rf_netbsdkintf.c revision 1.158 1 /* $NetBSD: rf_netbsdkintf.c,v 1.158 2003/05/02 08:45:28 dsl Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1988 University of Utah.
40 * Copyright (c) 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software contributed to Berkeley by
44 * the Systems Programming Group of the University of Utah Computer
45 * Science Department.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * from: Utah $Hdr: cd.c 1.6 90/11/28$
76 *
77 * @(#)cd.c 8.2 (Berkeley) 11/16/93
78 */
79
80 /*
81 * Copyright (c) 1995 Carnegie-Mellon University.
82 * All rights reserved.
83 *
84 * Authors: Mark Holland, Jim Zelenka
85 *
86 * Permission to use, copy, modify and distribute this software and
87 * its documentation is hereby granted, provided that both the copyright
88 * notice and this permission notice appear in all copies of the
89 * software, derivative works or modified versions, and any portions
90 * thereof, and that both notices appear in supporting documentation.
91 *
92 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
93 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
94 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
95 *
96 * Carnegie Mellon requests users of this software to return to
97 *
98 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
99 * School of Computer Science
100 * Carnegie Mellon University
101 * Pittsburgh PA 15213-3890
102 *
103 * any improvements or extensions that they make and grant Carnegie the
104 * rights to redistribute these changes.
105 */
106
107 /***********************************************************
108 *
109 * rf_kintf.c -- the kernel interface routines for RAIDframe
110 *
111 ***********************************************************/
112
113 #include <sys/cdefs.h>
114 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.158 2003/05/02 08:45:28 dsl Exp $");
115
116 #include <sys/param.h>
117 #include <sys/errno.h>
118 #include <sys/pool.h>
119 #include <sys/proc.h>
120 #include <sys/queue.h>
121 #include <sys/disk.h>
122 #include <sys/device.h>
123 #include <sys/stat.h>
124 #include <sys/ioctl.h>
125 #include <sys/fcntl.h>
126 #include <sys/systm.h>
127 #include <sys/namei.h>
128 #include <sys/vnode.h>
129 #include <sys/disklabel.h>
130 #include <sys/conf.h>
131 #include <sys/lock.h>
132 #include <sys/buf.h>
133 #include <sys/user.h>
134 #include <sys/reboot.h>
135
136 #include <dev/raidframe/raidframevar.h>
137 #include <dev/raidframe/raidframeio.h>
138 #include "raid.h"
139 #include "opt_raid_autoconfig.h"
140 #include "rf_raid.h"
141 #include "rf_copyback.h"
142 #include "rf_dag.h"
143 #include "rf_dagflags.h"
144 #include "rf_desc.h"
145 #include "rf_diskqueue.h"
146 #include "rf_etimer.h"
147 #include "rf_general.h"
148 #include "rf_kintf.h"
149 #include "rf_options.h"
150 #include "rf_driver.h"
151 #include "rf_parityscan.h"
152 #include "rf_threadstuff.h"
153
154 #ifdef DEBUG
155 int rf_kdebug_level = 0;
156 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 #else /* DEBUG */
158 #define db1_printf(a) { }
159 #endif /* DEBUG */
160
161 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
162
163 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
164
165 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
166 * spare table */
167 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
168 * installation process */
169
170 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
171
172 /* prototypes */
173 static void KernelWakeupFunc(struct buf * bp);
174 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
175 dev_t dev, RF_SectorNum_t startSect,
176 RF_SectorCount_t numSect, caddr_t buf,
177 void (*cbFunc) (struct buf *), void *cbArg,
178 int logBytesPerSector, struct proc * b_proc);
179 static void raidinit(RF_Raid_t *);
180
181 void raidattach(int);
182
183 dev_type_open(raidopen);
184 dev_type_close(raidclose);
185 dev_type_read(raidread);
186 dev_type_write(raidwrite);
187 dev_type_ioctl(raidioctl);
188 dev_type_strategy(raidstrategy);
189 dev_type_dump(raiddump);
190 dev_type_size(raidsize);
191
192 const struct bdevsw raid_bdevsw = {
193 raidopen, raidclose, raidstrategy, raidioctl,
194 raiddump, raidsize, D_DISK
195 };
196
197 const struct cdevsw raid_cdevsw = {
198 raidopen, raidclose, raidread, raidwrite, raidioctl,
199 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
200 };
201
202 /*
203 * Pilfered from ccd.c
204 */
205
206 struct raidbuf {
207 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
208 struct buf *rf_obp; /* ptr. to original I/O buf */
209 RF_DiskQueueData_t *req;/* the request that this was part of.. */
210 };
211
212 /* component buffer pool */
213 struct pool raidframe_cbufpool;
214
215 /* XXX Not sure if the following should be replacing the raidPtrs above,
216 or if it should be used in conjunction with that...
217 */
218
219 struct raid_softc {
220 int sc_flags; /* flags */
221 int sc_cflags; /* configuration flags */
222 size_t sc_size; /* size of the raid device */
223 char sc_xname[20]; /* XXX external name */
224 struct disk sc_dkdev; /* generic disk device info */
225 struct bufq_state buf_queue; /* used for the device queue */
226 };
227 /* sc_flags */
228 #define RAIDF_INITED 0x01 /* unit has been initialized */
229 #define RAIDF_WLABEL 0x02 /* label area is writable */
230 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
231 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
232 #define RAIDF_LOCKED 0x80 /* unit is locked */
233
234 #define raidunit(x) DISKUNIT(x)
235 int numraid = 0;
236
237 /*
238 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
239 * Be aware that large numbers can allow the driver to consume a lot of
240 * kernel memory, especially on writes, and in degraded mode reads.
241 *
242 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
243 * a single 64K write will typically require 64K for the old data,
244 * 64K for the old parity, and 64K for the new parity, for a total
245 * of 192K (if the parity buffer is not re-used immediately).
246 * Even it if is used immediately, that's still 128K, which when multiplied
247 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
248 *
249 * Now in degraded mode, for example, a 64K read on the above setup may
250 * require data reconstruction, which will require *all* of the 4 remaining
251 * disks to participate -- 4 * 32K/disk == 128K again.
252 */
253
254 #ifndef RAIDOUTSTANDING
255 #define RAIDOUTSTANDING 6
256 #endif
257
258 #define RAIDLABELDEV(dev) \
259 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
260
261 /* declared here, and made public, for the benefit of KVM stuff.. */
262 struct raid_softc *raid_softc;
263
264 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
265 struct disklabel *);
266 static void raidgetdisklabel(dev_t);
267 static void raidmakedisklabel(struct raid_softc *);
268
269 static int raidlock(struct raid_softc *);
270 static void raidunlock(struct raid_softc *);
271
272 static void rf_markalldirty(RF_Raid_t *);
273
274 struct device *raidrootdev;
275
276 void rf_ReconThread(struct rf_recon_req *);
277 /* XXX what I want is: */
278 /*void rf_ReconThread(RF_Raid_t *raidPtr); */
279 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
280 void rf_CopybackThread(RF_Raid_t *raidPtr);
281 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
282 int rf_autoconfig(struct device *self);
283 void rf_buildroothack(RF_ConfigSet_t *);
284
285 RF_AutoConfig_t *rf_find_raid_components(void);
286 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
287 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
288 static int rf_reasonable_label(RF_ComponentLabel_t *);
289 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
290 int rf_set_autoconfig(RF_Raid_t *, int);
291 int rf_set_rootpartition(RF_Raid_t *, int);
292 void rf_release_all_vps(RF_ConfigSet_t *);
293 void rf_cleanup_config_set(RF_ConfigSet_t *);
294 int rf_have_enough_components(RF_ConfigSet_t *);
295 int rf_auto_config_set(RF_ConfigSet_t *, int *);
296
297 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
298 allow autoconfig to take place.
299 Note that this is overridden by having
300 RAID_AUTOCONFIG as an option in the
301 kernel config file. */
302
303 void
304 raidattach(num)
305 int num;
306 {
307 int raidID;
308 int i, rc;
309
310 #ifdef DEBUG
311 printf("raidattach: Asked for %d units\n", num);
312 #endif
313
314 if (num <= 0) {
315 #ifdef DIAGNOSTIC
316 panic("raidattach: count <= 0");
317 #endif
318 return;
319 }
320 /* This is where all the initialization stuff gets done. */
321
322 numraid = num;
323
324 /* Make some space for requested number of units... */
325
326 RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
327 if (raidPtrs == NULL) {
328 panic("raidPtrs is NULL!!");
329 }
330
331 /* Initialize the component buffer pool. */
332 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
333 0, 0, "raidpl", NULL);
334
335 rc = rf_mutex_init(&rf_sparet_wait_mutex);
336 if (rc) {
337 RF_PANIC();
338 }
339
340 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
341
342 for (i = 0; i < num; i++)
343 raidPtrs[i] = NULL;
344 rc = rf_BootRaidframe();
345 if (rc == 0)
346 printf("Kernelized RAIDframe activated\n");
347 else
348 panic("Serious error booting RAID!!");
349
350 /* put together some datastructures like the CCD device does.. This
351 * lets us lock the device and what-not when it gets opened. */
352
353 raid_softc = (struct raid_softc *)
354 malloc(num * sizeof(struct raid_softc),
355 M_RAIDFRAME, M_NOWAIT);
356 if (raid_softc == NULL) {
357 printf("WARNING: no memory for RAIDframe driver\n");
358 return;
359 }
360
361 memset(raid_softc, 0, num * sizeof(struct raid_softc));
362
363 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
364 M_RAIDFRAME, M_NOWAIT);
365 if (raidrootdev == NULL) {
366 panic("No memory for RAIDframe driver!!?!?!");
367 }
368
369 for (raidID = 0; raidID < num; raidID++) {
370 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
371
372 raidrootdev[raidID].dv_class = DV_DISK;
373 raidrootdev[raidID].dv_cfdata = NULL;
374 raidrootdev[raidID].dv_unit = raidID;
375 raidrootdev[raidID].dv_parent = NULL;
376 raidrootdev[raidID].dv_flags = 0;
377 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
378
379 RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
380 (RF_Raid_t *));
381 if (raidPtrs[raidID] == NULL) {
382 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
383 numraid = raidID;
384 return;
385 }
386 }
387
388 #ifdef RAID_AUTOCONFIG
389 raidautoconfig = 1;
390 #endif
391
392 /*
393 * Register a finalizer which will be used to auto-config RAID
394 * sets once all real hardware devices have been found.
395 */
396 if (config_finalize_register(NULL, rf_autoconfig) != 0)
397 printf("WARNING: unable to register RAIDframe finalizer\n");
398 }
399
400 int
401 rf_autoconfig(struct device *self)
402 {
403 RF_AutoConfig_t *ac_list;
404 RF_ConfigSet_t *config_sets;
405
406 if (raidautoconfig == 0)
407 return (0);
408
409 /* XXX This code can only be run once. */
410 raidautoconfig = 0;
411
412 /* 1. locate all RAID components on the system */
413 #ifdef DEBUG
414 printf("Searching for RAID components...\n");
415 #endif
416 ac_list = rf_find_raid_components();
417
418 /* 2. Sort them into their respective sets. */
419 config_sets = rf_create_auto_sets(ac_list);
420
421 /*
422 * 3. Evaluate each set andconfigure the valid ones.
423 * This gets done in rf_buildroothack().
424 */
425 rf_buildroothack(config_sets);
426
427 return (1);
428 }
429
430 void
431 rf_buildroothack(RF_ConfigSet_t *config_sets)
432 {
433 RF_ConfigSet_t *cset;
434 RF_ConfigSet_t *next_cset;
435 int retcode;
436 int raidID;
437 int rootID;
438 int num_root;
439
440 rootID = 0;
441 num_root = 0;
442 cset = config_sets;
443 while(cset != NULL ) {
444 next_cset = cset->next;
445 if (rf_have_enough_components(cset) &&
446 cset->ac->clabel->autoconfigure==1) {
447 retcode = rf_auto_config_set(cset,&raidID);
448 if (!retcode) {
449 if (cset->rootable) {
450 rootID = raidID;
451 num_root++;
452 }
453 } else {
454 /* The autoconfig didn't work :( */
455 #if DEBUG
456 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
457 #endif
458 rf_release_all_vps(cset);
459 }
460 } else {
461 /* we're not autoconfiguring this set...
462 release the associated resources */
463 rf_release_all_vps(cset);
464 }
465 /* cleanup */
466 rf_cleanup_config_set(cset);
467 cset = next_cset;
468 }
469
470 /* we found something bootable... */
471
472 if (num_root == 1) {
473 booted_device = &raidrootdev[rootID];
474 } else if (num_root > 1) {
475 /* we can't guess.. require the user to answer... */
476 boothowto |= RB_ASKNAME;
477 }
478 }
479
480
481 int
482 raidsize(dev)
483 dev_t dev;
484 {
485 struct raid_softc *rs;
486 struct disklabel *lp;
487 int part, unit, omask, size;
488
489 unit = raidunit(dev);
490 if (unit >= numraid)
491 return (-1);
492 rs = &raid_softc[unit];
493
494 if ((rs->sc_flags & RAIDF_INITED) == 0)
495 return (-1);
496
497 part = DISKPART(dev);
498 omask = rs->sc_dkdev.dk_openmask & (1 << part);
499 lp = rs->sc_dkdev.dk_label;
500
501 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
502 return (-1);
503
504 if (lp->d_partitions[part].p_fstype != FS_SWAP)
505 size = -1;
506 else
507 size = lp->d_partitions[part].p_size *
508 (lp->d_secsize / DEV_BSIZE);
509
510 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
511 return (-1);
512
513 return (size);
514
515 }
516
517 int
518 raiddump(dev, blkno, va, size)
519 dev_t dev;
520 daddr_t blkno;
521 caddr_t va;
522 size_t size;
523 {
524 /* Not implemented. */
525 return ENXIO;
526 }
527 /* ARGSUSED */
528 int
529 raidopen(dev, flags, fmt, p)
530 dev_t dev;
531 int flags, fmt;
532 struct proc *p;
533 {
534 int unit = raidunit(dev);
535 struct raid_softc *rs;
536 struct disklabel *lp;
537 int part, pmask;
538 int error = 0;
539
540 if (unit >= numraid)
541 return (ENXIO);
542 rs = &raid_softc[unit];
543
544 if ((error = raidlock(rs)) != 0)
545 return (error);
546 lp = rs->sc_dkdev.dk_label;
547
548 part = DISKPART(dev);
549 pmask = (1 << part);
550
551 if ((rs->sc_flags & RAIDF_INITED) &&
552 (rs->sc_dkdev.dk_openmask == 0))
553 raidgetdisklabel(dev);
554
555 /* make sure that this partition exists */
556
557 if (part != RAW_PART) {
558 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
559 ((part >= lp->d_npartitions) ||
560 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
561 error = ENXIO;
562 raidunlock(rs);
563 return (error);
564 }
565 }
566 /* Prevent this unit from being unconfigured while open. */
567 switch (fmt) {
568 case S_IFCHR:
569 rs->sc_dkdev.dk_copenmask |= pmask;
570 break;
571
572 case S_IFBLK:
573 rs->sc_dkdev.dk_bopenmask |= pmask;
574 break;
575 }
576
577 if ((rs->sc_dkdev.dk_openmask == 0) &&
578 ((rs->sc_flags & RAIDF_INITED) != 0)) {
579 /* First one... mark things as dirty... Note that we *MUST*
580 have done a configure before this. I DO NOT WANT TO BE
581 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
582 THAT THEY BELONG TOGETHER!!!!! */
583 /* XXX should check to see if we're only open for reading
584 here... If so, we needn't do this, but then need some
585 other way of keeping track of what's happened.. */
586
587 rf_markalldirty( raidPtrs[unit] );
588 }
589
590
591 rs->sc_dkdev.dk_openmask =
592 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
593
594 raidunlock(rs);
595
596 return (error);
597
598
599 }
600 /* ARGSUSED */
601 int
602 raidclose(dev, flags, fmt, p)
603 dev_t dev;
604 int flags, fmt;
605 struct proc *p;
606 {
607 int unit = raidunit(dev);
608 struct raid_softc *rs;
609 int error = 0;
610 int part;
611
612 if (unit >= numraid)
613 return (ENXIO);
614 rs = &raid_softc[unit];
615
616 if ((error = raidlock(rs)) != 0)
617 return (error);
618
619 part = DISKPART(dev);
620
621 /* ...that much closer to allowing unconfiguration... */
622 switch (fmt) {
623 case S_IFCHR:
624 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
625 break;
626
627 case S_IFBLK:
628 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
629 break;
630 }
631 rs->sc_dkdev.dk_openmask =
632 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
633
634 if ((rs->sc_dkdev.dk_openmask == 0) &&
635 ((rs->sc_flags & RAIDF_INITED) != 0)) {
636 /* Last one... device is not unconfigured yet.
637 Device shutdown has taken care of setting the
638 clean bits if RAIDF_INITED is not set
639 mark things as clean... */
640
641 rf_update_component_labels(raidPtrs[unit],
642 RF_FINAL_COMPONENT_UPDATE);
643 if (doing_shutdown) {
644 /* last one, and we're going down, so
645 lights out for this RAID set too. */
646 error = rf_Shutdown(raidPtrs[unit]);
647
648 /* It's no longer initialized... */
649 rs->sc_flags &= ~RAIDF_INITED;
650
651 /* Detach the disk. */
652 disk_detach(&rs->sc_dkdev);
653 }
654 }
655
656 raidunlock(rs);
657 return (0);
658
659 }
660
661 void
662 raidstrategy(bp)
663 struct buf *bp;
664 {
665 int s;
666
667 unsigned int raidID = raidunit(bp->b_dev);
668 RF_Raid_t *raidPtr;
669 struct raid_softc *rs = &raid_softc[raidID];
670 struct disklabel *lp;
671 int wlabel;
672
673 if ((rs->sc_flags & RAIDF_INITED) ==0) {
674 bp->b_error = ENXIO;
675 bp->b_flags |= B_ERROR;
676 bp->b_resid = bp->b_bcount;
677 biodone(bp);
678 return;
679 }
680 if (raidID >= numraid || !raidPtrs[raidID]) {
681 bp->b_error = ENODEV;
682 bp->b_flags |= B_ERROR;
683 bp->b_resid = bp->b_bcount;
684 biodone(bp);
685 return;
686 }
687 raidPtr = raidPtrs[raidID];
688 if (!raidPtr->valid) {
689 bp->b_error = ENODEV;
690 bp->b_flags |= B_ERROR;
691 bp->b_resid = bp->b_bcount;
692 biodone(bp);
693 return;
694 }
695 if (bp->b_bcount == 0) {
696 db1_printf(("b_bcount is zero..\n"));
697 biodone(bp);
698 return;
699 }
700 lp = rs->sc_dkdev.dk_label;
701
702 /*
703 * Do bounds checking and adjust transfer. If there's an
704 * error, the bounds check will flag that for us.
705 */
706
707 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
708 if (DISKPART(bp->b_dev) != RAW_PART)
709 if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
710 db1_printf(("Bounds check failed!!:%d %d\n",
711 (int) bp->b_blkno, (int) wlabel));
712 biodone(bp);
713 return;
714 }
715 s = splbio();
716
717 bp->b_resid = 0;
718
719 /* stuff it onto our queue */
720 BUFQ_PUT(&rs->buf_queue, bp);
721
722 raidstart(raidPtrs[raidID]);
723
724 splx(s);
725 }
726 /* ARGSUSED */
727 int
728 raidread(dev, uio, flags)
729 dev_t dev;
730 struct uio *uio;
731 int flags;
732 {
733 int unit = raidunit(dev);
734 struct raid_softc *rs;
735 int part;
736
737 if (unit >= numraid)
738 return (ENXIO);
739 rs = &raid_softc[unit];
740
741 if ((rs->sc_flags & RAIDF_INITED) == 0)
742 return (ENXIO);
743 part = DISKPART(dev);
744
745 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
746
747 }
748 /* ARGSUSED */
749 int
750 raidwrite(dev, uio, flags)
751 dev_t dev;
752 struct uio *uio;
753 int flags;
754 {
755 int unit = raidunit(dev);
756 struct raid_softc *rs;
757
758 if (unit >= numraid)
759 return (ENXIO);
760 rs = &raid_softc[unit];
761
762 if ((rs->sc_flags & RAIDF_INITED) == 0)
763 return (ENXIO);
764
765 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
766
767 }
768
769 int
770 raidioctl(dev, cmd, data, flag, p)
771 dev_t dev;
772 u_long cmd;
773 caddr_t data;
774 int flag;
775 struct proc *p;
776 {
777 int unit = raidunit(dev);
778 int error = 0;
779 int part, pmask;
780 struct raid_softc *rs;
781 RF_Config_t *k_cfg, *u_cfg;
782 RF_Raid_t *raidPtr;
783 RF_RaidDisk_t *diskPtr;
784 RF_AccTotals_t *totals;
785 RF_DeviceConfig_t *d_cfg, **ucfgp;
786 u_char *specific_buf;
787 int retcode = 0;
788 int row;
789 int column;
790 int raidid;
791 struct rf_recon_req *rrcopy, *rr;
792 RF_ComponentLabel_t *clabel;
793 RF_ComponentLabel_t ci_label;
794 RF_ComponentLabel_t **clabel_ptr;
795 RF_SingleComponent_t *sparePtr,*componentPtr;
796 RF_SingleComponent_t hot_spare;
797 RF_SingleComponent_t component;
798 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
799 int i, j, d;
800 #ifdef __HAVE_OLD_DISKLABEL
801 struct disklabel newlabel;
802 #endif
803
804 if (unit >= numraid)
805 return (ENXIO);
806 rs = &raid_softc[unit];
807 raidPtr = raidPtrs[unit];
808
809 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
810 (int) DISKPART(dev), (int) unit, (int) cmd));
811
812 /* Must be open for writes for these commands... */
813 switch (cmd) {
814 case DIOCSDINFO:
815 case DIOCWDINFO:
816 #ifdef __HAVE_OLD_DISKLABEL
817 case ODIOCWDINFO:
818 case ODIOCSDINFO:
819 #endif
820 case DIOCWLABEL:
821 if ((flag & FWRITE) == 0)
822 return (EBADF);
823 }
824
825 /* Must be initialized for these... */
826 switch (cmd) {
827 case DIOCGDINFO:
828 case DIOCSDINFO:
829 case DIOCWDINFO:
830 #ifdef __HAVE_OLD_DISKLABEL
831 case ODIOCGDINFO:
832 case ODIOCWDINFO:
833 case ODIOCSDINFO:
834 case ODIOCGDEFLABEL:
835 #endif
836 case DIOCGPART:
837 case DIOCWLABEL:
838 case DIOCGDEFLABEL:
839 case RAIDFRAME_SHUTDOWN:
840 case RAIDFRAME_REWRITEPARITY:
841 case RAIDFRAME_GET_INFO:
842 case RAIDFRAME_RESET_ACCTOTALS:
843 case RAIDFRAME_GET_ACCTOTALS:
844 case RAIDFRAME_KEEP_ACCTOTALS:
845 case RAIDFRAME_GET_SIZE:
846 case RAIDFRAME_FAIL_DISK:
847 case RAIDFRAME_COPYBACK:
848 case RAIDFRAME_CHECK_RECON_STATUS:
849 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
850 case RAIDFRAME_GET_COMPONENT_LABEL:
851 case RAIDFRAME_SET_COMPONENT_LABEL:
852 case RAIDFRAME_ADD_HOT_SPARE:
853 case RAIDFRAME_REMOVE_HOT_SPARE:
854 case RAIDFRAME_INIT_LABELS:
855 case RAIDFRAME_REBUILD_IN_PLACE:
856 case RAIDFRAME_CHECK_PARITY:
857 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
859 case RAIDFRAME_CHECK_COPYBACK_STATUS:
860 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
861 case RAIDFRAME_SET_AUTOCONFIG:
862 case RAIDFRAME_SET_ROOT:
863 case RAIDFRAME_DELETE_COMPONENT:
864 case RAIDFRAME_INCORPORATE_HOT_SPARE:
865 if ((rs->sc_flags & RAIDF_INITED) == 0)
866 return (ENXIO);
867 }
868
869 switch (cmd) {
870
871 /* configure the system */
872 case RAIDFRAME_CONFIGURE:
873
874 if (raidPtr->valid) {
875 /* There is a valid RAID set running on this unit! */
876 printf("raid%d: Device already configured!\n",unit);
877 return(EINVAL);
878 }
879
880 /* copy-in the configuration information */
881 /* data points to a pointer to the configuration structure */
882
883 u_cfg = *((RF_Config_t **) data);
884 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
885 if (k_cfg == NULL) {
886 return (ENOMEM);
887 }
888 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
889 if (retcode) {
890 RF_Free(k_cfg, sizeof(RF_Config_t));
891 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
892 retcode));
893 return (retcode);
894 }
895 /* allocate a buffer for the layout-specific data, and copy it
896 * in */
897 if (k_cfg->layoutSpecificSize) {
898 if (k_cfg->layoutSpecificSize > 10000) {
899 /* sanity check */
900 RF_Free(k_cfg, sizeof(RF_Config_t));
901 return (EINVAL);
902 }
903 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
904 (u_char *));
905 if (specific_buf == NULL) {
906 RF_Free(k_cfg, sizeof(RF_Config_t));
907 return (ENOMEM);
908 }
909 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
910 k_cfg->layoutSpecificSize);
911 if (retcode) {
912 RF_Free(k_cfg, sizeof(RF_Config_t));
913 RF_Free(specific_buf,
914 k_cfg->layoutSpecificSize);
915 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
916 retcode));
917 return (retcode);
918 }
919 } else
920 specific_buf = NULL;
921 k_cfg->layoutSpecific = specific_buf;
922
923 /* should do some kind of sanity check on the configuration.
924 * Store the sum of all the bytes in the last byte? */
925
926 /* configure the system */
927
928 /*
929 * Clear the entire RAID descriptor, just to make sure
930 * there is no stale data left in the case of a
931 * reconfiguration
932 */
933 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
934 raidPtr->raidid = unit;
935
936 retcode = rf_Configure(raidPtr, k_cfg, NULL);
937
938 if (retcode == 0) {
939
940 /* allow this many simultaneous IO's to
941 this RAID device */
942 raidPtr->openings = RAIDOUTSTANDING;
943
944 raidinit(raidPtr);
945 rf_markalldirty(raidPtr);
946 }
947 /* free the buffers. No return code here. */
948 if (k_cfg->layoutSpecificSize) {
949 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
950 }
951 RF_Free(k_cfg, sizeof(RF_Config_t));
952
953 return (retcode);
954
955 /* shutdown the system */
956 case RAIDFRAME_SHUTDOWN:
957
958 if ((error = raidlock(rs)) != 0)
959 return (error);
960
961 /*
962 * If somebody has a partition mounted, we shouldn't
963 * shutdown.
964 */
965
966 part = DISKPART(dev);
967 pmask = (1 << part);
968 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
969 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
970 (rs->sc_dkdev.dk_copenmask & pmask))) {
971 raidunlock(rs);
972 return (EBUSY);
973 }
974
975 retcode = rf_Shutdown(raidPtr);
976
977 /* It's no longer initialized... */
978 rs->sc_flags &= ~RAIDF_INITED;
979
980 /* Detach the disk. */
981 disk_detach(&rs->sc_dkdev);
982
983 raidunlock(rs);
984
985 return (retcode);
986 case RAIDFRAME_GET_COMPONENT_LABEL:
987 clabel_ptr = (RF_ComponentLabel_t **) data;
988 /* need to read the component label for the disk indicated
989 by row,column in clabel */
990
991 /* For practice, let's get it directly fromdisk, rather
992 than from the in-core copy */
993 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
994 (RF_ComponentLabel_t *));
995 if (clabel == NULL)
996 return (ENOMEM);
997
998 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
999
1000 retcode = copyin( *clabel_ptr, clabel,
1001 sizeof(RF_ComponentLabel_t));
1002
1003 if (retcode) {
1004 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1005 return(retcode);
1006 }
1007
1008 row = clabel->row;
1009 column = clabel->column;
1010
1011 if ((row < 0) || (row >= raidPtr->numRow) ||
1012 (column < 0) || (column >= raidPtr->numCol +
1013 raidPtr->numSpare)) {
1014 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1015 return(EINVAL);
1016 }
1017
1018 raidread_component_label(raidPtr->Disks[row][column].dev,
1019 raidPtr->raid_cinfo[row][column].ci_vp,
1020 clabel );
1021
1022 retcode = copyout(clabel, *clabel_ptr,
1023 sizeof(RF_ComponentLabel_t));
1024 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1025 return (retcode);
1026
1027 case RAIDFRAME_SET_COMPONENT_LABEL:
1028 clabel = (RF_ComponentLabel_t *) data;
1029
1030 /* XXX check the label for valid stuff... */
1031 /* Note that some things *should not* get modified --
1032 the user should be re-initing the labels instead of
1033 trying to patch things.
1034 */
1035
1036 raidid = raidPtr->raidid;
1037 printf("raid%d: Got component label:\n", raidid);
1038 printf("raid%d: Version: %d\n", raidid, clabel->version);
1039 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1040 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1041 printf("raid%d: Row: %d\n", raidid, clabel->row);
1042 printf("raid%d: Column: %d\n", raidid, clabel->column);
1043 printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
1044 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1045 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1046 printf("raid%d: Status: %d\n", raidid, clabel->status);
1047
1048 row = clabel->row;
1049 column = clabel->column;
1050
1051 if ((row < 0) || (row >= raidPtr->numRow) ||
1052 (column < 0) || (column >= raidPtr->numCol)) {
1053 return(EINVAL);
1054 }
1055
1056 /* XXX this isn't allowed to do anything for now :-) */
1057
1058 /* XXX and before it is, we need to fill in the rest
1059 of the fields!?!?!?! */
1060 #if 0
1061 raidwrite_component_label(
1062 raidPtr->Disks[row][column].dev,
1063 raidPtr->raid_cinfo[row][column].ci_vp,
1064 clabel );
1065 #endif
1066 return (0);
1067
1068 case RAIDFRAME_INIT_LABELS:
1069 clabel = (RF_ComponentLabel_t *) data;
1070 /*
1071 we only want the serial number from
1072 the above. We get all the rest of the information
1073 from the config that was used to create this RAID
1074 set.
1075 */
1076
1077 raidPtr->serial_number = clabel->serial_number;
1078
1079 raid_init_component_label(raidPtr, &ci_label);
1080 ci_label.serial_number = clabel->serial_number;
1081
1082 for(row=0;row<raidPtr->numRow;row++) {
1083 ci_label.row = row;
1084 for(column=0;column<raidPtr->numCol;column++) {
1085 diskPtr = &raidPtr->Disks[row][column];
1086 if (!RF_DEAD_DISK(diskPtr->status)) {
1087 ci_label.partitionSize = diskPtr->partitionSize;
1088 ci_label.column = column;
1089 raidwrite_component_label(
1090 raidPtr->Disks[row][column].dev,
1091 raidPtr->raid_cinfo[row][column].ci_vp,
1092 &ci_label );
1093 }
1094 }
1095 }
1096
1097 return (retcode);
1098 case RAIDFRAME_SET_AUTOCONFIG:
1099 d = rf_set_autoconfig(raidPtr, *(int *) data);
1100 printf("raid%d: New autoconfig value is: %d\n",
1101 raidPtr->raidid, d);
1102 *(int *) data = d;
1103 return (retcode);
1104
1105 case RAIDFRAME_SET_ROOT:
1106 d = rf_set_rootpartition(raidPtr, *(int *) data);
1107 printf("raid%d: New rootpartition value is: %d\n",
1108 raidPtr->raidid, d);
1109 *(int *) data = d;
1110 return (retcode);
1111
1112 /* initialize all parity */
1113 case RAIDFRAME_REWRITEPARITY:
1114
1115 if (raidPtr->Layout.map->faultsTolerated == 0) {
1116 /* Parity for RAID 0 is trivially correct */
1117 raidPtr->parity_good = RF_RAID_CLEAN;
1118 return(0);
1119 }
1120
1121 if (raidPtr->parity_rewrite_in_progress == 1) {
1122 /* Re-write is already in progress! */
1123 return(EINVAL);
1124 }
1125
1126 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1127 rf_RewriteParityThread,
1128 raidPtr,"raid_parity");
1129 return (retcode);
1130
1131
1132 case RAIDFRAME_ADD_HOT_SPARE:
1133 sparePtr = (RF_SingleComponent_t *) data;
1134 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1135 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1136 return(retcode);
1137
1138 case RAIDFRAME_REMOVE_HOT_SPARE:
1139 return(retcode);
1140
1141 case RAIDFRAME_DELETE_COMPONENT:
1142 componentPtr = (RF_SingleComponent_t *)data;
1143 memcpy( &component, componentPtr,
1144 sizeof(RF_SingleComponent_t));
1145 retcode = rf_delete_component(raidPtr, &component);
1146 return(retcode);
1147
1148 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1149 componentPtr = (RF_SingleComponent_t *)data;
1150 memcpy( &component, componentPtr,
1151 sizeof(RF_SingleComponent_t));
1152 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1153 return(retcode);
1154
1155 case RAIDFRAME_REBUILD_IN_PLACE:
1156
1157 if (raidPtr->Layout.map->faultsTolerated == 0) {
1158 /* Can't do this on a RAID 0!! */
1159 return(EINVAL);
1160 }
1161
1162 if (raidPtr->recon_in_progress == 1) {
1163 /* a reconstruct is already in progress! */
1164 return(EINVAL);
1165 }
1166
1167 componentPtr = (RF_SingleComponent_t *) data;
1168 memcpy( &component, componentPtr,
1169 sizeof(RF_SingleComponent_t));
1170 row = component.row;
1171 column = component.column;
1172
1173 if ((row < 0) || (row >= raidPtr->numRow) ||
1174 (column < 0) || (column >= raidPtr->numCol)) {
1175 return(EINVAL);
1176 }
1177
1178 RF_LOCK_MUTEX(raidPtr->mutex);
1179 if ((raidPtr->Disks[row][column].status == rf_ds_optimal) &&
1180 (raidPtr->numFailures > 0)) {
1181 /* XXX 0 above shouldn't be constant!!! */
1182 /* some component other than this has failed.
1183 Let's not make things worse than they already
1184 are... */
1185 printf("raid%d: Unable to reconstruct to disk at:\n",
1186 raidPtr->raidid);
1187 printf("raid%d: Row: %d Col: %d Too many failures.\n",
1188 raidPtr->raidid, row, column);
1189 RF_UNLOCK_MUTEX(raidPtr->mutex);
1190 return (EINVAL);
1191 }
1192 if (raidPtr->Disks[row][column].status ==
1193 rf_ds_reconstructing) {
1194 printf("raid%d: Unable to reconstruct to disk at:\n",
1195 raidPtr->raidid);
1196 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, column);
1197
1198 RF_UNLOCK_MUTEX(raidPtr->mutex);
1199 return (EINVAL);
1200 }
1201 if (raidPtr->Disks[row][column].status == rf_ds_spared) {
1202 RF_UNLOCK_MUTEX(raidPtr->mutex);
1203 return (EINVAL);
1204 }
1205 RF_UNLOCK_MUTEX(raidPtr->mutex);
1206
1207 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1208 if (rrcopy == NULL)
1209 return(ENOMEM);
1210
1211 rrcopy->raidPtr = (void *) raidPtr;
1212 rrcopy->row = row;
1213 rrcopy->col = column;
1214
1215 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1216 rf_ReconstructInPlaceThread,
1217 rrcopy,"raid_reconip");
1218 return(retcode);
1219
1220 case RAIDFRAME_GET_INFO:
1221 if (!raidPtr->valid)
1222 return (ENODEV);
1223 ucfgp = (RF_DeviceConfig_t **) data;
1224 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1225 (RF_DeviceConfig_t *));
1226 if (d_cfg == NULL)
1227 return (ENOMEM);
1228 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1229 d_cfg->rows = raidPtr->numRow;
1230 d_cfg->cols = raidPtr->numCol;
1231 d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1232 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1233 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1234 return (ENOMEM);
1235 }
1236 d_cfg->nspares = raidPtr->numSpare;
1237 if (d_cfg->nspares >= RF_MAX_DISKS) {
1238 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1239 return (ENOMEM);
1240 }
1241 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1242 d = 0;
1243 for (i = 0; i < d_cfg->rows; i++) {
1244 for (j = 0; j < d_cfg->cols; j++) {
1245 d_cfg->devs[d] = raidPtr->Disks[i][j];
1246 d++;
1247 }
1248 }
1249 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1250 d_cfg->spares[i] = raidPtr->Disks[0][j];
1251 }
1252 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1253 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1254
1255 return (retcode);
1256
1257 case RAIDFRAME_CHECK_PARITY:
1258 *(int *) data = raidPtr->parity_good;
1259 return (0);
1260
1261 case RAIDFRAME_RESET_ACCTOTALS:
1262 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1263 return (0);
1264
1265 case RAIDFRAME_GET_ACCTOTALS:
1266 totals = (RF_AccTotals_t *) data;
1267 *totals = raidPtr->acc_totals;
1268 return (0);
1269
1270 case RAIDFRAME_KEEP_ACCTOTALS:
1271 raidPtr->keep_acc_totals = *(int *)data;
1272 return (0);
1273
1274 case RAIDFRAME_GET_SIZE:
1275 *(int *) data = raidPtr->totalSectors;
1276 return (0);
1277
1278 /* fail a disk & optionally start reconstruction */
1279 case RAIDFRAME_FAIL_DISK:
1280
1281 if (raidPtr->Layout.map->faultsTolerated == 0) {
1282 /* Can't do this on a RAID 0!! */
1283 return(EINVAL);
1284 }
1285
1286 rr = (struct rf_recon_req *) data;
1287
1288 if (rr->row < 0 || rr->row >= raidPtr->numRow
1289 || rr->col < 0 || rr->col >= raidPtr->numCol)
1290 return (EINVAL);
1291
1292
1293 RF_LOCK_MUTEX(raidPtr->mutex);
1294 if ((raidPtr->Disks[rr->row][rr->col].status ==
1295 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1296 /* some other component has failed. Let's not make
1297 things worse. XXX wrong for RAID6 */
1298 RF_UNLOCK_MUTEX(raidPtr->mutex);
1299 return (EINVAL);
1300 }
1301 if (raidPtr->Disks[rr->row][rr->col].status == rf_ds_spared) {
1302 /* Can't fail a spared disk! */
1303 RF_UNLOCK_MUTEX(raidPtr->mutex);
1304 return (EINVAL);
1305 }
1306 RF_UNLOCK_MUTEX(raidPtr->mutex);
1307
1308 /* make a copy of the recon request so that we don't rely on
1309 * the user's buffer */
1310 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1311 if (rrcopy == NULL)
1312 return(ENOMEM);
1313 memcpy(rrcopy, rr, sizeof(*rr));
1314 rrcopy->raidPtr = (void *) raidPtr;
1315
1316 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1317 rf_ReconThread,
1318 rrcopy,"raid_recon");
1319 return (0);
1320
1321 /* invoke a copyback operation after recon on whatever disk
1322 * needs it, if any */
1323 case RAIDFRAME_COPYBACK:
1324
1325 if (raidPtr->Layout.map->faultsTolerated == 0) {
1326 /* This makes no sense on a RAID 0!! */
1327 return(EINVAL);
1328 }
1329
1330 if (raidPtr->copyback_in_progress == 1) {
1331 /* Copyback is already in progress! */
1332 return(EINVAL);
1333 }
1334
1335 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1336 rf_CopybackThread,
1337 raidPtr,"raid_copyback");
1338 return (retcode);
1339
1340 /* return the percentage completion of reconstruction */
1341 case RAIDFRAME_CHECK_RECON_STATUS:
1342 if (raidPtr->Layout.map->faultsTolerated == 0) {
1343 /* This makes no sense on a RAID 0, so tell the
1344 user it's done. */
1345 *(int *) data = 100;
1346 return(0);
1347 }
1348 row = 0; /* XXX we only consider a single row... */
1349 if (raidPtr->status[row] != rf_rs_reconstructing)
1350 *(int *) data = 100;
1351 else
1352 *(int *) data = raidPtr->reconControl[row]->percentComplete;
1353 return (0);
1354 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1355 progressInfoPtr = (RF_ProgressInfo_t **) data;
1356 row = 0; /* XXX we only consider a single row... */
1357 if (raidPtr->status[row] != rf_rs_reconstructing) {
1358 progressInfo.remaining = 0;
1359 progressInfo.completed = 100;
1360 progressInfo.total = 100;
1361 } else {
1362 progressInfo.total =
1363 raidPtr->reconControl[row]->numRUsTotal;
1364 progressInfo.completed =
1365 raidPtr->reconControl[row]->numRUsComplete;
1366 progressInfo.remaining = progressInfo.total -
1367 progressInfo.completed;
1368 }
1369 retcode = copyout(&progressInfo, *progressInfoPtr,
1370 sizeof(RF_ProgressInfo_t));
1371 return (retcode);
1372
1373 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1374 if (raidPtr->Layout.map->faultsTolerated == 0) {
1375 /* This makes no sense on a RAID 0, so tell the
1376 user it's done. */
1377 *(int *) data = 100;
1378 return(0);
1379 }
1380 if (raidPtr->parity_rewrite_in_progress == 1) {
1381 *(int *) data = 100 *
1382 raidPtr->parity_rewrite_stripes_done /
1383 raidPtr->Layout.numStripe;
1384 } else {
1385 *(int *) data = 100;
1386 }
1387 return (0);
1388
1389 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1390 progressInfoPtr = (RF_ProgressInfo_t **) data;
1391 if (raidPtr->parity_rewrite_in_progress == 1) {
1392 progressInfo.total = raidPtr->Layout.numStripe;
1393 progressInfo.completed =
1394 raidPtr->parity_rewrite_stripes_done;
1395 progressInfo.remaining = progressInfo.total -
1396 progressInfo.completed;
1397 } else {
1398 progressInfo.remaining = 0;
1399 progressInfo.completed = 100;
1400 progressInfo.total = 100;
1401 }
1402 retcode = copyout(&progressInfo, *progressInfoPtr,
1403 sizeof(RF_ProgressInfo_t));
1404 return (retcode);
1405
1406 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1407 if (raidPtr->Layout.map->faultsTolerated == 0) {
1408 /* This makes no sense on a RAID 0 */
1409 *(int *) data = 100;
1410 return(0);
1411 }
1412 if (raidPtr->copyback_in_progress == 1) {
1413 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1414 raidPtr->Layout.numStripe;
1415 } else {
1416 *(int *) data = 100;
1417 }
1418 return (0);
1419
1420 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1421 progressInfoPtr = (RF_ProgressInfo_t **) data;
1422 if (raidPtr->copyback_in_progress == 1) {
1423 progressInfo.total = raidPtr->Layout.numStripe;
1424 progressInfo.completed =
1425 raidPtr->copyback_stripes_done;
1426 progressInfo.remaining = progressInfo.total -
1427 progressInfo.completed;
1428 } else {
1429 progressInfo.remaining = 0;
1430 progressInfo.completed = 100;
1431 progressInfo.total = 100;
1432 }
1433 retcode = copyout(&progressInfo, *progressInfoPtr,
1434 sizeof(RF_ProgressInfo_t));
1435 return (retcode);
1436
1437 /* the sparetable daemon calls this to wait for the kernel to
1438 * need a spare table. this ioctl does not return until a
1439 * spare table is needed. XXX -- calling mpsleep here in the
1440 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1441 * -- I should either compute the spare table in the kernel,
1442 * or have a different -- XXX XXX -- interface (a different
1443 * character device) for delivering the table -- XXX */
1444 #if 0
1445 case RAIDFRAME_SPARET_WAIT:
1446 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1447 while (!rf_sparet_wait_queue)
1448 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1449 waitreq = rf_sparet_wait_queue;
1450 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1451 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1452
1453 /* structure assignment */
1454 *((RF_SparetWait_t *) data) = *waitreq;
1455
1456 RF_Free(waitreq, sizeof(*waitreq));
1457 return (0);
1458
1459 /* wakes up a process waiting on SPARET_WAIT and puts an error
1460 * code in it that will cause the dameon to exit */
1461 case RAIDFRAME_ABORT_SPARET_WAIT:
1462 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1463 waitreq->fcol = -1;
1464 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1465 waitreq->next = rf_sparet_wait_queue;
1466 rf_sparet_wait_queue = waitreq;
1467 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1468 wakeup(&rf_sparet_wait_queue);
1469 return (0);
1470
1471 /* used by the spare table daemon to deliver a spare table
1472 * into the kernel */
1473 case RAIDFRAME_SEND_SPARET:
1474
1475 /* install the spare table */
1476 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1477
1478 /* respond to the requestor. the return status of the spare
1479 * table installation is passed in the "fcol" field */
1480 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1481 waitreq->fcol = retcode;
1482 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1483 waitreq->next = rf_sparet_resp_queue;
1484 rf_sparet_resp_queue = waitreq;
1485 wakeup(&rf_sparet_resp_queue);
1486 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1487
1488 return (retcode);
1489 #endif
1490
1491 default:
1492 break; /* fall through to the os-specific code below */
1493
1494 }
1495
1496 if (!raidPtr->valid)
1497 return (EINVAL);
1498
1499 /*
1500 * Add support for "regular" device ioctls here.
1501 */
1502
1503 switch (cmd) {
1504 case DIOCGDINFO:
1505 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1506 break;
1507 #ifdef __HAVE_OLD_DISKLABEL
1508 case ODIOCGDINFO:
1509 newlabel = *(rs->sc_dkdev.dk_label);
1510 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1511 return ENOTTY;
1512 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1513 break;
1514 #endif
1515
1516 case DIOCGPART:
1517 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1518 ((struct partinfo *) data)->part =
1519 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1520 break;
1521
1522 case DIOCWDINFO:
1523 case DIOCSDINFO:
1524 #ifdef __HAVE_OLD_DISKLABEL
1525 case ODIOCWDINFO:
1526 case ODIOCSDINFO:
1527 #endif
1528 {
1529 struct disklabel *lp;
1530 #ifdef __HAVE_OLD_DISKLABEL
1531 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1532 memset(&newlabel, 0, sizeof newlabel);
1533 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1534 lp = &newlabel;
1535 } else
1536 #endif
1537 lp = (struct disklabel *)data;
1538
1539 if ((error = raidlock(rs)) != 0)
1540 return (error);
1541
1542 rs->sc_flags |= RAIDF_LABELLING;
1543
1544 error = setdisklabel(rs->sc_dkdev.dk_label,
1545 lp, 0, rs->sc_dkdev.dk_cpulabel);
1546 if (error == 0) {
1547 if (cmd == DIOCWDINFO
1548 #ifdef __HAVE_OLD_DISKLABEL
1549 || cmd == ODIOCWDINFO
1550 #endif
1551 )
1552 error = writedisklabel(RAIDLABELDEV(dev),
1553 raidstrategy, rs->sc_dkdev.dk_label,
1554 rs->sc_dkdev.dk_cpulabel);
1555 }
1556 rs->sc_flags &= ~RAIDF_LABELLING;
1557
1558 raidunlock(rs);
1559
1560 if (error)
1561 return (error);
1562 break;
1563 }
1564
1565 case DIOCWLABEL:
1566 if (*(int *) data != 0)
1567 rs->sc_flags |= RAIDF_WLABEL;
1568 else
1569 rs->sc_flags &= ~RAIDF_WLABEL;
1570 break;
1571
1572 case DIOCGDEFLABEL:
1573 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1574 break;
1575
1576 #ifdef __HAVE_OLD_DISKLABEL
1577 case ODIOCGDEFLABEL:
1578 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1579 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1580 return ENOTTY;
1581 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1582 break;
1583 #endif
1584
1585 default:
1586 retcode = ENOTTY;
1587 }
1588 return (retcode);
1589
1590 }
1591
1592
1593 /* raidinit -- complete the rest of the initialization for the
1594 RAIDframe device. */
1595
1596
1597 static void
1598 raidinit(raidPtr)
1599 RF_Raid_t *raidPtr;
1600 {
1601 struct raid_softc *rs;
1602 int unit;
1603
1604 unit = raidPtr->raidid;
1605
1606 rs = &raid_softc[unit];
1607
1608 /* XXX should check return code first... */
1609 rs->sc_flags |= RAIDF_INITED;
1610
1611 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1612
1613 rs->sc_dkdev.dk_name = rs->sc_xname;
1614
1615 /* disk_attach actually creates space for the CPU disklabel, among
1616 * other things, so it's critical to call this *BEFORE* we try putzing
1617 * with disklabels. */
1618
1619 disk_attach(&rs->sc_dkdev);
1620
1621 /* XXX There may be a weird interaction here between this, and
1622 * protectedSectors, as used in RAIDframe. */
1623
1624 rs->sc_size = raidPtr->totalSectors;
1625
1626 }
1627 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1628 /* wake up the daemon & tell it to get us a spare table
1629 * XXX
1630 * the entries in the queues should be tagged with the raidPtr
1631 * so that in the extremely rare case that two recons happen at once,
1632 * we know for which device were requesting a spare table
1633 * XXX
1634 *
1635 * XXX This code is not currently used. GO
1636 */
1637 int
1638 rf_GetSpareTableFromDaemon(req)
1639 RF_SparetWait_t *req;
1640 {
1641 int retcode;
1642
1643 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1644 req->next = rf_sparet_wait_queue;
1645 rf_sparet_wait_queue = req;
1646 wakeup(&rf_sparet_wait_queue);
1647
1648 /* mpsleep unlocks the mutex */
1649 while (!rf_sparet_resp_queue) {
1650 tsleep(&rf_sparet_resp_queue, PRIBIO,
1651 "raidframe getsparetable", 0);
1652 }
1653 req = rf_sparet_resp_queue;
1654 rf_sparet_resp_queue = req->next;
1655 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1656
1657 retcode = req->fcol;
1658 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1659 * alloc'd */
1660 return (retcode);
1661 }
1662 #endif
1663
1664 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1665 * bp & passes it down.
1666 * any calls originating in the kernel must use non-blocking I/O
1667 * do some extra sanity checking to return "appropriate" error values for
1668 * certain conditions (to make some standard utilities work)
1669 *
1670 * Formerly known as: rf_DoAccessKernel
1671 */
1672 void
1673 raidstart(raidPtr)
1674 RF_Raid_t *raidPtr;
1675 {
1676 RF_SectorCount_t num_blocks, pb, sum;
1677 RF_RaidAddr_t raid_addr;
1678 struct partition *pp;
1679 daddr_t blocknum;
1680 int unit;
1681 struct raid_softc *rs;
1682 int do_async;
1683 struct buf *bp;
1684
1685 unit = raidPtr->raidid;
1686 rs = &raid_softc[unit];
1687
1688 /* quick check to see if anything has died recently */
1689 RF_LOCK_MUTEX(raidPtr->mutex);
1690 if (raidPtr->numNewFailures > 0) {
1691 RF_UNLOCK_MUTEX(raidPtr->mutex);
1692 rf_update_component_labels(raidPtr,
1693 RF_NORMAL_COMPONENT_UPDATE);
1694 RF_LOCK_MUTEX(raidPtr->mutex);
1695 raidPtr->numNewFailures--;
1696 }
1697
1698 /* Check to see if we're at the limit... */
1699 while (raidPtr->openings > 0) {
1700 RF_UNLOCK_MUTEX(raidPtr->mutex);
1701
1702 /* get the next item, if any, from the queue */
1703 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1704 /* nothing more to do */
1705 return;
1706 }
1707
1708 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1709 * partition.. Need to make it absolute to the underlying
1710 * device.. */
1711
1712 blocknum = bp->b_blkno;
1713 if (DISKPART(bp->b_dev) != RAW_PART) {
1714 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1715 blocknum += pp->p_offset;
1716 }
1717
1718 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1719 (int) blocknum));
1720
1721 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1722 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1723
1724 /* *THIS* is where we adjust what block we're going to...
1725 * but DO NOT TOUCH bp->b_blkno!!! */
1726 raid_addr = blocknum;
1727
1728 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1729 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1730 sum = raid_addr + num_blocks + pb;
1731 if (1 || rf_debugKernelAccess) {
1732 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1733 (int) raid_addr, (int) sum, (int) num_blocks,
1734 (int) pb, (int) bp->b_resid));
1735 }
1736 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1737 || (sum < num_blocks) || (sum < pb)) {
1738 bp->b_error = ENOSPC;
1739 bp->b_flags |= B_ERROR;
1740 bp->b_resid = bp->b_bcount;
1741 biodone(bp);
1742 RF_LOCK_MUTEX(raidPtr->mutex);
1743 continue;
1744 }
1745 /*
1746 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1747 */
1748
1749 if (bp->b_bcount & raidPtr->sectorMask) {
1750 bp->b_error = EINVAL;
1751 bp->b_flags |= B_ERROR;
1752 bp->b_resid = bp->b_bcount;
1753 biodone(bp);
1754 RF_LOCK_MUTEX(raidPtr->mutex);
1755 continue;
1756
1757 }
1758 db1_printf(("Calling DoAccess..\n"));
1759
1760
1761 RF_LOCK_MUTEX(raidPtr->mutex);
1762 raidPtr->openings--;
1763 RF_UNLOCK_MUTEX(raidPtr->mutex);
1764
1765 /*
1766 * Everything is async.
1767 */
1768 do_async = 1;
1769
1770 disk_busy(&rs->sc_dkdev);
1771
1772 /* XXX we're still at splbio() here... do we *really*
1773 need to be? */
1774
1775 /* don't ever condition on bp->b_flags & B_WRITE.
1776 * always condition on B_READ instead */
1777
1778 bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1779 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1780 do_async, raid_addr, num_blocks,
1781 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1782
1783 if (bp->b_error) {
1784 bp->b_flags |= B_ERROR;
1785 }
1786
1787 RF_LOCK_MUTEX(raidPtr->mutex);
1788 }
1789 RF_UNLOCK_MUTEX(raidPtr->mutex);
1790 }
1791
1792
1793
1794
1795 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1796
1797 int
1798 rf_DispatchKernelIO(queue, req)
1799 RF_DiskQueue_t *queue;
1800 RF_DiskQueueData_t *req;
1801 {
1802 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1803 struct buf *bp;
1804 struct raidbuf *raidbp = NULL;
1805
1806 req->queue = queue;
1807
1808 #if DIAGNOSTIC
1809 if (queue->raidPtr->raidid >= numraid) {
1810 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1811 numraid);
1812 panic("Invalid Unit number in rf_DispatchKernelIO");
1813 }
1814 #endif
1815
1816 bp = req->bp;
1817 #if 1
1818 /* XXX when there is a physical disk failure, someone is passing us a
1819 * buffer that contains old stuff!! Attempt to deal with this problem
1820 * without taking a performance hit... (not sure where the real bug
1821 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1822
1823 if (bp->b_flags & B_ERROR) {
1824 bp->b_flags &= ~B_ERROR;
1825 }
1826 if (bp->b_error != 0) {
1827 bp->b_error = 0;
1828 }
1829 #endif
1830 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1831 if (raidbp == NULL) {
1832 bp->b_flags |= B_ERROR;
1833 bp->b_error = ENOMEM;
1834 return (ENOMEM);
1835 }
1836 BUF_INIT(&raidbp->rf_buf);
1837
1838 /*
1839 * context for raidiodone
1840 */
1841 raidbp->rf_obp = bp;
1842 raidbp->req = req;
1843
1844 switch (req->type) {
1845 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1846 /* XXX need to do something extra here.. */
1847 /* I'm leaving this in, as I've never actually seen it used,
1848 * and I'd like folks to report it... GO */
1849 printf(("WAKEUP CALLED\n"));
1850 queue->numOutstanding++;
1851
1852 /* XXX need to glue the original buffer into this?? */
1853
1854 KernelWakeupFunc(&raidbp->rf_buf);
1855 break;
1856
1857 case RF_IO_TYPE_READ:
1858 case RF_IO_TYPE_WRITE:
1859
1860 if (req->tracerec) {
1861 RF_ETIMER_START(req->tracerec->timer);
1862 }
1863 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1864 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1865 req->sectorOffset, req->numSector,
1866 req->buf, KernelWakeupFunc, (void *) req,
1867 queue->raidPtr->logBytesPerSector, req->b_proc);
1868
1869 if (rf_debugKernelAccess) {
1870 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1871 (long) bp->b_blkno));
1872 }
1873 queue->numOutstanding++;
1874 queue->last_deq_sector = req->sectorOffset;
1875 /* acc wouldn't have been let in if there were any pending
1876 * reqs at any other priority */
1877 queue->curPriority = req->priority;
1878
1879 db1_printf(("Going for %c to unit %d row %d col %d\n",
1880 req->type, queue->raidPtr->raidid,
1881 queue->row, queue->col));
1882 db1_printf(("sector %d count %d (%d bytes) %d\n",
1883 (int) req->sectorOffset, (int) req->numSector,
1884 (int) (req->numSector <<
1885 queue->raidPtr->logBytesPerSector),
1886 (int) queue->raidPtr->logBytesPerSector));
1887 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1888 raidbp->rf_buf.b_vp->v_numoutput++;
1889 }
1890 VOP_STRATEGY(&raidbp->rf_buf);
1891
1892 break;
1893
1894 default:
1895 panic("bad req->type in rf_DispatchKernelIO");
1896 }
1897 db1_printf(("Exiting from DispatchKernelIO\n"));
1898
1899 return (0);
1900 }
1901 /* this is the callback function associated with a I/O invoked from
1902 kernel code.
1903 */
1904 static void
1905 KernelWakeupFunc(vbp)
1906 struct buf *vbp;
1907 {
1908 RF_DiskQueueData_t *req = NULL;
1909 RF_DiskQueue_t *queue;
1910 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1911 struct buf *bp;
1912 int s;
1913
1914 s = splbio();
1915 db1_printf(("recovering the request queue:\n"));
1916 req = raidbp->req;
1917
1918 bp = raidbp->rf_obp;
1919
1920 queue = (RF_DiskQueue_t *) req->queue;
1921
1922 if (raidbp->rf_buf.b_flags & B_ERROR) {
1923 bp->b_flags |= B_ERROR;
1924 bp->b_error = raidbp->rf_buf.b_error ?
1925 raidbp->rf_buf.b_error : EIO;
1926 }
1927
1928 /* XXX methinks this could be wrong... */
1929 #if 1
1930 bp->b_resid = raidbp->rf_buf.b_resid;
1931 #endif
1932
1933 if (req->tracerec) {
1934 RF_ETIMER_STOP(req->tracerec->timer);
1935 RF_ETIMER_EVAL(req->tracerec->timer);
1936 RF_LOCK_MUTEX(rf_tracing_mutex);
1937 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1938 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1939 req->tracerec->num_phys_ios++;
1940 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1941 }
1942 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1943
1944 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1945 * ballistic, and mark the component as hosed... */
1946
1947 if (bp->b_flags & B_ERROR) {
1948 /* Mark the disk as dead */
1949 /* but only mark it once... */
1950 if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1951 rf_ds_optimal) {
1952 printf("raid%d: IO Error. Marking %s as failed.\n",
1953 queue->raidPtr->raidid,
1954 queue->raidPtr->Disks[queue->row][queue->col].devname);
1955 queue->raidPtr->Disks[queue->row][queue->col].status =
1956 rf_ds_failed;
1957 queue->raidPtr->status[queue->row] = rf_rs_degraded;
1958 queue->raidPtr->numFailures++;
1959 queue->raidPtr->numNewFailures++;
1960 } else { /* Disk is already dead... */
1961 /* printf("Disk already marked as dead!\n"); */
1962 }
1963
1964 }
1965
1966 pool_put(&raidframe_cbufpool, raidbp);
1967
1968 /* Fill in the error value */
1969
1970 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1971
1972 simple_lock(&queue->raidPtr->iodone_lock);
1973
1974 /* Drop this one on the "finished" queue... */
1975 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1976
1977 /* Let the raidio thread know there is work to be done. */
1978 wakeup(&(queue->raidPtr->iodone));
1979
1980 simple_unlock(&queue->raidPtr->iodone_lock);
1981
1982 splx(s);
1983 }
1984
1985
1986
1987 /*
1988 * initialize a buf structure for doing an I/O in the kernel.
1989 */
1990 static void
1991 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1992 logBytesPerSector, b_proc)
1993 struct buf *bp;
1994 struct vnode *b_vp;
1995 unsigned rw_flag;
1996 dev_t dev;
1997 RF_SectorNum_t startSect;
1998 RF_SectorCount_t numSect;
1999 caddr_t buf;
2000 void (*cbFunc) (struct buf *);
2001 void *cbArg;
2002 int logBytesPerSector;
2003 struct proc *b_proc;
2004 {
2005 /* bp->b_flags = B_PHYS | rw_flag; */
2006 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2007 bp->b_bcount = numSect << logBytesPerSector;
2008 bp->b_bufsize = bp->b_bcount;
2009 bp->b_error = 0;
2010 bp->b_dev = dev;
2011 bp->b_data = buf;
2012 bp->b_blkno = startSect;
2013 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2014 if (bp->b_bcount == 0) {
2015 panic("bp->b_bcount is zero in InitBP!!");
2016 }
2017 bp->b_proc = b_proc;
2018 bp->b_iodone = cbFunc;
2019 bp->b_vp = b_vp;
2020
2021 }
2022
2023 static void
2024 raidgetdefaultlabel(raidPtr, rs, lp)
2025 RF_Raid_t *raidPtr;
2026 struct raid_softc *rs;
2027 struct disklabel *lp;
2028 {
2029 memset(lp, 0, sizeof(*lp));
2030
2031 /* fabricate a label... */
2032 lp->d_secperunit = raidPtr->totalSectors;
2033 lp->d_secsize = raidPtr->bytesPerSector;
2034 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2035 lp->d_ntracks = 4 * raidPtr->numCol;
2036 lp->d_ncylinders = raidPtr->totalSectors /
2037 (lp->d_nsectors * lp->d_ntracks);
2038 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2039
2040 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2041 lp->d_type = DTYPE_RAID;
2042 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2043 lp->d_rpm = 3600;
2044 lp->d_interleave = 1;
2045 lp->d_flags = 0;
2046
2047 lp->d_partitions[RAW_PART].p_offset = 0;
2048 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2049 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2050 lp->d_npartitions = RAW_PART + 1;
2051
2052 lp->d_magic = DISKMAGIC;
2053 lp->d_magic2 = DISKMAGIC;
2054 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2055
2056 }
2057 /*
2058 * Read the disklabel from the raid device. If one is not present, fake one
2059 * up.
2060 */
2061 static void
2062 raidgetdisklabel(dev)
2063 dev_t dev;
2064 {
2065 int unit = raidunit(dev);
2066 struct raid_softc *rs = &raid_softc[unit];
2067 const char *errstring;
2068 struct disklabel *lp = rs->sc_dkdev.dk_label;
2069 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2070 RF_Raid_t *raidPtr;
2071
2072 db1_printf(("Getting the disklabel...\n"));
2073
2074 memset(clp, 0, sizeof(*clp));
2075
2076 raidPtr = raidPtrs[unit];
2077
2078 raidgetdefaultlabel(raidPtr, rs, lp);
2079
2080 /*
2081 * Call the generic disklabel extraction routine.
2082 */
2083 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2084 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2085 if (errstring)
2086 raidmakedisklabel(rs);
2087 else {
2088 int i;
2089 struct partition *pp;
2090
2091 /*
2092 * Sanity check whether the found disklabel is valid.
2093 *
2094 * This is necessary since total size of the raid device
2095 * may vary when an interleave is changed even though exactly
2096 * same componets are used, and old disklabel may used
2097 * if that is found.
2098 */
2099 if (lp->d_secperunit != rs->sc_size)
2100 printf("raid%d: WARNING: %s: "
2101 "total sector size in disklabel (%d) != "
2102 "the size of raid (%ld)\n", unit, rs->sc_xname,
2103 lp->d_secperunit, (long) rs->sc_size);
2104 for (i = 0; i < lp->d_npartitions; i++) {
2105 pp = &lp->d_partitions[i];
2106 if (pp->p_offset + pp->p_size > rs->sc_size)
2107 printf("raid%d: WARNING: %s: end of partition `%c' "
2108 "exceeds the size of raid (%ld)\n",
2109 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2110 }
2111 }
2112
2113 }
2114 /*
2115 * Take care of things one might want to take care of in the event
2116 * that a disklabel isn't present.
2117 */
2118 static void
2119 raidmakedisklabel(rs)
2120 struct raid_softc *rs;
2121 {
2122 struct disklabel *lp = rs->sc_dkdev.dk_label;
2123 db1_printf(("Making a label..\n"));
2124
2125 /*
2126 * For historical reasons, if there's no disklabel present
2127 * the raw partition must be marked FS_BSDFFS.
2128 */
2129
2130 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2131
2132 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2133
2134 lp->d_checksum = dkcksum(lp);
2135 }
2136 /*
2137 * Lookup the provided name in the filesystem. If the file exists,
2138 * is a valid block device, and isn't being used by anyone else,
2139 * set *vpp to the file's vnode.
2140 * You'll find the original of this in ccd.c
2141 */
2142 int
2143 raidlookup(path, p, vpp)
2144 char *path;
2145 struct proc *p;
2146 struct vnode **vpp; /* result */
2147 {
2148 struct nameidata nd;
2149 struct vnode *vp;
2150 struct vattr va;
2151 int error;
2152
2153 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2154 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2155 return (error);
2156 }
2157 vp = nd.ni_vp;
2158 if (vp->v_usecount > 1) {
2159 VOP_UNLOCK(vp, 0);
2160 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2161 return (EBUSY);
2162 }
2163 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2164 VOP_UNLOCK(vp, 0);
2165 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2166 return (error);
2167 }
2168 /* XXX: eventually we should handle VREG, too. */
2169 if (va.va_type != VBLK) {
2170 VOP_UNLOCK(vp, 0);
2171 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2172 return (ENOTBLK);
2173 }
2174 VOP_UNLOCK(vp, 0);
2175 *vpp = vp;
2176 return (0);
2177 }
2178 /*
2179 * Wait interruptibly for an exclusive lock.
2180 *
2181 * XXX
2182 * Several drivers do this; it should be abstracted and made MP-safe.
2183 * (Hmm... where have we seen this warning before :-> GO )
2184 */
2185 static int
2186 raidlock(rs)
2187 struct raid_softc *rs;
2188 {
2189 int error;
2190
2191 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2192 rs->sc_flags |= RAIDF_WANTED;
2193 if ((error =
2194 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2195 return (error);
2196 }
2197 rs->sc_flags |= RAIDF_LOCKED;
2198 return (0);
2199 }
2200 /*
2201 * Unlock and wake up any waiters.
2202 */
2203 static void
2204 raidunlock(rs)
2205 struct raid_softc *rs;
2206 {
2207
2208 rs->sc_flags &= ~RAIDF_LOCKED;
2209 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2210 rs->sc_flags &= ~RAIDF_WANTED;
2211 wakeup(rs);
2212 }
2213 }
2214
2215
2216 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2217 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2218
2219 int
2220 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2221 {
2222 RF_ComponentLabel_t clabel;
2223 raidread_component_label(dev, b_vp, &clabel);
2224 clabel.mod_counter = mod_counter;
2225 clabel.clean = RF_RAID_CLEAN;
2226 raidwrite_component_label(dev, b_vp, &clabel);
2227 return(0);
2228 }
2229
2230
2231 int
2232 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2233 {
2234 RF_ComponentLabel_t clabel;
2235 raidread_component_label(dev, b_vp, &clabel);
2236 clabel.mod_counter = mod_counter;
2237 clabel.clean = RF_RAID_DIRTY;
2238 raidwrite_component_label(dev, b_vp, &clabel);
2239 return(0);
2240 }
2241
2242 /* ARGSUSED */
2243 int
2244 raidread_component_label(dev, b_vp, clabel)
2245 dev_t dev;
2246 struct vnode *b_vp;
2247 RF_ComponentLabel_t *clabel;
2248 {
2249 struct buf *bp;
2250 const struct bdevsw *bdev;
2251 int error;
2252
2253 /* XXX should probably ensure that we don't try to do this if
2254 someone has changed rf_protected_sectors. */
2255
2256 if (b_vp == NULL) {
2257 /* For whatever reason, this component is not valid.
2258 Don't try to read a component label from it. */
2259 return(EINVAL);
2260 }
2261
2262 /* get a block of the appropriate size... */
2263 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2264 bp->b_dev = dev;
2265
2266 /* get our ducks in a row for the read */
2267 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2268 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2269 bp->b_flags |= B_READ;
2270 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2271
2272 bdev = bdevsw_lookup(bp->b_dev);
2273 if (bdev == NULL)
2274 return (ENXIO);
2275 (*bdev->d_strategy)(bp);
2276
2277 error = biowait(bp);
2278
2279 if (!error) {
2280 memcpy(clabel, bp->b_data,
2281 sizeof(RF_ComponentLabel_t));
2282 }
2283
2284 brelse(bp);
2285 return(error);
2286 }
2287 /* ARGSUSED */
2288 int
2289 raidwrite_component_label(dev, b_vp, clabel)
2290 dev_t dev;
2291 struct vnode *b_vp;
2292 RF_ComponentLabel_t *clabel;
2293 {
2294 struct buf *bp;
2295 const struct bdevsw *bdev;
2296 int error;
2297
2298 /* get a block of the appropriate size... */
2299 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2300 bp->b_dev = dev;
2301
2302 /* get our ducks in a row for the write */
2303 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2304 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2305 bp->b_flags |= B_WRITE;
2306 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2307
2308 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2309
2310 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2311
2312 bdev = bdevsw_lookup(bp->b_dev);
2313 if (bdev == NULL)
2314 return (ENXIO);
2315 (*bdev->d_strategy)(bp);
2316 error = biowait(bp);
2317 brelse(bp);
2318 if (error) {
2319 #if 1
2320 printf("Failed to write RAID component info!\n");
2321 #endif
2322 }
2323
2324 return(error);
2325 }
2326
2327 void
2328 rf_markalldirty(raidPtr)
2329 RF_Raid_t *raidPtr;
2330 {
2331 RF_ComponentLabel_t clabel;
2332 int sparecol;
2333 int r,c;
2334 int i,j;
2335 int srow, scol;
2336
2337 raidPtr->mod_counter++;
2338 for (r = 0; r < raidPtr->numRow; r++) {
2339 for (c = 0; c < raidPtr->numCol; c++) {
2340 /* we don't want to touch (at all) a disk that has
2341 failed */
2342 if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2343 raidread_component_label(
2344 raidPtr->Disks[r][c].dev,
2345 raidPtr->raid_cinfo[r][c].ci_vp,
2346 &clabel);
2347 if (clabel.status == rf_ds_spared) {
2348 /* XXX do something special...
2349 but whatever you do, don't
2350 try to access it!! */
2351 } else {
2352 raidmarkdirty(
2353 raidPtr->Disks[r][c].dev,
2354 raidPtr->raid_cinfo[r][c].ci_vp,
2355 raidPtr->mod_counter);
2356 }
2357 }
2358 }
2359 }
2360
2361 for( c = 0; c < raidPtr->numSpare ; c++) {
2362 sparecol = raidPtr->numCol + c;
2363 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2364 /*
2365
2366 we claim this disk is "optimal" if it's
2367 rf_ds_used_spare, as that means it should be
2368 directly substitutable for the disk it replaced.
2369 We note that too...
2370
2371 */
2372
2373 for(i=0;i<raidPtr->numRow;i++) {
2374 for(j=0;j<raidPtr->numCol;j++) {
2375 if ((raidPtr->Disks[i][j].spareRow ==
2376 0) &&
2377 (raidPtr->Disks[i][j].spareCol ==
2378 sparecol)) {
2379 srow = i;
2380 scol = j;
2381 break;
2382 }
2383 }
2384 }
2385
2386 raidread_component_label(
2387 raidPtr->Disks[0][sparecol].dev,
2388 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2389 &clabel);
2390 /* make sure status is noted */
2391
2392 raid_init_component_label(raidPtr, &clabel);
2393
2394 clabel.row = srow;
2395 clabel.column = scol;
2396 /* Note: we *don't* change status from rf_ds_used_spare
2397 to rf_ds_optimal */
2398 /* clabel.status = rf_ds_optimal; */
2399
2400 raidmarkdirty(raidPtr->Disks[0][sparecol].dev,
2401 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2402 raidPtr->mod_counter);
2403 }
2404 }
2405 }
2406
2407
2408 void
2409 rf_update_component_labels(raidPtr, final)
2410 RF_Raid_t *raidPtr;
2411 int final;
2412 {
2413 RF_ComponentLabel_t clabel;
2414 int sparecol;
2415 int r,c;
2416 int i,j;
2417 int srow, scol;
2418
2419 srow = -1;
2420 scol = -1;
2421
2422 /* XXX should do extra checks to make sure things really are clean,
2423 rather than blindly setting the clean bit... */
2424
2425 raidPtr->mod_counter++;
2426
2427 for (r = 0; r < raidPtr->numRow; r++) {
2428 for (c = 0; c < raidPtr->numCol; c++) {
2429 if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2430 raidread_component_label(
2431 raidPtr->Disks[r][c].dev,
2432 raidPtr->raid_cinfo[r][c].ci_vp,
2433 &clabel);
2434 /* make sure status is noted */
2435 clabel.status = rf_ds_optimal;
2436 /* bump the counter */
2437 clabel.mod_counter = raidPtr->mod_counter;
2438
2439 raidwrite_component_label(
2440 raidPtr->Disks[r][c].dev,
2441 raidPtr->raid_cinfo[r][c].ci_vp,
2442 &clabel);
2443 if (final == RF_FINAL_COMPONENT_UPDATE) {
2444 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2445 raidmarkclean(
2446 raidPtr->Disks[r][c].dev,
2447 raidPtr->raid_cinfo[r][c].ci_vp,
2448 raidPtr->mod_counter);
2449 }
2450 }
2451 }
2452 /* else we don't touch it.. */
2453 }
2454 }
2455
2456 for( c = 0; c < raidPtr->numSpare ; c++) {
2457 sparecol = raidPtr->numCol + c;
2458 /* Need to ensure that the reconstruct actually completed! */
2459 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2460 /*
2461
2462 we claim this disk is "optimal" if it's
2463 rf_ds_used_spare, as that means it should be
2464 directly substitutable for the disk it replaced.
2465 We note that too...
2466
2467 */
2468
2469 for(i=0;i<raidPtr->numRow;i++) {
2470 for(j=0;j<raidPtr->numCol;j++) {
2471 if ((raidPtr->Disks[i][j].spareRow ==
2472 0) &&
2473 (raidPtr->Disks[i][j].spareCol ==
2474 sparecol)) {
2475 srow = i;
2476 scol = j;
2477 break;
2478 }
2479 }
2480 }
2481
2482 /* XXX shouldn't *really* need this... */
2483 raidread_component_label(
2484 raidPtr->Disks[0][sparecol].dev,
2485 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2486 &clabel);
2487 /* make sure status is noted */
2488
2489 raid_init_component_label(raidPtr, &clabel);
2490
2491 clabel.mod_counter = raidPtr->mod_counter;
2492 clabel.row = srow;
2493 clabel.column = scol;
2494 clabel.status = rf_ds_optimal;
2495
2496 raidwrite_component_label(
2497 raidPtr->Disks[0][sparecol].dev,
2498 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2499 &clabel);
2500 if (final == RF_FINAL_COMPONENT_UPDATE) {
2501 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2502 raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2503 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2504 raidPtr->mod_counter);
2505 }
2506 }
2507 }
2508 }
2509 }
2510
2511 void
2512 rf_close_component(raidPtr, vp, auto_configured)
2513 RF_Raid_t *raidPtr;
2514 struct vnode *vp;
2515 int auto_configured;
2516 {
2517 struct proc *p;
2518
2519 p = raidPtr->engine_thread;
2520
2521 if (vp != NULL) {
2522 if (auto_configured == 1) {
2523 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2524 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2525 vput(vp);
2526
2527 } else {
2528 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2529 }
2530 }
2531 }
2532
2533
2534 void
2535 rf_UnconfigureVnodes(raidPtr)
2536 RF_Raid_t *raidPtr;
2537 {
2538 int r,c;
2539 struct vnode *vp;
2540 int acd;
2541
2542
2543 /* We take this opportunity to close the vnodes like we should.. */
2544
2545 for (r = 0; r < raidPtr->numRow; r++) {
2546 for (c = 0; c < raidPtr->numCol; c++) {
2547 vp = raidPtr->raid_cinfo[r][c].ci_vp;
2548 acd = raidPtr->Disks[r][c].auto_configured;
2549 rf_close_component(raidPtr, vp, acd);
2550 raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2551 raidPtr->Disks[r][c].auto_configured = 0;
2552 }
2553 }
2554 for (r = 0; r < raidPtr->numSpare; r++) {
2555 vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2556 acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2557 rf_close_component(raidPtr, vp, acd);
2558 raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2559 raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2560 }
2561 }
2562
2563
2564 void
2565 rf_ReconThread(req)
2566 struct rf_recon_req *req;
2567 {
2568 int s;
2569 RF_Raid_t *raidPtr;
2570
2571 s = splbio();
2572 raidPtr = (RF_Raid_t *) req->raidPtr;
2573 raidPtr->recon_in_progress = 1;
2574
2575 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2576 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2577
2578 /* XXX get rid of this! we don't need it at all.. */
2579 RF_Free(req, sizeof(*req));
2580
2581 raidPtr->recon_in_progress = 0;
2582 splx(s);
2583
2584 /* That's all... */
2585 kthread_exit(0); /* does not return */
2586 }
2587
2588 void
2589 rf_RewriteParityThread(raidPtr)
2590 RF_Raid_t *raidPtr;
2591 {
2592 int retcode;
2593 int s;
2594
2595 raidPtr->parity_rewrite_in_progress = 1;
2596 s = splbio();
2597 retcode = rf_RewriteParity(raidPtr);
2598 splx(s);
2599 if (retcode) {
2600 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2601 } else {
2602 /* set the clean bit! If we shutdown correctly,
2603 the clean bit on each component label will get
2604 set */
2605 raidPtr->parity_good = RF_RAID_CLEAN;
2606 }
2607 raidPtr->parity_rewrite_in_progress = 0;
2608
2609 /* Anyone waiting for us to stop? If so, inform them... */
2610 if (raidPtr->waitShutdown) {
2611 wakeup(&raidPtr->parity_rewrite_in_progress);
2612 }
2613
2614 /* That's all... */
2615 kthread_exit(0); /* does not return */
2616 }
2617
2618
2619 void
2620 rf_CopybackThread(raidPtr)
2621 RF_Raid_t *raidPtr;
2622 {
2623 int s;
2624
2625 raidPtr->copyback_in_progress = 1;
2626 s = splbio();
2627 rf_CopybackReconstructedData(raidPtr);
2628 splx(s);
2629 raidPtr->copyback_in_progress = 0;
2630
2631 /* That's all... */
2632 kthread_exit(0); /* does not return */
2633 }
2634
2635
2636 void
2637 rf_ReconstructInPlaceThread(req)
2638 struct rf_recon_req *req;
2639 {
2640 int s;
2641 RF_Raid_t *raidPtr;
2642
2643 s = splbio();
2644 raidPtr = req->raidPtr;
2645 raidPtr->recon_in_progress = 1;
2646 rf_ReconstructInPlace(raidPtr, req->row, req->col);
2647 RF_Free(req, sizeof(*req));
2648 raidPtr->recon_in_progress = 0;
2649 splx(s);
2650
2651 /* That's all... */
2652 kthread_exit(0); /* does not return */
2653 }
2654
2655 RF_AutoConfig_t *
2656 rf_find_raid_components()
2657 {
2658 struct vnode *vp;
2659 struct disklabel label;
2660 struct device *dv;
2661 dev_t dev;
2662 int bmajor;
2663 int error;
2664 int i;
2665 int good_one;
2666 RF_ComponentLabel_t *clabel;
2667 RF_AutoConfig_t *ac_list;
2668 RF_AutoConfig_t *ac;
2669
2670
2671 /* initialize the AutoConfig list */
2672 ac_list = NULL;
2673
2674 /* we begin by trolling through *all* the devices on the system */
2675
2676 for (dv = alldevs.tqh_first; dv != NULL;
2677 dv = dv->dv_list.tqe_next) {
2678
2679 /* we are only interested in disks... */
2680 if (dv->dv_class != DV_DISK)
2681 continue;
2682
2683 /* we don't care about floppies... */
2684 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2685 continue;
2686 }
2687
2688 /* we don't care about CD's... */
2689 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2690 continue;
2691 }
2692
2693 /* hdfd is the Atari/Hades floppy driver */
2694 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2695 continue;
2696 }
2697 /* fdisa is the Atari/Milan floppy driver */
2698 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2699 continue;
2700 }
2701
2702 /* need to find the device_name_to_block_device_major stuff */
2703 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2704
2705 /* get a vnode for the raw partition of this disk */
2706
2707 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2708 if (bdevvp(dev, &vp))
2709 panic("RAID can't alloc vnode");
2710
2711 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2712
2713 if (error) {
2714 /* "Who cares." Continue looking
2715 for something that exists*/
2716 vput(vp);
2717 continue;
2718 }
2719
2720 /* Ok, the disk exists. Go get the disklabel. */
2721 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2722 if (error) {
2723 /*
2724 * XXX can't happen - open() would
2725 * have errored out (or faked up one)
2726 */
2727 printf("can't get label for dev %s%c (%d)!?!?\n",
2728 dv->dv_xname, 'a' + RAW_PART, error);
2729 }
2730
2731 /* don't need this any more. We'll allocate it again
2732 a little later if we really do... */
2733 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2734 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2735 vput(vp);
2736
2737 for (i=0; i < label.d_npartitions; i++) {
2738 /* We only support partitions marked as RAID */
2739 if (label.d_partitions[i].p_fstype != FS_RAID)
2740 continue;
2741
2742 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2743 if (bdevvp(dev, &vp))
2744 panic("RAID can't alloc vnode");
2745
2746 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2747 if (error) {
2748 /* Whatever... */
2749 vput(vp);
2750 continue;
2751 }
2752
2753 good_one = 0;
2754
2755 clabel = (RF_ComponentLabel_t *)
2756 malloc(sizeof(RF_ComponentLabel_t),
2757 M_RAIDFRAME, M_NOWAIT);
2758 if (clabel == NULL) {
2759 /* XXX CLEANUP HERE */
2760 printf("RAID auto config: out of memory!\n");
2761 return(NULL); /* XXX probably should panic? */
2762 }
2763
2764 if (!raidread_component_label(dev, vp, clabel)) {
2765 /* Got the label. Does it look reasonable? */
2766 if (rf_reasonable_label(clabel) &&
2767 (clabel->partitionSize <=
2768 label.d_partitions[i].p_size)) {
2769 #if DEBUG
2770 printf("Component on: %s%c: %d\n",
2771 dv->dv_xname, 'a'+i,
2772 label.d_partitions[i].p_size);
2773 rf_print_component_label(clabel);
2774 #endif
2775 /* if it's reasonable, add it,
2776 else ignore it. */
2777 ac = (RF_AutoConfig_t *)
2778 malloc(sizeof(RF_AutoConfig_t),
2779 M_RAIDFRAME,
2780 M_NOWAIT);
2781 if (ac == NULL) {
2782 /* XXX should panic?? */
2783 return(NULL);
2784 }
2785
2786 sprintf(ac->devname, "%s%c",
2787 dv->dv_xname, 'a'+i);
2788 ac->dev = dev;
2789 ac->vp = vp;
2790 ac->clabel = clabel;
2791 ac->next = ac_list;
2792 ac_list = ac;
2793 good_one = 1;
2794 }
2795 }
2796 if (!good_one) {
2797 /* cleanup */
2798 free(clabel, M_RAIDFRAME);
2799 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2800 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2801 vput(vp);
2802 }
2803 }
2804 }
2805 return(ac_list);
2806 }
2807
2808 static int
2809 rf_reasonable_label(clabel)
2810 RF_ComponentLabel_t *clabel;
2811 {
2812
2813 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2814 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2815 ((clabel->clean == RF_RAID_CLEAN) ||
2816 (clabel->clean == RF_RAID_DIRTY)) &&
2817 clabel->row >=0 &&
2818 clabel->column >= 0 &&
2819 clabel->num_rows > 0 &&
2820 clabel->num_columns > 0 &&
2821 clabel->row < clabel->num_rows &&
2822 clabel->column < clabel->num_columns &&
2823 clabel->blockSize > 0 &&
2824 clabel->numBlocks > 0) {
2825 /* label looks reasonable enough... */
2826 return(1);
2827 }
2828 return(0);
2829 }
2830
2831
2832 #if DEBUG
2833 void
2834 rf_print_component_label(clabel)
2835 RF_ComponentLabel_t *clabel;
2836 {
2837 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2838 clabel->row, clabel->column,
2839 clabel->num_rows, clabel->num_columns);
2840 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2841 clabel->version, clabel->serial_number,
2842 clabel->mod_counter);
2843 printf(" Clean: %s Status: %d\n",
2844 clabel->clean ? "Yes" : "No", clabel->status );
2845 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2846 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2847 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2848 (char) clabel->parityConfig, clabel->blockSize,
2849 clabel->numBlocks);
2850 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2851 printf(" Contains root partition: %s\n",
2852 clabel->root_partition ? "Yes" : "No" );
2853 printf(" Last configured as: raid%d\n", clabel->last_unit );
2854 #if 0
2855 printf(" Config order: %d\n", clabel->config_order);
2856 #endif
2857
2858 }
2859 #endif
2860
2861 RF_ConfigSet_t *
2862 rf_create_auto_sets(ac_list)
2863 RF_AutoConfig_t *ac_list;
2864 {
2865 RF_AutoConfig_t *ac;
2866 RF_ConfigSet_t *config_sets;
2867 RF_ConfigSet_t *cset;
2868 RF_AutoConfig_t *ac_next;
2869
2870
2871 config_sets = NULL;
2872
2873 /* Go through the AutoConfig list, and figure out which components
2874 belong to what sets. */
2875 ac = ac_list;
2876 while(ac!=NULL) {
2877 /* we're going to putz with ac->next, so save it here
2878 for use at the end of the loop */
2879 ac_next = ac->next;
2880
2881 if (config_sets == NULL) {
2882 /* will need at least this one... */
2883 config_sets = (RF_ConfigSet_t *)
2884 malloc(sizeof(RF_ConfigSet_t),
2885 M_RAIDFRAME, M_NOWAIT);
2886 if (config_sets == NULL) {
2887 panic("rf_create_auto_sets: No memory!");
2888 }
2889 /* this one is easy :) */
2890 config_sets->ac = ac;
2891 config_sets->next = NULL;
2892 config_sets->rootable = 0;
2893 ac->next = NULL;
2894 } else {
2895 /* which set does this component fit into? */
2896 cset = config_sets;
2897 while(cset!=NULL) {
2898 if (rf_does_it_fit(cset, ac)) {
2899 /* looks like it matches... */
2900 ac->next = cset->ac;
2901 cset->ac = ac;
2902 break;
2903 }
2904 cset = cset->next;
2905 }
2906 if (cset==NULL) {
2907 /* didn't find a match above... new set..*/
2908 cset = (RF_ConfigSet_t *)
2909 malloc(sizeof(RF_ConfigSet_t),
2910 M_RAIDFRAME, M_NOWAIT);
2911 if (cset == NULL) {
2912 panic("rf_create_auto_sets: No memory!");
2913 }
2914 cset->ac = ac;
2915 ac->next = NULL;
2916 cset->next = config_sets;
2917 cset->rootable = 0;
2918 config_sets = cset;
2919 }
2920 }
2921 ac = ac_next;
2922 }
2923
2924
2925 return(config_sets);
2926 }
2927
2928 static int
2929 rf_does_it_fit(cset, ac)
2930 RF_ConfigSet_t *cset;
2931 RF_AutoConfig_t *ac;
2932 {
2933 RF_ComponentLabel_t *clabel1, *clabel2;
2934
2935 /* If this one matches the *first* one in the set, that's good
2936 enough, since the other members of the set would have been
2937 through here too... */
2938 /* note that we are not checking partitionSize here..
2939
2940 Note that we are also not checking the mod_counters here.
2941 If everything else matches execpt the mod_counter, that's
2942 good enough for this test. We will deal with the mod_counters
2943 a little later in the autoconfiguration process.
2944
2945 (clabel1->mod_counter == clabel2->mod_counter) &&
2946
2947 The reason we don't check for this is that failed disks
2948 will have lower modification counts. If those disks are
2949 not added to the set they used to belong to, then they will
2950 form their own set, which may result in 2 different sets,
2951 for example, competing to be configured at raid0, and
2952 perhaps competing to be the root filesystem set. If the
2953 wrong ones get configured, or both attempt to become /,
2954 weird behaviour and or serious lossage will occur. Thus we
2955 need to bring them into the fold here, and kick them out at
2956 a later point.
2957
2958 */
2959
2960 clabel1 = cset->ac->clabel;
2961 clabel2 = ac->clabel;
2962 if ((clabel1->version == clabel2->version) &&
2963 (clabel1->serial_number == clabel2->serial_number) &&
2964 (clabel1->num_rows == clabel2->num_rows) &&
2965 (clabel1->num_columns == clabel2->num_columns) &&
2966 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2967 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2968 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2969 (clabel1->parityConfig == clabel2->parityConfig) &&
2970 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2971 (clabel1->blockSize == clabel2->blockSize) &&
2972 (clabel1->numBlocks == clabel2->numBlocks) &&
2973 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2974 (clabel1->root_partition == clabel2->root_partition) &&
2975 (clabel1->last_unit == clabel2->last_unit) &&
2976 (clabel1->config_order == clabel2->config_order)) {
2977 /* if it get's here, it almost *has* to be a match */
2978 } else {
2979 /* it's not consistent with somebody in the set..
2980 punt */
2981 return(0);
2982 }
2983 /* all was fine.. it must fit... */
2984 return(1);
2985 }
2986
2987 int
2988 rf_have_enough_components(cset)
2989 RF_ConfigSet_t *cset;
2990 {
2991 RF_AutoConfig_t *ac;
2992 RF_AutoConfig_t *auto_config;
2993 RF_ComponentLabel_t *clabel;
2994 int r,c;
2995 int num_rows;
2996 int num_cols;
2997 int num_missing;
2998 int mod_counter;
2999 int mod_counter_found;
3000 int even_pair_failed;
3001 char parity_type;
3002
3003
3004 /* check to see that we have enough 'live' components
3005 of this set. If so, we can configure it if necessary */
3006
3007 num_rows = cset->ac->clabel->num_rows;
3008 num_cols = cset->ac->clabel->num_columns;
3009 parity_type = cset->ac->clabel->parityConfig;
3010
3011 /* XXX Check for duplicate components!?!?!? */
3012
3013 /* Determine what the mod_counter is supposed to be for this set. */
3014
3015 mod_counter_found = 0;
3016 mod_counter = 0;
3017 ac = cset->ac;
3018 while(ac!=NULL) {
3019 if (mod_counter_found==0) {
3020 mod_counter = ac->clabel->mod_counter;
3021 mod_counter_found = 1;
3022 } else {
3023 if (ac->clabel->mod_counter > mod_counter) {
3024 mod_counter = ac->clabel->mod_counter;
3025 }
3026 }
3027 ac = ac->next;
3028 }
3029
3030 num_missing = 0;
3031 auto_config = cset->ac;
3032
3033 for(r=0; r<num_rows; r++) {
3034 even_pair_failed = 0;
3035 for(c=0; c<num_cols; c++) {
3036 ac = auto_config;
3037 while(ac!=NULL) {
3038 if ((ac->clabel->row == r) &&
3039 (ac->clabel->column == c) &&
3040 (ac->clabel->mod_counter == mod_counter)) {
3041 /* it's this one... */
3042 #if DEBUG
3043 printf("Found: %s at %d,%d\n",
3044 ac->devname,r,c);
3045 #endif
3046 break;
3047 }
3048 ac=ac->next;
3049 }
3050 if (ac==NULL) {
3051 /* Didn't find one here! */
3052 /* special case for RAID 1, especially
3053 where there are more than 2
3054 components (where RAIDframe treats
3055 things a little differently :( ) */
3056 if (parity_type == '1') {
3057 if (c%2 == 0) { /* even component */
3058 even_pair_failed = 1;
3059 } else { /* odd component. If
3060 we're failed, and
3061 so is the even
3062 component, it's
3063 "Good Night, Charlie" */
3064 if (even_pair_failed == 1) {
3065 return(0);
3066 }
3067 }
3068 } else {
3069 /* normal accounting */
3070 num_missing++;
3071 }
3072 }
3073 if ((parity_type == '1') && (c%2 == 1)) {
3074 /* Just did an even component, and we didn't
3075 bail.. reset the even_pair_failed flag,
3076 and go on to the next component.... */
3077 even_pair_failed = 0;
3078 }
3079 }
3080 }
3081
3082 clabel = cset->ac->clabel;
3083
3084 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3085 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3086 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3087 /* XXX this needs to be made *much* more general */
3088 /* Too many failures */
3089 return(0);
3090 }
3091 /* otherwise, all is well, and we've got enough to take a kick
3092 at autoconfiguring this set */
3093 return(1);
3094 }
3095
3096 void
3097 rf_create_configuration(ac,config,raidPtr)
3098 RF_AutoConfig_t *ac;
3099 RF_Config_t *config;
3100 RF_Raid_t *raidPtr;
3101 {
3102 RF_ComponentLabel_t *clabel;
3103 int i;
3104
3105 clabel = ac->clabel;
3106
3107 /* 1. Fill in the common stuff */
3108 config->numRow = clabel->num_rows;
3109 config->numCol = clabel->num_columns;
3110 config->numSpare = 0; /* XXX should this be set here? */
3111 config->sectPerSU = clabel->sectPerSU;
3112 config->SUsPerPU = clabel->SUsPerPU;
3113 config->SUsPerRU = clabel->SUsPerRU;
3114 config->parityConfig = clabel->parityConfig;
3115 /* XXX... */
3116 strcpy(config->diskQueueType,"fifo");
3117 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3118 config->layoutSpecificSize = 0; /* XXX ?? */
3119
3120 while(ac!=NULL) {
3121 /* row/col values will be in range due to the checks
3122 in reasonable_label() */
3123 strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3124 ac->devname);
3125 ac = ac->next;
3126 }
3127
3128 for(i=0;i<RF_MAXDBGV;i++) {
3129 config->debugVars[i][0] = NULL;
3130 }
3131 }
3132
3133 int
3134 rf_set_autoconfig(raidPtr, new_value)
3135 RF_Raid_t *raidPtr;
3136 int new_value;
3137 {
3138 RF_ComponentLabel_t clabel;
3139 struct vnode *vp;
3140 dev_t dev;
3141 int row, column;
3142 int sparecol;
3143
3144 raidPtr->autoconfigure = new_value;
3145 for(row=0; row<raidPtr->numRow; row++) {
3146 for(column=0; column<raidPtr->numCol; column++) {
3147 if (raidPtr->Disks[row][column].status ==
3148 rf_ds_optimal) {
3149 dev = raidPtr->Disks[row][column].dev;
3150 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3151 raidread_component_label(dev, vp, &clabel);
3152 clabel.autoconfigure = new_value;
3153 raidwrite_component_label(dev, vp, &clabel);
3154 }
3155 }
3156 }
3157 for(column = 0; column < raidPtr->numSpare ; column++) {
3158 sparecol = raidPtr->numCol + column;
3159 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3160 dev = raidPtr->Disks[0][sparecol].dev;
3161 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3162 raidread_component_label(dev, vp, &clabel);
3163 clabel.autoconfigure = new_value;
3164 raidwrite_component_label(dev, vp, &clabel);
3165 }
3166 }
3167 return(new_value);
3168 }
3169
3170 int
3171 rf_set_rootpartition(raidPtr, new_value)
3172 RF_Raid_t *raidPtr;
3173 int new_value;
3174 {
3175 RF_ComponentLabel_t clabel;
3176 struct vnode *vp;
3177 dev_t dev;
3178 int row, column;
3179 int sparecol;
3180
3181 raidPtr->root_partition = new_value;
3182 for(row=0; row<raidPtr->numRow; row++) {
3183 for(column=0; column<raidPtr->numCol; column++) {
3184 if (raidPtr->Disks[row][column].status ==
3185 rf_ds_optimal) {
3186 dev = raidPtr->Disks[row][column].dev;
3187 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3188 raidread_component_label(dev, vp, &clabel);
3189 clabel.root_partition = new_value;
3190 raidwrite_component_label(dev, vp, &clabel);
3191 }
3192 }
3193 }
3194 for(column = 0; column < raidPtr->numSpare ; column++) {
3195 sparecol = raidPtr->numCol + column;
3196 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3197 dev = raidPtr->Disks[0][sparecol].dev;
3198 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3199 raidread_component_label(dev, vp, &clabel);
3200 clabel.root_partition = new_value;
3201 raidwrite_component_label(dev, vp, &clabel);
3202 }
3203 }
3204 return(new_value);
3205 }
3206
3207 void
3208 rf_release_all_vps(cset)
3209 RF_ConfigSet_t *cset;
3210 {
3211 RF_AutoConfig_t *ac;
3212
3213 ac = cset->ac;
3214 while(ac!=NULL) {
3215 /* Close the vp, and give it back */
3216 if (ac->vp) {
3217 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3218 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3219 vput(ac->vp);
3220 ac->vp = NULL;
3221 }
3222 ac = ac->next;
3223 }
3224 }
3225
3226
3227 void
3228 rf_cleanup_config_set(cset)
3229 RF_ConfigSet_t *cset;
3230 {
3231 RF_AutoConfig_t *ac;
3232 RF_AutoConfig_t *next_ac;
3233
3234 ac = cset->ac;
3235 while(ac!=NULL) {
3236 next_ac = ac->next;
3237 /* nuke the label */
3238 free(ac->clabel, M_RAIDFRAME);
3239 /* cleanup the config structure */
3240 free(ac, M_RAIDFRAME);
3241 /* "next.." */
3242 ac = next_ac;
3243 }
3244 /* and, finally, nuke the config set */
3245 free(cset, M_RAIDFRAME);
3246 }
3247
3248
3249 void
3250 raid_init_component_label(raidPtr, clabel)
3251 RF_Raid_t *raidPtr;
3252 RF_ComponentLabel_t *clabel;
3253 {
3254 /* current version number */
3255 clabel->version = RF_COMPONENT_LABEL_VERSION;
3256 clabel->serial_number = raidPtr->serial_number;
3257 clabel->mod_counter = raidPtr->mod_counter;
3258 clabel->num_rows = raidPtr->numRow;
3259 clabel->num_columns = raidPtr->numCol;
3260 clabel->clean = RF_RAID_DIRTY; /* not clean */
3261 clabel->status = rf_ds_optimal; /* "It's good!" */
3262
3263 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3264 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3265 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3266
3267 clabel->blockSize = raidPtr->bytesPerSector;
3268 clabel->numBlocks = raidPtr->sectorsPerDisk;
3269
3270 /* XXX not portable */
3271 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3272 clabel->maxOutstanding = raidPtr->maxOutstanding;
3273 clabel->autoconfigure = raidPtr->autoconfigure;
3274 clabel->root_partition = raidPtr->root_partition;
3275 clabel->last_unit = raidPtr->raidid;
3276 clabel->config_order = raidPtr->config_order;
3277 }
3278
3279 int
3280 rf_auto_config_set(cset,unit)
3281 RF_ConfigSet_t *cset;
3282 int *unit;
3283 {
3284 RF_Raid_t *raidPtr;
3285 RF_Config_t *config;
3286 int raidID;
3287 int retcode;
3288
3289 #if DEBUG
3290 printf("RAID autoconfigure\n");
3291 #endif
3292
3293 retcode = 0;
3294 *unit = -1;
3295
3296 /* 1. Create a config structure */
3297
3298 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3299 M_RAIDFRAME,
3300 M_NOWAIT);
3301 if (config==NULL) {
3302 printf("Out of mem!?!?\n");
3303 /* XXX do something more intelligent here. */
3304 return(1);
3305 }
3306
3307 memset(config, 0, sizeof(RF_Config_t));
3308
3309 /*
3310 2. Figure out what RAID ID this one is supposed to live at
3311 See if we can get the same RAID dev that it was configured
3312 on last time..
3313 */
3314
3315 raidID = cset->ac->clabel->last_unit;
3316 if ((raidID < 0) || (raidID >= numraid)) {
3317 /* let's not wander off into lala land. */
3318 raidID = numraid - 1;
3319 }
3320 if (raidPtrs[raidID]->valid != 0) {
3321
3322 /*
3323 Nope... Go looking for an alternative...
3324 Start high so we don't immediately use raid0 if that's
3325 not taken.
3326 */
3327
3328 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3329 if (raidPtrs[raidID]->valid == 0) {
3330 /* can use this one! */
3331 break;
3332 }
3333 }
3334 }
3335
3336 if (raidID < 0) {
3337 /* punt... */
3338 printf("Unable to auto configure this set!\n");
3339 printf("(Out of RAID devs!)\n");
3340 return(1);
3341 }
3342
3343 #if DEBUG
3344 printf("Configuring raid%d:\n",raidID);
3345 #endif
3346
3347 raidPtr = raidPtrs[raidID];
3348
3349 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3350 raidPtr->raidid = raidID;
3351 raidPtr->openings = RAIDOUTSTANDING;
3352
3353 /* 3. Build the configuration structure */
3354 rf_create_configuration(cset->ac, config, raidPtr);
3355
3356 /* 4. Do the configuration */
3357 retcode = rf_Configure(raidPtr, config, cset->ac);
3358
3359 if (retcode == 0) {
3360
3361 raidinit(raidPtrs[raidID]);
3362
3363 rf_markalldirty(raidPtrs[raidID]);
3364 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3365 if (cset->ac->clabel->root_partition==1) {
3366 /* everything configured just fine. Make a note
3367 that this set is eligible to be root. */
3368 cset->rootable = 1;
3369 /* XXX do this here? */
3370 raidPtrs[raidID]->root_partition = 1;
3371 }
3372 }
3373
3374 /* 5. Cleanup */
3375 free(config, M_RAIDFRAME);
3376
3377 *unit = raidID;
3378 return(retcode);
3379 }
3380
3381 void
3382 rf_disk_unbusy(desc)
3383 RF_RaidAccessDesc_t *desc;
3384 {
3385 struct buf *bp;
3386
3387 bp = (struct buf *)desc->bp;
3388 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3389 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3390 }
3391