
    528 int
    529 raidopen(dev, flags, fmt, p)
    530 	dev_t   dev;
    531 	int     flags, fmt;
    532 	struct proc *p;
    533 {
    534 	int     unit = raidunit(dev);
    535 	struct raid_softc *rs;
    536 	struct disklabel *lp;
    537 	int     part, pmask;
    538 	int     error = 0;
    539 
    540 	if (unit >= numraid)
    541 		return (ENXIO);
    542 	rs = &raid_softc[unit];
    543 
    544 	if ((error = raidlock(rs)) != 0)
    545 		return (error);
    546 	lp = rs->sc_dkdev.dk_label;
    547 
    548 	part = DISKPART(dev);
    549 	pmask = (1 << part);
    550 
    551 	if ((rs->sc_flags & RAIDF_INITED) &&
    552 	    (rs->sc_dkdev.dk_openmask == 0))
    553 		raidgetdisklabel(dev);
    554 
    555 	/* make sure that this partition exists */
    556 
    557 	if (part != RAW_PART) {
    558 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    559 		    ((part >= lp->d_npartitions) ||
    560 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    561 			error = ENXIO;
    562 			raidunlock(rs);
    563 			return (error);
    564 		}
    565 	}
    566 	/* Prevent this unit from being unconfigured while open. */
    567 	switch (fmt) {
    568 	case S_IFCHR:
    569 		rs->sc_dkdev.dk_copenmask |= pmask;
    570 		break;
    571 
    572 	case S_IFBLK:
    573 		rs->sc_dkdev.dk_bopenmask |= pmask;
    574 		break;
    575 	}
    576 
    577 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    578 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    579 		/* First one... mark things as dirty... Note that we *MUST*
    580 		 have done a configure before this.  I DO NOT WANT TO BE
    581 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    582 		 THAT THEY BELONG TOGETHER!!!!! */
    583 		/* XXX should check to see if we're only open for reading
    584 		   here... If so, we needn't do this, but then need some
    585 		   other way of keeping track of what's happened.. */
    586 
    587 		rf_markalldirty( raidPtrs[unit] );
    588 	}
    589 
    590 
    591 	rs->sc_dkdev.dk_openmask =
    592 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    593 
    594 	raidunlock(rs);
    595 
    596 	return (error);
    597 
    598 
    599 }
    600 /* ARGSUSED */
    601 int
    602 raidclose(dev, flags, fmt, p)
    603 	dev_t   dev;
    604 	int     flags, fmt;
    605 	struct proc *p;
    606 {
    607 	int     unit = raidunit(dev);
    608 	struct raid_softc *rs;
    609 	int     error = 0;
    610 	int     part;
    611 
    612 	if (unit >= numraid)
    613 		return (ENXIO);
    614 	rs = &raid_softc[unit];
    615 
    616 	if ((error = raidlock(rs)) != 0)
    617 		return (error);
    618 
    619 	part = DISKPART(dev);
    620 
    621 	/* ...that much closer to allowing unconfiguration... */
    622 	switch (fmt) {
    623 	case S_IFCHR:
    624 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    625 		break;
    626 
    627 	case S_IFBLK:
    628 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    629 		break;
    630 	}
    631 	rs->sc_dkdev.dk_openmask =
    632 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    633 
    634 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    635 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    636 		/* Last one... device is not unconfigured yet.
    637 		   Device shutdown has taken care of setting the
    638 		   clean bits if RAIDF_INITED is not set
    639 		   mark things as clean... */
    640 
    641 		rf_update_component_labels(raidPtrs[unit],
    642 						 RF_FINAL_COMPONENT_UPDATE);
    643 		if (doing_shutdown) {
    644 			/* last one, and we're going down, so
    645 			   lights out for this RAID set too. */
    646 			error = rf_Shutdown(raidPtrs[unit]);
    647 
    648 			/* It's no longer initialized... */
    649 			rs->sc_flags &= ~RAIDF_INITED;
    650 
    651 			/* Detach the disk. */
    652 			disk_detach(&rs->sc_dkdev);
    653 		}
    654 	}
    655 
    656 	raidunlock(rs);
    657 	return (0);
    658 
    659 }
    660 
    661 void
    662 raidstrategy(bp)
    663 	struct buf *bp;
    664 {
    665 	int s;
    666 
    667 	unsigned int raidID = raidunit(bp->b_dev);
    668 	RF_Raid_t *raidPtr;
    669 	struct raid_softc *rs = &raid_softc[raidID];
    670 	struct disklabel *lp;
    671 	int     wlabel;
    672 
    673 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    674 		bp->b_error = ENXIO;
    675 		bp->b_flags |= B_ERROR;
    676 		bp->b_resid = bp->b_bcount;
    677 		biodone(bp);
    678 		return;
    679 	}
    680 	if (raidID >= numraid || !raidPtrs[raidID]) {
    681 		bp->b_error = ENODEV;
    682 		bp->b_flags |= B_ERROR;
    683 		bp->b_resid = bp->b_bcount;
    684 		biodone(bp);
    685 		return;
    686 	}
    687 	raidPtr = raidPtrs[raidID];
    688 	if (!raidPtr->valid) {
    689 		bp->b_error = ENODEV;
    690 		bp->b_flags |= B_ERROR;
    691 		bp->b_resid = bp->b_bcount;
    692 		biodone(bp);
    693 		return;
    694 	}
    695 	if (bp->b_bcount == 0) {
    696 		db1_printf(("b_bcount is zero..\n"));
    697 		biodone(bp);
    698 		return;
    699 	}
    700 	lp = rs->sc_dkdev.dk_label;
    701 
    702 	/*
    703 	 * Do bounds checking and adjust transfer.  If there's an
    704 	 * error, the bounds check will flag that for us.
    705 	 */
    706 
    707 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    708 	if (DISKPART(bp->b_dev) != RAW_PART)
    709 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    710 			db1_printf(("Bounds check failed!!:%d %d\n",
    711 				(int) bp->b_blkno, (int) wlabel));
    712 			biodone(bp);
    713 			return;
    714 		}
    715 	s = splbio();
    716 
    717 	bp->b_resid = 0;
    718 
    719 	/* stuff it onto our queue */
    720 	BUFQ_PUT(&rs->buf_queue, bp);
    721 
    722 	raidstart(raidPtrs[raidID]);
    723 
    724 	splx(s);
    725 }
    726 /* ARGSUSED */
    727 int
    728 raidread(dev, uio, flags)
    729 	dev_t   dev;
    730 	struct uio *uio;
    731 	int     flags;
    732 {
    733 	int     unit = raidunit(dev);
    734 	struct raid_softc *rs;
    735 	int     part;
    736 
    737 	if (unit >= numraid)
    738 		return (ENXIO);
    739 	rs = &raid_softc[unit];
    740 
    741 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    742 		return (ENXIO);
    743 	part = DISKPART(dev);
    744 
    745 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    746 
    747 }
    748 /* ARGSUSED */
    749 int
    750 raidwrite(dev, uio, flags)
    751 	dev_t   dev;
    752 	struct uio *uio;
    753 	int     flags;
    754 {
    755 	int     unit = raidunit(dev);
    756 	struct raid_softc *rs;
    757 
    758 	if (unit >= numraid)
    759 		return (ENXIO);
    760 	rs = &raid_softc[unit];
    761 
    762 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    763 		return (ENXIO);
    764 
    765 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    766 
    767 }
    768 
    769 int
    770 raidioctl(dev, cmd, data, flag, p)
    771 	dev_t   dev;
    772 	u_long  cmd;
    773 	caddr_t data;
    774 	int     flag;
    775 	struct proc *p;
    776 {
    777 	int     unit = raidunit(dev);
    778 	int     error = 0;
    779 	int     part, pmask;
    780 	struct raid_softc *rs;
    781 	RF_Config_t *k_cfg, *u_cfg;
    782 	RF_Raid_t *raidPtr;
    783 	RF_RaidDisk_t *diskPtr;
    784 	RF_AccTotals_t *totals;
    785 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    786 	u_char *specific_buf;
    787 	int retcode = 0;
    788 	int row;
    789 	int column;
    790 	int raidid;
    791 	struct rf_recon_req *rrcopy, *rr;
    792 	RF_ComponentLabel_t *clabel;
    793 	RF_ComponentLabel_t ci_label;
    794 	RF_ComponentLabel_t **clabel_ptr;
    795 	RF_SingleComponent_t *sparePtr,*componentPtr;
    796 	RF_SingleComponent_t hot_spare;
    797 	RF_SingleComponent_t component;
    798 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    799 	int i, j, d;
    800 #ifdef __HAVE_OLD_DISKLABEL
    801 	struct disklabel newlabel;
    802 #endif
    803 
    804 	if (unit >= numraid)
    805 		return (ENXIO);
    806 	rs = &raid_softc[unit];
    807 	raidPtr = raidPtrs[unit];
    808 
    809 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    810 		(int) DISKPART(dev), (int) unit, (int) cmd));
    811 
    812 	/* Must be open for writes for these commands... */
    813 	switch (cmd) {
    814 	case DIOCSDINFO:
    815 	case DIOCWDINFO:
    816 #ifdef __HAVE_OLD_DISKLABEL
    817 	case ODIOCWDINFO:
    818 	case ODIOCSDINFO:
    819 #endif
    820 	case DIOCWLABEL:
    821 		if ((flag & FWRITE) == 0)
    822 			return (EBADF);
    823 	}
    824 
    825 	/* Must be initialized for these... */
    826 	switch (cmd) {
    827 	case DIOCGDINFO:
    828 	case DIOCSDINFO:
    829 	case DIOCWDINFO:
    830 #ifdef __HAVE_OLD_DISKLABEL
    831 	case ODIOCGDINFO:
    832 	case ODIOCWDINFO:
    833 	case ODIOCSDINFO:
    834 	case ODIOCGDEFLABEL:
    835 #endif
    836 	case DIOCGPART:
    837 	case DIOCWLABEL:
    838 	case DIOCGDEFLABEL:
    839 	case RAIDFRAME_SHUTDOWN:
    840 	case RAIDFRAME_REWRITEPARITY:
    841 	case RAIDFRAME_GET_INFO:
    842 	case RAIDFRAME_RESET_ACCTOTALS:
    843 	case RAIDFRAME_GET_ACCTOTALS:
    844 	case RAIDFRAME_KEEP_ACCTOTALS:
    845 	case RAIDFRAME_GET_SIZE:
    846 	case RAIDFRAME_FAIL_DISK:
    847 	case RAIDFRAME_COPYBACK:
    848 	case RAIDFRAME_CHECK_RECON_STATUS:
    849 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    850 	case RAIDFRAME_GET_COMPONENT_LABEL:
    851 	case RAIDFRAME_SET_COMPONENT_LABEL:
    852 	case RAIDFRAME_ADD_HOT_SPARE:
    853 	case RAIDFRAME_REMOVE_HOT_SPARE:
    854 	case RAIDFRAME_INIT_LABELS:
    855 	case RAIDFRAME_REBUILD_IN_PLACE:
    856 	case RAIDFRAME_CHECK_PARITY:
    857 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    858 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    859 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    860 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    861 	case RAIDFRAME_SET_AUTOCONFIG:
    862 	case RAIDFRAME_SET_ROOT:
    863 	case RAIDFRAME_DELETE_COMPONENT:
    864 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    865 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    866 			return (ENXIO);
    867 	}
    868 
    869 	switch (cmd) {
    870 
    871 		/* configure the system */
    872 	case RAIDFRAME_CONFIGURE:
    873 
    874 		if (raidPtr->valid) {
    875 			/* There is a valid RAID set running on this unit! */
    876 			printf("raid%d: Device already configured!\n",unit);
    877 			return(EINVAL);
    878 		}
    879 
    880 		/* copy-in the configuration information */
    881 		/* data points to a pointer to the configuration structure */
    882 
    883 		u_cfg = *((RF_Config_t **) data);
    884 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    885 		if (k_cfg == NULL) {
    886 			return (ENOMEM);
    887 		}
    888 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    889 		    sizeof(RF_Config_t));
    890 		if (retcode) {
    891 			RF_Free(k_cfg, sizeof(RF_Config_t));
    892 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    893 				retcode));
    894 			return (retcode);
    895 		}
    896 		/* allocate a buffer for the layout-specific data, and copy it
    897 		 * in */
    898 		if (k_cfg->layoutSpecificSize) {
    899 			if (k_cfg->layoutSpecificSize > 10000) {
    900 				/* sanity check */
    901 				RF_Free(k_cfg, sizeof(RF_Config_t));
    902 				return (EINVAL);
    903 			}
    904 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    905 			    (u_char *));
    906 			if (specific_buf == NULL) {
    907 				RF_Free(k_cfg, sizeof(RF_Config_t));
    908 				return (ENOMEM);
    909 			}
    910 			retcode = copyin(k_cfg->layoutSpecific,
    911 			    (caddr_t) specific_buf,
    912 			    k_cfg->layoutSpecificSize);
    913 			if (retcode) {
    914 				RF_Free(k_cfg, sizeof(RF_Config_t));
    915 				RF_Free(specific_buf,
    916 					k_cfg->layoutSpecificSize);
    917 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    918 					retcode));
    919 				return (retcode);
    920 			}
    921 		} else
    922 			specific_buf = NULL;
    923 		k_cfg->layoutSpecific = specific_buf;
    924 
    925 		/* should do some kind of sanity check on the configuration.
    926 		 * Store the sum of all the bytes in the last byte? */
    927 
    928 		/* configure the system */
    929 
    930 		/*
    931 		 * Clear the entire RAID descriptor, just to make sure
    932 		 *  there is no stale data left in the case of a
    933 		 *  reconfiguration
    934 		 */
    935 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    936 		raidPtr->raidid = unit;
    937 
    938 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    939 
    940 		if (retcode == 0) {
    941 
    942 			/* allow this many simultaneous IO's to
    943 			   this RAID device */
    944 			raidPtr->openings = RAIDOUTSTANDING;
    945 
    946 			raidinit(raidPtr);
    947 			rf_markalldirty(raidPtr);
    948 		}
    949 		/* free the buffers.  No return code here. */
    950 		if (k_cfg->layoutSpecificSize) {
    951 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    952 		}
    953 		RF_Free(k_cfg, sizeof(RF_Config_t));
    954 
    955 		return (retcode);
    956 
    957 		/* shutdown the system */
    958 	case RAIDFRAME_SHUTDOWN:
    959 
    960 		if ((error = raidlock(rs)) != 0)
    961 			return (error);
    962 
    963 		/*
    964 		 * If somebody has a partition mounted, we shouldn't
    965 		 * shutdown.
    966 		 */
    967 
    968 		part = DISKPART(dev);
    969 		pmask = (1 << part);
    970 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    971 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    972 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    973 			raidunlock(rs);
    974 			return (EBUSY);
    975 		}
    976 
    977 		retcode = rf_Shutdown(raidPtr);
    978 
    979 		/* It's no longer initialized... */
    980 		rs->sc_flags &= ~RAIDF_INITED;
    981 
    982 		/* Detach the disk. */
    983 		disk_detach(&rs->sc_dkdev);
    984 
    985 		raidunlock(rs);
    986 
    987 		return (retcode);
    988 	case RAIDFRAME_GET_COMPONENT_LABEL:
    989 		clabel_ptr = (RF_ComponentLabel_t **) data;
    990 		/* need to read the component label for the disk indicated
    991 		   by row,column in clabel */
    992 
    993 		/* For practice, let's get it directly fromdisk, rather
    994 		   than from the in-core copy */
    995 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    996 			   (RF_ComponentLabel_t *));
    997 		if (clabel == NULL)
    998 			return (ENOMEM);
    999 
   1000 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1001 
   1002 		retcode = copyin( *clabel_ptr, clabel,
   1003 				  sizeof(RF_ComponentLabel_t));
   1004 
   1005 		if (retcode) {
   1006 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1007 			return(retcode);
   1008 		}
   1009 
   1010 		row = clabel->row;
   1011 		column = clabel->column;
   1012 
   1013 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1014 		    (column < 0) || (column >= raidPtr->numCol +
   1015 				     raidPtr->numSpare)) {
   1016 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1017 			return(EINVAL);
   1018 		}
   1019 
   1020 		raidread_component_label(raidPtr->Disks[row][column].dev,
   1021 				raidPtr->raid_cinfo[row][column].ci_vp,
   1022 				clabel );
   1023 
   1024 		retcode = copyout((caddr_t) clabel,
   1025 				  (caddr_t) *clabel_ptr,
   1026 				  sizeof(RF_ComponentLabel_t));
   1027 		RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1028 		return (retcode);
   1029 
   1030 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1031 		clabel = (RF_ComponentLabel_t *) data;
   1032 
   1033 		/* XXX check the label for valid stuff... */
   1034 		/* Note that some things *should not* get modified --
   1035 		   the user should be re-initing the labels instead of
   1036 		   trying to patch things.
   1037 		   */
   1038 
   1039 		raidid = raidPtr->raidid;
   1040 		printf("raid%d: Got component label:\n", raidid);
   1041 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1042 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1043 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1044 		printf("raid%d: Row: %d\n", raidid, clabel->row);
   1045 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1046 		printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
   1047 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1048 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1049 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1050 
   1051 		row = clabel->row;
   1052 		column = clabel->column;
   1053 
   1054 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1055 		    (column < 0) || (column >= raidPtr->numCol)) {
   1056 			return(EINVAL);
   1057 		}
   1058 
   1059 		/* XXX this isn't allowed to do anything for now :-) */
   1060 
   1061 		/* XXX and before it is, we need to fill in the rest
   1062 		   of the fields!?!?!?! */
   1063 #if 0
   1064 		raidwrite_component_label(
   1065                             raidPtr->Disks[row][column].dev,
   1066 			    raidPtr->raid_cinfo[row][column].ci_vp,
   1067 			    clabel );
   1068 #endif
   1069 		return (0);
   1070 
   1071 	case RAIDFRAME_INIT_LABELS:
   1072 		clabel = (RF_ComponentLabel_t *) data;
   1073 		/*
   1074 		   we only want the serial number from
   1075 		   the above.  We get all the rest of the information
   1076 		   from the config that was used to create this RAID
   1077 		   set.
   1078 		   */
   1079 
   1080 		raidPtr->serial_number = clabel->serial_number;
   1081 
   1082 		raid_init_component_label(raidPtr, &ci_label);
   1083 		ci_label.serial_number = clabel->serial_number;
   1084 
   1085 		for(row=0;row<raidPtr->numRow;row++) {
   1086 			ci_label.row = row;
   1087 			for(column=0;column<raidPtr->numCol;column++) {
   1088 				diskPtr = &raidPtr->Disks[row][column];
   1089 				if (!RF_DEAD_DISK(diskPtr->status)) {
   1090 					ci_label.partitionSize = diskPtr->partitionSize;
   1091 					ci_label.column = column;
   1092 					raidwrite_component_label(
   1093 					  raidPtr->Disks[row][column].dev,
   1094 					  raidPtr->raid_cinfo[row][column].ci_vp,
   1095 					  &ci_label );
   1096 				}
   1097 			}
   1098 		}
   1099 
   1100 		return (retcode);
   1101 	case RAIDFRAME_SET_AUTOCONFIG:
   1102 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1103 		printf("raid%d: New autoconfig value is: %d\n",
   1104 		       raidPtr->raidid, d);
   1105 		*(int *) data = d;
   1106 		return (retcode);
   1107 
   1108 	case RAIDFRAME_SET_ROOT:
   1109 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1110 		printf("raid%d: New rootpartition value is: %d\n",
   1111 		       raidPtr->raidid, d);
   1112 		*(int *) data = d;
   1113 		return (retcode);
   1114 
   1115 		/* initialize all parity */
   1116 	case RAIDFRAME_REWRITEPARITY:
   1117 
   1118 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1119 			/* Parity for RAID 0 is trivially correct */
   1120 			raidPtr->parity_good = RF_RAID_CLEAN;
   1121 			return(0);
   1122 		}
   1123 
   1124 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1125 			/* Re-write is already in progress! */
   1126 			return(EINVAL);
   1127 		}
   1128 
   1129 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1130 					   rf_RewriteParityThread,
   1131 					   raidPtr,"raid_parity");
   1132 		return (retcode);
   1133 
   1134 
   1135 	case RAIDFRAME_ADD_HOT_SPARE:
   1136 		sparePtr = (RF_SingleComponent_t *) data;
   1137 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1138 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1139 		return(retcode);
   1140 
   1141 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1142 		return(retcode);
   1143 
   1144 	case RAIDFRAME_DELETE_COMPONENT:
   1145 		componentPtr = (RF_SingleComponent_t *)data;
   1146 		memcpy( &component, componentPtr,
   1147 			sizeof(RF_SingleComponent_t));
   1148 		retcode = rf_delete_component(raidPtr, &component);
   1149 		return(retcode);
   1150 
   1151 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1152 		componentPtr = (RF_SingleComponent_t *)data;
   1153 		memcpy( &component, componentPtr,
   1154 			sizeof(RF_SingleComponent_t));
   1155 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1156 		return(retcode);
   1157 
   1158 	case RAIDFRAME_REBUILD_IN_PLACE:
   1159 
   1160 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1161 			/* Can't do this on a RAID 0!! */
   1162 			return(EINVAL);
   1163 		}
   1164 
   1165 		if (raidPtr->recon_in_progress == 1) {
   1166 			/* a reconstruct is already in progress! */
   1167 			return(EINVAL);
   1168 		}
   1169 
   1170 		componentPtr = (RF_SingleComponent_t *) data;
   1171 		memcpy( &component, componentPtr,
   1172 			sizeof(RF_SingleComponent_t));
   1173 		row = component.row;
   1174 		column = component.column;
   1175 
   1176 		if ((row < 0) || (row >= raidPtr->numRow) ||
   1177 		    (column < 0) || (column >= raidPtr->numCol)) {
   1178 			return(EINVAL);
   1179 		}
   1180 
   1181 		RF_LOCK_MUTEX(raidPtr->mutex);
   1182 		if ((raidPtr->Disks[row][column].status == rf_ds_optimal) &&
   1183 		    (raidPtr->numFailures > 0)) {
   1184 			/* XXX 0 above shouldn't be constant!!! */
   1185 			/* some component other than this has failed.
   1186 			   Let's not make things worse than they already
   1187 			   are... */
   1188 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1189 			       raidPtr->raidid);
   1190 			printf("raid%d:     Row: %d Col: %d   Too many failures.\n",
   1191 			       raidPtr->raidid, row, column);
   1192 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1193 			return (EINVAL);
   1194 		}
   1195 		if (raidPtr->Disks[row][column].status ==
   1196 		    rf_ds_reconstructing) {
   1197 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1198 			       raidPtr->raidid);
   1199 			printf("raid%d:    Row: %d Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, row, column);
   1200 
   1201 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1202 			return (EINVAL);
   1203 		}
   1204 		if (raidPtr->Disks[row][column].status == rf_ds_spared) {
   1205 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1206 			return (EINVAL);
   1207 		}
   1208 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1209 
   1210 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1211 		if (rrcopy == NULL)
   1212 			return(ENOMEM);
   1213 
   1214 		rrcopy->raidPtr = (void *) raidPtr;
   1215 		rrcopy->row = row;
   1216 		rrcopy->col = column;
   1217 
   1218 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1219 					   rf_ReconstructInPlaceThread,
   1220 					   rrcopy,"raid_reconip");
   1221 		return(retcode);
   1222 
   1223 	case RAIDFRAME_GET_INFO:
   1224 		if (!raidPtr->valid)
   1225 			return (ENODEV);
   1226 		ucfgp = (RF_DeviceConfig_t **) data;
   1227 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1228 			  (RF_DeviceConfig_t *));
   1229 		if (d_cfg == NULL)
   1230 			return (ENOMEM);
   1231 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1232 		d_cfg->rows = raidPtr->numRow;
   1233 		d_cfg->cols = raidPtr->numCol;
   1234 		d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
   1235 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1236 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1237 			return (ENOMEM);
   1238 		}
   1239 		d_cfg->nspares = raidPtr->numSpare;
   1240 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1241 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1242 			return (ENOMEM);
   1243 		}
   1244 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1245 		d = 0;
   1246 		for (i = 0; i < d_cfg->rows; i++) {
   1247 			for (j = 0; j < d_cfg->cols; j++) {
   1248 				d_cfg->devs[d] = raidPtr->Disks[i][j];
   1249 				d++;
   1250 			}
   1251 		}
   1252 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1253 			d_cfg->spares[i] = raidPtr->Disks[0][j];
   1254 		}
   1255 		retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
   1256 				  sizeof(RF_DeviceConfig_t));
   1257 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1258 
   1259 		return (retcode);
   1260 
   1261 	case RAIDFRAME_CHECK_PARITY:
   1262 		*(int *) data = raidPtr->parity_good;
   1263 		return (0);
   1264 
   1265 	case RAIDFRAME_RESET_ACCTOTALS:
   1266 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1267 		return (0);
   1268 
   1269 	case RAIDFRAME_GET_ACCTOTALS:
   1270 		totals = (RF_AccTotals_t *) data;
   1271 		*totals = raidPtr->acc_totals;
   1272 		return (0);
   1273 
   1274 	case RAIDFRAME_KEEP_ACCTOTALS:
   1275 		raidPtr->keep_acc_totals = *(int *)data;
   1276 		return (0);
   1277 
   1278 	case RAIDFRAME_GET_SIZE:
   1279 		*(int *) data = raidPtr->totalSectors;
   1280 		return (0);
   1281 
   1282 		/* fail a disk & optionally start reconstruction */
   1283 	case RAIDFRAME_FAIL_DISK:
   1284 
   1285 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1286 			/* Can't do this on a RAID 0!! */
   1287 			return(EINVAL);
   1288 		}
   1289 
   1290 		rr = (struct rf_recon_req *) data;
   1291 
   1292 		if (rr->row < 0 || rr->row >= raidPtr->numRow
   1293 		    || rr->col < 0 || rr->col >= raidPtr->numCol)
   1294 			return (EINVAL);
   1295 
   1296 
   1297 		RF_LOCK_MUTEX(raidPtr->mutex);
   1298 		if ((raidPtr->Disks[rr->row][rr->col].status ==
   1299 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1300 			/* some other component has failed.  Let's not make
   1301 			   things worse. XXX wrong for RAID6 */
   1302 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1303 			return (EINVAL);
   1304 		}
   1305 		if (raidPtr->Disks[rr->row][rr->col].status == rf_ds_spared) {
   1306 			/* Can't fail a spared disk! */
   1307 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1308 			return (EINVAL);
   1309 		}
   1310 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1311 
   1312 		/* make a copy of the recon request so that we don't rely on
   1313 		 * the user's buffer */
   1314 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1315 		if (rrcopy == NULL)
   1316 			return(ENOMEM);
   1317 		memcpy(rrcopy, rr, sizeof(*rr));
   1318 		rrcopy->raidPtr = (void *) raidPtr;
   1319 
   1320 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1321 					   rf_ReconThread,
   1322 					   rrcopy,"raid_recon");
   1323 		return (0);
   1324 
   1325 		/* invoke a copyback operation after recon on whatever disk
   1326 		 * needs it, if any */
   1327 	case RAIDFRAME_COPYBACK:
   1328 
   1329 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1330 			/* This makes no sense on a RAID 0!! */
   1331 			return(EINVAL);
   1332 		}
   1333 
   1334 		if (raidPtr->copyback_in_progress == 1) {
   1335 			/* Copyback is already in progress! */
   1336 			return(EINVAL);
   1337 		}
   1338 
   1339 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1340 					   rf_CopybackThread,
   1341 					   raidPtr,"raid_copyback");
   1342 		return (retcode);
   1343 
   1344 		/* return the percentage completion of reconstruction */
   1345 	case RAIDFRAME_CHECK_RECON_STATUS:
   1346 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1347 			/* This makes no sense on a RAID 0, so tell the
   1348 			   user it's done. */
   1349 			*(int *) data = 100;
   1350 			return(0);
   1351 		}
   1352 		row = 0; /* XXX we only consider a single row... */
   1353 		if (raidPtr->status[row] != rf_rs_reconstructing)
   1354 			*(int *) data = 100;
   1355 		else
   1356 			*(int *) data = raidPtr->reconControl[row]->percentComplete;
   1357 		return (0);
   1358 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1359 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1360 		row = 0; /* XXX we only consider a single row... */
   1361 		if (raidPtr->status[row] != rf_rs_reconstructing) {
   1362 			progressInfo.remaining = 0;
   1363 			progressInfo.completed = 100;
   1364 			progressInfo.total = 100;
   1365 		} else {
   1366 			progressInfo.total =
   1367 				raidPtr->reconControl[row]->numRUsTotal;
   1368 			progressInfo.completed =
   1369 				raidPtr->reconControl[row]->numRUsComplete;
   1370 			progressInfo.remaining = progressInfo.total -
   1371 				progressInfo.completed;
   1372 		}
   1373 		retcode = copyout((caddr_t) &progressInfo,
   1374 				  (caddr_t) *progressInfoPtr,
   1375 				  sizeof(RF_ProgressInfo_t));
   1376 		return (retcode);
   1377 
   1378 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1379 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1380 			/* This makes no sense on a RAID 0, so tell the
   1381 			   user it's done. */
   1382 			*(int *) data = 100;
   1383 			return(0);
   1384 		}
   1385 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1386 			*(int *) data = 100 *
   1387 				raidPtr->parity_rewrite_stripes_done /
   1388 				raidPtr->Layout.numStripe;
   1389 		} else {
   1390 			*(int *) data = 100;
   1391 		}
   1392 		return (0);
   1393 
   1394 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1395 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1396 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1397 			progressInfo.total = raidPtr->Layout.numStripe;
   1398 			progressInfo.completed =
   1399 				raidPtr->parity_rewrite_stripes_done;
   1400 			progressInfo.remaining = progressInfo.total -
   1401 				progressInfo.completed;
   1402 		} else {
   1403 			progressInfo.remaining = 0;
   1404 			progressInfo.completed = 100;
   1405 			progressInfo.total = 100;
   1406 		}
   1407 		retcode = copyout((caddr_t) &progressInfo,
   1408 				  (caddr_t) *progressInfoPtr,
   1409 				  sizeof(RF_ProgressInfo_t));
   1410 		return (retcode);
   1411 
   1412 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1413 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1414 			/* This makes no sense on a RAID 0 */
   1415 			*(int *) data = 100;
   1416 			return(0);
   1417 		}
   1418 		if (raidPtr->copyback_in_progress == 1) {
   1419 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1420 				raidPtr->Layout.numStripe;
   1421 		} else {
   1422 			*(int *) data = 100;
   1423 		}
   1424 		return (0);
   1425 
   1426 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1427 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1428 		if (raidPtr->copyback_in_progress == 1) {
   1429 			progressInfo.total = raidPtr->Layout.numStripe;
   1430 			progressInfo.completed =
   1431 				raidPtr->copyback_stripes_done;
   1432 			progressInfo.remaining = progressInfo.total -
   1433 				progressInfo.completed;
   1434 		} else {
   1435 			progressInfo.remaining = 0;
   1436 			progressInfo.completed = 100;
   1437 			progressInfo.total = 100;
   1438 		}
   1439 		retcode = copyout((caddr_t) &progressInfo,
   1440 				  (caddr_t) *progressInfoPtr,
   1441 				  sizeof(RF_ProgressInfo_t));
   1442 		return (retcode);
   1443 
   1444 		/* the sparetable daemon calls this to wait for the kernel to
   1445 		 * need a spare table. this ioctl does not return until a
   1446 		 * spare table is needed. XXX -- calling mpsleep here in the
   1447 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1448 		 * -- I should either compute the spare table in the kernel,
   1449 		 * or have a different -- XXX XXX -- interface (a different
   1450 		 * character device) for delivering the table     -- XXX */
   1451 #if 0
   1452 	case RAIDFRAME_SPARET_WAIT:
   1453 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1454 		while (!rf_sparet_wait_queue)
   1455 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1456 		waitreq = rf_sparet_wait_queue;
   1457 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1458 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1459 
   1460 		/* structure assignment */
   1461 		*((RF_SparetWait_t *) data) = *waitreq;
   1462 
   1463 		RF_Free(waitreq, sizeof(*waitreq));
   1464 		return (0);
   1465 
   1466 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1467 		 * code in it that will cause the dameon to exit */
   1468 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1469 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1470 		waitreq->fcol = -1;
   1471 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1472 		waitreq->next = rf_sparet_wait_queue;
   1473 		rf_sparet_wait_queue = waitreq;
   1474 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1475 		wakeup(&rf_sparet_wait_queue);
   1476 		return (0);
   1477 
   1478 		/* used by the spare table daemon to deliver a spare table
   1479 		 * into the kernel */
   1480 	case RAIDFRAME_SEND_SPARET:
   1481 
   1482 		/* install the spare table */
   1483 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1484 
   1485 		/* respond to the requestor.  the return status of the spare
   1486 		 * table installation is passed in the "fcol" field */
   1487 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1488 		waitreq->fcol = retcode;
   1489 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1490 		waitreq->next = rf_sparet_resp_queue;
   1491 		rf_sparet_resp_queue = waitreq;
   1492 		wakeup(&rf_sparet_resp_queue);
   1493 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1494 
   1495 		return (retcode);
   1496 #endif
   1497 
   1498 	default:
   1499 		break; /* fall through to the os-specific code below */
   1500 
   1501 	}
   1502 
   1503 	if (!raidPtr->valid)
   1504 		return (EINVAL);
   1505 
   1506 	/*
   1507 	 * Add support for "regular" device ioctls here.
   1508 	 */
   1509 
   1510 	switch (cmd) {
   1511 	case DIOCGDINFO:
   1512 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1513 		break;
   1514 #ifdef __HAVE_OLD_DISKLABEL
   1515 	case ODIOCGDINFO:
   1516 		newlabel = *(rs->sc_dkdev.dk_label);
   1517 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1518 			return ENOTTY;
   1519 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1520 		break;
   1521 #endif
   1522 
   1523 	case DIOCGPART:
   1524 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1525 		((struct partinfo *) data)->part =
   1526 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1527 		break;
   1528 
   1529 	case DIOCWDINFO:
   1530 	case DIOCSDINFO:
   1531 #ifdef __HAVE_OLD_DISKLABEL
   1532 	case ODIOCWDINFO:
   1533 	case ODIOCSDINFO:
   1534 #endif
   1535 	{
   1536 		struct disklabel *lp;
   1537 #ifdef __HAVE_OLD_DISKLABEL
   1538 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1539 			memset(&newlabel, 0, sizeof newlabel);
   1540 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1541 			lp = &newlabel;
   1542 		} else
   1543 #endif
   1544 		lp = (struct disklabel *)data;
   1545 
   1546 		if ((error = raidlock(rs)) != 0)
   1547 			return (error);
   1548 
   1549 		rs->sc_flags |= RAIDF_LABELLING;
   1550 
   1551 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1552 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1553 		if (error == 0) {
   1554 			if (cmd == DIOCWDINFO
   1555 #ifdef __HAVE_OLD_DISKLABEL
   1556 			    || cmd == ODIOCWDINFO
   1557 #endif
   1558 			   )
   1559 				error = writedisklabel(RAIDLABELDEV(dev),
   1560 				    raidstrategy, rs->sc_dkdev.dk_label,
   1561 				    rs->sc_dkdev.dk_cpulabel);
   1562 		}
   1563 		rs->sc_flags &= ~RAIDF_LABELLING;
   1564 
   1565 		raidunlock(rs);
   1566 
   1567 		if (error)
   1568 			return (error);
   1569 		break;
   1570 	}
   1571 
   1572 	case DIOCWLABEL:
   1573 		if (*(int *) data != 0)
   1574 			rs->sc_flags |= RAIDF_WLABEL;
   1575 		else
   1576 			rs->sc_flags &= ~RAIDF_WLABEL;
   1577 		break;
   1578 
   1579 	case DIOCGDEFLABEL:
   1580 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1581 		break;
   1582 
   1583 #ifdef __HAVE_OLD_DISKLABEL
   1584 	case ODIOCGDEFLABEL:
   1585 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1586 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1587 			return ENOTTY;
   1588 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1589 		break;
   1590 #endif
   1591 
   1592 	default:
   1593 		retcode = ENOTTY;
   1594 	}
   1595 	return (retcode);
   1596 
   1597 }
   1598 
   1599 
   1600 /* raidinit -- complete the rest of the initialization for the
   1601    RAIDframe device.  */
   1602 
   1603 
   1604 static void
   1605 raidinit(raidPtr)
   1606 	RF_Raid_t *raidPtr;
   1607 {
   1608 	struct raid_softc *rs;
   1609 	int     unit;
   1610 
   1611 	unit = raidPtr->raidid;
   1612 
   1613 	rs = &raid_softc[unit];
   1614 
   1615 	/* XXX should check return code first... */
   1616 	rs->sc_flags |= RAIDF_INITED;
   1617 
   1618 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1619 
   1620 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1621 
   1622 	/* disk_attach actually creates space for the CPU disklabel, among
   1623 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1624 	 * with disklabels. */
   1625 
   1626 	disk_attach(&rs->sc_dkdev);
   1627 
   1628 	/* XXX There may be a weird interaction here between this, and
   1629 	 * protectedSectors, as used in RAIDframe.  */
   1630 
   1631 	rs->sc_size = raidPtr->totalSectors;
   1632 
   1633 }
   1634 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1635 /* wake up the daemon & tell it to get us a spare table
   1636  * XXX
   1637  * the entries in the queues should be tagged with the raidPtr
   1638  * so that in the extremely rare case that two recons happen at once,
   1639  * we know for which device were requesting a spare table
   1640  * XXX
   1641  *
   1642  * XXX This code is not currently used. GO
   1643  */
   1644 int
   1645 rf_GetSpareTableFromDaemon(req)
   1646 	RF_SparetWait_t *req;
   1647 {
   1648 	int     retcode;
   1649 
   1650 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1651 	req->next = rf_sparet_wait_queue;
   1652 	rf_sparet_wait_queue = req;
   1653 	wakeup(&rf_sparet_wait_queue);
   1654 
   1655 	/* mpsleep unlocks the mutex */
   1656 	while (!rf_sparet_resp_queue) {
   1657 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1658 		    "raidframe getsparetable", 0);
   1659 	}
   1660 	req = rf_sparet_resp_queue;
   1661 	rf_sparet_resp_queue = req->next;
   1662 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1663 
   1664 	retcode = req->fcol;
   1665 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1666 					 * alloc'd */
   1667 	return (retcode);
   1668 }
   1669 #endif
   1670 
   1671 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1672  * bp & passes it down.
   1673  * any calls originating in the kernel must use non-blocking I/O
   1674  * do some extra sanity checking to return "appropriate" error values for
   1675  * certain conditions (to make some standard utilities work)
   1676  *
   1677  * Formerly known as: rf_DoAccessKernel
   1678  */
   1679 void
   1680 raidstart(raidPtr)
   1681 	RF_Raid_t *raidPtr;
   1682 {
   1683 	RF_SectorCount_t num_blocks, pb, sum;
   1684 	RF_RaidAddr_t raid_addr;
   1685 	struct partition *pp;
   1686 	daddr_t blocknum;
   1687 	int     unit;
   1688 	struct raid_softc *rs;
   1689 	int     do_async;
   1690 	struct buf *bp;
   1691 
   1692 	unit = raidPtr->raidid;
   1693 	rs = &raid_softc[unit];
   1694 
   1695 	/* quick check to see if anything has died recently */
   1696 	RF_LOCK_MUTEX(raidPtr->mutex);
   1697 	if (raidPtr->numNewFailures > 0) {
   1698 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1699 		rf_update_component_labels(raidPtr,
   1700 					   RF_NORMAL_COMPONENT_UPDATE);
   1701 		RF_LOCK_MUTEX(raidPtr->mutex);
   1702 		raidPtr->numNewFailures--;
   1703 	}
   1704 
   1705 	/* Check to see if we're at the limit... */
   1706 	while (raidPtr->openings > 0) {
   1707 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1708 
   1709 		/* get the next item, if any, from the queue */
   1710 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1711 			/* nothing more to do */
   1712 			return;
   1713 		}
   1714 
   1715 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1716 		 * partition.. Need to make it absolute to the underlying
   1717 		 * device.. */
   1718 
   1719 		blocknum = bp->b_blkno;
   1720 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1721 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1722 			blocknum += pp->p_offset;
   1723 		}
   1724 
   1725 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1726 			    (int) blocknum));
   1727 
   1728 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1729 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1730 
   1731 		/* *THIS* is where we adjust what block we're going to...
   1732 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1733 		raid_addr = blocknum;
   1734 
   1735 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1736 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1737 		sum = raid_addr + num_blocks + pb;
   1738 		if (1 || rf_debugKernelAccess) {
   1739 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1740 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1741 				    (int) pb, (int) bp->b_resid));
   1742 		}
   1743 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1744 		    || (sum < num_blocks) || (sum < pb)) {
   1745 			bp->b_error = ENOSPC;
   1746 			bp->b_flags |= B_ERROR;
   1747 			bp->b_resid = bp->b_bcount;
   1748 			biodone(bp);
   1749 			RF_LOCK_MUTEX(raidPtr->mutex);
   1750 			continue;
   1751 		}
   1752 		/*
   1753 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1754 		 */
   1755 
   1756 		if (bp->b_bcount & raidPtr->sectorMask) {
   1757 			bp->b_error = EINVAL;
   1758 			bp->b_flags |= B_ERROR;
   1759 			bp->b_resid = bp->b_bcount;
   1760 			biodone(bp);
   1761 			RF_LOCK_MUTEX(raidPtr->mutex);
   1762 			continue;
   1763 
   1764 		}
   1765 		db1_printf(("Calling DoAccess..\n"));
   1766 
   1767 
   1768 		RF_LOCK_MUTEX(raidPtr->mutex);
   1769 		raidPtr->openings--;
   1770 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1771 
   1772 		/*
   1773 		 * Everything is async.
   1774 		 */
   1775 		do_async = 1;
   1776 
   1777 		disk_busy(&rs->sc_dkdev);
   1778 
   1779 		/* XXX we're still at splbio() here... do we *really*
   1780 		   need to be? */
   1781 
   1782 		/* don't ever condition on bp->b_flags & B_WRITE.
   1783 		 * always condition on B_READ instead */
   1784 
   1785 		bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1786 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1787 				      do_async, raid_addr, num_blocks,
   1788 				      bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1789 
   1790 		if (bp->b_error) {
   1791 			bp->b_flags |= B_ERROR;
   1792 		}
   1793 
   1794 		RF_LOCK_MUTEX(raidPtr->mutex);
   1795 	}
   1796 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1797 }
   1798 
   1799 
   1800 
   1801 
   1802 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1803 
   1804 int
   1805 rf_DispatchKernelIO(queue, req)
   1806 	RF_DiskQueue_t *queue;
   1807 	RF_DiskQueueData_t *req;
   1808 {
   1809 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1810 	struct buf *bp;
   1811 	struct raidbuf *raidbp = NULL;
   1812 
   1813 	req->queue = queue;
   1814 
   1815 #if DIAGNOSTIC
   1816 	if (queue->raidPtr->raidid >= numraid) {
   1817 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1818 		    numraid);
   1819 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1820 	}
   1821 #endif
   1822 
   1823 	bp = req->bp;
   1824 #if 1
   1825 	/* XXX when there is a physical disk failure, someone is passing us a
   1826 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1827 	 * without taking a performance hit... (not sure where the real bug
   1828 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1829 
   1830 	if (bp->b_flags & B_ERROR) {
   1831 		bp->b_flags &= ~B_ERROR;
   1832 	}
   1833 	if (bp->b_error != 0) {
   1834 		bp->b_error = 0;
   1835 	}
   1836 #endif
   1837 	raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
   1838 
   1839 	/*
   1840 	 * context for raidiodone
   1841 	 */
   1842 	raidbp->rf_obp = bp;
   1843 	raidbp->req = req;
   1844 
   1845 	LIST_INIT(&raidbp->rf_buf.b_dep);
   1846 
   1847 	switch (req->type) {
   1848 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1849 		/* XXX need to do something extra here.. */
   1850 		/* I'm leaving this in, as I've never actually seen it used,
   1851 		 * and I'd like folks to report it... GO */
   1852 		printf(("WAKEUP CALLED\n"));
   1853 		queue->numOutstanding++;
   1854 
   1855 		/* XXX need to glue the original buffer into this??  */
   1856 
   1857 		KernelWakeupFunc(&raidbp->rf_buf);
   1858 		break;
   1859 
   1860 	case RF_IO_TYPE_READ:
   1861 	case RF_IO_TYPE_WRITE:
   1862 
   1863 		if (req->tracerec) {
   1864 			RF_ETIMER_START(req->tracerec->timer);
   1865 		}
   1866 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1867 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1868 		    req->sectorOffset, req->numSector,
   1869 		    req->buf, KernelWakeupFunc, (void *) req,
   1870 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1871 
   1872 		if (rf_debugKernelAccess) {
   1873 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1874 				(long) bp->b_blkno));
   1875 		}
   1876 		queue->numOutstanding++;
   1877 		queue->last_deq_sector = req->sectorOffset;
   1878 		/* acc wouldn't have been let in if there were any pending
   1879 		 * reqs at any other priority */
   1880 		queue->curPriority = req->priority;
   1881 
   1882 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1883 			    req->type, queue->raidPtr->raidid,
   1884 			    queue->row, queue->col));
   1885 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1886 			(int) req->sectorOffset, (int) req->numSector,
   1887 			(int) (req->numSector <<
   1888 			    queue->raidPtr->logBytesPerSector),
   1889 			(int) queue->raidPtr->logBytesPerSector));
   1890 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1891 			raidbp->rf_buf.b_vp->v_numoutput++;
   1892 		}
   1893 		VOP_STRATEGY(&raidbp->rf_buf);
   1894 
   1895 		break;
   1896 
   1897 	default:
   1898 		panic("bad req->type in rf_DispatchKernelIO");
   1899 	}
   1900 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1901 
   1902 	return (0);
   1903 }
   1904 /* this is the callback function associated with a I/O invoked from
   1905    kernel code.
   1906  */
   1907 static void
   1908 KernelWakeupFunc(vbp)
   1909 	struct buf *vbp;
   1910 {
   1911 	RF_DiskQueueData_t *req = NULL;
   1912 	RF_DiskQueue_t *queue;
   1913 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1914 	struct buf *bp;
   1915 	int s;
   1916 
   1917 	s = splbio();
   1918 	db1_printf(("recovering the request queue:\n"));
   1919 	req = raidbp->req;
   1920 
   1921 	bp = raidbp->rf_obp;
   1922 
   1923 	queue = (RF_DiskQueue_t *) req->queue;
   1924 
   1925 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1926 		bp->b_flags |= B_ERROR;
   1927 		bp->b_error = raidbp->rf_buf.b_error ?
   1928 		    raidbp->rf_buf.b_error : EIO;
   1929 	}
   1930 
   1931 	/* XXX methinks this could be wrong... */
   1932 #if 1
   1933 	bp->b_resid = raidbp->rf_buf.b_resid;
   1934 #endif
   1935 
   1936 	if (req->tracerec) {
   1937 		RF_ETIMER_STOP(req->tracerec->timer);
   1938 		RF_ETIMER_EVAL(req->tracerec->timer);
   1939 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1940 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1941 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1942 		req->tracerec->num_phys_ios++;
   1943 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1944 	}
   1945 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1946 
   1947 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1948 	 * ballistic, and mark the component as hosed... */
   1949 
   1950 	if (bp->b_flags & B_ERROR) {
   1951 		/* Mark the disk as dead */
   1952 		/* but only mark it once... */
   1953 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1954 		    rf_ds_optimal) {
   1955 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1956 			       queue->raidPtr->raidid,
   1957 			       queue->raidPtr->Disks[queue->row][queue->col].devname);
   1958 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1959 			    rf_ds_failed;
   1960 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1961 			queue->raidPtr->numFailures++;
   1962 			queue->raidPtr->numNewFailures++;
   1963 		} else {	/* Disk is already dead... */
   1964 			/* printf("Disk already marked as dead!\n"); */
   1965 		}
   1966 
   1967 	}
   1968 
   1969 	pool_put(&raidframe_cbufpool, raidbp);
   1970 
   1971 	/* Fill in the error value */
   1972 
   1973 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1974 
   1975 	simple_lock(&queue->raidPtr->iodone_lock);
   1976 
   1977 	/* Drop this one on the "finished" queue... */
   1978 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1979 
   1980 	/* Let the raidio thread know there is work to be done. */
   1981 	wakeup(&(queue->raidPtr->iodone));
   1982 
   1983 	simple_unlock(&queue->raidPtr->iodone_lock);
   1984 
   1985 	splx(s);
   1986 }
   1987 
   1988 
   1989 
   1990 /*
   1991  * initialize a buf structure for doing an I/O in the kernel.
   1992  */
   1993 static void
   1994 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
   1995        logBytesPerSector, b_proc)
   1996 	struct buf *bp;
   1997 	struct vnode *b_vp;
   1998 	unsigned rw_flag;
   1999 	dev_t dev;
   2000 	RF_SectorNum_t startSect;
   2001 	RF_SectorCount_t numSect;
   2002 	caddr_t buf;
   2003 	void (*cbFunc) (struct buf *);
   2004 	void *cbArg;
   2005 	int logBytesPerSector;
   2006 	struct proc *b_proc;
   2007 {
   2008 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2009 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2010 	bp->b_bcount = numSect << logBytesPerSector;
   2011 	bp->b_bufsize = bp->b_bcount;
   2012 	bp->b_error = 0;
   2013 	bp->b_dev = dev;
   2014 	bp->b_data = buf;
   2015 	bp->b_blkno = startSect;
   2016 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2017 	if (bp->b_bcount == 0) {
   2018 		panic("bp->b_bcount is zero in InitBP!!");
   2019 	}
   2020 	bp->b_proc = b_proc;
   2021 	bp->b_iodone = cbFunc;
   2022 	bp->b_vp = b_vp;
   2023 
   2024 }
   2025 
   2026 static void
   2027 raidgetdefaultlabel(raidPtr, rs, lp)
   2028 	RF_Raid_t *raidPtr;
   2029 	struct raid_softc *rs;
   2030 	struct disklabel *lp;
   2031 {
   2032 	memset(lp, 0, sizeof(*lp));
   2033 
   2034 	/* fabricate a label... */
   2035 	lp->d_secperunit = raidPtr->totalSectors;
   2036 	lp->d_secsize = raidPtr->bytesPerSector;
   2037 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2038 	lp->d_ntracks = 4 * raidPtr->numCol;
   2039 	lp->d_ncylinders = raidPtr->totalSectors /
   2040 		(lp->d_nsectors * lp->d_ntracks);
   2041 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2042 
   2043 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2044 	lp->d_type = DTYPE_RAID;
   2045 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2046 	lp->d_rpm = 3600;
   2047 	lp->d_interleave = 1;
   2048 	lp->d_flags = 0;
   2049 
   2050 	lp->d_partitions[RAW_PART].p_offset = 0;
   2051 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2052 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2053 	lp->d_npartitions = RAW_PART + 1;
   2054 
   2055 	lp->d_magic = DISKMAGIC;
   2056 	lp->d_magic2 = DISKMAGIC;
   2057 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2058 
   2059 }
   2060 /*
   2061  * Read the disklabel from the raid device.  If one is not present, fake one
   2062  * up.
   2063  */
   2064 static void
   2065 raidgetdisklabel(dev)
   2066 	dev_t   dev;
   2067 {
   2068 	int     unit = raidunit(dev);
   2069 	struct raid_softc *rs = &raid_softc[unit];
   2070 	char   *errstring;
   2071 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2072 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2073 	RF_Raid_t *raidPtr;
   2074 
   2075 	db1_printf(("Getting the disklabel...\n"));
   2076 
   2077 	memset(clp, 0, sizeof(*clp));
   2078 
   2079 	raidPtr = raidPtrs[unit];
   2080 
   2081 	raidgetdefaultlabel(raidPtr, rs, lp);
   2082 
   2083 	/*
   2084 	 * Call the generic disklabel extraction routine.
   2085 	 */
   2086 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2087 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2088 	if (errstring)
   2089 		raidmakedisklabel(rs);
   2090 	else {
   2091 		int     i;
   2092 		struct partition *pp;
   2093 
   2094 		/*
   2095 		 * Sanity check whether the found disklabel is valid.
   2096 		 *
   2097 		 * This is necessary since total size of the raid device
   2098 		 * may vary when an interleave is changed even though exactly
   2099 		 * same componets are used, and old disklabel may used
   2100 		 * if that is found.
   2101 		 */
   2102 		if (lp->d_secperunit != rs->sc_size)
   2103 			printf("raid%d: WARNING: %s: "
   2104 			    "total sector size in disklabel (%d) != "
   2105 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2106 			    lp->d_secperunit, (long) rs->sc_size);
   2107 		for (i = 0; i < lp->d_npartitions; i++) {
   2108 			pp = &lp->d_partitions[i];
   2109 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2110 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2111 				       "exceeds the size of raid (%ld)\n",
   2112 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2113 		}
   2114 	}
   2115 
   2116 }
   2117 /*
   2118  * Take care of things one might want to take care of in the event
   2119  * that a disklabel isn't present.
   2120  */
   2121 static void
   2122 raidmakedisklabel(rs)
   2123 	struct raid_softc *rs;
   2124 {
   2125 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2126 	db1_printf(("Making a label..\n"));
   2127 
   2128 	/*
   2129 	 * For historical reasons, if there's no disklabel present
   2130 	 * the raw partition must be marked FS_BSDFFS.
   2131 	 */
   2132 
   2133 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2134 
   2135 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2136 
   2137 	lp->d_checksum = dkcksum(lp);
   2138 }
   2139 /*
   2140  * Lookup the provided name in the filesystem.  If the file exists,
   2141  * is a valid block device, and isn't being used by anyone else,
   2142  * set *vpp to the file's vnode.
   2143  * You'll find the original of this in ccd.c
   2144  */
   2145 int
   2146 raidlookup(path, p, vpp)
   2147 	char   *path;
   2148 	struct proc *p;
   2149 	struct vnode **vpp;	/* result */
   2150 {
   2151 	struct nameidata nd;
   2152 	struct vnode *vp;
   2153 	struct vattr va;
   2154 	int     error;
   2155 
   2156 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2157 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2158 		return (error);
   2159 	}
   2160 	vp = nd.ni_vp;
   2161 	if (vp->v_usecount > 1) {
   2162 		VOP_UNLOCK(vp, 0);
   2163 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2164 		return (EBUSY);
   2165 	}
   2166 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2167 		VOP_UNLOCK(vp, 0);
   2168 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2169 		return (error);
   2170 	}
   2171 	/* XXX: eventually we should handle VREG, too. */
   2172 	if (va.va_type != VBLK) {
   2173 		VOP_UNLOCK(vp, 0);
   2174 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2175 		return (ENOTBLK);
   2176 	}
   2177 	VOP_UNLOCK(vp, 0);
   2178 	*vpp = vp;
   2179 	return (0);
   2180 }
   2181 /*
   2182  * Wait interruptibly for an exclusive lock.
   2183  *
   2184  * XXX
   2185  * Several drivers do this; it should be abstracted and made MP-safe.
   2186  * (Hmm... where have we seen this warning before :->  GO )
   2187  */
   2188 static int
   2189 raidlock(rs)
   2190 	struct raid_softc *rs;
   2191 {
   2192 	int     error;
   2193 
   2194 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2195 		rs->sc_flags |= RAIDF_WANTED;
   2196 		if ((error =
   2197 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2198 			return (error);
   2199 	}
   2200 	rs->sc_flags |= RAIDF_LOCKED;
   2201 	return (0);
   2202 }
   2203 /*
   2204  * Unlock and wake up any waiters.
   2205  */
   2206 static void
   2207 raidunlock(rs)
   2208 	struct raid_softc *rs;
   2209 {
   2210 
   2211 	rs->sc_flags &= ~RAIDF_LOCKED;
   2212 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2213 		rs->sc_flags &= ~RAIDF_WANTED;
   2214 		wakeup(rs);
   2215 	}
   2216 }
   2217 
   2218 
   2219 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2220 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2221 
   2222 int
   2223 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2224 {
   2225 	RF_ComponentLabel_t clabel;
   2226 	raidread_component_label(dev, b_vp, &clabel);
   2227 	clabel.mod_counter = mod_counter;
   2228 	clabel.clean = RF_RAID_CLEAN;
   2229 	raidwrite_component_label(dev, b_vp, &clabel);
   2230 	return(0);
   2231 }
   2232 
   2233 
   2234 int
   2235 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2236 {
   2237 	RF_ComponentLabel_t clabel;
   2238 	raidread_component_label(dev, b_vp, &clabel);
   2239 	clabel.mod_counter = mod_counter;
   2240 	clabel.clean = RF_RAID_DIRTY;
   2241 	raidwrite_component_label(dev, b_vp, &clabel);
   2242 	return(0);
   2243 }
   2244 
   2245 /* ARGSUSED */
   2246 int
   2247 raidread_component_label(dev, b_vp, clabel)
   2248 	dev_t dev;
   2249 	struct vnode *b_vp;
   2250 	RF_ComponentLabel_t *clabel;
   2251 {
   2252 	struct buf *bp;
   2253 	const struct bdevsw *bdev;
   2254 	int error;
   2255 
   2256 	/* XXX should probably ensure that we don't try to do this if
   2257 	   someone has changed rf_protected_sectors. */
   2258 
   2259 	if (b_vp == NULL) {
   2260 		/* For whatever reason, this component is not valid.
   2261 		   Don't try to read a component label from it. */
   2262 		return(EINVAL);
   2263 	}
   2264 
   2265 	/* get a block of the appropriate size... */
   2266 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2267 	bp->b_dev = dev;
   2268 
   2269 	/* get our ducks in a row for the read */
   2270 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2271 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2272 	bp->b_flags |= B_READ;
   2273  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2274 
   2275 	bdev = bdevsw_lookup(bp->b_dev);
   2276 	if (bdev == NULL)
   2277 		return (ENXIO);
   2278 	(*bdev->d_strategy)(bp);
   2279 
   2280 	error = biowait(bp);
   2281 
   2282 	if (!error) {
   2283 		memcpy(clabel, bp->b_data,
   2284 		       sizeof(RF_ComponentLabel_t));
   2285         }
   2286 
   2287 	brelse(bp);
   2288 	return(error);
   2289 }
   2290 /* ARGSUSED */
   2291 int
   2292 raidwrite_component_label(dev, b_vp, clabel)
   2293 	dev_t dev;
   2294 	struct vnode *b_vp;
   2295 	RF_ComponentLabel_t *clabel;
   2296 {
   2297 	struct buf *bp;
   2298 	const struct bdevsw *bdev;
   2299 	int error;
   2300 
   2301 	/* get a block of the appropriate size... */
   2302 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2303 	bp->b_dev = dev;
   2304 
   2305 	/* get our ducks in a row for the write */
   2306 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2307 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2308 	bp->b_flags |= B_WRITE;
   2309  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2310 
   2311 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2312 
   2313 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2314 
   2315 	bdev = bdevsw_lookup(bp->b_dev);
   2316 	if (bdev == NULL)
   2317 		return (ENXIO);
   2318 	(*bdev->d_strategy)(bp);
   2319 	error = biowait(bp);
   2320 	brelse(bp);
   2321 	if (error) {
   2322 #if 1
   2323 		printf("Failed to write RAID component info!\n");
   2324 #endif
   2325 	}
   2326 
   2327 	return(error);
   2328 }
   2329 
   2330 void
   2331 rf_markalldirty(raidPtr)
   2332 	RF_Raid_t *raidPtr;
   2333 {
   2334 	RF_ComponentLabel_t clabel;
   2335 	int sparecol;
   2336 	int r,c;
   2337 	int i,j;
   2338 	int srow, scol;
   2339 
   2340 	raidPtr->mod_counter++;
   2341 	for (r = 0; r < raidPtr->numRow; r++) {
   2342 		for (c = 0; c < raidPtr->numCol; c++) {
   2343 			/* we don't want to touch (at all) a disk that has
   2344 			   failed */
   2345 			if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
   2346 				raidread_component_label(
   2347 					raidPtr->Disks[r][c].dev,
   2348 					raidPtr->raid_cinfo[r][c].ci_vp,
   2349 					&clabel);
   2350 				if (clabel.status == rf_ds_spared) {
   2351 					/* XXX do something special...
   2352 					 but whatever you do, don't
   2353 					 try to access it!! */
   2354 				} else {
   2355 					raidmarkdirty(
   2356 					      raidPtr->Disks[r][c].dev,
   2357 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2358 					      raidPtr->mod_counter);
   2359 				}
   2360 			}
   2361 		}
   2362 	}
   2363 
   2364 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2365 		sparecol = raidPtr->numCol + c;
   2366 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2367 			/*
   2368 
   2369 			   we claim this disk is "optimal" if it's
   2370 			   rf_ds_used_spare, as that means it should be
   2371 			   directly substitutable for the disk it replaced.
   2372 			   We note that too...
   2373 
   2374 			 */
   2375 
   2376 			for(i=0;i<raidPtr->numRow;i++) {
   2377 				for(j=0;j<raidPtr->numCol;j++) {
   2378 					if ((raidPtr->Disks[i][j].spareRow ==
   2379 					     0) &&
   2380 					    (raidPtr->Disks[i][j].spareCol ==
   2381 					     sparecol)) {
   2382 						srow = i;
   2383 						scol = j;
   2384 						break;
   2385 					}
   2386 				}
   2387 			}
   2388 
   2389 			raidread_component_label(
   2390 				 raidPtr->Disks[0][sparecol].dev,
   2391 				 raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2392 				 &clabel);
   2393 			/* make sure status is noted */
   2394 
   2395 			raid_init_component_label(raidPtr, &clabel);
   2396 
   2397 			clabel.row = srow;
   2398 			clabel.column = scol;
   2399 			/* Note: we *don't* change status from rf_ds_used_spare
   2400 			   to rf_ds_optimal */
   2401 			/* clabel.status = rf_ds_optimal; */
   2402 
   2403 			raidmarkdirty(raidPtr->Disks[0][sparecol].dev,
   2404 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2405 				      raidPtr->mod_counter);
   2406 		}
   2407 	}
   2408 }
   2409 
   2410 
   2411 void
   2412 rf_update_component_labels(raidPtr, final)
   2413 	RF_Raid_t *raidPtr;
   2414 	int final;
   2415 {
   2416 	RF_ComponentLabel_t clabel;
   2417 	int sparecol;
   2418 	int r,c;
   2419 	int i,j;
   2420 	int srow, scol;
   2421 
   2422 	srow = -1;
   2423 	scol = -1;
   2424 
   2425 	/* XXX should do extra checks to make sure things really are clean,
   2426 	   rather than blindly setting the clean bit... */
   2427 
   2428 	raidPtr->mod_counter++;
   2429 
   2430 	for (r = 0; r < raidPtr->numRow; r++) {
   2431 		for (c = 0; c < raidPtr->numCol; c++) {
   2432 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2433 				raidread_component_label(
   2434 					raidPtr->Disks[r][c].dev,
   2435 					raidPtr->raid_cinfo[r][c].ci_vp,
   2436 					&clabel);
   2437 				/* make sure status is noted */
   2438 				clabel.status = rf_ds_optimal;
   2439 				/* bump the counter */
   2440 				clabel.mod_counter = raidPtr->mod_counter;
   2441 
   2442 				raidwrite_component_label(
   2443 					raidPtr->Disks[r][c].dev,
   2444 					raidPtr->raid_cinfo[r][c].ci_vp,
   2445 					&clabel);
   2446 				if (final == RF_FINAL_COMPONENT_UPDATE) {
   2447 					if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2448 						raidmarkclean(
   2449 							      raidPtr->Disks[r][c].dev,
   2450 							      raidPtr->raid_cinfo[r][c].ci_vp,
   2451 							      raidPtr->mod_counter);
   2452 					}
   2453 				}
   2454 			}
   2455 			/* else we don't touch it.. */
   2456 		}
   2457 	}
   2458 
   2459 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2460 		sparecol = raidPtr->numCol + c;
   2461 		/* Need to ensure that the reconstruct actually completed! */
   2462 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2463 			/*
   2464 
   2465 			   we claim this disk is "optimal" if it's
   2466 			   rf_ds_used_spare, as that means it should be
   2467 			   directly substitutable for the disk it replaced.
   2468 			   We note that too...
   2469 
   2470 			 */
   2471 
   2472 			for(i=0;i<raidPtr->numRow;i++) {
   2473 				for(j=0;j<raidPtr->numCol;j++) {
   2474 					if ((raidPtr->Disks[i][j].spareRow ==
   2475 					     0) &&
   2476 					    (raidPtr->Disks[i][j].spareCol ==
   2477 					     sparecol)) {
   2478 						srow = i;
   2479 						scol = j;
   2480 						break;
   2481 					}
   2482 				}
   2483 			}
   2484 
   2485 			/* XXX shouldn't *really* need this... */
   2486 			raidread_component_label(
   2487 				      raidPtr->Disks[0][sparecol].dev,
   2488 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2489 				      &clabel);
   2490 			/* make sure status is noted */
   2491 
   2492 			raid_init_component_label(raidPtr, &clabel);
   2493 
   2494 			clabel.mod_counter = raidPtr->mod_counter;
   2495 			clabel.row = srow;
   2496 			clabel.column = scol;
   2497 			clabel.status = rf_ds_optimal;
   2498 
   2499 			raidwrite_component_label(
   2500 				      raidPtr->Disks[0][sparecol].dev,
   2501 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2502 				      &clabel);
   2503 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2504 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2505 					raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2506 						       raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2507 						       raidPtr->mod_counter);
   2508 				}
   2509 			}
   2510 		}
   2511 	}
   2512 }
   2513 
   2514 void
   2515 rf_close_component(raidPtr, vp, auto_configured)
   2516 	RF_Raid_t *raidPtr;
   2517 	struct vnode *vp;
   2518 	int auto_configured;
   2519 {
   2520 	struct proc *p;
   2521 
   2522 	p = raidPtr->engine_thread;
   2523 
   2524 	if (vp != NULL) {
   2525 		if (auto_configured == 1) {
   2526 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2527 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2528 			vput(vp);
   2529 
   2530 		} else {
   2531 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2532 		}
   2533 	}
   2534 }
   2535 
   2536 
   2537 void
   2538 rf_UnconfigureVnodes(raidPtr)
   2539 	RF_Raid_t *raidPtr;
   2540 {
   2541 	int r,c;
   2542 	struct vnode *vp;
   2543 	int acd;
   2544 
   2545 
   2546 	/* We take this opportunity to close the vnodes like we should.. */
   2547 
   2548 	for (r = 0; r < raidPtr->numRow; r++) {
   2549 		for (c = 0; c < raidPtr->numCol; c++) {
   2550 			vp = raidPtr->raid_cinfo[r][c].ci_vp;
   2551 			acd = raidPtr->Disks[r][c].auto_configured;
   2552 			rf_close_component(raidPtr, vp, acd);
   2553 			raidPtr->raid_cinfo[r][c].ci_vp = NULL;
   2554 			raidPtr->Disks[r][c].auto_configured = 0;
   2555 		}
   2556 	}
   2557 	for (r = 0; r < raidPtr->numSpare; r++) {
   2558 		vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
   2559 		acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
   2560 		rf_close_component(raidPtr, vp, acd);
   2561 		raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
   2562 		raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
   2563 	}
   2564 }
   2565 
   2566 
   2567 void
   2568 rf_ReconThread(req)
   2569 	struct rf_recon_req *req;
   2570 {
   2571 	int     s;
   2572 	RF_Raid_t *raidPtr;
   2573 
   2574 	s = splbio();
   2575 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2576 	raidPtr->recon_in_progress = 1;
   2577 
   2578 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   2579 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2580 
   2581 	/* XXX get rid of this! we don't need it at all.. */
   2582 	RF_Free(req, sizeof(*req));
   2583 
   2584 	raidPtr->recon_in_progress = 0;
   2585 	splx(s);
   2586 
   2587 	/* That's all... */
   2588 	kthread_exit(0);        /* does not return */
   2589 }
   2590 
   2591 void
   2592 rf_RewriteParityThread(raidPtr)
   2593 	RF_Raid_t *raidPtr;
   2594 {
   2595 	int retcode;
   2596 	int s;
   2597 
   2598 	raidPtr->parity_rewrite_in_progress = 1;
   2599 	s = splbio();
   2600 	retcode = rf_RewriteParity(raidPtr);
   2601 	splx(s);
   2602 	if (retcode) {
   2603 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2604 	} else {
   2605 		/* set the clean bit!  If we shutdown correctly,
   2606 		   the clean bit on each component label will get
   2607 		   set */
   2608 		raidPtr->parity_good = RF_RAID_CLEAN;
   2609 	}
   2610 	raidPtr->parity_rewrite_in_progress = 0;
   2611 
   2612 	/* Anyone waiting for us to stop?  If so, inform them... */
   2613 	if (raidPtr->waitShutdown) {
   2614 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2615 	}
   2616 
   2617 	/* That's all... */
   2618 	kthread_exit(0);        /* does not return */
   2619 }
   2620 
   2621 
   2622 void
   2623 rf_CopybackThread(raidPtr)
   2624 	RF_Raid_t *raidPtr;
   2625 {
   2626 	int s;
   2627 
   2628 	raidPtr->copyback_in_progress = 1;
   2629 	s = splbio();
   2630 	rf_CopybackReconstructedData(raidPtr);
   2631 	splx(s);
   2632 	raidPtr->copyback_in_progress = 0;
   2633 
   2634 	/* That's all... */
   2635 	kthread_exit(0);        /* does not return */
   2636 }
   2637 
   2638 
   2639 void
   2640 rf_ReconstructInPlaceThread(req)
   2641 	struct rf_recon_req *req;
   2642 {
   2643 	int retcode;
   2644 	int s;
   2645 	RF_Raid_t *raidPtr;
   2646 
   2647 	s = splbio();
   2648 	raidPtr = req->raidPtr;
   2649 	raidPtr->recon_in_progress = 1;
   2650 	retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
   2651 	RF_Free(req, sizeof(*req));
   2652 	raidPtr->recon_in_progress = 0;
   2653 	splx(s);
   2654 
   2655 	/* That's all... */
   2656 	kthread_exit(0);        /* does not return */
   2657 }
   2658 
   2659 RF_AutoConfig_t *
   2660 rf_find_raid_components()
   2661 {
   2662 	struct vnode *vp;
   2663 	struct disklabel label;
   2664 	struct device *dv;
   2665 	dev_t dev;
   2666 	int bmajor;
   2667 	int error;
   2668 	int i;
   2669 	int good_one;
   2670 	RF_ComponentLabel_t *clabel;
   2671 	RF_AutoConfig_t *ac_list;
   2672 	RF_AutoConfig_t *ac;
   2673 
   2674 
   2675 	/* initialize the AutoConfig list */
   2676 	ac_list = NULL;
   2677 
   2678 	/* we begin by trolling through *all* the devices on the system */
   2679 
   2680 	for (dv = alldevs.tqh_first; dv != NULL;
   2681 	     dv = dv->dv_list.tqe_next) {
   2682 
   2683 		/* we are only interested in disks... */
   2684 		if (dv->dv_class != DV_DISK)
   2685 			continue;
   2686 
   2687 		/* we don't care about floppies... */
   2688 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2689 			continue;
   2690 		}
   2691 
   2692 		/* we don't care about CD's... */
   2693 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2694 			continue;
   2695 		}
   2696 
   2697 		/* hdfd is the Atari/Hades floppy driver */
   2698 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2699 			continue;
   2700 		}
   2701 		/* fdisa is the Atari/Milan floppy driver */
   2702 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2703 			continue;
   2704 		}
   2705 
   2706 		/* need to find the device_name_to_block_device_major stuff */
   2707 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2708 
   2709 		/* get a vnode for the raw partition of this disk */
   2710 
   2711 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2712 		if (bdevvp(dev, &vp))
   2713 			panic("RAID can't alloc vnode");
   2714 
   2715 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2716 
   2717 		if (error) {
   2718 			/* "Who cares."  Continue looking
   2719 			   for something that exists*/
   2720 			vput(vp);
   2721 			continue;
   2722 		}
   2723 
   2724 		/* Ok, the disk exists.  Go get the disklabel. */
   2725 		error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
   2726 				  FREAD, NOCRED, 0);
   2727 		if (error) {
   2728 			/*
   2729 			 * XXX can't happen - open() would
   2730 			 * have errored out (or faked up one)
   2731 			 */
   2732 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2733 			       dv->dv_xname, 'a' + RAW_PART, error);
   2734 		}
   2735 
   2736 		/* don't need this any more.  We'll allocate it again
   2737 		   a little later if we really do... */
   2738 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2739 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2740 		vput(vp);
   2741 
   2742 		for (i=0; i < label.d_npartitions; i++) {
   2743 			/* We only support partitions marked as RAID */
   2744 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2745 				continue;
   2746 
   2747 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2748 			if (bdevvp(dev, &vp))
   2749 				panic("RAID can't alloc vnode");
   2750 
   2751 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2752 			if (error) {
   2753 				/* Whatever... */
   2754 				vput(vp);
   2755 				continue;
   2756 			}
   2757 
   2758 			good_one = 0;
   2759 
   2760 			clabel = (RF_ComponentLabel_t *)
   2761 				malloc(sizeof(RF_ComponentLabel_t),
   2762 				       M_RAIDFRAME, M_NOWAIT);
   2763 			if (clabel == NULL) {
   2764 				/* XXX CLEANUP HERE */
   2765 				printf("RAID auto config: out of memory!\n");
   2766 				return(NULL); /* XXX probably should panic? */
   2767 			}
   2768 
   2769 			if (!raidread_component_label(dev, vp, clabel)) {
   2770 				/* Got the label.  Does it look reasonable? */
   2771 				if (rf_reasonable_label(clabel) &&
   2772 				    (clabel->partitionSize <=
   2773 				     label.d_partitions[i].p_size)) {
   2774 #if DEBUG
   2775 					printf("Component on: %s%c: %d\n",
   2776 					       dv->dv_xname, 'a'+i,
   2777 					       label.d_partitions[i].p_size);
   2778 					rf_print_component_label(clabel);
   2779 #endif
   2780 					/* if it's reasonable, add it,
   2781 					   else ignore it. */
   2782 					ac = (RF_AutoConfig_t *)
   2783 						malloc(sizeof(RF_AutoConfig_t),
   2784 						       M_RAIDFRAME,
   2785 						       M_NOWAIT);
   2786 					if (ac == NULL) {
   2787 						/* XXX should panic?? */
   2788 						return(NULL);
   2789 					}
   2790 
   2791 					sprintf(ac->devname, "%s%c",
   2792 						dv->dv_xname, 'a'+i);
   2793 					ac->dev = dev;
   2794 					ac->vp = vp;
   2795 					ac->clabel = clabel;
   2796 					ac->next = ac_list;
   2797 					ac_list = ac;
   2798 					good_one = 1;
   2799 				}
   2800 			}
   2801 			if (!good_one) {
   2802 				/* cleanup */
   2803 				free(clabel, M_RAIDFRAME);
   2804 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2805 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2806 				vput(vp);
   2807 			}
   2808 		}
   2809 	}
   2810 	return(ac_list);
   2811 }
   2812 
   2813 static int
   2814 rf_reasonable_label(clabel)
   2815 	RF_ComponentLabel_t *clabel;
   2816 {
   2817 
   2818 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2819 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2820 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2821 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2822 	    clabel->row >=0 &&
   2823 	    clabel->column >= 0 &&
   2824 	    clabel->num_rows > 0 &&
   2825 	    clabel->num_columns > 0 &&
   2826 	    clabel->row < clabel->num_rows &&
   2827 	    clabel->column < clabel->num_columns &&
   2828 	    clabel->blockSize > 0 &&
   2829 	    clabel->numBlocks > 0) {
   2830 		/* label looks reasonable enough... */
   2831 		return(1);
   2832 	}
   2833 	return(0);
   2834 }
   2835 
   2836 
   2837 #if DEBUG
   2838 void
   2839 rf_print_component_label(clabel)
   2840 	RF_ComponentLabel_t *clabel;
   2841 {
   2842 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2843 	       clabel->row, clabel->column,
   2844 	       clabel->num_rows, clabel->num_columns);
   2845 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2846 	       clabel->version, clabel->serial_number,
   2847 	       clabel->mod_counter);
   2848 	printf("   Clean: %s Status: %d\n",
   2849 	       clabel->clean ? "Yes" : "No", clabel->status );
   2850 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2851 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2852 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2853 	       (char) clabel->parityConfig, clabel->blockSize,
   2854 	       clabel->numBlocks);
   2855 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2856 	printf("   Contains root partition: %s\n",
   2857 	       clabel->root_partition ? "Yes" : "No" );
   2858 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2859 #if 0
   2860 	   printf("   Config order: %d\n", clabel->config_order);
   2861 #endif
   2862 
   2863 }
   2864 #endif
   2865 
   2866 RF_ConfigSet_t *
   2867 rf_create_auto_sets(ac_list)
   2868 	RF_AutoConfig_t *ac_list;
   2869 {
   2870 	RF_AutoConfig_t *ac;
   2871 	RF_ConfigSet_t *config_sets;
   2872 	RF_ConfigSet_t *cset;
   2873 	RF_AutoConfig_t *ac_next;
   2874 
   2875 
   2876 	config_sets = NULL;
   2877 
   2878 	/* Go through the AutoConfig list, and figure out which components
   2879 	   belong to what sets.  */
   2880 	ac = ac_list;
   2881 	while(ac!=NULL) {
   2882 		/* we're going to putz with ac->next, so save it here
   2883 		   for use at the end of the loop */
   2884 		ac_next = ac->next;
   2885 
   2886 		if (config_sets == NULL) {
   2887 			/* will need at least this one... */
   2888 			config_sets = (RF_ConfigSet_t *)
   2889 				malloc(sizeof(RF_ConfigSet_t),
   2890 				       M_RAIDFRAME, M_NOWAIT);
   2891 			if (config_sets == NULL) {
   2892 				panic("rf_create_auto_sets: No memory!");
   2893 			}
   2894 			/* this one is easy :) */
   2895 			config_sets->ac = ac;
   2896 			config_sets->next = NULL;
   2897 			config_sets->rootable = 0;
   2898 			ac->next = NULL;
   2899 		} else {
   2900 			/* which set does this component fit into? */
   2901 			cset = config_sets;
   2902 			while(cset!=NULL) {
   2903 				if (rf_does_it_fit(cset, ac)) {
   2904 					/* looks like it matches... */
   2905 					ac->next = cset->ac;
   2906 					cset->ac = ac;
   2907 					break;
   2908 				}
   2909 				cset = cset->next;
   2910 			}
   2911 			if (cset==NULL) {
   2912 				/* didn't find a match above... new set..*/
   2913 				cset = (RF_ConfigSet_t *)
   2914 					malloc(sizeof(RF_ConfigSet_t),
   2915 					       M_RAIDFRAME, M_NOWAIT);
   2916 				if (cset == NULL) {
   2917 					panic("rf_create_auto_sets: No memory!");
   2918 				}
   2919 				cset->ac = ac;
   2920 				ac->next = NULL;
   2921 				cset->next = config_sets;
   2922 				cset->rootable = 0;
   2923 				config_sets = cset;
   2924 			}
   2925 		}
   2926 		ac = ac_next;
   2927 	}
   2928 
   2929 
   2930 	return(config_sets);
   2931 }
   2932 
   2933 static int
   2934 rf_does_it_fit(cset, ac)
   2935 	RF_ConfigSet_t *cset;
   2936 	RF_AutoConfig_t *ac;
   2937 {
   2938 	RF_ComponentLabel_t *clabel1, *clabel2;
   2939 
   2940 	/* If this one matches the *first* one in the set, that's good
   2941 	   enough, since the other members of the set would have been
   2942 	   through here too... */
   2943 	/* note that we are not checking partitionSize here..
   2944 
   2945 	   Note that we are also not checking the mod_counters here.
   2946 	   If everything else matches execpt the mod_counter, that's
   2947 	   good enough for this test.  We will deal with the mod_counters
   2948 	   a little later in the autoconfiguration process.
   2949 
   2950 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2951 
   2952 	   The reason we don't check for this is that failed disks
   2953 	   will have lower modification counts.  If those disks are
   2954 	   not added to the set they used to belong to, then they will
   2955 	   form their own set, which may result in 2 different sets,
   2956 	   for example, competing to be configured at raid0, and
   2957 	   perhaps competing to be the root filesystem set.  If the
   2958 	   wrong ones get configured, or both attempt to become /,
   2959 	   weird behaviour and or serious lossage will occur.  Thus we
   2960 	   need to bring them into the fold here, and kick them out at
   2961 	   a later point.
   2962 
   2963 	*/
   2964 
   2965 	clabel1 = cset->ac->clabel;
   2966 	clabel2 = ac->clabel;
   2967 	if ((clabel1->version == clabel2->version) &&
   2968 	    (clabel1->serial_number == clabel2->serial_number) &&
   2969 	    (clabel1->num_rows == clabel2->num_rows) &&
   2970 	    (clabel1->num_columns == clabel2->num_columns) &&
   2971 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2972 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2973 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2974 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2975 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2976 	    (clabel1->blockSize == clabel2->blockSize) &&
   2977 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2978 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2979 	    (clabel1->root_partition == clabel2->root_partition) &&
   2980 	    (clabel1->last_unit == clabel2->last_unit) &&
   2981 	    (clabel1->config_order == clabel2->config_order)) {
   2982 		/* if it get's here, it almost *has* to be a match */
   2983 	} else {
   2984 		/* it's not consistent with somebody in the set..
   2985 		   punt */
   2986 		return(0);
   2987 	}
   2988 	/* all was fine.. it must fit... */
   2989 	return(1);
   2990 }
   2991 
   2992 int
   2993 rf_have_enough_components(cset)
   2994 	RF_ConfigSet_t *cset;
   2995 {
   2996 	RF_AutoConfig_t *ac;
   2997 	RF_AutoConfig_t *auto_config;
   2998 	RF_ComponentLabel_t *clabel;
   2999 	int r,c;
   3000 	int num_rows;
   3001 	int num_cols;
   3002 	int num_missing;
   3003 	int mod_counter;
   3004 	int mod_counter_found;
   3005 	int even_pair_failed;
   3006 	char parity_type;
   3007 
   3008 
   3009 	/* check to see that we have enough 'live' components
   3010 	   of this set.  If so, we can configure it if necessary */
   3011 
   3012 	num_rows = cset->ac->clabel->num_rows;
   3013 	num_cols = cset->ac->clabel->num_columns;
   3014 	parity_type = cset->ac->clabel->parityConfig;
   3015 
   3016 	/* XXX Check for duplicate components!?!?!? */
   3017 
   3018 	/* Determine what the mod_counter is supposed to be for this set. */
   3019 
   3020 	mod_counter_found = 0;
   3021 	mod_counter = 0;
   3022 	ac = cset->ac;
   3023 	while(ac!=NULL) {
   3024 		if (mod_counter_found==0) {
   3025 			mod_counter = ac->clabel->mod_counter;
   3026 			mod_counter_found = 1;
   3027 		} else {
   3028 			if (ac->clabel->mod_counter > mod_counter) {
   3029 				mod_counter = ac->clabel->mod_counter;
   3030 			}
   3031 		}
   3032 		ac = ac->next;
   3033 	}
   3034 
   3035 	num_missing = 0;
   3036 	auto_config = cset->ac;
   3037 
   3038 	for(r=0; r<num_rows; r++) {
   3039 		even_pair_failed = 0;
   3040 		for(c=0; c<num_cols; c++) {
   3041 			ac = auto_config;
   3042 			while(ac!=NULL) {
   3043 				if ((ac->clabel->row == r) &&
   3044 				    (ac->clabel->column == c) &&
   3045 				    (ac->clabel->mod_counter == mod_counter)) {
   3046 					/* it's this one... */
   3047 #if DEBUG
   3048 					printf("Found: %s at %d,%d\n",
   3049 					       ac->devname,r,c);
   3050 #endif
   3051 					break;
   3052 				}
   3053 				ac=ac->next;
   3054 			}
   3055 			if (ac==NULL) {
   3056 				/* Didn't find one here! */
   3057 				/* special case for RAID 1, especially
   3058 				   where there are more than 2
   3059 				   components (where RAIDframe treats
   3060 				   things a little differently :( ) */
   3061 				if (parity_type == '1') {
   3062 					if (c%2 == 0) { /* even component */
   3063 						even_pair_failed = 1;
   3064 					} else { /* odd component.  If
   3065                                                     we're failed, and
   3066                                                     so is the even
   3067                                                     component, it's
   3068                                                     "Good Night, Charlie" */
   3069 						if (even_pair_failed == 1) {
   3070 							return(0);
   3071 						}
   3072 					}
   3073 				} else {
   3074 					/* normal accounting */
   3075 					num_missing++;
   3076 				}
   3077 			}
   3078 			if ((parity_type == '1') && (c%2 == 1)) {
   3079 				/* Just did an even component, and we didn't
   3080 				   bail.. reset the even_pair_failed flag,
   3081 				   and go on to the next component.... */
   3082 				even_pair_failed = 0;
   3083 			}
   3084 		}
   3085 	}
   3086 
   3087 	clabel = cset->ac->clabel;
   3088 
   3089 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3090 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3091 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3092 		/* XXX this needs to be made *much* more general */
   3093 		/* Too many failures */
   3094 		return(0);
   3095 	}
   3096 	/* otherwise, all is well, and we've got enough to take a kick
   3097 	   at autoconfiguring this set */
   3098 	return(1);
   3099 }
   3100 
   3101 void
   3102 rf_create_configuration(ac,config,raidPtr)
   3103 	RF_AutoConfig_t *ac;
   3104 	RF_Config_t *config;
   3105 	RF_Raid_t *raidPtr;
   3106 {
   3107 	RF_ComponentLabel_t *clabel;
   3108 	int i;
   3109 
   3110 	clabel = ac->clabel;
   3111 
   3112 	/* 1. Fill in the common stuff */
   3113 	config->numRow = clabel->num_rows;
   3114 	config->numCol = clabel->num_columns;
   3115 	config->numSpare = 0; /* XXX should this be set here? */
   3116 	config->sectPerSU = clabel->sectPerSU;
   3117 	config->SUsPerPU = clabel->SUsPerPU;
   3118 	config->SUsPerRU = clabel->SUsPerRU;
   3119 	config->parityConfig = clabel->parityConfig;
   3120 	/* XXX... */
   3121 	strcpy(config->diskQueueType,"fifo");
   3122 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3123 	config->layoutSpecificSize = 0; /* XXX ?? */
   3124 
   3125 	while(ac!=NULL) {
   3126 		/* row/col values will be in range due to the checks
   3127 		   in reasonable_label() */
   3128 		strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
   3129 		       ac->devname);
   3130 		ac = ac->next;
   3131 	}
   3132 
   3133 	for(i=0;i<RF_MAXDBGV;i++) {
   3134 		config->debugVars[i][0] = NULL;
   3135 	}
   3136 }
   3137 
   3138 int
   3139 rf_set_autoconfig(raidPtr, new_value)
   3140 	RF_Raid_t *raidPtr;
   3141 	int new_value;
   3142 {
   3143 	RF_ComponentLabel_t clabel;
   3144 	struct vnode *vp;
   3145 	dev_t dev;
   3146 	int row, column;
   3147 	int sparecol;
   3148 
   3149 	raidPtr->autoconfigure = new_value;
   3150 	for(row=0; row<raidPtr->numRow; row++) {
   3151 		for(column=0; column<raidPtr->numCol; column++) {
   3152 			if (raidPtr->Disks[row][column].status ==
   3153 			    rf_ds_optimal) {
   3154 				dev = raidPtr->Disks[row][column].dev;
   3155 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3156 				raidread_component_label(dev, vp, &clabel);
   3157 				clabel.autoconfigure = new_value;
   3158 				raidwrite_component_label(dev, vp, &clabel);
   3159 			}
   3160 		}
   3161 	}
   3162 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3163 		sparecol = raidPtr->numCol + column;
   3164 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   3165 			dev = raidPtr->Disks[0][sparecol].dev;
   3166 			vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
   3167 			raidread_component_label(dev, vp, &clabel);
   3168 			clabel.autoconfigure = new_value;
   3169 			raidwrite_component_label(dev, vp, &clabel);
   3170 		}
   3171 	}
   3172 	return(new_value);
   3173 }
   3174 
   3175 int
   3176 rf_set_rootpartition(raidPtr, new_value)
   3177 	RF_Raid_t *raidPtr;
   3178 	int new_value;
   3179 {
   3180 	RF_ComponentLabel_t clabel;
   3181 	struct vnode *vp;
   3182 	dev_t dev;
   3183 	int row, column;
   3184 	int sparecol;
   3185 
   3186 	raidPtr->root_partition = new_value;
   3187 	for(row=0; row<raidPtr->numRow; row++) {
   3188 		for(column=0; column<raidPtr->numCol; column++) {
   3189 			if (raidPtr->Disks[row][column].status ==
   3190 			    rf_ds_optimal) {
   3191 				dev = raidPtr->Disks[row][column].dev;
   3192 				vp = raidPtr->raid_cinfo[row][column].ci_vp;
   3193 				raidread_component_label(dev, vp, &clabel);
   3194 				clabel.root_partition = new_value;
   3195 				raidwrite_component_label(dev, vp, &clabel);
   3196 			}
   3197 		}
   3198 	}
   3199 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3200 		sparecol = raidPtr->numCol + column;
   3201 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   3202 			dev = raidPtr->Disks[0][sparecol].dev;
   3203 			vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
   3204 			raidread_component_label(dev, vp, &clabel);
   3205 			clabel.root_partition = new_value;
   3206 			raidwrite_component_label(dev, vp, &clabel);
   3207 		}
   3208 	}
   3209 	return(new_value);
   3210 }
   3211 
   3212 void
   3213 rf_release_all_vps(cset)
   3214 	RF_ConfigSet_t *cset;
   3215 {
   3216 	RF_AutoConfig_t *ac;
   3217 
   3218 	ac = cset->ac;
   3219 	while(ac!=NULL) {
   3220 		/* Close the vp, and give it back */
   3221 		if (ac->vp) {
   3222 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3223 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3224 			vput(ac->vp);
   3225 			ac->vp = NULL;
   3226 		}
   3227 		ac = ac->next;
   3228 	}
   3229 }
   3230 
   3231 
   3232 void
   3233 rf_cleanup_config_set(cset)
   3234 	RF_ConfigSet_t *cset;
   3235 {
   3236 	RF_AutoConfig_t *ac;
   3237 	RF_AutoConfig_t *next_ac;
   3238 
   3239 	ac = cset->ac;
   3240 	while(ac!=NULL) {
   3241 		next_ac = ac->next;
   3242 		/* nuke the label */
   3243 		free(ac->clabel, M_RAIDFRAME);
   3244 		/* cleanup the config structure */
   3245 		free(ac, M_RAIDFRAME);
   3246 		/* "next.." */
   3247 		ac = next_ac;
   3248 	}
   3249 	/* and, finally, nuke the config set */
   3250 	free(cset, M_RAIDFRAME);
   3251 }
   3252 
   3253 
   3254 void
   3255 raid_init_component_label(raidPtr, clabel)
   3256 	RF_Raid_t *raidPtr;
   3257 	RF_ComponentLabel_t *clabel;
   3258 {
   3259 	/* current version number */
   3260 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3261 	clabel->serial_number = raidPtr->serial_number;
   3262 	clabel->mod_counter = raidPtr->mod_counter;
   3263 	clabel->num_rows = raidPtr->numRow;
   3264 	clabel->num_columns = raidPtr->numCol;
   3265 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3266 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3267 
   3268 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3269 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3270 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3271 
   3272 	clabel->blockSize = raidPtr->bytesPerSector;
   3273 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3274 
   3275 	/* XXX not portable */
   3276 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3277 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3278 	clabel->autoconfigure = raidPtr->autoconfigure;
   3279 	clabel->root_partition = raidPtr->root_partition;
   3280 	clabel->last_unit = raidPtr->raidid;
   3281 	clabel->config_order = raidPtr->config_order;
   3282 }
   3283 
   3284 int
   3285 rf_auto_config_set(cset,unit)
   3286 	RF_ConfigSet_t *cset;
   3287 	int *unit;
   3288 {
   3289 	RF_Raid_t *raidPtr;
   3290 	RF_Config_t *config;
   3291 	int raidID;
   3292 	int retcode;
   3293 
   3294 #if DEBUG
   3295 	printf("RAID autoconfigure\n");
   3296 #endif
   3297 
   3298 	retcode = 0;
   3299 	*unit = -1;
   3300 
   3301 	/* 1. Create a config structure */
   3302 
   3303 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3304 				       M_RAIDFRAME,
   3305 				       M_NOWAIT);
   3306 	if (config==NULL) {
   3307 		printf("Out of mem!?!?\n");
   3308 				/* XXX do something more intelligent here. */
   3309 		return(1);
   3310 	}
   3311 
   3312 	memset(config, 0, sizeof(RF_Config_t));
   3313 
   3314 	/*
   3315 	   2. Figure out what RAID ID this one is supposed to live at
   3316 	   See if we can get the same RAID dev that it was configured
   3317 	   on last time..
   3318 	*/
   3319 
   3320 	raidID = cset->ac->clabel->last_unit;
   3321 	if ((raidID < 0) || (raidID >= numraid)) {
   3322 		/* let's not wander off into lala land. */
   3323 		raidID = numraid - 1;
   3324 	}
   3325 	if (raidPtrs[raidID]->valid != 0) {
   3326 
   3327 		/*
   3328 		   Nope... Go looking for an alternative...
   3329 		   Start high so we don't immediately use raid0 if that's
   3330 		   not taken.
   3331 		*/
   3332 
   3333 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3334 			if (raidPtrs[raidID]->valid == 0) {
   3335 				/* can use this one! */
   3336 				break;
   3337 			}
   3338 		}
   3339 	}
   3340 
   3341 	if (raidID < 0) {
   3342 		/* punt... */
   3343 		printf("Unable to auto configure this set!\n");
   3344 		printf("(Out of RAID devs!)\n");
   3345 		return(1);
   3346 	}
   3347 
   3348 #if DEBUG
   3349 	printf("Configuring raid%d:\n",raidID);
   3350 #endif
   3351 
   3352 	raidPtr = raidPtrs[raidID];
   3353 
   3354 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3355 	raidPtr->raidid = raidID;
   3356 	raidPtr->openings = RAIDOUTSTANDING;
   3357 
   3358 	/* 3. Build the configuration structure */
   3359 	rf_create_configuration(cset->ac, config, raidPtr);
   3360 
   3361 	/* 4. Do the configuration */
   3362 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3363 
   3364 	if (retcode == 0) {
   3365 
   3366 		raidinit(raidPtrs[raidID]);
   3367 
   3368 		rf_markalldirty(raidPtrs[raidID]);
   3369 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3370 		if (cset->ac->clabel->root_partition==1) {
   3371 			/* everything configured just fine.  Make a note
   3372 			   that this set is eligible to be root. */
   3373 			cset->rootable = 1;
   3374 			/* XXX do this here? */
   3375 			raidPtrs[raidID]->root_partition = 1;
   3376 		}
   3377 	}
   3378 
   3379 	/* 5. Cleanup */
   3380 	free(config, M_RAIDFRAME);
   3381 
   3382 	*unit = raidID;
   3383 	return(retcode);
   3384 }
   3385 
   3386 void
   3387 rf_disk_unbusy(desc)
   3388 	RF_RaidAccessDesc_t *desc;
   3389 {
   3390 	struct buf *bp;
   3391 
   3392 	bp = (struct buf *)desc->bp;
   3393 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3394 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3395 }
   3396