rf_netbsdkintf.c revision 1.160 1 /* $NetBSD: rf_netbsdkintf.c,v 1.160 2003/06/28 14:21:42 darrenr Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1988 University of Utah.
40 * Copyright (c) 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * This code is derived from software contributed to Berkeley by
44 * the Systems Programming Group of the University of Utah Computer
45 * Science Department.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed by the University of
58 * California, Berkeley and its contributors.
59 * 4. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * from: Utah $Hdr: cd.c 1.6 90/11/28$
76 *
77 * @(#)cd.c 8.2 (Berkeley) 11/16/93
78 */
79
80 /*
81 * Copyright (c) 1995 Carnegie-Mellon University.
82 * All rights reserved.
83 *
84 * Authors: Mark Holland, Jim Zelenka
85 *
86 * Permission to use, copy, modify and distribute this software and
87 * its documentation is hereby granted, provided that both the copyright
88 * notice and this permission notice appear in all copies of the
89 * software, derivative works or modified versions, and any portions
90 * thereof, and that both notices appear in supporting documentation.
91 *
92 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
93 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
94 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
95 *
96 * Carnegie Mellon requests users of this software to return to
97 *
98 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
99 * School of Computer Science
100 * Carnegie Mellon University
101 * Pittsburgh PA 15213-3890
102 *
103 * any improvements or extensions that they make and grant Carnegie the
104 * rights to redistribute these changes.
105 */
106
107 /***********************************************************
108 *
109 * rf_kintf.c -- the kernel interface routines for RAIDframe
110 *
111 ***********************************************************/
112
113 #include <sys/cdefs.h>
114 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.160 2003/06/28 14:21:42 darrenr Exp $");
115
116 #include <sys/param.h>
117 #include <sys/errno.h>
118 #include <sys/pool.h>
119 #include <sys/proc.h>
120 #include <sys/queue.h>
121 #include <sys/disk.h>
122 #include <sys/device.h>
123 #include <sys/stat.h>
124 #include <sys/ioctl.h>
125 #include <sys/fcntl.h>
126 #include <sys/systm.h>
127 #include <sys/namei.h>
128 #include <sys/vnode.h>
129 #include <sys/disklabel.h>
130 #include <sys/conf.h>
131 #include <sys/lock.h>
132 #include <sys/buf.h>
133 #include <sys/user.h>
134 #include <sys/reboot.h>
135
136 #include <dev/raidframe/raidframevar.h>
137 #include <dev/raidframe/raidframeio.h>
138 #include "raid.h"
139 #include "opt_raid_autoconfig.h"
140 #include "rf_raid.h"
141 #include "rf_copyback.h"
142 #include "rf_dag.h"
143 #include "rf_dagflags.h"
144 #include "rf_desc.h"
145 #include "rf_diskqueue.h"
146 #include "rf_etimer.h"
147 #include "rf_general.h"
148 #include "rf_kintf.h"
149 #include "rf_options.h"
150 #include "rf_driver.h"
151 #include "rf_parityscan.h"
152 #include "rf_threadstuff.h"
153
154 #ifdef DEBUG
155 int rf_kdebug_level = 0;
156 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
157 #else /* DEBUG */
158 #define db1_printf(a) { }
159 #endif /* DEBUG */
160
161 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
162
163 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
164
165 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
166 * spare table */
167 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
168 * installation process */
169
170 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
171
172 /* prototypes */
173 static void KernelWakeupFunc(struct buf * bp);
174 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
175 dev_t dev, RF_SectorNum_t startSect,
176 RF_SectorCount_t numSect, caddr_t buf,
177 void (*cbFunc) (struct buf *), void *cbArg,
178 int logBytesPerSector, struct proc * proc);
179 static void raidinit(RF_Raid_t *);
180
181 void raidattach(int);
182
183 dev_type_open(raidopen);
184 dev_type_close(raidclose);
185 dev_type_read(raidread);
186 dev_type_write(raidwrite);
187 dev_type_ioctl(raidioctl);
188 dev_type_strategy(raidstrategy);
189 dev_type_dump(raiddump);
190 dev_type_size(raidsize);
191
192 const struct bdevsw raid_bdevsw = {
193 raidopen, raidclose, raidstrategy, raidioctl,
194 raiddump, raidsize, D_DISK
195 };
196
197 const struct cdevsw raid_cdevsw = {
198 raidopen, raidclose, raidread, raidwrite, raidioctl,
199 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
200 };
201
202 /*
203 * Pilfered from ccd.c
204 */
205
206 struct raidbuf {
207 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
208 struct buf *rf_obp; /* ptr. to original I/O buf */
209 RF_DiskQueueData_t *req;/* the request that this was part of.. */
210 };
211
212 /* component buffer pool */
213 struct pool raidframe_cbufpool;
214
215 /* XXX Not sure if the following should be replacing the raidPtrs above,
216 or if it should be used in conjunction with that...
217 */
218
219 struct raid_softc {
220 int sc_flags; /* flags */
221 int sc_cflags; /* configuration flags */
222 size_t sc_size; /* size of the raid device */
223 char sc_xname[20]; /* XXX external name */
224 struct disk sc_dkdev; /* generic disk device info */
225 struct bufq_state buf_queue; /* used for the device queue */
226 };
227 /* sc_flags */
228 #define RAIDF_INITED 0x01 /* unit has been initialized */
229 #define RAIDF_WLABEL 0x02 /* label area is writable */
230 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
231 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
232 #define RAIDF_LOCKED 0x80 /* unit is locked */
233
234 #define raidunit(x) DISKUNIT(x)
235 int numraid = 0;
236
237 /*
238 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
239 * Be aware that large numbers can allow the driver to consume a lot of
240 * kernel memory, especially on writes, and in degraded mode reads.
241 *
242 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
243 * a single 64K write will typically require 64K for the old data,
244 * 64K for the old parity, and 64K for the new parity, for a total
245 * of 192K (if the parity buffer is not re-used immediately).
246 * Even it if is used immediately, that's still 128K, which when multiplied
247 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
248 *
249 * Now in degraded mode, for example, a 64K read on the above setup may
250 * require data reconstruction, which will require *all* of the 4 remaining
251 * disks to participate -- 4 * 32K/disk == 128K again.
252 */
253
254 #ifndef RAIDOUTSTANDING
255 #define RAIDOUTSTANDING 6
256 #endif
257
258 #define RAIDLABELDEV(dev) \
259 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
260
261 /* declared here, and made public, for the benefit of KVM stuff.. */
262 struct raid_softc *raid_softc;
263
264 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
265 struct disklabel *);
266 static void raidgetdisklabel(dev_t);
267 static void raidmakedisklabel(struct raid_softc *);
268
269 static int raidlock(struct raid_softc *);
270 static void raidunlock(struct raid_softc *);
271
272 static void rf_markalldirty(RF_Raid_t *);
273
274 struct device *raidrootdev;
275
276 void rf_ReconThread(struct rf_recon_req *);
277 /* XXX what I want is: */
278 /*void rf_ReconThread(RF_Raid_t *raidPtr); */
279 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
280 void rf_CopybackThread(RF_Raid_t *raidPtr);
281 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
282 int rf_autoconfig(struct device *self);
283 void rf_buildroothack(RF_ConfigSet_t *);
284
285 RF_AutoConfig_t *rf_find_raid_components(void);
286 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
287 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
288 static int rf_reasonable_label(RF_ComponentLabel_t *);
289 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
290 int rf_set_autoconfig(RF_Raid_t *, int);
291 int rf_set_rootpartition(RF_Raid_t *, int);
292 void rf_release_all_vps(RF_ConfigSet_t *);
293 void rf_cleanup_config_set(RF_ConfigSet_t *);
294 int rf_have_enough_components(RF_ConfigSet_t *);
295 int rf_auto_config_set(RF_ConfigSet_t *, int *);
296
297 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
298 allow autoconfig to take place.
299 Note that this is overridden by having
300 RAID_AUTOCONFIG as an option in the
301 kernel config file. */
302
303 void
304 raidattach(num)
305 int num;
306 {
307 int raidID;
308 int i, rc;
309
310 #ifdef DEBUG
311 printf("raidattach: Asked for %d units\n", num);
312 #endif
313
314 if (num <= 0) {
315 #ifdef DIAGNOSTIC
316 panic("raidattach: count <= 0");
317 #endif
318 return;
319 }
320 /* This is where all the initialization stuff gets done. */
321
322 numraid = num;
323
324 /* Make some space for requested number of units... */
325
326 RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
327 if (raidPtrs == NULL) {
328 panic("raidPtrs is NULL!!");
329 }
330
331 /* Initialize the component buffer pool. */
332 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
333 0, 0, "raidpl", NULL);
334
335 rc = rf_mutex_init(&rf_sparet_wait_mutex);
336 if (rc) {
337 RF_PANIC();
338 }
339
340 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
341
342 for (i = 0; i < num; i++)
343 raidPtrs[i] = NULL;
344 rc = rf_BootRaidframe();
345 if (rc == 0)
346 printf("Kernelized RAIDframe activated\n");
347 else
348 panic("Serious error booting RAID!!");
349
350 /* put together some datastructures like the CCD device does.. This
351 * lets us lock the device and what-not when it gets opened. */
352
353 raid_softc = (struct raid_softc *)
354 malloc(num * sizeof(struct raid_softc),
355 M_RAIDFRAME, M_NOWAIT);
356 if (raid_softc == NULL) {
357 printf("WARNING: no memory for RAIDframe driver\n");
358 return;
359 }
360
361 memset(raid_softc, 0, num * sizeof(struct raid_softc));
362
363 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
364 M_RAIDFRAME, M_NOWAIT);
365 if (raidrootdev == NULL) {
366 panic("No memory for RAIDframe driver!!?!?!");
367 }
368
369 for (raidID = 0; raidID < num; raidID++) {
370 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
371
372 raidrootdev[raidID].dv_class = DV_DISK;
373 raidrootdev[raidID].dv_cfdata = NULL;
374 raidrootdev[raidID].dv_unit = raidID;
375 raidrootdev[raidID].dv_parent = NULL;
376 raidrootdev[raidID].dv_flags = 0;
377 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
378
379 RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
380 (RF_Raid_t *));
381 if (raidPtrs[raidID] == NULL) {
382 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
383 numraid = raidID;
384 return;
385 }
386 }
387
388 #ifdef RAID_AUTOCONFIG
389 raidautoconfig = 1;
390 #endif
391
392 /*
393 * Register a finalizer which will be used to auto-config RAID
394 * sets once all real hardware devices have been found.
395 */
396 if (config_finalize_register(NULL, rf_autoconfig) != 0)
397 printf("WARNING: unable to register RAIDframe finalizer\n");
398 }
399
400 int
401 rf_autoconfig(struct device *self)
402 {
403 RF_AutoConfig_t *ac_list;
404 RF_ConfigSet_t *config_sets;
405
406 if (raidautoconfig == 0)
407 return (0);
408
409 /* XXX This code can only be run once. */
410 raidautoconfig = 0;
411
412 /* 1. locate all RAID components on the system */
413 #ifdef DEBUG
414 printf("Searching for RAID components...\n");
415 #endif
416 ac_list = rf_find_raid_components();
417
418 /* 2. Sort them into their respective sets. */
419 config_sets = rf_create_auto_sets(ac_list);
420
421 /*
422 * 3. Evaluate each set andconfigure the valid ones.
423 * This gets done in rf_buildroothack().
424 */
425 rf_buildroothack(config_sets);
426
427 return (1);
428 }
429
430 void
431 rf_buildroothack(RF_ConfigSet_t *config_sets)
432 {
433 RF_ConfigSet_t *cset;
434 RF_ConfigSet_t *next_cset;
435 int retcode;
436 int raidID;
437 int rootID;
438 int num_root;
439
440 rootID = 0;
441 num_root = 0;
442 cset = config_sets;
443 while(cset != NULL ) {
444 next_cset = cset->next;
445 if (rf_have_enough_components(cset) &&
446 cset->ac->clabel->autoconfigure==1) {
447 retcode = rf_auto_config_set(cset,&raidID);
448 if (!retcode) {
449 if (cset->rootable) {
450 rootID = raidID;
451 num_root++;
452 }
453 } else {
454 /* The autoconfig didn't work :( */
455 #if DEBUG
456 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
457 #endif
458 rf_release_all_vps(cset);
459 }
460 } else {
461 /* we're not autoconfiguring this set...
462 release the associated resources */
463 rf_release_all_vps(cset);
464 }
465 /* cleanup */
466 rf_cleanup_config_set(cset);
467 cset = next_cset;
468 }
469
470 /* we found something bootable... */
471
472 if (num_root == 1) {
473 booted_device = &raidrootdev[rootID];
474 } else if (num_root > 1) {
475 /* we can't guess.. require the user to answer... */
476 boothowto |= RB_ASKNAME;
477 }
478 }
479
480
481 int
482 raidsize(dev)
483 dev_t dev;
484 {
485 struct raid_softc *rs;
486 struct disklabel *lp;
487 int part, unit, omask, size;
488
489 unit = raidunit(dev);
490 if (unit >= numraid)
491 return (-1);
492 rs = &raid_softc[unit];
493
494 if ((rs->sc_flags & RAIDF_INITED) == 0)
495 return (-1);
496
497 part = DISKPART(dev);
498 omask = rs->sc_dkdev.dk_openmask & (1 << part);
499 lp = rs->sc_dkdev.dk_label;
500
501 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
502 return (-1);
503
504 if (lp->d_partitions[part].p_fstype != FS_SWAP)
505 size = -1;
506 else
507 size = lp->d_partitions[part].p_size *
508 (lp->d_secsize / DEV_BSIZE);
509
510 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
511 return (-1);
512
513 return (size);
514
515 }
516
517 int
518 raiddump(dev, blkno, va, size)
519 dev_t dev;
520 daddr_t blkno;
521 caddr_t va;
522 size_t size;
523 {
524 /* Not implemented. */
525 return ENXIO;
526 }
527 /* ARGSUSED */
528 int
529 raidopen(dev, flags, fmt, l)
530 dev_t dev;
531 int flags, fmt;
532 struct lwp *l;
533 {
534 int unit = raidunit(dev);
535 struct raid_softc *rs;
536 struct disklabel *lp;
537 int part, pmask;
538 int error = 0;
539
540 if (unit >= numraid)
541 return (ENXIO);
542 rs = &raid_softc[unit];
543
544 if ((error = raidlock(rs)) != 0)
545 return (error);
546 lp = rs->sc_dkdev.dk_label;
547
548 part = DISKPART(dev);
549 pmask = (1 << part);
550
551 if ((rs->sc_flags & RAIDF_INITED) &&
552 (rs->sc_dkdev.dk_openmask == 0))
553 raidgetdisklabel(dev);
554
555 /* make sure that this partition exists */
556
557 if (part != RAW_PART) {
558 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
559 ((part >= lp->d_npartitions) ||
560 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
561 error = ENXIO;
562 raidunlock(rs);
563 return (error);
564 }
565 }
566 /* Prevent this unit from being unconfigured while open. */
567 switch (fmt) {
568 case S_IFCHR:
569 rs->sc_dkdev.dk_copenmask |= pmask;
570 break;
571
572 case S_IFBLK:
573 rs->sc_dkdev.dk_bopenmask |= pmask;
574 break;
575 }
576
577 if ((rs->sc_dkdev.dk_openmask == 0) &&
578 ((rs->sc_flags & RAIDF_INITED) != 0)) {
579 /* First one... mark things as dirty... Note that we *MUST*
580 have done a configure before this. I DO NOT WANT TO BE
581 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
582 THAT THEY BELONG TOGETHER!!!!! */
583 /* XXX should check to see if we're only open for reading
584 here... If so, we needn't do this, but then need some
585 other way of keeping track of what's happened.. */
586
587 rf_markalldirty( raidPtrs[unit] );
588 }
589
590
591 rs->sc_dkdev.dk_openmask =
592 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
593
594 raidunlock(rs);
595
596 return (error);
597
598
599 }
600 /* ARGSUSED */
601 int
602 raidclose(dev, flags, fmt, l)
603 dev_t dev;
604 int flags, fmt;
605 struct lwp *l;
606 {
607 int unit = raidunit(dev);
608 struct raid_softc *rs;
609 int error = 0;
610 int part;
611
612 if (unit >= numraid)
613 return (ENXIO);
614 rs = &raid_softc[unit];
615
616 if ((error = raidlock(rs)) != 0)
617 return (error);
618
619 part = DISKPART(dev);
620
621 /* ...that much closer to allowing unconfiguration... */
622 switch (fmt) {
623 case S_IFCHR:
624 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
625 break;
626
627 case S_IFBLK:
628 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
629 break;
630 }
631 rs->sc_dkdev.dk_openmask =
632 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
633
634 if ((rs->sc_dkdev.dk_openmask == 0) &&
635 ((rs->sc_flags & RAIDF_INITED) != 0)) {
636 /* Last one... device is not unconfigured yet.
637 Device shutdown has taken care of setting the
638 clean bits if RAIDF_INITED is not set
639 mark things as clean... */
640
641 rf_update_component_labels(raidPtrs[unit],
642 RF_FINAL_COMPONENT_UPDATE);
643 if (doing_shutdown) {
644 /* last one, and we're going down, so
645 lights out for this RAID set too. */
646 error = rf_Shutdown(raidPtrs[unit]);
647
648 /* It's no longer initialized... */
649 rs->sc_flags &= ~RAIDF_INITED;
650
651 /* Detach the disk. */
652 disk_detach(&rs->sc_dkdev);
653 }
654 }
655
656 raidunlock(rs);
657 return (0);
658
659 }
660
661 void
662 raidstrategy(bp)
663 struct buf *bp;
664 {
665 int s;
666
667 unsigned int raidID = raidunit(bp->b_dev);
668 RF_Raid_t *raidPtr;
669 struct raid_softc *rs = &raid_softc[raidID];
670 struct disklabel *lp;
671 int wlabel;
672
673 if ((rs->sc_flags & RAIDF_INITED) ==0) {
674 bp->b_error = ENXIO;
675 bp->b_flags |= B_ERROR;
676 bp->b_resid = bp->b_bcount;
677 biodone(bp);
678 return;
679 }
680 if (raidID >= numraid || !raidPtrs[raidID]) {
681 bp->b_error = ENODEV;
682 bp->b_flags |= B_ERROR;
683 bp->b_resid = bp->b_bcount;
684 biodone(bp);
685 return;
686 }
687 raidPtr = raidPtrs[raidID];
688 if (!raidPtr->valid) {
689 bp->b_error = ENODEV;
690 bp->b_flags |= B_ERROR;
691 bp->b_resid = bp->b_bcount;
692 biodone(bp);
693 return;
694 }
695 if (bp->b_bcount == 0) {
696 db1_printf(("b_bcount is zero..\n"));
697 biodone(bp);
698 return;
699 }
700 lp = rs->sc_dkdev.dk_label;
701
702 /*
703 * Do bounds checking and adjust transfer. If there's an
704 * error, the bounds check will flag that for us.
705 */
706
707 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
708 if (DISKPART(bp->b_dev) != RAW_PART)
709 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
710 db1_printf(("Bounds check failed!!:%d %d\n",
711 (int) bp->b_blkno, (int) wlabel));
712 biodone(bp);
713 return;
714 }
715 s = splbio();
716
717 bp->b_resid = 0;
718
719 /* stuff it onto our queue */
720 BUFQ_PUT(&rs->buf_queue, bp);
721
722 raidstart(raidPtrs[raidID]);
723
724 splx(s);
725 }
726 /* ARGSUSED */
727 int
728 raidread(dev, uio, flags)
729 dev_t dev;
730 struct uio *uio;
731 int flags;
732 {
733 int unit = raidunit(dev);
734 struct raid_softc *rs;
735 int part;
736
737 if (unit >= numraid)
738 return (ENXIO);
739 rs = &raid_softc[unit];
740
741 if ((rs->sc_flags & RAIDF_INITED) == 0)
742 return (ENXIO);
743 part = DISKPART(dev);
744
745 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
746
747 }
748 /* ARGSUSED */
749 int
750 raidwrite(dev, uio, flags)
751 dev_t dev;
752 struct uio *uio;
753 int flags;
754 {
755 int unit = raidunit(dev);
756 struct raid_softc *rs;
757
758 if (unit >= numraid)
759 return (ENXIO);
760 rs = &raid_softc[unit];
761
762 if ((rs->sc_flags & RAIDF_INITED) == 0)
763 return (ENXIO);
764
765 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
766
767 }
768
769 int
770 raidioctl(dev, cmd, data, flag, l)
771 dev_t dev;
772 u_long cmd;
773 caddr_t data;
774 int flag;
775 struct lwp *l;
776 {
777 int unit = raidunit(dev);
778 int error = 0;
779 int part, pmask;
780 struct raid_softc *rs;
781 RF_Config_t *k_cfg, *u_cfg;
782 RF_Raid_t *raidPtr;
783 RF_RaidDisk_t *diskPtr;
784 RF_AccTotals_t *totals;
785 RF_DeviceConfig_t *d_cfg, **ucfgp;
786 u_char *specific_buf;
787 int retcode = 0;
788 int row;
789 int column;
790 int raidid;
791 struct rf_recon_req *rrcopy, *rr;
792 RF_ComponentLabel_t *clabel;
793 RF_ComponentLabel_t ci_label;
794 RF_ComponentLabel_t **clabel_ptr;
795 RF_SingleComponent_t *sparePtr,*componentPtr;
796 RF_SingleComponent_t hot_spare;
797 RF_SingleComponent_t component;
798 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
799 int i, j, d;
800 #ifdef __HAVE_OLD_DISKLABEL
801 struct disklabel newlabel;
802 #endif
803
804 if (unit >= numraid)
805 return (ENXIO);
806 rs = &raid_softc[unit];
807 raidPtr = raidPtrs[unit];
808
809 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
810 (int) DISKPART(dev), (int) unit, (int) cmd));
811
812 /* Must be open for writes for these commands... */
813 switch (cmd) {
814 case DIOCSDINFO:
815 case DIOCWDINFO:
816 #ifdef __HAVE_OLD_DISKLABEL
817 case ODIOCWDINFO:
818 case ODIOCSDINFO:
819 #endif
820 case DIOCWLABEL:
821 if ((flag & FWRITE) == 0)
822 return (EBADF);
823 }
824
825 /* Must be initialized for these... */
826 switch (cmd) {
827 case DIOCGDINFO:
828 case DIOCSDINFO:
829 case DIOCWDINFO:
830 #ifdef __HAVE_OLD_DISKLABEL
831 case ODIOCGDINFO:
832 case ODIOCWDINFO:
833 case ODIOCSDINFO:
834 case ODIOCGDEFLABEL:
835 #endif
836 case DIOCGPART:
837 case DIOCWLABEL:
838 case DIOCGDEFLABEL:
839 case RAIDFRAME_SHUTDOWN:
840 case RAIDFRAME_REWRITEPARITY:
841 case RAIDFRAME_GET_INFO:
842 case RAIDFRAME_RESET_ACCTOTALS:
843 case RAIDFRAME_GET_ACCTOTALS:
844 case RAIDFRAME_KEEP_ACCTOTALS:
845 case RAIDFRAME_GET_SIZE:
846 case RAIDFRAME_FAIL_DISK:
847 case RAIDFRAME_COPYBACK:
848 case RAIDFRAME_CHECK_RECON_STATUS:
849 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
850 case RAIDFRAME_GET_COMPONENT_LABEL:
851 case RAIDFRAME_SET_COMPONENT_LABEL:
852 case RAIDFRAME_ADD_HOT_SPARE:
853 case RAIDFRAME_REMOVE_HOT_SPARE:
854 case RAIDFRAME_INIT_LABELS:
855 case RAIDFRAME_REBUILD_IN_PLACE:
856 case RAIDFRAME_CHECK_PARITY:
857 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
859 case RAIDFRAME_CHECK_COPYBACK_STATUS:
860 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
861 case RAIDFRAME_SET_AUTOCONFIG:
862 case RAIDFRAME_SET_ROOT:
863 case RAIDFRAME_DELETE_COMPONENT:
864 case RAIDFRAME_INCORPORATE_HOT_SPARE:
865 if ((rs->sc_flags & RAIDF_INITED) == 0)
866 return (ENXIO);
867 }
868
869 switch (cmd) {
870
871 /* configure the system */
872 case RAIDFRAME_CONFIGURE:
873
874 if (raidPtr->valid) {
875 /* There is a valid RAID set running on this unit! */
876 printf("raid%d: Device already configured!\n",unit);
877 return(EINVAL);
878 }
879
880 /* copy-in the configuration information */
881 /* data points to a pointer to the configuration structure */
882
883 u_cfg = *((RF_Config_t **) data);
884 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
885 if (k_cfg == NULL) {
886 return (ENOMEM);
887 }
888 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
889 if (retcode) {
890 RF_Free(k_cfg, sizeof(RF_Config_t));
891 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
892 retcode));
893 return (retcode);
894 }
895 /* allocate a buffer for the layout-specific data, and copy it
896 * in */
897 if (k_cfg->layoutSpecificSize) {
898 if (k_cfg->layoutSpecificSize > 10000) {
899 /* sanity check */
900 RF_Free(k_cfg, sizeof(RF_Config_t));
901 return (EINVAL);
902 }
903 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
904 (u_char *));
905 if (specific_buf == NULL) {
906 RF_Free(k_cfg, sizeof(RF_Config_t));
907 return (ENOMEM);
908 }
909 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
910 k_cfg->layoutSpecificSize);
911 if (retcode) {
912 RF_Free(k_cfg, sizeof(RF_Config_t));
913 RF_Free(specific_buf,
914 k_cfg->layoutSpecificSize);
915 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
916 retcode));
917 return (retcode);
918 }
919 } else
920 specific_buf = NULL;
921 k_cfg->layoutSpecific = specific_buf;
922
923 /* should do some kind of sanity check on the configuration.
924 * Store the sum of all the bytes in the last byte? */
925
926 /* configure the system */
927
928 /*
929 * Clear the entire RAID descriptor, just to make sure
930 * there is no stale data left in the case of a
931 * reconfiguration
932 */
933 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
934 raidPtr->raidid = unit;
935
936 retcode = rf_Configure(raidPtr, k_cfg, NULL);
937
938 if (retcode == 0) {
939
940 /* allow this many simultaneous IO's to
941 this RAID device */
942 raidPtr->openings = RAIDOUTSTANDING;
943
944 raidinit(raidPtr);
945 rf_markalldirty(raidPtr);
946 }
947 /* free the buffers. No return code here. */
948 if (k_cfg->layoutSpecificSize) {
949 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
950 }
951 RF_Free(k_cfg, sizeof(RF_Config_t));
952
953 return (retcode);
954
955 /* shutdown the system */
956 case RAIDFRAME_SHUTDOWN:
957
958 if ((error = raidlock(rs)) != 0)
959 return (error);
960
961 /*
962 * If somebody has a partition mounted, we shouldn't
963 * shutdown.
964 */
965
966 part = DISKPART(dev);
967 pmask = (1 << part);
968 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
969 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
970 (rs->sc_dkdev.dk_copenmask & pmask))) {
971 raidunlock(rs);
972 return (EBUSY);
973 }
974
975 retcode = rf_Shutdown(raidPtr);
976
977 /* It's no longer initialized... */
978 rs->sc_flags &= ~RAIDF_INITED;
979
980 /* Detach the disk. */
981 disk_detach(&rs->sc_dkdev);
982
983 raidunlock(rs);
984
985 return (retcode);
986 case RAIDFRAME_GET_COMPONENT_LABEL:
987 clabel_ptr = (RF_ComponentLabel_t **) data;
988 /* need to read the component label for the disk indicated
989 by row,column in clabel */
990
991 /* For practice, let's get it directly fromdisk, rather
992 than from the in-core copy */
993 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
994 (RF_ComponentLabel_t *));
995 if (clabel == NULL)
996 return (ENOMEM);
997
998 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
999
1000 retcode = copyin( *clabel_ptr, clabel,
1001 sizeof(RF_ComponentLabel_t));
1002
1003 if (retcode) {
1004 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1005 return(retcode);
1006 }
1007
1008 row = clabel->row;
1009 column = clabel->column;
1010
1011 if ((row < 0) || (row >= raidPtr->numRow) ||
1012 (column < 0) || (column >= raidPtr->numCol +
1013 raidPtr->numSpare)) {
1014 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1015 return(EINVAL);
1016 }
1017
1018 raidread_component_label(raidPtr->Disks[row][column].dev,
1019 raidPtr->raid_cinfo[row][column].ci_vp,
1020 clabel );
1021
1022 retcode = copyout(clabel, *clabel_ptr,
1023 sizeof(RF_ComponentLabel_t));
1024 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1025 return (retcode);
1026
1027 case RAIDFRAME_SET_COMPONENT_LABEL:
1028 clabel = (RF_ComponentLabel_t *) data;
1029
1030 /* XXX check the label for valid stuff... */
1031 /* Note that some things *should not* get modified --
1032 the user should be re-initing the labels instead of
1033 trying to patch things.
1034 */
1035
1036 raidid = raidPtr->raidid;
1037 printf("raid%d: Got component label:\n", raidid);
1038 printf("raid%d: Version: %d\n", raidid, clabel->version);
1039 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1040 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1041 printf("raid%d: Row: %d\n", raidid, clabel->row);
1042 printf("raid%d: Column: %d\n", raidid, clabel->column);
1043 printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
1044 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1045 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1046 printf("raid%d: Status: %d\n", raidid, clabel->status);
1047
1048 row = clabel->row;
1049 column = clabel->column;
1050
1051 if ((row < 0) || (row >= raidPtr->numRow) ||
1052 (column < 0) || (column >= raidPtr->numCol)) {
1053 return(EINVAL);
1054 }
1055
1056 /* XXX this isn't allowed to do anything for now :-) */
1057
1058 /* XXX and before it is, we need to fill in the rest
1059 of the fields!?!?!?! */
1060 #if 0
1061 raidwrite_component_label(
1062 raidPtr->Disks[row][column].dev,
1063 raidPtr->raid_cinfo[row][column].ci_vp,
1064 clabel );
1065 #endif
1066 return (0);
1067
1068 case RAIDFRAME_INIT_LABELS:
1069 clabel = (RF_ComponentLabel_t *) data;
1070 /*
1071 we only want the serial number from
1072 the above. We get all the rest of the information
1073 from the config that was used to create this RAID
1074 set.
1075 */
1076
1077 raidPtr->serial_number = clabel->serial_number;
1078
1079 raid_init_component_label(raidPtr, &ci_label);
1080 ci_label.serial_number = clabel->serial_number;
1081
1082 for(row=0;row<raidPtr->numRow;row++) {
1083 ci_label.row = row;
1084 for(column=0;column<raidPtr->numCol;column++) {
1085 diskPtr = &raidPtr->Disks[row][column];
1086 if (!RF_DEAD_DISK(diskPtr->status)) {
1087 ci_label.partitionSize = diskPtr->partitionSize;
1088 ci_label.column = column;
1089 raidwrite_component_label(
1090 raidPtr->Disks[row][column].dev,
1091 raidPtr->raid_cinfo[row][column].ci_vp,
1092 &ci_label );
1093 }
1094 }
1095 }
1096
1097 return (retcode);
1098 case RAIDFRAME_SET_AUTOCONFIG:
1099 d = rf_set_autoconfig(raidPtr, *(int *) data);
1100 printf("raid%d: New autoconfig value is: %d\n",
1101 raidPtr->raidid, d);
1102 *(int *) data = d;
1103 return (retcode);
1104
1105 case RAIDFRAME_SET_ROOT:
1106 d = rf_set_rootpartition(raidPtr, *(int *) data);
1107 printf("raid%d: New rootpartition value is: %d\n",
1108 raidPtr->raidid, d);
1109 *(int *) data = d;
1110 return (retcode);
1111
1112 /* initialize all parity */
1113 case RAIDFRAME_REWRITEPARITY:
1114
1115 if (raidPtr->Layout.map->faultsTolerated == 0) {
1116 /* Parity for RAID 0 is trivially correct */
1117 raidPtr->parity_good = RF_RAID_CLEAN;
1118 return(0);
1119 }
1120
1121 if (raidPtr->parity_rewrite_in_progress == 1) {
1122 /* Re-write is already in progress! */
1123 return(EINVAL);
1124 }
1125
1126 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1127 rf_RewriteParityThread,
1128 raidPtr,"raid_parity");
1129 return (retcode);
1130
1131
1132 case RAIDFRAME_ADD_HOT_SPARE:
1133 sparePtr = (RF_SingleComponent_t *) data;
1134 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1135 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1136 return(retcode);
1137
1138 case RAIDFRAME_REMOVE_HOT_SPARE:
1139 return(retcode);
1140
1141 case RAIDFRAME_DELETE_COMPONENT:
1142 componentPtr = (RF_SingleComponent_t *)data;
1143 memcpy( &component, componentPtr,
1144 sizeof(RF_SingleComponent_t));
1145 retcode = rf_delete_component(raidPtr, &component);
1146 return(retcode);
1147
1148 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1149 componentPtr = (RF_SingleComponent_t *)data;
1150 memcpy( &component, componentPtr,
1151 sizeof(RF_SingleComponent_t));
1152 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1153 return(retcode);
1154
1155 case RAIDFRAME_REBUILD_IN_PLACE:
1156
1157 if (raidPtr->Layout.map->faultsTolerated == 0) {
1158 /* Can't do this on a RAID 0!! */
1159 return(EINVAL);
1160 }
1161
1162 if (raidPtr->recon_in_progress == 1) {
1163 /* a reconstruct is already in progress! */
1164 return(EINVAL);
1165 }
1166
1167 componentPtr = (RF_SingleComponent_t *) data;
1168 memcpy( &component, componentPtr,
1169 sizeof(RF_SingleComponent_t));
1170 row = component.row;
1171 column = component.column;
1172
1173 if ((row < 0) || (row >= raidPtr->numRow) ||
1174 (column < 0) || (column >= raidPtr->numCol)) {
1175 return(EINVAL);
1176 }
1177
1178 RF_LOCK_MUTEX(raidPtr->mutex);
1179 if ((raidPtr->Disks[row][column].status == rf_ds_optimal) &&
1180 (raidPtr->numFailures > 0)) {
1181 /* XXX 0 above shouldn't be constant!!! */
1182 /* some component other than this has failed.
1183 Let's not make things worse than they already
1184 are... */
1185 printf("raid%d: Unable to reconstruct to disk at:\n",
1186 raidPtr->raidid);
1187 printf("raid%d: Row: %d Col: %d Too many failures.\n",
1188 raidPtr->raidid, row, column);
1189 RF_UNLOCK_MUTEX(raidPtr->mutex);
1190 return (EINVAL);
1191 }
1192 if (raidPtr->Disks[row][column].status ==
1193 rf_ds_reconstructing) {
1194 printf("raid%d: Unable to reconstruct to disk at:\n",
1195 raidPtr->raidid);
1196 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, column);
1197
1198 RF_UNLOCK_MUTEX(raidPtr->mutex);
1199 return (EINVAL);
1200 }
1201 if (raidPtr->Disks[row][column].status == rf_ds_spared) {
1202 RF_UNLOCK_MUTEX(raidPtr->mutex);
1203 return (EINVAL);
1204 }
1205 RF_UNLOCK_MUTEX(raidPtr->mutex);
1206
1207 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1208 if (rrcopy == NULL)
1209 return(ENOMEM);
1210
1211 rrcopy->raidPtr = (void *) raidPtr;
1212 rrcopy->row = row;
1213 rrcopy->col = column;
1214
1215 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1216 rf_ReconstructInPlaceThread,
1217 rrcopy,"raid_reconip");
1218 return(retcode);
1219
1220 case RAIDFRAME_GET_INFO:
1221 if (!raidPtr->valid)
1222 return (ENODEV);
1223 ucfgp = (RF_DeviceConfig_t **) data;
1224 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1225 (RF_DeviceConfig_t *));
1226 if (d_cfg == NULL)
1227 return (ENOMEM);
1228 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1229 d_cfg->rows = raidPtr->numRow;
1230 d_cfg->cols = raidPtr->numCol;
1231 d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1232 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1233 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1234 return (ENOMEM);
1235 }
1236 d_cfg->nspares = raidPtr->numSpare;
1237 if (d_cfg->nspares >= RF_MAX_DISKS) {
1238 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1239 return (ENOMEM);
1240 }
1241 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1242 d = 0;
1243 for (i = 0; i < d_cfg->rows; i++) {
1244 for (j = 0; j < d_cfg->cols; j++) {
1245 d_cfg->devs[d] = raidPtr->Disks[i][j];
1246 d++;
1247 }
1248 }
1249 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1250 d_cfg->spares[i] = raidPtr->Disks[0][j];
1251 }
1252 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1253 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1254
1255 return (retcode);
1256
1257 case RAIDFRAME_CHECK_PARITY:
1258 *(int *) data = raidPtr->parity_good;
1259 return (0);
1260
1261 case RAIDFRAME_RESET_ACCTOTALS:
1262 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1263 return (0);
1264
1265 case RAIDFRAME_GET_ACCTOTALS:
1266 totals = (RF_AccTotals_t *) data;
1267 *totals = raidPtr->acc_totals;
1268 return (0);
1269
1270 case RAIDFRAME_KEEP_ACCTOTALS:
1271 raidPtr->keep_acc_totals = *(int *)data;
1272 return (0);
1273
1274 case RAIDFRAME_GET_SIZE:
1275 *(int *) data = raidPtr->totalSectors;
1276 return (0);
1277
1278 /* fail a disk & optionally start reconstruction */
1279 case RAIDFRAME_FAIL_DISK:
1280
1281 if (raidPtr->Layout.map->faultsTolerated == 0) {
1282 /* Can't do this on a RAID 0!! */
1283 return(EINVAL);
1284 }
1285
1286 rr = (struct rf_recon_req *) data;
1287
1288 if (rr->row < 0 || rr->row >= raidPtr->numRow
1289 || rr->col < 0 || rr->col >= raidPtr->numCol)
1290 return (EINVAL);
1291
1292
1293 RF_LOCK_MUTEX(raidPtr->mutex);
1294 if ((raidPtr->Disks[rr->row][rr->col].status ==
1295 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1296 /* some other component has failed. Let's not make
1297 things worse. XXX wrong for RAID6 */
1298 RF_UNLOCK_MUTEX(raidPtr->mutex);
1299 return (EINVAL);
1300 }
1301 if (raidPtr->Disks[rr->row][rr->col].status == rf_ds_spared) {
1302 /* Can't fail a spared disk! */
1303 RF_UNLOCK_MUTEX(raidPtr->mutex);
1304 return (EINVAL);
1305 }
1306 RF_UNLOCK_MUTEX(raidPtr->mutex);
1307
1308 /* make a copy of the recon request so that we don't rely on
1309 * the user's buffer */
1310 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1311 if (rrcopy == NULL)
1312 return(ENOMEM);
1313 memcpy(rrcopy, rr, sizeof(*rr));
1314 rrcopy->raidPtr = (void *) raidPtr;
1315
1316 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1317 rf_ReconThread,
1318 rrcopy,"raid_recon");
1319 return (0);
1320
1321 /* invoke a copyback operation after recon on whatever disk
1322 * needs it, if any */
1323 case RAIDFRAME_COPYBACK:
1324
1325 if (raidPtr->Layout.map->faultsTolerated == 0) {
1326 /* This makes no sense on a RAID 0!! */
1327 return(EINVAL);
1328 }
1329
1330 if (raidPtr->copyback_in_progress == 1) {
1331 /* Copyback is already in progress! */
1332 return(EINVAL);
1333 }
1334
1335 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1336 rf_CopybackThread,
1337 raidPtr,"raid_copyback");
1338 return (retcode);
1339
1340 /* return the percentage completion of reconstruction */
1341 case RAIDFRAME_CHECK_RECON_STATUS:
1342 if (raidPtr->Layout.map->faultsTolerated == 0) {
1343 /* This makes no sense on a RAID 0, so tell the
1344 user it's done. */
1345 *(int *) data = 100;
1346 return(0);
1347 }
1348 row = 0; /* XXX we only consider a single row... */
1349 if (raidPtr->status[row] != rf_rs_reconstructing)
1350 *(int *) data = 100;
1351 else
1352 *(int *) data = raidPtr->reconControl[row]->percentComplete;
1353 return (0);
1354 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1355 progressInfoPtr = (RF_ProgressInfo_t **) data;
1356 row = 0; /* XXX we only consider a single row... */
1357 if (raidPtr->status[row] != rf_rs_reconstructing) {
1358 progressInfo.remaining = 0;
1359 progressInfo.completed = 100;
1360 progressInfo.total = 100;
1361 } else {
1362 progressInfo.total =
1363 raidPtr->reconControl[row]->numRUsTotal;
1364 progressInfo.completed =
1365 raidPtr->reconControl[row]->numRUsComplete;
1366 progressInfo.remaining = progressInfo.total -
1367 progressInfo.completed;
1368 }
1369 retcode = copyout(&progressInfo, *progressInfoPtr,
1370 sizeof(RF_ProgressInfo_t));
1371 return (retcode);
1372
1373 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1374 if (raidPtr->Layout.map->faultsTolerated == 0) {
1375 /* This makes no sense on a RAID 0, so tell the
1376 user it's done. */
1377 *(int *) data = 100;
1378 return(0);
1379 }
1380 if (raidPtr->parity_rewrite_in_progress == 1) {
1381 *(int *) data = 100 *
1382 raidPtr->parity_rewrite_stripes_done /
1383 raidPtr->Layout.numStripe;
1384 } else {
1385 *(int *) data = 100;
1386 }
1387 return (0);
1388
1389 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1390 progressInfoPtr = (RF_ProgressInfo_t **) data;
1391 if (raidPtr->parity_rewrite_in_progress == 1) {
1392 progressInfo.total = raidPtr->Layout.numStripe;
1393 progressInfo.completed =
1394 raidPtr->parity_rewrite_stripes_done;
1395 progressInfo.remaining = progressInfo.total -
1396 progressInfo.completed;
1397 } else {
1398 progressInfo.remaining = 0;
1399 progressInfo.completed = 100;
1400 progressInfo.total = 100;
1401 }
1402 retcode = copyout(&progressInfo, *progressInfoPtr,
1403 sizeof(RF_ProgressInfo_t));
1404 return (retcode);
1405
1406 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1407 if (raidPtr->Layout.map->faultsTolerated == 0) {
1408 /* This makes no sense on a RAID 0 */
1409 *(int *) data = 100;
1410 return(0);
1411 }
1412 if (raidPtr->copyback_in_progress == 1) {
1413 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1414 raidPtr->Layout.numStripe;
1415 } else {
1416 *(int *) data = 100;
1417 }
1418 return (0);
1419
1420 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1421 progressInfoPtr = (RF_ProgressInfo_t **) data;
1422 if (raidPtr->copyback_in_progress == 1) {
1423 progressInfo.total = raidPtr->Layout.numStripe;
1424 progressInfo.completed =
1425 raidPtr->copyback_stripes_done;
1426 progressInfo.remaining = progressInfo.total -
1427 progressInfo.completed;
1428 } else {
1429 progressInfo.remaining = 0;
1430 progressInfo.completed = 100;
1431 progressInfo.total = 100;
1432 }
1433 retcode = copyout(&progressInfo, *progressInfoPtr,
1434 sizeof(RF_ProgressInfo_t));
1435 return (retcode);
1436
1437 /* the sparetable daemon calls this to wait for the kernel to
1438 * need a spare table. this ioctl does not return until a
1439 * spare table is needed. XXX -- calling mpsleep here in the
1440 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1441 * -- I should either compute the spare table in the kernel,
1442 * or have a different -- XXX XXX -- interface (a different
1443 * character device) for delivering the table -- XXX */
1444 #if 0
1445 case RAIDFRAME_SPARET_WAIT:
1446 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1447 while (!rf_sparet_wait_queue)
1448 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1449 waitreq = rf_sparet_wait_queue;
1450 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1451 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1452
1453 /* structure assignment */
1454 *((RF_SparetWait_t *) data) = *waitreq;
1455
1456 RF_Free(waitreq, sizeof(*waitreq));
1457 return (0);
1458
1459 /* wakes up a process waiting on SPARET_WAIT and puts an error
1460 * code in it that will cause the dameon to exit */
1461 case RAIDFRAME_ABORT_SPARET_WAIT:
1462 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1463 waitreq->fcol = -1;
1464 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1465 waitreq->next = rf_sparet_wait_queue;
1466 rf_sparet_wait_queue = waitreq;
1467 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1468 wakeup(&rf_sparet_wait_queue);
1469 return (0);
1470
1471 /* used by the spare table daemon to deliver a spare table
1472 * into the kernel */
1473 case RAIDFRAME_SEND_SPARET:
1474
1475 /* install the spare table */
1476 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1477
1478 /* respond to the requestor. the return status of the spare
1479 * table installation is passed in the "fcol" field */
1480 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1481 waitreq->fcol = retcode;
1482 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1483 waitreq->next = rf_sparet_resp_queue;
1484 rf_sparet_resp_queue = waitreq;
1485 wakeup(&rf_sparet_resp_queue);
1486 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1487
1488 return (retcode);
1489 #endif
1490
1491 default:
1492 break; /* fall through to the os-specific code below */
1493
1494 }
1495
1496 if (!raidPtr->valid)
1497 return (EINVAL);
1498
1499 /*
1500 * Add support for "regular" device ioctls here.
1501 */
1502
1503 switch (cmd) {
1504 case DIOCGDINFO:
1505 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1506 break;
1507 #ifdef __HAVE_OLD_DISKLABEL
1508 case ODIOCGDINFO:
1509 newlabel = *(rs->sc_dkdev.dk_label);
1510 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1511 return ENOTTY;
1512 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1513 break;
1514 #endif
1515
1516 case DIOCGPART:
1517 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1518 ((struct partinfo *) data)->part =
1519 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1520 break;
1521
1522 case DIOCWDINFO:
1523 case DIOCSDINFO:
1524 #ifdef __HAVE_OLD_DISKLABEL
1525 case ODIOCWDINFO:
1526 case ODIOCSDINFO:
1527 #endif
1528 {
1529 struct disklabel *lp;
1530 #ifdef __HAVE_OLD_DISKLABEL
1531 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1532 memset(&newlabel, 0, sizeof newlabel);
1533 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1534 lp = &newlabel;
1535 } else
1536 #endif
1537 lp = (struct disklabel *)data;
1538
1539 if ((error = raidlock(rs)) != 0)
1540 return (error);
1541
1542 rs->sc_flags |= RAIDF_LABELLING;
1543
1544 error = setdisklabel(rs->sc_dkdev.dk_label,
1545 lp, 0, rs->sc_dkdev.dk_cpulabel);
1546 if (error == 0) {
1547 if (cmd == DIOCWDINFO
1548 #ifdef __HAVE_OLD_DISKLABEL
1549 || cmd == ODIOCWDINFO
1550 #endif
1551 )
1552 error = writedisklabel(RAIDLABELDEV(dev),
1553 raidstrategy, rs->sc_dkdev.dk_label,
1554 rs->sc_dkdev.dk_cpulabel);
1555 }
1556 rs->sc_flags &= ~RAIDF_LABELLING;
1557
1558 raidunlock(rs);
1559
1560 if (error)
1561 return (error);
1562 break;
1563 }
1564
1565 case DIOCWLABEL:
1566 if (*(int *) data != 0)
1567 rs->sc_flags |= RAIDF_WLABEL;
1568 else
1569 rs->sc_flags &= ~RAIDF_WLABEL;
1570 break;
1571
1572 case DIOCGDEFLABEL:
1573 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1574 break;
1575
1576 #ifdef __HAVE_OLD_DISKLABEL
1577 case ODIOCGDEFLABEL:
1578 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1579 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1580 return ENOTTY;
1581 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1582 break;
1583 #endif
1584
1585 default:
1586 retcode = ENOTTY;
1587 }
1588 return (retcode);
1589
1590 }
1591
1592
1593 /* raidinit -- complete the rest of the initialization for the
1594 RAIDframe device. */
1595
1596
1597 static void
1598 raidinit(raidPtr)
1599 RF_Raid_t *raidPtr;
1600 {
1601 struct raid_softc *rs;
1602 int unit;
1603
1604 unit = raidPtr->raidid;
1605
1606 rs = &raid_softc[unit];
1607
1608 /* XXX should check return code first... */
1609 rs->sc_flags |= RAIDF_INITED;
1610
1611 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1612
1613 rs->sc_dkdev.dk_name = rs->sc_xname;
1614
1615 /* disk_attach actually creates space for the CPU disklabel, among
1616 * other things, so it's critical to call this *BEFORE* we try putzing
1617 * with disklabels. */
1618
1619 disk_attach(&rs->sc_dkdev);
1620
1621 /* XXX There may be a weird interaction here between this, and
1622 * protectedSectors, as used in RAIDframe. */
1623
1624 rs->sc_size = raidPtr->totalSectors;
1625
1626 }
1627 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1628 /* wake up the daemon & tell it to get us a spare table
1629 * XXX
1630 * the entries in the queues should be tagged with the raidPtr
1631 * so that in the extremely rare case that two recons happen at once,
1632 * we know for which device were requesting a spare table
1633 * XXX
1634 *
1635 * XXX This code is not currently used. GO
1636 */
1637 int
1638 rf_GetSpareTableFromDaemon(req)
1639 RF_SparetWait_t *req;
1640 {
1641 int retcode;
1642
1643 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1644 req->next = rf_sparet_wait_queue;
1645 rf_sparet_wait_queue = req;
1646 wakeup(&rf_sparet_wait_queue);
1647
1648 /* mpsleep unlocks the mutex */
1649 while (!rf_sparet_resp_queue) {
1650 tsleep(&rf_sparet_resp_queue, PRIBIO,
1651 "raidframe getsparetable", 0);
1652 }
1653 req = rf_sparet_resp_queue;
1654 rf_sparet_resp_queue = req->next;
1655 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1656
1657 retcode = req->fcol;
1658 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1659 * alloc'd */
1660 return (retcode);
1661 }
1662 #endif
1663
1664 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1665 * bp & passes it down.
1666 * any calls originating in the kernel must use non-blocking I/O
1667 * do some extra sanity checking to return "appropriate" error values for
1668 * certain conditions (to make some standard utilities work)
1669 *
1670 * Formerly known as: rf_DoAccessKernel
1671 */
1672 void
1673 raidstart(raidPtr)
1674 RF_Raid_t *raidPtr;
1675 {
1676 RF_SectorCount_t num_blocks, pb, sum;
1677 RF_RaidAddr_t raid_addr;
1678 struct partition *pp;
1679 daddr_t blocknum;
1680 int unit;
1681 struct raid_softc *rs;
1682 int do_async;
1683 struct buf *bp;
1684
1685 unit = raidPtr->raidid;
1686 rs = &raid_softc[unit];
1687
1688 /* quick check to see if anything has died recently */
1689 RF_LOCK_MUTEX(raidPtr->mutex);
1690 if (raidPtr->numNewFailures > 0) {
1691 RF_UNLOCK_MUTEX(raidPtr->mutex);
1692 rf_update_component_labels(raidPtr,
1693 RF_NORMAL_COMPONENT_UPDATE);
1694 RF_LOCK_MUTEX(raidPtr->mutex);
1695 raidPtr->numNewFailures--;
1696 }
1697
1698 /* Check to see if we're at the limit... */
1699 while (raidPtr->openings > 0) {
1700 RF_UNLOCK_MUTEX(raidPtr->mutex);
1701
1702 /* get the next item, if any, from the queue */
1703 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1704 /* nothing more to do */
1705 return;
1706 }
1707
1708 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1709 * partition.. Need to make it absolute to the underlying
1710 * device.. */
1711
1712 blocknum = bp->b_blkno;
1713 if (DISKPART(bp->b_dev) != RAW_PART) {
1714 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1715 blocknum += pp->p_offset;
1716 }
1717
1718 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1719 (int) blocknum));
1720
1721 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1722 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1723
1724 /* *THIS* is where we adjust what block we're going to...
1725 * but DO NOT TOUCH bp->b_blkno!!! */
1726 raid_addr = blocknum;
1727
1728 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1729 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1730 sum = raid_addr + num_blocks + pb;
1731 if (1 || rf_debugKernelAccess) {
1732 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1733 (int) raid_addr, (int) sum, (int) num_blocks,
1734 (int) pb, (int) bp->b_resid));
1735 }
1736 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1737 || (sum < num_blocks) || (sum < pb)) {
1738 bp->b_error = ENOSPC;
1739 bp->b_flags |= B_ERROR;
1740 bp->b_resid = bp->b_bcount;
1741 biodone(bp);
1742 RF_LOCK_MUTEX(raidPtr->mutex);
1743 continue;
1744 }
1745 /*
1746 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1747 */
1748
1749 if (bp->b_bcount & raidPtr->sectorMask) {
1750 bp->b_error = EINVAL;
1751 bp->b_flags |= B_ERROR;
1752 bp->b_resid = bp->b_bcount;
1753 biodone(bp);
1754 RF_LOCK_MUTEX(raidPtr->mutex);
1755 continue;
1756
1757 }
1758 db1_printf(("Calling DoAccess..\n"));
1759
1760
1761 RF_LOCK_MUTEX(raidPtr->mutex);
1762 raidPtr->openings--;
1763 RF_UNLOCK_MUTEX(raidPtr->mutex);
1764
1765 /*
1766 * Everything is async.
1767 */
1768 do_async = 1;
1769
1770 disk_busy(&rs->sc_dkdev);
1771
1772 /* XXX we're still at splbio() here... do we *really*
1773 need to be? */
1774
1775 /* don't ever condition on bp->b_flags & B_WRITE.
1776 * always condition on B_READ instead */
1777
1778 bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1779 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1780 do_async, raid_addr, num_blocks,
1781 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1782
1783 if (bp->b_error) {
1784 bp->b_flags |= B_ERROR;
1785 }
1786
1787 RF_LOCK_MUTEX(raidPtr->mutex);
1788 }
1789 RF_UNLOCK_MUTEX(raidPtr->mutex);
1790 }
1791
1792
1793
1794
1795 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1796
1797 int
1798 rf_DispatchKernelIO(queue, req)
1799 RF_DiskQueue_t *queue;
1800 RF_DiskQueueData_t *req;
1801 {
1802 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1803 struct buf *bp;
1804 struct raidbuf *raidbp = NULL;
1805
1806 req->queue = queue;
1807
1808 #if DIAGNOSTIC
1809 if (queue->raidPtr->raidid >= numraid) {
1810 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1811 numraid);
1812 panic("Invalid Unit number in rf_DispatchKernelIO");
1813 }
1814 #endif
1815
1816 bp = req->bp;
1817 #if 1
1818 /* XXX when there is a physical disk failure, someone is passing us a
1819 * buffer that contains old stuff!! Attempt to deal with this problem
1820 * without taking a performance hit... (not sure where the real bug
1821 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1822
1823 if (bp->b_flags & B_ERROR) {
1824 bp->b_flags &= ~B_ERROR;
1825 }
1826 if (bp->b_error != 0) {
1827 bp->b_error = 0;
1828 }
1829 #endif
1830 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1831 if (raidbp == NULL) {
1832 bp->b_flags |= B_ERROR;
1833 bp->b_error = ENOMEM;
1834 return (ENOMEM);
1835 }
1836 BUF_INIT(&raidbp->rf_buf);
1837
1838 /*
1839 * context for raidiodone
1840 */
1841 raidbp->rf_obp = bp;
1842 raidbp->req = req;
1843
1844 switch (req->type) {
1845 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1846 /* XXX need to do something extra here.. */
1847 /* I'm leaving this in, as I've never actually seen it used,
1848 * and I'd like folks to report it... GO */
1849 printf(("WAKEUP CALLED\n"));
1850 queue->numOutstanding++;
1851
1852 /* XXX need to glue the original buffer into this?? */
1853
1854 KernelWakeupFunc(&raidbp->rf_buf);
1855 break;
1856
1857 case RF_IO_TYPE_READ:
1858 case RF_IO_TYPE_WRITE:
1859
1860 if (req->tracerec) {
1861 RF_ETIMER_START(req->tracerec->timer);
1862 }
1863 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1864 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1865 req->sectorOffset, req->numSector,
1866 req->buf, KernelWakeupFunc, (void *) req,
1867 queue->raidPtr->logBytesPerSector, req->b_proc);
1868
1869 if (rf_debugKernelAccess) {
1870 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1871 (long) bp->b_blkno));
1872 }
1873 queue->numOutstanding++;
1874 queue->last_deq_sector = req->sectorOffset;
1875 /* acc wouldn't have been let in if there were any pending
1876 * reqs at any other priority */
1877 queue->curPriority = req->priority;
1878
1879 db1_printf(("Going for %c to unit %d row %d col %d\n",
1880 req->type, queue->raidPtr->raidid,
1881 queue->row, queue->col));
1882 db1_printf(("sector %d count %d (%d bytes) %d\n",
1883 (int) req->sectorOffset, (int) req->numSector,
1884 (int) (req->numSector <<
1885 queue->raidPtr->logBytesPerSector),
1886 (int) queue->raidPtr->logBytesPerSector));
1887 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1888 raidbp->rf_buf.b_vp->v_numoutput++;
1889 }
1890 VOP_STRATEGY(&raidbp->rf_buf);
1891
1892 break;
1893
1894 default:
1895 panic("bad req->type in rf_DispatchKernelIO");
1896 }
1897 db1_printf(("Exiting from DispatchKernelIO\n"));
1898
1899 return (0);
1900 }
1901 /* this is the callback function associated with a I/O invoked from
1902 kernel code.
1903 */
1904 static void
1905 KernelWakeupFunc(vbp)
1906 struct buf *vbp;
1907 {
1908 RF_DiskQueueData_t *req = NULL;
1909 RF_DiskQueue_t *queue;
1910 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1911 struct buf *bp;
1912 int s;
1913
1914 s = splbio();
1915 db1_printf(("recovering the request queue:\n"));
1916 req = raidbp->req;
1917
1918 bp = raidbp->rf_obp;
1919
1920 queue = (RF_DiskQueue_t *) req->queue;
1921
1922 if (raidbp->rf_buf.b_flags & B_ERROR) {
1923 bp->b_flags |= B_ERROR;
1924 bp->b_error = raidbp->rf_buf.b_error ?
1925 raidbp->rf_buf.b_error : EIO;
1926 }
1927
1928 /* XXX methinks this could be wrong... */
1929 #if 1
1930 bp->b_resid = raidbp->rf_buf.b_resid;
1931 #endif
1932
1933 if (req->tracerec) {
1934 RF_ETIMER_STOP(req->tracerec->timer);
1935 RF_ETIMER_EVAL(req->tracerec->timer);
1936 RF_LOCK_MUTEX(rf_tracing_mutex);
1937 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1938 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1939 req->tracerec->num_phys_ios++;
1940 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1941 }
1942 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1943
1944 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1945 * ballistic, and mark the component as hosed... */
1946
1947 if (bp->b_flags & B_ERROR) {
1948 /* Mark the disk as dead */
1949 /* but only mark it once... */
1950 if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1951 rf_ds_optimal) {
1952 printf("raid%d: IO Error. Marking %s as failed.\n",
1953 queue->raidPtr->raidid,
1954 queue->raidPtr->Disks[queue->row][queue->col].devname);
1955 queue->raidPtr->Disks[queue->row][queue->col].status =
1956 rf_ds_failed;
1957 queue->raidPtr->status[queue->row] = rf_rs_degraded;
1958 queue->raidPtr->numFailures++;
1959 queue->raidPtr->numNewFailures++;
1960 } else { /* Disk is already dead... */
1961 /* printf("Disk already marked as dead!\n"); */
1962 }
1963
1964 }
1965
1966 pool_put(&raidframe_cbufpool, raidbp);
1967
1968 /* Fill in the error value */
1969
1970 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1971
1972 simple_lock(&queue->raidPtr->iodone_lock);
1973
1974 /* Drop this one on the "finished" queue... */
1975 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1976
1977 /* Let the raidio thread know there is work to be done. */
1978 wakeup(&(queue->raidPtr->iodone));
1979
1980 simple_unlock(&queue->raidPtr->iodone_lock);
1981
1982 splx(s);
1983 }
1984
1985
1986
1987 /*
1988 * initialize a buf structure for doing an I/O in the kernel.
1989 */
1990 static void
1991 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
1992 logBytesPerSector, p)
1993 struct buf *bp;
1994 struct vnode *b_vp;
1995 unsigned rw_flag;
1996 dev_t dev;
1997 RF_SectorNum_t startSect;
1998 RF_SectorCount_t numSect;
1999 caddr_t buf;
2000 void (*cbFunc) (struct buf *);
2001 void *cbArg;
2002 int logBytesPerSector;
2003 struct proc *p;
2004 {
2005 /* bp->b_flags = B_PHYS | rw_flag; */
2006 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2007 bp->b_bcount = numSect << logBytesPerSector;
2008 bp->b_bufsize = bp->b_bcount;
2009 bp->b_error = 0;
2010 bp->b_dev = dev;
2011 bp->b_data = buf;
2012 bp->b_blkno = startSect;
2013 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2014 if (bp->b_bcount == 0) {
2015 panic("bp->b_bcount is zero in InitBP!!");
2016 }
2017 bp->b_proc = p;
2018 bp->b_iodone = cbFunc;
2019 bp->b_vp = b_vp;
2020
2021 }
2022
2023 static void
2024 raidgetdefaultlabel(raidPtr, rs, lp)
2025 RF_Raid_t *raidPtr;
2026 struct raid_softc *rs;
2027 struct disklabel *lp;
2028 {
2029 memset(lp, 0, sizeof(*lp));
2030
2031 /* fabricate a label... */
2032 lp->d_secperunit = raidPtr->totalSectors;
2033 lp->d_secsize = raidPtr->bytesPerSector;
2034 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2035 lp->d_ntracks = 4 * raidPtr->numCol;
2036 lp->d_ncylinders = raidPtr->totalSectors /
2037 (lp->d_nsectors * lp->d_ntracks);
2038 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2039
2040 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2041 lp->d_type = DTYPE_RAID;
2042 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2043 lp->d_rpm = 3600;
2044 lp->d_interleave = 1;
2045 lp->d_flags = 0;
2046
2047 lp->d_partitions[RAW_PART].p_offset = 0;
2048 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2049 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2050 lp->d_npartitions = RAW_PART + 1;
2051
2052 lp->d_magic = DISKMAGIC;
2053 lp->d_magic2 = DISKMAGIC;
2054 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2055
2056 }
2057 /*
2058 * Read the disklabel from the raid device. If one is not present, fake one
2059 * up.
2060 */
2061 static void
2062 raidgetdisklabel(dev)
2063 dev_t dev;
2064 {
2065 int unit = raidunit(dev);
2066 struct raid_softc *rs = &raid_softc[unit];
2067 const char *errstring;
2068 struct disklabel *lp = rs->sc_dkdev.dk_label;
2069 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2070 RF_Raid_t *raidPtr;
2071
2072 db1_printf(("Getting the disklabel...\n"));
2073
2074 memset(clp, 0, sizeof(*clp));
2075
2076 raidPtr = raidPtrs[unit];
2077
2078 raidgetdefaultlabel(raidPtr, rs, lp);
2079
2080 /*
2081 * Call the generic disklabel extraction routine.
2082 */
2083 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2084 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2085 if (errstring)
2086 raidmakedisklabel(rs);
2087 else {
2088 int i;
2089 struct partition *pp;
2090
2091 /*
2092 * Sanity check whether the found disklabel is valid.
2093 *
2094 * This is necessary since total size of the raid device
2095 * may vary when an interleave is changed even though exactly
2096 * same componets are used, and old disklabel may used
2097 * if that is found.
2098 */
2099 if (lp->d_secperunit != rs->sc_size)
2100 printf("raid%d: WARNING: %s: "
2101 "total sector size in disklabel (%d) != "
2102 "the size of raid (%ld)\n", unit, rs->sc_xname,
2103 lp->d_secperunit, (long) rs->sc_size);
2104 for (i = 0; i < lp->d_npartitions; i++) {
2105 pp = &lp->d_partitions[i];
2106 if (pp->p_offset + pp->p_size > rs->sc_size)
2107 printf("raid%d: WARNING: %s: end of partition `%c' "
2108 "exceeds the size of raid (%ld)\n",
2109 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2110 }
2111 }
2112
2113 }
2114 /*
2115 * Take care of things one might want to take care of in the event
2116 * that a disklabel isn't present.
2117 */
2118 static void
2119 raidmakedisklabel(rs)
2120 struct raid_softc *rs;
2121 {
2122 struct disklabel *lp = rs->sc_dkdev.dk_label;
2123 db1_printf(("Making a label..\n"));
2124
2125 /*
2126 * For historical reasons, if there's no disklabel present
2127 * the raw partition must be marked FS_BSDFFS.
2128 */
2129
2130 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2131
2132 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2133
2134 lp->d_checksum = dkcksum(lp);
2135 }
2136 /*
2137 * Lookup the provided name in the filesystem. If the file exists,
2138 * is a valid block device, and isn't being used by anyone else,
2139 * set *vpp to the file's vnode.
2140 * You'll find the original of this in ccd.c
2141 */
2142 int
2143 raidlookup(path, l, vpp)
2144 char *path;
2145 struct lwp *l;
2146 struct vnode **vpp; /* result */
2147 {
2148 struct nameidata nd;
2149 struct vnode *vp;
2150 struct proc *p;
2151 struct vattr va;
2152 int error;
2153
2154 p = l ? l->l_proc : NULL;
2155 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, l);
2156 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2157 return (error);
2158 }
2159 vp = nd.ni_vp;
2160 if (vp->v_usecount > 1) {
2161 VOP_UNLOCK(vp, 0);
2162 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2163 return (EBUSY);
2164 }
2165 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)) != 0) {
2166 VOP_UNLOCK(vp, 0);
2167 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2168 return (error);
2169 }
2170 /* XXX: eventually we should handle VREG, too. */
2171 if (va.va_type != VBLK) {
2172 VOP_UNLOCK(vp, 0);
2173 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2174 return (ENOTBLK);
2175 }
2176 VOP_UNLOCK(vp, 0);
2177 *vpp = vp;
2178 return (0);
2179 }
2180 /*
2181 * Wait interruptibly for an exclusive lock.
2182 *
2183 * XXX
2184 * Several drivers do this; it should be abstracted and made MP-safe.
2185 * (Hmm... where have we seen this warning before :-> GO )
2186 */
2187 static int
2188 raidlock(rs)
2189 struct raid_softc *rs;
2190 {
2191 int error;
2192
2193 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2194 rs->sc_flags |= RAIDF_WANTED;
2195 if ((error =
2196 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2197 return (error);
2198 }
2199 rs->sc_flags |= RAIDF_LOCKED;
2200 return (0);
2201 }
2202 /*
2203 * Unlock and wake up any waiters.
2204 */
2205 static void
2206 raidunlock(rs)
2207 struct raid_softc *rs;
2208 {
2209
2210 rs->sc_flags &= ~RAIDF_LOCKED;
2211 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2212 rs->sc_flags &= ~RAIDF_WANTED;
2213 wakeup(rs);
2214 }
2215 }
2216
2217
2218 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2219 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2220
2221 int
2222 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2223 {
2224 RF_ComponentLabel_t clabel;
2225 raidread_component_label(dev, b_vp, &clabel);
2226 clabel.mod_counter = mod_counter;
2227 clabel.clean = RF_RAID_CLEAN;
2228 raidwrite_component_label(dev, b_vp, &clabel);
2229 return(0);
2230 }
2231
2232
2233 int
2234 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2235 {
2236 RF_ComponentLabel_t clabel;
2237 raidread_component_label(dev, b_vp, &clabel);
2238 clabel.mod_counter = mod_counter;
2239 clabel.clean = RF_RAID_DIRTY;
2240 raidwrite_component_label(dev, b_vp, &clabel);
2241 return(0);
2242 }
2243
2244 /* ARGSUSED */
2245 int
2246 raidread_component_label(dev, b_vp, clabel)
2247 dev_t dev;
2248 struct vnode *b_vp;
2249 RF_ComponentLabel_t *clabel;
2250 {
2251 struct buf *bp;
2252 const struct bdevsw *bdev;
2253 int error;
2254
2255 /* XXX should probably ensure that we don't try to do this if
2256 someone has changed rf_protected_sectors. */
2257
2258 if (b_vp == NULL) {
2259 /* For whatever reason, this component is not valid.
2260 Don't try to read a component label from it. */
2261 return(EINVAL);
2262 }
2263
2264 /* get a block of the appropriate size... */
2265 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2266 bp->b_dev = dev;
2267
2268 /* get our ducks in a row for the read */
2269 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2270 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2271 bp->b_flags |= B_READ;
2272 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2273
2274 bdev = bdevsw_lookup(bp->b_dev);
2275 if (bdev == NULL)
2276 return (ENXIO);
2277 (*bdev->d_strategy)(bp);
2278
2279 error = biowait(bp);
2280
2281 if (!error) {
2282 memcpy(clabel, bp->b_data,
2283 sizeof(RF_ComponentLabel_t));
2284 }
2285
2286 brelse(bp);
2287 return(error);
2288 }
2289 /* ARGSUSED */
2290 int
2291 raidwrite_component_label(dev, b_vp, clabel)
2292 dev_t dev;
2293 struct vnode *b_vp;
2294 RF_ComponentLabel_t *clabel;
2295 {
2296 struct buf *bp;
2297 const struct bdevsw *bdev;
2298 int error;
2299
2300 /* get a block of the appropriate size... */
2301 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2302 bp->b_dev = dev;
2303
2304 /* get our ducks in a row for the write */
2305 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2306 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2307 bp->b_flags |= B_WRITE;
2308 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2309
2310 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2311
2312 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2313
2314 bdev = bdevsw_lookup(bp->b_dev);
2315 if (bdev == NULL)
2316 return (ENXIO);
2317 (*bdev->d_strategy)(bp);
2318 error = biowait(bp);
2319 brelse(bp);
2320 if (error) {
2321 #if 1
2322 printf("Failed to write RAID component info!\n");
2323 #endif
2324 }
2325
2326 return(error);
2327 }
2328
2329 void
2330 rf_markalldirty(raidPtr)
2331 RF_Raid_t *raidPtr;
2332 {
2333 RF_ComponentLabel_t clabel;
2334 int sparecol;
2335 int r,c;
2336 int i,j;
2337 int srow, scol;
2338
2339 raidPtr->mod_counter++;
2340 for (r = 0; r < raidPtr->numRow; r++) {
2341 for (c = 0; c < raidPtr->numCol; c++) {
2342 /* we don't want to touch (at all) a disk that has
2343 failed */
2344 if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2345 raidread_component_label(
2346 raidPtr->Disks[r][c].dev,
2347 raidPtr->raid_cinfo[r][c].ci_vp,
2348 &clabel);
2349 if (clabel.status == rf_ds_spared) {
2350 /* XXX do something special...
2351 but whatever you do, don't
2352 try to access it!! */
2353 } else {
2354 raidmarkdirty(
2355 raidPtr->Disks[r][c].dev,
2356 raidPtr->raid_cinfo[r][c].ci_vp,
2357 raidPtr->mod_counter);
2358 }
2359 }
2360 }
2361 }
2362
2363 for( c = 0; c < raidPtr->numSpare ; c++) {
2364 sparecol = raidPtr->numCol + c;
2365 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2366 /*
2367
2368 we claim this disk is "optimal" if it's
2369 rf_ds_used_spare, as that means it should be
2370 directly substitutable for the disk it replaced.
2371 We note that too...
2372
2373 */
2374
2375 for(i=0;i<raidPtr->numRow;i++) {
2376 for(j=0;j<raidPtr->numCol;j++) {
2377 if ((raidPtr->Disks[i][j].spareRow ==
2378 0) &&
2379 (raidPtr->Disks[i][j].spareCol ==
2380 sparecol)) {
2381 srow = i;
2382 scol = j;
2383 break;
2384 }
2385 }
2386 }
2387
2388 raidread_component_label(
2389 raidPtr->Disks[0][sparecol].dev,
2390 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2391 &clabel);
2392 /* make sure status is noted */
2393
2394 raid_init_component_label(raidPtr, &clabel);
2395
2396 clabel.row = srow;
2397 clabel.column = scol;
2398 /* Note: we *don't* change status from rf_ds_used_spare
2399 to rf_ds_optimal */
2400 /* clabel.status = rf_ds_optimal; */
2401
2402 raidmarkdirty(raidPtr->Disks[0][sparecol].dev,
2403 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2404 raidPtr->mod_counter);
2405 }
2406 }
2407 }
2408
2409
2410 void
2411 rf_update_component_labels(raidPtr, final)
2412 RF_Raid_t *raidPtr;
2413 int final;
2414 {
2415 RF_ComponentLabel_t clabel;
2416 int sparecol;
2417 int r,c;
2418 int i,j;
2419 int srow, scol;
2420
2421 srow = -1;
2422 scol = -1;
2423
2424 /* XXX should do extra checks to make sure things really are clean,
2425 rather than blindly setting the clean bit... */
2426
2427 raidPtr->mod_counter++;
2428
2429 for (r = 0; r < raidPtr->numRow; r++) {
2430 for (c = 0; c < raidPtr->numCol; c++) {
2431 if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2432 raidread_component_label(
2433 raidPtr->Disks[r][c].dev,
2434 raidPtr->raid_cinfo[r][c].ci_vp,
2435 &clabel);
2436 /* make sure status is noted */
2437 clabel.status = rf_ds_optimal;
2438 /* bump the counter */
2439 clabel.mod_counter = raidPtr->mod_counter;
2440
2441 raidwrite_component_label(
2442 raidPtr->Disks[r][c].dev,
2443 raidPtr->raid_cinfo[r][c].ci_vp,
2444 &clabel);
2445 if (final == RF_FINAL_COMPONENT_UPDATE) {
2446 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2447 raidmarkclean(
2448 raidPtr->Disks[r][c].dev,
2449 raidPtr->raid_cinfo[r][c].ci_vp,
2450 raidPtr->mod_counter);
2451 }
2452 }
2453 }
2454 /* else we don't touch it.. */
2455 }
2456 }
2457
2458 for( c = 0; c < raidPtr->numSpare ; c++) {
2459 sparecol = raidPtr->numCol + c;
2460 /* Need to ensure that the reconstruct actually completed! */
2461 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2462 /*
2463
2464 we claim this disk is "optimal" if it's
2465 rf_ds_used_spare, as that means it should be
2466 directly substitutable for the disk it replaced.
2467 We note that too...
2468
2469 */
2470
2471 for(i=0;i<raidPtr->numRow;i++) {
2472 for(j=0;j<raidPtr->numCol;j++) {
2473 if ((raidPtr->Disks[i][j].spareRow ==
2474 0) &&
2475 (raidPtr->Disks[i][j].spareCol ==
2476 sparecol)) {
2477 srow = i;
2478 scol = j;
2479 break;
2480 }
2481 }
2482 }
2483
2484 /* XXX shouldn't *really* need this... */
2485 raidread_component_label(
2486 raidPtr->Disks[0][sparecol].dev,
2487 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2488 &clabel);
2489 /* make sure status is noted */
2490
2491 raid_init_component_label(raidPtr, &clabel);
2492
2493 clabel.mod_counter = raidPtr->mod_counter;
2494 clabel.row = srow;
2495 clabel.column = scol;
2496 clabel.status = rf_ds_optimal;
2497
2498 raidwrite_component_label(
2499 raidPtr->Disks[0][sparecol].dev,
2500 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2501 &clabel);
2502 if (final == RF_FINAL_COMPONENT_UPDATE) {
2503 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2504 raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2505 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2506 raidPtr->mod_counter);
2507 }
2508 }
2509 }
2510 }
2511 }
2512
2513 void
2514 rf_close_component(raidPtr, vp, auto_configured)
2515 RF_Raid_t *raidPtr;
2516 struct vnode *vp;
2517 int auto_configured;
2518 {
2519 struct proc *p;
2520 struct lwp *l;
2521
2522 p = raidPtr->engine_thread;
2523 l = LIST_FIRST(&p->p_lwps);
2524
2525 if (vp != NULL) {
2526 if (auto_configured == 1) {
2527 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2528 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2529 vput(vp);
2530
2531 } else {
2532 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2533 }
2534 }
2535 }
2536
2537
2538 void
2539 rf_UnconfigureVnodes(raidPtr)
2540 RF_Raid_t *raidPtr;
2541 {
2542 int r,c;
2543 struct vnode *vp;
2544 int acd;
2545
2546
2547 /* We take this opportunity to close the vnodes like we should.. */
2548
2549 for (r = 0; r < raidPtr->numRow; r++) {
2550 for (c = 0; c < raidPtr->numCol; c++) {
2551 vp = raidPtr->raid_cinfo[r][c].ci_vp;
2552 acd = raidPtr->Disks[r][c].auto_configured;
2553 rf_close_component(raidPtr, vp, acd);
2554 raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2555 raidPtr->Disks[r][c].auto_configured = 0;
2556 }
2557 }
2558 for (r = 0; r < raidPtr->numSpare; r++) {
2559 vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2560 acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2561 rf_close_component(raidPtr, vp, acd);
2562 raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2563 raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2564 }
2565 }
2566
2567
2568 void
2569 rf_ReconThread(req)
2570 struct rf_recon_req *req;
2571 {
2572 int s;
2573 RF_Raid_t *raidPtr;
2574
2575 s = splbio();
2576 raidPtr = (RF_Raid_t *) req->raidPtr;
2577 raidPtr->recon_in_progress = 1;
2578
2579 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2580 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2581
2582 /* XXX get rid of this! we don't need it at all.. */
2583 RF_Free(req, sizeof(*req));
2584
2585 raidPtr->recon_in_progress = 0;
2586 splx(s);
2587
2588 /* That's all... */
2589 kthread_exit(0); /* does not return */
2590 }
2591
2592 void
2593 rf_RewriteParityThread(raidPtr)
2594 RF_Raid_t *raidPtr;
2595 {
2596 int retcode;
2597 int s;
2598
2599 raidPtr->parity_rewrite_in_progress = 1;
2600 s = splbio();
2601 retcode = rf_RewriteParity(raidPtr);
2602 splx(s);
2603 if (retcode) {
2604 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2605 } else {
2606 /* set the clean bit! If we shutdown correctly,
2607 the clean bit on each component label will get
2608 set */
2609 raidPtr->parity_good = RF_RAID_CLEAN;
2610 }
2611 raidPtr->parity_rewrite_in_progress = 0;
2612
2613 /* Anyone waiting for us to stop? If so, inform them... */
2614 if (raidPtr->waitShutdown) {
2615 wakeup(&raidPtr->parity_rewrite_in_progress);
2616 }
2617
2618 /* That's all... */
2619 kthread_exit(0); /* does not return */
2620 }
2621
2622
2623 void
2624 rf_CopybackThread(raidPtr)
2625 RF_Raid_t *raidPtr;
2626 {
2627 int s;
2628
2629 raidPtr->copyback_in_progress = 1;
2630 s = splbio();
2631 rf_CopybackReconstructedData(raidPtr);
2632 splx(s);
2633 raidPtr->copyback_in_progress = 0;
2634
2635 /* That's all... */
2636 kthread_exit(0); /* does not return */
2637 }
2638
2639
2640 void
2641 rf_ReconstructInPlaceThread(req)
2642 struct rf_recon_req *req;
2643 {
2644 int s;
2645 RF_Raid_t *raidPtr;
2646
2647 s = splbio();
2648 raidPtr = req->raidPtr;
2649 raidPtr->recon_in_progress = 1;
2650 rf_ReconstructInPlace(raidPtr, req->row, req->col);
2651 RF_Free(req, sizeof(*req));
2652 raidPtr->recon_in_progress = 0;
2653 splx(s);
2654
2655 /* That's all... */
2656 kthread_exit(0); /* does not return */
2657 }
2658
2659 RF_AutoConfig_t *
2660 rf_find_raid_components()
2661 {
2662 struct vnode *vp;
2663 struct disklabel label;
2664 struct device *dv;
2665 dev_t dev;
2666 int bmajor;
2667 int error;
2668 int i;
2669 int good_one;
2670 RF_ComponentLabel_t *clabel;
2671 RF_AutoConfig_t *ac_list;
2672 RF_AutoConfig_t *ac;
2673
2674
2675 /* initialize the AutoConfig list */
2676 ac_list = NULL;
2677
2678 /* we begin by trolling through *all* the devices on the system */
2679
2680 for (dv = alldevs.tqh_first; dv != NULL;
2681 dv = dv->dv_list.tqe_next) {
2682
2683 /* we are only interested in disks... */
2684 if (dv->dv_class != DV_DISK)
2685 continue;
2686
2687 /* we don't care about floppies... */
2688 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2689 continue;
2690 }
2691
2692 /* we don't care about CD's... */
2693 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2694 continue;
2695 }
2696
2697 /* hdfd is the Atari/Hades floppy driver */
2698 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2699 continue;
2700 }
2701 /* fdisa is the Atari/Milan floppy driver */
2702 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2703 continue;
2704 }
2705
2706 /* need to find the device_name_to_block_device_major stuff */
2707 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2708
2709 /* get a vnode for the raw partition of this disk */
2710
2711 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2712 if (bdevvp(dev, &vp))
2713 panic("RAID can't alloc vnode");
2714
2715 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2716
2717 if (error) {
2718 /* "Who cares." Continue looking
2719 for something that exists*/
2720 vput(vp);
2721 continue;
2722 }
2723
2724 /* Ok, the disk exists. Go get the disklabel. */
2725 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2726 if (error) {
2727 /*
2728 * XXX can't happen - open() would
2729 * have errored out (or faked up one)
2730 */
2731 printf("can't get label for dev %s%c (%d)!?!?\n",
2732 dv->dv_xname, 'a' + RAW_PART, error);
2733 }
2734
2735 /* don't need this any more. We'll allocate it again
2736 a little later if we really do... */
2737 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2738 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2739 vput(vp);
2740
2741 for (i=0; i < label.d_npartitions; i++) {
2742 /* We only support partitions marked as RAID */
2743 if (label.d_partitions[i].p_fstype != FS_RAID)
2744 continue;
2745
2746 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2747 if (bdevvp(dev, &vp))
2748 panic("RAID can't alloc vnode");
2749
2750 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2751 if (error) {
2752 /* Whatever... */
2753 vput(vp);
2754 continue;
2755 }
2756
2757 good_one = 0;
2758
2759 clabel = (RF_ComponentLabel_t *)
2760 malloc(sizeof(RF_ComponentLabel_t),
2761 M_RAIDFRAME, M_NOWAIT);
2762 if (clabel == NULL) {
2763 /* XXX CLEANUP HERE */
2764 printf("RAID auto config: out of memory!\n");
2765 return(NULL); /* XXX probably should panic? */
2766 }
2767
2768 if (!raidread_component_label(dev, vp, clabel)) {
2769 /* Got the label. Does it look reasonable? */
2770 if (rf_reasonable_label(clabel) &&
2771 (clabel->partitionSize <=
2772 label.d_partitions[i].p_size)) {
2773 #if DEBUG
2774 printf("Component on: %s%c: %d\n",
2775 dv->dv_xname, 'a'+i,
2776 label.d_partitions[i].p_size);
2777 rf_print_component_label(clabel);
2778 #endif
2779 /* if it's reasonable, add it,
2780 else ignore it. */
2781 ac = (RF_AutoConfig_t *)
2782 malloc(sizeof(RF_AutoConfig_t),
2783 M_RAIDFRAME,
2784 M_NOWAIT);
2785 if (ac == NULL) {
2786 /* XXX should panic?? */
2787 return(NULL);
2788 }
2789
2790 sprintf(ac->devname, "%s%c",
2791 dv->dv_xname, 'a'+i);
2792 ac->dev = dev;
2793 ac->vp = vp;
2794 ac->clabel = clabel;
2795 ac->next = ac_list;
2796 ac_list = ac;
2797 good_one = 1;
2798 }
2799 }
2800 if (!good_one) {
2801 /* cleanup */
2802 free(clabel, M_RAIDFRAME);
2803 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2804 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2805 vput(vp);
2806 }
2807 }
2808 }
2809 return(ac_list);
2810 }
2811
2812 static int
2813 rf_reasonable_label(clabel)
2814 RF_ComponentLabel_t *clabel;
2815 {
2816
2817 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2818 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2819 ((clabel->clean == RF_RAID_CLEAN) ||
2820 (clabel->clean == RF_RAID_DIRTY)) &&
2821 clabel->row >=0 &&
2822 clabel->column >= 0 &&
2823 clabel->num_rows > 0 &&
2824 clabel->num_columns > 0 &&
2825 clabel->row < clabel->num_rows &&
2826 clabel->column < clabel->num_columns &&
2827 clabel->blockSize > 0 &&
2828 clabel->numBlocks > 0) {
2829 /* label looks reasonable enough... */
2830 return(1);
2831 }
2832 return(0);
2833 }
2834
2835
2836 #if DEBUG
2837 void
2838 rf_print_component_label(clabel)
2839 RF_ComponentLabel_t *clabel;
2840 {
2841 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2842 clabel->row, clabel->column,
2843 clabel->num_rows, clabel->num_columns);
2844 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2845 clabel->version, clabel->serial_number,
2846 clabel->mod_counter);
2847 printf(" Clean: %s Status: %d\n",
2848 clabel->clean ? "Yes" : "No", clabel->status );
2849 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2850 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2851 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2852 (char) clabel->parityConfig, clabel->blockSize,
2853 clabel->numBlocks);
2854 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2855 printf(" Contains root partition: %s\n",
2856 clabel->root_partition ? "Yes" : "No" );
2857 printf(" Last configured as: raid%d\n", clabel->last_unit );
2858 #if 0
2859 printf(" Config order: %d\n", clabel->config_order);
2860 #endif
2861
2862 }
2863 #endif
2864
2865 RF_ConfigSet_t *
2866 rf_create_auto_sets(ac_list)
2867 RF_AutoConfig_t *ac_list;
2868 {
2869 RF_AutoConfig_t *ac;
2870 RF_ConfigSet_t *config_sets;
2871 RF_ConfigSet_t *cset;
2872 RF_AutoConfig_t *ac_next;
2873
2874
2875 config_sets = NULL;
2876
2877 /* Go through the AutoConfig list, and figure out which components
2878 belong to what sets. */
2879 ac = ac_list;
2880 while(ac!=NULL) {
2881 /* we're going to putz with ac->next, so save it here
2882 for use at the end of the loop */
2883 ac_next = ac->next;
2884
2885 if (config_sets == NULL) {
2886 /* will need at least this one... */
2887 config_sets = (RF_ConfigSet_t *)
2888 malloc(sizeof(RF_ConfigSet_t),
2889 M_RAIDFRAME, M_NOWAIT);
2890 if (config_sets == NULL) {
2891 panic("rf_create_auto_sets: No memory!");
2892 }
2893 /* this one is easy :) */
2894 config_sets->ac = ac;
2895 config_sets->next = NULL;
2896 config_sets->rootable = 0;
2897 ac->next = NULL;
2898 } else {
2899 /* which set does this component fit into? */
2900 cset = config_sets;
2901 while(cset!=NULL) {
2902 if (rf_does_it_fit(cset, ac)) {
2903 /* looks like it matches... */
2904 ac->next = cset->ac;
2905 cset->ac = ac;
2906 break;
2907 }
2908 cset = cset->next;
2909 }
2910 if (cset==NULL) {
2911 /* didn't find a match above... new set..*/
2912 cset = (RF_ConfigSet_t *)
2913 malloc(sizeof(RF_ConfigSet_t),
2914 M_RAIDFRAME, M_NOWAIT);
2915 if (cset == NULL) {
2916 panic("rf_create_auto_sets: No memory!");
2917 }
2918 cset->ac = ac;
2919 ac->next = NULL;
2920 cset->next = config_sets;
2921 cset->rootable = 0;
2922 config_sets = cset;
2923 }
2924 }
2925 ac = ac_next;
2926 }
2927
2928
2929 return(config_sets);
2930 }
2931
2932 static int
2933 rf_does_it_fit(cset, ac)
2934 RF_ConfigSet_t *cset;
2935 RF_AutoConfig_t *ac;
2936 {
2937 RF_ComponentLabel_t *clabel1, *clabel2;
2938
2939 /* If this one matches the *first* one in the set, that's good
2940 enough, since the other members of the set would have been
2941 through here too... */
2942 /* note that we are not checking partitionSize here..
2943
2944 Note that we are also not checking the mod_counters here.
2945 If everything else matches execpt the mod_counter, that's
2946 good enough for this test. We will deal with the mod_counters
2947 a little later in the autoconfiguration process.
2948
2949 (clabel1->mod_counter == clabel2->mod_counter) &&
2950
2951 The reason we don't check for this is that failed disks
2952 will have lower modification counts. If those disks are
2953 not added to the set they used to belong to, then they will
2954 form their own set, which may result in 2 different sets,
2955 for example, competing to be configured at raid0, and
2956 perhaps competing to be the root filesystem set. If the
2957 wrong ones get configured, or both attempt to become /,
2958 weird behaviour and or serious lossage will occur. Thus we
2959 need to bring them into the fold here, and kick them out at
2960 a later point.
2961
2962 */
2963
2964 clabel1 = cset->ac->clabel;
2965 clabel2 = ac->clabel;
2966 if ((clabel1->version == clabel2->version) &&
2967 (clabel1->serial_number == clabel2->serial_number) &&
2968 (clabel1->num_rows == clabel2->num_rows) &&
2969 (clabel1->num_columns == clabel2->num_columns) &&
2970 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2971 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2972 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2973 (clabel1->parityConfig == clabel2->parityConfig) &&
2974 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2975 (clabel1->blockSize == clabel2->blockSize) &&
2976 (clabel1->numBlocks == clabel2->numBlocks) &&
2977 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2978 (clabel1->root_partition == clabel2->root_partition) &&
2979 (clabel1->last_unit == clabel2->last_unit) &&
2980 (clabel1->config_order == clabel2->config_order)) {
2981 /* if it get's here, it almost *has* to be a match */
2982 } else {
2983 /* it's not consistent with somebody in the set..
2984 punt */
2985 return(0);
2986 }
2987 /* all was fine.. it must fit... */
2988 return(1);
2989 }
2990
2991 int
2992 rf_have_enough_components(cset)
2993 RF_ConfigSet_t *cset;
2994 {
2995 RF_AutoConfig_t *ac;
2996 RF_AutoConfig_t *auto_config;
2997 RF_ComponentLabel_t *clabel;
2998 int r,c;
2999 int num_rows;
3000 int num_cols;
3001 int num_missing;
3002 int mod_counter;
3003 int mod_counter_found;
3004 int even_pair_failed;
3005 char parity_type;
3006
3007
3008 /* check to see that we have enough 'live' components
3009 of this set. If so, we can configure it if necessary */
3010
3011 num_rows = cset->ac->clabel->num_rows;
3012 num_cols = cset->ac->clabel->num_columns;
3013 parity_type = cset->ac->clabel->parityConfig;
3014
3015 /* XXX Check for duplicate components!?!?!? */
3016
3017 /* Determine what the mod_counter is supposed to be for this set. */
3018
3019 mod_counter_found = 0;
3020 mod_counter = 0;
3021 ac = cset->ac;
3022 while(ac!=NULL) {
3023 if (mod_counter_found==0) {
3024 mod_counter = ac->clabel->mod_counter;
3025 mod_counter_found = 1;
3026 } else {
3027 if (ac->clabel->mod_counter > mod_counter) {
3028 mod_counter = ac->clabel->mod_counter;
3029 }
3030 }
3031 ac = ac->next;
3032 }
3033
3034 num_missing = 0;
3035 auto_config = cset->ac;
3036
3037 for(r=0; r<num_rows; r++) {
3038 even_pair_failed = 0;
3039 for(c=0; c<num_cols; c++) {
3040 ac = auto_config;
3041 while(ac!=NULL) {
3042 if ((ac->clabel->row == r) &&
3043 (ac->clabel->column == c) &&
3044 (ac->clabel->mod_counter == mod_counter)) {
3045 /* it's this one... */
3046 #if DEBUG
3047 printf("Found: %s at %d,%d\n",
3048 ac->devname,r,c);
3049 #endif
3050 break;
3051 }
3052 ac=ac->next;
3053 }
3054 if (ac==NULL) {
3055 /* Didn't find one here! */
3056 /* special case for RAID 1, especially
3057 where there are more than 2
3058 components (where RAIDframe treats
3059 things a little differently :( ) */
3060 if (parity_type == '1') {
3061 if (c%2 == 0) { /* even component */
3062 even_pair_failed = 1;
3063 } else { /* odd component. If
3064 we're failed, and
3065 so is the even
3066 component, it's
3067 "Good Night, Charlie" */
3068 if (even_pair_failed == 1) {
3069 return(0);
3070 }
3071 }
3072 } else {
3073 /* normal accounting */
3074 num_missing++;
3075 }
3076 }
3077 if ((parity_type == '1') && (c%2 == 1)) {
3078 /* Just did an even component, and we didn't
3079 bail.. reset the even_pair_failed flag,
3080 and go on to the next component.... */
3081 even_pair_failed = 0;
3082 }
3083 }
3084 }
3085
3086 clabel = cset->ac->clabel;
3087
3088 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3089 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3090 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3091 /* XXX this needs to be made *much* more general */
3092 /* Too many failures */
3093 return(0);
3094 }
3095 /* otherwise, all is well, and we've got enough to take a kick
3096 at autoconfiguring this set */
3097 return(1);
3098 }
3099
3100 void
3101 rf_create_configuration(ac,config,raidPtr)
3102 RF_AutoConfig_t *ac;
3103 RF_Config_t *config;
3104 RF_Raid_t *raidPtr;
3105 {
3106 RF_ComponentLabel_t *clabel;
3107 int i;
3108
3109 clabel = ac->clabel;
3110
3111 /* 1. Fill in the common stuff */
3112 config->numRow = clabel->num_rows;
3113 config->numCol = clabel->num_columns;
3114 config->numSpare = 0; /* XXX should this be set here? */
3115 config->sectPerSU = clabel->sectPerSU;
3116 config->SUsPerPU = clabel->SUsPerPU;
3117 config->SUsPerRU = clabel->SUsPerRU;
3118 config->parityConfig = clabel->parityConfig;
3119 /* XXX... */
3120 strcpy(config->diskQueueType,"fifo");
3121 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3122 config->layoutSpecificSize = 0; /* XXX ?? */
3123
3124 while(ac!=NULL) {
3125 /* row/col values will be in range due to the checks
3126 in reasonable_label() */
3127 strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3128 ac->devname);
3129 ac = ac->next;
3130 }
3131
3132 for(i=0;i<RF_MAXDBGV;i++) {
3133 config->debugVars[i][0] = NULL;
3134 }
3135 }
3136
3137 int
3138 rf_set_autoconfig(raidPtr, new_value)
3139 RF_Raid_t *raidPtr;
3140 int new_value;
3141 {
3142 RF_ComponentLabel_t clabel;
3143 struct vnode *vp;
3144 dev_t dev;
3145 int row, column;
3146 int sparecol;
3147
3148 raidPtr->autoconfigure = new_value;
3149 for(row=0; row<raidPtr->numRow; row++) {
3150 for(column=0; column<raidPtr->numCol; column++) {
3151 if (raidPtr->Disks[row][column].status ==
3152 rf_ds_optimal) {
3153 dev = raidPtr->Disks[row][column].dev;
3154 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3155 raidread_component_label(dev, vp, &clabel);
3156 clabel.autoconfigure = new_value;
3157 raidwrite_component_label(dev, vp, &clabel);
3158 }
3159 }
3160 }
3161 for(column = 0; column < raidPtr->numSpare ; column++) {
3162 sparecol = raidPtr->numCol + column;
3163 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3164 dev = raidPtr->Disks[0][sparecol].dev;
3165 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3166 raidread_component_label(dev, vp, &clabel);
3167 clabel.autoconfigure = new_value;
3168 raidwrite_component_label(dev, vp, &clabel);
3169 }
3170 }
3171 return(new_value);
3172 }
3173
3174 int
3175 rf_set_rootpartition(raidPtr, new_value)
3176 RF_Raid_t *raidPtr;
3177 int new_value;
3178 {
3179 RF_ComponentLabel_t clabel;
3180 struct vnode *vp;
3181 dev_t dev;
3182 int row, column;
3183 int sparecol;
3184
3185 raidPtr->root_partition = new_value;
3186 for(row=0; row<raidPtr->numRow; row++) {
3187 for(column=0; column<raidPtr->numCol; column++) {
3188 if (raidPtr->Disks[row][column].status ==
3189 rf_ds_optimal) {
3190 dev = raidPtr->Disks[row][column].dev;
3191 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3192 raidread_component_label(dev, vp, &clabel);
3193 clabel.root_partition = new_value;
3194 raidwrite_component_label(dev, vp, &clabel);
3195 }
3196 }
3197 }
3198 for(column = 0; column < raidPtr->numSpare ; column++) {
3199 sparecol = raidPtr->numCol + column;
3200 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3201 dev = raidPtr->Disks[0][sparecol].dev;
3202 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3203 raidread_component_label(dev, vp, &clabel);
3204 clabel.root_partition = new_value;
3205 raidwrite_component_label(dev, vp, &clabel);
3206 }
3207 }
3208 return(new_value);
3209 }
3210
3211 void
3212 rf_release_all_vps(cset)
3213 RF_ConfigSet_t *cset;
3214 {
3215 RF_AutoConfig_t *ac;
3216
3217 ac = cset->ac;
3218 while(ac!=NULL) {
3219 /* Close the vp, and give it back */
3220 if (ac->vp) {
3221 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3222 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3223 vput(ac->vp);
3224 ac->vp = NULL;
3225 }
3226 ac = ac->next;
3227 }
3228 }
3229
3230
3231 void
3232 rf_cleanup_config_set(cset)
3233 RF_ConfigSet_t *cset;
3234 {
3235 RF_AutoConfig_t *ac;
3236 RF_AutoConfig_t *next_ac;
3237
3238 ac = cset->ac;
3239 while(ac!=NULL) {
3240 next_ac = ac->next;
3241 /* nuke the label */
3242 free(ac->clabel, M_RAIDFRAME);
3243 /* cleanup the config structure */
3244 free(ac, M_RAIDFRAME);
3245 /* "next.." */
3246 ac = next_ac;
3247 }
3248 /* and, finally, nuke the config set */
3249 free(cset, M_RAIDFRAME);
3250 }
3251
3252
3253 void
3254 raid_init_component_label(raidPtr, clabel)
3255 RF_Raid_t *raidPtr;
3256 RF_ComponentLabel_t *clabel;
3257 {
3258 /* current version number */
3259 clabel->version = RF_COMPONENT_LABEL_VERSION;
3260 clabel->serial_number = raidPtr->serial_number;
3261 clabel->mod_counter = raidPtr->mod_counter;
3262 clabel->num_rows = raidPtr->numRow;
3263 clabel->num_columns = raidPtr->numCol;
3264 clabel->clean = RF_RAID_DIRTY; /* not clean */
3265 clabel->status = rf_ds_optimal; /* "It's good!" */
3266
3267 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3268 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3269 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3270
3271 clabel->blockSize = raidPtr->bytesPerSector;
3272 clabel->numBlocks = raidPtr->sectorsPerDisk;
3273
3274 /* XXX not portable */
3275 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3276 clabel->maxOutstanding = raidPtr->maxOutstanding;
3277 clabel->autoconfigure = raidPtr->autoconfigure;
3278 clabel->root_partition = raidPtr->root_partition;
3279 clabel->last_unit = raidPtr->raidid;
3280 clabel->config_order = raidPtr->config_order;
3281 }
3282
3283 int
3284 rf_auto_config_set(cset,unit)
3285 RF_ConfigSet_t *cset;
3286 int *unit;
3287 {
3288 RF_Raid_t *raidPtr;
3289 RF_Config_t *config;
3290 int raidID;
3291 int retcode;
3292
3293 #if DEBUG
3294 printf("RAID autoconfigure\n");
3295 #endif
3296
3297 retcode = 0;
3298 *unit = -1;
3299
3300 /* 1. Create a config structure */
3301
3302 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3303 M_RAIDFRAME,
3304 M_NOWAIT);
3305 if (config==NULL) {
3306 printf("Out of mem!?!?\n");
3307 /* XXX do something more intelligent here. */
3308 return(1);
3309 }
3310
3311 memset(config, 0, sizeof(RF_Config_t));
3312
3313 /*
3314 2. Figure out what RAID ID this one is supposed to live at
3315 See if we can get the same RAID dev that it was configured
3316 on last time..
3317 */
3318
3319 raidID = cset->ac->clabel->last_unit;
3320 if ((raidID < 0) || (raidID >= numraid)) {
3321 /* let's not wander off into lala land. */
3322 raidID = numraid - 1;
3323 }
3324 if (raidPtrs[raidID]->valid != 0) {
3325
3326 /*
3327 Nope... Go looking for an alternative...
3328 Start high so we don't immediately use raid0 if that's
3329 not taken.
3330 */
3331
3332 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3333 if (raidPtrs[raidID]->valid == 0) {
3334 /* can use this one! */
3335 break;
3336 }
3337 }
3338 }
3339
3340 if (raidID < 0) {
3341 /* punt... */
3342 printf("Unable to auto configure this set!\n");
3343 printf("(Out of RAID devs!)\n");
3344 return(1);
3345 }
3346
3347 #if DEBUG
3348 printf("Configuring raid%d:\n",raidID);
3349 #endif
3350
3351 raidPtr = raidPtrs[raidID];
3352
3353 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3354 raidPtr->raidid = raidID;
3355 raidPtr->openings = RAIDOUTSTANDING;
3356
3357 /* 3. Build the configuration structure */
3358 rf_create_configuration(cset->ac, config, raidPtr);
3359
3360 /* 4. Do the configuration */
3361 retcode = rf_Configure(raidPtr, config, cset->ac);
3362
3363 if (retcode == 0) {
3364
3365 raidinit(raidPtrs[raidID]);
3366
3367 rf_markalldirty(raidPtrs[raidID]);
3368 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3369 if (cset->ac->clabel->root_partition==1) {
3370 /* everything configured just fine. Make a note
3371 that this set is eligible to be root. */
3372 cset->rootable = 1;
3373 /* XXX do this here? */
3374 raidPtrs[raidID]->root_partition = 1;
3375 }
3376 }
3377
3378 /* 5. Cleanup */
3379 free(config, M_RAIDFRAME);
3380
3381 *unit = raidID;
3382 return(retcode);
3383 }
3384
3385 void
3386 rf_disk_unbusy(desc)
3387 RF_RaidAccessDesc_t *desc;
3388 {
3389 struct buf *bp;
3390
3391 bp = (struct buf *)desc->bp;
3392 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3393 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3394 }
3395