Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.170
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.170 2003/12/31 03:02:57 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.170 2003/12/31 03:02:57 oster Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/user.h>
    169 #include <sys/reboot.h>
    170 
    171 #include <dev/raidframe/raidframevar.h>
    172 #include <dev/raidframe/raidframeio.h>
    173 #include "raid.h"
    174 #include "opt_raid_autoconfig.h"
    175 #include "rf_raid.h"
    176 #include "rf_copyback.h"
    177 #include "rf_dag.h"
    178 #include "rf_dagflags.h"
    179 #include "rf_desc.h"
    180 #include "rf_diskqueue.h"
    181 #include "rf_etimer.h"
    182 #include "rf_general.h"
    183 #include "rf_kintf.h"
    184 #include "rf_options.h"
    185 #include "rf_driver.h"
    186 #include "rf_parityscan.h"
    187 #include "rf_threadstuff.h"
    188 
    189 #ifdef DEBUG
    190 int     rf_kdebug_level = 0;
    191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    192 #else				/* DEBUG */
    193 #define db1_printf(a) { }
    194 #endif				/* DEBUG */
    195 
    196 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    197 
    198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    199 
    200 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    201 						 * spare table */
    202 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    203 						 * installation process */
    204 
    205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    206 
    207 /* prototypes */
    208 static void KernelWakeupFunc(struct buf * bp);
    209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    210 		   dev_t dev, RF_SectorNum_t startSect,
    211 		   RF_SectorCount_t numSect, caddr_t buf,
    212 		   void (*cbFunc) (struct buf *), void *cbArg,
    213 		   int logBytesPerSector, struct proc * b_proc);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 
    218 dev_type_open(raidopen);
    219 dev_type_close(raidclose);
    220 dev_type_read(raidread);
    221 dev_type_write(raidwrite);
    222 dev_type_ioctl(raidioctl);
    223 dev_type_strategy(raidstrategy);
    224 dev_type_dump(raiddump);
    225 dev_type_size(raidsize);
    226 
    227 const struct bdevsw raid_bdevsw = {
    228 	raidopen, raidclose, raidstrategy, raidioctl,
    229 	raiddump, raidsize, D_DISK
    230 };
    231 
    232 const struct cdevsw raid_cdevsw = {
    233 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    234 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    235 };
    236 
    237 /*
    238  * Pilfered from ccd.c
    239  */
    240 
    241 struct raidbuf {
    242 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    243 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    244 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    245 };
    246 
    247 /* component buffer pool */
    248 struct pool raidframe_cbufpool;
    249 
    250 /* XXX Not sure if the following should be replacing the raidPtrs above,
    251    or if it should be used in conjunction with that...
    252 */
    253 
    254 struct raid_softc {
    255 	int     sc_flags;	/* flags */
    256 	int     sc_cflags;	/* configuration flags */
    257 	size_t  sc_size;        /* size of the raid device */
    258 	char    sc_xname[20];	/* XXX external name */
    259 	struct disk sc_dkdev;	/* generic disk device info */
    260 	struct bufq_state buf_queue;	/* used for the device queue */
    261 };
    262 /* sc_flags */
    263 #define RAIDF_INITED	0x01	/* unit has been initialized */
    264 #define RAIDF_WLABEL	0x02	/* label area is writable */
    265 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    266 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    267 #define RAIDF_LOCKED	0x80	/* unit is locked */
    268 
    269 #define	raidunit(x)	DISKUNIT(x)
    270 int numraid = 0;
    271 
    272 /*
    273  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    274  * Be aware that large numbers can allow the driver to consume a lot of
    275  * kernel memory, especially on writes, and in degraded mode reads.
    276  *
    277  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    278  * a single 64K write will typically require 64K for the old data,
    279  * 64K for the old parity, and 64K for the new parity, for a total
    280  * of 192K (if the parity buffer is not re-used immediately).
    281  * Even it if is used immediately, that's still 128K, which when multiplied
    282  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    283  *
    284  * Now in degraded mode, for example, a 64K read on the above setup may
    285  * require data reconstruction, which will require *all* of the 4 remaining
    286  * disks to participate -- 4 * 32K/disk == 128K again.
    287  */
    288 
    289 #ifndef RAIDOUTSTANDING
    290 #define RAIDOUTSTANDING   6
    291 #endif
    292 
    293 #define RAIDLABELDEV(dev)	\
    294 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    295 
    296 /* declared here, and made public, for the benefit of KVM stuff.. */
    297 struct raid_softc *raid_softc;
    298 
    299 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    300 				     struct disklabel *);
    301 static void raidgetdisklabel(dev_t);
    302 static void raidmakedisklabel(struct raid_softc *);
    303 
    304 static int raidlock(struct raid_softc *);
    305 static void raidunlock(struct raid_softc *);
    306 
    307 static void rf_markalldirty(RF_Raid_t *);
    308 
    309 struct device *raidrootdev;
    310 
    311 void rf_ReconThread(struct rf_recon_req *);
    312 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    313 void rf_CopybackThread(RF_Raid_t *raidPtr);
    314 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    315 int rf_autoconfig(struct device *self);
    316 void rf_buildroothack(RF_ConfigSet_t *);
    317 
    318 RF_AutoConfig_t *rf_find_raid_components(void);
    319 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    320 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    321 static int rf_reasonable_label(RF_ComponentLabel_t *);
    322 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    323 int rf_set_autoconfig(RF_Raid_t *, int);
    324 int rf_set_rootpartition(RF_Raid_t *, int);
    325 void rf_release_all_vps(RF_ConfigSet_t *);
    326 void rf_cleanup_config_set(RF_ConfigSet_t *);
    327 int rf_have_enough_components(RF_ConfigSet_t *);
    328 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    329 
    330 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    331 				  allow autoconfig to take place.
    332 			          Note that this is overridden by having
    333 			          RAID_AUTOCONFIG as an option in the
    334 			          kernel config file.  */
    335 
    336 void
    337 raidattach(int num)
    338 {
    339 	int raidID;
    340 	int i, rc;
    341 
    342 #ifdef DEBUG
    343 	printf("raidattach: Asked for %d units\n", num);
    344 #endif
    345 
    346 	if (num <= 0) {
    347 #ifdef DIAGNOSTIC
    348 		panic("raidattach: count <= 0");
    349 #endif
    350 		return;
    351 	}
    352 	/* This is where all the initialization stuff gets done. */
    353 
    354 	numraid = num;
    355 
    356 	/* Make some space for requested number of units... */
    357 
    358 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    359 	if (raidPtrs == NULL) {
    360 		panic("raidPtrs is NULL!!");
    361 	}
    362 
    363 	/* Initialize the component buffer pool. */
    364 	pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
    365 	    0, 0, "raidpl", NULL);
    366 
    367 	rf_mutex_init(&rf_sparet_wait_mutex);
    368 
    369 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    370 
    371 	for (i = 0; i < num; i++)
    372 		raidPtrs[i] = NULL;
    373 	rc = rf_BootRaidframe();
    374 	if (rc == 0)
    375 		printf("Kernelized RAIDframe activated\n");
    376 	else
    377 		panic("Serious error booting RAID!!");
    378 
    379 	/* put together some datastructures like the CCD device does.. This
    380 	 * lets us lock the device and what-not when it gets opened. */
    381 
    382 	raid_softc = (struct raid_softc *)
    383 		malloc(num * sizeof(struct raid_softc),
    384 		       M_RAIDFRAME, M_NOWAIT);
    385 	if (raid_softc == NULL) {
    386 		printf("WARNING: no memory for RAIDframe driver\n");
    387 		return;
    388 	}
    389 
    390 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    391 
    392 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    393 					      M_RAIDFRAME, M_NOWAIT);
    394 	if (raidrootdev == NULL) {
    395 		panic("No memory for RAIDframe driver!!?!?!");
    396 	}
    397 
    398 	for (raidID = 0; raidID < num; raidID++) {
    399 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    400 
    401 		raidrootdev[raidID].dv_class  = DV_DISK;
    402 		raidrootdev[raidID].dv_cfdata = NULL;
    403 		raidrootdev[raidID].dv_unit   = raidID;
    404 		raidrootdev[raidID].dv_parent = NULL;
    405 		raidrootdev[raidID].dv_flags  = 0;
    406 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    407 
    408 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    409 			  (RF_Raid_t *));
    410 		if (raidPtrs[raidID] == NULL) {
    411 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    412 			numraid = raidID;
    413 			return;
    414 		}
    415 	}
    416 
    417 #ifdef RAID_AUTOCONFIG
    418 	raidautoconfig = 1;
    419 #endif
    420 
    421 	/*
    422 	 * Register a finalizer which will be used to auto-config RAID
    423 	 * sets once all real hardware devices have been found.
    424 	 */
    425 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    426 		printf("WARNING: unable to register RAIDframe finalizer\n");
    427 }
    428 
    429 int
    430 rf_autoconfig(struct device *self)
    431 {
    432 	RF_AutoConfig_t *ac_list;
    433 	RF_ConfigSet_t *config_sets;
    434 
    435 	if (raidautoconfig == 0)
    436 		return (0);
    437 
    438 	/* XXX This code can only be run once. */
    439 	raidautoconfig = 0;
    440 
    441 	/* 1. locate all RAID components on the system */
    442 #ifdef DEBUG
    443 	printf("Searching for RAID components...\n");
    444 #endif
    445 	ac_list = rf_find_raid_components();
    446 
    447 	/* 2. Sort them into their respective sets. */
    448 	config_sets = rf_create_auto_sets(ac_list);
    449 
    450 	/*
    451 	 * 3. Evaluate each set andconfigure the valid ones.
    452 	 * This gets done in rf_buildroothack().
    453 	 */
    454 	rf_buildroothack(config_sets);
    455 
    456 	return (1);
    457 }
    458 
    459 void
    460 rf_buildroothack(RF_ConfigSet_t *config_sets)
    461 {
    462 	RF_ConfigSet_t *cset;
    463 	RF_ConfigSet_t *next_cset;
    464 	int retcode;
    465 	int raidID;
    466 	int rootID;
    467 	int num_root;
    468 
    469 	rootID = 0;
    470 	num_root = 0;
    471 	cset = config_sets;
    472 	while(cset != NULL ) {
    473 		next_cset = cset->next;
    474 		if (rf_have_enough_components(cset) &&
    475 		    cset->ac->clabel->autoconfigure==1) {
    476 			retcode = rf_auto_config_set(cset,&raidID);
    477 			if (!retcode) {
    478 				if (cset->rootable) {
    479 					rootID = raidID;
    480 					num_root++;
    481 				}
    482 			} else {
    483 				/* The autoconfig didn't work :( */
    484 #if DEBUG
    485 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    486 #endif
    487 				rf_release_all_vps(cset);
    488 			}
    489 		} else {
    490 			/* we're not autoconfiguring this set...
    491 			   release the associated resources */
    492 			rf_release_all_vps(cset);
    493 		}
    494 		/* cleanup */
    495 		rf_cleanup_config_set(cset);
    496 		cset = next_cset;
    497 	}
    498 
    499 	/* we found something bootable... */
    500 
    501 	if (num_root == 1) {
    502 		booted_device = &raidrootdev[rootID];
    503 	} else if (num_root > 1) {
    504 		/* we can't guess.. require the user to answer... */
    505 		boothowto |= RB_ASKNAME;
    506 	}
    507 }
    508 
    509 
    510 int
    511 raidsize(dev_t dev)
    512 {
    513 	struct raid_softc *rs;
    514 	struct disklabel *lp;
    515 	int     part, unit, omask, size;
    516 
    517 	unit = raidunit(dev);
    518 	if (unit >= numraid)
    519 		return (-1);
    520 	rs = &raid_softc[unit];
    521 
    522 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    523 		return (-1);
    524 
    525 	part = DISKPART(dev);
    526 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    527 	lp = rs->sc_dkdev.dk_label;
    528 
    529 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    530 		return (-1);
    531 
    532 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    533 		size = -1;
    534 	else
    535 		size = lp->d_partitions[part].p_size *
    536 		    (lp->d_secsize / DEV_BSIZE);
    537 
    538 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    539 		return (-1);
    540 
    541 	return (size);
    542 
    543 }
    544 
    545 int
    546 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    547 {
    548 	/* Not implemented. */
    549 	return ENXIO;
    550 }
    551 /* ARGSUSED */
    552 int
    553 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
    554 {
    555 	int     unit = raidunit(dev);
    556 	struct raid_softc *rs;
    557 	struct disklabel *lp;
    558 	int     part, pmask;
    559 	int     error = 0;
    560 
    561 	if (unit >= numraid)
    562 		return (ENXIO);
    563 	rs = &raid_softc[unit];
    564 
    565 	if ((error = raidlock(rs)) != 0)
    566 		return (error);
    567 	lp = rs->sc_dkdev.dk_label;
    568 
    569 	part = DISKPART(dev);
    570 	pmask = (1 << part);
    571 
    572 	if ((rs->sc_flags & RAIDF_INITED) &&
    573 	    (rs->sc_dkdev.dk_openmask == 0))
    574 		raidgetdisklabel(dev);
    575 
    576 	/* make sure that this partition exists */
    577 
    578 	if (part != RAW_PART) {
    579 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    580 		    ((part >= lp->d_npartitions) ||
    581 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    582 			error = ENXIO;
    583 			raidunlock(rs);
    584 			return (error);
    585 		}
    586 	}
    587 	/* Prevent this unit from being unconfigured while open. */
    588 	switch (fmt) {
    589 	case S_IFCHR:
    590 		rs->sc_dkdev.dk_copenmask |= pmask;
    591 		break;
    592 
    593 	case S_IFBLK:
    594 		rs->sc_dkdev.dk_bopenmask |= pmask;
    595 		break;
    596 	}
    597 
    598 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    599 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    600 		/* First one... mark things as dirty... Note that we *MUST*
    601 		 have done a configure before this.  I DO NOT WANT TO BE
    602 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    603 		 THAT THEY BELONG TOGETHER!!!!! */
    604 		/* XXX should check to see if we're only open for reading
    605 		   here... If so, we needn't do this, but then need some
    606 		   other way of keeping track of what's happened.. */
    607 
    608 		rf_markalldirty( raidPtrs[unit] );
    609 	}
    610 
    611 
    612 	rs->sc_dkdev.dk_openmask =
    613 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    614 
    615 	raidunlock(rs);
    616 
    617 	return (error);
    618 
    619 
    620 }
    621 /* ARGSUSED */
    622 int
    623 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
    624 {
    625 	int     unit = raidunit(dev);
    626 	struct raid_softc *rs;
    627 	int     error = 0;
    628 	int     part;
    629 
    630 	if (unit >= numraid)
    631 		return (ENXIO);
    632 	rs = &raid_softc[unit];
    633 
    634 	if ((error = raidlock(rs)) != 0)
    635 		return (error);
    636 
    637 	part = DISKPART(dev);
    638 
    639 	/* ...that much closer to allowing unconfiguration... */
    640 	switch (fmt) {
    641 	case S_IFCHR:
    642 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    643 		break;
    644 
    645 	case S_IFBLK:
    646 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    647 		break;
    648 	}
    649 	rs->sc_dkdev.dk_openmask =
    650 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    651 
    652 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    653 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    654 		/* Last one... device is not unconfigured yet.
    655 		   Device shutdown has taken care of setting the
    656 		   clean bits if RAIDF_INITED is not set
    657 		   mark things as clean... */
    658 
    659 		rf_update_component_labels(raidPtrs[unit],
    660 						 RF_FINAL_COMPONENT_UPDATE);
    661 		if (doing_shutdown) {
    662 			/* last one, and we're going down, so
    663 			   lights out for this RAID set too. */
    664 			error = rf_Shutdown(raidPtrs[unit]);
    665 
    666 			/* It's no longer initialized... */
    667 			rs->sc_flags &= ~RAIDF_INITED;
    668 
    669 			/* Detach the disk. */
    670 			disk_detach(&rs->sc_dkdev);
    671 		}
    672 	}
    673 
    674 	raidunlock(rs);
    675 	return (0);
    676 
    677 }
    678 
    679 void
    680 raidstrategy(struct buf *bp)
    681 {
    682 	int s;
    683 
    684 	unsigned int raidID = raidunit(bp->b_dev);
    685 	RF_Raid_t *raidPtr;
    686 	struct raid_softc *rs = &raid_softc[raidID];
    687 	int     wlabel;
    688 
    689 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    690 		bp->b_error = ENXIO;
    691 		bp->b_flags |= B_ERROR;
    692 		bp->b_resid = bp->b_bcount;
    693 		biodone(bp);
    694 		return;
    695 	}
    696 	if (raidID >= numraid || !raidPtrs[raidID]) {
    697 		bp->b_error = ENODEV;
    698 		bp->b_flags |= B_ERROR;
    699 		bp->b_resid = bp->b_bcount;
    700 		biodone(bp);
    701 		return;
    702 	}
    703 	raidPtr = raidPtrs[raidID];
    704 	if (!raidPtr->valid) {
    705 		bp->b_error = ENODEV;
    706 		bp->b_flags |= B_ERROR;
    707 		bp->b_resid = bp->b_bcount;
    708 		biodone(bp);
    709 		return;
    710 	}
    711 	if (bp->b_bcount == 0) {
    712 		db1_printf(("b_bcount is zero..\n"));
    713 		biodone(bp);
    714 		return;
    715 	}
    716 
    717 	/*
    718 	 * Do bounds checking and adjust transfer.  If there's an
    719 	 * error, the bounds check will flag that for us.
    720 	 */
    721 
    722 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    723 	if (DISKPART(bp->b_dev) != RAW_PART)
    724 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    725 			db1_printf(("Bounds check failed!!:%d %d\n",
    726 				(int) bp->b_blkno, (int) wlabel));
    727 			biodone(bp);
    728 			return;
    729 		}
    730 	s = splbio();
    731 
    732 	bp->b_resid = 0;
    733 
    734 	/* stuff it onto our queue */
    735 	BUFQ_PUT(&rs->buf_queue, bp);
    736 
    737 	raidstart(raidPtrs[raidID]);
    738 
    739 	splx(s);
    740 }
    741 /* ARGSUSED */
    742 int
    743 raidread(dev_t dev, struct uio *uio, int flags)
    744 {
    745 	int     unit = raidunit(dev);
    746 	struct raid_softc *rs;
    747 
    748 	if (unit >= numraid)
    749 		return (ENXIO);
    750 	rs = &raid_softc[unit];
    751 
    752 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    753 		return (ENXIO);
    754 
    755 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    756 
    757 }
    758 /* ARGSUSED */
    759 int
    760 raidwrite(dev_t dev, struct uio *uio, int flags)
    761 {
    762 	int     unit = raidunit(dev);
    763 	struct raid_softc *rs;
    764 
    765 	if (unit >= numraid)
    766 		return (ENXIO);
    767 	rs = &raid_softc[unit];
    768 
    769 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    770 		return (ENXIO);
    771 
    772 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    773 
    774 }
    775 
    776 int
    777 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
    778 {
    779 	int     unit = raidunit(dev);
    780 	int     error = 0;
    781 	int     part, pmask;
    782 	struct raid_softc *rs;
    783 	RF_Config_t *k_cfg, *u_cfg;
    784 	RF_Raid_t *raidPtr;
    785 	RF_RaidDisk_t *diskPtr;
    786 	RF_AccTotals_t *totals;
    787 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    788 	u_char *specific_buf;
    789 	int retcode = 0;
    790 	int column;
    791 	int raidid;
    792 	struct rf_recon_req *rrcopy, *rr;
    793 	RF_ComponentLabel_t *clabel;
    794 	RF_ComponentLabel_t ci_label;
    795 	RF_ComponentLabel_t **clabel_ptr;
    796 	RF_SingleComponent_t *sparePtr,*componentPtr;
    797 	RF_SingleComponent_t hot_spare;
    798 	RF_SingleComponent_t component;
    799 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    800 	int i, j, d;
    801 #ifdef __HAVE_OLD_DISKLABEL
    802 	struct disklabel newlabel;
    803 #endif
    804 
    805 	if (unit >= numraid)
    806 		return (ENXIO);
    807 	rs = &raid_softc[unit];
    808 	raidPtr = raidPtrs[unit];
    809 
    810 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    811 		(int) DISKPART(dev), (int) unit, (int) cmd));
    812 
    813 	/* Must be open for writes for these commands... */
    814 	switch (cmd) {
    815 	case DIOCSDINFO:
    816 	case DIOCWDINFO:
    817 #ifdef __HAVE_OLD_DISKLABEL
    818 	case ODIOCWDINFO:
    819 	case ODIOCSDINFO:
    820 #endif
    821 	case DIOCWLABEL:
    822 		if ((flag & FWRITE) == 0)
    823 			return (EBADF);
    824 	}
    825 
    826 	/* Must be initialized for these... */
    827 	switch (cmd) {
    828 	case DIOCGDINFO:
    829 	case DIOCSDINFO:
    830 	case DIOCWDINFO:
    831 #ifdef __HAVE_OLD_DISKLABEL
    832 	case ODIOCGDINFO:
    833 	case ODIOCWDINFO:
    834 	case ODIOCSDINFO:
    835 	case ODIOCGDEFLABEL:
    836 #endif
    837 	case DIOCGPART:
    838 	case DIOCWLABEL:
    839 	case DIOCGDEFLABEL:
    840 	case RAIDFRAME_SHUTDOWN:
    841 	case RAIDFRAME_REWRITEPARITY:
    842 	case RAIDFRAME_GET_INFO:
    843 	case RAIDFRAME_RESET_ACCTOTALS:
    844 	case RAIDFRAME_GET_ACCTOTALS:
    845 	case RAIDFRAME_KEEP_ACCTOTALS:
    846 	case RAIDFRAME_GET_SIZE:
    847 	case RAIDFRAME_FAIL_DISK:
    848 	case RAIDFRAME_COPYBACK:
    849 	case RAIDFRAME_CHECK_RECON_STATUS:
    850 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    851 	case RAIDFRAME_GET_COMPONENT_LABEL:
    852 	case RAIDFRAME_SET_COMPONENT_LABEL:
    853 	case RAIDFRAME_ADD_HOT_SPARE:
    854 	case RAIDFRAME_REMOVE_HOT_SPARE:
    855 	case RAIDFRAME_INIT_LABELS:
    856 	case RAIDFRAME_REBUILD_IN_PLACE:
    857 	case RAIDFRAME_CHECK_PARITY:
    858 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    859 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    860 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    861 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    862 	case RAIDFRAME_SET_AUTOCONFIG:
    863 	case RAIDFRAME_SET_ROOT:
    864 	case RAIDFRAME_DELETE_COMPONENT:
    865 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    866 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    867 			return (ENXIO);
    868 	}
    869 
    870 	switch (cmd) {
    871 
    872 		/* configure the system */
    873 	case RAIDFRAME_CONFIGURE:
    874 
    875 		if (raidPtr->valid) {
    876 			/* There is a valid RAID set running on this unit! */
    877 			printf("raid%d: Device already configured!\n",unit);
    878 			return(EINVAL);
    879 		}
    880 
    881 		/* copy-in the configuration information */
    882 		/* data points to a pointer to the configuration structure */
    883 
    884 		u_cfg = *((RF_Config_t **) data);
    885 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    886 		if (k_cfg == NULL) {
    887 			return (ENOMEM);
    888 		}
    889 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    890 		if (retcode) {
    891 			RF_Free(k_cfg, sizeof(RF_Config_t));
    892 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    893 				retcode));
    894 			return (retcode);
    895 		}
    896 		/* allocate a buffer for the layout-specific data, and copy it
    897 		 * in */
    898 		if (k_cfg->layoutSpecificSize) {
    899 			if (k_cfg->layoutSpecificSize > 10000) {
    900 				/* sanity check */
    901 				RF_Free(k_cfg, sizeof(RF_Config_t));
    902 				return (EINVAL);
    903 			}
    904 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    905 			    (u_char *));
    906 			if (specific_buf == NULL) {
    907 				RF_Free(k_cfg, sizeof(RF_Config_t));
    908 				return (ENOMEM);
    909 			}
    910 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    911 			    k_cfg->layoutSpecificSize);
    912 			if (retcode) {
    913 				RF_Free(k_cfg, sizeof(RF_Config_t));
    914 				RF_Free(specific_buf,
    915 					k_cfg->layoutSpecificSize);
    916 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    917 					retcode));
    918 				return (retcode);
    919 			}
    920 		} else
    921 			specific_buf = NULL;
    922 		k_cfg->layoutSpecific = specific_buf;
    923 
    924 		/* should do some kind of sanity check on the configuration.
    925 		 * Store the sum of all the bytes in the last byte? */
    926 
    927 		/* configure the system */
    928 
    929 		/*
    930 		 * Clear the entire RAID descriptor, just to make sure
    931 		 *  there is no stale data left in the case of a
    932 		 *  reconfiguration
    933 		 */
    934 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    935 		raidPtr->raidid = unit;
    936 
    937 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    938 
    939 		if (retcode == 0) {
    940 
    941 			/* allow this many simultaneous IO's to
    942 			   this RAID device */
    943 			raidPtr->openings = RAIDOUTSTANDING;
    944 
    945 			raidinit(raidPtr);
    946 			rf_markalldirty(raidPtr);
    947 		}
    948 		/* free the buffers.  No return code here. */
    949 		if (k_cfg->layoutSpecificSize) {
    950 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    951 		}
    952 		RF_Free(k_cfg, sizeof(RF_Config_t));
    953 
    954 		return (retcode);
    955 
    956 		/* shutdown the system */
    957 	case RAIDFRAME_SHUTDOWN:
    958 
    959 		if ((error = raidlock(rs)) != 0)
    960 			return (error);
    961 
    962 		/*
    963 		 * If somebody has a partition mounted, we shouldn't
    964 		 * shutdown.
    965 		 */
    966 
    967 		part = DISKPART(dev);
    968 		pmask = (1 << part);
    969 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    970 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    971 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    972 			raidunlock(rs);
    973 			return (EBUSY);
    974 		}
    975 
    976 		retcode = rf_Shutdown(raidPtr);
    977 
    978 		/* It's no longer initialized... */
    979 		rs->sc_flags &= ~RAIDF_INITED;
    980 
    981 		/* Detach the disk. */
    982 		disk_detach(&rs->sc_dkdev);
    983 
    984 		raidunlock(rs);
    985 
    986 		return (retcode);
    987 	case RAIDFRAME_GET_COMPONENT_LABEL:
    988 		clabel_ptr = (RF_ComponentLabel_t **) data;
    989 		/* need to read the component label for the disk indicated
    990 		   by row,column in clabel */
    991 
    992 		/* For practice, let's get it directly fromdisk, rather
    993 		   than from the in-core copy */
    994 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    995 			   (RF_ComponentLabel_t *));
    996 		if (clabel == NULL)
    997 			return (ENOMEM);
    998 
    999 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1000 
   1001 		retcode = copyin( *clabel_ptr, clabel,
   1002 				  sizeof(RF_ComponentLabel_t));
   1003 
   1004 		if (retcode) {
   1005 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1006 			return(retcode);
   1007 		}
   1008 
   1009 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1010 
   1011 		column = clabel->column;
   1012 
   1013 		if ((column < 0) || (column >= raidPtr->numCol +
   1014 				     raidPtr->numSpare)) {
   1015 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1016 			return(EINVAL);
   1017 		}
   1018 
   1019 		raidread_component_label(raidPtr->Disks[column].dev,
   1020 				raidPtr->raid_cinfo[column].ci_vp,
   1021 				clabel );
   1022 
   1023 		retcode = copyout(clabel, *clabel_ptr,
   1024 				  sizeof(RF_ComponentLabel_t));
   1025 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1026 		return (retcode);
   1027 
   1028 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1029 		clabel = (RF_ComponentLabel_t *) data;
   1030 
   1031 		/* XXX check the label for valid stuff... */
   1032 		/* Note that some things *should not* get modified --
   1033 		   the user should be re-initing the labels instead of
   1034 		   trying to patch things.
   1035 		   */
   1036 
   1037 		raidid = raidPtr->raidid;
   1038 		printf("raid%d: Got component label:\n", raidid);
   1039 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1040 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1041 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1042 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1043 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1044 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1045 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1046 
   1047 		clabel->row = 0;
   1048 		column = clabel->column;
   1049 
   1050 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1051 			return(EINVAL);
   1052 		}
   1053 
   1054 		/* XXX this isn't allowed to do anything for now :-) */
   1055 
   1056 		/* XXX and before it is, we need to fill in the rest
   1057 		   of the fields!?!?!?! */
   1058 #if 0
   1059 		raidwrite_component_label(
   1060                             raidPtr->Disks[column].dev,
   1061 			    raidPtr->raid_cinfo[column].ci_vp,
   1062 			    clabel );
   1063 #endif
   1064 		return (0);
   1065 
   1066 	case RAIDFRAME_INIT_LABELS:
   1067 		clabel = (RF_ComponentLabel_t *) data;
   1068 		/*
   1069 		   we only want the serial number from
   1070 		   the above.  We get all the rest of the information
   1071 		   from the config that was used to create this RAID
   1072 		   set.
   1073 		   */
   1074 
   1075 		raidPtr->serial_number = clabel->serial_number;
   1076 
   1077 		raid_init_component_label(raidPtr, &ci_label);
   1078 		ci_label.serial_number = clabel->serial_number;
   1079 		ci_label.row = 0; /* we dont' pretend to support more */
   1080 
   1081 		for(column=0;column<raidPtr->numCol;column++) {
   1082 			diskPtr = &raidPtr->Disks[column];
   1083 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1084 				ci_label.partitionSize = diskPtr->partitionSize;
   1085 				ci_label.column = column;
   1086 				raidwrite_component_label(
   1087 							  raidPtr->Disks[column].dev,
   1088 							  raidPtr->raid_cinfo[column].ci_vp,
   1089 							  &ci_label );
   1090 			}
   1091 		}
   1092 
   1093 		return (retcode);
   1094 	case RAIDFRAME_SET_AUTOCONFIG:
   1095 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1096 		printf("raid%d: New autoconfig value is: %d\n",
   1097 		       raidPtr->raidid, d);
   1098 		*(int *) data = d;
   1099 		return (retcode);
   1100 
   1101 	case RAIDFRAME_SET_ROOT:
   1102 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1103 		printf("raid%d: New rootpartition value is: %d\n",
   1104 		       raidPtr->raidid, d);
   1105 		*(int *) data = d;
   1106 		return (retcode);
   1107 
   1108 		/* initialize all parity */
   1109 	case RAIDFRAME_REWRITEPARITY:
   1110 
   1111 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1112 			/* Parity for RAID 0 is trivially correct */
   1113 			raidPtr->parity_good = RF_RAID_CLEAN;
   1114 			return(0);
   1115 		}
   1116 
   1117 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1118 			/* Re-write is already in progress! */
   1119 			return(EINVAL);
   1120 		}
   1121 
   1122 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1123 					   rf_RewriteParityThread,
   1124 					   raidPtr,"raid_parity");
   1125 		return (retcode);
   1126 
   1127 
   1128 	case RAIDFRAME_ADD_HOT_SPARE:
   1129 		sparePtr = (RF_SingleComponent_t *) data;
   1130 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1131 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1132 		return(retcode);
   1133 
   1134 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1135 		return(retcode);
   1136 
   1137 	case RAIDFRAME_DELETE_COMPONENT:
   1138 		componentPtr = (RF_SingleComponent_t *)data;
   1139 		memcpy( &component, componentPtr,
   1140 			sizeof(RF_SingleComponent_t));
   1141 		retcode = rf_delete_component(raidPtr, &component);
   1142 		return(retcode);
   1143 
   1144 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1145 		componentPtr = (RF_SingleComponent_t *)data;
   1146 		memcpy( &component, componentPtr,
   1147 			sizeof(RF_SingleComponent_t));
   1148 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1149 		return(retcode);
   1150 
   1151 	case RAIDFRAME_REBUILD_IN_PLACE:
   1152 
   1153 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1154 			/* Can't do this on a RAID 0!! */
   1155 			return(EINVAL);
   1156 		}
   1157 
   1158 		if (raidPtr->recon_in_progress == 1) {
   1159 			/* a reconstruct is already in progress! */
   1160 			return(EINVAL);
   1161 		}
   1162 
   1163 		componentPtr = (RF_SingleComponent_t *) data;
   1164 		memcpy( &component, componentPtr,
   1165 			sizeof(RF_SingleComponent_t));
   1166 		component.row = 0; /* we don't support any more */
   1167 		column = component.column;
   1168 
   1169 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1170 			return(EINVAL);
   1171 		}
   1172 
   1173 		RF_LOCK_MUTEX(raidPtr->mutex);
   1174 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1175 		    (raidPtr->numFailures > 0)) {
   1176 			/* XXX 0 above shouldn't be constant!!! */
   1177 			/* some component other than this has failed.
   1178 			   Let's not make things worse than they already
   1179 			   are... */
   1180 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1181 			       raidPtr->raidid);
   1182 			printf("raid%d:     Col: %d   Too many failures.\n",
   1183 			       raidPtr->raidid, column);
   1184 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1185 			return (EINVAL);
   1186 		}
   1187 		if (raidPtr->Disks[column].status ==
   1188 		    rf_ds_reconstructing) {
   1189 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1190 			       raidPtr->raidid);
   1191 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1192 
   1193 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1194 			return (EINVAL);
   1195 		}
   1196 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1197 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1198 			return (EINVAL);
   1199 		}
   1200 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1201 
   1202 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1203 		if (rrcopy == NULL)
   1204 			return(ENOMEM);
   1205 
   1206 		rrcopy->raidPtr = (void *) raidPtr;
   1207 		rrcopy->col = column;
   1208 
   1209 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1210 					   rf_ReconstructInPlaceThread,
   1211 					   rrcopy,"raid_reconip");
   1212 		return(retcode);
   1213 
   1214 	case RAIDFRAME_GET_INFO:
   1215 		if (!raidPtr->valid)
   1216 			return (ENODEV);
   1217 		ucfgp = (RF_DeviceConfig_t **) data;
   1218 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1219 			  (RF_DeviceConfig_t *));
   1220 		if (d_cfg == NULL)
   1221 			return (ENOMEM);
   1222 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1223 		d_cfg->rows = 1; /* there is only 1 row now */
   1224 		d_cfg->cols = raidPtr->numCol;
   1225 		d_cfg->ndevs = raidPtr->numCol;
   1226 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1227 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1228 			return (ENOMEM);
   1229 		}
   1230 		d_cfg->nspares = raidPtr->numSpare;
   1231 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1232 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1233 			return (ENOMEM);
   1234 		}
   1235 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1236 		d = 0;
   1237 		for (j = 0; j < d_cfg->cols; j++) {
   1238 			d_cfg->devs[d] = raidPtr->Disks[j];
   1239 			d++;
   1240 		}
   1241 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1242 			d_cfg->spares[i] = raidPtr->Disks[j];
   1243 		}
   1244 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1245 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1246 
   1247 		return (retcode);
   1248 
   1249 	case RAIDFRAME_CHECK_PARITY:
   1250 		*(int *) data = raidPtr->parity_good;
   1251 		return (0);
   1252 
   1253 	case RAIDFRAME_RESET_ACCTOTALS:
   1254 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1255 		return (0);
   1256 
   1257 	case RAIDFRAME_GET_ACCTOTALS:
   1258 		totals = (RF_AccTotals_t *) data;
   1259 		*totals = raidPtr->acc_totals;
   1260 		return (0);
   1261 
   1262 	case RAIDFRAME_KEEP_ACCTOTALS:
   1263 		raidPtr->keep_acc_totals = *(int *)data;
   1264 		return (0);
   1265 
   1266 	case RAIDFRAME_GET_SIZE:
   1267 		*(int *) data = raidPtr->totalSectors;
   1268 		return (0);
   1269 
   1270 		/* fail a disk & optionally start reconstruction */
   1271 	case RAIDFRAME_FAIL_DISK:
   1272 
   1273 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1274 			/* Can't do this on a RAID 0!! */
   1275 			return(EINVAL);
   1276 		}
   1277 
   1278 		rr = (struct rf_recon_req *) data;
   1279 		rr->row = 0;
   1280 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1281 			return (EINVAL);
   1282 
   1283 
   1284 		RF_LOCK_MUTEX(raidPtr->mutex);
   1285 		if ((raidPtr->Disks[rr->col].status ==
   1286 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1287 			/* some other component has failed.  Let's not make
   1288 			   things worse. XXX wrong for RAID6 */
   1289 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1290 			return (EINVAL);
   1291 		}
   1292 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1293 			/* Can't fail a spared disk! */
   1294 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1295 			return (EINVAL);
   1296 		}
   1297 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1298 
   1299 		/* make a copy of the recon request so that we don't rely on
   1300 		 * the user's buffer */
   1301 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1302 		if (rrcopy == NULL)
   1303 			return(ENOMEM);
   1304 		memcpy(rrcopy, rr, sizeof(*rr));
   1305 		rrcopy->raidPtr = (void *) raidPtr;
   1306 
   1307 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1308 					   rf_ReconThread,
   1309 					   rrcopy,"raid_recon");
   1310 		return (0);
   1311 
   1312 		/* invoke a copyback operation after recon on whatever disk
   1313 		 * needs it, if any */
   1314 	case RAIDFRAME_COPYBACK:
   1315 
   1316 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1317 			/* This makes no sense on a RAID 0!! */
   1318 			return(EINVAL);
   1319 		}
   1320 
   1321 		if (raidPtr->copyback_in_progress == 1) {
   1322 			/* Copyback is already in progress! */
   1323 			return(EINVAL);
   1324 		}
   1325 
   1326 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1327 					   rf_CopybackThread,
   1328 					   raidPtr,"raid_copyback");
   1329 		return (retcode);
   1330 
   1331 		/* return the percentage completion of reconstruction */
   1332 	case RAIDFRAME_CHECK_RECON_STATUS:
   1333 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1334 			/* This makes no sense on a RAID 0, so tell the
   1335 			   user it's done. */
   1336 			*(int *) data = 100;
   1337 			return(0);
   1338 		}
   1339 		if (raidPtr->status != rf_rs_reconstructing)
   1340 			*(int *) data = 100;
   1341 		else
   1342 			*(int *) data = raidPtr->reconControl->percentComplete;
   1343 		return (0);
   1344 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1345 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1346 		if (raidPtr->status != rf_rs_reconstructing) {
   1347 			progressInfo.remaining = 0;
   1348 			progressInfo.completed = 100;
   1349 			progressInfo.total = 100;
   1350 		} else {
   1351 			progressInfo.total =
   1352 				raidPtr->reconControl->numRUsTotal;
   1353 			progressInfo.completed =
   1354 				raidPtr->reconControl->numRUsComplete;
   1355 			progressInfo.remaining = progressInfo.total -
   1356 				progressInfo.completed;
   1357 		}
   1358 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1359 				  sizeof(RF_ProgressInfo_t));
   1360 		return (retcode);
   1361 
   1362 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1363 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1364 			/* This makes no sense on a RAID 0, so tell the
   1365 			   user it's done. */
   1366 			*(int *) data = 100;
   1367 			return(0);
   1368 		}
   1369 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1370 			*(int *) data = 100 *
   1371 				raidPtr->parity_rewrite_stripes_done /
   1372 				raidPtr->Layout.numStripe;
   1373 		} else {
   1374 			*(int *) data = 100;
   1375 		}
   1376 		return (0);
   1377 
   1378 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1379 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1380 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1381 			progressInfo.total = raidPtr->Layout.numStripe;
   1382 			progressInfo.completed =
   1383 				raidPtr->parity_rewrite_stripes_done;
   1384 			progressInfo.remaining = progressInfo.total -
   1385 				progressInfo.completed;
   1386 		} else {
   1387 			progressInfo.remaining = 0;
   1388 			progressInfo.completed = 100;
   1389 			progressInfo.total = 100;
   1390 		}
   1391 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1392 				  sizeof(RF_ProgressInfo_t));
   1393 		return (retcode);
   1394 
   1395 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1396 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1397 			/* This makes no sense on a RAID 0 */
   1398 			*(int *) data = 100;
   1399 			return(0);
   1400 		}
   1401 		if (raidPtr->copyback_in_progress == 1) {
   1402 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1403 				raidPtr->Layout.numStripe;
   1404 		} else {
   1405 			*(int *) data = 100;
   1406 		}
   1407 		return (0);
   1408 
   1409 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1410 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1411 		if (raidPtr->copyback_in_progress == 1) {
   1412 			progressInfo.total = raidPtr->Layout.numStripe;
   1413 			progressInfo.completed =
   1414 				raidPtr->copyback_stripes_done;
   1415 			progressInfo.remaining = progressInfo.total -
   1416 				progressInfo.completed;
   1417 		} else {
   1418 			progressInfo.remaining = 0;
   1419 			progressInfo.completed = 100;
   1420 			progressInfo.total = 100;
   1421 		}
   1422 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1423 				  sizeof(RF_ProgressInfo_t));
   1424 		return (retcode);
   1425 
   1426 		/* the sparetable daemon calls this to wait for the kernel to
   1427 		 * need a spare table. this ioctl does not return until a
   1428 		 * spare table is needed. XXX -- calling mpsleep here in the
   1429 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1430 		 * -- I should either compute the spare table in the kernel,
   1431 		 * or have a different -- XXX XXX -- interface (a different
   1432 		 * character device) for delivering the table     -- XXX */
   1433 #if 0
   1434 	case RAIDFRAME_SPARET_WAIT:
   1435 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1436 		while (!rf_sparet_wait_queue)
   1437 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1438 		waitreq = rf_sparet_wait_queue;
   1439 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1440 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1441 
   1442 		/* structure assignment */
   1443 		*((RF_SparetWait_t *) data) = *waitreq;
   1444 
   1445 		RF_Free(waitreq, sizeof(*waitreq));
   1446 		return (0);
   1447 
   1448 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1449 		 * code in it that will cause the dameon to exit */
   1450 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1451 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1452 		waitreq->fcol = -1;
   1453 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1454 		waitreq->next = rf_sparet_wait_queue;
   1455 		rf_sparet_wait_queue = waitreq;
   1456 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1457 		wakeup(&rf_sparet_wait_queue);
   1458 		return (0);
   1459 
   1460 		/* used by the spare table daemon to deliver a spare table
   1461 		 * into the kernel */
   1462 	case RAIDFRAME_SEND_SPARET:
   1463 
   1464 		/* install the spare table */
   1465 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1466 
   1467 		/* respond to the requestor.  the return status of the spare
   1468 		 * table installation is passed in the "fcol" field */
   1469 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1470 		waitreq->fcol = retcode;
   1471 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1472 		waitreq->next = rf_sparet_resp_queue;
   1473 		rf_sparet_resp_queue = waitreq;
   1474 		wakeup(&rf_sparet_resp_queue);
   1475 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1476 
   1477 		return (retcode);
   1478 #endif
   1479 
   1480 	default:
   1481 		break; /* fall through to the os-specific code below */
   1482 
   1483 	}
   1484 
   1485 	if (!raidPtr->valid)
   1486 		return (EINVAL);
   1487 
   1488 	/*
   1489 	 * Add support for "regular" device ioctls here.
   1490 	 */
   1491 
   1492 	switch (cmd) {
   1493 	case DIOCGDINFO:
   1494 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1495 		break;
   1496 #ifdef __HAVE_OLD_DISKLABEL
   1497 	case ODIOCGDINFO:
   1498 		newlabel = *(rs->sc_dkdev.dk_label);
   1499 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1500 			return ENOTTY;
   1501 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1502 		break;
   1503 #endif
   1504 
   1505 	case DIOCGPART:
   1506 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1507 		((struct partinfo *) data)->part =
   1508 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1509 		break;
   1510 
   1511 	case DIOCWDINFO:
   1512 	case DIOCSDINFO:
   1513 #ifdef __HAVE_OLD_DISKLABEL
   1514 	case ODIOCWDINFO:
   1515 	case ODIOCSDINFO:
   1516 #endif
   1517 	{
   1518 		struct disklabel *lp;
   1519 #ifdef __HAVE_OLD_DISKLABEL
   1520 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1521 			memset(&newlabel, 0, sizeof newlabel);
   1522 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1523 			lp = &newlabel;
   1524 		} else
   1525 #endif
   1526 		lp = (struct disklabel *)data;
   1527 
   1528 		if ((error = raidlock(rs)) != 0)
   1529 			return (error);
   1530 
   1531 		rs->sc_flags |= RAIDF_LABELLING;
   1532 
   1533 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1534 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1535 		if (error == 0) {
   1536 			if (cmd == DIOCWDINFO
   1537 #ifdef __HAVE_OLD_DISKLABEL
   1538 			    || cmd == ODIOCWDINFO
   1539 #endif
   1540 			   )
   1541 				error = writedisklabel(RAIDLABELDEV(dev),
   1542 				    raidstrategy, rs->sc_dkdev.dk_label,
   1543 				    rs->sc_dkdev.dk_cpulabel);
   1544 		}
   1545 		rs->sc_flags &= ~RAIDF_LABELLING;
   1546 
   1547 		raidunlock(rs);
   1548 
   1549 		if (error)
   1550 			return (error);
   1551 		break;
   1552 	}
   1553 
   1554 	case DIOCWLABEL:
   1555 		if (*(int *) data != 0)
   1556 			rs->sc_flags |= RAIDF_WLABEL;
   1557 		else
   1558 			rs->sc_flags &= ~RAIDF_WLABEL;
   1559 		break;
   1560 
   1561 	case DIOCGDEFLABEL:
   1562 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1563 		break;
   1564 
   1565 #ifdef __HAVE_OLD_DISKLABEL
   1566 	case ODIOCGDEFLABEL:
   1567 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1568 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1569 			return ENOTTY;
   1570 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1571 		break;
   1572 #endif
   1573 
   1574 	default:
   1575 		retcode = ENOTTY;
   1576 	}
   1577 	return (retcode);
   1578 
   1579 }
   1580 
   1581 
   1582 /* raidinit -- complete the rest of the initialization for the
   1583    RAIDframe device.  */
   1584 
   1585 
   1586 static void
   1587 raidinit(RF_Raid_t *raidPtr)
   1588 {
   1589 	struct raid_softc *rs;
   1590 	int     unit;
   1591 
   1592 	unit = raidPtr->raidid;
   1593 
   1594 	rs = &raid_softc[unit];
   1595 
   1596 	/* XXX should check return code first... */
   1597 	rs->sc_flags |= RAIDF_INITED;
   1598 
   1599 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1600 
   1601 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1602 
   1603 	/* disk_attach actually creates space for the CPU disklabel, among
   1604 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1605 	 * with disklabels. */
   1606 
   1607 	disk_attach(&rs->sc_dkdev);
   1608 
   1609 	/* XXX There may be a weird interaction here between this, and
   1610 	 * protectedSectors, as used in RAIDframe.  */
   1611 
   1612 	rs->sc_size = raidPtr->totalSectors;
   1613 
   1614 }
   1615 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1616 /* wake up the daemon & tell it to get us a spare table
   1617  * XXX
   1618  * the entries in the queues should be tagged with the raidPtr
   1619  * so that in the extremely rare case that two recons happen at once,
   1620  * we know for which device were requesting a spare table
   1621  * XXX
   1622  *
   1623  * XXX This code is not currently used. GO
   1624  */
   1625 int
   1626 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1627 {
   1628 	int     retcode;
   1629 
   1630 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1631 	req->next = rf_sparet_wait_queue;
   1632 	rf_sparet_wait_queue = req;
   1633 	wakeup(&rf_sparet_wait_queue);
   1634 
   1635 	/* mpsleep unlocks the mutex */
   1636 	while (!rf_sparet_resp_queue) {
   1637 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1638 		    "raidframe getsparetable", 0);
   1639 	}
   1640 	req = rf_sparet_resp_queue;
   1641 	rf_sparet_resp_queue = req->next;
   1642 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1643 
   1644 	retcode = req->fcol;
   1645 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1646 					 * alloc'd */
   1647 	return (retcode);
   1648 }
   1649 #endif
   1650 
   1651 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1652  * bp & passes it down.
   1653  * any calls originating in the kernel must use non-blocking I/O
   1654  * do some extra sanity checking to return "appropriate" error values for
   1655  * certain conditions (to make some standard utilities work)
   1656  *
   1657  * Formerly known as: rf_DoAccessKernel
   1658  */
   1659 void
   1660 raidstart(RF_Raid_t *raidPtr)
   1661 {
   1662 	RF_SectorCount_t num_blocks, pb, sum;
   1663 	RF_RaidAddr_t raid_addr;
   1664 	struct partition *pp;
   1665 	daddr_t blocknum;
   1666 	int     unit;
   1667 	struct raid_softc *rs;
   1668 	int     do_async;
   1669 	struct buf *bp;
   1670 
   1671 	unit = raidPtr->raidid;
   1672 	rs = &raid_softc[unit];
   1673 
   1674 	/* quick check to see if anything has died recently */
   1675 	RF_LOCK_MUTEX(raidPtr->mutex);
   1676 	if (raidPtr->numNewFailures > 0) {
   1677 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1678 		rf_update_component_labels(raidPtr,
   1679 					   RF_NORMAL_COMPONENT_UPDATE);
   1680 		RF_LOCK_MUTEX(raidPtr->mutex);
   1681 		raidPtr->numNewFailures--;
   1682 	}
   1683 
   1684 	/* Check to see if we're at the limit... */
   1685 	while (raidPtr->openings > 0) {
   1686 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1687 
   1688 		/* get the next item, if any, from the queue */
   1689 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1690 			/* nothing more to do */
   1691 			return;
   1692 		}
   1693 
   1694 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1695 		 * partition.. Need to make it absolute to the underlying
   1696 		 * device.. */
   1697 
   1698 		blocknum = bp->b_blkno;
   1699 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1700 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1701 			blocknum += pp->p_offset;
   1702 		}
   1703 
   1704 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1705 			    (int) blocknum));
   1706 
   1707 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1708 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1709 
   1710 		/* *THIS* is where we adjust what block we're going to...
   1711 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1712 		raid_addr = blocknum;
   1713 
   1714 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1715 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1716 		sum = raid_addr + num_blocks + pb;
   1717 		if (1 || rf_debugKernelAccess) {
   1718 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1719 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1720 				    (int) pb, (int) bp->b_resid));
   1721 		}
   1722 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1723 		    || (sum < num_blocks) || (sum < pb)) {
   1724 			bp->b_error = ENOSPC;
   1725 			bp->b_flags |= B_ERROR;
   1726 			bp->b_resid = bp->b_bcount;
   1727 			biodone(bp);
   1728 			RF_LOCK_MUTEX(raidPtr->mutex);
   1729 			continue;
   1730 		}
   1731 		/*
   1732 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1733 		 */
   1734 
   1735 		if (bp->b_bcount & raidPtr->sectorMask) {
   1736 			bp->b_error = EINVAL;
   1737 			bp->b_flags |= B_ERROR;
   1738 			bp->b_resid = bp->b_bcount;
   1739 			biodone(bp);
   1740 			RF_LOCK_MUTEX(raidPtr->mutex);
   1741 			continue;
   1742 
   1743 		}
   1744 		db1_printf(("Calling DoAccess..\n"));
   1745 
   1746 
   1747 		RF_LOCK_MUTEX(raidPtr->mutex);
   1748 		raidPtr->openings--;
   1749 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1750 
   1751 		/*
   1752 		 * Everything is async.
   1753 		 */
   1754 		do_async = 1;
   1755 
   1756 		disk_busy(&rs->sc_dkdev);
   1757 
   1758 		/* XXX we're still at splbio() here... do we *really*
   1759 		   need to be? */
   1760 
   1761 		/* don't ever condition on bp->b_flags & B_WRITE.
   1762 		 * always condition on B_READ instead */
   1763 
   1764 		bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1765 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1766 				      do_async, raid_addr, num_blocks,
   1767 				      bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1768 
   1769 		if (bp->b_error) {
   1770 			bp->b_flags |= B_ERROR;
   1771 		}
   1772 
   1773 		RF_LOCK_MUTEX(raidPtr->mutex);
   1774 	}
   1775 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1776 }
   1777 
   1778 
   1779 
   1780 
   1781 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1782 
   1783 int
   1784 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1785 {
   1786 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1787 	struct buf *bp;
   1788 	struct raidbuf *raidbp = NULL;
   1789 
   1790 	req->queue = queue;
   1791 
   1792 #if DIAGNOSTIC
   1793 	if (queue->raidPtr->raidid >= numraid) {
   1794 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1795 		    numraid);
   1796 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1797 	}
   1798 #endif
   1799 
   1800 	bp = req->bp;
   1801 #if 1
   1802 	/* XXX when there is a physical disk failure, someone is passing us a
   1803 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1804 	 * without taking a performance hit... (not sure where the real bug
   1805 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1806 
   1807 	if (bp->b_flags & B_ERROR) {
   1808 		bp->b_flags &= ~B_ERROR;
   1809 	}
   1810 	if (bp->b_error != 0) {
   1811 		bp->b_error = 0;
   1812 	}
   1813 #endif
   1814 	raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
   1815 	if (raidbp == NULL) {
   1816 		bp->b_flags |= B_ERROR;
   1817 		bp->b_error = ENOMEM;
   1818 		return (ENOMEM);
   1819 	}
   1820 	BUF_INIT(&raidbp->rf_buf);
   1821 
   1822 	/*
   1823 	 * context for raidiodone
   1824 	 */
   1825 	raidbp->rf_obp = bp;
   1826 	raidbp->req = req;
   1827 
   1828 	switch (req->type) {
   1829 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1830 		/* XXX need to do something extra here.. */
   1831 		/* I'm leaving this in, as I've never actually seen it used,
   1832 		 * and I'd like folks to report it... GO */
   1833 		printf(("WAKEUP CALLED\n"));
   1834 		queue->numOutstanding++;
   1835 
   1836 		/* XXX need to glue the original buffer into this??  */
   1837 
   1838 		KernelWakeupFunc(&raidbp->rf_buf);
   1839 		break;
   1840 
   1841 	case RF_IO_TYPE_READ:
   1842 	case RF_IO_TYPE_WRITE:
   1843 
   1844 		if (req->tracerec) {
   1845 			RF_ETIMER_START(req->tracerec->timer);
   1846 		}
   1847 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1848 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1849 		    req->sectorOffset, req->numSector,
   1850 		    req->buf, KernelWakeupFunc, (void *) req,
   1851 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1852 
   1853 		if (rf_debugKernelAccess) {
   1854 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1855 				(long) bp->b_blkno));
   1856 		}
   1857 		queue->numOutstanding++;
   1858 		queue->last_deq_sector = req->sectorOffset;
   1859 		/* acc wouldn't have been let in if there were any pending
   1860 		 * reqs at any other priority */
   1861 		queue->curPriority = req->priority;
   1862 
   1863 		db1_printf(("Going for %c to unit %d col %d\n",
   1864 			    req->type, queue->raidPtr->raidid,
   1865 			    queue->col));
   1866 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1867 			(int) req->sectorOffset, (int) req->numSector,
   1868 			(int) (req->numSector <<
   1869 			    queue->raidPtr->logBytesPerSector),
   1870 			(int) queue->raidPtr->logBytesPerSector));
   1871 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1872 			raidbp->rf_buf.b_vp->v_numoutput++;
   1873 		}
   1874 		VOP_STRATEGY(&raidbp->rf_buf);
   1875 
   1876 		break;
   1877 
   1878 	default:
   1879 		panic("bad req->type in rf_DispatchKernelIO");
   1880 	}
   1881 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1882 
   1883 	return (0);
   1884 }
   1885 /* this is the callback function associated with a I/O invoked from
   1886    kernel code.
   1887  */
   1888 static void
   1889 KernelWakeupFunc(struct buf *vbp)
   1890 {
   1891 	RF_DiskQueueData_t *req = NULL;
   1892 	RF_DiskQueue_t *queue;
   1893 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1894 	struct buf *bp;
   1895 	int s;
   1896 
   1897 	s = splbio();
   1898 	db1_printf(("recovering the request queue:\n"));
   1899 	req = raidbp->req;
   1900 
   1901 	bp = raidbp->rf_obp;
   1902 
   1903 	queue = (RF_DiskQueue_t *) req->queue;
   1904 
   1905 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1906 		bp->b_flags |= B_ERROR;
   1907 		bp->b_error = raidbp->rf_buf.b_error ?
   1908 		    raidbp->rf_buf.b_error : EIO;
   1909 	}
   1910 
   1911 	/* XXX methinks this could be wrong... */
   1912 #if 1
   1913 	bp->b_resid = raidbp->rf_buf.b_resid;
   1914 #endif
   1915 
   1916 	if (req->tracerec) {
   1917 		RF_ETIMER_STOP(req->tracerec->timer);
   1918 		RF_ETIMER_EVAL(req->tracerec->timer);
   1919 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1920 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1921 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1922 		req->tracerec->num_phys_ios++;
   1923 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1924 	}
   1925 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1926 
   1927 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1928 	 * ballistic, and mark the component as hosed... */
   1929 
   1930 	if (bp->b_flags & B_ERROR) {
   1931 		/* Mark the disk as dead */
   1932 		/* but only mark it once... */
   1933 		if (queue->raidPtr->Disks[queue->col].status ==
   1934 		    rf_ds_optimal) {
   1935 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1936 			       queue->raidPtr->raidid,
   1937 			       queue->raidPtr->Disks[queue->col].devname);
   1938 			queue->raidPtr->Disks[queue->col].status =
   1939 			    rf_ds_failed;
   1940 			queue->raidPtr->status = rf_rs_degraded;
   1941 			queue->raidPtr->numFailures++;
   1942 			queue->raidPtr->numNewFailures++;
   1943 		} else {	/* Disk is already dead... */
   1944 			/* printf("Disk already marked as dead!\n"); */
   1945 		}
   1946 
   1947 	}
   1948 
   1949 	pool_put(&raidframe_cbufpool, raidbp);
   1950 
   1951 	/* Fill in the error value */
   1952 
   1953 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1954 
   1955 	simple_lock(&queue->raidPtr->iodone_lock);
   1956 
   1957 	/* Drop this one on the "finished" queue... */
   1958 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1959 
   1960 	/* Let the raidio thread know there is work to be done. */
   1961 	wakeup(&(queue->raidPtr->iodone));
   1962 
   1963 	simple_unlock(&queue->raidPtr->iodone_lock);
   1964 
   1965 	splx(s);
   1966 }
   1967 
   1968 
   1969 
   1970 /*
   1971  * initialize a buf structure for doing an I/O in the kernel.
   1972  */
   1973 static void
   1974 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   1975        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
   1976        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   1977        struct proc *b_proc)
   1978 {
   1979 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1980 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1981 	bp->b_bcount = numSect << logBytesPerSector;
   1982 	bp->b_bufsize = bp->b_bcount;
   1983 	bp->b_error = 0;
   1984 	bp->b_dev = dev;
   1985 	bp->b_data = buf;
   1986 	bp->b_blkno = startSect;
   1987 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1988 	if (bp->b_bcount == 0) {
   1989 		panic("bp->b_bcount is zero in InitBP!!");
   1990 	}
   1991 	bp->b_proc = b_proc;
   1992 	bp->b_iodone = cbFunc;
   1993 	bp->b_vp = b_vp;
   1994 
   1995 }
   1996 
   1997 static void
   1998 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   1999 		    struct disklabel *lp)
   2000 {
   2001 	memset(lp, 0, sizeof(*lp));
   2002 
   2003 	/* fabricate a label... */
   2004 	lp->d_secperunit = raidPtr->totalSectors;
   2005 	lp->d_secsize = raidPtr->bytesPerSector;
   2006 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2007 	lp->d_ntracks = 4 * raidPtr->numCol;
   2008 	lp->d_ncylinders = raidPtr->totalSectors /
   2009 		(lp->d_nsectors * lp->d_ntracks);
   2010 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2011 
   2012 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2013 	lp->d_type = DTYPE_RAID;
   2014 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2015 	lp->d_rpm = 3600;
   2016 	lp->d_interleave = 1;
   2017 	lp->d_flags = 0;
   2018 
   2019 	lp->d_partitions[RAW_PART].p_offset = 0;
   2020 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2021 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2022 	lp->d_npartitions = RAW_PART + 1;
   2023 
   2024 	lp->d_magic = DISKMAGIC;
   2025 	lp->d_magic2 = DISKMAGIC;
   2026 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2027 
   2028 }
   2029 /*
   2030  * Read the disklabel from the raid device.  If one is not present, fake one
   2031  * up.
   2032  */
   2033 static void
   2034 raidgetdisklabel(dev_t dev)
   2035 {
   2036 	int     unit = raidunit(dev);
   2037 	struct raid_softc *rs = &raid_softc[unit];
   2038 	const char   *errstring;
   2039 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2040 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2041 	RF_Raid_t *raidPtr;
   2042 
   2043 	db1_printf(("Getting the disklabel...\n"));
   2044 
   2045 	memset(clp, 0, sizeof(*clp));
   2046 
   2047 	raidPtr = raidPtrs[unit];
   2048 
   2049 	raidgetdefaultlabel(raidPtr, rs, lp);
   2050 
   2051 	/*
   2052 	 * Call the generic disklabel extraction routine.
   2053 	 */
   2054 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2055 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2056 	if (errstring)
   2057 		raidmakedisklabel(rs);
   2058 	else {
   2059 		int     i;
   2060 		struct partition *pp;
   2061 
   2062 		/*
   2063 		 * Sanity check whether the found disklabel is valid.
   2064 		 *
   2065 		 * This is necessary since total size of the raid device
   2066 		 * may vary when an interleave is changed even though exactly
   2067 		 * same componets are used, and old disklabel may used
   2068 		 * if that is found.
   2069 		 */
   2070 		if (lp->d_secperunit != rs->sc_size)
   2071 			printf("raid%d: WARNING: %s: "
   2072 			    "total sector size in disklabel (%d) != "
   2073 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2074 			    lp->d_secperunit, (long) rs->sc_size);
   2075 		for (i = 0; i < lp->d_npartitions; i++) {
   2076 			pp = &lp->d_partitions[i];
   2077 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2078 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2079 				       "exceeds the size of raid (%ld)\n",
   2080 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2081 		}
   2082 	}
   2083 
   2084 }
   2085 /*
   2086  * Take care of things one might want to take care of in the event
   2087  * that a disklabel isn't present.
   2088  */
   2089 static void
   2090 raidmakedisklabel(struct raid_softc *rs)
   2091 {
   2092 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2093 	db1_printf(("Making a label..\n"));
   2094 
   2095 	/*
   2096 	 * For historical reasons, if there's no disklabel present
   2097 	 * the raw partition must be marked FS_BSDFFS.
   2098 	 */
   2099 
   2100 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2101 
   2102 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2103 
   2104 	lp->d_checksum = dkcksum(lp);
   2105 }
   2106 /*
   2107  * Lookup the provided name in the filesystem.  If the file exists,
   2108  * is a valid block device, and isn't being used by anyone else,
   2109  * set *vpp to the file's vnode.
   2110  * You'll find the original of this in ccd.c
   2111  */
   2112 int
   2113 raidlookup(char *path, struct proc *p, struct vnode **vpp)
   2114 {
   2115 	struct nameidata nd;
   2116 	struct vnode *vp;
   2117 	struct vattr va;
   2118 	int     error;
   2119 
   2120 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2121 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2122 		return (error);
   2123 	}
   2124 	vp = nd.ni_vp;
   2125 	if (vp->v_usecount > 1) {
   2126 		VOP_UNLOCK(vp, 0);
   2127 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2128 		return (EBUSY);
   2129 	}
   2130 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2131 		VOP_UNLOCK(vp, 0);
   2132 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2133 		return (error);
   2134 	}
   2135 	/* XXX: eventually we should handle VREG, too. */
   2136 	if (va.va_type != VBLK) {
   2137 		VOP_UNLOCK(vp, 0);
   2138 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2139 		return (ENOTBLK);
   2140 	}
   2141 	VOP_UNLOCK(vp, 0);
   2142 	*vpp = vp;
   2143 	return (0);
   2144 }
   2145 /*
   2146  * Wait interruptibly for an exclusive lock.
   2147  *
   2148  * XXX
   2149  * Several drivers do this; it should be abstracted and made MP-safe.
   2150  * (Hmm... where have we seen this warning before :->  GO )
   2151  */
   2152 static int
   2153 raidlock(struct raid_softc *rs)
   2154 {
   2155 	int     error;
   2156 
   2157 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2158 		rs->sc_flags |= RAIDF_WANTED;
   2159 		if ((error =
   2160 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2161 			return (error);
   2162 	}
   2163 	rs->sc_flags |= RAIDF_LOCKED;
   2164 	return (0);
   2165 }
   2166 /*
   2167  * Unlock and wake up any waiters.
   2168  */
   2169 static void
   2170 raidunlock(struct raid_softc *rs)
   2171 {
   2172 
   2173 	rs->sc_flags &= ~RAIDF_LOCKED;
   2174 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2175 		rs->sc_flags &= ~RAIDF_WANTED;
   2176 		wakeup(rs);
   2177 	}
   2178 }
   2179 
   2180 
   2181 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2182 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2183 
   2184 int
   2185 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2186 {
   2187 	RF_ComponentLabel_t clabel;
   2188 	raidread_component_label(dev, b_vp, &clabel);
   2189 	clabel.mod_counter = mod_counter;
   2190 	clabel.clean = RF_RAID_CLEAN;
   2191 	raidwrite_component_label(dev, b_vp, &clabel);
   2192 	return(0);
   2193 }
   2194 
   2195 
   2196 int
   2197 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2198 {
   2199 	RF_ComponentLabel_t clabel;
   2200 	raidread_component_label(dev, b_vp, &clabel);
   2201 	clabel.mod_counter = mod_counter;
   2202 	clabel.clean = RF_RAID_DIRTY;
   2203 	raidwrite_component_label(dev, b_vp, &clabel);
   2204 	return(0);
   2205 }
   2206 
   2207 /* ARGSUSED */
   2208 int
   2209 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2210 			 RF_ComponentLabel_t *clabel)
   2211 {
   2212 	struct buf *bp;
   2213 	const struct bdevsw *bdev;
   2214 	int error;
   2215 
   2216 	/* XXX should probably ensure that we don't try to do this if
   2217 	   someone has changed rf_protected_sectors. */
   2218 
   2219 	if (b_vp == NULL) {
   2220 		/* For whatever reason, this component is not valid.
   2221 		   Don't try to read a component label from it. */
   2222 		return(EINVAL);
   2223 	}
   2224 
   2225 	/* get a block of the appropriate size... */
   2226 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2227 	bp->b_dev = dev;
   2228 
   2229 	/* get our ducks in a row for the read */
   2230 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2231 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2232 	bp->b_flags |= B_READ;
   2233  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2234 
   2235 	bdev = bdevsw_lookup(bp->b_dev);
   2236 	if (bdev == NULL)
   2237 		return (ENXIO);
   2238 	(*bdev->d_strategy)(bp);
   2239 
   2240 	error = biowait(bp);
   2241 
   2242 	if (!error) {
   2243 		memcpy(clabel, bp->b_data,
   2244 		       sizeof(RF_ComponentLabel_t));
   2245         }
   2246 
   2247 	brelse(bp);
   2248 	return(error);
   2249 }
   2250 /* ARGSUSED */
   2251 int
   2252 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2253 			  RF_ComponentLabel_t *clabel)
   2254 {
   2255 	struct buf *bp;
   2256 	const struct bdevsw *bdev;
   2257 	int error;
   2258 
   2259 	/* get a block of the appropriate size... */
   2260 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2261 	bp->b_dev = dev;
   2262 
   2263 	/* get our ducks in a row for the write */
   2264 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2265 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2266 	bp->b_flags |= B_WRITE;
   2267  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2268 
   2269 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2270 
   2271 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2272 
   2273 	bdev = bdevsw_lookup(bp->b_dev);
   2274 	if (bdev == NULL)
   2275 		return (ENXIO);
   2276 	(*bdev->d_strategy)(bp);
   2277 	error = biowait(bp);
   2278 	brelse(bp);
   2279 	if (error) {
   2280 #if 1
   2281 		printf("Failed to write RAID component info!\n");
   2282 #endif
   2283 	}
   2284 
   2285 	return(error);
   2286 }
   2287 
   2288 void
   2289 rf_markalldirty(RF_Raid_t *raidPtr)
   2290 {
   2291 	RF_ComponentLabel_t clabel;
   2292 	int sparecol;
   2293 	int c;
   2294 	int j;
   2295 	int scol = -1;
   2296 
   2297 	raidPtr->mod_counter++;
   2298 	for (c = 0; c < raidPtr->numCol; c++) {
   2299 		/* we don't want to touch (at all) a disk that has
   2300 		   failed */
   2301 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2302 			raidread_component_label(
   2303 						 raidPtr->Disks[c].dev,
   2304 						 raidPtr->raid_cinfo[c].ci_vp,
   2305 						 &clabel);
   2306 			if (clabel.status == rf_ds_spared) {
   2307 				/* XXX do something special...
   2308 				   but whatever you do, don't
   2309 				   try to access it!! */
   2310 			} else {
   2311 				raidmarkdirty(
   2312 					      raidPtr->Disks[c].dev,
   2313 					      raidPtr->raid_cinfo[c].ci_vp,
   2314 					      raidPtr->mod_counter);
   2315 			}
   2316 		}
   2317 	}
   2318 
   2319 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2320 		sparecol = raidPtr->numCol + c;
   2321 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2322 			/*
   2323 
   2324 			   we claim this disk is "optimal" if it's
   2325 			   rf_ds_used_spare, as that means it should be
   2326 			   directly substitutable for the disk it replaced.
   2327 			   We note that too...
   2328 
   2329 			 */
   2330 
   2331 			for(j=0;j<raidPtr->numCol;j++) {
   2332 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2333 					scol = j;
   2334 					break;
   2335 				}
   2336 			}
   2337 
   2338 			raidread_component_label(
   2339 				 raidPtr->Disks[sparecol].dev,
   2340 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2341 				 &clabel);
   2342 			/* make sure status is noted */
   2343 
   2344 			raid_init_component_label(raidPtr, &clabel);
   2345 
   2346 			clabel.row = 0;
   2347 			clabel.column = scol;
   2348 			/* Note: we *don't* change status from rf_ds_used_spare
   2349 			   to rf_ds_optimal */
   2350 			/* clabel.status = rf_ds_optimal; */
   2351 
   2352 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2353 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2354 				      raidPtr->mod_counter);
   2355 		}
   2356 	}
   2357 }
   2358 
   2359 
   2360 void
   2361 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2362 {
   2363 	RF_ComponentLabel_t clabel;
   2364 	int sparecol;
   2365 	int c;
   2366 	int j;
   2367 	int scol;
   2368 
   2369 	scol = -1;
   2370 
   2371 	/* XXX should do extra checks to make sure things really are clean,
   2372 	   rather than blindly setting the clean bit... */
   2373 
   2374 	raidPtr->mod_counter++;
   2375 
   2376 	for (c = 0; c < raidPtr->numCol; c++) {
   2377 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2378 			raidread_component_label(
   2379 						 raidPtr->Disks[c].dev,
   2380 						 raidPtr->raid_cinfo[c].ci_vp,
   2381 						 &clabel);
   2382 				/* make sure status is noted */
   2383 			clabel.status = rf_ds_optimal;
   2384 				/* bump the counter */
   2385 			clabel.mod_counter = raidPtr->mod_counter;
   2386 
   2387 			raidwrite_component_label(
   2388 						  raidPtr->Disks[c].dev,
   2389 						  raidPtr->raid_cinfo[c].ci_vp,
   2390 						  &clabel);
   2391 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2392 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2393 					raidmarkclean(
   2394 						      raidPtr->Disks[c].dev,
   2395 						      raidPtr->raid_cinfo[c].ci_vp,
   2396 						      raidPtr->mod_counter);
   2397 				}
   2398 			}
   2399 		}
   2400 		/* else we don't touch it.. */
   2401 	}
   2402 
   2403 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2404 		sparecol = raidPtr->numCol + c;
   2405 		/* Need to ensure that the reconstruct actually completed! */
   2406 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2407 			/*
   2408 
   2409 			   we claim this disk is "optimal" if it's
   2410 			   rf_ds_used_spare, as that means it should be
   2411 			   directly substitutable for the disk it replaced.
   2412 			   We note that too...
   2413 
   2414 			 */
   2415 
   2416 			for(j=0;j<raidPtr->numCol;j++) {
   2417 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2418 					scol = j;
   2419 					break;
   2420 				}
   2421 			}
   2422 
   2423 			/* XXX shouldn't *really* need this... */
   2424 			raidread_component_label(
   2425 				      raidPtr->Disks[sparecol].dev,
   2426 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2427 				      &clabel);
   2428 			/* make sure status is noted */
   2429 
   2430 			raid_init_component_label(raidPtr, &clabel);
   2431 
   2432 			clabel.mod_counter = raidPtr->mod_counter;
   2433 			clabel.column = scol;
   2434 			clabel.status = rf_ds_optimal;
   2435 
   2436 			raidwrite_component_label(
   2437 				      raidPtr->Disks[sparecol].dev,
   2438 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2439 				      &clabel);
   2440 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2441 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2442 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2443 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2444 						       raidPtr->mod_counter);
   2445 				}
   2446 			}
   2447 		}
   2448 	}
   2449 }
   2450 
   2451 void
   2452 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2453 {
   2454 	struct proc *p;
   2455 
   2456 	p = raidPtr->engine_thread;
   2457 
   2458 	if (vp != NULL) {
   2459 		if (auto_configured == 1) {
   2460 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2461 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2462 			vput(vp);
   2463 
   2464 		} else {
   2465 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2466 		}
   2467 	}
   2468 }
   2469 
   2470 
   2471 void
   2472 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2473 {
   2474 	int r,c;
   2475 	struct vnode *vp;
   2476 	int acd;
   2477 
   2478 
   2479 	/* We take this opportunity to close the vnodes like we should.. */
   2480 
   2481 	for (c = 0; c < raidPtr->numCol; c++) {
   2482 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2483 		acd = raidPtr->Disks[c].auto_configured;
   2484 		rf_close_component(raidPtr, vp, acd);
   2485 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2486 		raidPtr->Disks[c].auto_configured = 0;
   2487 	}
   2488 
   2489 	for (r = 0; r < raidPtr->numSpare; r++) {
   2490 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2491 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2492 		rf_close_component(raidPtr, vp, acd);
   2493 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2494 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2495 	}
   2496 }
   2497 
   2498 
   2499 void
   2500 rf_ReconThread(struct rf_recon_req *req)
   2501 {
   2502 	int     s;
   2503 	RF_Raid_t *raidPtr;
   2504 
   2505 	s = splbio();
   2506 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2507 	raidPtr->recon_in_progress = 1;
   2508 
   2509 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2510 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2511 
   2512 	RF_Free(req, sizeof(*req));
   2513 
   2514 	raidPtr->recon_in_progress = 0;
   2515 	splx(s);
   2516 
   2517 	/* That's all... */
   2518 	kthread_exit(0);        /* does not return */
   2519 }
   2520 
   2521 void
   2522 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2523 {
   2524 	int retcode;
   2525 	int s;
   2526 
   2527 	raidPtr->parity_rewrite_in_progress = 1;
   2528 	s = splbio();
   2529 	retcode = rf_RewriteParity(raidPtr);
   2530 	splx(s);
   2531 	if (retcode) {
   2532 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2533 	} else {
   2534 		/* set the clean bit!  If we shutdown correctly,
   2535 		   the clean bit on each component label will get
   2536 		   set */
   2537 		raidPtr->parity_good = RF_RAID_CLEAN;
   2538 	}
   2539 	raidPtr->parity_rewrite_in_progress = 0;
   2540 
   2541 	/* Anyone waiting for us to stop?  If so, inform them... */
   2542 	if (raidPtr->waitShutdown) {
   2543 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2544 	}
   2545 
   2546 	/* That's all... */
   2547 	kthread_exit(0);        /* does not return */
   2548 }
   2549 
   2550 
   2551 void
   2552 rf_CopybackThread(RF_Raid_t *raidPtr)
   2553 {
   2554 	int s;
   2555 
   2556 	raidPtr->copyback_in_progress = 1;
   2557 	s = splbio();
   2558 	rf_CopybackReconstructedData(raidPtr);
   2559 	splx(s);
   2560 	raidPtr->copyback_in_progress = 0;
   2561 
   2562 	/* That's all... */
   2563 	kthread_exit(0);        /* does not return */
   2564 }
   2565 
   2566 
   2567 void
   2568 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2569 {
   2570 	int s;
   2571 	RF_Raid_t *raidPtr;
   2572 
   2573 	s = splbio();
   2574 	raidPtr = req->raidPtr;
   2575 	raidPtr->recon_in_progress = 1;
   2576 	rf_ReconstructInPlace(raidPtr, req->col);
   2577 	RF_Free(req, sizeof(*req));
   2578 	raidPtr->recon_in_progress = 0;
   2579 	splx(s);
   2580 
   2581 	/* That's all... */
   2582 	kthread_exit(0);        /* does not return */
   2583 }
   2584 
   2585 RF_AutoConfig_t *
   2586 rf_find_raid_components()
   2587 {
   2588 	struct vnode *vp;
   2589 	struct disklabel label;
   2590 	struct device *dv;
   2591 	dev_t dev;
   2592 	int bmajor;
   2593 	int error;
   2594 	int i;
   2595 	int good_one;
   2596 	RF_ComponentLabel_t *clabel;
   2597 	RF_AutoConfig_t *ac_list;
   2598 	RF_AutoConfig_t *ac;
   2599 
   2600 
   2601 	/* initialize the AutoConfig list */
   2602 	ac_list = NULL;
   2603 
   2604 	/* we begin by trolling through *all* the devices on the system */
   2605 
   2606 	for (dv = alldevs.tqh_first; dv != NULL;
   2607 	     dv = dv->dv_list.tqe_next) {
   2608 
   2609 		/* we are only interested in disks... */
   2610 		if (dv->dv_class != DV_DISK)
   2611 			continue;
   2612 
   2613 		/* we don't care about floppies... */
   2614 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2615 			continue;
   2616 		}
   2617 
   2618 		/* we don't care about CD's... */
   2619 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2620 			continue;
   2621 		}
   2622 
   2623 		/* hdfd is the Atari/Hades floppy driver */
   2624 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2625 			continue;
   2626 		}
   2627 		/* fdisa is the Atari/Milan floppy driver */
   2628 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2629 			continue;
   2630 		}
   2631 
   2632 		/* need to find the device_name_to_block_device_major stuff */
   2633 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2634 
   2635 		/* get a vnode for the raw partition of this disk */
   2636 
   2637 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2638 		if (bdevvp(dev, &vp))
   2639 			panic("RAID can't alloc vnode");
   2640 
   2641 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2642 
   2643 		if (error) {
   2644 			/* "Who cares."  Continue looking
   2645 			   for something that exists*/
   2646 			vput(vp);
   2647 			continue;
   2648 		}
   2649 
   2650 		/* Ok, the disk exists.  Go get the disklabel. */
   2651 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2652 		if (error) {
   2653 			/*
   2654 			 * XXX can't happen - open() would
   2655 			 * have errored out (or faked up one)
   2656 			 */
   2657 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2658 			       dv->dv_xname, 'a' + RAW_PART, error);
   2659 		}
   2660 
   2661 		/* don't need this any more.  We'll allocate it again
   2662 		   a little later if we really do... */
   2663 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2664 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2665 		vput(vp);
   2666 
   2667 		for (i=0; i < label.d_npartitions; i++) {
   2668 			/* We only support partitions marked as RAID */
   2669 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2670 				continue;
   2671 
   2672 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2673 			if (bdevvp(dev, &vp))
   2674 				panic("RAID can't alloc vnode");
   2675 
   2676 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2677 			if (error) {
   2678 				/* Whatever... */
   2679 				vput(vp);
   2680 				continue;
   2681 			}
   2682 
   2683 			good_one = 0;
   2684 
   2685 			clabel = (RF_ComponentLabel_t *)
   2686 				malloc(sizeof(RF_ComponentLabel_t),
   2687 				       M_RAIDFRAME, M_NOWAIT);
   2688 			if (clabel == NULL) {
   2689 				/* XXX CLEANUP HERE */
   2690 				printf("RAID auto config: out of memory!\n");
   2691 				return(NULL); /* XXX probably should panic? */
   2692 			}
   2693 
   2694 			if (!raidread_component_label(dev, vp, clabel)) {
   2695 				/* Got the label.  Does it look reasonable? */
   2696 				if (rf_reasonable_label(clabel) &&
   2697 				    (clabel->partitionSize <=
   2698 				     label.d_partitions[i].p_size)) {
   2699 #if DEBUG
   2700 					printf("Component on: %s%c: %d\n",
   2701 					       dv->dv_xname, 'a'+i,
   2702 					       label.d_partitions[i].p_size);
   2703 					rf_print_component_label(clabel);
   2704 #endif
   2705 					/* if it's reasonable, add it,
   2706 					   else ignore it. */
   2707 					ac = (RF_AutoConfig_t *)
   2708 						malloc(sizeof(RF_AutoConfig_t),
   2709 						       M_RAIDFRAME,
   2710 						       M_NOWAIT);
   2711 					if (ac == NULL) {
   2712 						/* XXX should panic?? */
   2713 						return(NULL);
   2714 					}
   2715 
   2716 					sprintf(ac->devname, "%s%c",
   2717 						dv->dv_xname, 'a'+i);
   2718 					ac->dev = dev;
   2719 					ac->vp = vp;
   2720 					ac->clabel = clabel;
   2721 					ac->next = ac_list;
   2722 					ac_list = ac;
   2723 					good_one = 1;
   2724 				}
   2725 			}
   2726 			if (!good_one) {
   2727 				/* cleanup */
   2728 				free(clabel, M_RAIDFRAME);
   2729 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2730 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2731 				vput(vp);
   2732 			}
   2733 		}
   2734 	}
   2735 	return(ac_list);
   2736 }
   2737 
   2738 static int
   2739 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2740 {
   2741 
   2742 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2743 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2744 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2745 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2746 	    clabel->row >=0 &&
   2747 	    clabel->column >= 0 &&
   2748 	    clabel->num_rows > 0 &&
   2749 	    clabel->num_columns > 0 &&
   2750 	    clabel->row < clabel->num_rows &&
   2751 	    clabel->column < clabel->num_columns &&
   2752 	    clabel->blockSize > 0 &&
   2753 	    clabel->numBlocks > 0) {
   2754 		/* label looks reasonable enough... */
   2755 		return(1);
   2756 	}
   2757 	return(0);
   2758 }
   2759 
   2760 
   2761 #if DEBUG
   2762 void
   2763 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2764 {
   2765 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2766 	       clabel->row, clabel->column,
   2767 	       clabel->num_rows, clabel->num_columns);
   2768 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2769 	       clabel->version, clabel->serial_number,
   2770 	       clabel->mod_counter);
   2771 	printf("   Clean: %s Status: %d\n",
   2772 	       clabel->clean ? "Yes" : "No", clabel->status );
   2773 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2774 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2775 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2776 	       (char) clabel->parityConfig, clabel->blockSize,
   2777 	       clabel->numBlocks);
   2778 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2779 	printf("   Contains root partition: %s\n",
   2780 	       clabel->root_partition ? "Yes" : "No" );
   2781 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2782 #if 0
   2783 	   printf("   Config order: %d\n", clabel->config_order);
   2784 #endif
   2785 
   2786 }
   2787 #endif
   2788 
   2789 RF_ConfigSet_t *
   2790 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2791 {
   2792 	RF_AutoConfig_t *ac;
   2793 	RF_ConfigSet_t *config_sets;
   2794 	RF_ConfigSet_t *cset;
   2795 	RF_AutoConfig_t *ac_next;
   2796 
   2797 
   2798 	config_sets = NULL;
   2799 
   2800 	/* Go through the AutoConfig list, and figure out which components
   2801 	   belong to what sets.  */
   2802 	ac = ac_list;
   2803 	while(ac!=NULL) {
   2804 		/* we're going to putz with ac->next, so save it here
   2805 		   for use at the end of the loop */
   2806 		ac_next = ac->next;
   2807 
   2808 		if (config_sets == NULL) {
   2809 			/* will need at least this one... */
   2810 			config_sets = (RF_ConfigSet_t *)
   2811 				malloc(sizeof(RF_ConfigSet_t),
   2812 				       M_RAIDFRAME, M_NOWAIT);
   2813 			if (config_sets == NULL) {
   2814 				panic("rf_create_auto_sets: No memory!");
   2815 			}
   2816 			/* this one is easy :) */
   2817 			config_sets->ac = ac;
   2818 			config_sets->next = NULL;
   2819 			config_sets->rootable = 0;
   2820 			ac->next = NULL;
   2821 		} else {
   2822 			/* which set does this component fit into? */
   2823 			cset = config_sets;
   2824 			while(cset!=NULL) {
   2825 				if (rf_does_it_fit(cset, ac)) {
   2826 					/* looks like it matches... */
   2827 					ac->next = cset->ac;
   2828 					cset->ac = ac;
   2829 					break;
   2830 				}
   2831 				cset = cset->next;
   2832 			}
   2833 			if (cset==NULL) {
   2834 				/* didn't find a match above... new set..*/
   2835 				cset = (RF_ConfigSet_t *)
   2836 					malloc(sizeof(RF_ConfigSet_t),
   2837 					       M_RAIDFRAME, M_NOWAIT);
   2838 				if (cset == NULL) {
   2839 					panic("rf_create_auto_sets: No memory!");
   2840 				}
   2841 				cset->ac = ac;
   2842 				ac->next = NULL;
   2843 				cset->next = config_sets;
   2844 				cset->rootable = 0;
   2845 				config_sets = cset;
   2846 			}
   2847 		}
   2848 		ac = ac_next;
   2849 	}
   2850 
   2851 
   2852 	return(config_sets);
   2853 }
   2854 
   2855 static int
   2856 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2857 {
   2858 	RF_ComponentLabel_t *clabel1, *clabel2;
   2859 
   2860 	/* If this one matches the *first* one in the set, that's good
   2861 	   enough, since the other members of the set would have been
   2862 	   through here too... */
   2863 	/* note that we are not checking partitionSize here..
   2864 
   2865 	   Note that we are also not checking the mod_counters here.
   2866 	   If everything else matches execpt the mod_counter, that's
   2867 	   good enough for this test.  We will deal with the mod_counters
   2868 	   a little later in the autoconfiguration process.
   2869 
   2870 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2871 
   2872 	   The reason we don't check for this is that failed disks
   2873 	   will have lower modification counts.  If those disks are
   2874 	   not added to the set they used to belong to, then they will
   2875 	   form their own set, which may result in 2 different sets,
   2876 	   for example, competing to be configured at raid0, and
   2877 	   perhaps competing to be the root filesystem set.  If the
   2878 	   wrong ones get configured, or both attempt to become /,
   2879 	   weird behaviour and or serious lossage will occur.  Thus we
   2880 	   need to bring them into the fold here, and kick them out at
   2881 	   a later point.
   2882 
   2883 	*/
   2884 
   2885 	clabel1 = cset->ac->clabel;
   2886 	clabel2 = ac->clabel;
   2887 	if ((clabel1->version == clabel2->version) &&
   2888 	    (clabel1->serial_number == clabel2->serial_number) &&
   2889 	    (clabel1->num_rows == clabel2->num_rows) &&
   2890 	    (clabel1->num_columns == clabel2->num_columns) &&
   2891 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2892 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2893 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2894 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2895 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2896 	    (clabel1->blockSize == clabel2->blockSize) &&
   2897 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2898 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2899 	    (clabel1->root_partition == clabel2->root_partition) &&
   2900 	    (clabel1->last_unit == clabel2->last_unit) &&
   2901 	    (clabel1->config_order == clabel2->config_order)) {
   2902 		/* if it get's here, it almost *has* to be a match */
   2903 	} else {
   2904 		/* it's not consistent with somebody in the set..
   2905 		   punt */
   2906 		return(0);
   2907 	}
   2908 	/* all was fine.. it must fit... */
   2909 	return(1);
   2910 }
   2911 
   2912 int
   2913 rf_have_enough_components(RF_ConfigSet_t *cset)
   2914 {
   2915 	RF_AutoConfig_t *ac;
   2916 	RF_AutoConfig_t *auto_config;
   2917 	RF_ComponentLabel_t *clabel;
   2918 	int c;
   2919 	int num_cols;
   2920 	int num_missing;
   2921 	int mod_counter;
   2922 	int mod_counter_found;
   2923 	int even_pair_failed;
   2924 	char parity_type;
   2925 
   2926 
   2927 	/* check to see that we have enough 'live' components
   2928 	   of this set.  If so, we can configure it if necessary */
   2929 
   2930 	num_cols = cset->ac->clabel->num_columns;
   2931 	parity_type = cset->ac->clabel->parityConfig;
   2932 
   2933 	/* XXX Check for duplicate components!?!?!? */
   2934 
   2935 	/* Determine what the mod_counter is supposed to be for this set. */
   2936 
   2937 	mod_counter_found = 0;
   2938 	mod_counter = 0;
   2939 	ac = cset->ac;
   2940 	while(ac!=NULL) {
   2941 		if (mod_counter_found==0) {
   2942 			mod_counter = ac->clabel->mod_counter;
   2943 			mod_counter_found = 1;
   2944 		} else {
   2945 			if (ac->clabel->mod_counter > mod_counter) {
   2946 				mod_counter = ac->clabel->mod_counter;
   2947 			}
   2948 		}
   2949 		ac = ac->next;
   2950 	}
   2951 
   2952 	num_missing = 0;
   2953 	auto_config = cset->ac;
   2954 
   2955 	even_pair_failed = 0;
   2956 	for(c=0; c<num_cols; c++) {
   2957 		ac = auto_config;
   2958 		while(ac!=NULL) {
   2959 			if ((ac->clabel->column == c) &&
   2960 			    (ac->clabel->mod_counter == mod_counter)) {
   2961 				/* it's this one... */
   2962 #if DEBUG
   2963 				printf("Found: %s at %d\n",
   2964 				       ac->devname,c);
   2965 #endif
   2966 				break;
   2967 			}
   2968 			ac=ac->next;
   2969 		}
   2970 		if (ac==NULL) {
   2971 				/* Didn't find one here! */
   2972 				/* special case for RAID 1, especially
   2973 				   where there are more than 2
   2974 				   components (where RAIDframe treats
   2975 				   things a little differently :( ) */
   2976 			if (parity_type == '1') {
   2977 				if (c%2 == 0) { /* even component */
   2978 					even_pair_failed = 1;
   2979 				} else { /* odd component.  If
   2980 					    we're failed, and
   2981 					    so is the even
   2982 					    component, it's
   2983 					    "Good Night, Charlie" */
   2984 					if (even_pair_failed == 1) {
   2985 						return(0);
   2986 					}
   2987 				}
   2988 			} else {
   2989 				/* normal accounting */
   2990 				num_missing++;
   2991 			}
   2992 		}
   2993 		if ((parity_type == '1') && (c%2 == 1)) {
   2994 				/* Just did an even component, and we didn't
   2995 				   bail.. reset the even_pair_failed flag,
   2996 				   and go on to the next component.... */
   2997 			even_pair_failed = 0;
   2998 		}
   2999 	}
   3000 
   3001 	clabel = cset->ac->clabel;
   3002 
   3003 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3004 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3005 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3006 		/* XXX this needs to be made *much* more general */
   3007 		/* Too many failures */
   3008 		return(0);
   3009 	}
   3010 	/* otherwise, all is well, and we've got enough to take a kick
   3011 	   at autoconfiguring this set */
   3012 	return(1);
   3013 }
   3014 
   3015 void
   3016 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3017 			RF_Raid_t *raidPtr)
   3018 {
   3019 	RF_ComponentLabel_t *clabel;
   3020 	int i;
   3021 
   3022 	clabel = ac->clabel;
   3023 
   3024 	/* 1. Fill in the common stuff */
   3025 	config->numRow = clabel->num_rows = 1;
   3026 	config->numCol = clabel->num_columns;
   3027 	config->numSpare = 0; /* XXX should this be set here? */
   3028 	config->sectPerSU = clabel->sectPerSU;
   3029 	config->SUsPerPU = clabel->SUsPerPU;
   3030 	config->SUsPerRU = clabel->SUsPerRU;
   3031 	config->parityConfig = clabel->parityConfig;
   3032 	/* XXX... */
   3033 	strcpy(config->diskQueueType,"fifo");
   3034 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3035 	config->layoutSpecificSize = 0; /* XXX ?? */
   3036 
   3037 	while(ac!=NULL) {
   3038 		/* row/col values will be in range due to the checks
   3039 		   in reasonable_label() */
   3040 		strcpy(config->devnames[0][ac->clabel->column],
   3041 		       ac->devname);
   3042 		ac = ac->next;
   3043 	}
   3044 
   3045 	for(i=0;i<RF_MAXDBGV;i++) {
   3046 		config->debugVars[i][0] = 0;
   3047 	}
   3048 }
   3049 
   3050 int
   3051 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3052 {
   3053 	RF_ComponentLabel_t clabel;
   3054 	struct vnode *vp;
   3055 	dev_t dev;
   3056 	int column;
   3057 	int sparecol;
   3058 
   3059 	raidPtr->autoconfigure = new_value;
   3060 
   3061 	for(column=0; column<raidPtr->numCol; column++) {
   3062 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3063 			dev = raidPtr->Disks[column].dev;
   3064 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3065 			raidread_component_label(dev, vp, &clabel);
   3066 			clabel.autoconfigure = new_value;
   3067 			raidwrite_component_label(dev, vp, &clabel);
   3068 		}
   3069 	}
   3070 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3071 		sparecol = raidPtr->numCol + column;
   3072 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3073 			dev = raidPtr->Disks[sparecol].dev;
   3074 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3075 			raidread_component_label(dev, vp, &clabel);
   3076 			clabel.autoconfigure = new_value;
   3077 			raidwrite_component_label(dev, vp, &clabel);
   3078 		}
   3079 	}
   3080 	return(new_value);
   3081 }
   3082 
   3083 int
   3084 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3085 {
   3086 	RF_ComponentLabel_t clabel;
   3087 	struct vnode *vp;
   3088 	dev_t dev;
   3089 	int column;
   3090 	int sparecol;
   3091 
   3092 	raidPtr->root_partition = new_value;
   3093 	for(column=0; column<raidPtr->numCol; column++) {
   3094 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3095 			dev = raidPtr->Disks[column].dev;
   3096 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3097 			raidread_component_label(dev, vp, &clabel);
   3098 			clabel.root_partition = new_value;
   3099 			raidwrite_component_label(dev, vp, &clabel);
   3100 		}
   3101 	}
   3102 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3103 		sparecol = raidPtr->numCol + column;
   3104 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3105 			dev = raidPtr->Disks[sparecol].dev;
   3106 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3107 			raidread_component_label(dev, vp, &clabel);
   3108 			clabel.root_partition = new_value;
   3109 			raidwrite_component_label(dev, vp, &clabel);
   3110 		}
   3111 	}
   3112 	return(new_value);
   3113 }
   3114 
   3115 void
   3116 rf_release_all_vps(RF_ConfigSet_t *cset)
   3117 {
   3118 	RF_AutoConfig_t *ac;
   3119 
   3120 	ac = cset->ac;
   3121 	while(ac!=NULL) {
   3122 		/* Close the vp, and give it back */
   3123 		if (ac->vp) {
   3124 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3125 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3126 			vput(ac->vp);
   3127 			ac->vp = NULL;
   3128 		}
   3129 		ac = ac->next;
   3130 	}
   3131 }
   3132 
   3133 
   3134 void
   3135 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3136 {
   3137 	RF_AutoConfig_t *ac;
   3138 	RF_AutoConfig_t *next_ac;
   3139 
   3140 	ac = cset->ac;
   3141 	while(ac!=NULL) {
   3142 		next_ac = ac->next;
   3143 		/* nuke the label */
   3144 		free(ac->clabel, M_RAIDFRAME);
   3145 		/* cleanup the config structure */
   3146 		free(ac, M_RAIDFRAME);
   3147 		/* "next.." */
   3148 		ac = next_ac;
   3149 	}
   3150 	/* and, finally, nuke the config set */
   3151 	free(cset, M_RAIDFRAME);
   3152 }
   3153 
   3154 
   3155 void
   3156 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3157 {
   3158 	/* current version number */
   3159 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3160 	clabel->serial_number = raidPtr->serial_number;
   3161 	clabel->mod_counter = raidPtr->mod_counter;
   3162 	clabel->num_rows = 1;
   3163 	clabel->num_columns = raidPtr->numCol;
   3164 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3165 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3166 
   3167 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3168 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3169 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3170 
   3171 	clabel->blockSize = raidPtr->bytesPerSector;
   3172 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3173 
   3174 	/* XXX not portable */
   3175 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3176 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3177 	clabel->autoconfigure = raidPtr->autoconfigure;
   3178 	clabel->root_partition = raidPtr->root_partition;
   3179 	clabel->last_unit = raidPtr->raidid;
   3180 	clabel->config_order = raidPtr->config_order;
   3181 }
   3182 
   3183 int
   3184 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3185 {
   3186 	RF_Raid_t *raidPtr;
   3187 	RF_Config_t *config;
   3188 	int raidID;
   3189 	int retcode;
   3190 
   3191 #if DEBUG
   3192 	printf("RAID autoconfigure\n");
   3193 #endif
   3194 
   3195 	retcode = 0;
   3196 	*unit = -1;
   3197 
   3198 	/* 1. Create a config structure */
   3199 
   3200 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3201 				       M_RAIDFRAME,
   3202 				       M_NOWAIT);
   3203 	if (config==NULL) {
   3204 		printf("Out of mem!?!?\n");
   3205 				/* XXX do something more intelligent here. */
   3206 		return(1);
   3207 	}
   3208 
   3209 	memset(config, 0, sizeof(RF_Config_t));
   3210 
   3211 	/*
   3212 	   2. Figure out what RAID ID this one is supposed to live at
   3213 	   See if we can get the same RAID dev that it was configured
   3214 	   on last time..
   3215 	*/
   3216 
   3217 	raidID = cset->ac->clabel->last_unit;
   3218 	if ((raidID < 0) || (raidID >= numraid)) {
   3219 		/* let's not wander off into lala land. */
   3220 		raidID = numraid - 1;
   3221 	}
   3222 	if (raidPtrs[raidID]->valid != 0) {
   3223 
   3224 		/*
   3225 		   Nope... Go looking for an alternative...
   3226 		   Start high so we don't immediately use raid0 if that's
   3227 		   not taken.
   3228 		*/
   3229 
   3230 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3231 			if (raidPtrs[raidID]->valid == 0) {
   3232 				/* can use this one! */
   3233 				break;
   3234 			}
   3235 		}
   3236 	}
   3237 
   3238 	if (raidID < 0) {
   3239 		/* punt... */
   3240 		printf("Unable to auto configure this set!\n");
   3241 		printf("(Out of RAID devs!)\n");
   3242 		return(1);
   3243 	}
   3244 
   3245 #if DEBUG
   3246 	printf("Configuring raid%d:\n",raidID);
   3247 #endif
   3248 
   3249 	raidPtr = raidPtrs[raidID];
   3250 
   3251 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3252 	raidPtr->raidid = raidID;
   3253 	raidPtr->openings = RAIDOUTSTANDING;
   3254 
   3255 	/* 3. Build the configuration structure */
   3256 	rf_create_configuration(cset->ac, config, raidPtr);
   3257 
   3258 	/* 4. Do the configuration */
   3259 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3260 
   3261 	if (retcode == 0) {
   3262 
   3263 		raidinit(raidPtrs[raidID]);
   3264 
   3265 		rf_markalldirty(raidPtrs[raidID]);
   3266 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3267 		if (cset->ac->clabel->root_partition==1) {
   3268 			/* everything configured just fine.  Make a note
   3269 			   that this set is eligible to be root. */
   3270 			cset->rootable = 1;
   3271 			/* XXX do this here? */
   3272 			raidPtrs[raidID]->root_partition = 1;
   3273 		}
   3274 	}
   3275 
   3276 	/* 5. Cleanup */
   3277 	free(config, M_RAIDFRAME);
   3278 
   3279 	*unit = raidID;
   3280 	return(retcode);
   3281 }
   3282 
   3283 void
   3284 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3285 {
   3286 	struct buf *bp;
   3287 
   3288 	bp = (struct buf *)desc->bp;
   3289 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3290 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3291 }
   3292