rf_netbsdkintf.c revision 1.155 1 /* $NetBSD: rf_netbsdkintf.c,v 1.155 2003/02/25 20:35:36 thorpej Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1988 University of Utah.
40 * Copyright (c) 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software contributed to Berkeley by
44 * the Systems Programming Group of the University of Utah Computer
45 * Science Department.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * from: Utah $Hdr: cd.c 1.6 90/11/28$
76 *
77 * @(#)cd.c 8.2 (Berkeley) 11/16/93
78 */
79
80 /*
81 * Copyright (c) 1995 Carnegie-Mellon University.
82 * All rights reserved.
83 *
84 * Authors: Mark Holland, Jim Zelenka
85 *
86 * Permission to use, copy, modify and distribute this software and
87 * its documentation is hereby granted, provided that both the copyright
88 * notice and this permission notice appear in all copies of the
89 * software, derivative works or modified versions, and any portions
90 * thereof, and that both notices appear in supporting documentation.
91 *
92 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
93 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
94 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
95 *
96 * Carnegie Mellon requests users of this software to return to
97 *
98 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
99 * School of Computer Science
100 * Carnegie Mellon University
101 * Pittsburgh PA 15213-3890
102 *
103 * any improvements or extensions that they make and grant Carnegie the
104 * rights to redistribute these changes.
105 */
106
107 /***********************************************************
108 *
109 * rf_kintf.c -- the kernel interface routines for RAIDframe
110 *
111 ***********************************************************/
112
113 #include <sys/cdefs.h>
114 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.155 2003/02/25 20:35:36 thorpej Exp $");
115
116 #include <sys/param.h>
117 #include <sys/errno.h>
118 #include <sys/pool.h>
119 #include <sys/proc.h>
120 #include <sys/queue.h>
121 #include <sys/disk.h>
122 #include <sys/device.h>
123 #include <sys/stat.h>
124 #include <sys/ioctl.h>
125 #include <sys/fcntl.h>
126 #include <sys/systm.h>
127 #include <sys/namei.h>
128 #include <sys/vnode.h>
129 #include <sys/disklabel.h>
130 #include <sys/conf.h>
131 #include <sys/lock.h>
132 #include <sys/buf.h>
133 #include <sys/user.h>
134 #include <sys/reboot.h>
135
136 #include <dev/raidframe/raidframevar.h>
137 #include <dev/raidframe/raidframeio.h>
138 #include "raid.h"
139 #include "opt_raid_autoconfig.h"
140 #include "rf_raid.h"
141 #include "rf_copyback.h"
142 #include "rf_dag.h"
143 #include "rf_dagflags.h"
144 #include "rf_desc.h"
145 #include "rf_diskqueue.h"
146 #include "rf_etimer.h"
147 #include "rf_general.h"
148 #include "rf_kintf.h"
149 #include "rf_options.h"
150 #include "rf_driver.h"
151 #include "rf_parityscan.h"
152 #include "rf_threadstuff.h"
153
154 #ifdef DEBUG
155 int rf_kdebug_level = 0;
156 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 #else /* DEBUG */
158 #define db1_printf(a) { }
159 #endif /* DEBUG */
160
161 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
162
163 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
164
165 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
166 * spare table */
167 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
168 * installation process */
169
170 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
171
172 /* prototypes */
173 static void KernelWakeupFunc(struct buf * bp);
174 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
175 dev_t dev, RF_SectorNum_t startSect,
176 RF_SectorCount_t numSect, caddr_t buf,
177 void (*cbFunc) (struct buf *), void *cbArg,
178 int logBytesPerSector, struct proc * b_proc);
179 static void raidinit(RF_Raid_t *);
180
181 void raidattach(int);
182
183 dev_type_open(raidopen);
184 dev_type_close(raidclose);
185 dev_type_read(raidread);
186 dev_type_write(raidwrite);
187 dev_type_ioctl(raidioctl);
188 dev_type_strategy(raidstrategy);
189 dev_type_dump(raiddump);
190 dev_type_size(raidsize);
191
192 const struct bdevsw raid_bdevsw = {
193 raidopen, raidclose, raidstrategy, raidioctl,
194 raiddump, raidsize, D_DISK
195 };
196
197 const struct cdevsw raid_cdevsw = {
198 raidopen, raidclose, raidread, raidwrite, raidioctl,
199 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
200 };
201
202 /*
203 * Pilfered from ccd.c
204 */
205
206 struct raidbuf {
207 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
208 struct buf *rf_obp; /* ptr. to original I/O buf */
209 RF_DiskQueueData_t *req;/* the request that this was part of.. */
210 };
211
212 /* component buffer pool */
213 struct pool raidframe_cbufpool;
214
215 /* XXX Not sure if the following should be replacing the raidPtrs above,
216 or if it should be used in conjunction with that...
217 */
218
219 struct raid_softc {
220 int sc_flags; /* flags */
221 int sc_cflags; /* configuration flags */
222 size_t sc_size; /* size of the raid device */
223 char sc_xname[20]; /* XXX external name */
224 struct disk sc_dkdev; /* generic disk device info */
225 struct bufq_state buf_queue; /* used for the device queue */
226 };
227 /* sc_flags */
228 #define RAIDF_INITED 0x01 /* unit has been initialized */
229 #define RAIDF_WLABEL 0x02 /* label area is writable */
230 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
231 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
232 #define RAIDF_LOCKED 0x80 /* unit is locked */
233
234 #define raidunit(x) DISKUNIT(x)
235 int numraid = 0;
236
237 /*
238 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
239 * Be aware that large numbers can allow the driver to consume a lot of
240 * kernel memory, especially on writes, and in degraded mode reads.
241 *
242 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
243 * a single 64K write will typically require 64K for the old data,
244 * 64K for the old parity, and 64K for the new parity, for a total
245 * of 192K (if the parity buffer is not re-used immediately).
246 * Even it if is used immediately, that's still 128K, which when multiplied
247 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
248 *
249 * Now in degraded mode, for example, a 64K read on the above setup may
250 * require data reconstruction, which will require *all* of the 4 remaining
251 * disks to participate -- 4 * 32K/disk == 128K again.
252 */
253
254 #ifndef RAIDOUTSTANDING
255 #define RAIDOUTSTANDING 6
256 #endif
257
258 #define RAIDLABELDEV(dev) \
259 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
260
261 /* declared here, and made public, for the benefit of KVM stuff.. */
262 struct raid_softc *raid_softc;
263
264 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
265 struct disklabel *);
266 static void raidgetdisklabel(dev_t);
267 static void raidmakedisklabel(struct raid_softc *);
268
269 static int raidlock(struct raid_softc *);
270 static void raidunlock(struct raid_softc *);
271
272 static void rf_markalldirty(RF_Raid_t *);
273
274 struct device *raidrootdev;
275
276 void rf_ReconThread(struct rf_recon_req *);
277 /* XXX what I want is: */
278 /*void rf_ReconThread(RF_Raid_t *raidPtr); */
279 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
280 void rf_CopybackThread(RF_Raid_t *raidPtr);
281 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
282 int rf_autoconfig(struct device *self);
283 void rf_buildroothack(RF_ConfigSet_t *);
284
285 RF_AutoConfig_t *rf_find_raid_components(void);
286 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
287 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
288 static int rf_reasonable_label(RF_ComponentLabel_t *);
289 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
290 int rf_set_autoconfig(RF_Raid_t *, int);
291 int rf_set_rootpartition(RF_Raid_t *, int);
292 void rf_release_all_vps(RF_ConfigSet_t *);
293 void rf_cleanup_config_set(RF_ConfigSet_t *);
294 int rf_have_enough_components(RF_ConfigSet_t *);
295 int rf_auto_config_set(RF_ConfigSet_t *, int *);
296
297 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
298 allow autoconfig to take place.
299 Note that this is overridden by having
300 RAID_AUTOCONFIG as an option in the
301 kernel config file. */
302
303 void
304 raidattach(num)
305 int num;
306 {
307 int raidID;
308 int i, rc;
309
310 #ifdef DEBUG
311 printf("raidattach: Asked for %d units\n", num);
312 #endif
313
314 if (num <= 0) {
315 #ifdef DIAGNOSTIC
316 panic("raidattach: count <= 0");
317 #endif
318 return;
319 }
320 /* This is where all the initialization stuff gets done. */
321
322 numraid = num;
323
324 /* Make some space for requested number of units... */
325
326 RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
327 if (raidPtrs == NULL) {
328 panic("raidPtrs is NULL!!");
329 }
330
331 /* Initialize the component buffer pool. */
332 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
333 0, 0, "raidpl", NULL);
334
335 rc = rf_mutex_init(&rf_sparet_wait_mutex);
336 if (rc) {
337 RF_PANIC();
338 }
339
340 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
341
342 for (i = 0; i < num; i++)
343 raidPtrs[i] = NULL;
344 rc = rf_BootRaidframe();
345 if (rc == 0)
346 printf("Kernelized RAIDframe activated\n");
347 else
348 panic("Serious error booting RAID!!");
349
350 /* put together some datastructures like the CCD device does.. This
351 * lets us lock the device and what-not when it gets opened. */
352
353 raid_softc = (struct raid_softc *)
354 malloc(num * sizeof(struct raid_softc),
355 M_RAIDFRAME, M_NOWAIT);
356 if (raid_softc == NULL) {
357 printf("WARNING: no memory for RAIDframe driver\n");
358 return;
359 }
360
361 memset(raid_softc, 0, num * sizeof(struct raid_softc));
362
363 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
364 M_RAIDFRAME, M_NOWAIT);
365 if (raidrootdev == NULL) {
366 panic("No memory for RAIDframe driver!!?!?!");
367 }
368
369 for (raidID = 0; raidID < num; raidID++) {
370 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
371
372 raidrootdev[raidID].dv_class = DV_DISK;
373 raidrootdev[raidID].dv_cfdata = NULL;
374 raidrootdev[raidID].dv_unit = raidID;
375 raidrootdev[raidID].dv_parent = NULL;
376 raidrootdev[raidID].dv_flags = 0;
377 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
378
379 RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
380 (RF_Raid_t *));
381 if (raidPtrs[raidID] == NULL) {
382 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
383 numraid = raidID;
384 return;
385 }
386 }
387
388 #ifdef RAID_AUTOCONFIG
389 raidautoconfig = 1;
390 #endif
391
392 /*
393 * Register a finalizer which will be used to auto-config RAID
394 * sets once all real hardware devices have been found.
395 */
396 if (config_finalize_register(NULL, rf_autoconfig) != 0)
397 printf("WARNING: unable to register RAIDframe finalizer\n");
398 }
399
400 int
401 rf_autoconfig(struct device *self)
402 {
403 RF_AutoConfig_t *ac_list;
404 RF_ConfigSet_t *config_sets;
405
406 if (raidautoconfig == 0)
407 return (0);
408
409 /* XXX This code can only be run once. */
410 raidautoconfig = 0;
411
412 /* 1. locate all RAID components on the system */
413 #ifdef DEBUG
414 printf("Searching for RAID components...\n");
415 #endif
416 ac_list = rf_find_raid_components();
417
418 /* 2. Sort them into their respective sets. */
419 config_sets = rf_create_auto_sets(ac_list);
420
421 /*
422 * 3. Evaluate each set andconfigure the valid ones.
423 * This gets done in rf_buildroothack().
424 */
425 rf_buildroothack(config_sets);
426
427 return (1);
428 }
429
430 void
431 rf_buildroothack(RF_ConfigSet_t *config_sets)
432 {
433 RF_ConfigSet_t *cset;
434 RF_ConfigSet_t *next_cset;
435 int retcode;
436 int raidID;
437 int rootID;
438 int num_root;
439
440 rootID = 0;
441 num_root = 0;
442 cset = config_sets;
443 while(cset != NULL ) {
444 next_cset = cset->next;
445 if (rf_have_enough_components(cset) &&
446 cset->ac->clabel->autoconfigure==1) {
447 retcode = rf_auto_config_set(cset,&raidID);
448 if (!retcode) {
449 if (cset->rootable) {
450 rootID = raidID;
451 num_root++;
452 }
453 } else {
454 /* The autoconfig didn't work :( */
455 #if DEBUG
456 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
457 #endif
458 rf_release_all_vps(cset);
459 }
460 } else {
461 /* we're not autoconfiguring this set...
462 release the associated resources */
463 rf_release_all_vps(cset);
464 }
465 /* cleanup */
466 rf_cleanup_config_set(cset);
467 cset = next_cset;
468 }
469
470 /* we found something bootable... */
471
472 if (num_root == 1) {
473 booted_device = &raidrootdev[rootID];
474 } else if (num_root > 1) {
475 /* we can't guess.. require the user to answer... */
476 boothowto |= RB_ASKNAME;
477 }
478 }
479
480
481 int
482 raidsize(dev)
483 dev_t dev;
484 {
485 struct raid_softc *rs;
486 struct disklabel *lp;
487 int part, unit, omask, size;
488
489 unit = raidunit(dev);
490 if (unit >= numraid)
491 return (-1);
492 rs = &raid_softc[unit];
493
494 if ((rs->sc_flags & RAIDF_INITED) == 0)
495 return (-1);
496
497 part = DISKPART(dev);
498 omask = rs->sc_dkdev.dk_openmask & (1 << part);
499 lp = rs->sc_dkdev.dk_label;
500
501 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
502 return (-1);
503
504 if (lp->d_partitions[part].p_fstype != FS_SWAP)
505 size = -1;
506 else
507 size = lp->d_partitions[part].p_size *
508 (lp->d_secsize / DEV_BSIZE);
509
510 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
511 return (-1);
512
513 return (size);
514
515 }
516
517 int
518 raiddump(dev, blkno, va, size)
519 dev_t dev;
520 daddr_t blkno;
521 caddr_t va;
522 size_t size;
523 {
524 /* Not implemented. */
525 return ENXIO;
526 }
527 /* ARGSUSED */
528 int
529 raidopen(dev, flags, fmt, p)
530 dev_t dev;
531 int flags, fmt;
532 struct proc *p;
533 {
534 int unit = raidunit(dev);
535 struct raid_softc *rs;
536 struct disklabel *lp;
537 int part, pmask;
538 int error = 0;
539
540 if (unit >= numraid)
541 return (ENXIO);
542 rs = &raid_softc[unit];
543
544 if ((error = raidlock(rs)) != 0)
545 return (error);
546 lp = rs->sc_dkdev.dk_label;
547
548 part = DISKPART(dev);
549 pmask = (1 << part);
550
551 if ((rs->sc_flags & RAIDF_INITED) &&
552 (rs->sc_dkdev.dk_openmask == 0))
553 raidgetdisklabel(dev);
554
555 /* make sure that this partition exists */
556
557 if (part != RAW_PART) {
558 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
559 ((part >= lp->d_npartitions) ||
560 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
561 error = ENXIO;
562 raidunlock(rs);
563 return (error);
564 }
565 }
566 /* Prevent this unit from being unconfigured while open. */
567 switch (fmt) {
568 case S_IFCHR:
569 rs->sc_dkdev.dk_copenmask |= pmask;
570 break;
571
572 case S_IFBLK:
573 rs->sc_dkdev.dk_bopenmask |= pmask;
574 break;
575 }
576
577 if ((rs->sc_dkdev.dk_openmask == 0) &&
578 ((rs->sc_flags & RAIDF_INITED) != 0)) {
579 /* First one... mark things as dirty... Note that we *MUST*
580 have done a configure before this. I DO NOT WANT TO BE
581 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
582 THAT THEY BELONG TOGETHER!!!!! */
583 /* XXX should check to see if we're only open for reading
584 here... If so, we needn't do this, but then need some
585 other way of keeping track of what's happened.. */
586
587 rf_markalldirty( raidPtrs[unit] );
588 }
589
590
591 rs->sc_dkdev.dk_openmask =
592 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
593
594 raidunlock(rs);
595
596 return (error);
597
598
599 }
600 /* ARGSUSED */
601 int
602 raidclose(dev, flags, fmt, p)
603 dev_t dev;
604 int flags, fmt;
605 struct proc *p;
606 {
607 int unit = raidunit(dev);
608 struct raid_softc *rs;
609 int error = 0;
610 int part;
611
612 if (unit >= numraid)
613 return (ENXIO);
614 rs = &raid_softc[unit];
615
616 if ((error = raidlock(rs)) != 0)
617 return (error);
618
619 part = DISKPART(dev);
620
621 /* ...that much closer to allowing unconfiguration... */
622 switch (fmt) {
623 case S_IFCHR:
624 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
625 break;
626
627 case S_IFBLK:
628 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
629 break;
630 }
631 rs->sc_dkdev.dk_openmask =
632 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
633
634 if ((rs->sc_dkdev.dk_openmask == 0) &&
635 ((rs->sc_flags & RAIDF_INITED) != 0)) {
636 /* Last one... device is not unconfigured yet.
637 Device shutdown has taken care of setting the
638 clean bits if RAIDF_INITED is not set
639 mark things as clean... */
640
641 rf_update_component_labels(raidPtrs[unit],
642 RF_FINAL_COMPONENT_UPDATE);
643 if (doing_shutdown) {
644 /* last one, and we're going down, so
645 lights out for this RAID set too. */
646 error = rf_Shutdown(raidPtrs[unit]);
647
648 /* It's no longer initialized... */
649 rs->sc_flags &= ~RAIDF_INITED;
650
651 /* Detach the disk. */
652 disk_detach(&rs->sc_dkdev);
653 }
654 }
655
656 raidunlock(rs);
657 return (0);
658
659 }
660
661 void
662 raidstrategy(bp)
663 struct buf *bp;
664 {
665 int s;
666
667 unsigned int raidID = raidunit(bp->b_dev);
668 RF_Raid_t *raidPtr;
669 struct raid_softc *rs = &raid_softc[raidID];
670 struct disklabel *lp;
671 int wlabel;
672
673 if ((rs->sc_flags & RAIDF_INITED) ==0) {
674 bp->b_error = ENXIO;
675 bp->b_flags |= B_ERROR;
676 bp->b_resid = bp->b_bcount;
677 biodone(bp);
678 return;
679 }
680 if (raidID >= numraid || !raidPtrs[raidID]) {
681 bp->b_error = ENODEV;
682 bp->b_flags |= B_ERROR;
683 bp->b_resid = bp->b_bcount;
684 biodone(bp);
685 return;
686 }
687 raidPtr = raidPtrs[raidID];
688 if (!raidPtr->valid) {
689 bp->b_error = ENODEV;
690 bp->b_flags |= B_ERROR;
691 bp->b_resid = bp->b_bcount;
692 biodone(bp);
693 return;
694 }
695 if (bp->b_bcount == 0) {
696 db1_printf(("b_bcount is zero..\n"));
697 biodone(bp);
698 return;
699 }
700 lp = rs->sc_dkdev.dk_label;
701
702 /*
703 * Do bounds checking and adjust transfer. If there's an
704 * error, the bounds check will flag that for us.
705 */
706
707 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
708 if (DISKPART(bp->b_dev) != RAW_PART)
709 if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
710 db1_printf(("Bounds check failed!!:%d %d\n",
711 (int) bp->b_blkno, (int) wlabel));
712 biodone(bp);
713 return;
714 }
715 s = splbio();
716
717 bp->b_resid = 0;
718
719 /* stuff it onto our queue */
720 BUFQ_PUT(&rs->buf_queue, bp);
721
722 raidstart(raidPtrs[raidID]);
723
724 splx(s);
725 }
726 /* ARGSUSED */
727 int
728 raidread(dev, uio, flags)
729 dev_t dev;
730 struct uio *uio;
731 int flags;
732 {
733 int unit = raidunit(dev);
734 struct raid_softc *rs;
735 int part;
736
737 if (unit >= numraid)
738 return (ENXIO);
739 rs = &raid_softc[unit];
740
741 if ((rs->sc_flags & RAIDF_INITED) == 0)
742 return (ENXIO);
743 part = DISKPART(dev);
744
745 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
746
747 }
748 /* ARGSUSED */
749 int
750 raidwrite(dev, uio, flags)
751 dev_t dev;
752 struct uio *uio;
753 int flags;
754 {
755 int unit = raidunit(dev);
756 struct raid_softc *rs;
757
758 if (unit >= numraid)
759 return (ENXIO);
760 rs = &raid_softc[unit];
761
762 if ((rs->sc_flags & RAIDF_INITED) == 0)
763 return (ENXIO);
764
765 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
766
767 }
768
769 int
770 raidioctl(dev, cmd, data, flag, p)
771 dev_t dev;
772 u_long cmd;
773 caddr_t data;
774 int flag;
775 struct proc *p;
776 {
777 int unit = raidunit(dev);
778 int error = 0;
779 int part, pmask;
780 struct raid_softc *rs;
781 RF_Config_t *k_cfg, *u_cfg;
782 RF_Raid_t *raidPtr;
783 RF_RaidDisk_t *diskPtr;
784 RF_AccTotals_t *totals;
785 RF_DeviceConfig_t *d_cfg, **ucfgp;
786 u_char *specific_buf;
787 int retcode = 0;
788 int row;
789 int column;
790 int raidid;
791 struct rf_recon_req *rrcopy, *rr;
792 RF_ComponentLabel_t *clabel;
793 RF_ComponentLabel_t ci_label;
794 RF_ComponentLabel_t **clabel_ptr;
795 RF_SingleComponent_t *sparePtr,*componentPtr;
796 RF_SingleComponent_t hot_spare;
797 RF_SingleComponent_t component;
798 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
799 int i, j, d;
800 #ifdef __HAVE_OLD_DISKLABEL
801 struct disklabel newlabel;
802 #endif
803
804 if (unit >= numraid)
805 return (ENXIO);
806 rs = &raid_softc[unit];
807 raidPtr = raidPtrs[unit];
808
809 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
810 (int) DISKPART(dev), (int) unit, (int) cmd));
811
812 /* Must be open for writes for these commands... */
813 switch (cmd) {
814 case DIOCSDINFO:
815 case DIOCWDINFO:
816 #ifdef __HAVE_OLD_DISKLABEL
817 case ODIOCWDINFO:
818 case ODIOCSDINFO:
819 #endif
820 case DIOCWLABEL:
821 if ((flag & FWRITE) == 0)
822 return (EBADF);
823 }
824
825 /* Must be initialized for these... */
826 switch (cmd) {
827 case DIOCGDINFO:
828 case DIOCSDINFO:
829 case DIOCWDINFO:
830 #ifdef __HAVE_OLD_DISKLABEL
831 case ODIOCGDINFO:
832 case ODIOCWDINFO:
833 case ODIOCSDINFO:
834 case ODIOCGDEFLABEL:
835 #endif
836 case DIOCGPART:
837 case DIOCWLABEL:
838 case DIOCGDEFLABEL:
839 case RAIDFRAME_SHUTDOWN:
840 case RAIDFRAME_REWRITEPARITY:
841 case RAIDFRAME_GET_INFO:
842 case RAIDFRAME_RESET_ACCTOTALS:
843 case RAIDFRAME_GET_ACCTOTALS:
844 case RAIDFRAME_KEEP_ACCTOTALS:
845 case RAIDFRAME_GET_SIZE:
846 case RAIDFRAME_FAIL_DISK:
847 case RAIDFRAME_COPYBACK:
848 case RAIDFRAME_CHECK_RECON_STATUS:
849 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
850 case RAIDFRAME_GET_COMPONENT_LABEL:
851 case RAIDFRAME_SET_COMPONENT_LABEL:
852 case RAIDFRAME_ADD_HOT_SPARE:
853 case RAIDFRAME_REMOVE_HOT_SPARE:
854 case RAIDFRAME_INIT_LABELS:
855 case RAIDFRAME_REBUILD_IN_PLACE:
856 case RAIDFRAME_CHECK_PARITY:
857 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
859 case RAIDFRAME_CHECK_COPYBACK_STATUS:
860 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
861 case RAIDFRAME_SET_AUTOCONFIG:
862 case RAIDFRAME_SET_ROOT:
863 case RAIDFRAME_DELETE_COMPONENT:
864 case RAIDFRAME_INCORPORATE_HOT_SPARE:
865 if ((rs->sc_flags & RAIDF_INITED) == 0)
866 return (ENXIO);
867 }
868
869 switch (cmd) {
870
871 /* configure the system */
872 case RAIDFRAME_CONFIGURE:
873
874 if (raidPtr->valid) {
875 /* There is a valid RAID set running on this unit! */
876 printf("raid%d: Device already configured!\n",unit);
877 return(EINVAL);
878 }
879
880 /* copy-in the configuration information */
881 /* data points to a pointer to the configuration structure */
882
883 u_cfg = *((RF_Config_t **) data);
884 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
885 if (k_cfg == NULL) {
886 return (ENOMEM);
887 }
888 retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
889 sizeof(RF_Config_t));
890 if (retcode) {
891 RF_Free(k_cfg, sizeof(RF_Config_t));
892 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
893 retcode));
894 return (retcode);
895 }
896 /* allocate a buffer for the layout-specific data, and copy it
897 * in */
898 if (k_cfg->layoutSpecificSize) {
899 if (k_cfg->layoutSpecificSize > 10000) {
900 /* sanity check */
901 RF_Free(k_cfg, sizeof(RF_Config_t));
902 return (EINVAL);
903 }
904 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
905 (u_char *));
906 if (specific_buf == NULL) {
907 RF_Free(k_cfg, sizeof(RF_Config_t));
908 return (ENOMEM);
909 }
910 retcode = copyin(k_cfg->layoutSpecific,
911 (caddr_t) specific_buf,
912 k_cfg->layoutSpecificSize);
913 if (retcode) {
914 RF_Free(k_cfg, sizeof(RF_Config_t));
915 RF_Free(specific_buf,
916 k_cfg->layoutSpecificSize);
917 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
918 retcode));
919 return (retcode);
920 }
921 } else
922 specific_buf = NULL;
923 k_cfg->layoutSpecific = specific_buf;
924
925 /* should do some kind of sanity check on the configuration.
926 * Store the sum of all the bytes in the last byte? */
927
928 /* configure the system */
929
930 /*
931 * Clear the entire RAID descriptor, just to make sure
932 * there is no stale data left in the case of a
933 * reconfiguration
934 */
935 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
936 raidPtr->raidid = unit;
937
938 retcode = rf_Configure(raidPtr, k_cfg, NULL);
939
940 if (retcode == 0) {
941
942 /* allow this many simultaneous IO's to
943 this RAID device */
944 raidPtr->openings = RAIDOUTSTANDING;
945
946 raidinit(raidPtr);
947 rf_markalldirty(raidPtr);
948 }
949 /* free the buffers. No return code here. */
950 if (k_cfg->layoutSpecificSize) {
951 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
952 }
953 RF_Free(k_cfg, sizeof(RF_Config_t));
954
955 return (retcode);
956
957 /* shutdown the system */
958 case RAIDFRAME_SHUTDOWN:
959
960 if ((error = raidlock(rs)) != 0)
961 return (error);
962
963 /*
964 * If somebody has a partition mounted, we shouldn't
965 * shutdown.
966 */
967
968 part = DISKPART(dev);
969 pmask = (1 << part);
970 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
971 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
972 (rs->sc_dkdev.dk_copenmask & pmask))) {
973 raidunlock(rs);
974 return (EBUSY);
975 }
976
977 retcode = rf_Shutdown(raidPtr);
978
979 /* It's no longer initialized... */
980 rs->sc_flags &= ~RAIDF_INITED;
981
982 /* Detach the disk. */
983 disk_detach(&rs->sc_dkdev);
984
985 raidunlock(rs);
986
987 return (retcode);
988 case RAIDFRAME_GET_COMPONENT_LABEL:
989 clabel_ptr = (RF_ComponentLabel_t **) data;
990 /* need to read the component label for the disk indicated
991 by row,column in clabel */
992
993 /* For practice, let's get it directly fromdisk, rather
994 than from the in-core copy */
995 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
996 (RF_ComponentLabel_t *));
997 if (clabel == NULL)
998 return (ENOMEM);
999
1000 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1001
1002 retcode = copyin( *clabel_ptr, clabel,
1003 sizeof(RF_ComponentLabel_t));
1004
1005 if (retcode) {
1006 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1007 return(retcode);
1008 }
1009
1010 row = clabel->row;
1011 column = clabel->column;
1012
1013 if ((row < 0) || (row >= raidPtr->numRow) ||
1014 (column < 0) || (column >= raidPtr->numCol +
1015 raidPtr->numSpare)) {
1016 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1017 return(EINVAL);
1018 }
1019
1020 raidread_component_label(raidPtr->Disks[row][column].dev,
1021 raidPtr->raid_cinfo[row][column].ci_vp,
1022 clabel );
1023
1024 retcode = copyout((caddr_t) clabel,
1025 (caddr_t) *clabel_ptr,
1026 sizeof(RF_ComponentLabel_t));
1027 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1028 return (retcode);
1029
1030 case RAIDFRAME_SET_COMPONENT_LABEL:
1031 clabel = (RF_ComponentLabel_t *) data;
1032
1033 /* XXX check the label for valid stuff... */
1034 /* Note that some things *should not* get modified --
1035 the user should be re-initing the labels instead of
1036 trying to patch things.
1037 */
1038
1039 raidid = raidPtr->raidid;
1040 printf("raid%d: Got component label:\n", raidid);
1041 printf("raid%d: Version: %d\n", raidid, clabel->version);
1042 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1043 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1044 printf("raid%d: Row: %d\n", raidid, clabel->row);
1045 printf("raid%d: Column: %d\n", raidid, clabel->column);
1046 printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
1047 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1048 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1049 printf("raid%d: Status: %d\n", raidid, clabel->status);
1050
1051 row = clabel->row;
1052 column = clabel->column;
1053
1054 if ((row < 0) || (row >= raidPtr->numRow) ||
1055 (column < 0) || (column >= raidPtr->numCol)) {
1056 return(EINVAL);
1057 }
1058
1059 /* XXX this isn't allowed to do anything for now :-) */
1060
1061 /* XXX and before it is, we need to fill in the rest
1062 of the fields!?!?!?! */
1063 #if 0
1064 raidwrite_component_label(
1065 raidPtr->Disks[row][column].dev,
1066 raidPtr->raid_cinfo[row][column].ci_vp,
1067 clabel );
1068 #endif
1069 return (0);
1070
1071 case RAIDFRAME_INIT_LABELS:
1072 clabel = (RF_ComponentLabel_t *) data;
1073 /*
1074 we only want the serial number from
1075 the above. We get all the rest of the information
1076 from the config that was used to create this RAID
1077 set.
1078 */
1079
1080 raidPtr->serial_number = clabel->serial_number;
1081
1082 raid_init_component_label(raidPtr, &ci_label);
1083 ci_label.serial_number = clabel->serial_number;
1084
1085 for(row=0;row<raidPtr->numRow;row++) {
1086 ci_label.row = row;
1087 for(column=0;column<raidPtr->numCol;column++) {
1088 diskPtr = &raidPtr->Disks[row][column];
1089 if (!RF_DEAD_DISK(diskPtr->status)) {
1090 ci_label.partitionSize = diskPtr->partitionSize;
1091 ci_label.column = column;
1092 raidwrite_component_label(
1093 raidPtr->Disks[row][column].dev,
1094 raidPtr->raid_cinfo[row][column].ci_vp,
1095 &ci_label );
1096 }
1097 }
1098 }
1099
1100 return (retcode);
1101 case RAIDFRAME_SET_AUTOCONFIG:
1102 d = rf_set_autoconfig(raidPtr, *(int *) data);
1103 printf("raid%d: New autoconfig value is: %d\n",
1104 raidPtr->raidid, d);
1105 *(int *) data = d;
1106 return (retcode);
1107
1108 case RAIDFRAME_SET_ROOT:
1109 d = rf_set_rootpartition(raidPtr, *(int *) data);
1110 printf("raid%d: New rootpartition value is: %d\n",
1111 raidPtr->raidid, d);
1112 *(int *) data = d;
1113 return (retcode);
1114
1115 /* initialize all parity */
1116 case RAIDFRAME_REWRITEPARITY:
1117
1118 if (raidPtr->Layout.map->faultsTolerated == 0) {
1119 /* Parity for RAID 0 is trivially correct */
1120 raidPtr->parity_good = RF_RAID_CLEAN;
1121 return(0);
1122 }
1123
1124 if (raidPtr->parity_rewrite_in_progress == 1) {
1125 /* Re-write is already in progress! */
1126 return(EINVAL);
1127 }
1128
1129 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1130 rf_RewriteParityThread,
1131 raidPtr,"raid_parity");
1132 return (retcode);
1133
1134
1135 case RAIDFRAME_ADD_HOT_SPARE:
1136 sparePtr = (RF_SingleComponent_t *) data;
1137 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1138 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1139 return(retcode);
1140
1141 case RAIDFRAME_REMOVE_HOT_SPARE:
1142 return(retcode);
1143
1144 case RAIDFRAME_DELETE_COMPONENT:
1145 componentPtr = (RF_SingleComponent_t *)data;
1146 memcpy( &component, componentPtr,
1147 sizeof(RF_SingleComponent_t));
1148 retcode = rf_delete_component(raidPtr, &component);
1149 return(retcode);
1150
1151 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1152 componentPtr = (RF_SingleComponent_t *)data;
1153 memcpy( &component, componentPtr,
1154 sizeof(RF_SingleComponent_t));
1155 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1156 return(retcode);
1157
1158 case RAIDFRAME_REBUILD_IN_PLACE:
1159
1160 if (raidPtr->Layout.map->faultsTolerated == 0) {
1161 /* Can't do this on a RAID 0!! */
1162 return(EINVAL);
1163 }
1164
1165 if (raidPtr->recon_in_progress == 1) {
1166 /* a reconstruct is already in progress! */
1167 return(EINVAL);
1168 }
1169
1170 componentPtr = (RF_SingleComponent_t *) data;
1171 memcpy( &component, componentPtr,
1172 sizeof(RF_SingleComponent_t));
1173 row = component.row;
1174 column = component.column;
1175
1176 if ((row < 0) || (row >= raidPtr->numRow) ||
1177 (column < 0) || (column >= raidPtr->numCol)) {
1178 return(EINVAL);
1179 }
1180
1181 RF_LOCK_MUTEX(raidPtr->mutex);
1182 if ((raidPtr->Disks[row][column].status == rf_ds_optimal) &&
1183 (raidPtr->numFailures > 0)) {
1184 /* XXX 0 above shouldn't be constant!!! */
1185 /* some component other than this has failed.
1186 Let's not make things worse than they already
1187 are... */
1188 printf("raid%d: Unable to reconstruct to disk at:\n",
1189 raidPtr->raidid);
1190 printf("raid%d: Row: %d Col: %d Too many failures.\n",
1191 raidPtr->raidid, row, column);
1192 RF_UNLOCK_MUTEX(raidPtr->mutex);
1193 return (EINVAL);
1194 }
1195 if (raidPtr->Disks[row][column].status ==
1196 rf_ds_reconstructing) {
1197 printf("raid%d: Unable to reconstruct to disk at:\n",
1198 raidPtr->raidid);
1199 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, column);
1200
1201 RF_UNLOCK_MUTEX(raidPtr->mutex);
1202 return (EINVAL);
1203 }
1204 if (raidPtr->Disks[row][column].status == rf_ds_spared) {
1205 RF_UNLOCK_MUTEX(raidPtr->mutex);
1206 return (EINVAL);
1207 }
1208 RF_UNLOCK_MUTEX(raidPtr->mutex);
1209
1210 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1211 if (rrcopy == NULL)
1212 return(ENOMEM);
1213
1214 rrcopy->raidPtr = (void *) raidPtr;
1215 rrcopy->row = row;
1216 rrcopy->col = column;
1217
1218 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1219 rf_ReconstructInPlaceThread,
1220 rrcopy,"raid_reconip");
1221 return(retcode);
1222
1223 case RAIDFRAME_GET_INFO:
1224 if (!raidPtr->valid)
1225 return (ENODEV);
1226 ucfgp = (RF_DeviceConfig_t **) data;
1227 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1228 (RF_DeviceConfig_t *));
1229 if (d_cfg == NULL)
1230 return (ENOMEM);
1231 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1232 d_cfg->rows = raidPtr->numRow;
1233 d_cfg->cols = raidPtr->numCol;
1234 d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1235 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1236 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1237 return (ENOMEM);
1238 }
1239 d_cfg->nspares = raidPtr->numSpare;
1240 if (d_cfg->nspares >= RF_MAX_DISKS) {
1241 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1242 return (ENOMEM);
1243 }
1244 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1245 d = 0;
1246 for (i = 0; i < d_cfg->rows; i++) {
1247 for (j = 0; j < d_cfg->cols; j++) {
1248 d_cfg->devs[d] = raidPtr->Disks[i][j];
1249 d++;
1250 }
1251 }
1252 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1253 d_cfg->spares[i] = raidPtr->Disks[0][j];
1254 }
1255 retcode = copyout((caddr_t) d_cfg, (caddr_t) * ucfgp,
1256 sizeof(RF_DeviceConfig_t));
1257 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1258
1259 return (retcode);
1260
1261 case RAIDFRAME_CHECK_PARITY:
1262 *(int *) data = raidPtr->parity_good;
1263 return (0);
1264
1265 case RAIDFRAME_RESET_ACCTOTALS:
1266 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1267 return (0);
1268
1269 case RAIDFRAME_GET_ACCTOTALS:
1270 totals = (RF_AccTotals_t *) data;
1271 *totals = raidPtr->acc_totals;
1272 return (0);
1273
1274 case RAIDFRAME_KEEP_ACCTOTALS:
1275 raidPtr->keep_acc_totals = *(int *)data;
1276 return (0);
1277
1278 case RAIDFRAME_GET_SIZE:
1279 *(int *) data = raidPtr->totalSectors;
1280 return (0);
1281
1282 /* fail a disk & optionally start reconstruction */
1283 case RAIDFRAME_FAIL_DISK:
1284
1285 if (raidPtr->Layout.map->faultsTolerated == 0) {
1286 /* Can't do this on a RAID 0!! */
1287 return(EINVAL);
1288 }
1289
1290 rr = (struct rf_recon_req *) data;
1291
1292 if (rr->row < 0 || rr->row >= raidPtr->numRow
1293 || rr->col < 0 || rr->col >= raidPtr->numCol)
1294 return (EINVAL);
1295
1296
1297 RF_LOCK_MUTEX(raidPtr->mutex);
1298 if ((raidPtr->Disks[rr->row][rr->col].status ==
1299 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1300 /* some other component has failed. Let's not make
1301 things worse. XXX wrong for RAID6 */
1302 RF_UNLOCK_MUTEX(raidPtr->mutex);
1303 return (EINVAL);
1304 }
1305 if (raidPtr->Disks[rr->row][rr->col].status == rf_ds_spared) {
1306 /* Can't fail a spared disk! */
1307 RF_UNLOCK_MUTEX(raidPtr->mutex);
1308 return (EINVAL);
1309 }
1310 RF_UNLOCK_MUTEX(raidPtr->mutex);
1311
1312 /* make a copy of the recon request so that we don't rely on
1313 * the user's buffer */
1314 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1315 if (rrcopy == NULL)
1316 return(ENOMEM);
1317 memcpy(rrcopy, rr, sizeof(*rr));
1318 rrcopy->raidPtr = (void *) raidPtr;
1319
1320 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1321 rf_ReconThread,
1322 rrcopy,"raid_recon");
1323 return (0);
1324
1325 /* invoke a copyback operation after recon on whatever disk
1326 * needs it, if any */
1327 case RAIDFRAME_COPYBACK:
1328
1329 if (raidPtr->Layout.map->faultsTolerated == 0) {
1330 /* This makes no sense on a RAID 0!! */
1331 return(EINVAL);
1332 }
1333
1334 if (raidPtr->copyback_in_progress == 1) {
1335 /* Copyback is already in progress! */
1336 return(EINVAL);
1337 }
1338
1339 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1340 rf_CopybackThread,
1341 raidPtr,"raid_copyback");
1342 return (retcode);
1343
1344 /* return the percentage completion of reconstruction */
1345 case RAIDFRAME_CHECK_RECON_STATUS:
1346 if (raidPtr->Layout.map->faultsTolerated == 0) {
1347 /* This makes no sense on a RAID 0, so tell the
1348 user it's done. */
1349 *(int *) data = 100;
1350 return(0);
1351 }
1352 row = 0; /* XXX we only consider a single row... */
1353 if (raidPtr->status[row] != rf_rs_reconstructing)
1354 *(int *) data = 100;
1355 else
1356 *(int *) data = raidPtr->reconControl[row]->percentComplete;
1357 return (0);
1358 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1359 progressInfoPtr = (RF_ProgressInfo_t **) data;
1360 row = 0; /* XXX we only consider a single row... */
1361 if (raidPtr->status[row] != rf_rs_reconstructing) {
1362 progressInfo.remaining = 0;
1363 progressInfo.completed = 100;
1364 progressInfo.total = 100;
1365 } else {
1366 progressInfo.total =
1367 raidPtr->reconControl[row]->numRUsTotal;
1368 progressInfo.completed =
1369 raidPtr->reconControl[row]->numRUsComplete;
1370 progressInfo.remaining = progressInfo.total -
1371 progressInfo.completed;
1372 }
1373 retcode = copyout((caddr_t) &progressInfo,
1374 (caddr_t) *progressInfoPtr,
1375 sizeof(RF_ProgressInfo_t));
1376 return (retcode);
1377
1378 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1379 if (raidPtr->Layout.map->faultsTolerated == 0) {
1380 /* This makes no sense on a RAID 0, so tell the
1381 user it's done. */
1382 *(int *) data = 100;
1383 return(0);
1384 }
1385 if (raidPtr->parity_rewrite_in_progress == 1) {
1386 *(int *) data = 100 *
1387 raidPtr->parity_rewrite_stripes_done /
1388 raidPtr->Layout.numStripe;
1389 } else {
1390 *(int *) data = 100;
1391 }
1392 return (0);
1393
1394 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1395 progressInfoPtr = (RF_ProgressInfo_t **) data;
1396 if (raidPtr->parity_rewrite_in_progress == 1) {
1397 progressInfo.total = raidPtr->Layout.numStripe;
1398 progressInfo.completed =
1399 raidPtr->parity_rewrite_stripes_done;
1400 progressInfo.remaining = progressInfo.total -
1401 progressInfo.completed;
1402 } else {
1403 progressInfo.remaining = 0;
1404 progressInfo.completed = 100;
1405 progressInfo.total = 100;
1406 }
1407 retcode = copyout((caddr_t) &progressInfo,
1408 (caddr_t) *progressInfoPtr,
1409 sizeof(RF_ProgressInfo_t));
1410 return (retcode);
1411
1412 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1413 if (raidPtr->Layout.map->faultsTolerated == 0) {
1414 /* This makes no sense on a RAID 0 */
1415 *(int *) data = 100;
1416 return(0);
1417 }
1418 if (raidPtr->copyback_in_progress == 1) {
1419 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1420 raidPtr->Layout.numStripe;
1421 } else {
1422 *(int *) data = 100;
1423 }
1424 return (0);
1425
1426 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1427 progressInfoPtr = (RF_ProgressInfo_t **) data;
1428 if (raidPtr->copyback_in_progress == 1) {
1429 progressInfo.total = raidPtr->Layout.numStripe;
1430 progressInfo.completed =
1431 raidPtr->copyback_stripes_done;
1432 progressInfo.remaining = progressInfo.total -
1433 progressInfo.completed;
1434 } else {
1435 progressInfo.remaining = 0;
1436 progressInfo.completed = 100;
1437 progressInfo.total = 100;
1438 }
1439 retcode = copyout((caddr_t) &progressInfo,
1440 (caddr_t) *progressInfoPtr,
1441 sizeof(RF_ProgressInfo_t));
1442 return (retcode);
1443
1444 /* the sparetable daemon calls this to wait for the kernel to
1445 * need a spare table. this ioctl does not return until a
1446 * spare table is needed. XXX -- calling mpsleep here in the
1447 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1448 * -- I should either compute the spare table in the kernel,
1449 * or have a different -- XXX XXX -- interface (a different
1450 * character device) for delivering the table -- XXX */
1451 #if 0
1452 case RAIDFRAME_SPARET_WAIT:
1453 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1454 while (!rf_sparet_wait_queue)
1455 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1456 waitreq = rf_sparet_wait_queue;
1457 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1458 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1459
1460 /* structure assignment */
1461 *((RF_SparetWait_t *) data) = *waitreq;
1462
1463 RF_Free(waitreq, sizeof(*waitreq));
1464 return (0);
1465
1466 /* wakes up a process waiting on SPARET_WAIT and puts an error
1467 * code in it that will cause the dameon to exit */
1468 case RAIDFRAME_ABORT_SPARET_WAIT:
1469 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1470 waitreq->fcol = -1;
1471 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1472 waitreq->next = rf_sparet_wait_queue;
1473 rf_sparet_wait_queue = waitreq;
1474 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1475 wakeup(&rf_sparet_wait_queue);
1476 return (0);
1477
1478 /* used by the spare table daemon to deliver a spare table
1479 * into the kernel */
1480 case RAIDFRAME_SEND_SPARET:
1481
1482 /* install the spare table */
1483 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1484
1485 /* respond to the requestor. the return status of the spare
1486 * table installation is passed in the "fcol" field */
1487 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1488 waitreq->fcol = retcode;
1489 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1490 waitreq->next = rf_sparet_resp_queue;
1491 rf_sparet_resp_queue = waitreq;
1492 wakeup(&rf_sparet_resp_queue);
1493 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1494
1495 return (retcode);
1496 #endif
1497
1498 default:
1499 break; /* fall through to the os-specific code below */
1500
1501 }
1502
1503 if (!raidPtr->valid)
1504 return (EINVAL);
1505
1506 /*
1507 * Add support for "regular" device ioctls here.
1508 */
1509
1510 switch (cmd) {
1511 case DIOCGDINFO:
1512 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1513 break;
1514 #ifdef __HAVE_OLD_DISKLABEL
1515 case ODIOCGDINFO:
1516 newlabel = *(rs->sc_dkdev.dk_label);
1517 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1518 return ENOTTY;
1519 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1520 break;
1521 #endif
1522
1523 case DIOCGPART:
1524 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1525 ((struct partinfo *) data)->part =
1526 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1527 break;
1528
1529 case DIOCWDINFO:
1530 case DIOCSDINFO:
1531 #ifdef __HAVE_OLD_DISKLABEL
1532 case ODIOCWDINFO:
1533 case ODIOCSDINFO:
1534 #endif
1535 {
1536 struct disklabel *lp;
1537 #ifdef __HAVE_OLD_DISKLABEL
1538 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1539 memset(&newlabel, 0, sizeof newlabel);
1540 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1541 lp = &newlabel;
1542 } else
1543 #endif
1544 lp = (struct disklabel *)data;
1545
1546 if ((error = raidlock(rs)) != 0)
1547 return (error);
1548
1549 rs->sc_flags |= RAIDF_LABELLING;
1550
1551 error = setdisklabel(rs->sc_dkdev.dk_label,
1552 lp, 0, rs->sc_dkdev.dk_cpulabel);
1553 if (error == 0) {
1554 if (cmd == DIOCWDINFO
1555 #ifdef __HAVE_OLD_DISKLABEL
1556 || cmd == ODIOCWDINFO
1557 #endif
1558 )
1559 error = writedisklabel(RAIDLABELDEV(dev),
1560 raidstrategy, rs->sc_dkdev.dk_label,
1561 rs->sc_dkdev.dk_cpulabel);
1562 }
1563 rs->sc_flags &= ~RAIDF_LABELLING;
1564
1565 raidunlock(rs);
1566
1567 if (error)
1568 return (error);
1569 break;
1570 }
1571
1572 case DIOCWLABEL:
1573 if (*(int *) data != 0)
1574 rs->sc_flags |= RAIDF_WLABEL;
1575 else
1576 rs->sc_flags &= ~RAIDF_WLABEL;
1577 break;
1578
1579 case DIOCGDEFLABEL:
1580 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1581 break;
1582
1583 #ifdef __HAVE_OLD_DISKLABEL
1584 case ODIOCGDEFLABEL:
1585 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1586 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1587 return ENOTTY;
1588 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1589 break;
1590 #endif
1591
1592 default:
1593 retcode = ENOTTY;
1594 }
1595 return (retcode);
1596
1597 }
1598
1599
1600 /* raidinit -- complete the rest of the initialization for the
1601 RAIDframe device. */
1602
1603
1604 static void
1605 raidinit(raidPtr)
1606 RF_Raid_t *raidPtr;
1607 {
1608 struct raid_softc *rs;
1609 int unit;
1610
1611 unit = raidPtr->raidid;
1612
1613 rs = &raid_softc[unit];
1614
1615 /* XXX should check return code first... */
1616 rs->sc_flags |= RAIDF_INITED;
1617
1618 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1619
1620 rs->sc_dkdev.dk_name = rs->sc_xname;
1621
1622 /* disk_attach actually creates space for the CPU disklabel, among
1623 * other things, so it's critical to call this *BEFORE* we try putzing
1624 * with disklabels. */
1625
1626 disk_attach(&rs->sc_dkdev);
1627
1628 /* XXX There may be a weird interaction here between this, and
1629 * protectedSectors, as used in RAIDframe. */
1630
1631 rs->sc_size = raidPtr->totalSectors;
1632
1633 }
1634 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1635 /* wake up the daemon & tell it to get us a spare table
1636 * XXX
1637 * the entries in the queues should be tagged with the raidPtr
1638 * so that in the extremely rare case that two recons happen at once,
1639 * we know for which device were requesting a spare table
1640 * XXX
1641 *
1642 * XXX This code is not currently used. GO
1643 */
1644 int
1645 rf_GetSpareTableFromDaemon(req)
1646 RF_SparetWait_t *req;
1647 {
1648 int retcode;
1649
1650 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1651 req->next = rf_sparet_wait_queue;
1652 rf_sparet_wait_queue = req;
1653 wakeup(&rf_sparet_wait_queue);
1654
1655 /* mpsleep unlocks the mutex */
1656 while (!rf_sparet_resp_queue) {
1657 tsleep(&rf_sparet_resp_queue, PRIBIO,
1658 "raidframe getsparetable", 0);
1659 }
1660 req = rf_sparet_resp_queue;
1661 rf_sparet_resp_queue = req->next;
1662 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1663
1664 retcode = req->fcol;
1665 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1666 * alloc'd */
1667 return (retcode);
1668 }
1669 #endif
1670
1671 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1672 * bp & passes it down.
1673 * any calls originating in the kernel must use non-blocking I/O
1674 * do some extra sanity checking to return "appropriate" error values for
1675 * certain conditions (to make some standard utilities work)
1676 *
1677 * Formerly known as: rf_DoAccessKernel
1678 */
1679 void
1680 raidstart(raidPtr)
1681 RF_Raid_t *raidPtr;
1682 {
1683 RF_SectorCount_t num_blocks, pb, sum;
1684 RF_RaidAddr_t raid_addr;
1685 struct partition *pp;
1686 daddr_t blocknum;
1687 int unit;
1688 struct raid_softc *rs;
1689 int do_async;
1690 struct buf *bp;
1691
1692 unit = raidPtr->raidid;
1693 rs = &raid_softc[unit];
1694
1695 /* quick check to see if anything has died recently */
1696 RF_LOCK_MUTEX(raidPtr->mutex);
1697 if (raidPtr->numNewFailures > 0) {
1698 RF_UNLOCK_MUTEX(raidPtr->mutex);
1699 rf_update_component_labels(raidPtr,
1700 RF_NORMAL_COMPONENT_UPDATE);
1701 RF_LOCK_MUTEX(raidPtr->mutex);
1702 raidPtr->numNewFailures--;
1703 }
1704
1705 /* Check to see if we're at the limit... */
1706 while (raidPtr->openings > 0) {
1707 RF_UNLOCK_MUTEX(raidPtr->mutex);
1708
1709 /* get the next item, if any, from the queue */
1710 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1711 /* nothing more to do */
1712 return;
1713 }
1714
1715 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1716 * partition.. Need to make it absolute to the underlying
1717 * device.. */
1718
1719 blocknum = bp->b_blkno;
1720 if (DISKPART(bp->b_dev) != RAW_PART) {
1721 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1722 blocknum += pp->p_offset;
1723 }
1724
1725 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1726 (int) blocknum));
1727
1728 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1729 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1730
1731 /* *THIS* is where we adjust what block we're going to...
1732 * but DO NOT TOUCH bp->b_blkno!!! */
1733 raid_addr = blocknum;
1734
1735 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1736 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1737 sum = raid_addr + num_blocks + pb;
1738 if (1 || rf_debugKernelAccess) {
1739 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1740 (int) raid_addr, (int) sum, (int) num_blocks,
1741 (int) pb, (int) bp->b_resid));
1742 }
1743 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1744 || (sum < num_blocks) || (sum < pb)) {
1745 bp->b_error = ENOSPC;
1746 bp->b_flags |= B_ERROR;
1747 bp->b_resid = bp->b_bcount;
1748 biodone(bp);
1749 RF_LOCK_MUTEX(raidPtr->mutex);
1750 continue;
1751 }
1752 /*
1753 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1754 */
1755
1756 if (bp->b_bcount & raidPtr->sectorMask) {
1757 bp->b_error = EINVAL;
1758 bp->b_flags |= B_ERROR;
1759 bp->b_resid = bp->b_bcount;
1760 biodone(bp);
1761 RF_LOCK_MUTEX(raidPtr->mutex);
1762 continue;
1763
1764 }
1765 db1_printf(("Calling DoAccess..\n"));
1766
1767
1768 RF_LOCK_MUTEX(raidPtr->mutex);
1769 raidPtr->openings--;
1770 RF_UNLOCK_MUTEX(raidPtr->mutex);
1771
1772 /*
1773 * Everything is async.
1774 */
1775 do_async = 1;
1776
1777 disk_busy(&rs->sc_dkdev);
1778
1779 /* XXX we're still at splbio() here... do we *really*
1780 need to be? */
1781
1782 /* don't ever condition on bp->b_flags & B_WRITE.
1783 * always condition on B_READ instead */
1784
1785 bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1786 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1787 do_async, raid_addr, num_blocks,
1788 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1789
1790 if (bp->b_error) {
1791 bp->b_flags |= B_ERROR;
1792 }
1793
1794 RF_LOCK_MUTEX(raidPtr->mutex);
1795 }
1796 RF_UNLOCK_MUTEX(raidPtr->mutex);
1797 }
1798
1799
1800
1801
1802 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1803
1804 int
1805 rf_DispatchKernelIO(queue, req)
1806 RF_DiskQueue_t *queue;
1807 RF_DiskQueueData_t *req;
1808 {
1809 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1810 struct buf *bp;
1811 struct raidbuf *raidbp = NULL;
1812
1813 req->queue = queue;
1814
1815 #if DIAGNOSTIC
1816 if (queue->raidPtr->raidid >= numraid) {
1817 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1818 numraid);
1819 panic("Invalid Unit number in rf_DispatchKernelIO");
1820 }
1821 #endif
1822
1823 bp = req->bp;
1824 #if 1
1825 /* XXX when there is a physical disk failure, someone is passing us a
1826 * buffer that contains old stuff!! Attempt to deal with this problem
1827 * without taking a performance hit... (not sure where the real bug
1828 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1829
1830 if (bp->b_flags & B_ERROR) {
1831 bp->b_flags &= ~B_ERROR;
1832 }
1833 if (bp->b_error != 0) {
1834 bp->b_error = 0;
1835 }
1836 #endif
1837 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1838 if (raidbp == NULL) {
1839 bp->b_flags |= B_ERROR;
1840 bp->b_error = ENOMEM;
1841 return (ENOMEM);
1842 }
1843 BUF_INIT(&raidbp->rf_buf);
1844
1845 /*
1846 * context for raidiodone
1847 */
1848 raidbp->rf_obp = bp;
1849 raidbp->req = req;
1850
1851 switch (req->type) {
1852 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1853 /* XXX need to do something extra here.. */
1854 /* I'm leaving this in, as I've never actually seen it used,
1855 * and I'd like folks to report it... GO */
1856 printf(("WAKEUP CALLED\n"));
1857 queue->numOutstanding++;
1858
1859 /* XXX need to glue the original buffer into this?? */
1860
1861 KernelWakeupFunc(&raidbp->rf_buf);
1862 break;
1863
1864 case RF_IO_TYPE_READ:
1865 case RF_IO_TYPE_WRITE:
1866
1867 if (req->tracerec) {
1868 RF_ETIMER_START(req->tracerec->timer);
1869 }
1870 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1871 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1872 req->sectorOffset, req->numSector,
1873 req->buf, KernelWakeupFunc, (void *) req,
1874 queue->raidPtr->logBytesPerSector, req->b_proc);
1875
1876 if (rf_debugKernelAccess) {
1877 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1878 (long) bp->b_blkno));
1879 }
1880 queue->numOutstanding++;
1881 queue->last_deq_sector = req->sectorOffset;
1882 /* acc wouldn't have been let in if there were any pending
1883 * reqs at any other priority */
1884 queue->curPriority = req->priority;
1885
1886 db1_printf(("Going for %c to unit %d row %d col %d\n",
1887 req->type, queue->raidPtr->raidid,
1888 queue->row, queue->col));
1889 db1_printf(("sector %d count %d (%d bytes) %d\n",
1890 (int) req->sectorOffset, (int) req->numSector,
1891 (int) (req->numSector <<
1892 queue->raidPtr->logBytesPerSector),
1893 (int) queue->raidPtr->logBytesPerSector));
1894 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1895 raidbp->rf_buf.b_vp->v_numoutput++;
1896 }
1897 VOP_STRATEGY(&raidbp->rf_buf);
1898
1899 break;
1900
1901 default:
1902 panic("bad req->type in rf_DispatchKernelIO");
1903 }
1904 db1_printf(("Exiting from DispatchKernelIO\n"));
1905
1906 return (0);
1907 }
1908 /* this is the callback function associated with a I/O invoked from
1909 kernel code.
1910 */
1911 static void
1912 KernelWakeupFunc(vbp)
1913 struct buf *vbp;
1914 {
1915 RF_DiskQueueData_t *req = NULL;
1916 RF_DiskQueue_t *queue;
1917 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1918 struct buf *bp;
1919 int s;
1920
1921 s = splbio();
1922 db1_printf(("recovering the request queue:\n"));
1923 req = raidbp->req;
1924
1925 bp = raidbp->rf_obp;
1926
1927 queue = (RF_DiskQueue_t *) req->queue;
1928
1929 if (raidbp->rf_buf.b_flags & B_ERROR) {
1930 bp->b_flags |= B_ERROR;
1931 bp->b_error = raidbp->rf_buf.b_error ?
1932 raidbp->rf_buf.b_error : EIO;
1933 }
1934
1935 /* XXX methinks this could be wrong... */
1936 #if 1
1937 bp->b_resid = raidbp->rf_buf.b_resid;
1938 #endif
1939
1940 if (req->tracerec) {
1941 RF_ETIMER_STOP(req->tracerec->timer);
1942 RF_ETIMER_EVAL(req->tracerec->timer);
1943 RF_LOCK_MUTEX(rf_tracing_mutex);
1944 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1945 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1946 req->tracerec->num_phys_ios++;
1947 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1948 }
1949 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1950
1951 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1952 * ballistic, and mark the component as hosed... */
1953
1954 if (bp->b_flags & B_ERROR) {
1955 /* Mark the disk as dead */
1956 /* but only mark it once... */
1957 if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1958 rf_ds_optimal) {
1959 printf("raid%d: IO Error. Marking %s as failed.\n",
1960 queue->raidPtr->raidid,
1961 queue->raidPtr->Disks[queue->row][queue->col].devname);
1962 queue->raidPtr->Disks[queue->row][queue->col].status =
1963 rf_ds_failed;
1964 queue->raidPtr->status[queue->row] = rf_rs_degraded;
1965 queue->raidPtr->numFailures++;
1966 queue->raidPtr->numNewFailures++;
1967 } else { /* Disk is already dead... */
1968 /* printf("Disk already marked as dead!\n"); */
1969 }
1970
1971 }
1972
1973 pool_put(&raidframe_cbufpool, raidbp);
1974
1975 /* Fill in the error value */
1976
1977 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1978
1979 simple_lock(&queue->raidPtr->iodone_lock);
1980
1981 /* Drop this one on the "finished" queue... */
1982 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1983
1984 /* Let the raidio thread know there is work to be done. */
1985 wakeup(&(queue->raidPtr->iodone));
1986
1987 simple_unlock(&queue->raidPtr->iodone_lock);
1988
1989 splx(s);
1990 }
1991
1992
1993
1994 /*
1995 * initialize a buf structure for doing an I/O in the kernel.
1996 */
1997 static void
1998 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1999 logBytesPerSector, b_proc)
2000 struct buf *bp;
2001 struct vnode *b_vp;
2002 unsigned rw_flag;
2003 dev_t dev;
2004 RF_SectorNum_t startSect;
2005 RF_SectorCount_t numSect;
2006 caddr_t buf;
2007 void (*cbFunc) (struct buf *);
2008 void *cbArg;
2009 int logBytesPerSector;
2010 struct proc *b_proc;
2011 {
2012 /* bp->b_flags = B_PHYS | rw_flag; */
2013 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2014 bp->b_bcount = numSect << logBytesPerSector;
2015 bp->b_bufsize = bp->b_bcount;
2016 bp->b_error = 0;
2017 bp->b_dev = dev;
2018 bp->b_data = buf;
2019 bp->b_blkno = startSect;
2020 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2021 if (bp->b_bcount == 0) {
2022 panic("bp->b_bcount is zero in InitBP!!");
2023 }
2024 bp->b_proc = b_proc;
2025 bp->b_iodone = cbFunc;
2026 bp->b_vp = b_vp;
2027
2028 }
2029
2030 static void
2031 raidgetdefaultlabel(raidPtr, rs, lp)
2032 RF_Raid_t *raidPtr;
2033 struct raid_softc *rs;
2034 struct disklabel *lp;
2035 {
2036 memset(lp, 0, sizeof(*lp));
2037
2038 /* fabricate a label... */
2039 lp->d_secperunit = raidPtr->totalSectors;
2040 lp->d_secsize = raidPtr->bytesPerSector;
2041 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2042 lp->d_ntracks = 4 * raidPtr->numCol;
2043 lp->d_ncylinders = raidPtr->totalSectors /
2044 (lp->d_nsectors * lp->d_ntracks);
2045 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2046
2047 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2048 lp->d_type = DTYPE_RAID;
2049 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2050 lp->d_rpm = 3600;
2051 lp->d_interleave = 1;
2052 lp->d_flags = 0;
2053
2054 lp->d_partitions[RAW_PART].p_offset = 0;
2055 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2056 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2057 lp->d_npartitions = RAW_PART + 1;
2058
2059 lp->d_magic = DISKMAGIC;
2060 lp->d_magic2 = DISKMAGIC;
2061 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2062
2063 }
2064 /*
2065 * Read the disklabel from the raid device. If one is not present, fake one
2066 * up.
2067 */
2068 static void
2069 raidgetdisklabel(dev)
2070 dev_t dev;
2071 {
2072 int unit = raidunit(dev);
2073 struct raid_softc *rs = &raid_softc[unit];
2074 char *errstring;
2075 struct disklabel *lp = rs->sc_dkdev.dk_label;
2076 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2077 RF_Raid_t *raidPtr;
2078
2079 db1_printf(("Getting the disklabel...\n"));
2080
2081 memset(clp, 0, sizeof(*clp));
2082
2083 raidPtr = raidPtrs[unit];
2084
2085 raidgetdefaultlabel(raidPtr, rs, lp);
2086
2087 /*
2088 * Call the generic disklabel extraction routine.
2089 */
2090 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2091 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2092 if (errstring)
2093 raidmakedisklabel(rs);
2094 else {
2095 int i;
2096 struct partition *pp;
2097
2098 /*
2099 * Sanity check whether the found disklabel is valid.
2100 *
2101 * This is necessary since total size of the raid device
2102 * may vary when an interleave is changed even though exactly
2103 * same componets are used, and old disklabel may used
2104 * if that is found.
2105 */
2106 if (lp->d_secperunit != rs->sc_size)
2107 printf("raid%d: WARNING: %s: "
2108 "total sector size in disklabel (%d) != "
2109 "the size of raid (%ld)\n", unit, rs->sc_xname,
2110 lp->d_secperunit, (long) rs->sc_size);
2111 for (i = 0; i < lp->d_npartitions; i++) {
2112 pp = &lp->d_partitions[i];
2113 if (pp->p_offset + pp->p_size > rs->sc_size)
2114 printf("raid%d: WARNING: %s: end of partition `%c' "
2115 "exceeds the size of raid (%ld)\n",
2116 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2117 }
2118 }
2119
2120 }
2121 /*
2122 * Take care of things one might want to take care of in the event
2123 * that a disklabel isn't present.
2124 */
2125 static void
2126 raidmakedisklabel(rs)
2127 struct raid_softc *rs;
2128 {
2129 struct disklabel *lp = rs->sc_dkdev.dk_label;
2130 db1_printf(("Making a label..\n"));
2131
2132 /*
2133 * For historical reasons, if there's no disklabel present
2134 * the raw partition must be marked FS_BSDFFS.
2135 */
2136
2137 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2138
2139 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2140
2141 lp->d_checksum = dkcksum(lp);
2142 }
2143 /*
2144 * Lookup the provided name in the filesystem. If the file exists,
2145 * is a valid block device, and isn't being used by anyone else,
2146 * set *vpp to the file's vnode.
2147 * You'll find the original of this in ccd.c
2148 */
2149 int
2150 raidlookup(path, p, vpp)
2151 char *path;
2152 struct proc *p;
2153 struct vnode **vpp; /* result */
2154 {
2155 struct nameidata nd;
2156 struct vnode *vp;
2157 struct vattr va;
2158 int error;
2159
2160 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2161 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2162 return (error);
2163 }
2164 vp = nd.ni_vp;
2165 if (vp->v_usecount > 1) {
2166 VOP_UNLOCK(vp, 0);
2167 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2168 return (EBUSY);
2169 }
2170 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2171 VOP_UNLOCK(vp, 0);
2172 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2173 return (error);
2174 }
2175 /* XXX: eventually we should handle VREG, too. */
2176 if (va.va_type != VBLK) {
2177 VOP_UNLOCK(vp, 0);
2178 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2179 return (ENOTBLK);
2180 }
2181 VOP_UNLOCK(vp, 0);
2182 *vpp = vp;
2183 return (0);
2184 }
2185 /*
2186 * Wait interruptibly for an exclusive lock.
2187 *
2188 * XXX
2189 * Several drivers do this; it should be abstracted and made MP-safe.
2190 * (Hmm... where have we seen this warning before :-> GO )
2191 */
2192 static int
2193 raidlock(rs)
2194 struct raid_softc *rs;
2195 {
2196 int error;
2197
2198 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2199 rs->sc_flags |= RAIDF_WANTED;
2200 if ((error =
2201 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2202 return (error);
2203 }
2204 rs->sc_flags |= RAIDF_LOCKED;
2205 return (0);
2206 }
2207 /*
2208 * Unlock and wake up any waiters.
2209 */
2210 static void
2211 raidunlock(rs)
2212 struct raid_softc *rs;
2213 {
2214
2215 rs->sc_flags &= ~RAIDF_LOCKED;
2216 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2217 rs->sc_flags &= ~RAIDF_WANTED;
2218 wakeup(rs);
2219 }
2220 }
2221
2222
2223 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2224 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2225
2226 int
2227 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2228 {
2229 RF_ComponentLabel_t clabel;
2230 raidread_component_label(dev, b_vp, &clabel);
2231 clabel.mod_counter = mod_counter;
2232 clabel.clean = RF_RAID_CLEAN;
2233 raidwrite_component_label(dev, b_vp, &clabel);
2234 return(0);
2235 }
2236
2237
2238 int
2239 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2240 {
2241 RF_ComponentLabel_t clabel;
2242 raidread_component_label(dev, b_vp, &clabel);
2243 clabel.mod_counter = mod_counter;
2244 clabel.clean = RF_RAID_DIRTY;
2245 raidwrite_component_label(dev, b_vp, &clabel);
2246 return(0);
2247 }
2248
2249 /* ARGSUSED */
2250 int
2251 raidread_component_label(dev, b_vp, clabel)
2252 dev_t dev;
2253 struct vnode *b_vp;
2254 RF_ComponentLabel_t *clabel;
2255 {
2256 struct buf *bp;
2257 const struct bdevsw *bdev;
2258 int error;
2259
2260 /* XXX should probably ensure that we don't try to do this if
2261 someone has changed rf_protected_sectors. */
2262
2263 if (b_vp == NULL) {
2264 /* For whatever reason, this component is not valid.
2265 Don't try to read a component label from it. */
2266 return(EINVAL);
2267 }
2268
2269 /* get a block of the appropriate size... */
2270 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2271 bp->b_dev = dev;
2272
2273 /* get our ducks in a row for the read */
2274 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2275 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2276 bp->b_flags |= B_READ;
2277 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2278
2279 bdev = bdevsw_lookup(bp->b_dev);
2280 if (bdev == NULL)
2281 return (ENXIO);
2282 (*bdev->d_strategy)(bp);
2283
2284 error = biowait(bp);
2285
2286 if (!error) {
2287 memcpy(clabel, bp->b_data,
2288 sizeof(RF_ComponentLabel_t));
2289 }
2290
2291 brelse(bp);
2292 return(error);
2293 }
2294 /* ARGSUSED */
2295 int
2296 raidwrite_component_label(dev, b_vp, clabel)
2297 dev_t dev;
2298 struct vnode *b_vp;
2299 RF_ComponentLabel_t *clabel;
2300 {
2301 struct buf *bp;
2302 const struct bdevsw *bdev;
2303 int error;
2304
2305 /* get a block of the appropriate size... */
2306 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2307 bp->b_dev = dev;
2308
2309 /* get our ducks in a row for the write */
2310 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2311 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2312 bp->b_flags |= B_WRITE;
2313 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2314
2315 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2316
2317 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2318
2319 bdev = bdevsw_lookup(bp->b_dev);
2320 if (bdev == NULL)
2321 return (ENXIO);
2322 (*bdev->d_strategy)(bp);
2323 error = biowait(bp);
2324 brelse(bp);
2325 if (error) {
2326 #if 1
2327 printf("Failed to write RAID component info!\n");
2328 #endif
2329 }
2330
2331 return(error);
2332 }
2333
2334 void
2335 rf_markalldirty(raidPtr)
2336 RF_Raid_t *raidPtr;
2337 {
2338 RF_ComponentLabel_t clabel;
2339 int sparecol;
2340 int r,c;
2341 int i,j;
2342 int srow, scol;
2343
2344 raidPtr->mod_counter++;
2345 for (r = 0; r < raidPtr->numRow; r++) {
2346 for (c = 0; c < raidPtr->numCol; c++) {
2347 /* we don't want to touch (at all) a disk that has
2348 failed */
2349 if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2350 raidread_component_label(
2351 raidPtr->Disks[r][c].dev,
2352 raidPtr->raid_cinfo[r][c].ci_vp,
2353 &clabel);
2354 if (clabel.status == rf_ds_spared) {
2355 /* XXX do something special...
2356 but whatever you do, don't
2357 try to access it!! */
2358 } else {
2359 raidmarkdirty(
2360 raidPtr->Disks[r][c].dev,
2361 raidPtr->raid_cinfo[r][c].ci_vp,
2362 raidPtr->mod_counter);
2363 }
2364 }
2365 }
2366 }
2367
2368 for( c = 0; c < raidPtr->numSpare ; c++) {
2369 sparecol = raidPtr->numCol + c;
2370 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2371 /*
2372
2373 we claim this disk is "optimal" if it's
2374 rf_ds_used_spare, as that means it should be
2375 directly substitutable for the disk it replaced.
2376 We note that too...
2377
2378 */
2379
2380 for(i=0;i<raidPtr->numRow;i++) {
2381 for(j=0;j<raidPtr->numCol;j++) {
2382 if ((raidPtr->Disks[i][j].spareRow ==
2383 0) &&
2384 (raidPtr->Disks[i][j].spareCol ==
2385 sparecol)) {
2386 srow = i;
2387 scol = j;
2388 break;
2389 }
2390 }
2391 }
2392
2393 raidread_component_label(
2394 raidPtr->Disks[0][sparecol].dev,
2395 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2396 &clabel);
2397 /* make sure status is noted */
2398
2399 raid_init_component_label(raidPtr, &clabel);
2400
2401 clabel.row = srow;
2402 clabel.column = scol;
2403 /* Note: we *don't* change status from rf_ds_used_spare
2404 to rf_ds_optimal */
2405 /* clabel.status = rf_ds_optimal; */
2406
2407 raidmarkdirty(raidPtr->Disks[0][sparecol].dev,
2408 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2409 raidPtr->mod_counter);
2410 }
2411 }
2412 }
2413
2414
2415 void
2416 rf_update_component_labels(raidPtr, final)
2417 RF_Raid_t *raidPtr;
2418 int final;
2419 {
2420 RF_ComponentLabel_t clabel;
2421 int sparecol;
2422 int r,c;
2423 int i,j;
2424 int srow, scol;
2425
2426 srow = -1;
2427 scol = -1;
2428
2429 /* XXX should do extra checks to make sure things really are clean,
2430 rather than blindly setting the clean bit... */
2431
2432 raidPtr->mod_counter++;
2433
2434 for (r = 0; r < raidPtr->numRow; r++) {
2435 for (c = 0; c < raidPtr->numCol; c++) {
2436 if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2437 raidread_component_label(
2438 raidPtr->Disks[r][c].dev,
2439 raidPtr->raid_cinfo[r][c].ci_vp,
2440 &clabel);
2441 /* make sure status is noted */
2442 clabel.status = rf_ds_optimal;
2443 /* bump the counter */
2444 clabel.mod_counter = raidPtr->mod_counter;
2445
2446 raidwrite_component_label(
2447 raidPtr->Disks[r][c].dev,
2448 raidPtr->raid_cinfo[r][c].ci_vp,
2449 &clabel);
2450 if (final == RF_FINAL_COMPONENT_UPDATE) {
2451 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2452 raidmarkclean(
2453 raidPtr->Disks[r][c].dev,
2454 raidPtr->raid_cinfo[r][c].ci_vp,
2455 raidPtr->mod_counter);
2456 }
2457 }
2458 }
2459 /* else we don't touch it.. */
2460 }
2461 }
2462
2463 for( c = 0; c < raidPtr->numSpare ; c++) {
2464 sparecol = raidPtr->numCol + c;
2465 /* Need to ensure that the reconstruct actually completed! */
2466 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2467 /*
2468
2469 we claim this disk is "optimal" if it's
2470 rf_ds_used_spare, as that means it should be
2471 directly substitutable for the disk it replaced.
2472 We note that too...
2473
2474 */
2475
2476 for(i=0;i<raidPtr->numRow;i++) {
2477 for(j=0;j<raidPtr->numCol;j++) {
2478 if ((raidPtr->Disks[i][j].spareRow ==
2479 0) &&
2480 (raidPtr->Disks[i][j].spareCol ==
2481 sparecol)) {
2482 srow = i;
2483 scol = j;
2484 break;
2485 }
2486 }
2487 }
2488
2489 /* XXX shouldn't *really* need this... */
2490 raidread_component_label(
2491 raidPtr->Disks[0][sparecol].dev,
2492 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2493 &clabel);
2494 /* make sure status is noted */
2495
2496 raid_init_component_label(raidPtr, &clabel);
2497
2498 clabel.mod_counter = raidPtr->mod_counter;
2499 clabel.row = srow;
2500 clabel.column = scol;
2501 clabel.status = rf_ds_optimal;
2502
2503 raidwrite_component_label(
2504 raidPtr->Disks[0][sparecol].dev,
2505 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2506 &clabel);
2507 if (final == RF_FINAL_COMPONENT_UPDATE) {
2508 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2509 raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2510 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2511 raidPtr->mod_counter);
2512 }
2513 }
2514 }
2515 }
2516 }
2517
2518 void
2519 rf_close_component(raidPtr, vp, auto_configured)
2520 RF_Raid_t *raidPtr;
2521 struct vnode *vp;
2522 int auto_configured;
2523 {
2524 struct proc *p;
2525
2526 p = raidPtr->engine_thread;
2527
2528 if (vp != NULL) {
2529 if (auto_configured == 1) {
2530 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2531 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2532 vput(vp);
2533
2534 } else {
2535 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2536 }
2537 }
2538 }
2539
2540
2541 void
2542 rf_UnconfigureVnodes(raidPtr)
2543 RF_Raid_t *raidPtr;
2544 {
2545 int r,c;
2546 struct vnode *vp;
2547 int acd;
2548
2549
2550 /* We take this opportunity to close the vnodes like we should.. */
2551
2552 for (r = 0; r < raidPtr->numRow; r++) {
2553 for (c = 0; c < raidPtr->numCol; c++) {
2554 vp = raidPtr->raid_cinfo[r][c].ci_vp;
2555 acd = raidPtr->Disks[r][c].auto_configured;
2556 rf_close_component(raidPtr, vp, acd);
2557 raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2558 raidPtr->Disks[r][c].auto_configured = 0;
2559 }
2560 }
2561 for (r = 0; r < raidPtr->numSpare; r++) {
2562 vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2563 acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2564 rf_close_component(raidPtr, vp, acd);
2565 raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2566 raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2567 }
2568 }
2569
2570
2571 void
2572 rf_ReconThread(req)
2573 struct rf_recon_req *req;
2574 {
2575 int s;
2576 RF_Raid_t *raidPtr;
2577
2578 s = splbio();
2579 raidPtr = (RF_Raid_t *) req->raidPtr;
2580 raidPtr->recon_in_progress = 1;
2581
2582 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2583 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2584
2585 /* XXX get rid of this! we don't need it at all.. */
2586 RF_Free(req, sizeof(*req));
2587
2588 raidPtr->recon_in_progress = 0;
2589 splx(s);
2590
2591 /* That's all... */
2592 kthread_exit(0); /* does not return */
2593 }
2594
2595 void
2596 rf_RewriteParityThread(raidPtr)
2597 RF_Raid_t *raidPtr;
2598 {
2599 int retcode;
2600 int s;
2601
2602 raidPtr->parity_rewrite_in_progress = 1;
2603 s = splbio();
2604 retcode = rf_RewriteParity(raidPtr);
2605 splx(s);
2606 if (retcode) {
2607 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2608 } else {
2609 /* set the clean bit! If we shutdown correctly,
2610 the clean bit on each component label will get
2611 set */
2612 raidPtr->parity_good = RF_RAID_CLEAN;
2613 }
2614 raidPtr->parity_rewrite_in_progress = 0;
2615
2616 /* Anyone waiting for us to stop? If so, inform them... */
2617 if (raidPtr->waitShutdown) {
2618 wakeup(&raidPtr->parity_rewrite_in_progress);
2619 }
2620
2621 /* That's all... */
2622 kthread_exit(0); /* does not return */
2623 }
2624
2625
2626 void
2627 rf_CopybackThread(raidPtr)
2628 RF_Raid_t *raidPtr;
2629 {
2630 int s;
2631
2632 raidPtr->copyback_in_progress = 1;
2633 s = splbio();
2634 rf_CopybackReconstructedData(raidPtr);
2635 splx(s);
2636 raidPtr->copyback_in_progress = 0;
2637
2638 /* That's all... */
2639 kthread_exit(0); /* does not return */
2640 }
2641
2642
2643 void
2644 rf_ReconstructInPlaceThread(req)
2645 struct rf_recon_req *req;
2646 {
2647 int retcode;
2648 int s;
2649 RF_Raid_t *raidPtr;
2650
2651 s = splbio();
2652 raidPtr = req->raidPtr;
2653 raidPtr->recon_in_progress = 1;
2654 retcode = rf_ReconstructInPlace(raidPtr, req->row, req->col);
2655 RF_Free(req, sizeof(*req));
2656 raidPtr->recon_in_progress = 0;
2657 splx(s);
2658
2659 /* That's all... */
2660 kthread_exit(0); /* does not return */
2661 }
2662
2663 RF_AutoConfig_t *
2664 rf_find_raid_components()
2665 {
2666 struct vnode *vp;
2667 struct disklabel label;
2668 struct device *dv;
2669 dev_t dev;
2670 int bmajor;
2671 int error;
2672 int i;
2673 int good_one;
2674 RF_ComponentLabel_t *clabel;
2675 RF_AutoConfig_t *ac_list;
2676 RF_AutoConfig_t *ac;
2677
2678
2679 /* initialize the AutoConfig list */
2680 ac_list = NULL;
2681
2682 /* we begin by trolling through *all* the devices on the system */
2683
2684 for (dv = alldevs.tqh_first; dv != NULL;
2685 dv = dv->dv_list.tqe_next) {
2686
2687 /* we are only interested in disks... */
2688 if (dv->dv_class != DV_DISK)
2689 continue;
2690
2691 /* we don't care about floppies... */
2692 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2693 continue;
2694 }
2695
2696 /* we don't care about CD's... */
2697 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2698 continue;
2699 }
2700
2701 /* hdfd is the Atari/Hades floppy driver */
2702 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2703 continue;
2704 }
2705 /* fdisa is the Atari/Milan floppy driver */
2706 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2707 continue;
2708 }
2709
2710 /* need to find the device_name_to_block_device_major stuff */
2711 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2712
2713 /* get a vnode for the raw partition of this disk */
2714
2715 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2716 if (bdevvp(dev, &vp))
2717 panic("RAID can't alloc vnode");
2718
2719 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2720
2721 if (error) {
2722 /* "Who cares." Continue looking
2723 for something that exists*/
2724 vput(vp);
2725 continue;
2726 }
2727
2728 /* Ok, the disk exists. Go get the disklabel. */
2729 error = VOP_IOCTL(vp, DIOCGDINFO, (caddr_t)&label,
2730 FREAD, NOCRED, 0);
2731 if (error) {
2732 /*
2733 * XXX can't happen - open() would
2734 * have errored out (or faked up one)
2735 */
2736 printf("can't get label for dev %s%c (%d)!?!?\n",
2737 dv->dv_xname, 'a' + RAW_PART, error);
2738 }
2739
2740 /* don't need this any more. We'll allocate it again
2741 a little later if we really do... */
2742 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2743 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2744 vput(vp);
2745
2746 for (i=0; i < label.d_npartitions; i++) {
2747 /* We only support partitions marked as RAID */
2748 if (label.d_partitions[i].p_fstype != FS_RAID)
2749 continue;
2750
2751 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2752 if (bdevvp(dev, &vp))
2753 panic("RAID can't alloc vnode");
2754
2755 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2756 if (error) {
2757 /* Whatever... */
2758 vput(vp);
2759 continue;
2760 }
2761
2762 good_one = 0;
2763
2764 clabel = (RF_ComponentLabel_t *)
2765 malloc(sizeof(RF_ComponentLabel_t),
2766 M_RAIDFRAME, M_NOWAIT);
2767 if (clabel == NULL) {
2768 /* XXX CLEANUP HERE */
2769 printf("RAID auto config: out of memory!\n");
2770 return(NULL); /* XXX probably should panic? */
2771 }
2772
2773 if (!raidread_component_label(dev, vp, clabel)) {
2774 /* Got the label. Does it look reasonable? */
2775 if (rf_reasonable_label(clabel) &&
2776 (clabel->partitionSize <=
2777 label.d_partitions[i].p_size)) {
2778 #if DEBUG
2779 printf("Component on: %s%c: %d\n",
2780 dv->dv_xname, 'a'+i,
2781 label.d_partitions[i].p_size);
2782 rf_print_component_label(clabel);
2783 #endif
2784 /* if it's reasonable, add it,
2785 else ignore it. */
2786 ac = (RF_AutoConfig_t *)
2787 malloc(sizeof(RF_AutoConfig_t),
2788 M_RAIDFRAME,
2789 M_NOWAIT);
2790 if (ac == NULL) {
2791 /* XXX should panic?? */
2792 return(NULL);
2793 }
2794
2795 sprintf(ac->devname, "%s%c",
2796 dv->dv_xname, 'a'+i);
2797 ac->dev = dev;
2798 ac->vp = vp;
2799 ac->clabel = clabel;
2800 ac->next = ac_list;
2801 ac_list = ac;
2802 good_one = 1;
2803 }
2804 }
2805 if (!good_one) {
2806 /* cleanup */
2807 free(clabel, M_RAIDFRAME);
2808 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2809 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2810 vput(vp);
2811 }
2812 }
2813 }
2814 return(ac_list);
2815 }
2816
2817 static int
2818 rf_reasonable_label(clabel)
2819 RF_ComponentLabel_t *clabel;
2820 {
2821
2822 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2823 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2824 ((clabel->clean == RF_RAID_CLEAN) ||
2825 (clabel->clean == RF_RAID_DIRTY)) &&
2826 clabel->row >=0 &&
2827 clabel->column >= 0 &&
2828 clabel->num_rows > 0 &&
2829 clabel->num_columns > 0 &&
2830 clabel->row < clabel->num_rows &&
2831 clabel->column < clabel->num_columns &&
2832 clabel->blockSize > 0 &&
2833 clabel->numBlocks > 0) {
2834 /* label looks reasonable enough... */
2835 return(1);
2836 }
2837 return(0);
2838 }
2839
2840
2841 #if DEBUG
2842 void
2843 rf_print_component_label(clabel)
2844 RF_ComponentLabel_t *clabel;
2845 {
2846 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2847 clabel->row, clabel->column,
2848 clabel->num_rows, clabel->num_columns);
2849 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2850 clabel->version, clabel->serial_number,
2851 clabel->mod_counter);
2852 printf(" Clean: %s Status: %d\n",
2853 clabel->clean ? "Yes" : "No", clabel->status );
2854 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2855 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2856 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2857 (char) clabel->parityConfig, clabel->blockSize,
2858 clabel->numBlocks);
2859 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2860 printf(" Contains root partition: %s\n",
2861 clabel->root_partition ? "Yes" : "No" );
2862 printf(" Last configured as: raid%d\n", clabel->last_unit );
2863 #if 0
2864 printf(" Config order: %d\n", clabel->config_order);
2865 #endif
2866
2867 }
2868 #endif
2869
2870 RF_ConfigSet_t *
2871 rf_create_auto_sets(ac_list)
2872 RF_AutoConfig_t *ac_list;
2873 {
2874 RF_AutoConfig_t *ac;
2875 RF_ConfigSet_t *config_sets;
2876 RF_ConfigSet_t *cset;
2877 RF_AutoConfig_t *ac_next;
2878
2879
2880 config_sets = NULL;
2881
2882 /* Go through the AutoConfig list, and figure out which components
2883 belong to what sets. */
2884 ac = ac_list;
2885 while(ac!=NULL) {
2886 /* we're going to putz with ac->next, so save it here
2887 for use at the end of the loop */
2888 ac_next = ac->next;
2889
2890 if (config_sets == NULL) {
2891 /* will need at least this one... */
2892 config_sets = (RF_ConfigSet_t *)
2893 malloc(sizeof(RF_ConfigSet_t),
2894 M_RAIDFRAME, M_NOWAIT);
2895 if (config_sets == NULL) {
2896 panic("rf_create_auto_sets: No memory!");
2897 }
2898 /* this one is easy :) */
2899 config_sets->ac = ac;
2900 config_sets->next = NULL;
2901 config_sets->rootable = 0;
2902 ac->next = NULL;
2903 } else {
2904 /* which set does this component fit into? */
2905 cset = config_sets;
2906 while(cset!=NULL) {
2907 if (rf_does_it_fit(cset, ac)) {
2908 /* looks like it matches... */
2909 ac->next = cset->ac;
2910 cset->ac = ac;
2911 break;
2912 }
2913 cset = cset->next;
2914 }
2915 if (cset==NULL) {
2916 /* didn't find a match above... new set..*/
2917 cset = (RF_ConfigSet_t *)
2918 malloc(sizeof(RF_ConfigSet_t),
2919 M_RAIDFRAME, M_NOWAIT);
2920 if (cset == NULL) {
2921 panic("rf_create_auto_sets: No memory!");
2922 }
2923 cset->ac = ac;
2924 ac->next = NULL;
2925 cset->next = config_sets;
2926 cset->rootable = 0;
2927 config_sets = cset;
2928 }
2929 }
2930 ac = ac_next;
2931 }
2932
2933
2934 return(config_sets);
2935 }
2936
2937 static int
2938 rf_does_it_fit(cset, ac)
2939 RF_ConfigSet_t *cset;
2940 RF_AutoConfig_t *ac;
2941 {
2942 RF_ComponentLabel_t *clabel1, *clabel2;
2943
2944 /* If this one matches the *first* one in the set, that's good
2945 enough, since the other members of the set would have been
2946 through here too... */
2947 /* note that we are not checking partitionSize here..
2948
2949 Note that we are also not checking the mod_counters here.
2950 If everything else matches execpt the mod_counter, that's
2951 good enough for this test. We will deal with the mod_counters
2952 a little later in the autoconfiguration process.
2953
2954 (clabel1->mod_counter == clabel2->mod_counter) &&
2955
2956 The reason we don't check for this is that failed disks
2957 will have lower modification counts. If those disks are
2958 not added to the set they used to belong to, then they will
2959 form their own set, which may result in 2 different sets,
2960 for example, competing to be configured at raid0, and
2961 perhaps competing to be the root filesystem set. If the
2962 wrong ones get configured, or both attempt to become /,
2963 weird behaviour and or serious lossage will occur. Thus we
2964 need to bring them into the fold here, and kick them out at
2965 a later point.
2966
2967 */
2968
2969 clabel1 = cset->ac->clabel;
2970 clabel2 = ac->clabel;
2971 if ((clabel1->version == clabel2->version) &&
2972 (clabel1->serial_number == clabel2->serial_number) &&
2973 (clabel1->num_rows == clabel2->num_rows) &&
2974 (clabel1->num_columns == clabel2->num_columns) &&
2975 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2976 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2977 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2978 (clabel1->parityConfig == clabel2->parityConfig) &&
2979 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2980 (clabel1->blockSize == clabel2->blockSize) &&
2981 (clabel1->numBlocks == clabel2->numBlocks) &&
2982 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2983 (clabel1->root_partition == clabel2->root_partition) &&
2984 (clabel1->last_unit == clabel2->last_unit) &&
2985 (clabel1->config_order == clabel2->config_order)) {
2986 /* if it get's here, it almost *has* to be a match */
2987 } else {
2988 /* it's not consistent with somebody in the set..
2989 punt */
2990 return(0);
2991 }
2992 /* all was fine.. it must fit... */
2993 return(1);
2994 }
2995
2996 int
2997 rf_have_enough_components(cset)
2998 RF_ConfigSet_t *cset;
2999 {
3000 RF_AutoConfig_t *ac;
3001 RF_AutoConfig_t *auto_config;
3002 RF_ComponentLabel_t *clabel;
3003 int r,c;
3004 int num_rows;
3005 int num_cols;
3006 int num_missing;
3007 int mod_counter;
3008 int mod_counter_found;
3009 int even_pair_failed;
3010 char parity_type;
3011
3012
3013 /* check to see that we have enough 'live' components
3014 of this set. If so, we can configure it if necessary */
3015
3016 num_rows = cset->ac->clabel->num_rows;
3017 num_cols = cset->ac->clabel->num_columns;
3018 parity_type = cset->ac->clabel->parityConfig;
3019
3020 /* XXX Check for duplicate components!?!?!? */
3021
3022 /* Determine what the mod_counter is supposed to be for this set. */
3023
3024 mod_counter_found = 0;
3025 mod_counter = 0;
3026 ac = cset->ac;
3027 while(ac!=NULL) {
3028 if (mod_counter_found==0) {
3029 mod_counter = ac->clabel->mod_counter;
3030 mod_counter_found = 1;
3031 } else {
3032 if (ac->clabel->mod_counter > mod_counter) {
3033 mod_counter = ac->clabel->mod_counter;
3034 }
3035 }
3036 ac = ac->next;
3037 }
3038
3039 num_missing = 0;
3040 auto_config = cset->ac;
3041
3042 for(r=0; r<num_rows; r++) {
3043 even_pair_failed = 0;
3044 for(c=0; c<num_cols; c++) {
3045 ac = auto_config;
3046 while(ac!=NULL) {
3047 if ((ac->clabel->row == r) &&
3048 (ac->clabel->column == c) &&
3049 (ac->clabel->mod_counter == mod_counter)) {
3050 /* it's this one... */
3051 #if DEBUG
3052 printf("Found: %s at %d,%d\n",
3053 ac->devname,r,c);
3054 #endif
3055 break;
3056 }
3057 ac=ac->next;
3058 }
3059 if (ac==NULL) {
3060 /* Didn't find one here! */
3061 /* special case for RAID 1, especially
3062 where there are more than 2
3063 components (where RAIDframe treats
3064 things a little differently :( ) */
3065 if (parity_type == '1') {
3066 if (c%2 == 0) { /* even component */
3067 even_pair_failed = 1;
3068 } else { /* odd component. If
3069 we're failed, and
3070 so is the even
3071 component, it's
3072 "Good Night, Charlie" */
3073 if (even_pair_failed == 1) {
3074 return(0);
3075 }
3076 }
3077 } else {
3078 /* normal accounting */
3079 num_missing++;
3080 }
3081 }
3082 if ((parity_type == '1') && (c%2 == 1)) {
3083 /* Just did an even component, and we didn't
3084 bail.. reset the even_pair_failed flag,
3085 and go on to the next component.... */
3086 even_pair_failed = 0;
3087 }
3088 }
3089 }
3090
3091 clabel = cset->ac->clabel;
3092
3093 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3094 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3095 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3096 /* XXX this needs to be made *much* more general */
3097 /* Too many failures */
3098 return(0);
3099 }
3100 /* otherwise, all is well, and we've got enough to take a kick
3101 at autoconfiguring this set */
3102 return(1);
3103 }
3104
3105 void
3106 rf_create_configuration(ac,config,raidPtr)
3107 RF_AutoConfig_t *ac;
3108 RF_Config_t *config;
3109 RF_Raid_t *raidPtr;
3110 {
3111 RF_ComponentLabel_t *clabel;
3112 int i;
3113
3114 clabel = ac->clabel;
3115
3116 /* 1. Fill in the common stuff */
3117 config->numRow = clabel->num_rows;
3118 config->numCol = clabel->num_columns;
3119 config->numSpare = 0; /* XXX should this be set here? */
3120 config->sectPerSU = clabel->sectPerSU;
3121 config->SUsPerPU = clabel->SUsPerPU;
3122 config->SUsPerRU = clabel->SUsPerRU;
3123 config->parityConfig = clabel->parityConfig;
3124 /* XXX... */
3125 strcpy(config->diskQueueType,"fifo");
3126 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3127 config->layoutSpecificSize = 0; /* XXX ?? */
3128
3129 while(ac!=NULL) {
3130 /* row/col values will be in range due to the checks
3131 in reasonable_label() */
3132 strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3133 ac->devname);
3134 ac = ac->next;
3135 }
3136
3137 for(i=0;i<RF_MAXDBGV;i++) {
3138 config->debugVars[i][0] = NULL;
3139 }
3140 }
3141
3142 int
3143 rf_set_autoconfig(raidPtr, new_value)
3144 RF_Raid_t *raidPtr;
3145 int new_value;
3146 {
3147 RF_ComponentLabel_t clabel;
3148 struct vnode *vp;
3149 dev_t dev;
3150 int row, column;
3151 int sparecol;
3152
3153 raidPtr->autoconfigure = new_value;
3154 for(row=0; row<raidPtr->numRow; row++) {
3155 for(column=0; column<raidPtr->numCol; column++) {
3156 if (raidPtr->Disks[row][column].status ==
3157 rf_ds_optimal) {
3158 dev = raidPtr->Disks[row][column].dev;
3159 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3160 raidread_component_label(dev, vp, &clabel);
3161 clabel.autoconfigure = new_value;
3162 raidwrite_component_label(dev, vp, &clabel);
3163 }
3164 }
3165 }
3166 for(column = 0; column < raidPtr->numSpare ; column++) {
3167 sparecol = raidPtr->numCol + column;
3168 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3169 dev = raidPtr->Disks[0][sparecol].dev;
3170 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3171 raidread_component_label(dev, vp, &clabel);
3172 clabel.autoconfigure = new_value;
3173 raidwrite_component_label(dev, vp, &clabel);
3174 }
3175 }
3176 return(new_value);
3177 }
3178
3179 int
3180 rf_set_rootpartition(raidPtr, new_value)
3181 RF_Raid_t *raidPtr;
3182 int new_value;
3183 {
3184 RF_ComponentLabel_t clabel;
3185 struct vnode *vp;
3186 dev_t dev;
3187 int row, column;
3188 int sparecol;
3189
3190 raidPtr->root_partition = new_value;
3191 for(row=0; row<raidPtr->numRow; row++) {
3192 for(column=0; column<raidPtr->numCol; column++) {
3193 if (raidPtr->Disks[row][column].status ==
3194 rf_ds_optimal) {
3195 dev = raidPtr->Disks[row][column].dev;
3196 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3197 raidread_component_label(dev, vp, &clabel);
3198 clabel.root_partition = new_value;
3199 raidwrite_component_label(dev, vp, &clabel);
3200 }
3201 }
3202 }
3203 for(column = 0; column < raidPtr->numSpare ; column++) {
3204 sparecol = raidPtr->numCol + column;
3205 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3206 dev = raidPtr->Disks[0][sparecol].dev;
3207 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3208 raidread_component_label(dev, vp, &clabel);
3209 clabel.root_partition = new_value;
3210 raidwrite_component_label(dev, vp, &clabel);
3211 }
3212 }
3213 return(new_value);
3214 }
3215
3216 void
3217 rf_release_all_vps(cset)
3218 RF_ConfigSet_t *cset;
3219 {
3220 RF_AutoConfig_t *ac;
3221
3222 ac = cset->ac;
3223 while(ac!=NULL) {
3224 /* Close the vp, and give it back */
3225 if (ac->vp) {
3226 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3227 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3228 vput(ac->vp);
3229 ac->vp = NULL;
3230 }
3231 ac = ac->next;
3232 }
3233 }
3234
3235
3236 void
3237 rf_cleanup_config_set(cset)
3238 RF_ConfigSet_t *cset;
3239 {
3240 RF_AutoConfig_t *ac;
3241 RF_AutoConfig_t *next_ac;
3242
3243 ac = cset->ac;
3244 while(ac!=NULL) {
3245 next_ac = ac->next;
3246 /* nuke the label */
3247 free(ac->clabel, M_RAIDFRAME);
3248 /* cleanup the config structure */
3249 free(ac, M_RAIDFRAME);
3250 /* "next.." */
3251 ac = next_ac;
3252 }
3253 /* and, finally, nuke the config set */
3254 free(cset, M_RAIDFRAME);
3255 }
3256
3257
3258 void
3259 raid_init_component_label(raidPtr, clabel)
3260 RF_Raid_t *raidPtr;
3261 RF_ComponentLabel_t *clabel;
3262 {
3263 /* current version number */
3264 clabel->version = RF_COMPONENT_LABEL_VERSION;
3265 clabel->serial_number = raidPtr->serial_number;
3266 clabel->mod_counter = raidPtr->mod_counter;
3267 clabel->num_rows = raidPtr->numRow;
3268 clabel->num_columns = raidPtr->numCol;
3269 clabel->clean = RF_RAID_DIRTY; /* not clean */
3270 clabel->status = rf_ds_optimal; /* "It's good!" */
3271
3272 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3273 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3274 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3275
3276 clabel->blockSize = raidPtr->bytesPerSector;
3277 clabel->numBlocks = raidPtr->sectorsPerDisk;
3278
3279 /* XXX not portable */
3280 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3281 clabel->maxOutstanding = raidPtr->maxOutstanding;
3282 clabel->autoconfigure = raidPtr->autoconfigure;
3283 clabel->root_partition = raidPtr->root_partition;
3284 clabel->last_unit = raidPtr->raidid;
3285 clabel->config_order = raidPtr->config_order;
3286 }
3287
3288 int
3289 rf_auto_config_set(cset,unit)
3290 RF_ConfigSet_t *cset;
3291 int *unit;
3292 {
3293 RF_Raid_t *raidPtr;
3294 RF_Config_t *config;
3295 int raidID;
3296 int retcode;
3297
3298 #if DEBUG
3299 printf("RAID autoconfigure\n");
3300 #endif
3301
3302 retcode = 0;
3303 *unit = -1;
3304
3305 /* 1. Create a config structure */
3306
3307 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3308 M_RAIDFRAME,
3309 M_NOWAIT);
3310 if (config==NULL) {
3311 printf("Out of mem!?!?\n");
3312 /* XXX do something more intelligent here. */
3313 return(1);
3314 }
3315
3316 memset(config, 0, sizeof(RF_Config_t));
3317
3318 /*
3319 2. Figure out what RAID ID this one is supposed to live at
3320 See if we can get the same RAID dev that it was configured
3321 on last time..
3322 */
3323
3324 raidID = cset->ac->clabel->last_unit;
3325 if ((raidID < 0) || (raidID >= numraid)) {
3326 /* let's not wander off into lala land. */
3327 raidID = numraid - 1;
3328 }
3329 if (raidPtrs[raidID]->valid != 0) {
3330
3331 /*
3332 Nope... Go looking for an alternative...
3333 Start high so we don't immediately use raid0 if that's
3334 not taken.
3335 */
3336
3337 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3338 if (raidPtrs[raidID]->valid == 0) {
3339 /* can use this one! */
3340 break;
3341 }
3342 }
3343 }
3344
3345 if (raidID < 0) {
3346 /* punt... */
3347 printf("Unable to auto configure this set!\n");
3348 printf("(Out of RAID devs!)\n");
3349 return(1);
3350 }
3351
3352 #if DEBUG
3353 printf("Configuring raid%d:\n",raidID);
3354 #endif
3355
3356 raidPtr = raidPtrs[raidID];
3357
3358 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3359 raidPtr->raidid = raidID;
3360 raidPtr->openings = RAIDOUTSTANDING;
3361
3362 /* 3. Build the configuration structure */
3363 rf_create_configuration(cset->ac, config, raidPtr);
3364
3365 /* 4. Do the configuration */
3366 retcode = rf_Configure(raidPtr, config, cset->ac);
3367
3368 if (retcode == 0) {
3369
3370 raidinit(raidPtrs[raidID]);
3371
3372 rf_markalldirty(raidPtrs[raidID]);
3373 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3374 if (cset->ac->clabel->root_partition==1) {
3375 /* everything configured just fine. Make a note
3376 that this set is eligible to be root. */
3377 cset->rootable = 1;
3378 /* XXX do this here? */
3379 raidPtrs[raidID]->root_partition = 1;
3380 }
3381 }
3382
3383 /* 5. Cleanup */
3384 free(config, M_RAIDFRAME);
3385
3386 *unit = raidID;
3387 return(retcode);
3388 }
3389
3390 void
3391 rf_disk_unbusy(desc)
3392 RF_RaidAccessDesc_t *desc;
3393 {
3394 struct buf *bp;
3395
3396 bp = (struct buf *)desc->bp;
3397 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3398 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3399 }
3400