rf_netbsdkintf.c revision 1.174 1 /* $NetBSD: rf_netbsdkintf.c,v 1.174 2004/02/08 04:37:56 oster Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.174 2004/02/08 04:37:56 oster Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/user.h>
169 #include <sys/reboot.h>
170
171 #include <dev/raidframe/raidframevar.h>
172 #include <dev/raidframe/raidframeio.h>
173 #include "raid.h"
174 #include "opt_raid_autoconfig.h"
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188
189 #ifdef DEBUG
190 int rf_kdebug_level = 0;
191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
192 #else /* DEBUG */
193 #define db1_printf(a) { }
194 #endif /* DEBUG */
195
196 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
197
198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
199
200 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
201 * spare table */
202 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
203 * installation process */
204
205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
206
207 /* prototypes */
208 static void KernelWakeupFunc(struct buf * bp);
209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
210 dev_t dev, RF_SectorNum_t startSect,
211 RF_SectorCount_t numSect, caddr_t buf,
212 void (*cbFunc) (struct buf *), void *cbArg,
213 int logBytesPerSector, struct proc * b_proc);
214 static void raidinit(RF_Raid_t *);
215
216 void raidattach(int);
217
218 dev_type_open(raidopen);
219 dev_type_close(raidclose);
220 dev_type_read(raidread);
221 dev_type_write(raidwrite);
222 dev_type_ioctl(raidioctl);
223 dev_type_strategy(raidstrategy);
224 dev_type_dump(raiddump);
225 dev_type_size(raidsize);
226
227 const struct bdevsw raid_bdevsw = {
228 raidopen, raidclose, raidstrategy, raidioctl,
229 raiddump, raidsize, D_DISK
230 };
231
232 const struct cdevsw raid_cdevsw = {
233 raidopen, raidclose, raidread, raidwrite, raidioctl,
234 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
235 };
236
237 /*
238 * Pilfered from ccd.c
239 */
240
241 struct raidbuf {
242 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
243 struct buf *rf_obp; /* ptr. to original I/O buf */
244 RF_DiskQueueData_t *req;/* the request that this was part of.. */
245 };
246
247 /* component buffer pool */
248 struct pool raidframe_cbufpool;
249
250 /* XXX Not sure if the following should be replacing the raidPtrs above,
251 or if it should be used in conjunction with that...
252 */
253
254 struct raid_softc {
255 int sc_flags; /* flags */
256 int sc_cflags; /* configuration flags */
257 size_t sc_size; /* size of the raid device */
258 char sc_xname[20]; /* XXX external name */
259 struct disk sc_dkdev; /* generic disk device info */
260 struct bufq_state buf_queue; /* used for the device queue */
261 };
262 /* sc_flags */
263 #define RAIDF_INITED 0x01 /* unit has been initialized */
264 #define RAIDF_WLABEL 0x02 /* label area is writable */
265 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
266 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
267 #define RAIDF_LOCKED 0x80 /* unit is locked */
268
269 #define raidunit(x) DISKUNIT(x)
270 int numraid = 0;
271
272 /*
273 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
274 * Be aware that large numbers can allow the driver to consume a lot of
275 * kernel memory, especially on writes, and in degraded mode reads.
276 *
277 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
278 * a single 64K write will typically require 64K for the old data,
279 * 64K for the old parity, and 64K for the new parity, for a total
280 * of 192K (if the parity buffer is not re-used immediately).
281 * Even it if is used immediately, that's still 128K, which when multiplied
282 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
283 *
284 * Now in degraded mode, for example, a 64K read on the above setup may
285 * require data reconstruction, which will require *all* of the 4 remaining
286 * disks to participate -- 4 * 32K/disk == 128K again.
287 */
288
289 #ifndef RAIDOUTSTANDING
290 #define RAIDOUTSTANDING 6
291 #endif
292
293 #define RAIDLABELDEV(dev) \
294 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
295
296 /* declared here, and made public, for the benefit of KVM stuff.. */
297 struct raid_softc *raid_softc;
298
299 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
300 struct disklabel *);
301 static void raidgetdisklabel(dev_t);
302 static void raidmakedisklabel(struct raid_softc *);
303
304 static int raidlock(struct raid_softc *);
305 static void raidunlock(struct raid_softc *);
306
307 static void rf_markalldirty(RF_Raid_t *);
308
309 struct device *raidrootdev;
310
311 void rf_ReconThread(struct rf_recon_req *);
312 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
313 void rf_CopybackThread(RF_Raid_t *raidPtr);
314 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
315 int rf_autoconfig(struct device *self);
316 void rf_buildroothack(RF_ConfigSet_t *);
317
318 RF_AutoConfig_t *rf_find_raid_components(void);
319 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
320 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
321 static int rf_reasonable_label(RF_ComponentLabel_t *);
322 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
323 int rf_set_autoconfig(RF_Raid_t *, int);
324 int rf_set_rootpartition(RF_Raid_t *, int);
325 void rf_release_all_vps(RF_ConfigSet_t *);
326 void rf_cleanup_config_set(RF_ConfigSet_t *);
327 int rf_have_enough_components(RF_ConfigSet_t *);
328 int rf_auto_config_set(RF_ConfigSet_t *, int *);
329
330 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
331 allow autoconfig to take place.
332 Note that this is overridden by having
333 RAID_AUTOCONFIG as an option in the
334 kernel config file. */
335
336 void
337 raidattach(int num)
338 {
339 int raidID;
340 int i, rc;
341
342 #ifdef DEBUG
343 printf("raidattach: Asked for %d units\n", num);
344 #endif
345
346 if (num <= 0) {
347 #ifdef DIAGNOSTIC
348 panic("raidattach: count <= 0");
349 #endif
350 return;
351 }
352 /* This is where all the initialization stuff gets done. */
353
354 numraid = num;
355
356 /* Make some space for requested number of units... */
357
358 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
359 if (raidPtrs == NULL) {
360 panic("raidPtrs is NULL!!");
361 }
362
363 /* Initialize the component buffer pool. */
364 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
365 0, 0, "raidpl", NULL);
366
367 rf_mutex_init(&rf_sparet_wait_mutex);
368
369 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
370
371 for (i = 0; i < num; i++)
372 raidPtrs[i] = NULL;
373 rc = rf_BootRaidframe();
374 if (rc == 0)
375 printf("Kernelized RAIDframe activated\n");
376 else
377 panic("Serious error booting RAID!!");
378
379 /* put together some datastructures like the CCD device does.. This
380 * lets us lock the device and what-not when it gets opened. */
381
382 raid_softc = (struct raid_softc *)
383 malloc(num * sizeof(struct raid_softc),
384 M_RAIDFRAME, M_NOWAIT);
385 if (raid_softc == NULL) {
386 printf("WARNING: no memory for RAIDframe driver\n");
387 return;
388 }
389
390 memset(raid_softc, 0, num * sizeof(struct raid_softc));
391
392 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
393 M_RAIDFRAME, M_NOWAIT);
394 if (raidrootdev == NULL) {
395 panic("No memory for RAIDframe driver!!?!?!");
396 }
397
398 for (raidID = 0; raidID < num; raidID++) {
399 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
400
401 raidrootdev[raidID].dv_class = DV_DISK;
402 raidrootdev[raidID].dv_cfdata = NULL;
403 raidrootdev[raidID].dv_unit = raidID;
404 raidrootdev[raidID].dv_parent = NULL;
405 raidrootdev[raidID].dv_flags = 0;
406 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
407
408 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
409 (RF_Raid_t *));
410 if (raidPtrs[raidID] == NULL) {
411 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
412 numraid = raidID;
413 return;
414 }
415 }
416
417 #ifdef RAID_AUTOCONFIG
418 raidautoconfig = 1;
419 #endif
420
421 /*
422 * Register a finalizer which will be used to auto-config RAID
423 * sets once all real hardware devices have been found.
424 */
425 if (config_finalize_register(NULL, rf_autoconfig) != 0)
426 printf("WARNING: unable to register RAIDframe finalizer\n");
427 }
428
429 int
430 rf_autoconfig(struct device *self)
431 {
432 RF_AutoConfig_t *ac_list;
433 RF_ConfigSet_t *config_sets;
434
435 if (raidautoconfig == 0)
436 return (0);
437
438 /* XXX This code can only be run once. */
439 raidautoconfig = 0;
440
441 /* 1. locate all RAID components on the system */
442 #ifdef DEBUG
443 printf("Searching for RAID components...\n");
444 #endif
445 ac_list = rf_find_raid_components();
446
447 /* 2. Sort them into their respective sets. */
448 config_sets = rf_create_auto_sets(ac_list);
449
450 /*
451 * 3. Evaluate each set andconfigure the valid ones.
452 * This gets done in rf_buildroothack().
453 */
454 rf_buildroothack(config_sets);
455
456 return (1);
457 }
458
459 void
460 rf_buildroothack(RF_ConfigSet_t *config_sets)
461 {
462 RF_ConfigSet_t *cset;
463 RF_ConfigSet_t *next_cset;
464 int retcode;
465 int raidID;
466 int rootID;
467 int num_root;
468
469 rootID = 0;
470 num_root = 0;
471 cset = config_sets;
472 while(cset != NULL ) {
473 next_cset = cset->next;
474 if (rf_have_enough_components(cset) &&
475 cset->ac->clabel->autoconfigure==1) {
476 retcode = rf_auto_config_set(cset,&raidID);
477 if (!retcode) {
478 if (cset->rootable) {
479 rootID = raidID;
480 num_root++;
481 }
482 } else {
483 /* The autoconfig didn't work :( */
484 #if DEBUG
485 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
486 #endif
487 rf_release_all_vps(cset);
488 }
489 } else {
490 /* we're not autoconfiguring this set...
491 release the associated resources */
492 rf_release_all_vps(cset);
493 }
494 /* cleanup */
495 rf_cleanup_config_set(cset);
496 cset = next_cset;
497 }
498
499 /* we found something bootable... */
500
501 if (num_root == 1) {
502 booted_device = &raidrootdev[rootID];
503 } else if (num_root > 1) {
504 /* we can't guess.. require the user to answer... */
505 boothowto |= RB_ASKNAME;
506 }
507 }
508
509
510 int
511 raidsize(dev_t dev)
512 {
513 struct raid_softc *rs;
514 struct disklabel *lp;
515 int part, unit, omask, size;
516
517 unit = raidunit(dev);
518 if (unit >= numraid)
519 return (-1);
520 rs = &raid_softc[unit];
521
522 if ((rs->sc_flags & RAIDF_INITED) == 0)
523 return (-1);
524
525 part = DISKPART(dev);
526 omask = rs->sc_dkdev.dk_openmask & (1 << part);
527 lp = rs->sc_dkdev.dk_label;
528
529 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
530 return (-1);
531
532 if (lp->d_partitions[part].p_fstype != FS_SWAP)
533 size = -1;
534 else
535 size = lp->d_partitions[part].p_size *
536 (lp->d_secsize / DEV_BSIZE);
537
538 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
539 return (-1);
540
541 return (size);
542
543 }
544
545 int
546 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
547 {
548 /* Not implemented. */
549 return ENXIO;
550 }
551 /* ARGSUSED */
552 int
553 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
554 {
555 int unit = raidunit(dev);
556 struct raid_softc *rs;
557 struct disklabel *lp;
558 int part, pmask;
559 int error = 0;
560
561 if (unit >= numraid)
562 return (ENXIO);
563 rs = &raid_softc[unit];
564
565 if ((error = raidlock(rs)) != 0)
566 return (error);
567 lp = rs->sc_dkdev.dk_label;
568
569 part = DISKPART(dev);
570 pmask = (1 << part);
571
572 if ((rs->sc_flags & RAIDF_INITED) &&
573 (rs->sc_dkdev.dk_openmask == 0))
574 raidgetdisklabel(dev);
575
576 /* make sure that this partition exists */
577
578 if (part != RAW_PART) {
579 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
580 ((part >= lp->d_npartitions) ||
581 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
582 error = ENXIO;
583 raidunlock(rs);
584 return (error);
585 }
586 }
587 /* Prevent this unit from being unconfigured while open. */
588 switch (fmt) {
589 case S_IFCHR:
590 rs->sc_dkdev.dk_copenmask |= pmask;
591 break;
592
593 case S_IFBLK:
594 rs->sc_dkdev.dk_bopenmask |= pmask;
595 break;
596 }
597
598 if ((rs->sc_dkdev.dk_openmask == 0) &&
599 ((rs->sc_flags & RAIDF_INITED) != 0)) {
600 /* First one... mark things as dirty... Note that we *MUST*
601 have done a configure before this. I DO NOT WANT TO BE
602 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
603 THAT THEY BELONG TOGETHER!!!!! */
604 /* XXX should check to see if we're only open for reading
605 here... If so, we needn't do this, but then need some
606 other way of keeping track of what's happened.. */
607
608 rf_markalldirty( raidPtrs[unit] );
609 }
610
611
612 rs->sc_dkdev.dk_openmask =
613 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
614
615 raidunlock(rs);
616
617 return (error);
618
619
620 }
621 /* ARGSUSED */
622 int
623 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
624 {
625 int unit = raidunit(dev);
626 struct raid_softc *rs;
627 int error = 0;
628 int part;
629
630 if (unit >= numraid)
631 return (ENXIO);
632 rs = &raid_softc[unit];
633
634 if ((error = raidlock(rs)) != 0)
635 return (error);
636
637 part = DISKPART(dev);
638
639 /* ...that much closer to allowing unconfiguration... */
640 switch (fmt) {
641 case S_IFCHR:
642 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
643 break;
644
645 case S_IFBLK:
646 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
647 break;
648 }
649 rs->sc_dkdev.dk_openmask =
650 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
651
652 if ((rs->sc_dkdev.dk_openmask == 0) &&
653 ((rs->sc_flags & RAIDF_INITED) != 0)) {
654 /* Last one... device is not unconfigured yet.
655 Device shutdown has taken care of setting the
656 clean bits if RAIDF_INITED is not set
657 mark things as clean... */
658
659 rf_update_component_labels(raidPtrs[unit],
660 RF_FINAL_COMPONENT_UPDATE);
661 if (doing_shutdown) {
662 /* last one, and we're going down, so
663 lights out for this RAID set too. */
664 error = rf_Shutdown(raidPtrs[unit]);
665
666 /* It's no longer initialized... */
667 rs->sc_flags &= ~RAIDF_INITED;
668
669 /* Detach the disk. */
670 disk_detach(&rs->sc_dkdev);
671 }
672 }
673
674 raidunlock(rs);
675 return (0);
676
677 }
678
679 void
680 raidstrategy(struct buf *bp)
681 {
682 int s;
683
684 unsigned int raidID = raidunit(bp->b_dev);
685 RF_Raid_t *raidPtr;
686 struct raid_softc *rs = &raid_softc[raidID];
687 int wlabel;
688
689 if ((rs->sc_flags & RAIDF_INITED) ==0) {
690 bp->b_error = ENXIO;
691 bp->b_flags |= B_ERROR;
692 bp->b_resid = bp->b_bcount;
693 biodone(bp);
694 return;
695 }
696 if (raidID >= numraid || !raidPtrs[raidID]) {
697 bp->b_error = ENODEV;
698 bp->b_flags |= B_ERROR;
699 bp->b_resid = bp->b_bcount;
700 biodone(bp);
701 return;
702 }
703 raidPtr = raidPtrs[raidID];
704 if (!raidPtr->valid) {
705 bp->b_error = ENODEV;
706 bp->b_flags |= B_ERROR;
707 bp->b_resid = bp->b_bcount;
708 biodone(bp);
709 return;
710 }
711 if (bp->b_bcount == 0) {
712 db1_printf(("b_bcount is zero..\n"));
713 biodone(bp);
714 return;
715 }
716
717 /*
718 * Do bounds checking and adjust transfer. If there's an
719 * error, the bounds check will flag that for us.
720 */
721
722 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
723 if (DISKPART(bp->b_dev) != RAW_PART)
724 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
725 db1_printf(("Bounds check failed!!:%d %d\n",
726 (int) bp->b_blkno, (int) wlabel));
727 biodone(bp);
728 return;
729 }
730 s = splbio();
731
732 bp->b_resid = 0;
733
734 /* stuff it onto our queue */
735 BUFQ_PUT(&rs->buf_queue, bp);
736
737 raidstart(raidPtrs[raidID]);
738
739 splx(s);
740 }
741 /* ARGSUSED */
742 int
743 raidread(dev_t dev, struct uio *uio, int flags)
744 {
745 int unit = raidunit(dev);
746 struct raid_softc *rs;
747
748 if (unit >= numraid)
749 return (ENXIO);
750 rs = &raid_softc[unit];
751
752 if ((rs->sc_flags & RAIDF_INITED) == 0)
753 return (ENXIO);
754
755 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
756
757 }
758 /* ARGSUSED */
759 int
760 raidwrite(dev_t dev, struct uio *uio, int flags)
761 {
762 int unit = raidunit(dev);
763 struct raid_softc *rs;
764
765 if (unit >= numraid)
766 return (ENXIO);
767 rs = &raid_softc[unit];
768
769 if ((rs->sc_flags & RAIDF_INITED) == 0)
770 return (ENXIO);
771
772 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
773
774 }
775
776 int
777 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
778 {
779 int unit = raidunit(dev);
780 int error = 0;
781 int part, pmask;
782 struct raid_softc *rs;
783 RF_Config_t *k_cfg, *u_cfg;
784 RF_Raid_t *raidPtr;
785 RF_RaidDisk_t *diskPtr;
786 RF_AccTotals_t *totals;
787 RF_DeviceConfig_t *d_cfg, **ucfgp;
788 u_char *specific_buf;
789 int retcode = 0;
790 int column;
791 int raidid;
792 struct rf_recon_req *rrcopy, *rr;
793 RF_ComponentLabel_t *clabel;
794 RF_ComponentLabel_t ci_label;
795 RF_ComponentLabel_t **clabel_ptr;
796 RF_SingleComponent_t *sparePtr,*componentPtr;
797 RF_SingleComponent_t hot_spare;
798 RF_SingleComponent_t component;
799 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
800 int i, j, d;
801 #ifdef __HAVE_OLD_DISKLABEL
802 struct disklabel newlabel;
803 #endif
804
805 if (unit >= numraid)
806 return (ENXIO);
807 rs = &raid_softc[unit];
808 raidPtr = raidPtrs[unit];
809
810 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
811 (int) DISKPART(dev), (int) unit, (int) cmd));
812
813 /* Must be open for writes for these commands... */
814 switch (cmd) {
815 case DIOCSDINFO:
816 case DIOCWDINFO:
817 #ifdef __HAVE_OLD_DISKLABEL
818 case ODIOCWDINFO:
819 case ODIOCSDINFO:
820 #endif
821 case DIOCWLABEL:
822 if ((flag & FWRITE) == 0)
823 return (EBADF);
824 }
825
826 /* Must be initialized for these... */
827 switch (cmd) {
828 case DIOCGDINFO:
829 case DIOCSDINFO:
830 case DIOCWDINFO:
831 #ifdef __HAVE_OLD_DISKLABEL
832 case ODIOCGDINFO:
833 case ODIOCWDINFO:
834 case ODIOCSDINFO:
835 case ODIOCGDEFLABEL:
836 #endif
837 case DIOCGPART:
838 case DIOCWLABEL:
839 case DIOCGDEFLABEL:
840 case RAIDFRAME_SHUTDOWN:
841 case RAIDFRAME_REWRITEPARITY:
842 case RAIDFRAME_GET_INFO:
843 case RAIDFRAME_RESET_ACCTOTALS:
844 case RAIDFRAME_GET_ACCTOTALS:
845 case RAIDFRAME_KEEP_ACCTOTALS:
846 case RAIDFRAME_GET_SIZE:
847 case RAIDFRAME_FAIL_DISK:
848 case RAIDFRAME_COPYBACK:
849 case RAIDFRAME_CHECK_RECON_STATUS:
850 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
851 case RAIDFRAME_GET_COMPONENT_LABEL:
852 case RAIDFRAME_SET_COMPONENT_LABEL:
853 case RAIDFRAME_ADD_HOT_SPARE:
854 case RAIDFRAME_REMOVE_HOT_SPARE:
855 case RAIDFRAME_INIT_LABELS:
856 case RAIDFRAME_REBUILD_IN_PLACE:
857 case RAIDFRAME_CHECK_PARITY:
858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
859 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
860 case RAIDFRAME_CHECK_COPYBACK_STATUS:
861 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
862 case RAIDFRAME_SET_AUTOCONFIG:
863 case RAIDFRAME_SET_ROOT:
864 case RAIDFRAME_DELETE_COMPONENT:
865 case RAIDFRAME_INCORPORATE_HOT_SPARE:
866 if ((rs->sc_flags & RAIDF_INITED) == 0)
867 return (ENXIO);
868 }
869
870 switch (cmd) {
871
872 /* configure the system */
873 case RAIDFRAME_CONFIGURE:
874
875 if (raidPtr->valid) {
876 /* There is a valid RAID set running on this unit! */
877 printf("raid%d: Device already configured!\n",unit);
878 return(EINVAL);
879 }
880
881 /* copy-in the configuration information */
882 /* data points to a pointer to the configuration structure */
883
884 u_cfg = *((RF_Config_t **) data);
885 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
886 if (k_cfg == NULL) {
887 return (ENOMEM);
888 }
889 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
890 if (retcode) {
891 RF_Free(k_cfg, sizeof(RF_Config_t));
892 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
893 retcode));
894 return (retcode);
895 }
896 /* allocate a buffer for the layout-specific data, and copy it
897 * in */
898 if (k_cfg->layoutSpecificSize) {
899 if (k_cfg->layoutSpecificSize > 10000) {
900 /* sanity check */
901 RF_Free(k_cfg, sizeof(RF_Config_t));
902 return (EINVAL);
903 }
904 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
905 (u_char *));
906 if (specific_buf == NULL) {
907 RF_Free(k_cfg, sizeof(RF_Config_t));
908 return (ENOMEM);
909 }
910 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
911 k_cfg->layoutSpecificSize);
912 if (retcode) {
913 RF_Free(k_cfg, sizeof(RF_Config_t));
914 RF_Free(specific_buf,
915 k_cfg->layoutSpecificSize);
916 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
917 retcode));
918 return (retcode);
919 }
920 } else
921 specific_buf = NULL;
922 k_cfg->layoutSpecific = specific_buf;
923
924 /* should do some kind of sanity check on the configuration.
925 * Store the sum of all the bytes in the last byte? */
926
927 /* configure the system */
928
929 /*
930 * Clear the entire RAID descriptor, just to make sure
931 * there is no stale data left in the case of a
932 * reconfiguration
933 */
934 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
935 raidPtr->raidid = unit;
936
937 retcode = rf_Configure(raidPtr, k_cfg, NULL);
938
939 if (retcode == 0) {
940
941 /* allow this many simultaneous IO's to
942 this RAID device */
943 raidPtr->openings = RAIDOUTSTANDING;
944
945 raidinit(raidPtr);
946 rf_markalldirty(raidPtr);
947 }
948 /* free the buffers. No return code here. */
949 if (k_cfg->layoutSpecificSize) {
950 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
951 }
952 RF_Free(k_cfg, sizeof(RF_Config_t));
953
954 return (retcode);
955
956 /* shutdown the system */
957 case RAIDFRAME_SHUTDOWN:
958
959 if ((error = raidlock(rs)) != 0)
960 return (error);
961
962 /*
963 * If somebody has a partition mounted, we shouldn't
964 * shutdown.
965 */
966
967 part = DISKPART(dev);
968 pmask = (1 << part);
969 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
970 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
971 (rs->sc_dkdev.dk_copenmask & pmask))) {
972 raidunlock(rs);
973 return (EBUSY);
974 }
975
976 retcode = rf_Shutdown(raidPtr);
977
978 /* It's no longer initialized... */
979 rs->sc_flags &= ~RAIDF_INITED;
980
981 /* Detach the disk. */
982 disk_detach(&rs->sc_dkdev);
983
984 raidunlock(rs);
985
986 return (retcode);
987 case RAIDFRAME_GET_COMPONENT_LABEL:
988 clabel_ptr = (RF_ComponentLabel_t **) data;
989 /* need to read the component label for the disk indicated
990 by row,column in clabel */
991
992 /* For practice, let's get it directly fromdisk, rather
993 than from the in-core copy */
994 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
995 (RF_ComponentLabel_t *));
996 if (clabel == NULL)
997 return (ENOMEM);
998
999 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1000
1001 retcode = copyin( *clabel_ptr, clabel,
1002 sizeof(RF_ComponentLabel_t));
1003
1004 if (retcode) {
1005 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1006 return(retcode);
1007 }
1008
1009 clabel->row = 0; /* Don't allow looking at anything else.*/
1010
1011 column = clabel->column;
1012
1013 if ((column < 0) || (column >= raidPtr->numCol +
1014 raidPtr->numSpare)) {
1015 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1016 return(EINVAL);
1017 }
1018
1019 raidread_component_label(raidPtr->Disks[column].dev,
1020 raidPtr->raid_cinfo[column].ci_vp,
1021 clabel );
1022
1023 retcode = copyout(clabel, *clabel_ptr,
1024 sizeof(RF_ComponentLabel_t));
1025 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1026 return (retcode);
1027
1028 case RAIDFRAME_SET_COMPONENT_LABEL:
1029 clabel = (RF_ComponentLabel_t *) data;
1030
1031 /* XXX check the label for valid stuff... */
1032 /* Note that some things *should not* get modified --
1033 the user should be re-initing the labels instead of
1034 trying to patch things.
1035 */
1036
1037 raidid = raidPtr->raidid;
1038 #if DEBUG
1039 printf("raid%d: Got component label:\n", raidid);
1040 printf("raid%d: Version: %d\n", raidid, clabel->version);
1041 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1042 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1043 printf("raid%d: Column: %d\n", raidid, clabel->column);
1044 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1045 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1046 printf("raid%d: Status: %d\n", raidid, clabel->status);
1047 #endif
1048 clabel->row = 0;
1049 column = clabel->column;
1050
1051 if ((column < 0) || (column >= raidPtr->numCol)) {
1052 return(EINVAL);
1053 }
1054
1055 /* XXX this isn't allowed to do anything for now :-) */
1056
1057 /* XXX and before it is, we need to fill in the rest
1058 of the fields!?!?!?! */
1059 #if 0
1060 raidwrite_component_label(
1061 raidPtr->Disks[column].dev,
1062 raidPtr->raid_cinfo[column].ci_vp,
1063 clabel );
1064 #endif
1065 return (0);
1066
1067 case RAIDFRAME_INIT_LABELS:
1068 clabel = (RF_ComponentLabel_t *) data;
1069 /*
1070 we only want the serial number from
1071 the above. We get all the rest of the information
1072 from the config that was used to create this RAID
1073 set.
1074 */
1075
1076 raidPtr->serial_number = clabel->serial_number;
1077
1078 raid_init_component_label(raidPtr, &ci_label);
1079 ci_label.serial_number = clabel->serial_number;
1080 ci_label.row = 0; /* we dont' pretend to support more */
1081
1082 for(column=0;column<raidPtr->numCol;column++) {
1083 diskPtr = &raidPtr->Disks[column];
1084 if (!RF_DEAD_DISK(diskPtr->status)) {
1085 ci_label.partitionSize = diskPtr->partitionSize;
1086 ci_label.column = column;
1087 raidwrite_component_label(
1088 raidPtr->Disks[column].dev,
1089 raidPtr->raid_cinfo[column].ci_vp,
1090 &ci_label );
1091 }
1092 }
1093
1094 return (retcode);
1095 case RAIDFRAME_SET_AUTOCONFIG:
1096 d = rf_set_autoconfig(raidPtr, *(int *) data);
1097 printf("raid%d: New autoconfig value is: %d\n",
1098 raidPtr->raidid, d);
1099 *(int *) data = d;
1100 return (retcode);
1101
1102 case RAIDFRAME_SET_ROOT:
1103 d = rf_set_rootpartition(raidPtr, *(int *) data);
1104 printf("raid%d: New rootpartition value is: %d\n",
1105 raidPtr->raidid, d);
1106 *(int *) data = d;
1107 return (retcode);
1108
1109 /* initialize all parity */
1110 case RAIDFRAME_REWRITEPARITY:
1111
1112 if (raidPtr->Layout.map->faultsTolerated == 0) {
1113 /* Parity for RAID 0 is trivially correct */
1114 raidPtr->parity_good = RF_RAID_CLEAN;
1115 return(0);
1116 }
1117
1118 if (raidPtr->parity_rewrite_in_progress == 1) {
1119 /* Re-write is already in progress! */
1120 return(EINVAL);
1121 }
1122
1123 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1124 rf_RewriteParityThread,
1125 raidPtr,"raid_parity");
1126 return (retcode);
1127
1128
1129 case RAIDFRAME_ADD_HOT_SPARE:
1130 sparePtr = (RF_SingleComponent_t *) data;
1131 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1132 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1133 return(retcode);
1134
1135 case RAIDFRAME_REMOVE_HOT_SPARE:
1136 return(retcode);
1137
1138 case RAIDFRAME_DELETE_COMPONENT:
1139 componentPtr = (RF_SingleComponent_t *)data;
1140 memcpy( &component, componentPtr,
1141 sizeof(RF_SingleComponent_t));
1142 retcode = rf_delete_component(raidPtr, &component);
1143 return(retcode);
1144
1145 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1146 componentPtr = (RF_SingleComponent_t *)data;
1147 memcpy( &component, componentPtr,
1148 sizeof(RF_SingleComponent_t));
1149 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1150 return(retcode);
1151
1152 case RAIDFRAME_REBUILD_IN_PLACE:
1153
1154 if (raidPtr->Layout.map->faultsTolerated == 0) {
1155 /* Can't do this on a RAID 0!! */
1156 return(EINVAL);
1157 }
1158
1159 if (raidPtr->recon_in_progress == 1) {
1160 /* a reconstruct is already in progress! */
1161 return(EINVAL);
1162 }
1163
1164 componentPtr = (RF_SingleComponent_t *) data;
1165 memcpy( &component, componentPtr,
1166 sizeof(RF_SingleComponent_t));
1167 component.row = 0; /* we don't support any more */
1168 column = component.column;
1169
1170 if ((column < 0) || (column >= raidPtr->numCol)) {
1171 return(EINVAL);
1172 }
1173
1174 RF_LOCK_MUTEX(raidPtr->mutex);
1175 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1176 (raidPtr->numFailures > 0)) {
1177 /* XXX 0 above shouldn't be constant!!! */
1178 /* some component other than this has failed.
1179 Let's not make things worse than they already
1180 are... */
1181 printf("raid%d: Unable to reconstruct to disk at:\n",
1182 raidPtr->raidid);
1183 printf("raid%d: Col: %d Too many failures.\n",
1184 raidPtr->raidid, column);
1185 RF_UNLOCK_MUTEX(raidPtr->mutex);
1186 return (EINVAL);
1187 }
1188 if (raidPtr->Disks[column].status ==
1189 rf_ds_reconstructing) {
1190 printf("raid%d: Unable to reconstruct to disk at:\n",
1191 raidPtr->raidid);
1192 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1193
1194 RF_UNLOCK_MUTEX(raidPtr->mutex);
1195 return (EINVAL);
1196 }
1197 if (raidPtr->Disks[column].status == rf_ds_spared) {
1198 RF_UNLOCK_MUTEX(raidPtr->mutex);
1199 return (EINVAL);
1200 }
1201 RF_UNLOCK_MUTEX(raidPtr->mutex);
1202
1203 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1204 if (rrcopy == NULL)
1205 return(ENOMEM);
1206
1207 rrcopy->raidPtr = (void *) raidPtr;
1208 rrcopy->col = column;
1209
1210 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1211 rf_ReconstructInPlaceThread,
1212 rrcopy,"raid_reconip");
1213 return(retcode);
1214
1215 case RAIDFRAME_GET_INFO:
1216 if (!raidPtr->valid)
1217 return (ENODEV);
1218 ucfgp = (RF_DeviceConfig_t **) data;
1219 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1220 (RF_DeviceConfig_t *));
1221 if (d_cfg == NULL)
1222 return (ENOMEM);
1223 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1224 d_cfg->rows = 1; /* there is only 1 row now */
1225 d_cfg->cols = raidPtr->numCol;
1226 d_cfg->ndevs = raidPtr->numCol;
1227 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1228 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1229 return (ENOMEM);
1230 }
1231 d_cfg->nspares = raidPtr->numSpare;
1232 if (d_cfg->nspares >= RF_MAX_DISKS) {
1233 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1234 return (ENOMEM);
1235 }
1236 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1237 d = 0;
1238 for (j = 0; j < d_cfg->cols; j++) {
1239 d_cfg->devs[d] = raidPtr->Disks[j];
1240 d++;
1241 }
1242 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1243 d_cfg->spares[i] = raidPtr->Disks[j];
1244 }
1245 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1246 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1247
1248 return (retcode);
1249
1250 case RAIDFRAME_CHECK_PARITY:
1251 *(int *) data = raidPtr->parity_good;
1252 return (0);
1253
1254 case RAIDFRAME_RESET_ACCTOTALS:
1255 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1256 return (0);
1257
1258 case RAIDFRAME_GET_ACCTOTALS:
1259 totals = (RF_AccTotals_t *) data;
1260 *totals = raidPtr->acc_totals;
1261 return (0);
1262
1263 case RAIDFRAME_KEEP_ACCTOTALS:
1264 raidPtr->keep_acc_totals = *(int *)data;
1265 return (0);
1266
1267 case RAIDFRAME_GET_SIZE:
1268 *(int *) data = raidPtr->totalSectors;
1269 return (0);
1270
1271 /* fail a disk & optionally start reconstruction */
1272 case RAIDFRAME_FAIL_DISK:
1273
1274 if (raidPtr->Layout.map->faultsTolerated == 0) {
1275 /* Can't do this on a RAID 0!! */
1276 return(EINVAL);
1277 }
1278
1279 rr = (struct rf_recon_req *) data;
1280 rr->row = 0;
1281 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1282 return (EINVAL);
1283
1284
1285 RF_LOCK_MUTEX(raidPtr->mutex);
1286 if ((raidPtr->Disks[rr->col].status ==
1287 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1288 /* some other component has failed. Let's not make
1289 things worse. XXX wrong for RAID6 */
1290 RF_UNLOCK_MUTEX(raidPtr->mutex);
1291 return (EINVAL);
1292 }
1293 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1294 /* Can't fail a spared disk! */
1295 RF_UNLOCK_MUTEX(raidPtr->mutex);
1296 return (EINVAL);
1297 }
1298 RF_UNLOCK_MUTEX(raidPtr->mutex);
1299
1300 /* make a copy of the recon request so that we don't rely on
1301 * the user's buffer */
1302 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1303 if (rrcopy == NULL)
1304 return(ENOMEM);
1305 memcpy(rrcopy, rr, sizeof(*rr));
1306 rrcopy->raidPtr = (void *) raidPtr;
1307
1308 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1309 rf_ReconThread,
1310 rrcopy,"raid_recon");
1311 return (0);
1312
1313 /* invoke a copyback operation after recon on whatever disk
1314 * needs it, if any */
1315 case RAIDFRAME_COPYBACK:
1316
1317 if (raidPtr->Layout.map->faultsTolerated == 0) {
1318 /* This makes no sense on a RAID 0!! */
1319 return(EINVAL);
1320 }
1321
1322 if (raidPtr->copyback_in_progress == 1) {
1323 /* Copyback is already in progress! */
1324 return(EINVAL);
1325 }
1326
1327 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1328 rf_CopybackThread,
1329 raidPtr,"raid_copyback");
1330 return (retcode);
1331
1332 /* return the percentage completion of reconstruction */
1333 case RAIDFRAME_CHECK_RECON_STATUS:
1334 if (raidPtr->Layout.map->faultsTolerated == 0) {
1335 /* This makes no sense on a RAID 0, so tell the
1336 user it's done. */
1337 *(int *) data = 100;
1338 return(0);
1339 }
1340 if (raidPtr->status != rf_rs_reconstructing)
1341 *(int *) data = 100;
1342 else {
1343 if (raidPtr->reconControl->numRUsTotal > 0) {
1344 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1345 } else {
1346 *(int *) data = 0;
1347 }
1348 }
1349 return (0);
1350 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1351 progressInfoPtr = (RF_ProgressInfo_t **) data;
1352 if (raidPtr->status != rf_rs_reconstructing) {
1353 progressInfo.remaining = 0;
1354 progressInfo.completed = 100;
1355 progressInfo.total = 100;
1356 } else {
1357 progressInfo.total =
1358 raidPtr->reconControl->numRUsTotal;
1359 progressInfo.completed =
1360 raidPtr->reconControl->numRUsComplete;
1361 progressInfo.remaining = progressInfo.total -
1362 progressInfo.completed;
1363 }
1364 retcode = copyout(&progressInfo, *progressInfoPtr,
1365 sizeof(RF_ProgressInfo_t));
1366 return (retcode);
1367
1368 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1369 if (raidPtr->Layout.map->faultsTolerated == 0) {
1370 /* This makes no sense on a RAID 0, so tell the
1371 user it's done. */
1372 *(int *) data = 100;
1373 return(0);
1374 }
1375 if (raidPtr->parity_rewrite_in_progress == 1) {
1376 *(int *) data = 100 *
1377 raidPtr->parity_rewrite_stripes_done /
1378 raidPtr->Layout.numStripe;
1379 } else {
1380 *(int *) data = 100;
1381 }
1382 return (0);
1383
1384 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1385 progressInfoPtr = (RF_ProgressInfo_t **) data;
1386 if (raidPtr->parity_rewrite_in_progress == 1) {
1387 progressInfo.total = raidPtr->Layout.numStripe;
1388 progressInfo.completed =
1389 raidPtr->parity_rewrite_stripes_done;
1390 progressInfo.remaining = progressInfo.total -
1391 progressInfo.completed;
1392 } else {
1393 progressInfo.remaining = 0;
1394 progressInfo.completed = 100;
1395 progressInfo.total = 100;
1396 }
1397 retcode = copyout(&progressInfo, *progressInfoPtr,
1398 sizeof(RF_ProgressInfo_t));
1399 return (retcode);
1400
1401 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1402 if (raidPtr->Layout.map->faultsTolerated == 0) {
1403 /* This makes no sense on a RAID 0 */
1404 *(int *) data = 100;
1405 return(0);
1406 }
1407 if (raidPtr->copyback_in_progress == 1) {
1408 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1409 raidPtr->Layout.numStripe;
1410 } else {
1411 *(int *) data = 100;
1412 }
1413 return (0);
1414
1415 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1416 progressInfoPtr = (RF_ProgressInfo_t **) data;
1417 if (raidPtr->copyback_in_progress == 1) {
1418 progressInfo.total = raidPtr->Layout.numStripe;
1419 progressInfo.completed =
1420 raidPtr->copyback_stripes_done;
1421 progressInfo.remaining = progressInfo.total -
1422 progressInfo.completed;
1423 } else {
1424 progressInfo.remaining = 0;
1425 progressInfo.completed = 100;
1426 progressInfo.total = 100;
1427 }
1428 retcode = copyout(&progressInfo, *progressInfoPtr,
1429 sizeof(RF_ProgressInfo_t));
1430 return (retcode);
1431
1432 /* the sparetable daemon calls this to wait for the kernel to
1433 * need a spare table. this ioctl does not return until a
1434 * spare table is needed. XXX -- calling mpsleep here in the
1435 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1436 * -- I should either compute the spare table in the kernel,
1437 * or have a different -- XXX XXX -- interface (a different
1438 * character device) for delivering the table -- XXX */
1439 #if 0
1440 case RAIDFRAME_SPARET_WAIT:
1441 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1442 while (!rf_sparet_wait_queue)
1443 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1444 waitreq = rf_sparet_wait_queue;
1445 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1446 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1447
1448 /* structure assignment */
1449 *((RF_SparetWait_t *) data) = *waitreq;
1450
1451 RF_Free(waitreq, sizeof(*waitreq));
1452 return (0);
1453
1454 /* wakes up a process waiting on SPARET_WAIT and puts an error
1455 * code in it that will cause the dameon to exit */
1456 case RAIDFRAME_ABORT_SPARET_WAIT:
1457 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1458 waitreq->fcol = -1;
1459 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1460 waitreq->next = rf_sparet_wait_queue;
1461 rf_sparet_wait_queue = waitreq;
1462 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1463 wakeup(&rf_sparet_wait_queue);
1464 return (0);
1465
1466 /* used by the spare table daemon to deliver a spare table
1467 * into the kernel */
1468 case RAIDFRAME_SEND_SPARET:
1469
1470 /* install the spare table */
1471 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1472
1473 /* respond to the requestor. the return status of the spare
1474 * table installation is passed in the "fcol" field */
1475 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1476 waitreq->fcol = retcode;
1477 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1478 waitreq->next = rf_sparet_resp_queue;
1479 rf_sparet_resp_queue = waitreq;
1480 wakeup(&rf_sparet_resp_queue);
1481 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1482
1483 return (retcode);
1484 #endif
1485
1486 default:
1487 break; /* fall through to the os-specific code below */
1488
1489 }
1490
1491 if (!raidPtr->valid)
1492 return (EINVAL);
1493
1494 /*
1495 * Add support for "regular" device ioctls here.
1496 */
1497
1498 switch (cmd) {
1499 case DIOCGDINFO:
1500 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1501 break;
1502 #ifdef __HAVE_OLD_DISKLABEL
1503 case ODIOCGDINFO:
1504 newlabel = *(rs->sc_dkdev.dk_label);
1505 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1506 return ENOTTY;
1507 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1508 break;
1509 #endif
1510
1511 case DIOCGPART:
1512 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1513 ((struct partinfo *) data)->part =
1514 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1515 break;
1516
1517 case DIOCWDINFO:
1518 case DIOCSDINFO:
1519 #ifdef __HAVE_OLD_DISKLABEL
1520 case ODIOCWDINFO:
1521 case ODIOCSDINFO:
1522 #endif
1523 {
1524 struct disklabel *lp;
1525 #ifdef __HAVE_OLD_DISKLABEL
1526 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1527 memset(&newlabel, 0, sizeof newlabel);
1528 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1529 lp = &newlabel;
1530 } else
1531 #endif
1532 lp = (struct disklabel *)data;
1533
1534 if ((error = raidlock(rs)) != 0)
1535 return (error);
1536
1537 rs->sc_flags |= RAIDF_LABELLING;
1538
1539 error = setdisklabel(rs->sc_dkdev.dk_label,
1540 lp, 0, rs->sc_dkdev.dk_cpulabel);
1541 if (error == 0) {
1542 if (cmd == DIOCWDINFO
1543 #ifdef __HAVE_OLD_DISKLABEL
1544 || cmd == ODIOCWDINFO
1545 #endif
1546 )
1547 error = writedisklabel(RAIDLABELDEV(dev),
1548 raidstrategy, rs->sc_dkdev.dk_label,
1549 rs->sc_dkdev.dk_cpulabel);
1550 }
1551 rs->sc_flags &= ~RAIDF_LABELLING;
1552
1553 raidunlock(rs);
1554
1555 if (error)
1556 return (error);
1557 break;
1558 }
1559
1560 case DIOCWLABEL:
1561 if (*(int *) data != 0)
1562 rs->sc_flags |= RAIDF_WLABEL;
1563 else
1564 rs->sc_flags &= ~RAIDF_WLABEL;
1565 break;
1566
1567 case DIOCGDEFLABEL:
1568 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1569 break;
1570
1571 #ifdef __HAVE_OLD_DISKLABEL
1572 case ODIOCGDEFLABEL:
1573 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1574 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1575 return ENOTTY;
1576 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1577 break;
1578 #endif
1579
1580 default:
1581 retcode = ENOTTY;
1582 }
1583 return (retcode);
1584
1585 }
1586
1587
1588 /* raidinit -- complete the rest of the initialization for the
1589 RAIDframe device. */
1590
1591
1592 static void
1593 raidinit(RF_Raid_t *raidPtr)
1594 {
1595 struct raid_softc *rs;
1596 int unit;
1597
1598 unit = raidPtr->raidid;
1599
1600 rs = &raid_softc[unit];
1601
1602 /* XXX should check return code first... */
1603 rs->sc_flags |= RAIDF_INITED;
1604
1605 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1606
1607 rs->sc_dkdev.dk_name = rs->sc_xname;
1608
1609 /* disk_attach actually creates space for the CPU disklabel, among
1610 * other things, so it's critical to call this *BEFORE* we try putzing
1611 * with disklabels. */
1612
1613 disk_attach(&rs->sc_dkdev);
1614
1615 /* XXX There may be a weird interaction here between this, and
1616 * protectedSectors, as used in RAIDframe. */
1617
1618 rs->sc_size = raidPtr->totalSectors;
1619
1620 }
1621 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1622 /* wake up the daemon & tell it to get us a spare table
1623 * XXX
1624 * the entries in the queues should be tagged with the raidPtr
1625 * so that in the extremely rare case that two recons happen at once,
1626 * we know for which device were requesting a spare table
1627 * XXX
1628 *
1629 * XXX This code is not currently used. GO
1630 */
1631 int
1632 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1633 {
1634 int retcode;
1635
1636 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1637 req->next = rf_sparet_wait_queue;
1638 rf_sparet_wait_queue = req;
1639 wakeup(&rf_sparet_wait_queue);
1640
1641 /* mpsleep unlocks the mutex */
1642 while (!rf_sparet_resp_queue) {
1643 tsleep(&rf_sparet_resp_queue, PRIBIO,
1644 "raidframe getsparetable", 0);
1645 }
1646 req = rf_sparet_resp_queue;
1647 rf_sparet_resp_queue = req->next;
1648 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1649
1650 retcode = req->fcol;
1651 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1652 * alloc'd */
1653 return (retcode);
1654 }
1655 #endif
1656
1657 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1658 * bp & passes it down.
1659 * any calls originating in the kernel must use non-blocking I/O
1660 * do some extra sanity checking to return "appropriate" error values for
1661 * certain conditions (to make some standard utilities work)
1662 *
1663 * Formerly known as: rf_DoAccessKernel
1664 */
1665 void
1666 raidstart(RF_Raid_t *raidPtr)
1667 {
1668 RF_SectorCount_t num_blocks, pb, sum;
1669 RF_RaidAddr_t raid_addr;
1670 struct partition *pp;
1671 daddr_t blocknum;
1672 int unit;
1673 struct raid_softc *rs;
1674 int do_async;
1675 struct buf *bp;
1676
1677 unit = raidPtr->raidid;
1678 rs = &raid_softc[unit];
1679
1680 /* quick check to see if anything has died recently */
1681 RF_LOCK_MUTEX(raidPtr->mutex);
1682 if (raidPtr->numNewFailures > 0) {
1683 RF_UNLOCK_MUTEX(raidPtr->mutex);
1684 rf_update_component_labels(raidPtr,
1685 RF_NORMAL_COMPONENT_UPDATE);
1686 RF_LOCK_MUTEX(raidPtr->mutex);
1687 raidPtr->numNewFailures--;
1688 }
1689
1690 /* Check to see if we're at the limit... */
1691 while (raidPtr->openings > 0) {
1692 RF_UNLOCK_MUTEX(raidPtr->mutex);
1693
1694 /* get the next item, if any, from the queue */
1695 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1696 /* nothing more to do */
1697 return;
1698 }
1699
1700 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1701 * partition.. Need to make it absolute to the underlying
1702 * device.. */
1703
1704 blocknum = bp->b_blkno;
1705 if (DISKPART(bp->b_dev) != RAW_PART) {
1706 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1707 blocknum += pp->p_offset;
1708 }
1709
1710 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1711 (int) blocknum));
1712
1713 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1714 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1715
1716 /* *THIS* is where we adjust what block we're going to...
1717 * but DO NOT TOUCH bp->b_blkno!!! */
1718 raid_addr = blocknum;
1719
1720 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1721 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1722 sum = raid_addr + num_blocks + pb;
1723 if (1 || rf_debugKernelAccess) {
1724 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1725 (int) raid_addr, (int) sum, (int) num_blocks,
1726 (int) pb, (int) bp->b_resid));
1727 }
1728 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1729 || (sum < num_blocks) || (sum < pb)) {
1730 bp->b_error = ENOSPC;
1731 bp->b_flags |= B_ERROR;
1732 bp->b_resid = bp->b_bcount;
1733 biodone(bp);
1734 RF_LOCK_MUTEX(raidPtr->mutex);
1735 continue;
1736 }
1737 /*
1738 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1739 */
1740
1741 if (bp->b_bcount & raidPtr->sectorMask) {
1742 bp->b_error = EINVAL;
1743 bp->b_flags |= B_ERROR;
1744 bp->b_resid = bp->b_bcount;
1745 biodone(bp);
1746 RF_LOCK_MUTEX(raidPtr->mutex);
1747 continue;
1748
1749 }
1750 db1_printf(("Calling DoAccess..\n"));
1751
1752
1753 RF_LOCK_MUTEX(raidPtr->mutex);
1754 raidPtr->openings--;
1755 RF_UNLOCK_MUTEX(raidPtr->mutex);
1756
1757 /*
1758 * Everything is async.
1759 */
1760 do_async = 1;
1761
1762 disk_busy(&rs->sc_dkdev);
1763
1764 /* XXX we're still at splbio() here... do we *really*
1765 need to be? */
1766
1767 /* don't ever condition on bp->b_flags & B_WRITE.
1768 * always condition on B_READ instead */
1769
1770 bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1771 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1772 do_async, raid_addr, num_blocks,
1773 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1774
1775 if (bp->b_error) {
1776 bp->b_flags |= B_ERROR;
1777 }
1778
1779 RF_LOCK_MUTEX(raidPtr->mutex);
1780 }
1781 RF_UNLOCK_MUTEX(raidPtr->mutex);
1782 }
1783
1784
1785
1786
1787 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1788
1789 int
1790 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1791 {
1792 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1793 struct buf *bp;
1794 struct raidbuf *raidbp = NULL;
1795
1796 req->queue = queue;
1797
1798 #if DIAGNOSTIC
1799 if (queue->raidPtr->raidid >= numraid) {
1800 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1801 numraid);
1802 panic("Invalid Unit number in rf_DispatchKernelIO");
1803 }
1804 #endif
1805
1806 bp = req->bp;
1807 #if 1
1808 /* XXX when there is a physical disk failure, someone is passing us a
1809 * buffer that contains old stuff!! Attempt to deal with this problem
1810 * without taking a performance hit... (not sure where the real bug
1811 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1812
1813 if (bp->b_flags & B_ERROR) {
1814 bp->b_flags &= ~B_ERROR;
1815 }
1816 if (bp->b_error != 0) {
1817 bp->b_error = 0;
1818 }
1819 #endif
1820 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1821 if (raidbp == NULL) {
1822 bp->b_flags |= B_ERROR;
1823 bp->b_error = ENOMEM;
1824 return (ENOMEM);
1825 }
1826 BUF_INIT(&raidbp->rf_buf);
1827
1828 /*
1829 * context for raidiodone
1830 */
1831 raidbp->rf_obp = bp;
1832 raidbp->req = req;
1833
1834 BIO_COPYPRIO(&raidbp->rf_buf, bp);
1835
1836 switch (req->type) {
1837 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1838 /* XXX need to do something extra here.. */
1839 /* I'm leaving this in, as I've never actually seen it used,
1840 * and I'd like folks to report it... GO */
1841 printf(("WAKEUP CALLED\n"));
1842 queue->numOutstanding++;
1843
1844 /* XXX need to glue the original buffer into this?? */
1845
1846 KernelWakeupFunc(&raidbp->rf_buf);
1847 break;
1848
1849 case RF_IO_TYPE_READ:
1850 case RF_IO_TYPE_WRITE:
1851
1852 if (req->tracerec) {
1853 RF_ETIMER_START(req->tracerec->timer);
1854 }
1855 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1856 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1857 req->sectorOffset, req->numSector,
1858 req->buf, KernelWakeupFunc, (void *) req,
1859 queue->raidPtr->logBytesPerSector, req->b_proc);
1860
1861 if (rf_debugKernelAccess) {
1862 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1863 (long) bp->b_blkno));
1864 }
1865 queue->numOutstanding++;
1866 queue->last_deq_sector = req->sectorOffset;
1867 /* acc wouldn't have been let in if there were any pending
1868 * reqs at any other priority */
1869 queue->curPriority = req->priority;
1870
1871 db1_printf(("Going for %c to unit %d col %d\n",
1872 req->type, queue->raidPtr->raidid,
1873 queue->col));
1874 db1_printf(("sector %d count %d (%d bytes) %d\n",
1875 (int) req->sectorOffset, (int) req->numSector,
1876 (int) (req->numSector <<
1877 queue->raidPtr->logBytesPerSector),
1878 (int) queue->raidPtr->logBytesPerSector));
1879 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1880 raidbp->rf_buf.b_vp->v_numoutput++;
1881 }
1882 VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
1883
1884 break;
1885
1886 default:
1887 panic("bad req->type in rf_DispatchKernelIO");
1888 }
1889 db1_printf(("Exiting from DispatchKernelIO\n"));
1890
1891 return (0);
1892 }
1893 /* this is the callback function associated with a I/O invoked from
1894 kernel code.
1895 */
1896 static void
1897 KernelWakeupFunc(struct buf *vbp)
1898 {
1899 RF_DiskQueueData_t *req = NULL;
1900 RF_DiskQueue_t *queue;
1901 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1902 struct buf *bp;
1903 int s;
1904
1905 s = splbio();
1906 db1_printf(("recovering the request queue:\n"));
1907 req = raidbp->req;
1908
1909 bp = raidbp->rf_obp;
1910
1911 queue = (RF_DiskQueue_t *) req->queue;
1912
1913 if (raidbp->rf_buf.b_flags & B_ERROR) {
1914 bp->b_flags |= B_ERROR;
1915 bp->b_error = raidbp->rf_buf.b_error ?
1916 raidbp->rf_buf.b_error : EIO;
1917 }
1918
1919 /* XXX methinks this could be wrong... */
1920 #if 1
1921 bp->b_resid = raidbp->rf_buf.b_resid;
1922 #endif
1923
1924 if (req->tracerec) {
1925 RF_ETIMER_STOP(req->tracerec->timer);
1926 RF_ETIMER_EVAL(req->tracerec->timer);
1927 RF_LOCK_MUTEX(rf_tracing_mutex);
1928 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1929 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1930 req->tracerec->num_phys_ios++;
1931 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1932 }
1933 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1934
1935 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1936 * ballistic, and mark the component as hosed... */
1937
1938 if (bp->b_flags & B_ERROR) {
1939 /* Mark the disk as dead */
1940 /* but only mark it once... */
1941 if (queue->raidPtr->Disks[queue->col].status ==
1942 rf_ds_optimal) {
1943 printf("raid%d: IO Error. Marking %s as failed.\n",
1944 queue->raidPtr->raidid,
1945 queue->raidPtr->Disks[queue->col].devname);
1946 queue->raidPtr->Disks[queue->col].status =
1947 rf_ds_failed;
1948 queue->raidPtr->status = rf_rs_degraded;
1949 queue->raidPtr->numFailures++;
1950 queue->raidPtr->numNewFailures++;
1951 } else { /* Disk is already dead... */
1952 /* printf("Disk already marked as dead!\n"); */
1953 }
1954
1955 }
1956
1957 pool_put(&raidframe_cbufpool, raidbp);
1958
1959 /* Fill in the error value */
1960
1961 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1962
1963 simple_lock(&queue->raidPtr->iodone_lock);
1964
1965 /* Drop this one on the "finished" queue... */
1966 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1967
1968 /* Let the raidio thread know there is work to be done. */
1969 wakeup(&(queue->raidPtr->iodone));
1970
1971 simple_unlock(&queue->raidPtr->iodone_lock);
1972
1973 splx(s);
1974 }
1975
1976
1977
1978 /*
1979 * initialize a buf structure for doing an I/O in the kernel.
1980 */
1981 static void
1982 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
1983 RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
1984 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
1985 struct proc *b_proc)
1986 {
1987 /* bp->b_flags = B_PHYS | rw_flag; */
1988 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
1989 bp->b_bcount = numSect << logBytesPerSector;
1990 bp->b_bufsize = bp->b_bcount;
1991 bp->b_error = 0;
1992 bp->b_dev = dev;
1993 bp->b_data = buf;
1994 bp->b_blkno = startSect;
1995 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
1996 if (bp->b_bcount == 0) {
1997 panic("bp->b_bcount is zero in InitBP!!");
1998 }
1999 bp->b_proc = b_proc;
2000 bp->b_iodone = cbFunc;
2001 bp->b_vp = b_vp;
2002
2003 }
2004
2005 static void
2006 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2007 struct disklabel *lp)
2008 {
2009 memset(lp, 0, sizeof(*lp));
2010
2011 /* fabricate a label... */
2012 lp->d_secperunit = raidPtr->totalSectors;
2013 lp->d_secsize = raidPtr->bytesPerSector;
2014 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2015 lp->d_ntracks = 4 * raidPtr->numCol;
2016 lp->d_ncylinders = raidPtr->totalSectors /
2017 (lp->d_nsectors * lp->d_ntracks);
2018 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2019
2020 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2021 lp->d_type = DTYPE_RAID;
2022 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2023 lp->d_rpm = 3600;
2024 lp->d_interleave = 1;
2025 lp->d_flags = 0;
2026
2027 lp->d_partitions[RAW_PART].p_offset = 0;
2028 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2029 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2030 lp->d_npartitions = RAW_PART + 1;
2031
2032 lp->d_magic = DISKMAGIC;
2033 lp->d_magic2 = DISKMAGIC;
2034 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2035
2036 }
2037 /*
2038 * Read the disklabel from the raid device. If one is not present, fake one
2039 * up.
2040 */
2041 static void
2042 raidgetdisklabel(dev_t dev)
2043 {
2044 int unit = raidunit(dev);
2045 struct raid_softc *rs = &raid_softc[unit];
2046 const char *errstring;
2047 struct disklabel *lp = rs->sc_dkdev.dk_label;
2048 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2049 RF_Raid_t *raidPtr;
2050
2051 db1_printf(("Getting the disklabel...\n"));
2052
2053 memset(clp, 0, sizeof(*clp));
2054
2055 raidPtr = raidPtrs[unit];
2056
2057 raidgetdefaultlabel(raidPtr, rs, lp);
2058
2059 /*
2060 * Call the generic disklabel extraction routine.
2061 */
2062 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2063 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2064 if (errstring)
2065 raidmakedisklabel(rs);
2066 else {
2067 int i;
2068 struct partition *pp;
2069
2070 /*
2071 * Sanity check whether the found disklabel is valid.
2072 *
2073 * This is necessary since total size of the raid device
2074 * may vary when an interleave is changed even though exactly
2075 * same componets are used, and old disklabel may used
2076 * if that is found.
2077 */
2078 if (lp->d_secperunit != rs->sc_size)
2079 printf("raid%d: WARNING: %s: "
2080 "total sector size in disklabel (%d) != "
2081 "the size of raid (%ld)\n", unit, rs->sc_xname,
2082 lp->d_secperunit, (long) rs->sc_size);
2083 for (i = 0; i < lp->d_npartitions; i++) {
2084 pp = &lp->d_partitions[i];
2085 if (pp->p_offset + pp->p_size > rs->sc_size)
2086 printf("raid%d: WARNING: %s: end of partition `%c' "
2087 "exceeds the size of raid (%ld)\n",
2088 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2089 }
2090 }
2091
2092 }
2093 /*
2094 * Take care of things one might want to take care of in the event
2095 * that a disklabel isn't present.
2096 */
2097 static void
2098 raidmakedisklabel(struct raid_softc *rs)
2099 {
2100 struct disklabel *lp = rs->sc_dkdev.dk_label;
2101 db1_printf(("Making a label..\n"));
2102
2103 /*
2104 * For historical reasons, if there's no disklabel present
2105 * the raw partition must be marked FS_BSDFFS.
2106 */
2107
2108 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2109
2110 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2111
2112 lp->d_checksum = dkcksum(lp);
2113 }
2114 /*
2115 * Lookup the provided name in the filesystem. If the file exists,
2116 * is a valid block device, and isn't being used by anyone else,
2117 * set *vpp to the file's vnode.
2118 * You'll find the original of this in ccd.c
2119 */
2120 int
2121 raidlookup(char *path, struct proc *p, struct vnode **vpp)
2122 {
2123 struct nameidata nd;
2124 struct vnode *vp;
2125 struct vattr va;
2126 int error;
2127
2128 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2129 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2130 return (error);
2131 }
2132 vp = nd.ni_vp;
2133 if (vp->v_usecount > 1) {
2134 VOP_UNLOCK(vp, 0);
2135 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2136 return (EBUSY);
2137 }
2138 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2139 VOP_UNLOCK(vp, 0);
2140 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2141 return (error);
2142 }
2143 /* XXX: eventually we should handle VREG, too. */
2144 if (va.va_type != VBLK) {
2145 VOP_UNLOCK(vp, 0);
2146 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2147 return (ENOTBLK);
2148 }
2149 VOP_UNLOCK(vp, 0);
2150 *vpp = vp;
2151 return (0);
2152 }
2153 /*
2154 * Wait interruptibly for an exclusive lock.
2155 *
2156 * XXX
2157 * Several drivers do this; it should be abstracted and made MP-safe.
2158 * (Hmm... where have we seen this warning before :-> GO )
2159 */
2160 static int
2161 raidlock(struct raid_softc *rs)
2162 {
2163 int error;
2164
2165 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2166 rs->sc_flags |= RAIDF_WANTED;
2167 if ((error =
2168 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2169 return (error);
2170 }
2171 rs->sc_flags |= RAIDF_LOCKED;
2172 return (0);
2173 }
2174 /*
2175 * Unlock and wake up any waiters.
2176 */
2177 static void
2178 raidunlock(struct raid_softc *rs)
2179 {
2180
2181 rs->sc_flags &= ~RAIDF_LOCKED;
2182 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2183 rs->sc_flags &= ~RAIDF_WANTED;
2184 wakeup(rs);
2185 }
2186 }
2187
2188
2189 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2190 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2191
2192 int
2193 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2194 {
2195 RF_ComponentLabel_t clabel;
2196 raidread_component_label(dev, b_vp, &clabel);
2197 clabel.mod_counter = mod_counter;
2198 clabel.clean = RF_RAID_CLEAN;
2199 raidwrite_component_label(dev, b_vp, &clabel);
2200 return(0);
2201 }
2202
2203
2204 int
2205 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2206 {
2207 RF_ComponentLabel_t clabel;
2208 raidread_component_label(dev, b_vp, &clabel);
2209 clabel.mod_counter = mod_counter;
2210 clabel.clean = RF_RAID_DIRTY;
2211 raidwrite_component_label(dev, b_vp, &clabel);
2212 return(0);
2213 }
2214
2215 /* ARGSUSED */
2216 int
2217 raidread_component_label(dev_t dev, struct vnode *b_vp,
2218 RF_ComponentLabel_t *clabel)
2219 {
2220 struct buf *bp;
2221 const struct bdevsw *bdev;
2222 int error;
2223
2224 /* XXX should probably ensure that we don't try to do this if
2225 someone has changed rf_protected_sectors. */
2226
2227 if (b_vp == NULL) {
2228 /* For whatever reason, this component is not valid.
2229 Don't try to read a component label from it. */
2230 return(EINVAL);
2231 }
2232
2233 /* get a block of the appropriate size... */
2234 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2235 bp->b_dev = dev;
2236
2237 /* get our ducks in a row for the read */
2238 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2239 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2240 bp->b_flags |= B_READ;
2241 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2242
2243 bdev = bdevsw_lookup(bp->b_dev);
2244 if (bdev == NULL)
2245 return (ENXIO);
2246 (*bdev->d_strategy)(bp);
2247
2248 error = biowait(bp);
2249
2250 if (!error) {
2251 memcpy(clabel, bp->b_data,
2252 sizeof(RF_ComponentLabel_t));
2253 }
2254
2255 brelse(bp);
2256 return(error);
2257 }
2258 /* ARGSUSED */
2259 int
2260 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2261 RF_ComponentLabel_t *clabel)
2262 {
2263 struct buf *bp;
2264 const struct bdevsw *bdev;
2265 int error;
2266
2267 /* get a block of the appropriate size... */
2268 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2269 bp->b_dev = dev;
2270
2271 /* get our ducks in a row for the write */
2272 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2273 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2274 bp->b_flags |= B_WRITE;
2275 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2276
2277 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2278
2279 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2280
2281 bdev = bdevsw_lookup(bp->b_dev);
2282 if (bdev == NULL)
2283 return (ENXIO);
2284 (*bdev->d_strategy)(bp);
2285 error = biowait(bp);
2286 brelse(bp);
2287 if (error) {
2288 #if 1
2289 printf("Failed to write RAID component info!\n");
2290 #endif
2291 }
2292
2293 return(error);
2294 }
2295
2296 void
2297 rf_markalldirty(RF_Raid_t *raidPtr)
2298 {
2299 RF_ComponentLabel_t clabel;
2300 int sparecol;
2301 int c;
2302 int j;
2303 int scol = -1;
2304
2305 raidPtr->mod_counter++;
2306 for (c = 0; c < raidPtr->numCol; c++) {
2307 /* we don't want to touch (at all) a disk that has
2308 failed */
2309 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2310 raidread_component_label(
2311 raidPtr->Disks[c].dev,
2312 raidPtr->raid_cinfo[c].ci_vp,
2313 &clabel);
2314 if (clabel.status == rf_ds_spared) {
2315 /* XXX do something special...
2316 but whatever you do, don't
2317 try to access it!! */
2318 } else {
2319 raidmarkdirty(
2320 raidPtr->Disks[c].dev,
2321 raidPtr->raid_cinfo[c].ci_vp,
2322 raidPtr->mod_counter);
2323 }
2324 }
2325 }
2326
2327 for( c = 0; c < raidPtr->numSpare ; c++) {
2328 sparecol = raidPtr->numCol + c;
2329 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2330 /*
2331
2332 we claim this disk is "optimal" if it's
2333 rf_ds_used_spare, as that means it should be
2334 directly substitutable for the disk it replaced.
2335 We note that too...
2336
2337 */
2338
2339 for(j=0;j<raidPtr->numCol;j++) {
2340 if (raidPtr->Disks[j].spareCol == sparecol) {
2341 scol = j;
2342 break;
2343 }
2344 }
2345
2346 raidread_component_label(
2347 raidPtr->Disks[sparecol].dev,
2348 raidPtr->raid_cinfo[sparecol].ci_vp,
2349 &clabel);
2350 /* make sure status is noted */
2351
2352 raid_init_component_label(raidPtr, &clabel);
2353
2354 clabel.row = 0;
2355 clabel.column = scol;
2356 /* Note: we *don't* change status from rf_ds_used_spare
2357 to rf_ds_optimal */
2358 /* clabel.status = rf_ds_optimal; */
2359
2360 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2361 raidPtr->raid_cinfo[sparecol].ci_vp,
2362 raidPtr->mod_counter);
2363 }
2364 }
2365 }
2366
2367
2368 void
2369 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2370 {
2371 RF_ComponentLabel_t clabel;
2372 int sparecol;
2373 int c;
2374 int j;
2375 int scol;
2376
2377 scol = -1;
2378
2379 /* XXX should do extra checks to make sure things really are clean,
2380 rather than blindly setting the clean bit... */
2381
2382 raidPtr->mod_counter++;
2383
2384 for (c = 0; c < raidPtr->numCol; c++) {
2385 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2386 raidread_component_label(
2387 raidPtr->Disks[c].dev,
2388 raidPtr->raid_cinfo[c].ci_vp,
2389 &clabel);
2390 /* make sure status is noted */
2391 clabel.status = rf_ds_optimal;
2392 /* bump the counter */
2393 clabel.mod_counter = raidPtr->mod_counter;
2394
2395 raidwrite_component_label(
2396 raidPtr->Disks[c].dev,
2397 raidPtr->raid_cinfo[c].ci_vp,
2398 &clabel);
2399 if (final == RF_FINAL_COMPONENT_UPDATE) {
2400 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2401 raidmarkclean(
2402 raidPtr->Disks[c].dev,
2403 raidPtr->raid_cinfo[c].ci_vp,
2404 raidPtr->mod_counter);
2405 }
2406 }
2407 }
2408 /* else we don't touch it.. */
2409 }
2410
2411 for( c = 0; c < raidPtr->numSpare ; c++) {
2412 sparecol = raidPtr->numCol + c;
2413 /* Need to ensure that the reconstruct actually completed! */
2414 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2415 /*
2416
2417 we claim this disk is "optimal" if it's
2418 rf_ds_used_spare, as that means it should be
2419 directly substitutable for the disk it replaced.
2420 We note that too...
2421
2422 */
2423
2424 for(j=0;j<raidPtr->numCol;j++) {
2425 if (raidPtr->Disks[j].spareCol == sparecol) {
2426 scol = j;
2427 break;
2428 }
2429 }
2430
2431 /* XXX shouldn't *really* need this... */
2432 raidread_component_label(
2433 raidPtr->Disks[sparecol].dev,
2434 raidPtr->raid_cinfo[sparecol].ci_vp,
2435 &clabel);
2436 /* make sure status is noted */
2437
2438 raid_init_component_label(raidPtr, &clabel);
2439
2440 clabel.mod_counter = raidPtr->mod_counter;
2441 clabel.column = scol;
2442 clabel.status = rf_ds_optimal;
2443
2444 raidwrite_component_label(
2445 raidPtr->Disks[sparecol].dev,
2446 raidPtr->raid_cinfo[sparecol].ci_vp,
2447 &clabel);
2448 if (final == RF_FINAL_COMPONENT_UPDATE) {
2449 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2450 raidmarkclean( raidPtr->Disks[sparecol].dev,
2451 raidPtr->raid_cinfo[sparecol].ci_vp,
2452 raidPtr->mod_counter);
2453 }
2454 }
2455 }
2456 }
2457 }
2458
2459 void
2460 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2461 {
2462 struct proc *p;
2463
2464 p = raidPtr->engine_thread;
2465
2466 if (vp != NULL) {
2467 if (auto_configured == 1) {
2468 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2469 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2470 vput(vp);
2471
2472 } else {
2473 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2474 }
2475 }
2476 }
2477
2478
2479 void
2480 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2481 {
2482 int r,c;
2483 struct vnode *vp;
2484 int acd;
2485
2486
2487 /* We take this opportunity to close the vnodes like we should.. */
2488
2489 for (c = 0; c < raidPtr->numCol; c++) {
2490 vp = raidPtr->raid_cinfo[c].ci_vp;
2491 acd = raidPtr->Disks[c].auto_configured;
2492 rf_close_component(raidPtr, vp, acd);
2493 raidPtr->raid_cinfo[c].ci_vp = NULL;
2494 raidPtr->Disks[c].auto_configured = 0;
2495 }
2496
2497 for (r = 0; r < raidPtr->numSpare; r++) {
2498 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2499 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2500 rf_close_component(raidPtr, vp, acd);
2501 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2502 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2503 }
2504 }
2505
2506
2507 void
2508 rf_ReconThread(struct rf_recon_req *req)
2509 {
2510 int s;
2511 RF_Raid_t *raidPtr;
2512
2513 s = splbio();
2514 raidPtr = (RF_Raid_t *) req->raidPtr;
2515 raidPtr->recon_in_progress = 1;
2516
2517 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2518 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2519
2520 RF_Free(req, sizeof(*req));
2521
2522 raidPtr->recon_in_progress = 0;
2523 splx(s);
2524
2525 /* That's all... */
2526 kthread_exit(0); /* does not return */
2527 }
2528
2529 void
2530 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2531 {
2532 int retcode;
2533 int s;
2534
2535 raidPtr->parity_rewrite_in_progress = 1;
2536 s = splbio();
2537 retcode = rf_RewriteParity(raidPtr);
2538 splx(s);
2539 if (retcode) {
2540 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2541 } else {
2542 /* set the clean bit! If we shutdown correctly,
2543 the clean bit on each component label will get
2544 set */
2545 raidPtr->parity_good = RF_RAID_CLEAN;
2546 }
2547 raidPtr->parity_rewrite_in_progress = 0;
2548
2549 /* Anyone waiting for us to stop? If so, inform them... */
2550 if (raidPtr->waitShutdown) {
2551 wakeup(&raidPtr->parity_rewrite_in_progress);
2552 }
2553
2554 /* That's all... */
2555 kthread_exit(0); /* does not return */
2556 }
2557
2558
2559 void
2560 rf_CopybackThread(RF_Raid_t *raidPtr)
2561 {
2562 int s;
2563
2564 raidPtr->copyback_in_progress = 1;
2565 s = splbio();
2566 rf_CopybackReconstructedData(raidPtr);
2567 splx(s);
2568 raidPtr->copyback_in_progress = 0;
2569
2570 /* That's all... */
2571 kthread_exit(0); /* does not return */
2572 }
2573
2574
2575 void
2576 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2577 {
2578 int s;
2579 RF_Raid_t *raidPtr;
2580
2581 s = splbio();
2582 raidPtr = req->raidPtr;
2583 raidPtr->recon_in_progress = 1;
2584 rf_ReconstructInPlace(raidPtr, req->col);
2585 RF_Free(req, sizeof(*req));
2586 raidPtr->recon_in_progress = 0;
2587 splx(s);
2588
2589 /* That's all... */
2590 kthread_exit(0); /* does not return */
2591 }
2592
2593 RF_AutoConfig_t *
2594 rf_find_raid_components()
2595 {
2596 struct vnode *vp;
2597 struct disklabel label;
2598 struct device *dv;
2599 dev_t dev;
2600 int bmajor;
2601 int error;
2602 int i;
2603 int good_one;
2604 RF_ComponentLabel_t *clabel;
2605 RF_AutoConfig_t *ac_list;
2606 RF_AutoConfig_t *ac;
2607
2608
2609 /* initialize the AutoConfig list */
2610 ac_list = NULL;
2611
2612 /* we begin by trolling through *all* the devices on the system */
2613
2614 for (dv = alldevs.tqh_first; dv != NULL;
2615 dv = dv->dv_list.tqe_next) {
2616
2617 /* we are only interested in disks... */
2618 if (dv->dv_class != DV_DISK)
2619 continue;
2620
2621 /* we don't care about floppies... */
2622 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2623 continue;
2624 }
2625
2626 /* we don't care about CD's... */
2627 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2628 continue;
2629 }
2630
2631 /* hdfd is the Atari/Hades floppy driver */
2632 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2633 continue;
2634 }
2635 /* fdisa is the Atari/Milan floppy driver */
2636 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2637 continue;
2638 }
2639
2640 /* need to find the device_name_to_block_device_major stuff */
2641 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2642
2643 /* get a vnode for the raw partition of this disk */
2644
2645 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2646 if (bdevvp(dev, &vp))
2647 panic("RAID can't alloc vnode");
2648
2649 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2650
2651 if (error) {
2652 /* "Who cares." Continue looking
2653 for something that exists*/
2654 vput(vp);
2655 continue;
2656 }
2657
2658 /* Ok, the disk exists. Go get the disklabel. */
2659 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2660 if (error) {
2661 /*
2662 * XXX can't happen - open() would
2663 * have errored out (or faked up one)
2664 */
2665 printf("can't get label for dev %s%c (%d)!?!?\n",
2666 dv->dv_xname, 'a' + RAW_PART, error);
2667 }
2668
2669 /* don't need this any more. We'll allocate it again
2670 a little later if we really do... */
2671 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2672 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2673 vput(vp);
2674
2675 for (i=0; i < label.d_npartitions; i++) {
2676 /* We only support partitions marked as RAID */
2677 if (label.d_partitions[i].p_fstype != FS_RAID)
2678 continue;
2679
2680 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2681 if (bdevvp(dev, &vp))
2682 panic("RAID can't alloc vnode");
2683
2684 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2685 if (error) {
2686 /* Whatever... */
2687 vput(vp);
2688 continue;
2689 }
2690
2691 good_one = 0;
2692
2693 clabel = (RF_ComponentLabel_t *)
2694 malloc(sizeof(RF_ComponentLabel_t),
2695 M_RAIDFRAME, M_NOWAIT);
2696 if (clabel == NULL) {
2697 /* XXX CLEANUP HERE */
2698 printf("RAID auto config: out of memory!\n");
2699 return(NULL); /* XXX probably should panic? */
2700 }
2701
2702 if (!raidread_component_label(dev, vp, clabel)) {
2703 /* Got the label. Does it look reasonable? */
2704 if (rf_reasonable_label(clabel) &&
2705 (clabel->partitionSize <=
2706 label.d_partitions[i].p_size)) {
2707 #if DEBUG
2708 printf("Component on: %s%c: %d\n",
2709 dv->dv_xname, 'a'+i,
2710 label.d_partitions[i].p_size);
2711 rf_print_component_label(clabel);
2712 #endif
2713 /* if it's reasonable, add it,
2714 else ignore it. */
2715 ac = (RF_AutoConfig_t *)
2716 malloc(sizeof(RF_AutoConfig_t),
2717 M_RAIDFRAME,
2718 M_NOWAIT);
2719 if (ac == NULL) {
2720 /* XXX should panic?? */
2721 return(NULL);
2722 }
2723
2724 sprintf(ac->devname, "%s%c",
2725 dv->dv_xname, 'a'+i);
2726 ac->dev = dev;
2727 ac->vp = vp;
2728 ac->clabel = clabel;
2729 ac->next = ac_list;
2730 ac_list = ac;
2731 good_one = 1;
2732 }
2733 }
2734 if (!good_one) {
2735 /* cleanup */
2736 free(clabel, M_RAIDFRAME);
2737 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2738 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2739 vput(vp);
2740 }
2741 }
2742 }
2743 return(ac_list);
2744 }
2745
2746 static int
2747 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2748 {
2749
2750 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2751 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2752 ((clabel->clean == RF_RAID_CLEAN) ||
2753 (clabel->clean == RF_RAID_DIRTY)) &&
2754 clabel->row >=0 &&
2755 clabel->column >= 0 &&
2756 clabel->num_rows > 0 &&
2757 clabel->num_columns > 0 &&
2758 clabel->row < clabel->num_rows &&
2759 clabel->column < clabel->num_columns &&
2760 clabel->blockSize > 0 &&
2761 clabel->numBlocks > 0) {
2762 /* label looks reasonable enough... */
2763 return(1);
2764 }
2765 return(0);
2766 }
2767
2768
2769 #if DEBUG
2770 void
2771 rf_print_component_label(RF_ComponentLabel_t *clabel)
2772 {
2773 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2774 clabel->row, clabel->column,
2775 clabel->num_rows, clabel->num_columns);
2776 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2777 clabel->version, clabel->serial_number,
2778 clabel->mod_counter);
2779 printf(" Clean: %s Status: %d\n",
2780 clabel->clean ? "Yes" : "No", clabel->status );
2781 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2782 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2783 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2784 (char) clabel->parityConfig, clabel->blockSize,
2785 clabel->numBlocks);
2786 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2787 printf(" Contains root partition: %s\n",
2788 clabel->root_partition ? "Yes" : "No" );
2789 printf(" Last configured as: raid%d\n", clabel->last_unit );
2790 #if 0
2791 printf(" Config order: %d\n", clabel->config_order);
2792 #endif
2793
2794 }
2795 #endif
2796
2797 RF_ConfigSet_t *
2798 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2799 {
2800 RF_AutoConfig_t *ac;
2801 RF_ConfigSet_t *config_sets;
2802 RF_ConfigSet_t *cset;
2803 RF_AutoConfig_t *ac_next;
2804
2805
2806 config_sets = NULL;
2807
2808 /* Go through the AutoConfig list, and figure out which components
2809 belong to what sets. */
2810 ac = ac_list;
2811 while(ac!=NULL) {
2812 /* we're going to putz with ac->next, so save it here
2813 for use at the end of the loop */
2814 ac_next = ac->next;
2815
2816 if (config_sets == NULL) {
2817 /* will need at least this one... */
2818 config_sets = (RF_ConfigSet_t *)
2819 malloc(sizeof(RF_ConfigSet_t),
2820 M_RAIDFRAME, M_NOWAIT);
2821 if (config_sets == NULL) {
2822 panic("rf_create_auto_sets: No memory!");
2823 }
2824 /* this one is easy :) */
2825 config_sets->ac = ac;
2826 config_sets->next = NULL;
2827 config_sets->rootable = 0;
2828 ac->next = NULL;
2829 } else {
2830 /* which set does this component fit into? */
2831 cset = config_sets;
2832 while(cset!=NULL) {
2833 if (rf_does_it_fit(cset, ac)) {
2834 /* looks like it matches... */
2835 ac->next = cset->ac;
2836 cset->ac = ac;
2837 break;
2838 }
2839 cset = cset->next;
2840 }
2841 if (cset==NULL) {
2842 /* didn't find a match above... new set..*/
2843 cset = (RF_ConfigSet_t *)
2844 malloc(sizeof(RF_ConfigSet_t),
2845 M_RAIDFRAME, M_NOWAIT);
2846 if (cset == NULL) {
2847 panic("rf_create_auto_sets: No memory!");
2848 }
2849 cset->ac = ac;
2850 ac->next = NULL;
2851 cset->next = config_sets;
2852 cset->rootable = 0;
2853 config_sets = cset;
2854 }
2855 }
2856 ac = ac_next;
2857 }
2858
2859
2860 return(config_sets);
2861 }
2862
2863 static int
2864 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2865 {
2866 RF_ComponentLabel_t *clabel1, *clabel2;
2867
2868 /* If this one matches the *first* one in the set, that's good
2869 enough, since the other members of the set would have been
2870 through here too... */
2871 /* note that we are not checking partitionSize here..
2872
2873 Note that we are also not checking the mod_counters here.
2874 If everything else matches execpt the mod_counter, that's
2875 good enough for this test. We will deal with the mod_counters
2876 a little later in the autoconfiguration process.
2877
2878 (clabel1->mod_counter == clabel2->mod_counter) &&
2879
2880 The reason we don't check for this is that failed disks
2881 will have lower modification counts. If those disks are
2882 not added to the set they used to belong to, then they will
2883 form their own set, which may result in 2 different sets,
2884 for example, competing to be configured at raid0, and
2885 perhaps competing to be the root filesystem set. If the
2886 wrong ones get configured, or both attempt to become /,
2887 weird behaviour and or serious lossage will occur. Thus we
2888 need to bring them into the fold here, and kick them out at
2889 a later point.
2890
2891 */
2892
2893 clabel1 = cset->ac->clabel;
2894 clabel2 = ac->clabel;
2895 if ((clabel1->version == clabel2->version) &&
2896 (clabel1->serial_number == clabel2->serial_number) &&
2897 (clabel1->num_rows == clabel2->num_rows) &&
2898 (clabel1->num_columns == clabel2->num_columns) &&
2899 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2900 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2901 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2902 (clabel1->parityConfig == clabel2->parityConfig) &&
2903 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2904 (clabel1->blockSize == clabel2->blockSize) &&
2905 (clabel1->numBlocks == clabel2->numBlocks) &&
2906 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2907 (clabel1->root_partition == clabel2->root_partition) &&
2908 (clabel1->last_unit == clabel2->last_unit) &&
2909 (clabel1->config_order == clabel2->config_order)) {
2910 /* if it get's here, it almost *has* to be a match */
2911 } else {
2912 /* it's not consistent with somebody in the set..
2913 punt */
2914 return(0);
2915 }
2916 /* all was fine.. it must fit... */
2917 return(1);
2918 }
2919
2920 int
2921 rf_have_enough_components(RF_ConfigSet_t *cset)
2922 {
2923 RF_AutoConfig_t *ac;
2924 RF_AutoConfig_t *auto_config;
2925 RF_ComponentLabel_t *clabel;
2926 int c;
2927 int num_cols;
2928 int num_missing;
2929 int mod_counter;
2930 int mod_counter_found;
2931 int even_pair_failed;
2932 char parity_type;
2933
2934
2935 /* check to see that we have enough 'live' components
2936 of this set. If so, we can configure it if necessary */
2937
2938 num_cols = cset->ac->clabel->num_columns;
2939 parity_type = cset->ac->clabel->parityConfig;
2940
2941 /* XXX Check for duplicate components!?!?!? */
2942
2943 /* Determine what the mod_counter is supposed to be for this set. */
2944
2945 mod_counter_found = 0;
2946 mod_counter = 0;
2947 ac = cset->ac;
2948 while(ac!=NULL) {
2949 if (mod_counter_found==0) {
2950 mod_counter = ac->clabel->mod_counter;
2951 mod_counter_found = 1;
2952 } else {
2953 if (ac->clabel->mod_counter > mod_counter) {
2954 mod_counter = ac->clabel->mod_counter;
2955 }
2956 }
2957 ac = ac->next;
2958 }
2959
2960 num_missing = 0;
2961 auto_config = cset->ac;
2962
2963 even_pair_failed = 0;
2964 for(c=0; c<num_cols; c++) {
2965 ac = auto_config;
2966 while(ac!=NULL) {
2967 if ((ac->clabel->column == c) &&
2968 (ac->clabel->mod_counter == mod_counter)) {
2969 /* it's this one... */
2970 #if DEBUG
2971 printf("Found: %s at %d\n",
2972 ac->devname,c);
2973 #endif
2974 break;
2975 }
2976 ac=ac->next;
2977 }
2978 if (ac==NULL) {
2979 /* Didn't find one here! */
2980 /* special case for RAID 1, especially
2981 where there are more than 2
2982 components (where RAIDframe treats
2983 things a little differently :( ) */
2984 if (parity_type == '1') {
2985 if (c%2 == 0) { /* even component */
2986 even_pair_failed = 1;
2987 } else { /* odd component. If
2988 we're failed, and
2989 so is the even
2990 component, it's
2991 "Good Night, Charlie" */
2992 if (even_pair_failed == 1) {
2993 return(0);
2994 }
2995 }
2996 } else {
2997 /* normal accounting */
2998 num_missing++;
2999 }
3000 }
3001 if ((parity_type == '1') && (c%2 == 1)) {
3002 /* Just did an even component, and we didn't
3003 bail.. reset the even_pair_failed flag,
3004 and go on to the next component.... */
3005 even_pair_failed = 0;
3006 }
3007 }
3008
3009 clabel = cset->ac->clabel;
3010
3011 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3012 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3013 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3014 /* XXX this needs to be made *much* more general */
3015 /* Too many failures */
3016 return(0);
3017 }
3018 /* otherwise, all is well, and we've got enough to take a kick
3019 at autoconfiguring this set */
3020 return(1);
3021 }
3022
3023 void
3024 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3025 RF_Raid_t *raidPtr)
3026 {
3027 RF_ComponentLabel_t *clabel;
3028 int i;
3029
3030 clabel = ac->clabel;
3031
3032 /* 1. Fill in the common stuff */
3033 config->numRow = clabel->num_rows = 1;
3034 config->numCol = clabel->num_columns;
3035 config->numSpare = 0; /* XXX should this be set here? */
3036 config->sectPerSU = clabel->sectPerSU;
3037 config->SUsPerPU = clabel->SUsPerPU;
3038 config->SUsPerRU = clabel->SUsPerRU;
3039 config->parityConfig = clabel->parityConfig;
3040 /* XXX... */
3041 strcpy(config->diskQueueType,"fifo");
3042 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3043 config->layoutSpecificSize = 0; /* XXX ?? */
3044
3045 while(ac!=NULL) {
3046 /* row/col values will be in range due to the checks
3047 in reasonable_label() */
3048 strcpy(config->devnames[0][ac->clabel->column],
3049 ac->devname);
3050 ac = ac->next;
3051 }
3052
3053 for(i=0;i<RF_MAXDBGV;i++) {
3054 config->debugVars[i][0] = 0;
3055 }
3056 }
3057
3058 int
3059 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3060 {
3061 RF_ComponentLabel_t clabel;
3062 struct vnode *vp;
3063 dev_t dev;
3064 int column;
3065 int sparecol;
3066
3067 raidPtr->autoconfigure = new_value;
3068
3069 for(column=0; column<raidPtr->numCol; column++) {
3070 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3071 dev = raidPtr->Disks[column].dev;
3072 vp = raidPtr->raid_cinfo[column].ci_vp;
3073 raidread_component_label(dev, vp, &clabel);
3074 clabel.autoconfigure = new_value;
3075 raidwrite_component_label(dev, vp, &clabel);
3076 }
3077 }
3078 for(column = 0; column < raidPtr->numSpare ; column++) {
3079 sparecol = raidPtr->numCol + column;
3080 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3081 dev = raidPtr->Disks[sparecol].dev;
3082 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3083 raidread_component_label(dev, vp, &clabel);
3084 clabel.autoconfigure = new_value;
3085 raidwrite_component_label(dev, vp, &clabel);
3086 }
3087 }
3088 return(new_value);
3089 }
3090
3091 int
3092 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3093 {
3094 RF_ComponentLabel_t clabel;
3095 struct vnode *vp;
3096 dev_t dev;
3097 int column;
3098 int sparecol;
3099
3100 raidPtr->root_partition = new_value;
3101 for(column=0; column<raidPtr->numCol; column++) {
3102 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3103 dev = raidPtr->Disks[column].dev;
3104 vp = raidPtr->raid_cinfo[column].ci_vp;
3105 raidread_component_label(dev, vp, &clabel);
3106 clabel.root_partition = new_value;
3107 raidwrite_component_label(dev, vp, &clabel);
3108 }
3109 }
3110 for(column = 0; column < raidPtr->numSpare ; column++) {
3111 sparecol = raidPtr->numCol + column;
3112 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3113 dev = raidPtr->Disks[sparecol].dev;
3114 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3115 raidread_component_label(dev, vp, &clabel);
3116 clabel.root_partition = new_value;
3117 raidwrite_component_label(dev, vp, &clabel);
3118 }
3119 }
3120 return(new_value);
3121 }
3122
3123 void
3124 rf_release_all_vps(RF_ConfigSet_t *cset)
3125 {
3126 RF_AutoConfig_t *ac;
3127
3128 ac = cset->ac;
3129 while(ac!=NULL) {
3130 /* Close the vp, and give it back */
3131 if (ac->vp) {
3132 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3133 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3134 vput(ac->vp);
3135 ac->vp = NULL;
3136 }
3137 ac = ac->next;
3138 }
3139 }
3140
3141
3142 void
3143 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3144 {
3145 RF_AutoConfig_t *ac;
3146 RF_AutoConfig_t *next_ac;
3147
3148 ac = cset->ac;
3149 while(ac!=NULL) {
3150 next_ac = ac->next;
3151 /* nuke the label */
3152 free(ac->clabel, M_RAIDFRAME);
3153 /* cleanup the config structure */
3154 free(ac, M_RAIDFRAME);
3155 /* "next.." */
3156 ac = next_ac;
3157 }
3158 /* and, finally, nuke the config set */
3159 free(cset, M_RAIDFRAME);
3160 }
3161
3162
3163 void
3164 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3165 {
3166 /* current version number */
3167 clabel->version = RF_COMPONENT_LABEL_VERSION;
3168 clabel->serial_number = raidPtr->serial_number;
3169 clabel->mod_counter = raidPtr->mod_counter;
3170 clabel->num_rows = 1;
3171 clabel->num_columns = raidPtr->numCol;
3172 clabel->clean = RF_RAID_DIRTY; /* not clean */
3173 clabel->status = rf_ds_optimal; /* "It's good!" */
3174
3175 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3176 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3177 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3178
3179 clabel->blockSize = raidPtr->bytesPerSector;
3180 clabel->numBlocks = raidPtr->sectorsPerDisk;
3181
3182 /* XXX not portable */
3183 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3184 clabel->maxOutstanding = raidPtr->maxOutstanding;
3185 clabel->autoconfigure = raidPtr->autoconfigure;
3186 clabel->root_partition = raidPtr->root_partition;
3187 clabel->last_unit = raidPtr->raidid;
3188 clabel->config_order = raidPtr->config_order;
3189 }
3190
3191 int
3192 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3193 {
3194 RF_Raid_t *raidPtr;
3195 RF_Config_t *config;
3196 int raidID;
3197 int retcode;
3198
3199 #if DEBUG
3200 printf("RAID autoconfigure\n");
3201 #endif
3202
3203 retcode = 0;
3204 *unit = -1;
3205
3206 /* 1. Create a config structure */
3207
3208 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3209 M_RAIDFRAME,
3210 M_NOWAIT);
3211 if (config==NULL) {
3212 printf("Out of mem!?!?\n");
3213 /* XXX do something more intelligent here. */
3214 return(1);
3215 }
3216
3217 memset(config, 0, sizeof(RF_Config_t));
3218
3219 /*
3220 2. Figure out what RAID ID this one is supposed to live at
3221 See if we can get the same RAID dev that it was configured
3222 on last time..
3223 */
3224
3225 raidID = cset->ac->clabel->last_unit;
3226 if ((raidID < 0) || (raidID >= numraid)) {
3227 /* let's not wander off into lala land. */
3228 raidID = numraid - 1;
3229 }
3230 if (raidPtrs[raidID]->valid != 0) {
3231
3232 /*
3233 Nope... Go looking for an alternative...
3234 Start high so we don't immediately use raid0 if that's
3235 not taken.
3236 */
3237
3238 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3239 if (raidPtrs[raidID]->valid == 0) {
3240 /* can use this one! */
3241 break;
3242 }
3243 }
3244 }
3245
3246 if (raidID < 0) {
3247 /* punt... */
3248 printf("Unable to auto configure this set!\n");
3249 printf("(Out of RAID devs!)\n");
3250 return(1);
3251 }
3252
3253 #if DEBUG
3254 printf("Configuring raid%d:\n",raidID);
3255 #endif
3256
3257 raidPtr = raidPtrs[raidID];
3258
3259 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3260 raidPtr->raidid = raidID;
3261 raidPtr->openings = RAIDOUTSTANDING;
3262
3263 /* 3. Build the configuration structure */
3264 rf_create_configuration(cset->ac, config, raidPtr);
3265
3266 /* 4. Do the configuration */
3267 retcode = rf_Configure(raidPtr, config, cset->ac);
3268
3269 if (retcode == 0) {
3270
3271 raidinit(raidPtrs[raidID]);
3272
3273 rf_markalldirty(raidPtrs[raidID]);
3274 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3275 if (cset->ac->clabel->root_partition==1) {
3276 /* everything configured just fine. Make a note
3277 that this set is eligible to be root. */
3278 cset->rootable = 1;
3279 /* XXX do this here? */
3280 raidPtrs[raidID]->root_partition = 1;
3281 }
3282 }
3283
3284 /* 5. Cleanup */
3285 free(config, M_RAIDFRAME);
3286
3287 *unit = raidID;
3288 return(retcode);
3289 }
3290
3291 void
3292 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3293 {
3294 struct buf *bp;
3295
3296 bp = (struct buf *)desc->bp;
3297 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3298 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3299 }
3300