Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.175
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.175 2004/03/01 23:30:58 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.175 2004/03/01 23:30:58 oster Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/user.h>
    169 #include <sys/reboot.h>
    170 
    171 #include <dev/raidframe/raidframevar.h>
    172 #include <dev/raidframe/raidframeio.h>
    173 #include "raid.h"
    174 #include "opt_raid_autoconfig.h"
    175 #include "rf_raid.h"
    176 #include "rf_copyback.h"
    177 #include "rf_dag.h"
    178 #include "rf_dagflags.h"
    179 #include "rf_desc.h"
    180 #include "rf_diskqueue.h"
    181 #include "rf_etimer.h"
    182 #include "rf_general.h"
    183 #include "rf_kintf.h"
    184 #include "rf_options.h"
    185 #include "rf_driver.h"
    186 #include "rf_parityscan.h"
    187 #include "rf_threadstuff.h"
    188 
    189 #ifdef DEBUG
    190 int     rf_kdebug_level = 0;
    191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    192 #else				/* DEBUG */
    193 #define db1_printf(a) { }
    194 #endif				/* DEBUG */
    195 
    196 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    197 
    198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    199 
    200 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    201 						 * spare table */
    202 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    203 						 * installation process */
    204 
    205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    206 
    207 /* prototypes */
    208 static void KernelWakeupFunc(struct buf * bp);
    209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    210 		   dev_t dev, RF_SectorNum_t startSect,
    211 		   RF_SectorCount_t numSect, caddr_t buf,
    212 		   void (*cbFunc) (struct buf *), void *cbArg,
    213 		   int logBytesPerSector, struct proc * b_proc);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 
    218 dev_type_open(raidopen);
    219 dev_type_close(raidclose);
    220 dev_type_read(raidread);
    221 dev_type_write(raidwrite);
    222 dev_type_ioctl(raidioctl);
    223 dev_type_strategy(raidstrategy);
    224 dev_type_dump(raiddump);
    225 dev_type_size(raidsize);
    226 
    227 const struct bdevsw raid_bdevsw = {
    228 	raidopen, raidclose, raidstrategy, raidioctl,
    229 	raiddump, raidsize, D_DISK
    230 };
    231 
    232 const struct cdevsw raid_cdevsw = {
    233 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    234 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    235 };
    236 
    237 /*
    238  * Pilfered from ccd.c
    239  */
    240 
    241 struct raidbuf {
    242 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    243 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    244 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    245 };
    246 
    247 /* component buffer pool */
    248 struct pool raidframe_cbufpool;
    249 
    250 /* XXX Not sure if the following should be replacing the raidPtrs above,
    251    or if it should be used in conjunction with that...
    252 */
    253 
    254 struct raid_softc {
    255 	int     sc_flags;	/* flags */
    256 	int     sc_cflags;	/* configuration flags */
    257 	size_t  sc_size;        /* size of the raid device */
    258 	char    sc_xname[20];	/* XXX external name */
    259 	struct disk sc_dkdev;	/* generic disk device info */
    260 	struct bufq_state buf_queue;	/* used for the device queue */
    261 };
    262 /* sc_flags */
    263 #define RAIDF_INITED	0x01	/* unit has been initialized */
    264 #define RAIDF_WLABEL	0x02	/* label area is writable */
    265 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    266 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    267 #define RAIDF_LOCKED	0x80	/* unit is locked */
    268 
    269 #define	raidunit(x)	DISKUNIT(x)
    270 int numraid = 0;
    271 
    272 /*
    273  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    274  * Be aware that large numbers can allow the driver to consume a lot of
    275  * kernel memory, especially on writes, and in degraded mode reads.
    276  *
    277  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    278  * a single 64K write will typically require 64K for the old data,
    279  * 64K for the old parity, and 64K for the new parity, for a total
    280  * of 192K (if the parity buffer is not re-used immediately).
    281  * Even it if is used immediately, that's still 128K, which when multiplied
    282  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    283  *
    284  * Now in degraded mode, for example, a 64K read on the above setup may
    285  * require data reconstruction, which will require *all* of the 4 remaining
    286  * disks to participate -- 4 * 32K/disk == 128K again.
    287  */
    288 
    289 #ifndef RAIDOUTSTANDING
    290 #define RAIDOUTSTANDING   6
    291 #endif
    292 
    293 #define RAIDLABELDEV(dev)	\
    294 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    295 
    296 /* declared here, and made public, for the benefit of KVM stuff.. */
    297 struct raid_softc *raid_softc;
    298 
    299 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    300 				     struct disklabel *);
    301 static void raidgetdisklabel(dev_t);
    302 static void raidmakedisklabel(struct raid_softc *);
    303 
    304 static int raidlock(struct raid_softc *);
    305 static void raidunlock(struct raid_softc *);
    306 
    307 static void rf_markalldirty(RF_Raid_t *);
    308 
    309 struct device *raidrootdev;
    310 
    311 void rf_ReconThread(struct rf_recon_req *);
    312 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    313 void rf_CopybackThread(RF_Raid_t *raidPtr);
    314 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    315 int rf_autoconfig(struct device *self);
    316 void rf_buildroothack(RF_ConfigSet_t *);
    317 
    318 RF_AutoConfig_t *rf_find_raid_components(void);
    319 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    320 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    321 static int rf_reasonable_label(RF_ComponentLabel_t *);
    322 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    323 int rf_set_autoconfig(RF_Raid_t *, int);
    324 int rf_set_rootpartition(RF_Raid_t *, int);
    325 void rf_release_all_vps(RF_ConfigSet_t *);
    326 void rf_cleanup_config_set(RF_ConfigSet_t *);
    327 int rf_have_enough_components(RF_ConfigSet_t *);
    328 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    329 
    330 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    331 				  allow autoconfig to take place.
    332 			          Note that this is overridden by having
    333 			          RAID_AUTOCONFIG as an option in the
    334 			          kernel config file.  */
    335 
    336 void
    337 raidattach(int num)
    338 {
    339 	int raidID;
    340 	int i, rc;
    341 
    342 #ifdef DEBUG
    343 	printf("raidattach: Asked for %d units\n", num);
    344 #endif
    345 
    346 	if (num <= 0) {
    347 #ifdef DIAGNOSTIC
    348 		panic("raidattach: count <= 0");
    349 #endif
    350 		return;
    351 	}
    352 	/* This is where all the initialization stuff gets done. */
    353 
    354 	numraid = num;
    355 
    356 	/* Make some space for requested number of units... */
    357 
    358 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    359 	if (raidPtrs == NULL) {
    360 		panic("raidPtrs is NULL!!");
    361 	}
    362 
    363 	/* Initialize the component buffer pool. */
    364 	pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
    365 	    0, 0, "raidpl", NULL);
    366 
    367 	rf_mutex_init(&rf_sparet_wait_mutex);
    368 
    369 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    370 
    371 	for (i = 0; i < num; i++)
    372 		raidPtrs[i] = NULL;
    373 	rc = rf_BootRaidframe();
    374 	if (rc == 0)
    375 		printf("Kernelized RAIDframe activated\n");
    376 	else
    377 		panic("Serious error booting RAID!!");
    378 
    379 	/* put together some datastructures like the CCD device does.. This
    380 	 * lets us lock the device and what-not when it gets opened. */
    381 
    382 	raid_softc = (struct raid_softc *)
    383 		malloc(num * sizeof(struct raid_softc),
    384 		       M_RAIDFRAME, M_NOWAIT);
    385 	if (raid_softc == NULL) {
    386 		printf("WARNING: no memory for RAIDframe driver\n");
    387 		return;
    388 	}
    389 
    390 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    391 
    392 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    393 					      M_RAIDFRAME, M_NOWAIT);
    394 	if (raidrootdev == NULL) {
    395 		panic("No memory for RAIDframe driver!!?!?!");
    396 	}
    397 
    398 	for (raidID = 0; raidID < num; raidID++) {
    399 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    400 
    401 		raidrootdev[raidID].dv_class  = DV_DISK;
    402 		raidrootdev[raidID].dv_cfdata = NULL;
    403 		raidrootdev[raidID].dv_unit   = raidID;
    404 		raidrootdev[raidID].dv_parent = NULL;
    405 		raidrootdev[raidID].dv_flags  = 0;
    406 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    407 
    408 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    409 			  (RF_Raid_t *));
    410 		if (raidPtrs[raidID] == NULL) {
    411 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    412 			numraid = raidID;
    413 			return;
    414 		}
    415 	}
    416 
    417 #ifdef RAID_AUTOCONFIG
    418 	raidautoconfig = 1;
    419 #endif
    420 
    421 	/*
    422 	 * Register a finalizer which will be used to auto-config RAID
    423 	 * sets once all real hardware devices have been found.
    424 	 */
    425 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    426 		printf("WARNING: unable to register RAIDframe finalizer\n");
    427 }
    428 
    429 int
    430 rf_autoconfig(struct device *self)
    431 {
    432 	RF_AutoConfig_t *ac_list;
    433 	RF_ConfigSet_t *config_sets;
    434 
    435 	if (raidautoconfig == 0)
    436 		return (0);
    437 
    438 	/* XXX This code can only be run once. */
    439 	raidautoconfig = 0;
    440 
    441 	/* 1. locate all RAID components on the system */
    442 #ifdef DEBUG
    443 	printf("Searching for RAID components...\n");
    444 #endif
    445 	ac_list = rf_find_raid_components();
    446 
    447 	/* 2. Sort them into their respective sets. */
    448 	config_sets = rf_create_auto_sets(ac_list);
    449 
    450 	/*
    451 	 * 3. Evaluate each set andconfigure the valid ones.
    452 	 * This gets done in rf_buildroothack().
    453 	 */
    454 	rf_buildroothack(config_sets);
    455 
    456 	return (1);
    457 }
    458 
    459 void
    460 rf_buildroothack(RF_ConfigSet_t *config_sets)
    461 {
    462 	RF_ConfigSet_t *cset;
    463 	RF_ConfigSet_t *next_cset;
    464 	int retcode;
    465 	int raidID;
    466 	int rootID;
    467 	int num_root;
    468 
    469 	rootID = 0;
    470 	num_root = 0;
    471 	cset = config_sets;
    472 	while(cset != NULL ) {
    473 		next_cset = cset->next;
    474 		if (rf_have_enough_components(cset) &&
    475 		    cset->ac->clabel->autoconfigure==1) {
    476 			retcode = rf_auto_config_set(cset,&raidID);
    477 			if (!retcode) {
    478 				if (cset->rootable) {
    479 					rootID = raidID;
    480 					num_root++;
    481 				}
    482 			} else {
    483 				/* The autoconfig didn't work :( */
    484 #if DEBUG
    485 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    486 #endif
    487 				rf_release_all_vps(cset);
    488 			}
    489 		} else {
    490 			/* we're not autoconfiguring this set...
    491 			   release the associated resources */
    492 			rf_release_all_vps(cset);
    493 		}
    494 		/* cleanup */
    495 		rf_cleanup_config_set(cset);
    496 		cset = next_cset;
    497 	}
    498 
    499 	/* we found something bootable... */
    500 
    501 	if (num_root == 1) {
    502 		booted_device = &raidrootdev[rootID];
    503 	} else if (num_root > 1) {
    504 		/* we can't guess.. require the user to answer... */
    505 		boothowto |= RB_ASKNAME;
    506 	}
    507 }
    508 
    509 
    510 int
    511 raidsize(dev_t dev)
    512 {
    513 	struct raid_softc *rs;
    514 	struct disklabel *lp;
    515 	int     part, unit, omask, size;
    516 
    517 	unit = raidunit(dev);
    518 	if (unit >= numraid)
    519 		return (-1);
    520 	rs = &raid_softc[unit];
    521 
    522 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    523 		return (-1);
    524 
    525 	part = DISKPART(dev);
    526 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    527 	lp = rs->sc_dkdev.dk_label;
    528 
    529 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    530 		return (-1);
    531 
    532 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    533 		size = -1;
    534 	else
    535 		size = lp->d_partitions[part].p_size *
    536 		    (lp->d_secsize / DEV_BSIZE);
    537 
    538 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    539 		return (-1);
    540 
    541 	return (size);
    542 
    543 }
    544 
    545 int
    546 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    547 {
    548 	/* Not implemented. */
    549 	return ENXIO;
    550 }
    551 /* ARGSUSED */
    552 int
    553 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
    554 {
    555 	int     unit = raidunit(dev);
    556 	struct raid_softc *rs;
    557 	struct disklabel *lp;
    558 	int     part, pmask;
    559 	int     error = 0;
    560 
    561 	if (unit >= numraid)
    562 		return (ENXIO);
    563 	rs = &raid_softc[unit];
    564 
    565 	if ((error = raidlock(rs)) != 0)
    566 		return (error);
    567 	lp = rs->sc_dkdev.dk_label;
    568 
    569 	part = DISKPART(dev);
    570 	pmask = (1 << part);
    571 
    572 	if ((rs->sc_flags & RAIDF_INITED) &&
    573 	    (rs->sc_dkdev.dk_openmask == 0))
    574 		raidgetdisklabel(dev);
    575 
    576 	/* make sure that this partition exists */
    577 
    578 	if (part != RAW_PART) {
    579 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    580 		    ((part >= lp->d_npartitions) ||
    581 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    582 			error = ENXIO;
    583 			raidunlock(rs);
    584 			return (error);
    585 		}
    586 	}
    587 	/* Prevent this unit from being unconfigured while open. */
    588 	switch (fmt) {
    589 	case S_IFCHR:
    590 		rs->sc_dkdev.dk_copenmask |= pmask;
    591 		break;
    592 
    593 	case S_IFBLK:
    594 		rs->sc_dkdev.dk_bopenmask |= pmask;
    595 		break;
    596 	}
    597 
    598 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    599 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    600 		/* First one... mark things as dirty... Note that we *MUST*
    601 		 have done a configure before this.  I DO NOT WANT TO BE
    602 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    603 		 THAT THEY BELONG TOGETHER!!!!! */
    604 		/* XXX should check to see if we're only open for reading
    605 		   here... If so, we needn't do this, but then need some
    606 		   other way of keeping track of what's happened.. */
    607 
    608 		rf_markalldirty( raidPtrs[unit] );
    609 	}
    610 
    611 
    612 	rs->sc_dkdev.dk_openmask =
    613 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    614 
    615 	raidunlock(rs);
    616 
    617 	return (error);
    618 
    619 
    620 }
    621 /* ARGSUSED */
    622 int
    623 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
    624 {
    625 	int     unit = raidunit(dev);
    626 	struct raid_softc *rs;
    627 	int     error = 0;
    628 	int     part;
    629 
    630 	if (unit >= numraid)
    631 		return (ENXIO);
    632 	rs = &raid_softc[unit];
    633 
    634 	if ((error = raidlock(rs)) != 0)
    635 		return (error);
    636 
    637 	part = DISKPART(dev);
    638 
    639 	/* ...that much closer to allowing unconfiguration... */
    640 	switch (fmt) {
    641 	case S_IFCHR:
    642 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    643 		break;
    644 
    645 	case S_IFBLK:
    646 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    647 		break;
    648 	}
    649 	rs->sc_dkdev.dk_openmask =
    650 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    651 
    652 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    653 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    654 		/* Last one... device is not unconfigured yet.
    655 		   Device shutdown has taken care of setting the
    656 		   clean bits if RAIDF_INITED is not set
    657 		   mark things as clean... */
    658 
    659 		rf_update_component_labels(raidPtrs[unit],
    660 						 RF_FINAL_COMPONENT_UPDATE);
    661 		if (doing_shutdown) {
    662 			/* last one, and we're going down, so
    663 			   lights out for this RAID set too. */
    664 			error = rf_Shutdown(raidPtrs[unit]);
    665 
    666 			/* It's no longer initialized... */
    667 			rs->sc_flags &= ~RAIDF_INITED;
    668 
    669 			/* Detach the disk. */
    670 			disk_detach(&rs->sc_dkdev);
    671 		}
    672 	}
    673 
    674 	raidunlock(rs);
    675 	return (0);
    676 
    677 }
    678 
    679 void
    680 raidstrategy(struct buf *bp)
    681 {
    682 	int s;
    683 
    684 	unsigned int raidID = raidunit(bp->b_dev);
    685 	RF_Raid_t *raidPtr;
    686 	struct raid_softc *rs = &raid_softc[raidID];
    687 	int     wlabel;
    688 
    689 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    690 		bp->b_error = ENXIO;
    691 		bp->b_flags |= B_ERROR;
    692 		bp->b_resid = bp->b_bcount;
    693 		biodone(bp);
    694 		return;
    695 	}
    696 	if (raidID >= numraid || !raidPtrs[raidID]) {
    697 		bp->b_error = ENODEV;
    698 		bp->b_flags |= B_ERROR;
    699 		bp->b_resid = bp->b_bcount;
    700 		biodone(bp);
    701 		return;
    702 	}
    703 	raidPtr = raidPtrs[raidID];
    704 	if (!raidPtr->valid) {
    705 		bp->b_error = ENODEV;
    706 		bp->b_flags |= B_ERROR;
    707 		bp->b_resid = bp->b_bcount;
    708 		biodone(bp);
    709 		return;
    710 	}
    711 	if (bp->b_bcount == 0) {
    712 		db1_printf(("b_bcount is zero..\n"));
    713 		biodone(bp);
    714 		return;
    715 	}
    716 
    717 	/*
    718 	 * Do bounds checking and adjust transfer.  If there's an
    719 	 * error, the bounds check will flag that for us.
    720 	 */
    721 
    722 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    723 	if (DISKPART(bp->b_dev) != RAW_PART)
    724 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    725 			db1_printf(("Bounds check failed!!:%d %d\n",
    726 				(int) bp->b_blkno, (int) wlabel));
    727 			biodone(bp);
    728 			return;
    729 		}
    730 	s = splbio();
    731 
    732 	bp->b_resid = 0;
    733 
    734 	/* stuff it onto our queue */
    735 	BUFQ_PUT(&rs->buf_queue, bp);
    736 
    737 	raidstart(raidPtrs[raidID]);
    738 
    739 	splx(s);
    740 }
    741 /* ARGSUSED */
    742 int
    743 raidread(dev_t dev, struct uio *uio, int flags)
    744 {
    745 	int     unit = raidunit(dev);
    746 	struct raid_softc *rs;
    747 
    748 	if (unit >= numraid)
    749 		return (ENXIO);
    750 	rs = &raid_softc[unit];
    751 
    752 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    753 		return (ENXIO);
    754 
    755 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    756 
    757 }
    758 /* ARGSUSED */
    759 int
    760 raidwrite(dev_t dev, struct uio *uio, int flags)
    761 {
    762 	int     unit = raidunit(dev);
    763 	struct raid_softc *rs;
    764 
    765 	if (unit >= numraid)
    766 		return (ENXIO);
    767 	rs = &raid_softc[unit];
    768 
    769 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    770 		return (ENXIO);
    771 
    772 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    773 
    774 }
    775 
    776 int
    777 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
    778 {
    779 	int     unit = raidunit(dev);
    780 	int     error = 0;
    781 	int     part, pmask;
    782 	struct raid_softc *rs;
    783 	RF_Config_t *k_cfg, *u_cfg;
    784 	RF_Raid_t *raidPtr;
    785 	RF_RaidDisk_t *diskPtr;
    786 	RF_AccTotals_t *totals;
    787 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    788 	u_char *specific_buf;
    789 	int retcode = 0;
    790 	int column;
    791 	int raidid;
    792 	struct rf_recon_req *rrcopy, *rr;
    793 	RF_ComponentLabel_t *clabel;
    794 	RF_ComponentLabel_t ci_label;
    795 	RF_ComponentLabel_t **clabel_ptr;
    796 	RF_SingleComponent_t *sparePtr,*componentPtr;
    797 	RF_SingleComponent_t hot_spare;
    798 	RF_SingleComponent_t component;
    799 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    800 	int i, j, d;
    801 #ifdef __HAVE_OLD_DISKLABEL
    802 	struct disklabel newlabel;
    803 #endif
    804 
    805 	if (unit >= numraid)
    806 		return (ENXIO);
    807 	rs = &raid_softc[unit];
    808 	raidPtr = raidPtrs[unit];
    809 
    810 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    811 		(int) DISKPART(dev), (int) unit, (int) cmd));
    812 
    813 	/* Must be open for writes for these commands... */
    814 	switch (cmd) {
    815 	case DIOCSDINFO:
    816 	case DIOCWDINFO:
    817 #ifdef __HAVE_OLD_DISKLABEL
    818 	case ODIOCWDINFO:
    819 	case ODIOCSDINFO:
    820 #endif
    821 	case DIOCWLABEL:
    822 		if ((flag & FWRITE) == 0)
    823 			return (EBADF);
    824 	}
    825 
    826 	/* Must be initialized for these... */
    827 	switch (cmd) {
    828 	case DIOCGDINFO:
    829 	case DIOCSDINFO:
    830 	case DIOCWDINFO:
    831 #ifdef __HAVE_OLD_DISKLABEL
    832 	case ODIOCGDINFO:
    833 	case ODIOCWDINFO:
    834 	case ODIOCSDINFO:
    835 	case ODIOCGDEFLABEL:
    836 #endif
    837 	case DIOCGPART:
    838 	case DIOCWLABEL:
    839 	case DIOCGDEFLABEL:
    840 	case RAIDFRAME_SHUTDOWN:
    841 	case RAIDFRAME_REWRITEPARITY:
    842 	case RAIDFRAME_GET_INFO:
    843 	case RAIDFRAME_RESET_ACCTOTALS:
    844 	case RAIDFRAME_GET_ACCTOTALS:
    845 	case RAIDFRAME_KEEP_ACCTOTALS:
    846 	case RAIDFRAME_GET_SIZE:
    847 	case RAIDFRAME_FAIL_DISK:
    848 	case RAIDFRAME_COPYBACK:
    849 	case RAIDFRAME_CHECK_RECON_STATUS:
    850 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    851 	case RAIDFRAME_GET_COMPONENT_LABEL:
    852 	case RAIDFRAME_SET_COMPONENT_LABEL:
    853 	case RAIDFRAME_ADD_HOT_SPARE:
    854 	case RAIDFRAME_REMOVE_HOT_SPARE:
    855 	case RAIDFRAME_INIT_LABELS:
    856 	case RAIDFRAME_REBUILD_IN_PLACE:
    857 	case RAIDFRAME_CHECK_PARITY:
    858 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    859 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    860 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    861 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    862 	case RAIDFRAME_SET_AUTOCONFIG:
    863 	case RAIDFRAME_SET_ROOT:
    864 	case RAIDFRAME_DELETE_COMPONENT:
    865 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    866 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    867 			return (ENXIO);
    868 	}
    869 
    870 	switch (cmd) {
    871 
    872 		/* configure the system */
    873 	case RAIDFRAME_CONFIGURE:
    874 
    875 		if (raidPtr->valid) {
    876 			/* There is a valid RAID set running on this unit! */
    877 			printf("raid%d: Device already configured!\n",unit);
    878 			return(EINVAL);
    879 		}
    880 
    881 		/* copy-in the configuration information */
    882 		/* data points to a pointer to the configuration structure */
    883 
    884 		u_cfg = *((RF_Config_t **) data);
    885 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    886 		if (k_cfg == NULL) {
    887 			return (ENOMEM);
    888 		}
    889 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    890 		if (retcode) {
    891 			RF_Free(k_cfg, sizeof(RF_Config_t));
    892 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    893 				retcode));
    894 			return (retcode);
    895 		}
    896 		/* allocate a buffer for the layout-specific data, and copy it
    897 		 * in */
    898 		if (k_cfg->layoutSpecificSize) {
    899 			if (k_cfg->layoutSpecificSize > 10000) {
    900 				/* sanity check */
    901 				RF_Free(k_cfg, sizeof(RF_Config_t));
    902 				return (EINVAL);
    903 			}
    904 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    905 			    (u_char *));
    906 			if (specific_buf == NULL) {
    907 				RF_Free(k_cfg, sizeof(RF_Config_t));
    908 				return (ENOMEM);
    909 			}
    910 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    911 			    k_cfg->layoutSpecificSize);
    912 			if (retcode) {
    913 				RF_Free(k_cfg, sizeof(RF_Config_t));
    914 				RF_Free(specific_buf,
    915 					k_cfg->layoutSpecificSize);
    916 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    917 					retcode));
    918 				return (retcode);
    919 			}
    920 		} else
    921 			specific_buf = NULL;
    922 		k_cfg->layoutSpecific = specific_buf;
    923 
    924 		/* should do some kind of sanity check on the configuration.
    925 		 * Store the sum of all the bytes in the last byte? */
    926 
    927 		/* configure the system */
    928 
    929 		/*
    930 		 * Clear the entire RAID descriptor, just to make sure
    931 		 *  there is no stale data left in the case of a
    932 		 *  reconfiguration
    933 		 */
    934 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    935 		raidPtr->raidid = unit;
    936 
    937 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    938 
    939 		if (retcode == 0) {
    940 
    941 			/* allow this many simultaneous IO's to
    942 			   this RAID device */
    943 			raidPtr->openings = RAIDOUTSTANDING;
    944 
    945 			raidinit(raidPtr);
    946 			rf_markalldirty(raidPtr);
    947 		}
    948 		/* free the buffers.  No return code here. */
    949 		if (k_cfg->layoutSpecificSize) {
    950 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    951 		}
    952 		RF_Free(k_cfg, sizeof(RF_Config_t));
    953 
    954 		return (retcode);
    955 
    956 		/* shutdown the system */
    957 	case RAIDFRAME_SHUTDOWN:
    958 
    959 		if ((error = raidlock(rs)) != 0)
    960 			return (error);
    961 
    962 		/*
    963 		 * If somebody has a partition mounted, we shouldn't
    964 		 * shutdown.
    965 		 */
    966 
    967 		part = DISKPART(dev);
    968 		pmask = (1 << part);
    969 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    970 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    971 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    972 			raidunlock(rs);
    973 			return (EBUSY);
    974 		}
    975 
    976 		retcode = rf_Shutdown(raidPtr);
    977 
    978 		/* It's no longer initialized... */
    979 		rs->sc_flags &= ~RAIDF_INITED;
    980 
    981 		/* Detach the disk. */
    982 		disk_detach(&rs->sc_dkdev);
    983 
    984 		raidunlock(rs);
    985 
    986 		return (retcode);
    987 	case RAIDFRAME_GET_COMPONENT_LABEL:
    988 		clabel_ptr = (RF_ComponentLabel_t **) data;
    989 		/* need to read the component label for the disk indicated
    990 		   by row,column in clabel */
    991 
    992 		/* For practice, let's get it directly fromdisk, rather
    993 		   than from the in-core copy */
    994 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    995 			   (RF_ComponentLabel_t *));
    996 		if (clabel == NULL)
    997 			return (ENOMEM);
    998 
    999 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1000 
   1001 		retcode = copyin( *clabel_ptr, clabel,
   1002 				  sizeof(RF_ComponentLabel_t));
   1003 
   1004 		if (retcode) {
   1005 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1006 			return(retcode);
   1007 		}
   1008 
   1009 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1010 
   1011 		column = clabel->column;
   1012 
   1013 		if ((column < 0) || (column >= raidPtr->numCol +
   1014 				     raidPtr->numSpare)) {
   1015 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1016 			return(EINVAL);
   1017 		}
   1018 
   1019 		raidread_component_label(raidPtr->Disks[column].dev,
   1020 				raidPtr->raid_cinfo[column].ci_vp,
   1021 				clabel );
   1022 
   1023 		retcode = copyout(clabel, *clabel_ptr,
   1024 				  sizeof(RF_ComponentLabel_t));
   1025 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1026 		return (retcode);
   1027 
   1028 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1029 		clabel = (RF_ComponentLabel_t *) data;
   1030 
   1031 		/* XXX check the label for valid stuff... */
   1032 		/* Note that some things *should not* get modified --
   1033 		   the user should be re-initing the labels instead of
   1034 		   trying to patch things.
   1035 		   */
   1036 
   1037 		raidid = raidPtr->raidid;
   1038 #if DEBUG
   1039 		printf("raid%d: Got component label:\n", raidid);
   1040 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1041 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1042 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1043 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1044 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1045 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1046 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1047 #endif
   1048 		clabel->row = 0;
   1049 		column = clabel->column;
   1050 
   1051 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1052 			return(EINVAL);
   1053 		}
   1054 
   1055 		/* XXX this isn't allowed to do anything for now :-) */
   1056 
   1057 		/* XXX and before it is, we need to fill in the rest
   1058 		   of the fields!?!?!?! */
   1059 #if 0
   1060 		raidwrite_component_label(
   1061                             raidPtr->Disks[column].dev,
   1062 			    raidPtr->raid_cinfo[column].ci_vp,
   1063 			    clabel );
   1064 #endif
   1065 		return (0);
   1066 
   1067 	case RAIDFRAME_INIT_LABELS:
   1068 		clabel = (RF_ComponentLabel_t *) data;
   1069 		/*
   1070 		   we only want the serial number from
   1071 		   the above.  We get all the rest of the information
   1072 		   from the config that was used to create this RAID
   1073 		   set.
   1074 		   */
   1075 
   1076 		raidPtr->serial_number = clabel->serial_number;
   1077 
   1078 		raid_init_component_label(raidPtr, &ci_label);
   1079 		ci_label.serial_number = clabel->serial_number;
   1080 		ci_label.row = 0; /* we dont' pretend to support more */
   1081 
   1082 		for(column=0;column<raidPtr->numCol;column++) {
   1083 			diskPtr = &raidPtr->Disks[column];
   1084 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1085 				ci_label.partitionSize = diskPtr->partitionSize;
   1086 				ci_label.column = column;
   1087 				raidwrite_component_label(
   1088 							  raidPtr->Disks[column].dev,
   1089 							  raidPtr->raid_cinfo[column].ci_vp,
   1090 							  &ci_label );
   1091 			}
   1092 		}
   1093 
   1094 		return (retcode);
   1095 	case RAIDFRAME_SET_AUTOCONFIG:
   1096 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1097 		printf("raid%d: New autoconfig value is: %d\n",
   1098 		       raidPtr->raidid, d);
   1099 		*(int *) data = d;
   1100 		return (retcode);
   1101 
   1102 	case RAIDFRAME_SET_ROOT:
   1103 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1104 		printf("raid%d: New rootpartition value is: %d\n",
   1105 		       raidPtr->raidid, d);
   1106 		*(int *) data = d;
   1107 		return (retcode);
   1108 
   1109 		/* initialize all parity */
   1110 	case RAIDFRAME_REWRITEPARITY:
   1111 
   1112 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1113 			/* Parity for RAID 0 is trivially correct */
   1114 			raidPtr->parity_good = RF_RAID_CLEAN;
   1115 			return(0);
   1116 		}
   1117 
   1118 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1119 			/* Re-write is already in progress! */
   1120 			return(EINVAL);
   1121 		}
   1122 
   1123 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1124 					   rf_RewriteParityThread,
   1125 					   raidPtr,"raid_parity");
   1126 		return (retcode);
   1127 
   1128 
   1129 	case RAIDFRAME_ADD_HOT_SPARE:
   1130 		sparePtr = (RF_SingleComponent_t *) data;
   1131 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1132 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1133 		return(retcode);
   1134 
   1135 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1136 		return(retcode);
   1137 
   1138 	case RAIDFRAME_DELETE_COMPONENT:
   1139 		componentPtr = (RF_SingleComponent_t *)data;
   1140 		memcpy( &component, componentPtr,
   1141 			sizeof(RF_SingleComponent_t));
   1142 		retcode = rf_delete_component(raidPtr, &component);
   1143 		return(retcode);
   1144 
   1145 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1146 		componentPtr = (RF_SingleComponent_t *)data;
   1147 		memcpy( &component, componentPtr,
   1148 			sizeof(RF_SingleComponent_t));
   1149 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1150 		return(retcode);
   1151 
   1152 	case RAIDFRAME_REBUILD_IN_PLACE:
   1153 
   1154 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1155 			/* Can't do this on a RAID 0!! */
   1156 			return(EINVAL);
   1157 		}
   1158 
   1159 		if (raidPtr->recon_in_progress == 1) {
   1160 			/* a reconstruct is already in progress! */
   1161 			return(EINVAL);
   1162 		}
   1163 
   1164 		componentPtr = (RF_SingleComponent_t *) data;
   1165 		memcpy( &component, componentPtr,
   1166 			sizeof(RF_SingleComponent_t));
   1167 		component.row = 0; /* we don't support any more */
   1168 		column = component.column;
   1169 
   1170 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1171 			return(EINVAL);
   1172 		}
   1173 
   1174 		RF_LOCK_MUTEX(raidPtr->mutex);
   1175 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1176 		    (raidPtr->numFailures > 0)) {
   1177 			/* XXX 0 above shouldn't be constant!!! */
   1178 			/* some component other than this has failed.
   1179 			   Let's not make things worse than they already
   1180 			   are... */
   1181 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1182 			       raidPtr->raidid);
   1183 			printf("raid%d:     Col: %d   Too many failures.\n",
   1184 			       raidPtr->raidid, column);
   1185 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1186 			return (EINVAL);
   1187 		}
   1188 		if (raidPtr->Disks[column].status ==
   1189 		    rf_ds_reconstructing) {
   1190 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1191 			       raidPtr->raidid);
   1192 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1193 
   1194 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1195 			return (EINVAL);
   1196 		}
   1197 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1198 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1199 			return (EINVAL);
   1200 		}
   1201 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1202 
   1203 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1204 		if (rrcopy == NULL)
   1205 			return(ENOMEM);
   1206 
   1207 		rrcopy->raidPtr = (void *) raidPtr;
   1208 		rrcopy->col = column;
   1209 
   1210 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1211 					   rf_ReconstructInPlaceThread,
   1212 					   rrcopy,"raid_reconip");
   1213 		return(retcode);
   1214 
   1215 	case RAIDFRAME_GET_INFO:
   1216 		if (!raidPtr->valid)
   1217 			return (ENODEV);
   1218 		ucfgp = (RF_DeviceConfig_t **) data;
   1219 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1220 			  (RF_DeviceConfig_t *));
   1221 		if (d_cfg == NULL)
   1222 			return (ENOMEM);
   1223 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1224 		d_cfg->rows = 1; /* there is only 1 row now */
   1225 		d_cfg->cols = raidPtr->numCol;
   1226 		d_cfg->ndevs = raidPtr->numCol;
   1227 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1228 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1229 			return (ENOMEM);
   1230 		}
   1231 		d_cfg->nspares = raidPtr->numSpare;
   1232 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1233 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1234 			return (ENOMEM);
   1235 		}
   1236 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1237 		d = 0;
   1238 		for (j = 0; j < d_cfg->cols; j++) {
   1239 			d_cfg->devs[d] = raidPtr->Disks[j];
   1240 			d++;
   1241 		}
   1242 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1243 			d_cfg->spares[i] = raidPtr->Disks[j];
   1244 		}
   1245 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1246 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1247 
   1248 		return (retcode);
   1249 
   1250 	case RAIDFRAME_CHECK_PARITY:
   1251 		*(int *) data = raidPtr->parity_good;
   1252 		return (0);
   1253 
   1254 	case RAIDFRAME_RESET_ACCTOTALS:
   1255 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1256 		return (0);
   1257 
   1258 	case RAIDFRAME_GET_ACCTOTALS:
   1259 		totals = (RF_AccTotals_t *) data;
   1260 		*totals = raidPtr->acc_totals;
   1261 		return (0);
   1262 
   1263 	case RAIDFRAME_KEEP_ACCTOTALS:
   1264 		raidPtr->keep_acc_totals = *(int *)data;
   1265 		return (0);
   1266 
   1267 	case RAIDFRAME_GET_SIZE:
   1268 		*(int *) data = raidPtr->totalSectors;
   1269 		return (0);
   1270 
   1271 		/* fail a disk & optionally start reconstruction */
   1272 	case RAIDFRAME_FAIL_DISK:
   1273 
   1274 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1275 			/* Can't do this on a RAID 0!! */
   1276 			return(EINVAL);
   1277 		}
   1278 
   1279 		rr = (struct rf_recon_req *) data;
   1280 		rr->row = 0;
   1281 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1282 			return (EINVAL);
   1283 
   1284 
   1285 		RF_LOCK_MUTEX(raidPtr->mutex);
   1286 		if ((raidPtr->Disks[rr->col].status ==
   1287 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1288 			/* some other component has failed.  Let's not make
   1289 			   things worse. XXX wrong for RAID6 */
   1290 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1291 			return (EINVAL);
   1292 		}
   1293 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1294 			/* Can't fail a spared disk! */
   1295 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1296 			return (EINVAL);
   1297 		}
   1298 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1299 
   1300 		/* make a copy of the recon request so that we don't rely on
   1301 		 * the user's buffer */
   1302 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1303 		if (rrcopy == NULL)
   1304 			return(ENOMEM);
   1305 		memcpy(rrcopy, rr, sizeof(*rr));
   1306 		rrcopy->raidPtr = (void *) raidPtr;
   1307 
   1308 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1309 					   rf_ReconThread,
   1310 					   rrcopy,"raid_recon");
   1311 		return (0);
   1312 
   1313 		/* invoke a copyback operation after recon on whatever disk
   1314 		 * needs it, if any */
   1315 	case RAIDFRAME_COPYBACK:
   1316 
   1317 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1318 			/* This makes no sense on a RAID 0!! */
   1319 			return(EINVAL);
   1320 		}
   1321 
   1322 		if (raidPtr->copyback_in_progress == 1) {
   1323 			/* Copyback is already in progress! */
   1324 			return(EINVAL);
   1325 		}
   1326 
   1327 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1328 					   rf_CopybackThread,
   1329 					   raidPtr,"raid_copyback");
   1330 		return (retcode);
   1331 
   1332 		/* return the percentage completion of reconstruction */
   1333 	case RAIDFRAME_CHECK_RECON_STATUS:
   1334 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1335 			/* This makes no sense on a RAID 0, so tell the
   1336 			   user it's done. */
   1337 			*(int *) data = 100;
   1338 			return(0);
   1339 		}
   1340 		if (raidPtr->status != rf_rs_reconstructing)
   1341 			*(int *) data = 100;
   1342 		else {
   1343 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1344 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1345 			} else {
   1346 				*(int *) data = 0;
   1347 			}
   1348 		}
   1349 		return (0);
   1350 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1351 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1352 		if (raidPtr->status != rf_rs_reconstructing) {
   1353 			progressInfo.remaining = 0;
   1354 			progressInfo.completed = 100;
   1355 			progressInfo.total = 100;
   1356 		} else {
   1357 			progressInfo.total =
   1358 				raidPtr->reconControl->numRUsTotal;
   1359 			progressInfo.completed =
   1360 				raidPtr->reconControl->numRUsComplete;
   1361 			progressInfo.remaining = progressInfo.total -
   1362 				progressInfo.completed;
   1363 		}
   1364 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1365 				  sizeof(RF_ProgressInfo_t));
   1366 		return (retcode);
   1367 
   1368 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1369 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1370 			/* This makes no sense on a RAID 0, so tell the
   1371 			   user it's done. */
   1372 			*(int *) data = 100;
   1373 			return(0);
   1374 		}
   1375 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1376 			*(int *) data = 100 *
   1377 				raidPtr->parity_rewrite_stripes_done /
   1378 				raidPtr->Layout.numStripe;
   1379 		} else {
   1380 			*(int *) data = 100;
   1381 		}
   1382 		return (0);
   1383 
   1384 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1385 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1386 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1387 			progressInfo.total = raidPtr->Layout.numStripe;
   1388 			progressInfo.completed =
   1389 				raidPtr->parity_rewrite_stripes_done;
   1390 			progressInfo.remaining = progressInfo.total -
   1391 				progressInfo.completed;
   1392 		} else {
   1393 			progressInfo.remaining = 0;
   1394 			progressInfo.completed = 100;
   1395 			progressInfo.total = 100;
   1396 		}
   1397 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1398 				  sizeof(RF_ProgressInfo_t));
   1399 		return (retcode);
   1400 
   1401 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1402 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1403 			/* This makes no sense on a RAID 0 */
   1404 			*(int *) data = 100;
   1405 			return(0);
   1406 		}
   1407 		if (raidPtr->copyback_in_progress == 1) {
   1408 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1409 				raidPtr->Layout.numStripe;
   1410 		} else {
   1411 			*(int *) data = 100;
   1412 		}
   1413 		return (0);
   1414 
   1415 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1416 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1417 		if (raidPtr->copyback_in_progress == 1) {
   1418 			progressInfo.total = raidPtr->Layout.numStripe;
   1419 			progressInfo.completed =
   1420 				raidPtr->copyback_stripes_done;
   1421 			progressInfo.remaining = progressInfo.total -
   1422 				progressInfo.completed;
   1423 		} else {
   1424 			progressInfo.remaining = 0;
   1425 			progressInfo.completed = 100;
   1426 			progressInfo.total = 100;
   1427 		}
   1428 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1429 				  sizeof(RF_ProgressInfo_t));
   1430 		return (retcode);
   1431 
   1432 		/* the sparetable daemon calls this to wait for the kernel to
   1433 		 * need a spare table. this ioctl does not return until a
   1434 		 * spare table is needed. XXX -- calling mpsleep here in the
   1435 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1436 		 * -- I should either compute the spare table in the kernel,
   1437 		 * or have a different -- XXX XXX -- interface (a different
   1438 		 * character device) for delivering the table     -- XXX */
   1439 #if 0
   1440 	case RAIDFRAME_SPARET_WAIT:
   1441 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1442 		while (!rf_sparet_wait_queue)
   1443 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1444 		waitreq = rf_sparet_wait_queue;
   1445 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1446 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1447 
   1448 		/* structure assignment */
   1449 		*((RF_SparetWait_t *) data) = *waitreq;
   1450 
   1451 		RF_Free(waitreq, sizeof(*waitreq));
   1452 		return (0);
   1453 
   1454 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1455 		 * code in it that will cause the dameon to exit */
   1456 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1457 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1458 		waitreq->fcol = -1;
   1459 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1460 		waitreq->next = rf_sparet_wait_queue;
   1461 		rf_sparet_wait_queue = waitreq;
   1462 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1463 		wakeup(&rf_sparet_wait_queue);
   1464 		return (0);
   1465 
   1466 		/* used by the spare table daemon to deliver a spare table
   1467 		 * into the kernel */
   1468 	case RAIDFRAME_SEND_SPARET:
   1469 
   1470 		/* install the spare table */
   1471 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1472 
   1473 		/* respond to the requestor.  the return status of the spare
   1474 		 * table installation is passed in the "fcol" field */
   1475 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1476 		waitreq->fcol = retcode;
   1477 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1478 		waitreq->next = rf_sparet_resp_queue;
   1479 		rf_sparet_resp_queue = waitreq;
   1480 		wakeup(&rf_sparet_resp_queue);
   1481 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1482 
   1483 		return (retcode);
   1484 #endif
   1485 
   1486 	default:
   1487 		break; /* fall through to the os-specific code below */
   1488 
   1489 	}
   1490 
   1491 	if (!raidPtr->valid)
   1492 		return (EINVAL);
   1493 
   1494 	/*
   1495 	 * Add support for "regular" device ioctls here.
   1496 	 */
   1497 
   1498 	switch (cmd) {
   1499 	case DIOCGDINFO:
   1500 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1501 		break;
   1502 #ifdef __HAVE_OLD_DISKLABEL
   1503 	case ODIOCGDINFO:
   1504 		newlabel = *(rs->sc_dkdev.dk_label);
   1505 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1506 			return ENOTTY;
   1507 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1508 		break;
   1509 #endif
   1510 
   1511 	case DIOCGPART:
   1512 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1513 		((struct partinfo *) data)->part =
   1514 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1515 		break;
   1516 
   1517 	case DIOCWDINFO:
   1518 	case DIOCSDINFO:
   1519 #ifdef __HAVE_OLD_DISKLABEL
   1520 	case ODIOCWDINFO:
   1521 	case ODIOCSDINFO:
   1522 #endif
   1523 	{
   1524 		struct disklabel *lp;
   1525 #ifdef __HAVE_OLD_DISKLABEL
   1526 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1527 			memset(&newlabel, 0, sizeof newlabel);
   1528 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1529 			lp = &newlabel;
   1530 		} else
   1531 #endif
   1532 		lp = (struct disklabel *)data;
   1533 
   1534 		if ((error = raidlock(rs)) != 0)
   1535 			return (error);
   1536 
   1537 		rs->sc_flags |= RAIDF_LABELLING;
   1538 
   1539 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1540 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1541 		if (error == 0) {
   1542 			if (cmd == DIOCWDINFO
   1543 #ifdef __HAVE_OLD_DISKLABEL
   1544 			    || cmd == ODIOCWDINFO
   1545 #endif
   1546 			   )
   1547 				error = writedisklabel(RAIDLABELDEV(dev),
   1548 				    raidstrategy, rs->sc_dkdev.dk_label,
   1549 				    rs->sc_dkdev.dk_cpulabel);
   1550 		}
   1551 		rs->sc_flags &= ~RAIDF_LABELLING;
   1552 
   1553 		raidunlock(rs);
   1554 
   1555 		if (error)
   1556 			return (error);
   1557 		break;
   1558 	}
   1559 
   1560 	case DIOCWLABEL:
   1561 		if (*(int *) data != 0)
   1562 			rs->sc_flags |= RAIDF_WLABEL;
   1563 		else
   1564 			rs->sc_flags &= ~RAIDF_WLABEL;
   1565 		break;
   1566 
   1567 	case DIOCGDEFLABEL:
   1568 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1569 		break;
   1570 
   1571 #ifdef __HAVE_OLD_DISKLABEL
   1572 	case ODIOCGDEFLABEL:
   1573 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1574 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1575 			return ENOTTY;
   1576 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1577 		break;
   1578 #endif
   1579 
   1580 	default:
   1581 		retcode = ENOTTY;
   1582 	}
   1583 	return (retcode);
   1584 
   1585 }
   1586 
   1587 
   1588 /* raidinit -- complete the rest of the initialization for the
   1589    RAIDframe device.  */
   1590 
   1591 
   1592 static void
   1593 raidinit(RF_Raid_t *raidPtr)
   1594 {
   1595 	struct raid_softc *rs;
   1596 	int     unit;
   1597 
   1598 	unit = raidPtr->raidid;
   1599 
   1600 	rs = &raid_softc[unit];
   1601 
   1602 	/* XXX should check return code first... */
   1603 	rs->sc_flags |= RAIDF_INITED;
   1604 
   1605 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1606 
   1607 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1608 
   1609 	/* disk_attach actually creates space for the CPU disklabel, among
   1610 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1611 	 * with disklabels. */
   1612 
   1613 	disk_attach(&rs->sc_dkdev);
   1614 
   1615 	/* XXX There may be a weird interaction here between this, and
   1616 	 * protectedSectors, as used in RAIDframe.  */
   1617 
   1618 	rs->sc_size = raidPtr->totalSectors;
   1619 }
   1620 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1621 /* wake up the daemon & tell it to get us a spare table
   1622  * XXX
   1623  * the entries in the queues should be tagged with the raidPtr
   1624  * so that in the extremely rare case that two recons happen at once,
   1625  * we know for which device were requesting a spare table
   1626  * XXX
   1627  *
   1628  * XXX This code is not currently used. GO
   1629  */
   1630 int
   1631 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1632 {
   1633 	int     retcode;
   1634 
   1635 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1636 	req->next = rf_sparet_wait_queue;
   1637 	rf_sparet_wait_queue = req;
   1638 	wakeup(&rf_sparet_wait_queue);
   1639 
   1640 	/* mpsleep unlocks the mutex */
   1641 	while (!rf_sparet_resp_queue) {
   1642 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1643 		    "raidframe getsparetable", 0);
   1644 	}
   1645 	req = rf_sparet_resp_queue;
   1646 	rf_sparet_resp_queue = req->next;
   1647 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1648 
   1649 	retcode = req->fcol;
   1650 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1651 					 * alloc'd */
   1652 	return (retcode);
   1653 }
   1654 #endif
   1655 
   1656 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1657  * bp & passes it down.
   1658  * any calls originating in the kernel must use non-blocking I/O
   1659  * do some extra sanity checking to return "appropriate" error values for
   1660  * certain conditions (to make some standard utilities work)
   1661  *
   1662  * Formerly known as: rf_DoAccessKernel
   1663  */
   1664 void
   1665 raidstart(RF_Raid_t *raidPtr)
   1666 {
   1667 	RF_SectorCount_t num_blocks, pb, sum;
   1668 	RF_RaidAddr_t raid_addr;
   1669 	struct partition *pp;
   1670 	daddr_t blocknum;
   1671 	int     unit;
   1672 	struct raid_softc *rs;
   1673 	int     do_async;
   1674 	struct buf *bp;
   1675 
   1676 	unit = raidPtr->raidid;
   1677 	rs = &raid_softc[unit];
   1678 
   1679 	/* quick check to see if anything has died recently */
   1680 	RF_LOCK_MUTEX(raidPtr->mutex);
   1681 	if (raidPtr->numNewFailures > 0) {
   1682 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1683 		rf_update_component_labels(raidPtr,
   1684 					   RF_NORMAL_COMPONENT_UPDATE);
   1685 		RF_LOCK_MUTEX(raidPtr->mutex);
   1686 		raidPtr->numNewFailures--;
   1687 	}
   1688 
   1689 	/* Check to see if we're at the limit... */
   1690 	while (raidPtr->openings > 0) {
   1691 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1692 
   1693 		/* get the next item, if any, from the queue */
   1694 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1695 			/* nothing more to do */
   1696 			return;
   1697 		}
   1698 
   1699 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1700 		 * partition.. Need to make it absolute to the underlying
   1701 		 * device.. */
   1702 
   1703 		blocknum = bp->b_blkno;
   1704 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1705 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1706 			blocknum += pp->p_offset;
   1707 		}
   1708 
   1709 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1710 			    (int) blocknum));
   1711 
   1712 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1713 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1714 
   1715 		/* *THIS* is where we adjust what block we're going to...
   1716 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1717 		raid_addr = blocknum;
   1718 
   1719 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1720 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1721 		sum = raid_addr + num_blocks + pb;
   1722 		if (1 || rf_debugKernelAccess) {
   1723 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1724 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1725 				    (int) pb, (int) bp->b_resid));
   1726 		}
   1727 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1728 		    || (sum < num_blocks) || (sum < pb)) {
   1729 			bp->b_error = ENOSPC;
   1730 			bp->b_flags |= B_ERROR;
   1731 			bp->b_resid = bp->b_bcount;
   1732 			biodone(bp);
   1733 			RF_LOCK_MUTEX(raidPtr->mutex);
   1734 			continue;
   1735 		}
   1736 		/*
   1737 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1738 		 */
   1739 
   1740 		if (bp->b_bcount & raidPtr->sectorMask) {
   1741 			bp->b_error = EINVAL;
   1742 			bp->b_flags |= B_ERROR;
   1743 			bp->b_resid = bp->b_bcount;
   1744 			biodone(bp);
   1745 			RF_LOCK_MUTEX(raidPtr->mutex);
   1746 			continue;
   1747 
   1748 		}
   1749 		db1_printf(("Calling DoAccess..\n"));
   1750 
   1751 
   1752 		RF_LOCK_MUTEX(raidPtr->mutex);
   1753 		raidPtr->openings--;
   1754 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1755 
   1756 		/*
   1757 		 * Everything is async.
   1758 		 */
   1759 		do_async = 1;
   1760 
   1761 		disk_busy(&rs->sc_dkdev);
   1762 
   1763 		/* XXX we're still at splbio() here... do we *really*
   1764 		   need to be? */
   1765 
   1766 		/* don't ever condition on bp->b_flags & B_WRITE.
   1767 		 * always condition on B_READ instead */
   1768 
   1769 		bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1770 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1771 				      do_async, raid_addr, num_blocks,
   1772 				      bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1773 
   1774 		if (bp->b_error) {
   1775 			bp->b_flags |= B_ERROR;
   1776 		}
   1777 
   1778 		RF_LOCK_MUTEX(raidPtr->mutex);
   1779 	}
   1780 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1781 }
   1782 
   1783 
   1784 
   1785 
   1786 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1787 
   1788 int
   1789 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1790 {
   1791 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1792 	struct buf *bp;
   1793 	struct raidbuf *raidbp = NULL;
   1794 
   1795 	req->queue = queue;
   1796 
   1797 #if DIAGNOSTIC
   1798 	if (queue->raidPtr->raidid >= numraid) {
   1799 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1800 		    numraid);
   1801 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1802 	}
   1803 #endif
   1804 
   1805 	bp = req->bp;
   1806 #if 1
   1807 	/* XXX when there is a physical disk failure, someone is passing us a
   1808 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1809 	 * without taking a performance hit... (not sure where the real bug
   1810 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1811 
   1812 	if (bp->b_flags & B_ERROR) {
   1813 		bp->b_flags &= ~B_ERROR;
   1814 	}
   1815 	if (bp->b_error != 0) {
   1816 		bp->b_error = 0;
   1817 	}
   1818 #endif
   1819 	raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
   1820 	if (raidbp == NULL) {
   1821 		bp->b_flags |= B_ERROR;
   1822 		bp->b_error = ENOMEM;
   1823 		return (ENOMEM);
   1824 	}
   1825 	BUF_INIT(&raidbp->rf_buf);
   1826 
   1827 	/*
   1828 	 * context for raidiodone
   1829 	 */
   1830 	raidbp->rf_obp = bp;
   1831 	raidbp->req = req;
   1832 
   1833 	BIO_COPYPRIO(&raidbp->rf_buf, bp);
   1834 
   1835 	switch (req->type) {
   1836 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1837 		/* XXX need to do something extra here.. */
   1838 		/* I'm leaving this in, as I've never actually seen it used,
   1839 		 * and I'd like folks to report it... GO */
   1840 		printf(("WAKEUP CALLED\n"));
   1841 		queue->numOutstanding++;
   1842 
   1843 		/* XXX need to glue the original buffer into this??  */
   1844 
   1845 		KernelWakeupFunc(&raidbp->rf_buf);
   1846 		break;
   1847 
   1848 	case RF_IO_TYPE_READ:
   1849 	case RF_IO_TYPE_WRITE:
   1850 #if RF_ACC_TRACE > 0
   1851 		if (req->tracerec) {
   1852 			RF_ETIMER_START(req->tracerec->timer);
   1853 		}
   1854 #endif
   1855 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1856 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1857 		    req->sectorOffset, req->numSector,
   1858 		    req->buf, KernelWakeupFunc, (void *) req,
   1859 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1860 
   1861 		if (rf_debugKernelAccess) {
   1862 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1863 				(long) bp->b_blkno));
   1864 		}
   1865 		queue->numOutstanding++;
   1866 		queue->last_deq_sector = req->sectorOffset;
   1867 		/* acc wouldn't have been let in if there were any pending
   1868 		 * reqs at any other priority */
   1869 		queue->curPriority = req->priority;
   1870 
   1871 		db1_printf(("Going for %c to unit %d col %d\n",
   1872 			    req->type, queue->raidPtr->raidid,
   1873 			    queue->col));
   1874 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1875 			(int) req->sectorOffset, (int) req->numSector,
   1876 			(int) (req->numSector <<
   1877 			    queue->raidPtr->logBytesPerSector),
   1878 			(int) queue->raidPtr->logBytesPerSector));
   1879 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1880 			raidbp->rf_buf.b_vp->v_numoutput++;
   1881 		}
   1882 		VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
   1883 
   1884 		break;
   1885 
   1886 	default:
   1887 		panic("bad req->type in rf_DispatchKernelIO");
   1888 	}
   1889 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1890 
   1891 	return (0);
   1892 }
   1893 /* this is the callback function associated with a I/O invoked from
   1894    kernel code.
   1895  */
   1896 static void
   1897 KernelWakeupFunc(struct buf *vbp)
   1898 {
   1899 	RF_DiskQueueData_t *req = NULL;
   1900 	RF_DiskQueue_t *queue;
   1901 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1902 	struct buf *bp;
   1903 	int s;
   1904 
   1905 	s = splbio();
   1906 	db1_printf(("recovering the request queue:\n"));
   1907 	req = raidbp->req;
   1908 
   1909 	bp = raidbp->rf_obp;
   1910 
   1911 	queue = (RF_DiskQueue_t *) req->queue;
   1912 
   1913 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1914 		bp->b_flags |= B_ERROR;
   1915 		bp->b_error = raidbp->rf_buf.b_error ?
   1916 		    raidbp->rf_buf.b_error : EIO;
   1917 	}
   1918 
   1919 	/* XXX methinks this could be wrong... */
   1920 #if 1
   1921 	bp->b_resid = raidbp->rf_buf.b_resid;
   1922 #endif
   1923 #if RF_ACC_TRACE > 0
   1924 	if (req->tracerec) {
   1925 		RF_ETIMER_STOP(req->tracerec->timer);
   1926 		RF_ETIMER_EVAL(req->tracerec->timer);
   1927 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1928 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1929 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1930 		req->tracerec->num_phys_ios++;
   1931 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1932 	}
   1933 #endif
   1934 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1935 
   1936 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1937 	 * ballistic, and mark the component as hosed... */
   1938 
   1939 	if (bp->b_flags & B_ERROR) {
   1940 		/* Mark the disk as dead */
   1941 		/* but only mark it once... */
   1942 		if (queue->raidPtr->Disks[queue->col].status ==
   1943 		    rf_ds_optimal) {
   1944 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1945 			       queue->raidPtr->raidid,
   1946 			       queue->raidPtr->Disks[queue->col].devname);
   1947 			queue->raidPtr->Disks[queue->col].status =
   1948 			    rf_ds_failed;
   1949 			queue->raidPtr->status = rf_rs_degraded;
   1950 			queue->raidPtr->numFailures++;
   1951 			queue->raidPtr->numNewFailures++;
   1952 		} else {	/* Disk is already dead... */
   1953 			/* printf("Disk already marked as dead!\n"); */
   1954 		}
   1955 
   1956 	}
   1957 
   1958 	pool_put(&raidframe_cbufpool, raidbp);
   1959 
   1960 	/* Fill in the error value */
   1961 
   1962 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1963 
   1964 	simple_lock(&queue->raidPtr->iodone_lock);
   1965 
   1966 	/* Drop this one on the "finished" queue... */
   1967 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1968 
   1969 	/* Let the raidio thread know there is work to be done. */
   1970 	wakeup(&(queue->raidPtr->iodone));
   1971 
   1972 	simple_unlock(&queue->raidPtr->iodone_lock);
   1973 
   1974 	splx(s);
   1975 }
   1976 
   1977 
   1978 
   1979 /*
   1980  * initialize a buf structure for doing an I/O in the kernel.
   1981  */
   1982 static void
   1983 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   1984        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
   1985        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   1986        struct proc *b_proc)
   1987 {
   1988 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1989 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1990 	bp->b_bcount = numSect << logBytesPerSector;
   1991 	bp->b_bufsize = bp->b_bcount;
   1992 	bp->b_error = 0;
   1993 	bp->b_dev = dev;
   1994 	bp->b_data = buf;
   1995 	bp->b_blkno = startSect;
   1996 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1997 	if (bp->b_bcount == 0) {
   1998 		panic("bp->b_bcount is zero in InitBP!!");
   1999 	}
   2000 	bp->b_proc = b_proc;
   2001 	bp->b_iodone = cbFunc;
   2002 	bp->b_vp = b_vp;
   2003 
   2004 }
   2005 
   2006 static void
   2007 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2008 		    struct disklabel *lp)
   2009 {
   2010 	memset(lp, 0, sizeof(*lp));
   2011 
   2012 	/* fabricate a label... */
   2013 	lp->d_secperunit = raidPtr->totalSectors;
   2014 	lp->d_secsize = raidPtr->bytesPerSector;
   2015 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2016 	lp->d_ntracks = 4 * raidPtr->numCol;
   2017 	lp->d_ncylinders = raidPtr->totalSectors /
   2018 		(lp->d_nsectors * lp->d_ntracks);
   2019 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2020 
   2021 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2022 	lp->d_type = DTYPE_RAID;
   2023 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2024 	lp->d_rpm = 3600;
   2025 	lp->d_interleave = 1;
   2026 	lp->d_flags = 0;
   2027 
   2028 	lp->d_partitions[RAW_PART].p_offset = 0;
   2029 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2030 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2031 	lp->d_npartitions = RAW_PART + 1;
   2032 
   2033 	lp->d_magic = DISKMAGIC;
   2034 	lp->d_magic2 = DISKMAGIC;
   2035 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2036 
   2037 }
   2038 /*
   2039  * Read the disklabel from the raid device.  If one is not present, fake one
   2040  * up.
   2041  */
   2042 static void
   2043 raidgetdisklabel(dev_t dev)
   2044 {
   2045 	int     unit = raidunit(dev);
   2046 	struct raid_softc *rs = &raid_softc[unit];
   2047 	const char   *errstring;
   2048 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2049 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2050 	RF_Raid_t *raidPtr;
   2051 
   2052 	db1_printf(("Getting the disklabel...\n"));
   2053 
   2054 	memset(clp, 0, sizeof(*clp));
   2055 
   2056 	raidPtr = raidPtrs[unit];
   2057 
   2058 	raidgetdefaultlabel(raidPtr, rs, lp);
   2059 
   2060 	/*
   2061 	 * Call the generic disklabel extraction routine.
   2062 	 */
   2063 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2064 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2065 	if (errstring)
   2066 		raidmakedisklabel(rs);
   2067 	else {
   2068 		int     i;
   2069 		struct partition *pp;
   2070 
   2071 		/*
   2072 		 * Sanity check whether the found disklabel is valid.
   2073 		 *
   2074 		 * This is necessary since total size of the raid device
   2075 		 * may vary when an interleave is changed even though exactly
   2076 		 * same componets are used, and old disklabel may used
   2077 		 * if that is found.
   2078 		 */
   2079 		if (lp->d_secperunit != rs->sc_size)
   2080 			printf("raid%d: WARNING: %s: "
   2081 			    "total sector size in disklabel (%d) != "
   2082 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2083 			    lp->d_secperunit, (long) rs->sc_size);
   2084 		for (i = 0; i < lp->d_npartitions; i++) {
   2085 			pp = &lp->d_partitions[i];
   2086 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2087 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2088 				       "exceeds the size of raid (%ld)\n",
   2089 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2090 		}
   2091 	}
   2092 
   2093 }
   2094 /*
   2095  * Take care of things one might want to take care of in the event
   2096  * that a disklabel isn't present.
   2097  */
   2098 static void
   2099 raidmakedisklabel(struct raid_softc *rs)
   2100 {
   2101 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2102 	db1_printf(("Making a label..\n"));
   2103 
   2104 	/*
   2105 	 * For historical reasons, if there's no disklabel present
   2106 	 * the raw partition must be marked FS_BSDFFS.
   2107 	 */
   2108 
   2109 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2110 
   2111 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2112 
   2113 	lp->d_checksum = dkcksum(lp);
   2114 }
   2115 /*
   2116  * Lookup the provided name in the filesystem.  If the file exists,
   2117  * is a valid block device, and isn't being used by anyone else,
   2118  * set *vpp to the file's vnode.
   2119  * You'll find the original of this in ccd.c
   2120  */
   2121 int
   2122 raidlookup(char *path, struct proc *p, struct vnode **vpp)
   2123 {
   2124 	struct nameidata nd;
   2125 	struct vnode *vp;
   2126 	struct vattr va;
   2127 	int     error;
   2128 
   2129 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2130 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2131 		return (error);
   2132 	}
   2133 	vp = nd.ni_vp;
   2134 	if (vp->v_usecount > 1) {
   2135 		VOP_UNLOCK(vp, 0);
   2136 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2137 		return (EBUSY);
   2138 	}
   2139 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2140 		VOP_UNLOCK(vp, 0);
   2141 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2142 		return (error);
   2143 	}
   2144 	/* XXX: eventually we should handle VREG, too. */
   2145 	if (va.va_type != VBLK) {
   2146 		VOP_UNLOCK(vp, 0);
   2147 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2148 		return (ENOTBLK);
   2149 	}
   2150 	VOP_UNLOCK(vp, 0);
   2151 	*vpp = vp;
   2152 	return (0);
   2153 }
   2154 /*
   2155  * Wait interruptibly for an exclusive lock.
   2156  *
   2157  * XXX
   2158  * Several drivers do this; it should be abstracted and made MP-safe.
   2159  * (Hmm... where have we seen this warning before :->  GO )
   2160  */
   2161 static int
   2162 raidlock(struct raid_softc *rs)
   2163 {
   2164 	int     error;
   2165 
   2166 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2167 		rs->sc_flags |= RAIDF_WANTED;
   2168 		if ((error =
   2169 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2170 			return (error);
   2171 	}
   2172 	rs->sc_flags |= RAIDF_LOCKED;
   2173 	return (0);
   2174 }
   2175 /*
   2176  * Unlock and wake up any waiters.
   2177  */
   2178 static void
   2179 raidunlock(struct raid_softc *rs)
   2180 {
   2181 
   2182 	rs->sc_flags &= ~RAIDF_LOCKED;
   2183 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2184 		rs->sc_flags &= ~RAIDF_WANTED;
   2185 		wakeup(rs);
   2186 	}
   2187 }
   2188 
   2189 
   2190 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2191 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2192 
   2193 int
   2194 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2195 {
   2196 	RF_ComponentLabel_t clabel;
   2197 	raidread_component_label(dev, b_vp, &clabel);
   2198 	clabel.mod_counter = mod_counter;
   2199 	clabel.clean = RF_RAID_CLEAN;
   2200 	raidwrite_component_label(dev, b_vp, &clabel);
   2201 	return(0);
   2202 }
   2203 
   2204 
   2205 int
   2206 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2207 {
   2208 	RF_ComponentLabel_t clabel;
   2209 	raidread_component_label(dev, b_vp, &clabel);
   2210 	clabel.mod_counter = mod_counter;
   2211 	clabel.clean = RF_RAID_DIRTY;
   2212 	raidwrite_component_label(dev, b_vp, &clabel);
   2213 	return(0);
   2214 }
   2215 
   2216 /* ARGSUSED */
   2217 int
   2218 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2219 			 RF_ComponentLabel_t *clabel)
   2220 {
   2221 	struct buf *bp;
   2222 	const struct bdevsw *bdev;
   2223 	int error;
   2224 
   2225 	/* XXX should probably ensure that we don't try to do this if
   2226 	   someone has changed rf_protected_sectors. */
   2227 
   2228 	if (b_vp == NULL) {
   2229 		/* For whatever reason, this component is not valid.
   2230 		   Don't try to read a component label from it. */
   2231 		return(EINVAL);
   2232 	}
   2233 
   2234 	/* get a block of the appropriate size... */
   2235 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2236 	bp->b_dev = dev;
   2237 
   2238 	/* get our ducks in a row for the read */
   2239 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2240 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2241 	bp->b_flags |= B_READ;
   2242  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2243 
   2244 	bdev = bdevsw_lookup(bp->b_dev);
   2245 	if (bdev == NULL)
   2246 		return (ENXIO);
   2247 	(*bdev->d_strategy)(bp);
   2248 
   2249 	error = biowait(bp);
   2250 
   2251 	if (!error) {
   2252 		memcpy(clabel, bp->b_data,
   2253 		       sizeof(RF_ComponentLabel_t));
   2254         }
   2255 
   2256 	brelse(bp);
   2257 	return(error);
   2258 }
   2259 /* ARGSUSED */
   2260 int
   2261 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2262 			  RF_ComponentLabel_t *clabel)
   2263 {
   2264 	struct buf *bp;
   2265 	const struct bdevsw *bdev;
   2266 	int error;
   2267 
   2268 	/* get a block of the appropriate size... */
   2269 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2270 	bp->b_dev = dev;
   2271 
   2272 	/* get our ducks in a row for the write */
   2273 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2274 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2275 	bp->b_flags |= B_WRITE;
   2276  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2277 
   2278 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2279 
   2280 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2281 
   2282 	bdev = bdevsw_lookup(bp->b_dev);
   2283 	if (bdev == NULL)
   2284 		return (ENXIO);
   2285 	(*bdev->d_strategy)(bp);
   2286 	error = biowait(bp);
   2287 	brelse(bp);
   2288 	if (error) {
   2289 #if 1
   2290 		printf("Failed to write RAID component info!\n");
   2291 #endif
   2292 	}
   2293 
   2294 	return(error);
   2295 }
   2296 
   2297 void
   2298 rf_markalldirty(RF_Raid_t *raidPtr)
   2299 {
   2300 	RF_ComponentLabel_t clabel;
   2301 	int sparecol;
   2302 	int c;
   2303 	int j;
   2304 	int scol = -1;
   2305 
   2306 	raidPtr->mod_counter++;
   2307 	for (c = 0; c < raidPtr->numCol; c++) {
   2308 		/* we don't want to touch (at all) a disk that has
   2309 		   failed */
   2310 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2311 			raidread_component_label(
   2312 						 raidPtr->Disks[c].dev,
   2313 						 raidPtr->raid_cinfo[c].ci_vp,
   2314 						 &clabel);
   2315 			if (clabel.status == rf_ds_spared) {
   2316 				/* XXX do something special...
   2317 				   but whatever you do, don't
   2318 				   try to access it!! */
   2319 			} else {
   2320 				raidmarkdirty(
   2321 					      raidPtr->Disks[c].dev,
   2322 					      raidPtr->raid_cinfo[c].ci_vp,
   2323 					      raidPtr->mod_counter);
   2324 			}
   2325 		}
   2326 	}
   2327 
   2328 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2329 		sparecol = raidPtr->numCol + c;
   2330 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2331 			/*
   2332 
   2333 			   we claim this disk is "optimal" if it's
   2334 			   rf_ds_used_spare, as that means it should be
   2335 			   directly substitutable for the disk it replaced.
   2336 			   We note that too...
   2337 
   2338 			 */
   2339 
   2340 			for(j=0;j<raidPtr->numCol;j++) {
   2341 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2342 					scol = j;
   2343 					break;
   2344 				}
   2345 			}
   2346 
   2347 			raidread_component_label(
   2348 				 raidPtr->Disks[sparecol].dev,
   2349 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2350 				 &clabel);
   2351 			/* make sure status is noted */
   2352 
   2353 			raid_init_component_label(raidPtr, &clabel);
   2354 
   2355 			clabel.row = 0;
   2356 			clabel.column = scol;
   2357 			/* Note: we *don't* change status from rf_ds_used_spare
   2358 			   to rf_ds_optimal */
   2359 			/* clabel.status = rf_ds_optimal; */
   2360 
   2361 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2362 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2363 				      raidPtr->mod_counter);
   2364 		}
   2365 	}
   2366 }
   2367 
   2368 
   2369 void
   2370 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2371 {
   2372 	RF_ComponentLabel_t clabel;
   2373 	int sparecol;
   2374 	int c;
   2375 	int j;
   2376 	int scol;
   2377 
   2378 	scol = -1;
   2379 
   2380 	/* XXX should do extra checks to make sure things really are clean,
   2381 	   rather than blindly setting the clean bit... */
   2382 
   2383 	raidPtr->mod_counter++;
   2384 
   2385 	for (c = 0; c < raidPtr->numCol; c++) {
   2386 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2387 			raidread_component_label(
   2388 						 raidPtr->Disks[c].dev,
   2389 						 raidPtr->raid_cinfo[c].ci_vp,
   2390 						 &clabel);
   2391 				/* make sure status is noted */
   2392 			clabel.status = rf_ds_optimal;
   2393 				/* bump the counter */
   2394 			clabel.mod_counter = raidPtr->mod_counter;
   2395 
   2396 			raidwrite_component_label(
   2397 						  raidPtr->Disks[c].dev,
   2398 						  raidPtr->raid_cinfo[c].ci_vp,
   2399 						  &clabel);
   2400 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2401 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2402 					raidmarkclean(
   2403 						      raidPtr->Disks[c].dev,
   2404 						      raidPtr->raid_cinfo[c].ci_vp,
   2405 						      raidPtr->mod_counter);
   2406 				}
   2407 			}
   2408 		}
   2409 		/* else we don't touch it.. */
   2410 	}
   2411 
   2412 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2413 		sparecol = raidPtr->numCol + c;
   2414 		/* Need to ensure that the reconstruct actually completed! */
   2415 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2416 			/*
   2417 
   2418 			   we claim this disk is "optimal" if it's
   2419 			   rf_ds_used_spare, as that means it should be
   2420 			   directly substitutable for the disk it replaced.
   2421 			   We note that too...
   2422 
   2423 			 */
   2424 
   2425 			for(j=0;j<raidPtr->numCol;j++) {
   2426 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2427 					scol = j;
   2428 					break;
   2429 				}
   2430 			}
   2431 
   2432 			/* XXX shouldn't *really* need this... */
   2433 			raidread_component_label(
   2434 				      raidPtr->Disks[sparecol].dev,
   2435 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2436 				      &clabel);
   2437 			/* make sure status is noted */
   2438 
   2439 			raid_init_component_label(raidPtr, &clabel);
   2440 
   2441 			clabel.mod_counter = raidPtr->mod_counter;
   2442 			clabel.column = scol;
   2443 			clabel.status = rf_ds_optimal;
   2444 
   2445 			raidwrite_component_label(
   2446 				      raidPtr->Disks[sparecol].dev,
   2447 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2448 				      &clabel);
   2449 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2450 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2451 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2452 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2453 						       raidPtr->mod_counter);
   2454 				}
   2455 			}
   2456 		}
   2457 	}
   2458 }
   2459 
   2460 void
   2461 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2462 {
   2463 	struct proc *p;
   2464 
   2465 	p = raidPtr->engine_thread;
   2466 
   2467 	if (vp != NULL) {
   2468 		if (auto_configured == 1) {
   2469 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2470 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2471 			vput(vp);
   2472 
   2473 		} else {
   2474 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2475 		}
   2476 	}
   2477 }
   2478 
   2479 
   2480 void
   2481 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2482 {
   2483 	int r,c;
   2484 	struct vnode *vp;
   2485 	int acd;
   2486 
   2487 
   2488 	/* We take this opportunity to close the vnodes like we should.. */
   2489 
   2490 	for (c = 0; c < raidPtr->numCol; c++) {
   2491 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2492 		acd = raidPtr->Disks[c].auto_configured;
   2493 		rf_close_component(raidPtr, vp, acd);
   2494 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2495 		raidPtr->Disks[c].auto_configured = 0;
   2496 	}
   2497 
   2498 	for (r = 0; r < raidPtr->numSpare; r++) {
   2499 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2500 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2501 		rf_close_component(raidPtr, vp, acd);
   2502 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2503 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2504 	}
   2505 }
   2506 
   2507 
   2508 void
   2509 rf_ReconThread(struct rf_recon_req *req)
   2510 {
   2511 	int     s;
   2512 	RF_Raid_t *raidPtr;
   2513 
   2514 	s = splbio();
   2515 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2516 	raidPtr->recon_in_progress = 1;
   2517 
   2518 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2519 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2520 
   2521 	RF_Free(req, sizeof(*req));
   2522 
   2523 	raidPtr->recon_in_progress = 0;
   2524 	splx(s);
   2525 
   2526 	/* That's all... */
   2527 	kthread_exit(0);        /* does not return */
   2528 }
   2529 
   2530 void
   2531 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2532 {
   2533 	int retcode;
   2534 	int s;
   2535 
   2536 	raidPtr->parity_rewrite_in_progress = 1;
   2537 	s = splbio();
   2538 	retcode = rf_RewriteParity(raidPtr);
   2539 	splx(s);
   2540 	if (retcode) {
   2541 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2542 	} else {
   2543 		/* set the clean bit!  If we shutdown correctly,
   2544 		   the clean bit on each component label will get
   2545 		   set */
   2546 		raidPtr->parity_good = RF_RAID_CLEAN;
   2547 	}
   2548 	raidPtr->parity_rewrite_in_progress = 0;
   2549 
   2550 	/* Anyone waiting for us to stop?  If so, inform them... */
   2551 	if (raidPtr->waitShutdown) {
   2552 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2553 	}
   2554 
   2555 	/* That's all... */
   2556 	kthread_exit(0);        /* does not return */
   2557 }
   2558 
   2559 
   2560 void
   2561 rf_CopybackThread(RF_Raid_t *raidPtr)
   2562 {
   2563 	int s;
   2564 
   2565 	raidPtr->copyback_in_progress = 1;
   2566 	s = splbio();
   2567 	rf_CopybackReconstructedData(raidPtr);
   2568 	splx(s);
   2569 	raidPtr->copyback_in_progress = 0;
   2570 
   2571 	/* That's all... */
   2572 	kthread_exit(0);        /* does not return */
   2573 }
   2574 
   2575 
   2576 void
   2577 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2578 {
   2579 	int s;
   2580 	RF_Raid_t *raidPtr;
   2581 
   2582 	s = splbio();
   2583 	raidPtr = req->raidPtr;
   2584 	raidPtr->recon_in_progress = 1;
   2585 	rf_ReconstructInPlace(raidPtr, req->col);
   2586 	RF_Free(req, sizeof(*req));
   2587 	raidPtr->recon_in_progress = 0;
   2588 	splx(s);
   2589 
   2590 	/* That's all... */
   2591 	kthread_exit(0);        /* does not return */
   2592 }
   2593 
   2594 RF_AutoConfig_t *
   2595 rf_find_raid_components()
   2596 {
   2597 	struct vnode *vp;
   2598 	struct disklabel label;
   2599 	struct device *dv;
   2600 	dev_t dev;
   2601 	int bmajor;
   2602 	int error;
   2603 	int i;
   2604 	int good_one;
   2605 	RF_ComponentLabel_t *clabel;
   2606 	RF_AutoConfig_t *ac_list;
   2607 	RF_AutoConfig_t *ac;
   2608 
   2609 
   2610 	/* initialize the AutoConfig list */
   2611 	ac_list = NULL;
   2612 
   2613 	/* we begin by trolling through *all* the devices on the system */
   2614 
   2615 	for (dv = alldevs.tqh_first; dv != NULL;
   2616 	     dv = dv->dv_list.tqe_next) {
   2617 
   2618 		/* we are only interested in disks... */
   2619 		if (dv->dv_class != DV_DISK)
   2620 			continue;
   2621 
   2622 		/* we don't care about floppies... */
   2623 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2624 			continue;
   2625 		}
   2626 
   2627 		/* we don't care about CD's... */
   2628 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2629 			continue;
   2630 		}
   2631 
   2632 		/* hdfd is the Atari/Hades floppy driver */
   2633 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2634 			continue;
   2635 		}
   2636 		/* fdisa is the Atari/Milan floppy driver */
   2637 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2638 			continue;
   2639 		}
   2640 
   2641 		/* need to find the device_name_to_block_device_major stuff */
   2642 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2643 
   2644 		/* get a vnode for the raw partition of this disk */
   2645 
   2646 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2647 		if (bdevvp(dev, &vp))
   2648 			panic("RAID can't alloc vnode");
   2649 
   2650 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2651 
   2652 		if (error) {
   2653 			/* "Who cares."  Continue looking
   2654 			   for something that exists*/
   2655 			vput(vp);
   2656 			continue;
   2657 		}
   2658 
   2659 		/* Ok, the disk exists.  Go get the disklabel. */
   2660 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2661 		if (error) {
   2662 			/*
   2663 			 * XXX can't happen - open() would
   2664 			 * have errored out (or faked up one)
   2665 			 */
   2666 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2667 			       dv->dv_xname, 'a' + RAW_PART, error);
   2668 		}
   2669 
   2670 		/* don't need this any more.  We'll allocate it again
   2671 		   a little later if we really do... */
   2672 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2673 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2674 		vput(vp);
   2675 
   2676 		for (i=0; i < label.d_npartitions; i++) {
   2677 			/* We only support partitions marked as RAID */
   2678 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2679 				continue;
   2680 
   2681 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2682 			if (bdevvp(dev, &vp))
   2683 				panic("RAID can't alloc vnode");
   2684 
   2685 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2686 			if (error) {
   2687 				/* Whatever... */
   2688 				vput(vp);
   2689 				continue;
   2690 			}
   2691 
   2692 			good_one = 0;
   2693 
   2694 			clabel = (RF_ComponentLabel_t *)
   2695 				malloc(sizeof(RF_ComponentLabel_t),
   2696 				       M_RAIDFRAME, M_NOWAIT);
   2697 			if (clabel == NULL) {
   2698 				/* XXX CLEANUP HERE */
   2699 				printf("RAID auto config: out of memory!\n");
   2700 				return(NULL); /* XXX probably should panic? */
   2701 			}
   2702 
   2703 			if (!raidread_component_label(dev, vp, clabel)) {
   2704 				/* Got the label.  Does it look reasonable? */
   2705 				if (rf_reasonable_label(clabel) &&
   2706 				    (clabel->partitionSize <=
   2707 				     label.d_partitions[i].p_size)) {
   2708 #if DEBUG
   2709 					printf("Component on: %s%c: %d\n",
   2710 					       dv->dv_xname, 'a'+i,
   2711 					       label.d_partitions[i].p_size);
   2712 					rf_print_component_label(clabel);
   2713 #endif
   2714 					/* if it's reasonable, add it,
   2715 					   else ignore it. */
   2716 					ac = (RF_AutoConfig_t *)
   2717 						malloc(sizeof(RF_AutoConfig_t),
   2718 						       M_RAIDFRAME,
   2719 						       M_NOWAIT);
   2720 					if (ac == NULL) {
   2721 						/* XXX should panic?? */
   2722 						return(NULL);
   2723 					}
   2724 
   2725 					sprintf(ac->devname, "%s%c",
   2726 						dv->dv_xname, 'a'+i);
   2727 					ac->dev = dev;
   2728 					ac->vp = vp;
   2729 					ac->clabel = clabel;
   2730 					ac->next = ac_list;
   2731 					ac_list = ac;
   2732 					good_one = 1;
   2733 				}
   2734 			}
   2735 			if (!good_one) {
   2736 				/* cleanup */
   2737 				free(clabel, M_RAIDFRAME);
   2738 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2739 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2740 				vput(vp);
   2741 			}
   2742 		}
   2743 	}
   2744 	return(ac_list);
   2745 }
   2746 
   2747 static int
   2748 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2749 {
   2750 
   2751 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2752 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2753 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2754 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2755 	    clabel->row >=0 &&
   2756 	    clabel->column >= 0 &&
   2757 	    clabel->num_rows > 0 &&
   2758 	    clabel->num_columns > 0 &&
   2759 	    clabel->row < clabel->num_rows &&
   2760 	    clabel->column < clabel->num_columns &&
   2761 	    clabel->blockSize > 0 &&
   2762 	    clabel->numBlocks > 0) {
   2763 		/* label looks reasonable enough... */
   2764 		return(1);
   2765 	}
   2766 	return(0);
   2767 }
   2768 
   2769 
   2770 #if DEBUG
   2771 void
   2772 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2773 {
   2774 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2775 	       clabel->row, clabel->column,
   2776 	       clabel->num_rows, clabel->num_columns);
   2777 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2778 	       clabel->version, clabel->serial_number,
   2779 	       clabel->mod_counter);
   2780 	printf("   Clean: %s Status: %d\n",
   2781 	       clabel->clean ? "Yes" : "No", clabel->status );
   2782 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2783 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2784 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2785 	       (char) clabel->parityConfig, clabel->blockSize,
   2786 	       clabel->numBlocks);
   2787 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2788 	printf("   Contains root partition: %s\n",
   2789 	       clabel->root_partition ? "Yes" : "No" );
   2790 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2791 #if 0
   2792 	   printf("   Config order: %d\n", clabel->config_order);
   2793 #endif
   2794 
   2795 }
   2796 #endif
   2797 
   2798 RF_ConfigSet_t *
   2799 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2800 {
   2801 	RF_AutoConfig_t *ac;
   2802 	RF_ConfigSet_t *config_sets;
   2803 	RF_ConfigSet_t *cset;
   2804 	RF_AutoConfig_t *ac_next;
   2805 
   2806 
   2807 	config_sets = NULL;
   2808 
   2809 	/* Go through the AutoConfig list, and figure out which components
   2810 	   belong to what sets.  */
   2811 	ac = ac_list;
   2812 	while(ac!=NULL) {
   2813 		/* we're going to putz with ac->next, so save it here
   2814 		   for use at the end of the loop */
   2815 		ac_next = ac->next;
   2816 
   2817 		if (config_sets == NULL) {
   2818 			/* will need at least this one... */
   2819 			config_sets = (RF_ConfigSet_t *)
   2820 				malloc(sizeof(RF_ConfigSet_t),
   2821 				       M_RAIDFRAME, M_NOWAIT);
   2822 			if (config_sets == NULL) {
   2823 				panic("rf_create_auto_sets: No memory!");
   2824 			}
   2825 			/* this one is easy :) */
   2826 			config_sets->ac = ac;
   2827 			config_sets->next = NULL;
   2828 			config_sets->rootable = 0;
   2829 			ac->next = NULL;
   2830 		} else {
   2831 			/* which set does this component fit into? */
   2832 			cset = config_sets;
   2833 			while(cset!=NULL) {
   2834 				if (rf_does_it_fit(cset, ac)) {
   2835 					/* looks like it matches... */
   2836 					ac->next = cset->ac;
   2837 					cset->ac = ac;
   2838 					break;
   2839 				}
   2840 				cset = cset->next;
   2841 			}
   2842 			if (cset==NULL) {
   2843 				/* didn't find a match above... new set..*/
   2844 				cset = (RF_ConfigSet_t *)
   2845 					malloc(sizeof(RF_ConfigSet_t),
   2846 					       M_RAIDFRAME, M_NOWAIT);
   2847 				if (cset == NULL) {
   2848 					panic("rf_create_auto_sets: No memory!");
   2849 				}
   2850 				cset->ac = ac;
   2851 				ac->next = NULL;
   2852 				cset->next = config_sets;
   2853 				cset->rootable = 0;
   2854 				config_sets = cset;
   2855 			}
   2856 		}
   2857 		ac = ac_next;
   2858 	}
   2859 
   2860 
   2861 	return(config_sets);
   2862 }
   2863 
   2864 static int
   2865 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2866 {
   2867 	RF_ComponentLabel_t *clabel1, *clabel2;
   2868 
   2869 	/* If this one matches the *first* one in the set, that's good
   2870 	   enough, since the other members of the set would have been
   2871 	   through here too... */
   2872 	/* note that we are not checking partitionSize here..
   2873 
   2874 	   Note that we are also not checking the mod_counters here.
   2875 	   If everything else matches execpt the mod_counter, that's
   2876 	   good enough for this test.  We will deal with the mod_counters
   2877 	   a little later in the autoconfiguration process.
   2878 
   2879 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2880 
   2881 	   The reason we don't check for this is that failed disks
   2882 	   will have lower modification counts.  If those disks are
   2883 	   not added to the set they used to belong to, then they will
   2884 	   form their own set, which may result in 2 different sets,
   2885 	   for example, competing to be configured at raid0, and
   2886 	   perhaps competing to be the root filesystem set.  If the
   2887 	   wrong ones get configured, or both attempt to become /,
   2888 	   weird behaviour and or serious lossage will occur.  Thus we
   2889 	   need to bring them into the fold here, and kick them out at
   2890 	   a later point.
   2891 
   2892 	*/
   2893 
   2894 	clabel1 = cset->ac->clabel;
   2895 	clabel2 = ac->clabel;
   2896 	if ((clabel1->version == clabel2->version) &&
   2897 	    (clabel1->serial_number == clabel2->serial_number) &&
   2898 	    (clabel1->num_rows == clabel2->num_rows) &&
   2899 	    (clabel1->num_columns == clabel2->num_columns) &&
   2900 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2901 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2902 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2903 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2904 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2905 	    (clabel1->blockSize == clabel2->blockSize) &&
   2906 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2907 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2908 	    (clabel1->root_partition == clabel2->root_partition) &&
   2909 	    (clabel1->last_unit == clabel2->last_unit) &&
   2910 	    (clabel1->config_order == clabel2->config_order)) {
   2911 		/* if it get's here, it almost *has* to be a match */
   2912 	} else {
   2913 		/* it's not consistent with somebody in the set..
   2914 		   punt */
   2915 		return(0);
   2916 	}
   2917 	/* all was fine.. it must fit... */
   2918 	return(1);
   2919 }
   2920 
   2921 int
   2922 rf_have_enough_components(RF_ConfigSet_t *cset)
   2923 {
   2924 	RF_AutoConfig_t *ac;
   2925 	RF_AutoConfig_t *auto_config;
   2926 	RF_ComponentLabel_t *clabel;
   2927 	int c;
   2928 	int num_cols;
   2929 	int num_missing;
   2930 	int mod_counter;
   2931 	int mod_counter_found;
   2932 	int even_pair_failed;
   2933 	char parity_type;
   2934 
   2935 
   2936 	/* check to see that we have enough 'live' components
   2937 	   of this set.  If so, we can configure it if necessary */
   2938 
   2939 	num_cols = cset->ac->clabel->num_columns;
   2940 	parity_type = cset->ac->clabel->parityConfig;
   2941 
   2942 	/* XXX Check for duplicate components!?!?!? */
   2943 
   2944 	/* Determine what the mod_counter is supposed to be for this set. */
   2945 
   2946 	mod_counter_found = 0;
   2947 	mod_counter = 0;
   2948 	ac = cset->ac;
   2949 	while(ac!=NULL) {
   2950 		if (mod_counter_found==0) {
   2951 			mod_counter = ac->clabel->mod_counter;
   2952 			mod_counter_found = 1;
   2953 		} else {
   2954 			if (ac->clabel->mod_counter > mod_counter) {
   2955 				mod_counter = ac->clabel->mod_counter;
   2956 			}
   2957 		}
   2958 		ac = ac->next;
   2959 	}
   2960 
   2961 	num_missing = 0;
   2962 	auto_config = cset->ac;
   2963 
   2964 	even_pair_failed = 0;
   2965 	for(c=0; c<num_cols; c++) {
   2966 		ac = auto_config;
   2967 		while(ac!=NULL) {
   2968 			if ((ac->clabel->column == c) &&
   2969 			    (ac->clabel->mod_counter == mod_counter)) {
   2970 				/* it's this one... */
   2971 #if DEBUG
   2972 				printf("Found: %s at %d\n",
   2973 				       ac->devname,c);
   2974 #endif
   2975 				break;
   2976 			}
   2977 			ac=ac->next;
   2978 		}
   2979 		if (ac==NULL) {
   2980 				/* Didn't find one here! */
   2981 				/* special case for RAID 1, especially
   2982 				   where there are more than 2
   2983 				   components (where RAIDframe treats
   2984 				   things a little differently :( ) */
   2985 			if (parity_type == '1') {
   2986 				if (c%2 == 0) { /* even component */
   2987 					even_pair_failed = 1;
   2988 				} else { /* odd component.  If
   2989 					    we're failed, and
   2990 					    so is the even
   2991 					    component, it's
   2992 					    "Good Night, Charlie" */
   2993 					if (even_pair_failed == 1) {
   2994 						return(0);
   2995 					}
   2996 				}
   2997 			} else {
   2998 				/* normal accounting */
   2999 				num_missing++;
   3000 			}
   3001 		}
   3002 		if ((parity_type == '1') && (c%2 == 1)) {
   3003 				/* Just did an even component, and we didn't
   3004 				   bail.. reset the even_pair_failed flag,
   3005 				   and go on to the next component.... */
   3006 			even_pair_failed = 0;
   3007 		}
   3008 	}
   3009 
   3010 	clabel = cset->ac->clabel;
   3011 
   3012 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3013 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3014 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3015 		/* XXX this needs to be made *much* more general */
   3016 		/* Too many failures */
   3017 		return(0);
   3018 	}
   3019 	/* otherwise, all is well, and we've got enough to take a kick
   3020 	   at autoconfiguring this set */
   3021 	return(1);
   3022 }
   3023 
   3024 void
   3025 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3026 			RF_Raid_t *raidPtr)
   3027 {
   3028 	RF_ComponentLabel_t *clabel;
   3029 	int i;
   3030 
   3031 	clabel = ac->clabel;
   3032 
   3033 	/* 1. Fill in the common stuff */
   3034 	config->numRow = clabel->num_rows = 1;
   3035 	config->numCol = clabel->num_columns;
   3036 	config->numSpare = 0; /* XXX should this be set here? */
   3037 	config->sectPerSU = clabel->sectPerSU;
   3038 	config->SUsPerPU = clabel->SUsPerPU;
   3039 	config->SUsPerRU = clabel->SUsPerRU;
   3040 	config->parityConfig = clabel->parityConfig;
   3041 	/* XXX... */
   3042 	strcpy(config->diskQueueType,"fifo");
   3043 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3044 	config->layoutSpecificSize = 0; /* XXX ?? */
   3045 
   3046 	while(ac!=NULL) {
   3047 		/* row/col values will be in range due to the checks
   3048 		   in reasonable_label() */
   3049 		strcpy(config->devnames[0][ac->clabel->column],
   3050 		       ac->devname);
   3051 		ac = ac->next;
   3052 	}
   3053 
   3054 	for(i=0;i<RF_MAXDBGV;i++) {
   3055 		config->debugVars[i][0] = 0;
   3056 	}
   3057 }
   3058 
   3059 int
   3060 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3061 {
   3062 	RF_ComponentLabel_t clabel;
   3063 	struct vnode *vp;
   3064 	dev_t dev;
   3065 	int column;
   3066 	int sparecol;
   3067 
   3068 	raidPtr->autoconfigure = new_value;
   3069 
   3070 	for(column=0; column<raidPtr->numCol; column++) {
   3071 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3072 			dev = raidPtr->Disks[column].dev;
   3073 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3074 			raidread_component_label(dev, vp, &clabel);
   3075 			clabel.autoconfigure = new_value;
   3076 			raidwrite_component_label(dev, vp, &clabel);
   3077 		}
   3078 	}
   3079 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3080 		sparecol = raidPtr->numCol + column;
   3081 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3082 			dev = raidPtr->Disks[sparecol].dev;
   3083 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3084 			raidread_component_label(dev, vp, &clabel);
   3085 			clabel.autoconfigure = new_value;
   3086 			raidwrite_component_label(dev, vp, &clabel);
   3087 		}
   3088 	}
   3089 	return(new_value);
   3090 }
   3091 
   3092 int
   3093 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3094 {
   3095 	RF_ComponentLabel_t clabel;
   3096 	struct vnode *vp;
   3097 	dev_t dev;
   3098 	int column;
   3099 	int sparecol;
   3100 
   3101 	raidPtr->root_partition = new_value;
   3102 	for(column=0; column<raidPtr->numCol; column++) {
   3103 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3104 			dev = raidPtr->Disks[column].dev;
   3105 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3106 			raidread_component_label(dev, vp, &clabel);
   3107 			clabel.root_partition = new_value;
   3108 			raidwrite_component_label(dev, vp, &clabel);
   3109 		}
   3110 	}
   3111 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3112 		sparecol = raidPtr->numCol + column;
   3113 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3114 			dev = raidPtr->Disks[sparecol].dev;
   3115 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3116 			raidread_component_label(dev, vp, &clabel);
   3117 			clabel.root_partition = new_value;
   3118 			raidwrite_component_label(dev, vp, &clabel);
   3119 		}
   3120 	}
   3121 	return(new_value);
   3122 }
   3123 
   3124 void
   3125 rf_release_all_vps(RF_ConfigSet_t *cset)
   3126 {
   3127 	RF_AutoConfig_t *ac;
   3128 
   3129 	ac = cset->ac;
   3130 	while(ac!=NULL) {
   3131 		/* Close the vp, and give it back */
   3132 		if (ac->vp) {
   3133 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3134 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3135 			vput(ac->vp);
   3136 			ac->vp = NULL;
   3137 		}
   3138 		ac = ac->next;
   3139 	}
   3140 }
   3141 
   3142 
   3143 void
   3144 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3145 {
   3146 	RF_AutoConfig_t *ac;
   3147 	RF_AutoConfig_t *next_ac;
   3148 
   3149 	ac = cset->ac;
   3150 	while(ac!=NULL) {
   3151 		next_ac = ac->next;
   3152 		/* nuke the label */
   3153 		free(ac->clabel, M_RAIDFRAME);
   3154 		/* cleanup the config structure */
   3155 		free(ac, M_RAIDFRAME);
   3156 		/* "next.." */
   3157 		ac = next_ac;
   3158 	}
   3159 	/* and, finally, nuke the config set */
   3160 	free(cset, M_RAIDFRAME);
   3161 }
   3162 
   3163 
   3164 void
   3165 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3166 {
   3167 	/* current version number */
   3168 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3169 	clabel->serial_number = raidPtr->serial_number;
   3170 	clabel->mod_counter = raidPtr->mod_counter;
   3171 	clabel->num_rows = 1;
   3172 	clabel->num_columns = raidPtr->numCol;
   3173 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3174 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3175 
   3176 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3177 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3178 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3179 
   3180 	clabel->blockSize = raidPtr->bytesPerSector;
   3181 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3182 
   3183 	/* XXX not portable */
   3184 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3185 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3186 	clabel->autoconfigure = raidPtr->autoconfigure;
   3187 	clabel->root_partition = raidPtr->root_partition;
   3188 	clabel->last_unit = raidPtr->raidid;
   3189 	clabel->config_order = raidPtr->config_order;
   3190 }
   3191 
   3192 int
   3193 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3194 {
   3195 	RF_Raid_t *raidPtr;
   3196 	RF_Config_t *config;
   3197 	int raidID;
   3198 	int retcode;
   3199 
   3200 #if DEBUG
   3201 	printf("RAID autoconfigure\n");
   3202 #endif
   3203 
   3204 	retcode = 0;
   3205 	*unit = -1;
   3206 
   3207 	/* 1. Create a config structure */
   3208 
   3209 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3210 				       M_RAIDFRAME,
   3211 				       M_NOWAIT);
   3212 	if (config==NULL) {
   3213 		printf("Out of mem!?!?\n");
   3214 				/* XXX do something more intelligent here. */
   3215 		return(1);
   3216 	}
   3217 
   3218 	memset(config, 0, sizeof(RF_Config_t));
   3219 
   3220 	/*
   3221 	   2. Figure out what RAID ID this one is supposed to live at
   3222 	   See if we can get the same RAID dev that it was configured
   3223 	   on last time..
   3224 	*/
   3225 
   3226 	raidID = cset->ac->clabel->last_unit;
   3227 	if ((raidID < 0) || (raidID >= numraid)) {
   3228 		/* let's not wander off into lala land. */
   3229 		raidID = numraid - 1;
   3230 	}
   3231 	if (raidPtrs[raidID]->valid != 0) {
   3232 
   3233 		/*
   3234 		   Nope... Go looking for an alternative...
   3235 		   Start high so we don't immediately use raid0 if that's
   3236 		   not taken.
   3237 		*/
   3238 
   3239 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3240 			if (raidPtrs[raidID]->valid == 0) {
   3241 				/* can use this one! */
   3242 				break;
   3243 			}
   3244 		}
   3245 	}
   3246 
   3247 	if (raidID < 0) {
   3248 		/* punt... */
   3249 		printf("Unable to auto configure this set!\n");
   3250 		printf("(Out of RAID devs!)\n");
   3251 		return(1);
   3252 	}
   3253 
   3254 #if DEBUG
   3255 	printf("Configuring raid%d:\n",raidID);
   3256 #endif
   3257 
   3258 	raidPtr = raidPtrs[raidID];
   3259 
   3260 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3261 	raidPtr->raidid = raidID;
   3262 	raidPtr->openings = RAIDOUTSTANDING;
   3263 
   3264 	/* 3. Build the configuration structure */
   3265 	rf_create_configuration(cset->ac, config, raidPtr);
   3266 
   3267 	/* 4. Do the configuration */
   3268 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3269 
   3270 	if (retcode == 0) {
   3271 
   3272 		raidinit(raidPtrs[raidID]);
   3273 
   3274 		rf_markalldirty(raidPtrs[raidID]);
   3275 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3276 		if (cset->ac->clabel->root_partition==1) {
   3277 			/* everything configured just fine.  Make a note
   3278 			   that this set is eligible to be root. */
   3279 			cset->rootable = 1;
   3280 			/* XXX do this here? */
   3281 			raidPtrs[raidID]->root_partition = 1;
   3282 		}
   3283 	}
   3284 
   3285 	/* 5. Cleanup */
   3286 	free(config, M_RAIDFRAME);
   3287 
   3288 	*unit = raidID;
   3289 	return(retcode);
   3290 }
   3291 
   3292 void
   3293 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3294 {
   3295 	struct buf *bp;
   3296 
   3297 	bp = (struct buf *)desc->bp;
   3298 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3299 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3300 }
   3301