rf_netbsdkintf.c revision 1.162 1 /* $NetBSD: rf_netbsdkintf.c,v 1.162 2003/08/07 16:31:19 agc Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.162 2003/08/07 16:31:19 agc Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/user.h>
169 #include <sys/reboot.h>
170
171 #include <dev/raidframe/raidframevar.h>
172 #include <dev/raidframe/raidframeio.h>
173 #include "raid.h"
174 #include "opt_raid_autoconfig.h"
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188
189 #ifdef DEBUG
190 int rf_kdebug_level = 0;
191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
192 #else /* DEBUG */
193 #define db1_printf(a) { }
194 #endif /* DEBUG */
195
196 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
197
198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
199
200 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
201 * spare table */
202 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
203 * installation process */
204
205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
206
207 /* prototypes */
208 static void KernelWakeupFunc(struct buf * bp);
209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
210 dev_t dev, RF_SectorNum_t startSect,
211 RF_SectorCount_t numSect, caddr_t buf,
212 void (*cbFunc) (struct buf *), void *cbArg,
213 int logBytesPerSector, struct proc * b_proc);
214 static void raidinit(RF_Raid_t *);
215
216 void raidattach(int);
217
218 dev_type_open(raidopen);
219 dev_type_close(raidclose);
220 dev_type_read(raidread);
221 dev_type_write(raidwrite);
222 dev_type_ioctl(raidioctl);
223 dev_type_strategy(raidstrategy);
224 dev_type_dump(raiddump);
225 dev_type_size(raidsize);
226
227 const struct bdevsw raid_bdevsw = {
228 raidopen, raidclose, raidstrategy, raidioctl,
229 raiddump, raidsize, D_DISK
230 };
231
232 const struct cdevsw raid_cdevsw = {
233 raidopen, raidclose, raidread, raidwrite, raidioctl,
234 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
235 };
236
237 /*
238 * Pilfered from ccd.c
239 */
240
241 struct raidbuf {
242 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
243 struct buf *rf_obp; /* ptr. to original I/O buf */
244 RF_DiskQueueData_t *req;/* the request that this was part of.. */
245 };
246
247 /* component buffer pool */
248 struct pool raidframe_cbufpool;
249
250 /* XXX Not sure if the following should be replacing the raidPtrs above,
251 or if it should be used in conjunction with that...
252 */
253
254 struct raid_softc {
255 int sc_flags; /* flags */
256 int sc_cflags; /* configuration flags */
257 size_t sc_size; /* size of the raid device */
258 char sc_xname[20]; /* XXX external name */
259 struct disk sc_dkdev; /* generic disk device info */
260 struct bufq_state buf_queue; /* used for the device queue */
261 };
262 /* sc_flags */
263 #define RAIDF_INITED 0x01 /* unit has been initialized */
264 #define RAIDF_WLABEL 0x02 /* label area is writable */
265 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
266 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
267 #define RAIDF_LOCKED 0x80 /* unit is locked */
268
269 #define raidunit(x) DISKUNIT(x)
270 int numraid = 0;
271
272 /*
273 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
274 * Be aware that large numbers can allow the driver to consume a lot of
275 * kernel memory, especially on writes, and in degraded mode reads.
276 *
277 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
278 * a single 64K write will typically require 64K for the old data,
279 * 64K for the old parity, and 64K for the new parity, for a total
280 * of 192K (if the parity buffer is not re-used immediately).
281 * Even it if is used immediately, that's still 128K, which when multiplied
282 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
283 *
284 * Now in degraded mode, for example, a 64K read on the above setup may
285 * require data reconstruction, which will require *all* of the 4 remaining
286 * disks to participate -- 4 * 32K/disk == 128K again.
287 */
288
289 #ifndef RAIDOUTSTANDING
290 #define RAIDOUTSTANDING 6
291 #endif
292
293 #define RAIDLABELDEV(dev) \
294 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
295
296 /* declared here, and made public, for the benefit of KVM stuff.. */
297 struct raid_softc *raid_softc;
298
299 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
300 struct disklabel *);
301 static void raidgetdisklabel(dev_t);
302 static void raidmakedisklabel(struct raid_softc *);
303
304 static int raidlock(struct raid_softc *);
305 static void raidunlock(struct raid_softc *);
306
307 static void rf_markalldirty(RF_Raid_t *);
308
309 struct device *raidrootdev;
310
311 void rf_ReconThread(struct rf_recon_req *);
312 /* XXX what I want is: */
313 /*void rf_ReconThread(RF_Raid_t *raidPtr); */
314 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
315 void rf_CopybackThread(RF_Raid_t *raidPtr);
316 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
317 int rf_autoconfig(struct device *self);
318 void rf_buildroothack(RF_ConfigSet_t *);
319
320 RF_AutoConfig_t *rf_find_raid_components(void);
321 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
322 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
323 static int rf_reasonable_label(RF_ComponentLabel_t *);
324 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
325 int rf_set_autoconfig(RF_Raid_t *, int);
326 int rf_set_rootpartition(RF_Raid_t *, int);
327 void rf_release_all_vps(RF_ConfigSet_t *);
328 void rf_cleanup_config_set(RF_ConfigSet_t *);
329 int rf_have_enough_components(RF_ConfigSet_t *);
330 int rf_auto_config_set(RF_ConfigSet_t *, int *);
331
332 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
333 allow autoconfig to take place.
334 Note that this is overridden by having
335 RAID_AUTOCONFIG as an option in the
336 kernel config file. */
337
338 void
339 raidattach(num)
340 int num;
341 {
342 int raidID;
343 int i, rc;
344
345 #ifdef DEBUG
346 printf("raidattach: Asked for %d units\n", num);
347 #endif
348
349 if (num <= 0) {
350 #ifdef DIAGNOSTIC
351 panic("raidattach: count <= 0");
352 #endif
353 return;
354 }
355 /* This is where all the initialization stuff gets done. */
356
357 numraid = num;
358
359 /* Make some space for requested number of units... */
360
361 RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
362 if (raidPtrs == NULL) {
363 panic("raidPtrs is NULL!!");
364 }
365
366 /* Initialize the component buffer pool. */
367 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
368 0, 0, "raidpl", NULL);
369
370 rc = rf_mutex_init(&rf_sparet_wait_mutex);
371 if (rc) {
372 RF_PANIC();
373 }
374
375 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
376
377 for (i = 0; i < num; i++)
378 raidPtrs[i] = NULL;
379 rc = rf_BootRaidframe();
380 if (rc == 0)
381 printf("Kernelized RAIDframe activated\n");
382 else
383 panic("Serious error booting RAID!!");
384
385 /* put together some datastructures like the CCD device does.. This
386 * lets us lock the device and what-not when it gets opened. */
387
388 raid_softc = (struct raid_softc *)
389 malloc(num * sizeof(struct raid_softc),
390 M_RAIDFRAME, M_NOWAIT);
391 if (raid_softc == NULL) {
392 printf("WARNING: no memory for RAIDframe driver\n");
393 return;
394 }
395
396 memset(raid_softc, 0, num * sizeof(struct raid_softc));
397
398 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
399 M_RAIDFRAME, M_NOWAIT);
400 if (raidrootdev == NULL) {
401 panic("No memory for RAIDframe driver!!?!?!");
402 }
403
404 for (raidID = 0; raidID < num; raidID++) {
405 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
406
407 raidrootdev[raidID].dv_class = DV_DISK;
408 raidrootdev[raidID].dv_cfdata = NULL;
409 raidrootdev[raidID].dv_unit = raidID;
410 raidrootdev[raidID].dv_parent = NULL;
411 raidrootdev[raidID].dv_flags = 0;
412 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
413
414 RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
415 (RF_Raid_t *));
416 if (raidPtrs[raidID] == NULL) {
417 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
418 numraid = raidID;
419 return;
420 }
421 }
422
423 #ifdef RAID_AUTOCONFIG
424 raidautoconfig = 1;
425 #endif
426
427 /*
428 * Register a finalizer which will be used to auto-config RAID
429 * sets once all real hardware devices have been found.
430 */
431 if (config_finalize_register(NULL, rf_autoconfig) != 0)
432 printf("WARNING: unable to register RAIDframe finalizer\n");
433 }
434
435 int
436 rf_autoconfig(struct device *self)
437 {
438 RF_AutoConfig_t *ac_list;
439 RF_ConfigSet_t *config_sets;
440
441 if (raidautoconfig == 0)
442 return (0);
443
444 /* XXX This code can only be run once. */
445 raidautoconfig = 0;
446
447 /* 1. locate all RAID components on the system */
448 #ifdef DEBUG
449 printf("Searching for RAID components...\n");
450 #endif
451 ac_list = rf_find_raid_components();
452
453 /* 2. Sort them into their respective sets. */
454 config_sets = rf_create_auto_sets(ac_list);
455
456 /*
457 * 3. Evaluate each set andconfigure the valid ones.
458 * This gets done in rf_buildroothack().
459 */
460 rf_buildroothack(config_sets);
461
462 return (1);
463 }
464
465 void
466 rf_buildroothack(RF_ConfigSet_t *config_sets)
467 {
468 RF_ConfigSet_t *cset;
469 RF_ConfigSet_t *next_cset;
470 int retcode;
471 int raidID;
472 int rootID;
473 int num_root;
474
475 rootID = 0;
476 num_root = 0;
477 cset = config_sets;
478 while(cset != NULL ) {
479 next_cset = cset->next;
480 if (rf_have_enough_components(cset) &&
481 cset->ac->clabel->autoconfigure==1) {
482 retcode = rf_auto_config_set(cset,&raidID);
483 if (!retcode) {
484 if (cset->rootable) {
485 rootID = raidID;
486 num_root++;
487 }
488 } else {
489 /* The autoconfig didn't work :( */
490 #if DEBUG
491 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
492 #endif
493 rf_release_all_vps(cset);
494 }
495 } else {
496 /* we're not autoconfiguring this set...
497 release the associated resources */
498 rf_release_all_vps(cset);
499 }
500 /* cleanup */
501 rf_cleanup_config_set(cset);
502 cset = next_cset;
503 }
504
505 /* we found something bootable... */
506
507 if (num_root == 1) {
508 booted_device = &raidrootdev[rootID];
509 } else if (num_root > 1) {
510 /* we can't guess.. require the user to answer... */
511 boothowto |= RB_ASKNAME;
512 }
513 }
514
515
516 int
517 raidsize(dev)
518 dev_t dev;
519 {
520 struct raid_softc *rs;
521 struct disklabel *lp;
522 int part, unit, omask, size;
523
524 unit = raidunit(dev);
525 if (unit >= numraid)
526 return (-1);
527 rs = &raid_softc[unit];
528
529 if ((rs->sc_flags & RAIDF_INITED) == 0)
530 return (-1);
531
532 part = DISKPART(dev);
533 omask = rs->sc_dkdev.dk_openmask & (1 << part);
534 lp = rs->sc_dkdev.dk_label;
535
536 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
537 return (-1);
538
539 if (lp->d_partitions[part].p_fstype != FS_SWAP)
540 size = -1;
541 else
542 size = lp->d_partitions[part].p_size *
543 (lp->d_secsize / DEV_BSIZE);
544
545 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
546 return (-1);
547
548 return (size);
549
550 }
551
552 int
553 raiddump(dev, blkno, va, size)
554 dev_t dev;
555 daddr_t blkno;
556 caddr_t va;
557 size_t size;
558 {
559 /* Not implemented. */
560 return ENXIO;
561 }
562 /* ARGSUSED */
563 int
564 raidopen(dev, flags, fmt, p)
565 dev_t dev;
566 int flags, fmt;
567 struct proc *p;
568 {
569 int unit = raidunit(dev);
570 struct raid_softc *rs;
571 struct disklabel *lp;
572 int part, pmask;
573 int error = 0;
574
575 if (unit >= numraid)
576 return (ENXIO);
577 rs = &raid_softc[unit];
578
579 if ((error = raidlock(rs)) != 0)
580 return (error);
581 lp = rs->sc_dkdev.dk_label;
582
583 part = DISKPART(dev);
584 pmask = (1 << part);
585
586 if ((rs->sc_flags & RAIDF_INITED) &&
587 (rs->sc_dkdev.dk_openmask == 0))
588 raidgetdisklabel(dev);
589
590 /* make sure that this partition exists */
591
592 if (part != RAW_PART) {
593 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
594 ((part >= lp->d_npartitions) ||
595 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
596 error = ENXIO;
597 raidunlock(rs);
598 return (error);
599 }
600 }
601 /* Prevent this unit from being unconfigured while open. */
602 switch (fmt) {
603 case S_IFCHR:
604 rs->sc_dkdev.dk_copenmask |= pmask;
605 break;
606
607 case S_IFBLK:
608 rs->sc_dkdev.dk_bopenmask |= pmask;
609 break;
610 }
611
612 if ((rs->sc_dkdev.dk_openmask == 0) &&
613 ((rs->sc_flags & RAIDF_INITED) != 0)) {
614 /* First one... mark things as dirty... Note that we *MUST*
615 have done a configure before this. I DO NOT WANT TO BE
616 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
617 THAT THEY BELONG TOGETHER!!!!! */
618 /* XXX should check to see if we're only open for reading
619 here... If so, we needn't do this, but then need some
620 other way of keeping track of what's happened.. */
621
622 rf_markalldirty( raidPtrs[unit] );
623 }
624
625
626 rs->sc_dkdev.dk_openmask =
627 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
628
629 raidunlock(rs);
630
631 return (error);
632
633
634 }
635 /* ARGSUSED */
636 int
637 raidclose(dev, flags, fmt, p)
638 dev_t dev;
639 int flags, fmt;
640 struct proc *p;
641 {
642 int unit = raidunit(dev);
643 struct raid_softc *rs;
644 int error = 0;
645 int part;
646
647 if (unit >= numraid)
648 return (ENXIO);
649 rs = &raid_softc[unit];
650
651 if ((error = raidlock(rs)) != 0)
652 return (error);
653
654 part = DISKPART(dev);
655
656 /* ...that much closer to allowing unconfiguration... */
657 switch (fmt) {
658 case S_IFCHR:
659 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
660 break;
661
662 case S_IFBLK:
663 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
664 break;
665 }
666 rs->sc_dkdev.dk_openmask =
667 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
668
669 if ((rs->sc_dkdev.dk_openmask == 0) &&
670 ((rs->sc_flags & RAIDF_INITED) != 0)) {
671 /* Last one... device is not unconfigured yet.
672 Device shutdown has taken care of setting the
673 clean bits if RAIDF_INITED is not set
674 mark things as clean... */
675
676 rf_update_component_labels(raidPtrs[unit],
677 RF_FINAL_COMPONENT_UPDATE);
678 if (doing_shutdown) {
679 /* last one, and we're going down, so
680 lights out for this RAID set too. */
681 error = rf_Shutdown(raidPtrs[unit]);
682
683 /* It's no longer initialized... */
684 rs->sc_flags &= ~RAIDF_INITED;
685
686 /* Detach the disk. */
687 disk_detach(&rs->sc_dkdev);
688 }
689 }
690
691 raidunlock(rs);
692 return (0);
693
694 }
695
696 void
697 raidstrategy(bp)
698 struct buf *bp;
699 {
700 int s;
701
702 unsigned int raidID = raidunit(bp->b_dev);
703 RF_Raid_t *raidPtr;
704 struct raid_softc *rs = &raid_softc[raidID];
705 struct disklabel *lp;
706 int wlabel;
707
708 if ((rs->sc_flags & RAIDF_INITED) ==0) {
709 bp->b_error = ENXIO;
710 bp->b_flags |= B_ERROR;
711 bp->b_resid = bp->b_bcount;
712 biodone(bp);
713 return;
714 }
715 if (raidID >= numraid || !raidPtrs[raidID]) {
716 bp->b_error = ENODEV;
717 bp->b_flags |= B_ERROR;
718 bp->b_resid = bp->b_bcount;
719 biodone(bp);
720 return;
721 }
722 raidPtr = raidPtrs[raidID];
723 if (!raidPtr->valid) {
724 bp->b_error = ENODEV;
725 bp->b_flags |= B_ERROR;
726 bp->b_resid = bp->b_bcount;
727 biodone(bp);
728 return;
729 }
730 if (bp->b_bcount == 0) {
731 db1_printf(("b_bcount is zero..\n"));
732 biodone(bp);
733 return;
734 }
735 lp = rs->sc_dkdev.dk_label;
736
737 /*
738 * Do bounds checking and adjust transfer. If there's an
739 * error, the bounds check will flag that for us.
740 */
741
742 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
743 if (DISKPART(bp->b_dev) != RAW_PART)
744 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
745 db1_printf(("Bounds check failed!!:%d %d\n",
746 (int) bp->b_blkno, (int) wlabel));
747 biodone(bp);
748 return;
749 }
750 s = splbio();
751
752 bp->b_resid = 0;
753
754 /* stuff it onto our queue */
755 BUFQ_PUT(&rs->buf_queue, bp);
756
757 raidstart(raidPtrs[raidID]);
758
759 splx(s);
760 }
761 /* ARGSUSED */
762 int
763 raidread(dev, uio, flags)
764 dev_t dev;
765 struct uio *uio;
766 int flags;
767 {
768 int unit = raidunit(dev);
769 struct raid_softc *rs;
770 int part;
771
772 if (unit >= numraid)
773 return (ENXIO);
774 rs = &raid_softc[unit];
775
776 if ((rs->sc_flags & RAIDF_INITED) == 0)
777 return (ENXIO);
778 part = DISKPART(dev);
779
780 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
781
782 }
783 /* ARGSUSED */
784 int
785 raidwrite(dev, uio, flags)
786 dev_t dev;
787 struct uio *uio;
788 int flags;
789 {
790 int unit = raidunit(dev);
791 struct raid_softc *rs;
792
793 if (unit >= numraid)
794 return (ENXIO);
795 rs = &raid_softc[unit];
796
797 if ((rs->sc_flags & RAIDF_INITED) == 0)
798 return (ENXIO);
799
800 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
801
802 }
803
804 int
805 raidioctl(dev, cmd, data, flag, p)
806 dev_t dev;
807 u_long cmd;
808 caddr_t data;
809 int flag;
810 struct proc *p;
811 {
812 int unit = raidunit(dev);
813 int error = 0;
814 int part, pmask;
815 struct raid_softc *rs;
816 RF_Config_t *k_cfg, *u_cfg;
817 RF_Raid_t *raidPtr;
818 RF_RaidDisk_t *diskPtr;
819 RF_AccTotals_t *totals;
820 RF_DeviceConfig_t *d_cfg, **ucfgp;
821 u_char *specific_buf;
822 int retcode = 0;
823 int row;
824 int column;
825 int raidid;
826 struct rf_recon_req *rrcopy, *rr;
827 RF_ComponentLabel_t *clabel;
828 RF_ComponentLabel_t ci_label;
829 RF_ComponentLabel_t **clabel_ptr;
830 RF_SingleComponent_t *sparePtr,*componentPtr;
831 RF_SingleComponent_t hot_spare;
832 RF_SingleComponent_t component;
833 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
834 int i, j, d;
835 #ifdef __HAVE_OLD_DISKLABEL
836 struct disklabel newlabel;
837 #endif
838
839 if (unit >= numraid)
840 return (ENXIO);
841 rs = &raid_softc[unit];
842 raidPtr = raidPtrs[unit];
843
844 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
845 (int) DISKPART(dev), (int) unit, (int) cmd));
846
847 /* Must be open for writes for these commands... */
848 switch (cmd) {
849 case DIOCSDINFO:
850 case DIOCWDINFO:
851 #ifdef __HAVE_OLD_DISKLABEL
852 case ODIOCWDINFO:
853 case ODIOCSDINFO:
854 #endif
855 case DIOCWLABEL:
856 if ((flag & FWRITE) == 0)
857 return (EBADF);
858 }
859
860 /* Must be initialized for these... */
861 switch (cmd) {
862 case DIOCGDINFO:
863 case DIOCSDINFO:
864 case DIOCWDINFO:
865 #ifdef __HAVE_OLD_DISKLABEL
866 case ODIOCGDINFO:
867 case ODIOCWDINFO:
868 case ODIOCSDINFO:
869 case ODIOCGDEFLABEL:
870 #endif
871 case DIOCGPART:
872 case DIOCWLABEL:
873 case DIOCGDEFLABEL:
874 case RAIDFRAME_SHUTDOWN:
875 case RAIDFRAME_REWRITEPARITY:
876 case RAIDFRAME_GET_INFO:
877 case RAIDFRAME_RESET_ACCTOTALS:
878 case RAIDFRAME_GET_ACCTOTALS:
879 case RAIDFRAME_KEEP_ACCTOTALS:
880 case RAIDFRAME_GET_SIZE:
881 case RAIDFRAME_FAIL_DISK:
882 case RAIDFRAME_COPYBACK:
883 case RAIDFRAME_CHECK_RECON_STATUS:
884 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
885 case RAIDFRAME_GET_COMPONENT_LABEL:
886 case RAIDFRAME_SET_COMPONENT_LABEL:
887 case RAIDFRAME_ADD_HOT_SPARE:
888 case RAIDFRAME_REMOVE_HOT_SPARE:
889 case RAIDFRAME_INIT_LABELS:
890 case RAIDFRAME_REBUILD_IN_PLACE:
891 case RAIDFRAME_CHECK_PARITY:
892 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
893 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
894 case RAIDFRAME_CHECK_COPYBACK_STATUS:
895 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
896 case RAIDFRAME_SET_AUTOCONFIG:
897 case RAIDFRAME_SET_ROOT:
898 case RAIDFRAME_DELETE_COMPONENT:
899 case RAIDFRAME_INCORPORATE_HOT_SPARE:
900 if ((rs->sc_flags & RAIDF_INITED) == 0)
901 return (ENXIO);
902 }
903
904 switch (cmd) {
905
906 /* configure the system */
907 case RAIDFRAME_CONFIGURE:
908
909 if (raidPtr->valid) {
910 /* There is a valid RAID set running on this unit! */
911 printf("raid%d: Device already configured!\n",unit);
912 return(EINVAL);
913 }
914
915 /* copy-in the configuration information */
916 /* data points to a pointer to the configuration structure */
917
918 u_cfg = *((RF_Config_t **) data);
919 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
920 if (k_cfg == NULL) {
921 return (ENOMEM);
922 }
923 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
924 if (retcode) {
925 RF_Free(k_cfg, sizeof(RF_Config_t));
926 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
927 retcode));
928 return (retcode);
929 }
930 /* allocate a buffer for the layout-specific data, and copy it
931 * in */
932 if (k_cfg->layoutSpecificSize) {
933 if (k_cfg->layoutSpecificSize > 10000) {
934 /* sanity check */
935 RF_Free(k_cfg, sizeof(RF_Config_t));
936 return (EINVAL);
937 }
938 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
939 (u_char *));
940 if (specific_buf == NULL) {
941 RF_Free(k_cfg, sizeof(RF_Config_t));
942 return (ENOMEM);
943 }
944 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
945 k_cfg->layoutSpecificSize);
946 if (retcode) {
947 RF_Free(k_cfg, sizeof(RF_Config_t));
948 RF_Free(specific_buf,
949 k_cfg->layoutSpecificSize);
950 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
951 retcode));
952 return (retcode);
953 }
954 } else
955 specific_buf = NULL;
956 k_cfg->layoutSpecific = specific_buf;
957
958 /* should do some kind of sanity check on the configuration.
959 * Store the sum of all the bytes in the last byte? */
960
961 /* configure the system */
962
963 /*
964 * Clear the entire RAID descriptor, just to make sure
965 * there is no stale data left in the case of a
966 * reconfiguration
967 */
968 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
969 raidPtr->raidid = unit;
970
971 retcode = rf_Configure(raidPtr, k_cfg, NULL);
972
973 if (retcode == 0) {
974
975 /* allow this many simultaneous IO's to
976 this RAID device */
977 raidPtr->openings = RAIDOUTSTANDING;
978
979 raidinit(raidPtr);
980 rf_markalldirty(raidPtr);
981 }
982 /* free the buffers. No return code here. */
983 if (k_cfg->layoutSpecificSize) {
984 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
985 }
986 RF_Free(k_cfg, sizeof(RF_Config_t));
987
988 return (retcode);
989
990 /* shutdown the system */
991 case RAIDFRAME_SHUTDOWN:
992
993 if ((error = raidlock(rs)) != 0)
994 return (error);
995
996 /*
997 * If somebody has a partition mounted, we shouldn't
998 * shutdown.
999 */
1000
1001 part = DISKPART(dev);
1002 pmask = (1 << part);
1003 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1004 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1005 (rs->sc_dkdev.dk_copenmask & pmask))) {
1006 raidunlock(rs);
1007 return (EBUSY);
1008 }
1009
1010 retcode = rf_Shutdown(raidPtr);
1011
1012 /* It's no longer initialized... */
1013 rs->sc_flags &= ~RAIDF_INITED;
1014
1015 /* Detach the disk. */
1016 disk_detach(&rs->sc_dkdev);
1017
1018 raidunlock(rs);
1019
1020 return (retcode);
1021 case RAIDFRAME_GET_COMPONENT_LABEL:
1022 clabel_ptr = (RF_ComponentLabel_t **) data;
1023 /* need to read the component label for the disk indicated
1024 by row,column in clabel */
1025
1026 /* For practice, let's get it directly fromdisk, rather
1027 than from the in-core copy */
1028 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1029 (RF_ComponentLabel_t *));
1030 if (clabel == NULL)
1031 return (ENOMEM);
1032
1033 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1034
1035 retcode = copyin( *clabel_ptr, clabel,
1036 sizeof(RF_ComponentLabel_t));
1037
1038 if (retcode) {
1039 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1040 return(retcode);
1041 }
1042
1043 row = clabel->row;
1044 column = clabel->column;
1045
1046 if ((row < 0) || (row >= raidPtr->numRow) ||
1047 (column < 0) || (column >= raidPtr->numCol +
1048 raidPtr->numSpare)) {
1049 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1050 return(EINVAL);
1051 }
1052
1053 raidread_component_label(raidPtr->Disks[row][column].dev,
1054 raidPtr->raid_cinfo[row][column].ci_vp,
1055 clabel );
1056
1057 retcode = copyout(clabel, *clabel_ptr,
1058 sizeof(RF_ComponentLabel_t));
1059 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1060 return (retcode);
1061
1062 case RAIDFRAME_SET_COMPONENT_LABEL:
1063 clabel = (RF_ComponentLabel_t *) data;
1064
1065 /* XXX check the label for valid stuff... */
1066 /* Note that some things *should not* get modified --
1067 the user should be re-initing the labels instead of
1068 trying to patch things.
1069 */
1070
1071 raidid = raidPtr->raidid;
1072 printf("raid%d: Got component label:\n", raidid);
1073 printf("raid%d: Version: %d\n", raidid, clabel->version);
1074 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1075 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1076 printf("raid%d: Row: %d\n", raidid, clabel->row);
1077 printf("raid%d: Column: %d\n", raidid, clabel->column);
1078 printf("raid%d: Num Rows: %d\n", raidid, clabel->num_rows);
1079 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1080 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1081 printf("raid%d: Status: %d\n", raidid, clabel->status);
1082
1083 row = clabel->row;
1084 column = clabel->column;
1085
1086 if ((row < 0) || (row >= raidPtr->numRow) ||
1087 (column < 0) || (column >= raidPtr->numCol)) {
1088 return(EINVAL);
1089 }
1090
1091 /* XXX this isn't allowed to do anything for now :-) */
1092
1093 /* XXX and before it is, we need to fill in the rest
1094 of the fields!?!?!?! */
1095 #if 0
1096 raidwrite_component_label(
1097 raidPtr->Disks[row][column].dev,
1098 raidPtr->raid_cinfo[row][column].ci_vp,
1099 clabel );
1100 #endif
1101 return (0);
1102
1103 case RAIDFRAME_INIT_LABELS:
1104 clabel = (RF_ComponentLabel_t *) data;
1105 /*
1106 we only want the serial number from
1107 the above. We get all the rest of the information
1108 from the config that was used to create this RAID
1109 set.
1110 */
1111
1112 raidPtr->serial_number = clabel->serial_number;
1113
1114 raid_init_component_label(raidPtr, &ci_label);
1115 ci_label.serial_number = clabel->serial_number;
1116
1117 for(row=0;row<raidPtr->numRow;row++) {
1118 ci_label.row = row;
1119 for(column=0;column<raidPtr->numCol;column++) {
1120 diskPtr = &raidPtr->Disks[row][column];
1121 if (!RF_DEAD_DISK(diskPtr->status)) {
1122 ci_label.partitionSize = diskPtr->partitionSize;
1123 ci_label.column = column;
1124 raidwrite_component_label(
1125 raidPtr->Disks[row][column].dev,
1126 raidPtr->raid_cinfo[row][column].ci_vp,
1127 &ci_label );
1128 }
1129 }
1130 }
1131
1132 return (retcode);
1133 case RAIDFRAME_SET_AUTOCONFIG:
1134 d = rf_set_autoconfig(raidPtr, *(int *) data);
1135 printf("raid%d: New autoconfig value is: %d\n",
1136 raidPtr->raidid, d);
1137 *(int *) data = d;
1138 return (retcode);
1139
1140 case RAIDFRAME_SET_ROOT:
1141 d = rf_set_rootpartition(raidPtr, *(int *) data);
1142 printf("raid%d: New rootpartition value is: %d\n",
1143 raidPtr->raidid, d);
1144 *(int *) data = d;
1145 return (retcode);
1146
1147 /* initialize all parity */
1148 case RAIDFRAME_REWRITEPARITY:
1149
1150 if (raidPtr->Layout.map->faultsTolerated == 0) {
1151 /* Parity for RAID 0 is trivially correct */
1152 raidPtr->parity_good = RF_RAID_CLEAN;
1153 return(0);
1154 }
1155
1156 if (raidPtr->parity_rewrite_in_progress == 1) {
1157 /* Re-write is already in progress! */
1158 return(EINVAL);
1159 }
1160
1161 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1162 rf_RewriteParityThread,
1163 raidPtr,"raid_parity");
1164 return (retcode);
1165
1166
1167 case RAIDFRAME_ADD_HOT_SPARE:
1168 sparePtr = (RF_SingleComponent_t *) data;
1169 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1170 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1171 return(retcode);
1172
1173 case RAIDFRAME_REMOVE_HOT_SPARE:
1174 return(retcode);
1175
1176 case RAIDFRAME_DELETE_COMPONENT:
1177 componentPtr = (RF_SingleComponent_t *)data;
1178 memcpy( &component, componentPtr,
1179 sizeof(RF_SingleComponent_t));
1180 retcode = rf_delete_component(raidPtr, &component);
1181 return(retcode);
1182
1183 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1184 componentPtr = (RF_SingleComponent_t *)data;
1185 memcpy( &component, componentPtr,
1186 sizeof(RF_SingleComponent_t));
1187 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1188 return(retcode);
1189
1190 case RAIDFRAME_REBUILD_IN_PLACE:
1191
1192 if (raidPtr->Layout.map->faultsTolerated == 0) {
1193 /* Can't do this on a RAID 0!! */
1194 return(EINVAL);
1195 }
1196
1197 if (raidPtr->recon_in_progress == 1) {
1198 /* a reconstruct is already in progress! */
1199 return(EINVAL);
1200 }
1201
1202 componentPtr = (RF_SingleComponent_t *) data;
1203 memcpy( &component, componentPtr,
1204 sizeof(RF_SingleComponent_t));
1205 row = component.row;
1206 column = component.column;
1207
1208 if ((row < 0) || (row >= raidPtr->numRow) ||
1209 (column < 0) || (column >= raidPtr->numCol)) {
1210 return(EINVAL);
1211 }
1212
1213 RF_LOCK_MUTEX(raidPtr->mutex);
1214 if ((raidPtr->Disks[row][column].status == rf_ds_optimal) &&
1215 (raidPtr->numFailures > 0)) {
1216 /* XXX 0 above shouldn't be constant!!! */
1217 /* some component other than this has failed.
1218 Let's not make things worse than they already
1219 are... */
1220 printf("raid%d: Unable to reconstruct to disk at:\n",
1221 raidPtr->raidid);
1222 printf("raid%d: Row: %d Col: %d Too many failures.\n",
1223 raidPtr->raidid, row, column);
1224 RF_UNLOCK_MUTEX(raidPtr->mutex);
1225 return (EINVAL);
1226 }
1227 if (raidPtr->Disks[row][column].status ==
1228 rf_ds_reconstructing) {
1229 printf("raid%d: Unable to reconstruct to disk at:\n",
1230 raidPtr->raidid);
1231 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, column);
1232
1233 RF_UNLOCK_MUTEX(raidPtr->mutex);
1234 return (EINVAL);
1235 }
1236 if (raidPtr->Disks[row][column].status == rf_ds_spared) {
1237 RF_UNLOCK_MUTEX(raidPtr->mutex);
1238 return (EINVAL);
1239 }
1240 RF_UNLOCK_MUTEX(raidPtr->mutex);
1241
1242 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1243 if (rrcopy == NULL)
1244 return(ENOMEM);
1245
1246 rrcopy->raidPtr = (void *) raidPtr;
1247 rrcopy->row = row;
1248 rrcopy->col = column;
1249
1250 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1251 rf_ReconstructInPlaceThread,
1252 rrcopy,"raid_reconip");
1253 return(retcode);
1254
1255 case RAIDFRAME_GET_INFO:
1256 if (!raidPtr->valid)
1257 return (ENODEV);
1258 ucfgp = (RF_DeviceConfig_t **) data;
1259 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1260 (RF_DeviceConfig_t *));
1261 if (d_cfg == NULL)
1262 return (ENOMEM);
1263 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1264 d_cfg->rows = raidPtr->numRow;
1265 d_cfg->cols = raidPtr->numCol;
1266 d_cfg->ndevs = raidPtr->numRow * raidPtr->numCol;
1267 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1268 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1269 return (ENOMEM);
1270 }
1271 d_cfg->nspares = raidPtr->numSpare;
1272 if (d_cfg->nspares >= RF_MAX_DISKS) {
1273 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1274 return (ENOMEM);
1275 }
1276 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1277 d = 0;
1278 for (i = 0; i < d_cfg->rows; i++) {
1279 for (j = 0; j < d_cfg->cols; j++) {
1280 d_cfg->devs[d] = raidPtr->Disks[i][j];
1281 d++;
1282 }
1283 }
1284 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1285 d_cfg->spares[i] = raidPtr->Disks[0][j];
1286 }
1287 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1288 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1289
1290 return (retcode);
1291
1292 case RAIDFRAME_CHECK_PARITY:
1293 *(int *) data = raidPtr->parity_good;
1294 return (0);
1295
1296 case RAIDFRAME_RESET_ACCTOTALS:
1297 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1298 return (0);
1299
1300 case RAIDFRAME_GET_ACCTOTALS:
1301 totals = (RF_AccTotals_t *) data;
1302 *totals = raidPtr->acc_totals;
1303 return (0);
1304
1305 case RAIDFRAME_KEEP_ACCTOTALS:
1306 raidPtr->keep_acc_totals = *(int *)data;
1307 return (0);
1308
1309 case RAIDFRAME_GET_SIZE:
1310 *(int *) data = raidPtr->totalSectors;
1311 return (0);
1312
1313 /* fail a disk & optionally start reconstruction */
1314 case RAIDFRAME_FAIL_DISK:
1315
1316 if (raidPtr->Layout.map->faultsTolerated == 0) {
1317 /* Can't do this on a RAID 0!! */
1318 return(EINVAL);
1319 }
1320
1321 rr = (struct rf_recon_req *) data;
1322
1323 if (rr->row < 0 || rr->row >= raidPtr->numRow
1324 || rr->col < 0 || rr->col >= raidPtr->numCol)
1325 return (EINVAL);
1326
1327
1328 RF_LOCK_MUTEX(raidPtr->mutex);
1329 if ((raidPtr->Disks[rr->row][rr->col].status ==
1330 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1331 /* some other component has failed. Let's not make
1332 things worse. XXX wrong for RAID6 */
1333 RF_UNLOCK_MUTEX(raidPtr->mutex);
1334 return (EINVAL);
1335 }
1336 if (raidPtr->Disks[rr->row][rr->col].status == rf_ds_spared) {
1337 /* Can't fail a spared disk! */
1338 RF_UNLOCK_MUTEX(raidPtr->mutex);
1339 return (EINVAL);
1340 }
1341 RF_UNLOCK_MUTEX(raidPtr->mutex);
1342
1343 /* make a copy of the recon request so that we don't rely on
1344 * the user's buffer */
1345 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1346 if (rrcopy == NULL)
1347 return(ENOMEM);
1348 memcpy(rrcopy, rr, sizeof(*rr));
1349 rrcopy->raidPtr = (void *) raidPtr;
1350
1351 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1352 rf_ReconThread,
1353 rrcopy,"raid_recon");
1354 return (0);
1355
1356 /* invoke a copyback operation after recon on whatever disk
1357 * needs it, if any */
1358 case RAIDFRAME_COPYBACK:
1359
1360 if (raidPtr->Layout.map->faultsTolerated == 0) {
1361 /* This makes no sense on a RAID 0!! */
1362 return(EINVAL);
1363 }
1364
1365 if (raidPtr->copyback_in_progress == 1) {
1366 /* Copyback is already in progress! */
1367 return(EINVAL);
1368 }
1369
1370 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1371 rf_CopybackThread,
1372 raidPtr,"raid_copyback");
1373 return (retcode);
1374
1375 /* return the percentage completion of reconstruction */
1376 case RAIDFRAME_CHECK_RECON_STATUS:
1377 if (raidPtr->Layout.map->faultsTolerated == 0) {
1378 /* This makes no sense on a RAID 0, so tell the
1379 user it's done. */
1380 *(int *) data = 100;
1381 return(0);
1382 }
1383 row = 0; /* XXX we only consider a single row... */
1384 if (raidPtr->status[row] != rf_rs_reconstructing)
1385 *(int *) data = 100;
1386 else
1387 *(int *) data = raidPtr->reconControl[row]->percentComplete;
1388 return (0);
1389 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1390 progressInfoPtr = (RF_ProgressInfo_t **) data;
1391 row = 0; /* XXX we only consider a single row... */
1392 if (raidPtr->status[row] != rf_rs_reconstructing) {
1393 progressInfo.remaining = 0;
1394 progressInfo.completed = 100;
1395 progressInfo.total = 100;
1396 } else {
1397 progressInfo.total =
1398 raidPtr->reconControl[row]->numRUsTotal;
1399 progressInfo.completed =
1400 raidPtr->reconControl[row]->numRUsComplete;
1401 progressInfo.remaining = progressInfo.total -
1402 progressInfo.completed;
1403 }
1404 retcode = copyout(&progressInfo, *progressInfoPtr,
1405 sizeof(RF_ProgressInfo_t));
1406 return (retcode);
1407
1408 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1409 if (raidPtr->Layout.map->faultsTolerated == 0) {
1410 /* This makes no sense on a RAID 0, so tell the
1411 user it's done. */
1412 *(int *) data = 100;
1413 return(0);
1414 }
1415 if (raidPtr->parity_rewrite_in_progress == 1) {
1416 *(int *) data = 100 *
1417 raidPtr->parity_rewrite_stripes_done /
1418 raidPtr->Layout.numStripe;
1419 } else {
1420 *(int *) data = 100;
1421 }
1422 return (0);
1423
1424 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1425 progressInfoPtr = (RF_ProgressInfo_t **) data;
1426 if (raidPtr->parity_rewrite_in_progress == 1) {
1427 progressInfo.total = raidPtr->Layout.numStripe;
1428 progressInfo.completed =
1429 raidPtr->parity_rewrite_stripes_done;
1430 progressInfo.remaining = progressInfo.total -
1431 progressInfo.completed;
1432 } else {
1433 progressInfo.remaining = 0;
1434 progressInfo.completed = 100;
1435 progressInfo.total = 100;
1436 }
1437 retcode = copyout(&progressInfo, *progressInfoPtr,
1438 sizeof(RF_ProgressInfo_t));
1439 return (retcode);
1440
1441 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1442 if (raidPtr->Layout.map->faultsTolerated == 0) {
1443 /* This makes no sense on a RAID 0 */
1444 *(int *) data = 100;
1445 return(0);
1446 }
1447 if (raidPtr->copyback_in_progress == 1) {
1448 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1449 raidPtr->Layout.numStripe;
1450 } else {
1451 *(int *) data = 100;
1452 }
1453 return (0);
1454
1455 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1456 progressInfoPtr = (RF_ProgressInfo_t **) data;
1457 if (raidPtr->copyback_in_progress == 1) {
1458 progressInfo.total = raidPtr->Layout.numStripe;
1459 progressInfo.completed =
1460 raidPtr->copyback_stripes_done;
1461 progressInfo.remaining = progressInfo.total -
1462 progressInfo.completed;
1463 } else {
1464 progressInfo.remaining = 0;
1465 progressInfo.completed = 100;
1466 progressInfo.total = 100;
1467 }
1468 retcode = copyout(&progressInfo, *progressInfoPtr,
1469 sizeof(RF_ProgressInfo_t));
1470 return (retcode);
1471
1472 /* the sparetable daemon calls this to wait for the kernel to
1473 * need a spare table. this ioctl does not return until a
1474 * spare table is needed. XXX -- calling mpsleep here in the
1475 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1476 * -- I should either compute the spare table in the kernel,
1477 * or have a different -- XXX XXX -- interface (a different
1478 * character device) for delivering the table -- XXX */
1479 #if 0
1480 case RAIDFRAME_SPARET_WAIT:
1481 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1482 while (!rf_sparet_wait_queue)
1483 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1484 waitreq = rf_sparet_wait_queue;
1485 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1486 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1487
1488 /* structure assignment */
1489 *((RF_SparetWait_t *) data) = *waitreq;
1490
1491 RF_Free(waitreq, sizeof(*waitreq));
1492 return (0);
1493
1494 /* wakes up a process waiting on SPARET_WAIT and puts an error
1495 * code in it that will cause the dameon to exit */
1496 case RAIDFRAME_ABORT_SPARET_WAIT:
1497 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1498 waitreq->fcol = -1;
1499 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1500 waitreq->next = rf_sparet_wait_queue;
1501 rf_sparet_wait_queue = waitreq;
1502 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1503 wakeup(&rf_sparet_wait_queue);
1504 return (0);
1505
1506 /* used by the spare table daemon to deliver a spare table
1507 * into the kernel */
1508 case RAIDFRAME_SEND_SPARET:
1509
1510 /* install the spare table */
1511 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1512
1513 /* respond to the requestor. the return status of the spare
1514 * table installation is passed in the "fcol" field */
1515 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1516 waitreq->fcol = retcode;
1517 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1518 waitreq->next = rf_sparet_resp_queue;
1519 rf_sparet_resp_queue = waitreq;
1520 wakeup(&rf_sparet_resp_queue);
1521 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1522
1523 return (retcode);
1524 #endif
1525
1526 default:
1527 break; /* fall through to the os-specific code below */
1528
1529 }
1530
1531 if (!raidPtr->valid)
1532 return (EINVAL);
1533
1534 /*
1535 * Add support for "regular" device ioctls here.
1536 */
1537
1538 switch (cmd) {
1539 case DIOCGDINFO:
1540 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1541 break;
1542 #ifdef __HAVE_OLD_DISKLABEL
1543 case ODIOCGDINFO:
1544 newlabel = *(rs->sc_dkdev.dk_label);
1545 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1546 return ENOTTY;
1547 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1548 break;
1549 #endif
1550
1551 case DIOCGPART:
1552 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1553 ((struct partinfo *) data)->part =
1554 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1555 break;
1556
1557 case DIOCWDINFO:
1558 case DIOCSDINFO:
1559 #ifdef __HAVE_OLD_DISKLABEL
1560 case ODIOCWDINFO:
1561 case ODIOCSDINFO:
1562 #endif
1563 {
1564 struct disklabel *lp;
1565 #ifdef __HAVE_OLD_DISKLABEL
1566 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1567 memset(&newlabel, 0, sizeof newlabel);
1568 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1569 lp = &newlabel;
1570 } else
1571 #endif
1572 lp = (struct disklabel *)data;
1573
1574 if ((error = raidlock(rs)) != 0)
1575 return (error);
1576
1577 rs->sc_flags |= RAIDF_LABELLING;
1578
1579 error = setdisklabel(rs->sc_dkdev.dk_label,
1580 lp, 0, rs->sc_dkdev.dk_cpulabel);
1581 if (error == 0) {
1582 if (cmd == DIOCWDINFO
1583 #ifdef __HAVE_OLD_DISKLABEL
1584 || cmd == ODIOCWDINFO
1585 #endif
1586 )
1587 error = writedisklabel(RAIDLABELDEV(dev),
1588 raidstrategy, rs->sc_dkdev.dk_label,
1589 rs->sc_dkdev.dk_cpulabel);
1590 }
1591 rs->sc_flags &= ~RAIDF_LABELLING;
1592
1593 raidunlock(rs);
1594
1595 if (error)
1596 return (error);
1597 break;
1598 }
1599
1600 case DIOCWLABEL:
1601 if (*(int *) data != 0)
1602 rs->sc_flags |= RAIDF_WLABEL;
1603 else
1604 rs->sc_flags &= ~RAIDF_WLABEL;
1605 break;
1606
1607 case DIOCGDEFLABEL:
1608 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1609 break;
1610
1611 #ifdef __HAVE_OLD_DISKLABEL
1612 case ODIOCGDEFLABEL:
1613 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1614 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1615 return ENOTTY;
1616 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1617 break;
1618 #endif
1619
1620 default:
1621 retcode = ENOTTY;
1622 }
1623 return (retcode);
1624
1625 }
1626
1627
1628 /* raidinit -- complete the rest of the initialization for the
1629 RAIDframe device. */
1630
1631
1632 static void
1633 raidinit(raidPtr)
1634 RF_Raid_t *raidPtr;
1635 {
1636 struct raid_softc *rs;
1637 int unit;
1638
1639 unit = raidPtr->raidid;
1640
1641 rs = &raid_softc[unit];
1642
1643 /* XXX should check return code first... */
1644 rs->sc_flags |= RAIDF_INITED;
1645
1646 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1647
1648 rs->sc_dkdev.dk_name = rs->sc_xname;
1649
1650 /* disk_attach actually creates space for the CPU disklabel, among
1651 * other things, so it's critical to call this *BEFORE* we try putzing
1652 * with disklabels. */
1653
1654 disk_attach(&rs->sc_dkdev);
1655
1656 /* XXX There may be a weird interaction here between this, and
1657 * protectedSectors, as used in RAIDframe. */
1658
1659 rs->sc_size = raidPtr->totalSectors;
1660
1661 }
1662 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1663 /* wake up the daemon & tell it to get us a spare table
1664 * XXX
1665 * the entries in the queues should be tagged with the raidPtr
1666 * so that in the extremely rare case that two recons happen at once,
1667 * we know for which device were requesting a spare table
1668 * XXX
1669 *
1670 * XXX This code is not currently used. GO
1671 */
1672 int
1673 rf_GetSpareTableFromDaemon(req)
1674 RF_SparetWait_t *req;
1675 {
1676 int retcode;
1677
1678 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1679 req->next = rf_sparet_wait_queue;
1680 rf_sparet_wait_queue = req;
1681 wakeup(&rf_sparet_wait_queue);
1682
1683 /* mpsleep unlocks the mutex */
1684 while (!rf_sparet_resp_queue) {
1685 tsleep(&rf_sparet_resp_queue, PRIBIO,
1686 "raidframe getsparetable", 0);
1687 }
1688 req = rf_sparet_resp_queue;
1689 rf_sparet_resp_queue = req->next;
1690 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1691
1692 retcode = req->fcol;
1693 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1694 * alloc'd */
1695 return (retcode);
1696 }
1697 #endif
1698
1699 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1700 * bp & passes it down.
1701 * any calls originating in the kernel must use non-blocking I/O
1702 * do some extra sanity checking to return "appropriate" error values for
1703 * certain conditions (to make some standard utilities work)
1704 *
1705 * Formerly known as: rf_DoAccessKernel
1706 */
1707 void
1708 raidstart(raidPtr)
1709 RF_Raid_t *raidPtr;
1710 {
1711 RF_SectorCount_t num_blocks, pb, sum;
1712 RF_RaidAddr_t raid_addr;
1713 struct partition *pp;
1714 daddr_t blocknum;
1715 int unit;
1716 struct raid_softc *rs;
1717 int do_async;
1718 struct buf *bp;
1719
1720 unit = raidPtr->raidid;
1721 rs = &raid_softc[unit];
1722
1723 /* quick check to see if anything has died recently */
1724 RF_LOCK_MUTEX(raidPtr->mutex);
1725 if (raidPtr->numNewFailures > 0) {
1726 RF_UNLOCK_MUTEX(raidPtr->mutex);
1727 rf_update_component_labels(raidPtr,
1728 RF_NORMAL_COMPONENT_UPDATE);
1729 RF_LOCK_MUTEX(raidPtr->mutex);
1730 raidPtr->numNewFailures--;
1731 }
1732
1733 /* Check to see if we're at the limit... */
1734 while (raidPtr->openings > 0) {
1735 RF_UNLOCK_MUTEX(raidPtr->mutex);
1736
1737 /* get the next item, if any, from the queue */
1738 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1739 /* nothing more to do */
1740 return;
1741 }
1742
1743 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1744 * partition.. Need to make it absolute to the underlying
1745 * device.. */
1746
1747 blocknum = bp->b_blkno;
1748 if (DISKPART(bp->b_dev) != RAW_PART) {
1749 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1750 blocknum += pp->p_offset;
1751 }
1752
1753 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1754 (int) blocknum));
1755
1756 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1757 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1758
1759 /* *THIS* is where we adjust what block we're going to...
1760 * but DO NOT TOUCH bp->b_blkno!!! */
1761 raid_addr = blocknum;
1762
1763 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1764 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1765 sum = raid_addr + num_blocks + pb;
1766 if (1 || rf_debugKernelAccess) {
1767 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1768 (int) raid_addr, (int) sum, (int) num_blocks,
1769 (int) pb, (int) bp->b_resid));
1770 }
1771 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1772 || (sum < num_blocks) || (sum < pb)) {
1773 bp->b_error = ENOSPC;
1774 bp->b_flags |= B_ERROR;
1775 bp->b_resid = bp->b_bcount;
1776 biodone(bp);
1777 RF_LOCK_MUTEX(raidPtr->mutex);
1778 continue;
1779 }
1780 /*
1781 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1782 */
1783
1784 if (bp->b_bcount & raidPtr->sectorMask) {
1785 bp->b_error = EINVAL;
1786 bp->b_flags |= B_ERROR;
1787 bp->b_resid = bp->b_bcount;
1788 biodone(bp);
1789 RF_LOCK_MUTEX(raidPtr->mutex);
1790 continue;
1791
1792 }
1793 db1_printf(("Calling DoAccess..\n"));
1794
1795
1796 RF_LOCK_MUTEX(raidPtr->mutex);
1797 raidPtr->openings--;
1798 RF_UNLOCK_MUTEX(raidPtr->mutex);
1799
1800 /*
1801 * Everything is async.
1802 */
1803 do_async = 1;
1804
1805 disk_busy(&rs->sc_dkdev);
1806
1807 /* XXX we're still at splbio() here... do we *really*
1808 need to be? */
1809
1810 /* don't ever condition on bp->b_flags & B_WRITE.
1811 * always condition on B_READ instead */
1812
1813 bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1814 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1815 do_async, raid_addr, num_blocks,
1816 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1817
1818 if (bp->b_error) {
1819 bp->b_flags |= B_ERROR;
1820 }
1821
1822 RF_LOCK_MUTEX(raidPtr->mutex);
1823 }
1824 RF_UNLOCK_MUTEX(raidPtr->mutex);
1825 }
1826
1827
1828
1829
1830 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1831
1832 int
1833 rf_DispatchKernelIO(queue, req)
1834 RF_DiskQueue_t *queue;
1835 RF_DiskQueueData_t *req;
1836 {
1837 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1838 struct buf *bp;
1839 struct raidbuf *raidbp = NULL;
1840
1841 req->queue = queue;
1842
1843 #if DIAGNOSTIC
1844 if (queue->raidPtr->raidid >= numraid) {
1845 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1846 numraid);
1847 panic("Invalid Unit number in rf_DispatchKernelIO");
1848 }
1849 #endif
1850
1851 bp = req->bp;
1852 #if 1
1853 /* XXX when there is a physical disk failure, someone is passing us a
1854 * buffer that contains old stuff!! Attempt to deal with this problem
1855 * without taking a performance hit... (not sure where the real bug
1856 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1857
1858 if (bp->b_flags & B_ERROR) {
1859 bp->b_flags &= ~B_ERROR;
1860 }
1861 if (bp->b_error != 0) {
1862 bp->b_error = 0;
1863 }
1864 #endif
1865 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1866 if (raidbp == NULL) {
1867 bp->b_flags |= B_ERROR;
1868 bp->b_error = ENOMEM;
1869 return (ENOMEM);
1870 }
1871 BUF_INIT(&raidbp->rf_buf);
1872
1873 /*
1874 * context for raidiodone
1875 */
1876 raidbp->rf_obp = bp;
1877 raidbp->req = req;
1878
1879 switch (req->type) {
1880 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1881 /* XXX need to do something extra here.. */
1882 /* I'm leaving this in, as I've never actually seen it used,
1883 * and I'd like folks to report it... GO */
1884 printf(("WAKEUP CALLED\n"));
1885 queue->numOutstanding++;
1886
1887 /* XXX need to glue the original buffer into this?? */
1888
1889 KernelWakeupFunc(&raidbp->rf_buf);
1890 break;
1891
1892 case RF_IO_TYPE_READ:
1893 case RF_IO_TYPE_WRITE:
1894
1895 if (req->tracerec) {
1896 RF_ETIMER_START(req->tracerec->timer);
1897 }
1898 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1899 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1900 req->sectorOffset, req->numSector,
1901 req->buf, KernelWakeupFunc, (void *) req,
1902 queue->raidPtr->logBytesPerSector, req->b_proc);
1903
1904 if (rf_debugKernelAccess) {
1905 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1906 (long) bp->b_blkno));
1907 }
1908 queue->numOutstanding++;
1909 queue->last_deq_sector = req->sectorOffset;
1910 /* acc wouldn't have been let in if there were any pending
1911 * reqs at any other priority */
1912 queue->curPriority = req->priority;
1913
1914 db1_printf(("Going for %c to unit %d row %d col %d\n",
1915 req->type, queue->raidPtr->raidid,
1916 queue->row, queue->col));
1917 db1_printf(("sector %d count %d (%d bytes) %d\n",
1918 (int) req->sectorOffset, (int) req->numSector,
1919 (int) (req->numSector <<
1920 queue->raidPtr->logBytesPerSector),
1921 (int) queue->raidPtr->logBytesPerSector));
1922 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1923 raidbp->rf_buf.b_vp->v_numoutput++;
1924 }
1925 VOP_STRATEGY(&raidbp->rf_buf);
1926
1927 break;
1928
1929 default:
1930 panic("bad req->type in rf_DispatchKernelIO");
1931 }
1932 db1_printf(("Exiting from DispatchKernelIO\n"));
1933
1934 return (0);
1935 }
1936 /* this is the callback function associated with a I/O invoked from
1937 kernel code.
1938 */
1939 static void
1940 KernelWakeupFunc(vbp)
1941 struct buf *vbp;
1942 {
1943 RF_DiskQueueData_t *req = NULL;
1944 RF_DiskQueue_t *queue;
1945 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1946 struct buf *bp;
1947 int s;
1948
1949 s = splbio();
1950 db1_printf(("recovering the request queue:\n"));
1951 req = raidbp->req;
1952
1953 bp = raidbp->rf_obp;
1954
1955 queue = (RF_DiskQueue_t *) req->queue;
1956
1957 if (raidbp->rf_buf.b_flags & B_ERROR) {
1958 bp->b_flags |= B_ERROR;
1959 bp->b_error = raidbp->rf_buf.b_error ?
1960 raidbp->rf_buf.b_error : EIO;
1961 }
1962
1963 /* XXX methinks this could be wrong... */
1964 #if 1
1965 bp->b_resid = raidbp->rf_buf.b_resid;
1966 #endif
1967
1968 if (req->tracerec) {
1969 RF_ETIMER_STOP(req->tracerec->timer);
1970 RF_ETIMER_EVAL(req->tracerec->timer);
1971 RF_LOCK_MUTEX(rf_tracing_mutex);
1972 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1973 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1974 req->tracerec->num_phys_ios++;
1975 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1976 }
1977 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1978
1979 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1980 * ballistic, and mark the component as hosed... */
1981
1982 if (bp->b_flags & B_ERROR) {
1983 /* Mark the disk as dead */
1984 /* but only mark it once... */
1985 if (queue->raidPtr->Disks[queue->row][queue->col].status ==
1986 rf_ds_optimal) {
1987 printf("raid%d: IO Error. Marking %s as failed.\n",
1988 queue->raidPtr->raidid,
1989 queue->raidPtr->Disks[queue->row][queue->col].devname);
1990 queue->raidPtr->Disks[queue->row][queue->col].status =
1991 rf_ds_failed;
1992 queue->raidPtr->status[queue->row] = rf_rs_degraded;
1993 queue->raidPtr->numFailures++;
1994 queue->raidPtr->numNewFailures++;
1995 } else { /* Disk is already dead... */
1996 /* printf("Disk already marked as dead!\n"); */
1997 }
1998
1999 }
2000
2001 pool_put(&raidframe_cbufpool, raidbp);
2002
2003 /* Fill in the error value */
2004
2005 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
2006
2007 simple_lock(&queue->raidPtr->iodone_lock);
2008
2009 /* Drop this one on the "finished" queue... */
2010 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2011
2012 /* Let the raidio thread know there is work to be done. */
2013 wakeup(&(queue->raidPtr->iodone));
2014
2015 simple_unlock(&queue->raidPtr->iodone_lock);
2016
2017 splx(s);
2018 }
2019
2020
2021
2022 /*
2023 * initialize a buf structure for doing an I/O in the kernel.
2024 */
2025 static void
2026 InitBP(bp, b_vp, rw_flag, dev, startSect, numSect, buf, cbFunc, cbArg,
2027 logBytesPerSector, b_proc)
2028 struct buf *bp;
2029 struct vnode *b_vp;
2030 unsigned rw_flag;
2031 dev_t dev;
2032 RF_SectorNum_t startSect;
2033 RF_SectorCount_t numSect;
2034 caddr_t buf;
2035 void (*cbFunc) (struct buf *);
2036 void *cbArg;
2037 int logBytesPerSector;
2038 struct proc *b_proc;
2039 {
2040 /* bp->b_flags = B_PHYS | rw_flag; */
2041 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2042 bp->b_bcount = numSect << logBytesPerSector;
2043 bp->b_bufsize = bp->b_bcount;
2044 bp->b_error = 0;
2045 bp->b_dev = dev;
2046 bp->b_data = buf;
2047 bp->b_blkno = startSect;
2048 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2049 if (bp->b_bcount == 0) {
2050 panic("bp->b_bcount is zero in InitBP!!");
2051 }
2052 bp->b_proc = b_proc;
2053 bp->b_iodone = cbFunc;
2054 bp->b_vp = b_vp;
2055
2056 }
2057
2058 static void
2059 raidgetdefaultlabel(raidPtr, rs, lp)
2060 RF_Raid_t *raidPtr;
2061 struct raid_softc *rs;
2062 struct disklabel *lp;
2063 {
2064 memset(lp, 0, sizeof(*lp));
2065
2066 /* fabricate a label... */
2067 lp->d_secperunit = raidPtr->totalSectors;
2068 lp->d_secsize = raidPtr->bytesPerSector;
2069 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2070 lp->d_ntracks = 4 * raidPtr->numCol;
2071 lp->d_ncylinders = raidPtr->totalSectors /
2072 (lp->d_nsectors * lp->d_ntracks);
2073 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2074
2075 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2076 lp->d_type = DTYPE_RAID;
2077 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2078 lp->d_rpm = 3600;
2079 lp->d_interleave = 1;
2080 lp->d_flags = 0;
2081
2082 lp->d_partitions[RAW_PART].p_offset = 0;
2083 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2084 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2085 lp->d_npartitions = RAW_PART + 1;
2086
2087 lp->d_magic = DISKMAGIC;
2088 lp->d_magic2 = DISKMAGIC;
2089 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2090
2091 }
2092 /*
2093 * Read the disklabel from the raid device. If one is not present, fake one
2094 * up.
2095 */
2096 static void
2097 raidgetdisklabel(dev)
2098 dev_t dev;
2099 {
2100 int unit = raidunit(dev);
2101 struct raid_softc *rs = &raid_softc[unit];
2102 const char *errstring;
2103 struct disklabel *lp = rs->sc_dkdev.dk_label;
2104 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2105 RF_Raid_t *raidPtr;
2106
2107 db1_printf(("Getting the disklabel...\n"));
2108
2109 memset(clp, 0, sizeof(*clp));
2110
2111 raidPtr = raidPtrs[unit];
2112
2113 raidgetdefaultlabel(raidPtr, rs, lp);
2114
2115 /*
2116 * Call the generic disklabel extraction routine.
2117 */
2118 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2119 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2120 if (errstring)
2121 raidmakedisklabel(rs);
2122 else {
2123 int i;
2124 struct partition *pp;
2125
2126 /*
2127 * Sanity check whether the found disklabel is valid.
2128 *
2129 * This is necessary since total size of the raid device
2130 * may vary when an interleave is changed even though exactly
2131 * same componets are used, and old disklabel may used
2132 * if that is found.
2133 */
2134 if (lp->d_secperunit != rs->sc_size)
2135 printf("raid%d: WARNING: %s: "
2136 "total sector size in disklabel (%d) != "
2137 "the size of raid (%ld)\n", unit, rs->sc_xname,
2138 lp->d_secperunit, (long) rs->sc_size);
2139 for (i = 0; i < lp->d_npartitions; i++) {
2140 pp = &lp->d_partitions[i];
2141 if (pp->p_offset + pp->p_size > rs->sc_size)
2142 printf("raid%d: WARNING: %s: end of partition `%c' "
2143 "exceeds the size of raid (%ld)\n",
2144 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2145 }
2146 }
2147
2148 }
2149 /*
2150 * Take care of things one might want to take care of in the event
2151 * that a disklabel isn't present.
2152 */
2153 static void
2154 raidmakedisklabel(rs)
2155 struct raid_softc *rs;
2156 {
2157 struct disklabel *lp = rs->sc_dkdev.dk_label;
2158 db1_printf(("Making a label..\n"));
2159
2160 /*
2161 * For historical reasons, if there's no disklabel present
2162 * the raw partition must be marked FS_BSDFFS.
2163 */
2164
2165 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2166
2167 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2168
2169 lp->d_checksum = dkcksum(lp);
2170 }
2171 /*
2172 * Lookup the provided name in the filesystem. If the file exists,
2173 * is a valid block device, and isn't being used by anyone else,
2174 * set *vpp to the file's vnode.
2175 * You'll find the original of this in ccd.c
2176 */
2177 int
2178 raidlookup(path, p, vpp)
2179 char *path;
2180 struct proc *p;
2181 struct vnode **vpp; /* result */
2182 {
2183 struct nameidata nd;
2184 struct vnode *vp;
2185 struct vattr va;
2186 int error;
2187
2188 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2189 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2190 return (error);
2191 }
2192 vp = nd.ni_vp;
2193 if (vp->v_usecount > 1) {
2194 VOP_UNLOCK(vp, 0);
2195 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2196 return (EBUSY);
2197 }
2198 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2199 VOP_UNLOCK(vp, 0);
2200 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2201 return (error);
2202 }
2203 /* XXX: eventually we should handle VREG, too. */
2204 if (va.va_type != VBLK) {
2205 VOP_UNLOCK(vp, 0);
2206 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2207 return (ENOTBLK);
2208 }
2209 VOP_UNLOCK(vp, 0);
2210 *vpp = vp;
2211 return (0);
2212 }
2213 /*
2214 * Wait interruptibly for an exclusive lock.
2215 *
2216 * XXX
2217 * Several drivers do this; it should be abstracted and made MP-safe.
2218 * (Hmm... where have we seen this warning before :-> GO )
2219 */
2220 static int
2221 raidlock(rs)
2222 struct raid_softc *rs;
2223 {
2224 int error;
2225
2226 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2227 rs->sc_flags |= RAIDF_WANTED;
2228 if ((error =
2229 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2230 return (error);
2231 }
2232 rs->sc_flags |= RAIDF_LOCKED;
2233 return (0);
2234 }
2235 /*
2236 * Unlock and wake up any waiters.
2237 */
2238 static void
2239 raidunlock(rs)
2240 struct raid_softc *rs;
2241 {
2242
2243 rs->sc_flags &= ~RAIDF_LOCKED;
2244 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2245 rs->sc_flags &= ~RAIDF_WANTED;
2246 wakeup(rs);
2247 }
2248 }
2249
2250
2251 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2252 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2253
2254 int
2255 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2256 {
2257 RF_ComponentLabel_t clabel;
2258 raidread_component_label(dev, b_vp, &clabel);
2259 clabel.mod_counter = mod_counter;
2260 clabel.clean = RF_RAID_CLEAN;
2261 raidwrite_component_label(dev, b_vp, &clabel);
2262 return(0);
2263 }
2264
2265
2266 int
2267 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2268 {
2269 RF_ComponentLabel_t clabel;
2270 raidread_component_label(dev, b_vp, &clabel);
2271 clabel.mod_counter = mod_counter;
2272 clabel.clean = RF_RAID_DIRTY;
2273 raidwrite_component_label(dev, b_vp, &clabel);
2274 return(0);
2275 }
2276
2277 /* ARGSUSED */
2278 int
2279 raidread_component_label(dev, b_vp, clabel)
2280 dev_t dev;
2281 struct vnode *b_vp;
2282 RF_ComponentLabel_t *clabel;
2283 {
2284 struct buf *bp;
2285 const struct bdevsw *bdev;
2286 int error;
2287
2288 /* XXX should probably ensure that we don't try to do this if
2289 someone has changed rf_protected_sectors. */
2290
2291 if (b_vp == NULL) {
2292 /* For whatever reason, this component is not valid.
2293 Don't try to read a component label from it. */
2294 return(EINVAL);
2295 }
2296
2297 /* get a block of the appropriate size... */
2298 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2299 bp->b_dev = dev;
2300
2301 /* get our ducks in a row for the read */
2302 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2303 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2304 bp->b_flags |= B_READ;
2305 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2306
2307 bdev = bdevsw_lookup(bp->b_dev);
2308 if (bdev == NULL)
2309 return (ENXIO);
2310 (*bdev->d_strategy)(bp);
2311
2312 error = biowait(bp);
2313
2314 if (!error) {
2315 memcpy(clabel, bp->b_data,
2316 sizeof(RF_ComponentLabel_t));
2317 }
2318
2319 brelse(bp);
2320 return(error);
2321 }
2322 /* ARGSUSED */
2323 int
2324 raidwrite_component_label(dev, b_vp, clabel)
2325 dev_t dev;
2326 struct vnode *b_vp;
2327 RF_ComponentLabel_t *clabel;
2328 {
2329 struct buf *bp;
2330 const struct bdevsw *bdev;
2331 int error;
2332
2333 /* get a block of the appropriate size... */
2334 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2335 bp->b_dev = dev;
2336
2337 /* get our ducks in a row for the write */
2338 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2339 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2340 bp->b_flags |= B_WRITE;
2341 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2342
2343 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2344
2345 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2346
2347 bdev = bdevsw_lookup(bp->b_dev);
2348 if (bdev == NULL)
2349 return (ENXIO);
2350 (*bdev->d_strategy)(bp);
2351 error = biowait(bp);
2352 brelse(bp);
2353 if (error) {
2354 #if 1
2355 printf("Failed to write RAID component info!\n");
2356 #endif
2357 }
2358
2359 return(error);
2360 }
2361
2362 void
2363 rf_markalldirty(raidPtr)
2364 RF_Raid_t *raidPtr;
2365 {
2366 RF_ComponentLabel_t clabel;
2367 int sparecol;
2368 int r,c;
2369 int i,j;
2370 int srow, scol;
2371
2372 raidPtr->mod_counter++;
2373 for (r = 0; r < raidPtr->numRow; r++) {
2374 for (c = 0; c < raidPtr->numCol; c++) {
2375 /* we don't want to touch (at all) a disk that has
2376 failed */
2377 if (!RF_DEAD_DISK(raidPtr->Disks[r][c].status)) {
2378 raidread_component_label(
2379 raidPtr->Disks[r][c].dev,
2380 raidPtr->raid_cinfo[r][c].ci_vp,
2381 &clabel);
2382 if (clabel.status == rf_ds_spared) {
2383 /* XXX do something special...
2384 but whatever you do, don't
2385 try to access it!! */
2386 } else {
2387 raidmarkdirty(
2388 raidPtr->Disks[r][c].dev,
2389 raidPtr->raid_cinfo[r][c].ci_vp,
2390 raidPtr->mod_counter);
2391 }
2392 }
2393 }
2394 }
2395
2396 for( c = 0; c < raidPtr->numSpare ; c++) {
2397 sparecol = raidPtr->numCol + c;
2398 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2399 /*
2400
2401 we claim this disk is "optimal" if it's
2402 rf_ds_used_spare, as that means it should be
2403 directly substitutable for the disk it replaced.
2404 We note that too...
2405
2406 */
2407
2408 for(i=0;i<raidPtr->numRow;i++) {
2409 for(j=0;j<raidPtr->numCol;j++) {
2410 if ((raidPtr->Disks[i][j].spareRow ==
2411 0) &&
2412 (raidPtr->Disks[i][j].spareCol ==
2413 sparecol)) {
2414 srow = i;
2415 scol = j;
2416 break;
2417 }
2418 }
2419 }
2420
2421 raidread_component_label(
2422 raidPtr->Disks[0][sparecol].dev,
2423 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2424 &clabel);
2425 /* make sure status is noted */
2426
2427 raid_init_component_label(raidPtr, &clabel);
2428
2429 clabel.row = srow;
2430 clabel.column = scol;
2431 /* Note: we *don't* change status from rf_ds_used_spare
2432 to rf_ds_optimal */
2433 /* clabel.status = rf_ds_optimal; */
2434
2435 raidmarkdirty(raidPtr->Disks[0][sparecol].dev,
2436 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2437 raidPtr->mod_counter);
2438 }
2439 }
2440 }
2441
2442
2443 void
2444 rf_update_component_labels(raidPtr, final)
2445 RF_Raid_t *raidPtr;
2446 int final;
2447 {
2448 RF_ComponentLabel_t clabel;
2449 int sparecol;
2450 int r,c;
2451 int i,j;
2452 int srow, scol;
2453
2454 srow = -1;
2455 scol = -1;
2456
2457 /* XXX should do extra checks to make sure things really are clean,
2458 rather than blindly setting the clean bit... */
2459
2460 raidPtr->mod_counter++;
2461
2462 for (r = 0; r < raidPtr->numRow; r++) {
2463 for (c = 0; c < raidPtr->numCol; c++) {
2464 if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
2465 raidread_component_label(
2466 raidPtr->Disks[r][c].dev,
2467 raidPtr->raid_cinfo[r][c].ci_vp,
2468 &clabel);
2469 /* make sure status is noted */
2470 clabel.status = rf_ds_optimal;
2471 /* bump the counter */
2472 clabel.mod_counter = raidPtr->mod_counter;
2473
2474 raidwrite_component_label(
2475 raidPtr->Disks[r][c].dev,
2476 raidPtr->raid_cinfo[r][c].ci_vp,
2477 &clabel);
2478 if (final == RF_FINAL_COMPONENT_UPDATE) {
2479 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2480 raidmarkclean(
2481 raidPtr->Disks[r][c].dev,
2482 raidPtr->raid_cinfo[r][c].ci_vp,
2483 raidPtr->mod_counter);
2484 }
2485 }
2486 }
2487 /* else we don't touch it.. */
2488 }
2489 }
2490
2491 for( c = 0; c < raidPtr->numSpare ; c++) {
2492 sparecol = raidPtr->numCol + c;
2493 /* Need to ensure that the reconstruct actually completed! */
2494 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
2495 /*
2496
2497 we claim this disk is "optimal" if it's
2498 rf_ds_used_spare, as that means it should be
2499 directly substitutable for the disk it replaced.
2500 We note that too...
2501
2502 */
2503
2504 for(i=0;i<raidPtr->numRow;i++) {
2505 for(j=0;j<raidPtr->numCol;j++) {
2506 if ((raidPtr->Disks[i][j].spareRow ==
2507 0) &&
2508 (raidPtr->Disks[i][j].spareCol ==
2509 sparecol)) {
2510 srow = i;
2511 scol = j;
2512 break;
2513 }
2514 }
2515 }
2516
2517 /* XXX shouldn't *really* need this... */
2518 raidread_component_label(
2519 raidPtr->Disks[0][sparecol].dev,
2520 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2521 &clabel);
2522 /* make sure status is noted */
2523
2524 raid_init_component_label(raidPtr, &clabel);
2525
2526 clabel.mod_counter = raidPtr->mod_counter;
2527 clabel.row = srow;
2528 clabel.column = scol;
2529 clabel.status = rf_ds_optimal;
2530
2531 raidwrite_component_label(
2532 raidPtr->Disks[0][sparecol].dev,
2533 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2534 &clabel);
2535 if (final == RF_FINAL_COMPONENT_UPDATE) {
2536 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2537 raidmarkclean( raidPtr->Disks[0][sparecol].dev,
2538 raidPtr->raid_cinfo[0][sparecol].ci_vp,
2539 raidPtr->mod_counter);
2540 }
2541 }
2542 }
2543 }
2544 }
2545
2546 void
2547 rf_close_component(raidPtr, vp, auto_configured)
2548 RF_Raid_t *raidPtr;
2549 struct vnode *vp;
2550 int auto_configured;
2551 {
2552 struct proc *p;
2553
2554 p = raidPtr->engine_thread;
2555
2556 if (vp != NULL) {
2557 if (auto_configured == 1) {
2558 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2559 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2560 vput(vp);
2561
2562 } else {
2563 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2564 }
2565 }
2566 }
2567
2568
2569 void
2570 rf_UnconfigureVnodes(raidPtr)
2571 RF_Raid_t *raidPtr;
2572 {
2573 int r,c;
2574 struct vnode *vp;
2575 int acd;
2576
2577
2578 /* We take this opportunity to close the vnodes like we should.. */
2579
2580 for (r = 0; r < raidPtr->numRow; r++) {
2581 for (c = 0; c < raidPtr->numCol; c++) {
2582 vp = raidPtr->raid_cinfo[r][c].ci_vp;
2583 acd = raidPtr->Disks[r][c].auto_configured;
2584 rf_close_component(raidPtr, vp, acd);
2585 raidPtr->raid_cinfo[r][c].ci_vp = NULL;
2586 raidPtr->Disks[r][c].auto_configured = 0;
2587 }
2588 }
2589 for (r = 0; r < raidPtr->numSpare; r++) {
2590 vp = raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp;
2591 acd = raidPtr->Disks[0][raidPtr->numCol + r].auto_configured;
2592 rf_close_component(raidPtr, vp, acd);
2593 raidPtr->raid_cinfo[0][raidPtr->numCol + r].ci_vp = NULL;
2594 raidPtr->Disks[0][raidPtr->numCol + r].auto_configured = 0;
2595 }
2596 }
2597
2598
2599 void
2600 rf_ReconThread(req)
2601 struct rf_recon_req *req;
2602 {
2603 int s;
2604 RF_Raid_t *raidPtr;
2605
2606 s = splbio();
2607 raidPtr = (RF_Raid_t *) req->raidPtr;
2608 raidPtr->recon_in_progress = 1;
2609
2610 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
2611 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2612
2613 /* XXX get rid of this! we don't need it at all.. */
2614 RF_Free(req, sizeof(*req));
2615
2616 raidPtr->recon_in_progress = 0;
2617 splx(s);
2618
2619 /* That's all... */
2620 kthread_exit(0); /* does not return */
2621 }
2622
2623 void
2624 rf_RewriteParityThread(raidPtr)
2625 RF_Raid_t *raidPtr;
2626 {
2627 int retcode;
2628 int s;
2629
2630 raidPtr->parity_rewrite_in_progress = 1;
2631 s = splbio();
2632 retcode = rf_RewriteParity(raidPtr);
2633 splx(s);
2634 if (retcode) {
2635 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2636 } else {
2637 /* set the clean bit! If we shutdown correctly,
2638 the clean bit on each component label will get
2639 set */
2640 raidPtr->parity_good = RF_RAID_CLEAN;
2641 }
2642 raidPtr->parity_rewrite_in_progress = 0;
2643
2644 /* Anyone waiting for us to stop? If so, inform them... */
2645 if (raidPtr->waitShutdown) {
2646 wakeup(&raidPtr->parity_rewrite_in_progress);
2647 }
2648
2649 /* That's all... */
2650 kthread_exit(0); /* does not return */
2651 }
2652
2653
2654 void
2655 rf_CopybackThread(raidPtr)
2656 RF_Raid_t *raidPtr;
2657 {
2658 int s;
2659
2660 raidPtr->copyback_in_progress = 1;
2661 s = splbio();
2662 rf_CopybackReconstructedData(raidPtr);
2663 splx(s);
2664 raidPtr->copyback_in_progress = 0;
2665
2666 /* That's all... */
2667 kthread_exit(0); /* does not return */
2668 }
2669
2670
2671 void
2672 rf_ReconstructInPlaceThread(req)
2673 struct rf_recon_req *req;
2674 {
2675 int s;
2676 RF_Raid_t *raidPtr;
2677
2678 s = splbio();
2679 raidPtr = req->raidPtr;
2680 raidPtr->recon_in_progress = 1;
2681 rf_ReconstructInPlace(raidPtr, req->row, req->col);
2682 RF_Free(req, sizeof(*req));
2683 raidPtr->recon_in_progress = 0;
2684 splx(s);
2685
2686 /* That's all... */
2687 kthread_exit(0); /* does not return */
2688 }
2689
2690 RF_AutoConfig_t *
2691 rf_find_raid_components()
2692 {
2693 struct vnode *vp;
2694 struct disklabel label;
2695 struct device *dv;
2696 dev_t dev;
2697 int bmajor;
2698 int error;
2699 int i;
2700 int good_one;
2701 RF_ComponentLabel_t *clabel;
2702 RF_AutoConfig_t *ac_list;
2703 RF_AutoConfig_t *ac;
2704
2705
2706 /* initialize the AutoConfig list */
2707 ac_list = NULL;
2708
2709 /* we begin by trolling through *all* the devices on the system */
2710
2711 for (dv = alldevs.tqh_first; dv != NULL;
2712 dv = dv->dv_list.tqe_next) {
2713
2714 /* we are only interested in disks... */
2715 if (dv->dv_class != DV_DISK)
2716 continue;
2717
2718 /* we don't care about floppies... */
2719 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2720 continue;
2721 }
2722
2723 /* we don't care about CD's... */
2724 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2725 continue;
2726 }
2727
2728 /* hdfd is the Atari/Hades floppy driver */
2729 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2730 continue;
2731 }
2732 /* fdisa is the Atari/Milan floppy driver */
2733 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2734 continue;
2735 }
2736
2737 /* need to find the device_name_to_block_device_major stuff */
2738 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2739
2740 /* get a vnode for the raw partition of this disk */
2741
2742 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2743 if (bdevvp(dev, &vp))
2744 panic("RAID can't alloc vnode");
2745
2746 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2747
2748 if (error) {
2749 /* "Who cares." Continue looking
2750 for something that exists*/
2751 vput(vp);
2752 continue;
2753 }
2754
2755 /* Ok, the disk exists. Go get the disklabel. */
2756 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2757 if (error) {
2758 /*
2759 * XXX can't happen - open() would
2760 * have errored out (or faked up one)
2761 */
2762 printf("can't get label for dev %s%c (%d)!?!?\n",
2763 dv->dv_xname, 'a' + RAW_PART, error);
2764 }
2765
2766 /* don't need this any more. We'll allocate it again
2767 a little later if we really do... */
2768 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2769 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2770 vput(vp);
2771
2772 for (i=0; i < label.d_npartitions; i++) {
2773 /* We only support partitions marked as RAID */
2774 if (label.d_partitions[i].p_fstype != FS_RAID)
2775 continue;
2776
2777 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2778 if (bdevvp(dev, &vp))
2779 panic("RAID can't alloc vnode");
2780
2781 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2782 if (error) {
2783 /* Whatever... */
2784 vput(vp);
2785 continue;
2786 }
2787
2788 good_one = 0;
2789
2790 clabel = (RF_ComponentLabel_t *)
2791 malloc(sizeof(RF_ComponentLabel_t),
2792 M_RAIDFRAME, M_NOWAIT);
2793 if (clabel == NULL) {
2794 /* XXX CLEANUP HERE */
2795 printf("RAID auto config: out of memory!\n");
2796 return(NULL); /* XXX probably should panic? */
2797 }
2798
2799 if (!raidread_component_label(dev, vp, clabel)) {
2800 /* Got the label. Does it look reasonable? */
2801 if (rf_reasonable_label(clabel) &&
2802 (clabel->partitionSize <=
2803 label.d_partitions[i].p_size)) {
2804 #if DEBUG
2805 printf("Component on: %s%c: %d\n",
2806 dv->dv_xname, 'a'+i,
2807 label.d_partitions[i].p_size);
2808 rf_print_component_label(clabel);
2809 #endif
2810 /* if it's reasonable, add it,
2811 else ignore it. */
2812 ac = (RF_AutoConfig_t *)
2813 malloc(sizeof(RF_AutoConfig_t),
2814 M_RAIDFRAME,
2815 M_NOWAIT);
2816 if (ac == NULL) {
2817 /* XXX should panic?? */
2818 return(NULL);
2819 }
2820
2821 sprintf(ac->devname, "%s%c",
2822 dv->dv_xname, 'a'+i);
2823 ac->dev = dev;
2824 ac->vp = vp;
2825 ac->clabel = clabel;
2826 ac->next = ac_list;
2827 ac_list = ac;
2828 good_one = 1;
2829 }
2830 }
2831 if (!good_one) {
2832 /* cleanup */
2833 free(clabel, M_RAIDFRAME);
2834 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2835 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2836 vput(vp);
2837 }
2838 }
2839 }
2840 return(ac_list);
2841 }
2842
2843 static int
2844 rf_reasonable_label(clabel)
2845 RF_ComponentLabel_t *clabel;
2846 {
2847
2848 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2849 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2850 ((clabel->clean == RF_RAID_CLEAN) ||
2851 (clabel->clean == RF_RAID_DIRTY)) &&
2852 clabel->row >=0 &&
2853 clabel->column >= 0 &&
2854 clabel->num_rows > 0 &&
2855 clabel->num_columns > 0 &&
2856 clabel->row < clabel->num_rows &&
2857 clabel->column < clabel->num_columns &&
2858 clabel->blockSize > 0 &&
2859 clabel->numBlocks > 0) {
2860 /* label looks reasonable enough... */
2861 return(1);
2862 }
2863 return(0);
2864 }
2865
2866
2867 #if DEBUG
2868 void
2869 rf_print_component_label(clabel)
2870 RF_ComponentLabel_t *clabel;
2871 {
2872 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2873 clabel->row, clabel->column,
2874 clabel->num_rows, clabel->num_columns);
2875 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2876 clabel->version, clabel->serial_number,
2877 clabel->mod_counter);
2878 printf(" Clean: %s Status: %d\n",
2879 clabel->clean ? "Yes" : "No", clabel->status );
2880 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2881 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2882 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2883 (char) clabel->parityConfig, clabel->blockSize,
2884 clabel->numBlocks);
2885 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2886 printf(" Contains root partition: %s\n",
2887 clabel->root_partition ? "Yes" : "No" );
2888 printf(" Last configured as: raid%d\n", clabel->last_unit );
2889 #if 0
2890 printf(" Config order: %d\n", clabel->config_order);
2891 #endif
2892
2893 }
2894 #endif
2895
2896 RF_ConfigSet_t *
2897 rf_create_auto_sets(ac_list)
2898 RF_AutoConfig_t *ac_list;
2899 {
2900 RF_AutoConfig_t *ac;
2901 RF_ConfigSet_t *config_sets;
2902 RF_ConfigSet_t *cset;
2903 RF_AutoConfig_t *ac_next;
2904
2905
2906 config_sets = NULL;
2907
2908 /* Go through the AutoConfig list, and figure out which components
2909 belong to what sets. */
2910 ac = ac_list;
2911 while(ac!=NULL) {
2912 /* we're going to putz with ac->next, so save it here
2913 for use at the end of the loop */
2914 ac_next = ac->next;
2915
2916 if (config_sets == NULL) {
2917 /* will need at least this one... */
2918 config_sets = (RF_ConfigSet_t *)
2919 malloc(sizeof(RF_ConfigSet_t),
2920 M_RAIDFRAME, M_NOWAIT);
2921 if (config_sets == NULL) {
2922 panic("rf_create_auto_sets: No memory!");
2923 }
2924 /* this one is easy :) */
2925 config_sets->ac = ac;
2926 config_sets->next = NULL;
2927 config_sets->rootable = 0;
2928 ac->next = NULL;
2929 } else {
2930 /* which set does this component fit into? */
2931 cset = config_sets;
2932 while(cset!=NULL) {
2933 if (rf_does_it_fit(cset, ac)) {
2934 /* looks like it matches... */
2935 ac->next = cset->ac;
2936 cset->ac = ac;
2937 break;
2938 }
2939 cset = cset->next;
2940 }
2941 if (cset==NULL) {
2942 /* didn't find a match above... new set..*/
2943 cset = (RF_ConfigSet_t *)
2944 malloc(sizeof(RF_ConfigSet_t),
2945 M_RAIDFRAME, M_NOWAIT);
2946 if (cset == NULL) {
2947 panic("rf_create_auto_sets: No memory!");
2948 }
2949 cset->ac = ac;
2950 ac->next = NULL;
2951 cset->next = config_sets;
2952 cset->rootable = 0;
2953 config_sets = cset;
2954 }
2955 }
2956 ac = ac_next;
2957 }
2958
2959
2960 return(config_sets);
2961 }
2962
2963 static int
2964 rf_does_it_fit(cset, ac)
2965 RF_ConfigSet_t *cset;
2966 RF_AutoConfig_t *ac;
2967 {
2968 RF_ComponentLabel_t *clabel1, *clabel2;
2969
2970 /* If this one matches the *first* one in the set, that's good
2971 enough, since the other members of the set would have been
2972 through here too... */
2973 /* note that we are not checking partitionSize here..
2974
2975 Note that we are also not checking the mod_counters here.
2976 If everything else matches execpt the mod_counter, that's
2977 good enough for this test. We will deal with the mod_counters
2978 a little later in the autoconfiguration process.
2979
2980 (clabel1->mod_counter == clabel2->mod_counter) &&
2981
2982 The reason we don't check for this is that failed disks
2983 will have lower modification counts. If those disks are
2984 not added to the set they used to belong to, then they will
2985 form their own set, which may result in 2 different sets,
2986 for example, competing to be configured at raid0, and
2987 perhaps competing to be the root filesystem set. If the
2988 wrong ones get configured, or both attempt to become /,
2989 weird behaviour and or serious lossage will occur. Thus we
2990 need to bring them into the fold here, and kick them out at
2991 a later point.
2992
2993 */
2994
2995 clabel1 = cset->ac->clabel;
2996 clabel2 = ac->clabel;
2997 if ((clabel1->version == clabel2->version) &&
2998 (clabel1->serial_number == clabel2->serial_number) &&
2999 (clabel1->num_rows == clabel2->num_rows) &&
3000 (clabel1->num_columns == clabel2->num_columns) &&
3001 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3002 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3003 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3004 (clabel1->parityConfig == clabel2->parityConfig) &&
3005 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3006 (clabel1->blockSize == clabel2->blockSize) &&
3007 (clabel1->numBlocks == clabel2->numBlocks) &&
3008 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3009 (clabel1->root_partition == clabel2->root_partition) &&
3010 (clabel1->last_unit == clabel2->last_unit) &&
3011 (clabel1->config_order == clabel2->config_order)) {
3012 /* if it get's here, it almost *has* to be a match */
3013 } else {
3014 /* it's not consistent with somebody in the set..
3015 punt */
3016 return(0);
3017 }
3018 /* all was fine.. it must fit... */
3019 return(1);
3020 }
3021
3022 int
3023 rf_have_enough_components(cset)
3024 RF_ConfigSet_t *cset;
3025 {
3026 RF_AutoConfig_t *ac;
3027 RF_AutoConfig_t *auto_config;
3028 RF_ComponentLabel_t *clabel;
3029 int r,c;
3030 int num_rows;
3031 int num_cols;
3032 int num_missing;
3033 int mod_counter;
3034 int mod_counter_found;
3035 int even_pair_failed;
3036 char parity_type;
3037
3038
3039 /* check to see that we have enough 'live' components
3040 of this set. If so, we can configure it if necessary */
3041
3042 num_rows = cset->ac->clabel->num_rows;
3043 num_cols = cset->ac->clabel->num_columns;
3044 parity_type = cset->ac->clabel->parityConfig;
3045
3046 /* XXX Check for duplicate components!?!?!? */
3047
3048 /* Determine what the mod_counter is supposed to be for this set. */
3049
3050 mod_counter_found = 0;
3051 mod_counter = 0;
3052 ac = cset->ac;
3053 while(ac!=NULL) {
3054 if (mod_counter_found==0) {
3055 mod_counter = ac->clabel->mod_counter;
3056 mod_counter_found = 1;
3057 } else {
3058 if (ac->clabel->mod_counter > mod_counter) {
3059 mod_counter = ac->clabel->mod_counter;
3060 }
3061 }
3062 ac = ac->next;
3063 }
3064
3065 num_missing = 0;
3066 auto_config = cset->ac;
3067
3068 for(r=0; r<num_rows; r++) {
3069 even_pair_failed = 0;
3070 for(c=0; c<num_cols; c++) {
3071 ac = auto_config;
3072 while(ac!=NULL) {
3073 if ((ac->clabel->row == r) &&
3074 (ac->clabel->column == c) &&
3075 (ac->clabel->mod_counter == mod_counter)) {
3076 /* it's this one... */
3077 #if DEBUG
3078 printf("Found: %s at %d,%d\n",
3079 ac->devname,r,c);
3080 #endif
3081 break;
3082 }
3083 ac=ac->next;
3084 }
3085 if (ac==NULL) {
3086 /* Didn't find one here! */
3087 /* special case for RAID 1, especially
3088 where there are more than 2
3089 components (where RAIDframe treats
3090 things a little differently :( ) */
3091 if (parity_type == '1') {
3092 if (c%2 == 0) { /* even component */
3093 even_pair_failed = 1;
3094 } else { /* odd component. If
3095 we're failed, and
3096 so is the even
3097 component, it's
3098 "Good Night, Charlie" */
3099 if (even_pair_failed == 1) {
3100 return(0);
3101 }
3102 }
3103 } else {
3104 /* normal accounting */
3105 num_missing++;
3106 }
3107 }
3108 if ((parity_type == '1') && (c%2 == 1)) {
3109 /* Just did an even component, and we didn't
3110 bail.. reset the even_pair_failed flag,
3111 and go on to the next component.... */
3112 even_pair_failed = 0;
3113 }
3114 }
3115 }
3116
3117 clabel = cset->ac->clabel;
3118
3119 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3120 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3121 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3122 /* XXX this needs to be made *much* more general */
3123 /* Too many failures */
3124 return(0);
3125 }
3126 /* otherwise, all is well, and we've got enough to take a kick
3127 at autoconfiguring this set */
3128 return(1);
3129 }
3130
3131 void
3132 rf_create_configuration(ac,config,raidPtr)
3133 RF_AutoConfig_t *ac;
3134 RF_Config_t *config;
3135 RF_Raid_t *raidPtr;
3136 {
3137 RF_ComponentLabel_t *clabel;
3138 int i;
3139
3140 clabel = ac->clabel;
3141
3142 /* 1. Fill in the common stuff */
3143 config->numRow = clabel->num_rows;
3144 config->numCol = clabel->num_columns;
3145 config->numSpare = 0; /* XXX should this be set here? */
3146 config->sectPerSU = clabel->sectPerSU;
3147 config->SUsPerPU = clabel->SUsPerPU;
3148 config->SUsPerRU = clabel->SUsPerRU;
3149 config->parityConfig = clabel->parityConfig;
3150 /* XXX... */
3151 strcpy(config->diskQueueType,"fifo");
3152 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3153 config->layoutSpecificSize = 0; /* XXX ?? */
3154
3155 while(ac!=NULL) {
3156 /* row/col values will be in range due to the checks
3157 in reasonable_label() */
3158 strcpy(config->devnames[ac->clabel->row][ac->clabel->column],
3159 ac->devname);
3160 ac = ac->next;
3161 }
3162
3163 for(i=0;i<RF_MAXDBGV;i++) {
3164 config->debugVars[i][0] = NULL;
3165 }
3166 }
3167
3168 int
3169 rf_set_autoconfig(raidPtr, new_value)
3170 RF_Raid_t *raidPtr;
3171 int new_value;
3172 {
3173 RF_ComponentLabel_t clabel;
3174 struct vnode *vp;
3175 dev_t dev;
3176 int row, column;
3177 int sparecol;
3178
3179 raidPtr->autoconfigure = new_value;
3180 for(row=0; row<raidPtr->numRow; row++) {
3181 for(column=0; column<raidPtr->numCol; column++) {
3182 if (raidPtr->Disks[row][column].status ==
3183 rf_ds_optimal) {
3184 dev = raidPtr->Disks[row][column].dev;
3185 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3186 raidread_component_label(dev, vp, &clabel);
3187 clabel.autoconfigure = new_value;
3188 raidwrite_component_label(dev, vp, &clabel);
3189 }
3190 }
3191 }
3192 for(column = 0; column < raidPtr->numSpare ; column++) {
3193 sparecol = raidPtr->numCol + column;
3194 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3195 dev = raidPtr->Disks[0][sparecol].dev;
3196 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3197 raidread_component_label(dev, vp, &clabel);
3198 clabel.autoconfigure = new_value;
3199 raidwrite_component_label(dev, vp, &clabel);
3200 }
3201 }
3202 return(new_value);
3203 }
3204
3205 int
3206 rf_set_rootpartition(raidPtr, new_value)
3207 RF_Raid_t *raidPtr;
3208 int new_value;
3209 {
3210 RF_ComponentLabel_t clabel;
3211 struct vnode *vp;
3212 dev_t dev;
3213 int row, column;
3214 int sparecol;
3215
3216 raidPtr->root_partition = new_value;
3217 for(row=0; row<raidPtr->numRow; row++) {
3218 for(column=0; column<raidPtr->numCol; column++) {
3219 if (raidPtr->Disks[row][column].status ==
3220 rf_ds_optimal) {
3221 dev = raidPtr->Disks[row][column].dev;
3222 vp = raidPtr->raid_cinfo[row][column].ci_vp;
3223 raidread_component_label(dev, vp, &clabel);
3224 clabel.root_partition = new_value;
3225 raidwrite_component_label(dev, vp, &clabel);
3226 }
3227 }
3228 }
3229 for(column = 0; column < raidPtr->numSpare ; column++) {
3230 sparecol = raidPtr->numCol + column;
3231 if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
3232 dev = raidPtr->Disks[0][sparecol].dev;
3233 vp = raidPtr->raid_cinfo[0][sparecol].ci_vp;
3234 raidread_component_label(dev, vp, &clabel);
3235 clabel.root_partition = new_value;
3236 raidwrite_component_label(dev, vp, &clabel);
3237 }
3238 }
3239 return(new_value);
3240 }
3241
3242 void
3243 rf_release_all_vps(cset)
3244 RF_ConfigSet_t *cset;
3245 {
3246 RF_AutoConfig_t *ac;
3247
3248 ac = cset->ac;
3249 while(ac!=NULL) {
3250 /* Close the vp, and give it back */
3251 if (ac->vp) {
3252 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3253 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3254 vput(ac->vp);
3255 ac->vp = NULL;
3256 }
3257 ac = ac->next;
3258 }
3259 }
3260
3261
3262 void
3263 rf_cleanup_config_set(cset)
3264 RF_ConfigSet_t *cset;
3265 {
3266 RF_AutoConfig_t *ac;
3267 RF_AutoConfig_t *next_ac;
3268
3269 ac = cset->ac;
3270 while(ac!=NULL) {
3271 next_ac = ac->next;
3272 /* nuke the label */
3273 free(ac->clabel, M_RAIDFRAME);
3274 /* cleanup the config structure */
3275 free(ac, M_RAIDFRAME);
3276 /* "next.." */
3277 ac = next_ac;
3278 }
3279 /* and, finally, nuke the config set */
3280 free(cset, M_RAIDFRAME);
3281 }
3282
3283
3284 void
3285 raid_init_component_label(raidPtr, clabel)
3286 RF_Raid_t *raidPtr;
3287 RF_ComponentLabel_t *clabel;
3288 {
3289 /* current version number */
3290 clabel->version = RF_COMPONENT_LABEL_VERSION;
3291 clabel->serial_number = raidPtr->serial_number;
3292 clabel->mod_counter = raidPtr->mod_counter;
3293 clabel->num_rows = raidPtr->numRow;
3294 clabel->num_columns = raidPtr->numCol;
3295 clabel->clean = RF_RAID_DIRTY; /* not clean */
3296 clabel->status = rf_ds_optimal; /* "It's good!" */
3297
3298 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3299 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3300 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3301
3302 clabel->blockSize = raidPtr->bytesPerSector;
3303 clabel->numBlocks = raidPtr->sectorsPerDisk;
3304
3305 /* XXX not portable */
3306 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3307 clabel->maxOutstanding = raidPtr->maxOutstanding;
3308 clabel->autoconfigure = raidPtr->autoconfigure;
3309 clabel->root_partition = raidPtr->root_partition;
3310 clabel->last_unit = raidPtr->raidid;
3311 clabel->config_order = raidPtr->config_order;
3312 }
3313
3314 int
3315 rf_auto_config_set(cset,unit)
3316 RF_ConfigSet_t *cset;
3317 int *unit;
3318 {
3319 RF_Raid_t *raidPtr;
3320 RF_Config_t *config;
3321 int raidID;
3322 int retcode;
3323
3324 #if DEBUG
3325 printf("RAID autoconfigure\n");
3326 #endif
3327
3328 retcode = 0;
3329 *unit = -1;
3330
3331 /* 1. Create a config structure */
3332
3333 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3334 M_RAIDFRAME,
3335 M_NOWAIT);
3336 if (config==NULL) {
3337 printf("Out of mem!?!?\n");
3338 /* XXX do something more intelligent here. */
3339 return(1);
3340 }
3341
3342 memset(config, 0, sizeof(RF_Config_t));
3343
3344 /*
3345 2. Figure out what RAID ID this one is supposed to live at
3346 See if we can get the same RAID dev that it was configured
3347 on last time..
3348 */
3349
3350 raidID = cset->ac->clabel->last_unit;
3351 if ((raidID < 0) || (raidID >= numraid)) {
3352 /* let's not wander off into lala land. */
3353 raidID = numraid - 1;
3354 }
3355 if (raidPtrs[raidID]->valid != 0) {
3356
3357 /*
3358 Nope... Go looking for an alternative...
3359 Start high so we don't immediately use raid0 if that's
3360 not taken.
3361 */
3362
3363 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3364 if (raidPtrs[raidID]->valid == 0) {
3365 /* can use this one! */
3366 break;
3367 }
3368 }
3369 }
3370
3371 if (raidID < 0) {
3372 /* punt... */
3373 printf("Unable to auto configure this set!\n");
3374 printf("(Out of RAID devs!)\n");
3375 return(1);
3376 }
3377
3378 #if DEBUG
3379 printf("Configuring raid%d:\n",raidID);
3380 #endif
3381
3382 raidPtr = raidPtrs[raidID];
3383
3384 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3385 raidPtr->raidid = raidID;
3386 raidPtr->openings = RAIDOUTSTANDING;
3387
3388 /* 3. Build the configuration structure */
3389 rf_create_configuration(cset->ac, config, raidPtr);
3390
3391 /* 4. Do the configuration */
3392 retcode = rf_Configure(raidPtr, config, cset->ac);
3393
3394 if (retcode == 0) {
3395
3396 raidinit(raidPtrs[raidID]);
3397
3398 rf_markalldirty(raidPtrs[raidID]);
3399 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3400 if (cset->ac->clabel->root_partition==1) {
3401 /* everything configured just fine. Make a note
3402 that this set is eligible to be root. */
3403 cset->rootable = 1;
3404 /* XXX do this here? */
3405 raidPtrs[raidID]->root_partition = 1;
3406 }
3407 }
3408
3409 /* 5. Cleanup */
3410 free(config, M_RAIDFRAME);
3411
3412 *unit = raidID;
3413 return(retcode);
3414 }
3415
3416 void
3417 rf_disk_unbusy(desc)
3418 RF_RaidAccessDesc_t *desc;
3419 {
3420 struct buf *bp;
3421
3422 bp = (struct buf *)desc->bp;
3423 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3424 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3425 }
3426