rf_netbsdkintf.c revision 1.175 1 /* $NetBSD: rf_netbsdkintf.c,v 1.175 2004/03/01 23:30:58 oster Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.175 2004/03/01 23:30:58 oster Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/user.h>
169 #include <sys/reboot.h>
170
171 #include <dev/raidframe/raidframevar.h>
172 #include <dev/raidframe/raidframeio.h>
173 #include "raid.h"
174 #include "opt_raid_autoconfig.h"
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188
189 #ifdef DEBUG
190 int rf_kdebug_level = 0;
191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
192 #else /* DEBUG */
193 #define db1_printf(a) { }
194 #endif /* DEBUG */
195
196 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
197
198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
199
200 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
201 * spare table */
202 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
203 * installation process */
204
205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
206
207 /* prototypes */
208 static void KernelWakeupFunc(struct buf * bp);
209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
210 dev_t dev, RF_SectorNum_t startSect,
211 RF_SectorCount_t numSect, caddr_t buf,
212 void (*cbFunc) (struct buf *), void *cbArg,
213 int logBytesPerSector, struct proc * b_proc);
214 static void raidinit(RF_Raid_t *);
215
216 void raidattach(int);
217
218 dev_type_open(raidopen);
219 dev_type_close(raidclose);
220 dev_type_read(raidread);
221 dev_type_write(raidwrite);
222 dev_type_ioctl(raidioctl);
223 dev_type_strategy(raidstrategy);
224 dev_type_dump(raiddump);
225 dev_type_size(raidsize);
226
227 const struct bdevsw raid_bdevsw = {
228 raidopen, raidclose, raidstrategy, raidioctl,
229 raiddump, raidsize, D_DISK
230 };
231
232 const struct cdevsw raid_cdevsw = {
233 raidopen, raidclose, raidread, raidwrite, raidioctl,
234 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
235 };
236
237 /*
238 * Pilfered from ccd.c
239 */
240
241 struct raidbuf {
242 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
243 struct buf *rf_obp; /* ptr. to original I/O buf */
244 RF_DiskQueueData_t *req;/* the request that this was part of.. */
245 };
246
247 /* component buffer pool */
248 struct pool raidframe_cbufpool;
249
250 /* XXX Not sure if the following should be replacing the raidPtrs above,
251 or if it should be used in conjunction with that...
252 */
253
254 struct raid_softc {
255 int sc_flags; /* flags */
256 int sc_cflags; /* configuration flags */
257 size_t sc_size; /* size of the raid device */
258 char sc_xname[20]; /* XXX external name */
259 struct disk sc_dkdev; /* generic disk device info */
260 struct bufq_state buf_queue; /* used for the device queue */
261 };
262 /* sc_flags */
263 #define RAIDF_INITED 0x01 /* unit has been initialized */
264 #define RAIDF_WLABEL 0x02 /* label area is writable */
265 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
266 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
267 #define RAIDF_LOCKED 0x80 /* unit is locked */
268
269 #define raidunit(x) DISKUNIT(x)
270 int numraid = 0;
271
272 /*
273 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
274 * Be aware that large numbers can allow the driver to consume a lot of
275 * kernel memory, especially on writes, and in degraded mode reads.
276 *
277 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
278 * a single 64K write will typically require 64K for the old data,
279 * 64K for the old parity, and 64K for the new parity, for a total
280 * of 192K (if the parity buffer is not re-used immediately).
281 * Even it if is used immediately, that's still 128K, which when multiplied
282 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
283 *
284 * Now in degraded mode, for example, a 64K read on the above setup may
285 * require data reconstruction, which will require *all* of the 4 remaining
286 * disks to participate -- 4 * 32K/disk == 128K again.
287 */
288
289 #ifndef RAIDOUTSTANDING
290 #define RAIDOUTSTANDING 6
291 #endif
292
293 #define RAIDLABELDEV(dev) \
294 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
295
296 /* declared here, and made public, for the benefit of KVM stuff.. */
297 struct raid_softc *raid_softc;
298
299 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
300 struct disklabel *);
301 static void raidgetdisklabel(dev_t);
302 static void raidmakedisklabel(struct raid_softc *);
303
304 static int raidlock(struct raid_softc *);
305 static void raidunlock(struct raid_softc *);
306
307 static void rf_markalldirty(RF_Raid_t *);
308
309 struct device *raidrootdev;
310
311 void rf_ReconThread(struct rf_recon_req *);
312 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
313 void rf_CopybackThread(RF_Raid_t *raidPtr);
314 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
315 int rf_autoconfig(struct device *self);
316 void rf_buildroothack(RF_ConfigSet_t *);
317
318 RF_AutoConfig_t *rf_find_raid_components(void);
319 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
320 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
321 static int rf_reasonable_label(RF_ComponentLabel_t *);
322 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
323 int rf_set_autoconfig(RF_Raid_t *, int);
324 int rf_set_rootpartition(RF_Raid_t *, int);
325 void rf_release_all_vps(RF_ConfigSet_t *);
326 void rf_cleanup_config_set(RF_ConfigSet_t *);
327 int rf_have_enough_components(RF_ConfigSet_t *);
328 int rf_auto_config_set(RF_ConfigSet_t *, int *);
329
330 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
331 allow autoconfig to take place.
332 Note that this is overridden by having
333 RAID_AUTOCONFIG as an option in the
334 kernel config file. */
335
336 void
337 raidattach(int num)
338 {
339 int raidID;
340 int i, rc;
341
342 #ifdef DEBUG
343 printf("raidattach: Asked for %d units\n", num);
344 #endif
345
346 if (num <= 0) {
347 #ifdef DIAGNOSTIC
348 panic("raidattach: count <= 0");
349 #endif
350 return;
351 }
352 /* This is where all the initialization stuff gets done. */
353
354 numraid = num;
355
356 /* Make some space for requested number of units... */
357
358 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
359 if (raidPtrs == NULL) {
360 panic("raidPtrs is NULL!!");
361 }
362
363 /* Initialize the component buffer pool. */
364 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
365 0, 0, "raidpl", NULL);
366
367 rf_mutex_init(&rf_sparet_wait_mutex);
368
369 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
370
371 for (i = 0; i < num; i++)
372 raidPtrs[i] = NULL;
373 rc = rf_BootRaidframe();
374 if (rc == 0)
375 printf("Kernelized RAIDframe activated\n");
376 else
377 panic("Serious error booting RAID!!");
378
379 /* put together some datastructures like the CCD device does.. This
380 * lets us lock the device and what-not when it gets opened. */
381
382 raid_softc = (struct raid_softc *)
383 malloc(num * sizeof(struct raid_softc),
384 M_RAIDFRAME, M_NOWAIT);
385 if (raid_softc == NULL) {
386 printf("WARNING: no memory for RAIDframe driver\n");
387 return;
388 }
389
390 memset(raid_softc, 0, num * sizeof(struct raid_softc));
391
392 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
393 M_RAIDFRAME, M_NOWAIT);
394 if (raidrootdev == NULL) {
395 panic("No memory for RAIDframe driver!!?!?!");
396 }
397
398 for (raidID = 0; raidID < num; raidID++) {
399 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
400
401 raidrootdev[raidID].dv_class = DV_DISK;
402 raidrootdev[raidID].dv_cfdata = NULL;
403 raidrootdev[raidID].dv_unit = raidID;
404 raidrootdev[raidID].dv_parent = NULL;
405 raidrootdev[raidID].dv_flags = 0;
406 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
407
408 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
409 (RF_Raid_t *));
410 if (raidPtrs[raidID] == NULL) {
411 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
412 numraid = raidID;
413 return;
414 }
415 }
416
417 #ifdef RAID_AUTOCONFIG
418 raidautoconfig = 1;
419 #endif
420
421 /*
422 * Register a finalizer which will be used to auto-config RAID
423 * sets once all real hardware devices have been found.
424 */
425 if (config_finalize_register(NULL, rf_autoconfig) != 0)
426 printf("WARNING: unable to register RAIDframe finalizer\n");
427 }
428
429 int
430 rf_autoconfig(struct device *self)
431 {
432 RF_AutoConfig_t *ac_list;
433 RF_ConfigSet_t *config_sets;
434
435 if (raidautoconfig == 0)
436 return (0);
437
438 /* XXX This code can only be run once. */
439 raidautoconfig = 0;
440
441 /* 1. locate all RAID components on the system */
442 #ifdef DEBUG
443 printf("Searching for RAID components...\n");
444 #endif
445 ac_list = rf_find_raid_components();
446
447 /* 2. Sort them into their respective sets. */
448 config_sets = rf_create_auto_sets(ac_list);
449
450 /*
451 * 3. Evaluate each set andconfigure the valid ones.
452 * This gets done in rf_buildroothack().
453 */
454 rf_buildroothack(config_sets);
455
456 return (1);
457 }
458
459 void
460 rf_buildroothack(RF_ConfigSet_t *config_sets)
461 {
462 RF_ConfigSet_t *cset;
463 RF_ConfigSet_t *next_cset;
464 int retcode;
465 int raidID;
466 int rootID;
467 int num_root;
468
469 rootID = 0;
470 num_root = 0;
471 cset = config_sets;
472 while(cset != NULL ) {
473 next_cset = cset->next;
474 if (rf_have_enough_components(cset) &&
475 cset->ac->clabel->autoconfigure==1) {
476 retcode = rf_auto_config_set(cset,&raidID);
477 if (!retcode) {
478 if (cset->rootable) {
479 rootID = raidID;
480 num_root++;
481 }
482 } else {
483 /* The autoconfig didn't work :( */
484 #if DEBUG
485 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
486 #endif
487 rf_release_all_vps(cset);
488 }
489 } else {
490 /* we're not autoconfiguring this set...
491 release the associated resources */
492 rf_release_all_vps(cset);
493 }
494 /* cleanup */
495 rf_cleanup_config_set(cset);
496 cset = next_cset;
497 }
498
499 /* we found something bootable... */
500
501 if (num_root == 1) {
502 booted_device = &raidrootdev[rootID];
503 } else if (num_root > 1) {
504 /* we can't guess.. require the user to answer... */
505 boothowto |= RB_ASKNAME;
506 }
507 }
508
509
510 int
511 raidsize(dev_t dev)
512 {
513 struct raid_softc *rs;
514 struct disklabel *lp;
515 int part, unit, omask, size;
516
517 unit = raidunit(dev);
518 if (unit >= numraid)
519 return (-1);
520 rs = &raid_softc[unit];
521
522 if ((rs->sc_flags & RAIDF_INITED) == 0)
523 return (-1);
524
525 part = DISKPART(dev);
526 omask = rs->sc_dkdev.dk_openmask & (1 << part);
527 lp = rs->sc_dkdev.dk_label;
528
529 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
530 return (-1);
531
532 if (lp->d_partitions[part].p_fstype != FS_SWAP)
533 size = -1;
534 else
535 size = lp->d_partitions[part].p_size *
536 (lp->d_secsize / DEV_BSIZE);
537
538 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
539 return (-1);
540
541 return (size);
542
543 }
544
545 int
546 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
547 {
548 /* Not implemented. */
549 return ENXIO;
550 }
551 /* ARGSUSED */
552 int
553 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
554 {
555 int unit = raidunit(dev);
556 struct raid_softc *rs;
557 struct disklabel *lp;
558 int part, pmask;
559 int error = 0;
560
561 if (unit >= numraid)
562 return (ENXIO);
563 rs = &raid_softc[unit];
564
565 if ((error = raidlock(rs)) != 0)
566 return (error);
567 lp = rs->sc_dkdev.dk_label;
568
569 part = DISKPART(dev);
570 pmask = (1 << part);
571
572 if ((rs->sc_flags & RAIDF_INITED) &&
573 (rs->sc_dkdev.dk_openmask == 0))
574 raidgetdisklabel(dev);
575
576 /* make sure that this partition exists */
577
578 if (part != RAW_PART) {
579 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
580 ((part >= lp->d_npartitions) ||
581 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
582 error = ENXIO;
583 raidunlock(rs);
584 return (error);
585 }
586 }
587 /* Prevent this unit from being unconfigured while open. */
588 switch (fmt) {
589 case S_IFCHR:
590 rs->sc_dkdev.dk_copenmask |= pmask;
591 break;
592
593 case S_IFBLK:
594 rs->sc_dkdev.dk_bopenmask |= pmask;
595 break;
596 }
597
598 if ((rs->sc_dkdev.dk_openmask == 0) &&
599 ((rs->sc_flags & RAIDF_INITED) != 0)) {
600 /* First one... mark things as dirty... Note that we *MUST*
601 have done a configure before this. I DO NOT WANT TO BE
602 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
603 THAT THEY BELONG TOGETHER!!!!! */
604 /* XXX should check to see if we're only open for reading
605 here... If so, we needn't do this, but then need some
606 other way of keeping track of what's happened.. */
607
608 rf_markalldirty( raidPtrs[unit] );
609 }
610
611
612 rs->sc_dkdev.dk_openmask =
613 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
614
615 raidunlock(rs);
616
617 return (error);
618
619
620 }
621 /* ARGSUSED */
622 int
623 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
624 {
625 int unit = raidunit(dev);
626 struct raid_softc *rs;
627 int error = 0;
628 int part;
629
630 if (unit >= numraid)
631 return (ENXIO);
632 rs = &raid_softc[unit];
633
634 if ((error = raidlock(rs)) != 0)
635 return (error);
636
637 part = DISKPART(dev);
638
639 /* ...that much closer to allowing unconfiguration... */
640 switch (fmt) {
641 case S_IFCHR:
642 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
643 break;
644
645 case S_IFBLK:
646 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
647 break;
648 }
649 rs->sc_dkdev.dk_openmask =
650 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
651
652 if ((rs->sc_dkdev.dk_openmask == 0) &&
653 ((rs->sc_flags & RAIDF_INITED) != 0)) {
654 /* Last one... device is not unconfigured yet.
655 Device shutdown has taken care of setting the
656 clean bits if RAIDF_INITED is not set
657 mark things as clean... */
658
659 rf_update_component_labels(raidPtrs[unit],
660 RF_FINAL_COMPONENT_UPDATE);
661 if (doing_shutdown) {
662 /* last one, and we're going down, so
663 lights out for this RAID set too. */
664 error = rf_Shutdown(raidPtrs[unit]);
665
666 /* It's no longer initialized... */
667 rs->sc_flags &= ~RAIDF_INITED;
668
669 /* Detach the disk. */
670 disk_detach(&rs->sc_dkdev);
671 }
672 }
673
674 raidunlock(rs);
675 return (0);
676
677 }
678
679 void
680 raidstrategy(struct buf *bp)
681 {
682 int s;
683
684 unsigned int raidID = raidunit(bp->b_dev);
685 RF_Raid_t *raidPtr;
686 struct raid_softc *rs = &raid_softc[raidID];
687 int wlabel;
688
689 if ((rs->sc_flags & RAIDF_INITED) ==0) {
690 bp->b_error = ENXIO;
691 bp->b_flags |= B_ERROR;
692 bp->b_resid = bp->b_bcount;
693 biodone(bp);
694 return;
695 }
696 if (raidID >= numraid || !raidPtrs[raidID]) {
697 bp->b_error = ENODEV;
698 bp->b_flags |= B_ERROR;
699 bp->b_resid = bp->b_bcount;
700 biodone(bp);
701 return;
702 }
703 raidPtr = raidPtrs[raidID];
704 if (!raidPtr->valid) {
705 bp->b_error = ENODEV;
706 bp->b_flags |= B_ERROR;
707 bp->b_resid = bp->b_bcount;
708 biodone(bp);
709 return;
710 }
711 if (bp->b_bcount == 0) {
712 db1_printf(("b_bcount is zero..\n"));
713 biodone(bp);
714 return;
715 }
716
717 /*
718 * Do bounds checking and adjust transfer. If there's an
719 * error, the bounds check will flag that for us.
720 */
721
722 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
723 if (DISKPART(bp->b_dev) != RAW_PART)
724 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
725 db1_printf(("Bounds check failed!!:%d %d\n",
726 (int) bp->b_blkno, (int) wlabel));
727 biodone(bp);
728 return;
729 }
730 s = splbio();
731
732 bp->b_resid = 0;
733
734 /* stuff it onto our queue */
735 BUFQ_PUT(&rs->buf_queue, bp);
736
737 raidstart(raidPtrs[raidID]);
738
739 splx(s);
740 }
741 /* ARGSUSED */
742 int
743 raidread(dev_t dev, struct uio *uio, int flags)
744 {
745 int unit = raidunit(dev);
746 struct raid_softc *rs;
747
748 if (unit >= numraid)
749 return (ENXIO);
750 rs = &raid_softc[unit];
751
752 if ((rs->sc_flags & RAIDF_INITED) == 0)
753 return (ENXIO);
754
755 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
756
757 }
758 /* ARGSUSED */
759 int
760 raidwrite(dev_t dev, struct uio *uio, int flags)
761 {
762 int unit = raidunit(dev);
763 struct raid_softc *rs;
764
765 if (unit >= numraid)
766 return (ENXIO);
767 rs = &raid_softc[unit];
768
769 if ((rs->sc_flags & RAIDF_INITED) == 0)
770 return (ENXIO);
771
772 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
773
774 }
775
776 int
777 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
778 {
779 int unit = raidunit(dev);
780 int error = 0;
781 int part, pmask;
782 struct raid_softc *rs;
783 RF_Config_t *k_cfg, *u_cfg;
784 RF_Raid_t *raidPtr;
785 RF_RaidDisk_t *diskPtr;
786 RF_AccTotals_t *totals;
787 RF_DeviceConfig_t *d_cfg, **ucfgp;
788 u_char *specific_buf;
789 int retcode = 0;
790 int column;
791 int raidid;
792 struct rf_recon_req *rrcopy, *rr;
793 RF_ComponentLabel_t *clabel;
794 RF_ComponentLabel_t ci_label;
795 RF_ComponentLabel_t **clabel_ptr;
796 RF_SingleComponent_t *sparePtr,*componentPtr;
797 RF_SingleComponent_t hot_spare;
798 RF_SingleComponent_t component;
799 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
800 int i, j, d;
801 #ifdef __HAVE_OLD_DISKLABEL
802 struct disklabel newlabel;
803 #endif
804
805 if (unit >= numraid)
806 return (ENXIO);
807 rs = &raid_softc[unit];
808 raidPtr = raidPtrs[unit];
809
810 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
811 (int) DISKPART(dev), (int) unit, (int) cmd));
812
813 /* Must be open for writes for these commands... */
814 switch (cmd) {
815 case DIOCSDINFO:
816 case DIOCWDINFO:
817 #ifdef __HAVE_OLD_DISKLABEL
818 case ODIOCWDINFO:
819 case ODIOCSDINFO:
820 #endif
821 case DIOCWLABEL:
822 if ((flag & FWRITE) == 0)
823 return (EBADF);
824 }
825
826 /* Must be initialized for these... */
827 switch (cmd) {
828 case DIOCGDINFO:
829 case DIOCSDINFO:
830 case DIOCWDINFO:
831 #ifdef __HAVE_OLD_DISKLABEL
832 case ODIOCGDINFO:
833 case ODIOCWDINFO:
834 case ODIOCSDINFO:
835 case ODIOCGDEFLABEL:
836 #endif
837 case DIOCGPART:
838 case DIOCWLABEL:
839 case DIOCGDEFLABEL:
840 case RAIDFRAME_SHUTDOWN:
841 case RAIDFRAME_REWRITEPARITY:
842 case RAIDFRAME_GET_INFO:
843 case RAIDFRAME_RESET_ACCTOTALS:
844 case RAIDFRAME_GET_ACCTOTALS:
845 case RAIDFRAME_KEEP_ACCTOTALS:
846 case RAIDFRAME_GET_SIZE:
847 case RAIDFRAME_FAIL_DISK:
848 case RAIDFRAME_COPYBACK:
849 case RAIDFRAME_CHECK_RECON_STATUS:
850 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
851 case RAIDFRAME_GET_COMPONENT_LABEL:
852 case RAIDFRAME_SET_COMPONENT_LABEL:
853 case RAIDFRAME_ADD_HOT_SPARE:
854 case RAIDFRAME_REMOVE_HOT_SPARE:
855 case RAIDFRAME_INIT_LABELS:
856 case RAIDFRAME_REBUILD_IN_PLACE:
857 case RAIDFRAME_CHECK_PARITY:
858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
859 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
860 case RAIDFRAME_CHECK_COPYBACK_STATUS:
861 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
862 case RAIDFRAME_SET_AUTOCONFIG:
863 case RAIDFRAME_SET_ROOT:
864 case RAIDFRAME_DELETE_COMPONENT:
865 case RAIDFRAME_INCORPORATE_HOT_SPARE:
866 if ((rs->sc_flags & RAIDF_INITED) == 0)
867 return (ENXIO);
868 }
869
870 switch (cmd) {
871
872 /* configure the system */
873 case RAIDFRAME_CONFIGURE:
874
875 if (raidPtr->valid) {
876 /* There is a valid RAID set running on this unit! */
877 printf("raid%d: Device already configured!\n",unit);
878 return(EINVAL);
879 }
880
881 /* copy-in the configuration information */
882 /* data points to a pointer to the configuration structure */
883
884 u_cfg = *((RF_Config_t **) data);
885 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
886 if (k_cfg == NULL) {
887 return (ENOMEM);
888 }
889 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
890 if (retcode) {
891 RF_Free(k_cfg, sizeof(RF_Config_t));
892 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
893 retcode));
894 return (retcode);
895 }
896 /* allocate a buffer for the layout-specific data, and copy it
897 * in */
898 if (k_cfg->layoutSpecificSize) {
899 if (k_cfg->layoutSpecificSize > 10000) {
900 /* sanity check */
901 RF_Free(k_cfg, sizeof(RF_Config_t));
902 return (EINVAL);
903 }
904 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
905 (u_char *));
906 if (specific_buf == NULL) {
907 RF_Free(k_cfg, sizeof(RF_Config_t));
908 return (ENOMEM);
909 }
910 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
911 k_cfg->layoutSpecificSize);
912 if (retcode) {
913 RF_Free(k_cfg, sizeof(RF_Config_t));
914 RF_Free(specific_buf,
915 k_cfg->layoutSpecificSize);
916 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
917 retcode));
918 return (retcode);
919 }
920 } else
921 specific_buf = NULL;
922 k_cfg->layoutSpecific = specific_buf;
923
924 /* should do some kind of sanity check on the configuration.
925 * Store the sum of all the bytes in the last byte? */
926
927 /* configure the system */
928
929 /*
930 * Clear the entire RAID descriptor, just to make sure
931 * there is no stale data left in the case of a
932 * reconfiguration
933 */
934 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
935 raidPtr->raidid = unit;
936
937 retcode = rf_Configure(raidPtr, k_cfg, NULL);
938
939 if (retcode == 0) {
940
941 /* allow this many simultaneous IO's to
942 this RAID device */
943 raidPtr->openings = RAIDOUTSTANDING;
944
945 raidinit(raidPtr);
946 rf_markalldirty(raidPtr);
947 }
948 /* free the buffers. No return code here. */
949 if (k_cfg->layoutSpecificSize) {
950 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
951 }
952 RF_Free(k_cfg, sizeof(RF_Config_t));
953
954 return (retcode);
955
956 /* shutdown the system */
957 case RAIDFRAME_SHUTDOWN:
958
959 if ((error = raidlock(rs)) != 0)
960 return (error);
961
962 /*
963 * If somebody has a partition mounted, we shouldn't
964 * shutdown.
965 */
966
967 part = DISKPART(dev);
968 pmask = (1 << part);
969 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
970 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
971 (rs->sc_dkdev.dk_copenmask & pmask))) {
972 raidunlock(rs);
973 return (EBUSY);
974 }
975
976 retcode = rf_Shutdown(raidPtr);
977
978 /* It's no longer initialized... */
979 rs->sc_flags &= ~RAIDF_INITED;
980
981 /* Detach the disk. */
982 disk_detach(&rs->sc_dkdev);
983
984 raidunlock(rs);
985
986 return (retcode);
987 case RAIDFRAME_GET_COMPONENT_LABEL:
988 clabel_ptr = (RF_ComponentLabel_t **) data;
989 /* need to read the component label for the disk indicated
990 by row,column in clabel */
991
992 /* For practice, let's get it directly fromdisk, rather
993 than from the in-core copy */
994 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
995 (RF_ComponentLabel_t *));
996 if (clabel == NULL)
997 return (ENOMEM);
998
999 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1000
1001 retcode = copyin( *clabel_ptr, clabel,
1002 sizeof(RF_ComponentLabel_t));
1003
1004 if (retcode) {
1005 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1006 return(retcode);
1007 }
1008
1009 clabel->row = 0; /* Don't allow looking at anything else.*/
1010
1011 column = clabel->column;
1012
1013 if ((column < 0) || (column >= raidPtr->numCol +
1014 raidPtr->numSpare)) {
1015 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1016 return(EINVAL);
1017 }
1018
1019 raidread_component_label(raidPtr->Disks[column].dev,
1020 raidPtr->raid_cinfo[column].ci_vp,
1021 clabel );
1022
1023 retcode = copyout(clabel, *clabel_ptr,
1024 sizeof(RF_ComponentLabel_t));
1025 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1026 return (retcode);
1027
1028 case RAIDFRAME_SET_COMPONENT_LABEL:
1029 clabel = (RF_ComponentLabel_t *) data;
1030
1031 /* XXX check the label for valid stuff... */
1032 /* Note that some things *should not* get modified --
1033 the user should be re-initing the labels instead of
1034 trying to patch things.
1035 */
1036
1037 raidid = raidPtr->raidid;
1038 #if DEBUG
1039 printf("raid%d: Got component label:\n", raidid);
1040 printf("raid%d: Version: %d\n", raidid, clabel->version);
1041 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1042 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1043 printf("raid%d: Column: %d\n", raidid, clabel->column);
1044 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1045 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1046 printf("raid%d: Status: %d\n", raidid, clabel->status);
1047 #endif
1048 clabel->row = 0;
1049 column = clabel->column;
1050
1051 if ((column < 0) || (column >= raidPtr->numCol)) {
1052 return(EINVAL);
1053 }
1054
1055 /* XXX this isn't allowed to do anything for now :-) */
1056
1057 /* XXX and before it is, we need to fill in the rest
1058 of the fields!?!?!?! */
1059 #if 0
1060 raidwrite_component_label(
1061 raidPtr->Disks[column].dev,
1062 raidPtr->raid_cinfo[column].ci_vp,
1063 clabel );
1064 #endif
1065 return (0);
1066
1067 case RAIDFRAME_INIT_LABELS:
1068 clabel = (RF_ComponentLabel_t *) data;
1069 /*
1070 we only want the serial number from
1071 the above. We get all the rest of the information
1072 from the config that was used to create this RAID
1073 set.
1074 */
1075
1076 raidPtr->serial_number = clabel->serial_number;
1077
1078 raid_init_component_label(raidPtr, &ci_label);
1079 ci_label.serial_number = clabel->serial_number;
1080 ci_label.row = 0; /* we dont' pretend to support more */
1081
1082 for(column=0;column<raidPtr->numCol;column++) {
1083 diskPtr = &raidPtr->Disks[column];
1084 if (!RF_DEAD_DISK(diskPtr->status)) {
1085 ci_label.partitionSize = diskPtr->partitionSize;
1086 ci_label.column = column;
1087 raidwrite_component_label(
1088 raidPtr->Disks[column].dev,
1089 raidPtr->raid_cinfo[column].ci_vp,
1090 &ci_label );
1091 }
1092 }
1093
1094 return (retcode);
1095 case RAIDFRAME_SET_AUTOCONFIG:
1096 d = rf_set_autoconfig(raidPtr, *(int *) data);
1097 printf("raid%d: New autoconfig value is: %d\n",
1098 raidPtr->raidid, d);
1099 *(int *) data = d;
1100 return (retcode);
1101
1102 case RAIDFRAME_SET_ROOT:
1103 d = rf_set_rootpartition(raidPtr, *(int *) data);
1104 printf("raid%d: New rootpartition value is: %d\n",
1105 raidPtr->raidid, d);
1106 *(int *) data = d;
1107 return (retcode);
1108
1109 /* initialize all parity */
1110 case RAIDFRAME_REWRITEPARITY:
1111
1112 if (raidPtr->Layout.map->faultsTolerated == 0) {
1113 /* Parity for RAID 0 is trivially correct */
1114 raidPtr->parity_good = RF_RAID_CLEAN;
1115 return(0);
1116 }
1117
1118 if (raidPtr->parity_rewrite_in_progress == 1) {
1119 /* Re-write is already in progress! */
1120 return(EINVAL);
1121 }
1122
1123 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1124 rf_RewriteParityThread,
1125 raidPtr,"raid_parity");
1126 return (retcode);
1127
1128
1129 case RAIDFRAME_ADD_HOT_SPARE:
1130 sparePtr = (RF_SingleComponent_t *) data;
1131 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1132 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1133 return(retcode);
1134
1135 case RAIDFRAME_REMOVE_HOT_SPARE:
1136 return(retcode);
1137
1138 case RAIDFRAME_DELETE_COMPONENT:
1139 componentPtr = (RF_SingleComponent_t *)data;
1140 memcpy( &component, componentPtr,
1141 sizeof(RF_SingleComponent_t));
1142 retcode = rf_delete_component(raidPtr, &component);
1143 return(retcode);
1144
1145 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1146 componentPtr = (RF_SingleComponent_t *)data;
1147 memcpy( &component, componentPtr,
1148 sizeof(RF_SingleComponent_t));
1149 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1150 return(retcode);
1151
1152 case RAIDFRAME_REBUILD_IN_PLACE:
1153
1154 if (raidPtr->Layout.map->faultsTolerated == 0) {
1155 /* Can't do this on a RAID 0!! */
1156 return(EINVAL);
1157 }
1158
1159 if (raidPtr->recon_in_progress == 1) {
1160 /* a reconstruct is already in progress! */
1161 return(EINVAL);
1162 }
1163
1164 componentPtr = (RF_SingleComponent_t *) data;
1165 memcpy( &component, componentPtr,
1166 sizeof(RF_SingleComponent_t));
1167 component.row = 0; /* we don't support any more */
1168 column = component.column;
1169
1170 if ((column < 0) || (column >= raidPtr->numCol)) {
1171 return(EINVAL);
1172 }
1173
1174 RF_LOCK_MUTEX(raidPtr->mutex);
1175 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1176 (raidPtr->numFailures > 0)) {
1177 /* XXX 0 above shouldn't be constant!!! */
1178 /* some component other than this has failed.
1179 Let's not make things worse than they already
1180 are... */
1181 printf("raid%d: Unable to reconstruct to disk at:\n",
1182 raidPtr->raidid);
1183 printf("raid%d: Col: %d Too many failures.\n",
1184 raidPtr->raidid, column);
1185 RF_UNLOCK_MUTEX(raidPtr->mutex);
1186 return (EINVAL);
1187 }
1188 if (raidPtr->Disks[column].status ==
1189 rf_ds_reconstructing) {
1190 printf("raid%d: Unable to reconstruct to disk at:\n",
1191 raidPtr->raidid);
1192 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1193
1194 RF_UNLOCK_MUTEX(raidPtr->mutex);
1195 return (EINVAL);
1196 }
1197 if (raidPtr->Disks[column].status == rf_ds_spared) {
1198 RF_UNLOCK_MUTEX(raidPtr->mutex);
1199 return (EINVAL);
1200 }
1201 RF_UNLOCK_MUTEX(raidPtr->mutex);
1202
1203 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1204 if (rrcopy == NULL)
1205 return(ENOMEM);
1206
1207 rrcopy->raidPtr = (void *) raidPtr;
1208 rrcopy->col = column;
1209
1210 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1211 rf_ReconstructInPlaceThread,
1212 rrcopy,"raid_reconip");
1213 return(retcode);
1214
1215 case RAIDFRAME_GET_INFO:
1216 if (!raidPtr->valid)
1217 return (ENODEV);
1218 ucfgp = (RF_DeviceConfig_t **) data;
1219 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1220 (RF_DeviceConfig_t *));
1221 if (d_cfg == NULL)
1222 return (ENOMEM);
1223 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1224 d_cfg->rows = 1; /* there is only 1 row now */
1225 d_cfg->cols = raidPtr->numCol;
1226 d_cfg->ndevs = raidPtr->numCol;
1227 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1228 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1229 return (ENOMEM);
1230 }
1231 d_cfg->nspares = raidPtr->numSpare;
1232 if (d_cfg->nspares >= RF_MAX_DISKS) {
1233 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1234 return (ENOMEM);
1235 }
1236 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1237 d = 0;
1238 for (j = 0; j < d_cfg->cols; j++) {
1239 d_cfg->devs[d] = raidPtr->Disks[j];
1240 d++;
1241 }
1242 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1243 d_cfg->spares[i] = raidPtr->Disks[j];
1244 }
1245 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1246 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1247
1248 return (retcode);
1249
1250 case RAIDFRAME_CHECK_PARITY:
1251 *(int *) data = raidPtr->parity_good;
1252 return (0);
1253
1254 case RAIDFRAME_RESET_ACCTOTALS:
1255 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1256 return (0);
1257
1258 case RAIDFRAME_GET_ACCTOTALS:
1259 totals = (RF_AccTotals_t *) data;
1260 *totals = raidPtr->acc_totals;
1261 return (0);
1262
1263 case RAIDFRAME_KEEP_ACCTOTALS:
1264 raidPtr->keep_acc_totals = *(int *)data;
1265 return (0);
1266
1267 case RAIDFRAME_GET_SIZE:
1268 *(int *) data = raidPtr->totalSectors;
1269 return (0);
1270
1271 /* fail a disk & optionally start reconstruction */
1272 case RAIDFRAME_FAIL_DISK:
1273
1274 if (raidPtr->Layout.map->faultsTolerated == 0) {
1275 /* Can't do this on a RAID 0!! */
1276 return(EINVAL);
1277 }
1278
1279 rr = (struct rf_recon_req *) data;
1280 rr->row = 0;
1281 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1282 return (EINVAL);
1283
1284
1285 RF_LOCK_MUTEX(raidPtr->mutex);
1286 if ((raidPtr->Disks[rr->col].status ==
1287 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1288 /* some other component has failed. Let's not make
1289 things worse. XXX wrong for RAID6 */
1290 RF_UNLOCK_MUTEX(raidPtr->mutex);
1291 return (EINVAL);
1292 }
1293 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1294 /* Can't fail a spared disk! */
1295 RF_UNLOCK_MUTEX(raidPtr->mutex);
1296 return (EINVAL);
1297 }
1298 RF_UNLOCK_MUTEX(raidPtr->mutex);
1299
1300 /* make a copy of the recon request so that we don't rely on
1301 * the user's buffer */
1302 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1303 if (rrcopy == NULL)
1304 return(ENOMEM);
1305 memcpy(rrcopy, rr, sizeof(*rr));
1306 rrcopy->raidPtr = (void *) raidPtr;
1307
1308 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1309 rf_ReconThread,
1310 rrcopy,"raid_recon");
1311 return (0);
1312
1313 /* invoke a copyback operation after recon on whatever disk
1314 * needs it, if any */
1315 case RAIDFRAME_COPYBACK:
1316
1317 if (raidPtr->Layout.map->faultsTolerated == 0) {
1318 /* This makes no sense on a RAID 0!! */
1319 return(EINVAL);
1320 }
1321
1322 if (raidPtr->copyback_in_progress == 1) {
1323 /* Copyback is already in progress! */
1324 return(EINVAL);
1325 }
1326
1327 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1328 rf_CopybackThread,
1329 raidPtr,"raid_copyback");
1330 return (retcode);
1331
1332 /* return the percentage completion of reconstruction */
1333 case RAIDFRAME_CHECK_RECON_STATUS:
1334 if (raidPtr->Layout.map->faultsTolerated == 0) {
1335 /* This makes no sense on a RAID 0, so tell the
1336 user it's done. */
1337 *(int *) data = 100;
1338 return(0);
1339 }
1340 if (raidPtr->status != rf_rs_reconstructing)
1341 *(int *) data = 100;
1342 else {
1343 if (raidPtr->reconControl->numRUsTotal > 0) {
1344 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1345 } else {
1346 *(int *) data = 0;
1347 }
1348 }
1349 return (0);
1350 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1351 progressInfoPtr = (RF_ProgressInfo_t **) data;
1352 if (raidPtr->status != rf_rs_reconstructing) {
1353 progressInfo.remaining = 0;
1354 progressInfo.completed = 100;
1355 progressInfo.total = 100;
1356 } else {
1357 progressInfo.total =
1358 raidPtr->reconControl->numRUsTotal;
1359 progressInfo.completed =
1360 raidPtr->reconControl->numRUsComplete;
1361 progressInfo.remaining = progressInfo.total -
1362 progressInfo.completed;
1363 }
1364 retcode = copyout(&progressInfo, *progressInfoPtr,
1365 sizeof(RF_ProgressInfo_t));
1366 return (retcode);
1367
1368 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1369 if (raidPtr->Layout.map->faultsTolerated == 0) {
1370 /* This makes no sense on a RAID 0, so tell the
1371 user it's done. */
1372 *(int *) data = 100;
1373 return(0);
1374 }
1375 if (raidPtr->parity_rewrite_in_progress == 1) {
1376 *(int *) data = 100 *
1377 raidPtr->parity_rewrite_stripes_done /
1378 raidPtr->Layout.numStripe;
1379 } else {
1380 *(int *) data = 100;
1381 }
1382 return (0);
1383
1384 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1385 progressInfoPtr = (RF_ProgressInfo_t **) data;
1386 if (raidPtr->parity_rewrite_in_progress == 1) {
1387 progressInfo.total = raidPtr->Layout.numStripe;
1388 progressInfo.completed =
1389 raidPtr->parity_rewrite_stripes_done;
1390 progressInfo.remaining = progressInfo.total -
1391 progressInfo.completed;
1392 } else {
1393 progressInfo.remaining = 0;
1394 progressInfo.completed = 100;
1395 progressInfo.total = 100;
1396 }
1397 retcode = copyout(&progressInfo, *progressInfoPtr,
1398 sizeof(RF_ProgressInfo_t));
1399 return (retcode);
1400
1401 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1402 if (raidPtr->Layout.map->faultsTolerated == 0) {
1403 /* This makes no sense on a RAID 0 */
1404 *(int *) data = 100;
1405 return(0);
1406 }
1407 if (raidPtr->copyback_in_progress == 1) {
1408 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1409 raidPtr->Layout.numStripe;
1410 } else {
1411 *(int *) data = 100;
1412 }
1413 return (0);
1414
1415 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1416 progressInfoPtr = (RF_ProgressInfo_t **) data;
1417 if (raidPtr->copyback_in_progress == 1) {
1418 progressInfo.total = raidPtr->Layout.numStripe;
1419 progressInfo.completed =
1420 raidPtr->copyback_stripes_done;
1421 progressInfo.remaining = progressInfo.total -
1422 progressInfo.completed;
1423 } else {
1424 progressInfo.remaining = 0;
1425 progressInfo.completed = 100;
1426 progressInfo.total = 100;
1427 }
1428 retcode = copyout(&progressInfo, *progressInfoPtr,
1429 sizeof(RF_ProgressInfo_t));
1430 return (retcode);
1431
1432 /* the sparetable daemon calls this to wait for the kernel to
1433 * need a spare table. this ioctl does not return until a
1434 * spare table is needed. XXX -- calling mpsleep here in the
1435 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1436 * -- I should either compute the spare table in the kernel,
1437 * or have a different -- XXX XXX -- interface (a different
1438 * character device) for delivering the table -- XXX */
1439 #if 0
1440 case RAIDFRAME_SPARET_WAIT:
1441 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1442 while (!rf_sparet_wait_queue)
1443 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1444 waitreq = rf_sparet_wait_queue;
1445 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1446 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1447
1448 /* structure assignment */
1449 *((RF_SparetWait_t *) data) = *waitreq;
1450
1451 RF_Free(waitreq, sizeof(*waitreq));
1452 return (0);
1453
1454 /* wakes up a process waiting on SPARET_WAIT and puts an error
1455 * code in it that will cause the dameon to exit */
1456 case RAIDFRAME_ABORT_SPARET_WAIT:
1457 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1458 waitreq->fcol = -1;
1459 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1460 waitreq->next = rf_sparet_wait_queue;
1461 rf_sparet_wait_queue = waitreq;
1462 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1463 wakeup(&rf_sparet_wait_queue);
1464 return (0);
1465
1466 /* used by the spare table daemon to deliver a spare table
1467 * into the kernel */
1468 case RAIDFRAME_SEND_SPARET:
1469
1470 /* install the spare table */
1471 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1472
1473 /* respond to the requestor. the return status of the spare
1474 * table installation is passed in the "fcol" field */
1475 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1476 waitreq->fcol = retcode;
1477 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1478 waitreq->next = rf_sparet_resp_queue;
1479 rf_sparet_resp_queue = waitreq;
1480 wakeup(&rf_sparet_resp_queue);
1481 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1482
1483 return (retcode);
1484 #endif
1485
1486 default:
1487 break; /* fall through to the os-specific code below */
1488
1489 }
1490
1491 if (!raidPtr->valid)
1492 return (EINVAL);
1493
1494 /*
1495 * Add support for "regular" device ioctls here.
1496 */
1497
1498 switch (cmd) {
1499 case DIOCGDINFO:
1500 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1501 break;
1502 #ifdef __HAVE_OLD_DISKLABEL
1503 case ODIOCGDINFO:
1504 newlabel = *(rs->sc_dkdev.dk_label);
1505 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1506 return ENOTTY;
1507 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1508 break;
1509 #endif
1510
1511 case DIOCGPART:
1512 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1513 ((struct partinfo *) data)->part =
1514 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1515 break;
1516
1517 case DIOCWDINFO:
1518 case DIOCSDINFO:
1519 #ifdef __HAVE_OLD_DISKLABEL
1520 case ODIOCWDINFO:
1521 case ODIOCSDINFO:
1522 #endif
1523 {
1524 struct disklabel *lp;
1525 #ifdef __HAVE_OLD_DISKLABEL
1526 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1527 memset(&newlabel, 0, sizeof newlabel);
1528 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1529 lp = &newlabel;
1530 } else
1531 #endif
1532 lp = (struct disklabel *)data;
1533
1534 if ((error = raidlock(rs)) != 0)
1535 return (error);
1536
1537 rs->sc_flags |= RAIDF_LABELLING;
1538
1539 error = setdisklabel(rs->sc_dkdev.dk_label,
1540 lp, 0, rs->sc_dkdev.dk_cpulabel);
1541 if (error == 0) {
1542 if (cmd == DIOCWDINFO
1543 #ifdef __HAVE_OLD_DISKLABEL
1544 || cmd == ODIOCWDINFO
1545 #endif
1546 )
1547 error = writedisklabel(RAIDLABELDEV(dev),
1548 raidstrategy, rs->sc_dkdev.dk_label,
1549 rs->sc_dkdev.dk_cpulabel);
1550 }
1551 rs->sc_flags &= ~RAIDF_LABELLING;
1552
1553 raidunlock(rs);
1554
1555 if (error)
1556 return (error);
1557 break;
1558 }
1559
1560 case DIOCWLABEL:
1561 if (*(int *) data != 0)
1562 rs->sc_flags |= RAIDF_WLABEL;
1563 else
1564 rs->sc_flags &= ~RAIDF_WLABEL;
1565 break;
1566
1567 case DIOCGDEFLABEL:
1568 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1569 break;
1570
1571 #ifdef __HAVE_OLD_DISKLABEL
1572 case ODIOCGDEFLABEL:
1573 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1574 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1575 return ENOTTY;
1576 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1577 break;
1578 #endif
1579
1580 default:
1581 retcode = ENOTTY;
1582 }
1583 return (retcode);
1584
1585 }
1586
1587
1588 /* raidinit -- complete the rest of the initialization for the
1589 RAIDframe device. */
1590
1591
1592 static void
1593 raidinit(RF_Raid_t *raidPtr)
1594 {
1595 struct raid_softc *rs;
1596 int unit;
1597
1598 unit = raidPtr->raidid;
1599
1600 rs = &raid_softc[unit];
1601
1602 /* XXX should check return code first... */
1603 rs->sc_flags |= RAIDF_INITED;
1604
1605 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1606
1607 rs->sc_dkdev.dk_name = rs->sc_xname;
1608
1609 /* disk_attach actually creates space for the CPU disklabel, among
1610 * other things, so it's critical to call this *BEFORE* we try putzing
1611 * with disklabels. */
1612
1613 disk_attach(&rs->sc_dkdev);
1614
1615 /* XXX There may be a weird interaction here between this, and
1616 * protectedSectors, as used in RAIDframe. */
1617
1618 rs->sc_size = raidPtr->totalSectors;
1619 }
1620 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1621 /* wake up the daemon & tell it to get us a spare table
1622 * XXX
1623 * the entries in the queues should be tagged with the raidPtr
1624 * so that in the extremely rare case that two recons happen at once,
1625 * we know for which device were requesting a spare table
1626 * XXX
1627 *
1628 * XXX This code is not currently used. GO
1629 */
1630 int
1631 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1632 {
1633 int retcode;
1634
1635 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1636 req->next = rf_sparet_wait_queue;
1637 rf_sparet_wait_queue = req;
1638 wakeup(&rf_sparet_wait_queue);
1639
1640 /* mpsleep unlocks the mutex */
1641 while (!rf_sparet_resp_queue) {
1642 tsleep(&rf_sparet_resp_queue, PRIBIO,
1643 "raidframe getsparetable", 0);
1644 }
1645 req = rf_sparet_resp_queue;
1646 rf_sparet_resp_queue = req->next;
1647 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1648
1649 retcode = req->fcol;
1650 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1651 * alloc'd */
1652 return (retcode);
1653 }
1654 #endif
1655
1656 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1657 * bp & passes it down.
1658 * any calls originating in the kernel must use non-blocking I/O
1659 * do some extra sanity checking to return "appropriate" error values for
1660 * certain conditions (to make some standard utilities work)
1661 *
1662 * Formerly known as: rf_DoAccessKernel
1663 */
1664 void
1665 raidstart(RF_Raid_t *raidPtr)
1666 {
1667 RF_SectorCount_t num_blocks, pb, sum;
1668 RF_RaidAddr_t raid_addr;
1669 struct partition *pp;
1670 daddr_t blocknum;
1671 int unit;
1672 struct raid_softc *rs;
1673 int do_async;
1674 struct buf *bp;
1675
1676 unit = raidPtr->raidid;
1677 rs = &raid_softc[unit];
1678
1679 /* quick check to see if anything has died recently */
1680 RF_LOCK_MUTEX(raidPtr->mutex);
1681 if (raidPtr->numNewFailures > 0) {
1682 RF_UNLOCK_MUTEX(raidPtr->mutex);
1683 rf_update_component_labels(raidPtr,
1684 RF_NORMAL_COMPONENT_UPDATE);
1685 RF_LOCK_MUTEX(raidPtr->mutex);
1686 raidPtr->numNewFailures--;
1687 }
1688
1689 /* Check to see if we're at the limit... */
1690 while (raidPtr->openings > 0) {
1691 RF_UNLOCK_MUTEX(raidPtr->mutex);
1692
1693 /* get the next item, if any, from the queue */
1694 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1695 /* nothing more to do */
1696 return;
1697 }
1698
1699 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1700 * partition.. Need to make it absolute to the underlying
1701 * device.. */
1702
1703 blocknum = bp->b_blkno;
1704 if (DISKPART(bp->b_dev) != RAW_PART) {
1705 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1706 blocknum += pp->p_offset;
1707 }
1708
1709 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1710 (int) blocknum));
1711
1712 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1713 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1714
1715 /* *THIS* is where we adjust what block we're going to...
1716 * but DO NOT TOUCH bp->b_blkno!!! */
1717 raid_addr = blocknum;
1718
1719 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1720 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1721 sum = raid_addr + num_blocks + pb;
1722 if (1 || rf_debugKernelAccess) {
1723 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1724 (int) raid_addr, (int) sum, (int) num_blocks,
1725 (int) pb, (int) bp->b_resid));
1726 }
1727 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1728 || (sum < num_blocks) || (sum < pb)) {
1729 bp->b_error = ENOSPC;
1730 bp->b_flags |= B_ERROR;
1731 bp->b_resid = bp->b_bcount;
1732 biodone(bp);
1733 RF_LOCK_MUTEX(raidPtr->mutex);
1734 continue;
1735 }
1736 /*
1737 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1738 */
1739
1740 if (bp->b_bcount & raidPtr->sectorMask) {
1741 bp->b_error = EINVAL;
1742 bp->b_flags |= B_ERROR;
1743 bp->b_resid = bp->b_bcount;
1744 biodone(bp);
1745 RF_LOCK_MUTEX(raidPtr->mutex);
1746 continue;
1747
1748 }
1749 db1_printf(("Calling DoAccess..\n"));
1750
1751
1752 RF_LOCK_MUTEX(raidPtr->mutex);
1753 raidPtr->openings--;
1754 RF_UNLOCK_MUTEX(raidPtr->mutex);
1755
1756 /*
1757 * Everything is async.
1758 */
1759 do_async = 1;
1760
1761 disk_busy(&rs->sc_dkdev);
1762
1763 /* XXX we're still at splbio() here... do we *really*
1764 need to be? */
1765
1766 /* don't ever condition on bp->b_flags & B_WRITE.
1767 * always condition on B_READ instead */
1768
1769 bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1770 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1771 do_async, raid_addr, num_blocks,
1772 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1773
1774 if (bp->b_error) {
1775 bp->b_flags |= B_ERROR;
1776 }
1777
1778 RF_LOCK_MUTEX(raidPtr->mutex);
1779 }
1780 RF_UNLOCK_MUTEX(raidPtr->mutex);
1781 }
1782
1783
1784
1785
1786 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1787
1788 int
1789 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1790 {
1791 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1792 struct buf *bp;
1793 struct raidbuf *raidbp = NULL;
1794
1795 req->queue = queue;
1796
1797 #if DIAGNOSTIC
1798 if (queue->raidPtr->raidid >= numraid) {
1799 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1800 numraid);
1801 panic("Invalid Unit number in rf_DispatchKernelIO");
1802 }
1803 #endif
1804
1805 bp = req->bp;
1806 #if 1
1807 /* XXX when there is a physical disk failure, someone is passing us a
1808 * buffer that contains old stuff!! Attempt to deal with this problem
1809 * without taking a performance hit... (not sure where the real bug
1810 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1811
1812 if (bp->b_flags & B_ERROR) {
1813 bp->b_flags &= ~B_ERROR;
1814 }
1815 if (bp->b_error != 0) {
1816 bp->b_error = 0;
1817 }
1818 #endif
1819 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1820 if (raidbp == NULL) {
1821 bp->b_flags |= B_ERROR;
1822 bp->b_error = ENOMEM;
1823 return (ENOMEM);
1824 }
1825 BUF_INIT(&raidbp->rf_buf);
1826
1827 /*
1828 * context for raidiodone
1829 */
1830 raidbp->rf_obp = bp;
1831 raidbp->req = req;
1832
1833 BIO_COPYPRIO(&raidbp->rf_buf, bp);
1834
1835 switch (req->type) {
1836 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1837 /* XXX need to do something extra here.. */
1838 /* I'm leaving this in, as I've never actually seen it used,
1839 * and I'd like folks to report it... GO */
1840 printf(("WAKEUP CALLED\n"));
1841 queue->numOutstanding++;
1842
1843 /* XXX need to glue the original buffer into this?? */
1844
1845 KernelWakeupFunc(&raidbp->rf_buf);
1846 break;
1847
1848 case RF_IO_TYPE_READ:
1849 case RF_IO_TYPE_WRITE:
1850 #if RF_ACC_TRACE > 0
1851 if (req->tracerec) {
1852 RF_ETIMER_START(req->tracerec->timer);
1853 }
1854 #endif
1855 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1856 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1857 req->sectorOffset, req->numSector,
1858 req->buf, KernelWakeupFunc, (void *) req,
1859 queue->raidPtr->logBytesPerSector, req->b_proc);
1860
1861 if (rf_debugKernelAccess) {
1862 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1863 (long) bp->b_blkno));
1864 }
1865 queue->numOutstanding++;
1866 queue->last_deq_sector = req->sectorOffset;
1867 /* acc wouldn't have been let in if there were any pending
1868 * reqs at any other priority */
1869 queue->curPriority = req->priority;
1870
1871 db1_printf(("Going for %c to unit %d col %d\n",
1872 req->type, queue->raidPtr->raidid,
1873 queue->col));
1874 db1_printf(("sector %d count %d (%d bytes) %d\n",
1875 (int) req->sectorOffset, (int) req->numSector,
1876 (int) (req->numSector <<
1877 queue->raidPtr->logBytesPerSector),
1878 (int) queue->raidPtr->logBytesPerSector));
1879 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1880 raidbp->rf_buf.b_vp->v_numoutput++;
1881 }
1882 VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
1883
1884 break;
1885
1886 default:
1887 panic("bad req->type in rf_DispatchKernelIO");
1888 }
1889 db1_printf(("Exiting from DispatchKernelIO\n"));
1890
1891 return (0);
1892 }
1893 /* this is the callback function associated with a I/O invoked from
1894 kernel code.
1895 */
1896 static void
1897 KernelWakeupFunc(struct buf *vbp)
1898 {
1899 RF_DiskQueueData_t *req = NULL;
1900 RF_DiskQueue_t *queue;
1901 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1902 struct buf *bp;
1903 int s;
1904
1905 s = splbio();
1906 db1_printf(("recovering the request queue:\n"));
1907 req = raidbp->req;
1908
1909 bp = raidbp->rf_obp;
1910
1911 queue = (RF_DiskQueue_t *) req->queue;
1912
1913 if (raidbp->rf_buf.b_flags & B_ERROR) {
1914 bp->b_flags |= B_ERROR;
1915 bp->b_error = raidbp->rf_buf.b_error ?
1916 raidbp->rf_buf.b_error : EIO;
1917 }
1918
1919 /* XXX methinks this could be wrong... */
1920 #if 1
1921 bp->b_resid = raidbp->rf_buf.b_resid;
1922 #endif
1923 #if RF_ACC_TRACE > 0
1924 if (req->tracerec) {
1925 RF_ETIMER_STOP(req->tracerec->timer);
1926 RF_ETIMER_EVAL(req->tracerec->timer);
1927 RF_LOCK_MUTEX(rf_tracing_mutex);
1928 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1929 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1930 req->tracerec->num_phys_ios++;
1931 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1932 }
1933 #endif
1934 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1935
1936 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1937 * ballistic, and mark the component as hosed... */
1938
1939 if (bp->b_flags & B_ERROR) {
1940 /* Mark the disk as dead */
1941 /* but only mark it once... */
1942 if (queue->raidPtr->Disks[queue->col].status ==
1943 rf_ds_optimal) {
1944 printf("raid%d: IO Error. Marking %s as failed.\n",
1945 queue->raidPtr->raidid,
1946 queue->raidPtr->Disks[queue->col].devname);
1947 queue->raidPtr->Disks[queue->col].status =
1948 rf_ds_failed;
1949 queue->raidPtr->status = rf_rs_degraded;
1950 queue->raidPtr->numFailures++;
1951 queue->raidPtr->numNewFailures++;
1952 } else { /* Disk is already dead... */
1953 /* printf("Disk already marked as dead!\n"); */
1954 }
1955
1956 }
1957
1958 pool_put(&raidframe_cbufpool, raidbp);
1959
1960 /* Fill in the error value */
1961
1962 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1963
1964 simple_lock(&queue->raidPtr->iodone_lock);
1965
1966 /* Drop this one on the "finished" queue... */
1967 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1968
1969 /* Let the raidio thread know there is work to be done. */
1970 wakeup(&(queue->raidPtr->iodone));
1971
1972 simple_unlock(&queue->raidPtr->iodone_lock);
1973
1974 splx(s);
1975 }
1976
1977
1978
1979 /*
1980 * initialize a buf structure for doing an I/O in the kernel.
1981 */
1982 static void
1983 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
1984 RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
1985 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
1986 struct proc *b_proc)
1987 {
1988 /* bp->b_flags = B_PHYS | rw_flag; */
1989 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
1990 bp->b_bcount = numSect << logBytesPerSector;
1991 bp->b_bufsize = bp->b_bcount;
1992 bp->b_error = 0;
1993 bp->b_dev = dev;
1994 bp->b_data = buf;
1995 bp->b_blkno = startSect;
1996 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
1997 if (bp->b_bcount == 0) {
1998 panic("bp->b_bcount is zero in InitBP!!");
1999 }
2000 bp->b_proc = b_proc;
2001 bp->b_iodone = cbFunc;
2002 bp->b_vp = b_vp;
2003
2004 }
2005
2006 static void
2007 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2008 struct disklabel *lp)
2009 {
2010 memset(lp, 0, sizeof(*lp));
2011
2012 /* fabricate a label... */
2013 lp->d_secperunit = raidPtr->totalSectors;
2014 lp->d_secsize = raidPtr->bytesPerSector;
2015 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2016 lp->d_ntracks = 4 * raidPtr->numCol;
2017 lp->d_ncylinders = raidPtr->totalSectors /
2018 (lp->d_nsectors * lp->d_ntracks);
2019 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2020
2021 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2022 lp->d_type = DTYPE_RAID;
2023 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2024 lp->d_rpm = 3600;
2025 lp->d_interleave = 1;
2026 lp->d_flags = 0;
2027
2028 lp->d_partitions[RAW_PART].p_offset = 0;
2029 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2030 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2031 lp->d_npartitions = RAW_PART + 1;
2032
2033 lp->d_magic = DISKMAGIC;
2034 lp->d_magic2 = DISKMAGIC;
2035 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2036
2037 }
2038 /*
2039 * Read the disklabel from the raid device. If one is not present, fake one
2040 * up.
2041 */
2042 static void
2043 raidgetdisklabel(dev_t dev)
2044 {
2045 int unit = raidunit(dev);
2046 struct raid_softc *rs = &raid_softc[unit];
2047 const char *errstring;
2048 struct disklabel *lp = rs->sc_dkdev.dk_label;
2049 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2050 RF_Raid_t *raidPtr;
2051
2052 db1_printf(("Getting the disklabel...\n"));
2053
2054 memset(clp, 0, sizeof(*clp));
2055
2056 raidPtr = raidPtrs[unit];
2057
2058 raidgetdefaultlabel(raidPtr, rs, lp);
2059
2060 /*
2061 * Call the generic disklabel extraction routine.
2062 */
2063 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2064 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2065 if (errstring)
2066 raidmakedisklabel(rs);
2067 else {
2068 int i;
2069 struct partition *pp;
2070
2071 /*
2072 * Sanity check whether the found disklabel is valid.
2073 *
2074 * This is necessary since total size of the raid device
2075 * may vary when an interleave is changed even though exactly
2076 * same componets are used, and old disklabel may used
2077 * if that is found.
2078 */
2079 if (lp->d_secperunit != rs->sc_size)
2080 printf("raid%d: WARNING: %s: "
2081 "total sector size in disklabel (%d) != "
2082 "the size of raid (%ld)\n", unit, rs->sc_xname,
2083 lp->d_secperunit, (long) rs->sc_size);
2084 for (i = 0; i < lp->d_npartitions; i++) {
2085 pp = &lp->d_partitions[i];
2086 if (pp->p_offset + pp->p_size > rs->sc_size)
2087 printf("raid%d: WARNING: %s: end of partition `%c' "
2088 "exceeds the size of raid (%ld)\n",
2089 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2090 }
2091 }
2092
2093 }
2094 /*
2095 * Take care of things one might want to take care of in the event
2096 * that a disklabel isn't present.
2097 */
2098 static void
2099 raidmakedisklabel(struct raid_softc *rs)
2100 {
2101 struct disklabel *lp = rs->sc_dkdev.dk_label;
2102 db1_printf(("Making a label..\n"));
2103
2104 /*
2105 * For historical reasons, if there's no disklabel present
2106 * the raw partition must be marked FS_BSDFFS.
2107 */
2108
2109 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2110
2111 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2112
2113 lp->d_checksum = dkcksum(lp);
2114 }
2115 /*
2116 * Lookup the provided name in the filesystem. If the file exists,
2117 * is a valid block device, and isn't being used by anyone else,
2118 * set *vpp to the file's vnode.
2119 * You'll find the original of this in ccd.c
2120 */
2121 int
2122 raidlookup(char *path, struct proc *p, struct vnode **vpp)
2123 {
2124 struct nameidata nd;
2125 struct vnode *vp;
2126 struct vattr va;
2127 int error;
2128
2129 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2130 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2131 return (error);
2132 }
2133 vp = nd.ni_vp;
2134 if (vp->v_usecount > 1) {
2135 VOP_UNLOCK(vp, 0);
2136 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2137 return (EBUSY);
2138 }
2139 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2140 VOP_UNLOCK(vp, 0);
2141 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2142 return (error);
2143 }
2144 /* XXX: eventually we should handle VREG, too. */
2145 if (va.va_type != VBLK) {
2146 VOP_UNLOCK(vp, 0);
2147 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2148 return (ENOTBLK);
2149 }
2150 VOP_UNLOCK(vp, 0);
2151 *vpp = vp;
2152 return (0);
2153 }
2154 /*
2155 * Wait interruptibly for an exclusive lock.
2156 *
2157 * XXX
2158 * Several drivers do this; it should be abstracted and made MP-safe.
2159 * (Hmm... where have we seen this warning before :-> GO )
2160 */
2161 static int
2162 raidlock(struct raid_softc *rs)
2163 {
2164 int error;
2165
2166 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2167 rs->sc_flags |= RAIDF_WANTED;
2168 if ((error =
2169 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2170 return (error);
2171 }
2172 rs->sc_flags |= RAIDF_LOCKED;
2173 return (0);
2174 }
2175 /*
2176 * Unlock and wake up any waiters.
2177 */
2178 static void
2179 raidunlock(struct raid_softc *rs)
2180 {
2181
2182 rs->sc_flags &= ~RAIDF_LOCKED;
2183 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2184 rs->sc_flags &= ~RAIDF_WANTED;
2185 wakeup(rs);
2186 }
2187 }
2188
2189
2190 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2191 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2192
2193 int
2194 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2195 {
2196 RF_ComponentLabel_t clabel;
2197 raidread_component_label(dev, b_vp, &clabel);
2198 clabel.mod_counter = mod_counter;
2199 clabel.clean = RF_RAID_CLEAN;
2200 raidwrite_component_label(dev, b_vp, &clabel);
2201 return(0);
2202 }
2203
2204
2205 int
2206 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2207 {
2208 RF_ComponentLabel_t clabel;
2209 raidread_component_label(dev, b_vp, &clabel);
2210 clabel.mod_counter = mod_counter;
2211 clabel.clean = RF_RAID_DIRTY;
2212 raidwrite_component_label(dev, b_vp, &clabel);
2213 return(0);
2214 }
2215
2216 /* ARGSUSED */
2217 int
2218 raidread_component_label(dev_t dev, struct vnode *b_vp,
2219 RF_ComponentLabel_t *clabel)
2220 {
2221 struct buf *bp;
2222 const struct bdevsw *bdev;
2223 int error;
2224
2225 /* XXX should probably ensure that we don't try to do this if
2226 someone has changed rf_protected_sectors. */
2227
2228 if (b_vp == NULL) {
2229 /* For whatever reason, this component is not valid.
2230 Don't try to read a component label from it. */
2231 return(EINVAL);
2232 }
2233
2234 /* get a block of the appropriate size... */
2235 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2236 bp->b_dev = dev;
2237
2238 /* get our ducks in a row for the read */
2239 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2240 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2241 bp->b_flags |= B_READ;
2242 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2243
2244 bdev = bdevsw_lookup(bp->b_dev);
2245 if (bdev == NULL)
2246 return (ENXIO);
2247 (*bdev->d_strategy)(bp);
2248
2249 error = biowait(bp);
2250
2251 if (!error) {
2252 memcpy(clabel, bp->b_data,
2253 sizeof(RF_ComponentLabel_t));
2254 }
2255
2256 brelse(bp);
2257 return(error);
2258 }
2259 /* ARGSUSED */
2260 int
2261 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2262 RF_ComponentLabel_t *clabel)
2263 {
2264 struct buf *bp;
2265 const struct bdevsw *bdev;
2266 int error;
2267
2268 /* get a block of the appropriate size... */
2269 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2270 bp->b_dev = dev;
2271
2272 /* get our ducks in a row for the write */
2273 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2274 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2275 bp->b_flags |= B_WRITE;
2276 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2277
2278 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2279
2280 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2281
2282 bdev = bdevsw_lookup(bp->b_dev);
2283 if (bdev == NULL)
2284 return (ENXIO);
2285 (*bdev->d_strategy)(bp);
2286 error = biowait(bp);
2287 brelse(bp);
2288 if (error) {
2289 #if 1
2290 printf("Failed to write RAID component info!\n");
2291 #endif
2292 }
2293
2294 return(error);
2295 }
2296
2297 void
2298 rf_markalldirty(RF_Raid_t *raidPtr)
2299 {
2300 RF_ComponentLabel_t clabel;
2301 int sparecol;
2302 int c;
2303 int j;
2304 int scol = -1;
2305
2306 raidPtr->mod_counter++;
2307 for (c = 0; c < raidPtr->numCol; c++) {
2308 /* we don't want to touch (at all) a disk that has
2309 failed */
2310 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2311 raidread_component_label(
2312 raidPtr->Disks[c].dev,
2313 raidPtr->raid_cinfo[c].ci_vp,
2314 &clabel);
2315 if (clabel.status == rf_ds_spared) {
2316 /* XXX do something special...
2317 but whatever you do, don't
2318 try to access it!! */
2319 } else {
2320 raidmarkdirty(
2321 raidPtr->Disks[c].dev,
2322 raidPtr->raid_cinfo[c].ci_vp,
2323 raidPtr->mod_counter);
2324 }
2325 }
2326 }
2327
2328 for( c = 0; c < raidPtr->numSpare ; c++) {
2329 sparecol = raidPtr->numCol + c;
2330 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2331 /*
2332
2333 we claim this disk is "optimal" if it's
2334 rf_ds_used_spare, as that means it should be
2335 directly substitutable for the disk it replaced.
2336 We note that too...
2337
2338 */
2339
2340 for(j=0;j<raidPtr->numCol;j++) {
2341 if (raidPtr->Disks[j].spareCol == sparecol) {
2342 scol = j;
2343 break;
2344 }
2345 }
2346
2347 raidread_component_label(
2348 raidPtr->Disks[sparecol].dev,
2349 raidPtr->raid_cinfo[sparecol].ci_vp,
2350 &clabel);
2351 /* make sure status is noted */
2352
2353 raid_init_component_label(raidPtr, &clabel);
2354
2355 clabel.row = 0;
2356 clabel.column = scol;
2357 /* Note: we *don't* change status from rf_ds_used_spare
2358 to rf_ds_optimal */
2359 /* clabel.status = rf_ds_optimal; */
2360
2361 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2362 raidPtr->raid_cinfo[sparecol].ci_vp,
2363 raidPtr->mod_counter);
2364 }
2365 }
2366 }
2367
2368
2369 void
2370 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2371 {
2372 RF_ComponentLabel_t clabel;
2373 int sparecol;
2374 int c;
2375 int j;
2376 int scol;
2377
2378 scol = -1;
2379
2380 /* XXX should do extra checks to make sure things really are clean,
2381 rather than blindly setting the clean bit... */
2382
2383 raidPtr->mod_counter++;
2384
2385 for (c = 0; c < raidPtr->numCol; c++) {
2386 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2387 raidread_component_label(
2388 raidPtr->Disks[c].dev,
2389 raidPtr->raid_cinfo[c].ci_vp,
2390 &clabel);
2391 /* make sure status is noted */
2392 clabel.status = rf_ds_optimal;
2393 /* bump the counter */
2394 clabel.mod_counter = raidPtr->mod_counter;
2395
2396 raidwrite_component_label(
2397 raidPtr->Disks[c].dev,
2398 raidPtr->raid_cinfo[c].ci_vp,
2399 &clabel);
2400 if (final == RF_FINAL_COMPONENT_UPDATE) {
2401 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2402 raidmarkclean(
2403 raidPtr->Disks[c].dev,
2404 raidPtr->raid_cinfo[c].ci_vp,
2405 raidPtr->mod_counter);
2406 }
2407 }
2408 }
2409 /* else we don't touch it.. */
2410 }
2411
2412 for( c = 0; c < raidPtr->numSpare ; c++) {
2413 sparecol = raidPtr->numCol + c;
2414 /* Need to ensure that the reconstruct actually completed! */
2415 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2416 /*
2417
2418 we claim this disk is "optimal" if it's
2419 rf_ds_used_spare, as that means it should be
2420 directly substitutable for the disk it replaced.
2421 We note that too...
2422
2423 */
2424
2425 for(j=0;j<raidPtr->numCol;j++) {
2426 if (raidPtr->Disks[j].spareCol == sparecol) {
2427 scol = j;
2428 break;
2429 }
2430 }
2431
2432 /* XXX shouldn't *really* need this... */
2433 raidread_component_label(
2434 raidPtr->Disks[sparecol].dev,
2435 raidPtr->raid_cinfo[sparecol].ci_vp,
2436 &clabel);
2437 /* make sure status is noted */
2438
2439 raid_init_component_label(raidPtr, &clabel);
2440
2441 clabel.mod_counter = raidPtr->mod_counter;
2442 clabel.column = scol;
2443 clabel.status = rf_ds_optimal;
2444
2445 raidwrite_component_label(
2446 raidPtr->Disks[sparecol].dev,
2447 raidPtr->raid_cinfo[sparecol].ci_vp,
2448 &clabel);
2449 if (final == RF_FINAL_COMPONENT_UPDATE) {
2450 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2451 raidmarkclean( raidPtr->Disks[sparecol].dev,
2452 raidPtr->raid_cinfo[sparecol].ci_vp,
2453 raidPtr->mod_counter);
2454 }
2455 }
2456 }
2457 }
2458 }
2459
2460 void
2461 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2462 {
2463 struct proc *p;
2464
2465 p = raidPtr->engine_thread;
2466
2467 if (vp != NULL) {
2468 if (auto_configured == 1) {
2469 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2470 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2471 vput(vp);
2472
2473 } else {
2474 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2475 }
2476 }
2477 }
2478
2479
2480 void
2481 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2482 {
2483 int r,c;
2484 struct vnode *vp;
2485 int acd;
2486
2487
2488 /* We take this opportunity to close the vnodes like we should.. */
2489
2490 for (c = 0; c < raidPtr->numCol; c++) {
2491 vp = raidPtr->raid_cinfo[c].ci_vp;
2492 acd = raidPtr->Disks[c].auto_configured;
2493 rf_close_component(raidPtr, vp, acd);
2494 raidPtr->raid_cinfo[c].ci_vp = NULL;
2495 raidPtr->Disks[c].auto_configured = 0;
2496 }
2497
2498 for (r = 0; r < raidPtr->numSpare; r++) {
2499 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2500 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2501 rf_close_component(raidPtr, vp, acd);
2502 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2503 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2504 }
2505 }
2506
2507
2508 void
2509 rf_ReconThread(struct rf_recon_req *req)
2510 {
2511 int s;
2512 RF_Raid_t *raidPtr;
2513
2514 s = splbio();
2515 raidPtr = (RF_Raid_t *) req->raidPtr;
2516 raidPtr->recon_in_progress = 1;
2517
2518 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2519 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2520
2521 RF_Free(req, sizeof(*req));
2522
2523 raidPtr->recon_in_progress = 0;
2524 splx(s);
2525
2526 /* That's all... */
2527 kthread_exit(0); /* does not return */
2528 }
2529
2530 void
2531 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2532 {
2533 int retcode;
2534 int s;
2535
2536 raidPtr->parity_rewrite_in_progress = 1;
2537 s = splbio();
2538 retcode = rf_RewriteParity(raidPtr);
2539 splx(s);
2540 if (retcode) {
2541 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2542 } else {
2543 /* set the clean bit! If we shutdown correctly,
2544 the clean bit on each component label will get
2545 set */
2546 raidPtr->parity_good = RF_RAID_CLEAN;
2547 }
2548 raidPtr->parity_rewrite_in_progress = 0;
2549
2550 /* Anyone waiting for us to stop? If so, inform them... */
2551 if (raidPtr->waitShutdown) {
2552 wakeup(&raidPtr->parity_rewrite_in_progress);
2553 }
2554
2555 /* That's all... */
2556 kthread_exit(0); /* does not return */
2557 }
2558
2559
2560 void
2561 rf_CopybackThread(RF_Raid_t *raidPtr)
2562 {
2563 int s;
2564
2565 raidPtr->copyback_in_progress = 1;
2566 s = splbio();
2567 rf_CopybackReconstructedData(raidPtr);
2568 splx(s);
2569 raidPtr->copyback_in_progress = 0;
2570
2571 /* That's all... */
2572 kthread_exit(0); /* does not return */
2573 }
2574
2575
2576 void
2577 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2578 {
2579 int s;
2580 RF_Raid_t *raidPtr;
2581
2582 s = splbio();
2583 raidPtr = req->raidPtr;
2584 raidPtr->recon_in_progress = 1;
2585 rf_ReconstructInPlace(raidPtr, req->col);
2586 RF_Free(req, sizeof(*req));
2587 raidPtr->recon_in_progress = 0;
2588 splx(s);
2589
2590 /* That's all... */
2591 kthread_exit(0); /* does not return */
2592 }
2593
2594 RF_AutoConfig_t *
2595 rf_find_raid_components()
2596 {
2597 struct vnode *vp;
2598 struct disklabel label;
2599 struct device *dv;
2600 dev_t dev;
2601 int bmajor;
2602 int error;
2603 int i;
2604 int good_one;
2605 RF_ComponentLabel_t *clabel;
2606 RF_AutoConfig_t *ac_list;
2607 RF_AutoConfig_t *ac;
2608
2609
2610 /* initialize the AutoConfig list */
2611 ac_list = NULL;
2612
2613 /* we begin by trolling through *all* the devices on the system */
2614
2615 for (dv = alldevs.tqh_first; dv != NULL;
2616 dv = dv->dv_list.tqe_next) {
2617
2618 /* we are only interested in disks... */
2619 if (dv->dv_class != DV_DISK)
2620 continue;
2621
2622 /* we don't care about floppies... */
2623 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2624 continue;
2625 }
2626
2627 /* we don't care about CD's... */
2628 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2629 continue;
2630 }
2631
2632 /* hdfd is the Atari/Hades floppy driver */
2633 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2634 continue;
2635 }
2636 /* fdisa is the Atari/Milan floppy driver */
2637 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2638 continue;
2639 }
2640
2641 /* need to find the device_name_to_block_device_major stuff */
2642 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2643
2644 /* get a vnode for the raw partition of this disk */
2645
2646 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2647 if (bdevvp(dev, &vp))
2648 panic("RAID can't alloc vnode");
2649
2650 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2651
2652 if (error) {
2653 /* "Who cares." Continue looking
2654 for something that exists*/
2655 vput(vp);
2656 continue;
2657 }
2658
2659 /* Ok, the disk exists. Go get the disklabel. */
2660 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2661 if (error) {
2662 /*
2663 * XXX can't happen - open() would
2664 * have errored out (or faked up one)
2665 */
2666 printf("can't get label for dev %s%c (%d)!?!?\n",
2667 dv->dv_xname, 'a' + RAW_PART, error);
2668 }
2669
2670 /* don't need this any more. We'll allocate it again
2671 a little later if we really do... */
2672 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2673 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2674 vput(vp);
2675
2676 for (i=0; i < label.d_npartitions; i++) {
2677 /* We only support partitions marked as RAID */
2678 if (label.d_partitions[i].p_fstype != FS_RAID)
2679 continue;
2680
2681 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2682 if (bdevvp(dev, &vp))
2683 panic("RAID can't alloc vnode");
2684
2685 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2686 if (error) {
2687 /* Whatever... */
2688 vput(vp);
2689 continue;
2690 }
2691
2692 good_one = 0;
2693
2694 clabel = (RF_ComponentLabel_t *)
2695 malloc(sizeof(RF_ComponentLabel_t),
2696 M_RAIDFRAME, M_NOWAIT);
2697 if (clabel == NULL) {
2698 /* XXX CLEANUP HERE */
2699 printf("RAID auto config: out of memory!\n");
2700 return(NULL); /* XXX probably should panic? */
2701 }
2702
2703 if (!raidread_component_label(dev, vp, clabel)) {
2704 /* Got the label. Does it look reasonable? */
2705 if (rf_reasonable_label(clabel) &&
2706 (clabel->partitionSize <=
2707 label.d_partitions[i].p_size)) {
2708 #if DEBUG
2709 printf("Component on: %s%c: %d\n",
2710 dv->dv_xname, 'a'+i,
2711 label.d_partitions[i].p_size);
2712 rf_print_component_label(clabel);
2713 #endif
2714 /* if it's reasonable, add it,
2715 else ignore it. */
2716 ac = (RF_AutoConfig_t *)
2717 malloc(sizeof(RF_AutoConfig_t),
2718 M_RAIDFRAME,
2719 M_NOWAIT);
2720 if (ac == NULL) {
2721 /* XXX should panic?? */
2722 return(NULL);
2723 }
2724
2725 sprintf(ac->devname, "%s%c",
2726 dv->dv_xname, 'a'+i);
2727 ac->dev = dev;
2728 ac->vp = vp;
2729 ac->clabel = clabel;
2730 ac->next = ac_list;
2731 ac_list = ac;
2732 good_one = 1;
2733 }
2734 }
2735 if (!good_one) {
2736 /* cleanup */
2737 free(clabel, M_RAIDFRAME);
2738 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2739 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2740 vput(vp);
2741 }
2742 }
2743 }
2744 return(ac_list);
2745 }
2746
2747 static int
2748 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2749 {
2750
2751 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2752 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2753 ((clabel->clean == RF_RAID_CLEAN) ||
2754 (clabel->clean == RF_RAID_DIRTY)) &&
2755 clabel->row >=0 &&
2756 clabel->column >= 0 &&
2757 clabel->num_rows > 0 &&
2758 clabel->num_columns > 0 &&
2759 clabel->row < clabel->num_rows &&
2760 clabel->column < clabel->num_columns &&
2761 clabel->blockSize > 0 &&
2762 clabel->numBlocks > 0) {
2763 /* label looks reasonable enough... */
2764 return(1);
2765 }
2766 return(0);
2767 }
2768
2769
2770 #if DEBUG
2771 void
2772 rf_print_component_label(RF_ComponentLabel_t *clabel)
2773 {
2774 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2775 clabel->row, clabel->column,
2776 clabel->num_rows, clabel->num_columns);
2777 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2778 clabel->version, clabel->serial_number,
2779 clabel->mod_counter);
2780 printf(" Clean: %s Status: %d\n",
2781 clabel->clean ? "Yes" : "No", clabel->status );
2782 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2783 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2784 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2785 (char) clabel->parityConfig, clabel->blockSize,
2786 clabel->numBlocks);
2787 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2788 printf(" Contains root partition: %s\n",
2789 clabel->root_partition ? "Yes" : "No" );
2790 printf(" Last configured as: raid%d\n", clabel->last_unit );
2791 #if 0
2792 printf(" Config order: %d\n", clabel->config_order);
2793 #endif
2794
2795 }
2796 #endif
2797
2798 RF_ConfigSet_t *
2799 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2800 {
2801 RF_AutoConfig_t *ac;
2802 RF_ConfigSet_t *config_sets;
2803 RF_ConfigSet_t *cset;
2804 RF_AutoConfig_t *ac_next;
2805
2806
2807 config_sets = NULL;
2808
2809 /* Go through the AutoConfig list, and figure out which components
2810 belong to what sets. */
2811 ac = ac_list;
2812 while(ac!=NULL) {
2813 /* we're going to putz with ac->next, so save it here
2814 for use at the end of the loop */
2815 ac_next = ac->next;
2816
2817 if (config_sets == NULL) {
2818 /* will need at least this one... */
2819 config_sets = (RF_ConfigSet_t *)
2820 malloc(sizeof(RF_ConfigSet_t),
2821 M_RAIDFRAME, M_NOWAIT);
2822 if (config_sets == NULL) {
2823 panic("rf_create_auto_sets: No memory!");
2824 }
2825 /* this one is easy :) */
2826 config_sets->ac = ac;
2827 config_sets->next = NULL;
2828 config_sets->rootable = 0;
2829 ac->next = NULL;
2830 } else {
2831 /* which set does this component fit into? */
2832 cset = config_sets;
2833 while(cset!=NULL) {
2834 if (rf_does_it_fit(cset, ac)) {
2835 /* looks like it matches... */
2836 ac->next = cset->ac;
2837 cset->ac = ac;
2838 break;
2839 }
2840 cset = cset->next;
2841 }
2842 if (cset==NULL) {
2843 /* didn't find a match above... new set..*/
2844 cset = (RF_ConfigSet_t *)
2845 malloc(sizeof(RF_ConfigSet_t),
2846 M_RAIDFRAME, M_NOWAIT);
2847 if (cset == NULL) {
2848 panic("rf_create_auto_sets: No memory!");
2849 }
2850 cset->ac = ac;
2851 ac->next = NULL;
2852 cset->next = config_sets;
2853 cset->rootable = 0;
2854 config_sets = cset;
2855 }
2856 }
2857 ac = ac_next;
2858 }
2859
2860
2861 return(config_sets);
2862 }
2863
2864 static int
2865 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2866 {
2867 RF_ComponentLabel_t *clabel1, *clabel2;
2868
2869 /* If this one matches the *first* one in the set, that's good
2870 enough, since the other members of the set would have been
2871 through here too... */
2872 /* note that we are not checking partitionSize here..
2873
2874 Note that we are also not checking the mod_counters here.
2875 If everything else matches execpt the mod_counter, that's
2876 good enough for this test. We will deal with the mod_counters
2877 a little later in the autoconfiguration process.
2878
2879 (clabel1->mod_counter == clabel2->mod_counter) &&
2880
2881 The reason we don't check for this is that failed disks
2882 will have lower modification counts. If those disks are
2883 not added to the set they used to belong to, then they will
2884 form their own set, which may result in 2 different sets,
2885 for example, competing to be configured at raid0, and
2886 perhaps competing to be the root filesystem set. If the
2887 wrong ones get configured, or both attempt to become /,
2888 weird behaviour and or serious lossage will occur. Thus we
2889 need to bring them into the fold here, and kick them out at
2890 a later point.
2891
2892 */
2893
2894 clabel1 = cset->ac->clabel;
2895 clabel2 = ac->clabel;
2896 if ((clabel1->version == clabel2->version) &&
2897 (clabel1->serial_number == clabel2->serial_number) &&
2898 (clabel1->num_rows == clabel2->num_rows) &&
2899 (clabel1->num_columns == clabel2->num_columns) &&
2900 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2901 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2902 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2903 (clabel1->parityConfig == clabel2->parityConfig) &&
2904 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2905 (clabel1->blockSize == clabel2->blockSize) &&
2906 (clabel1->numBlocks == clabel2->numBlocks) &&
2907 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2908 (clabel1->root_partition == clabel2->root_partition) &&
2909 (clabel1->last_unit == clabel2->last_unit) &&
2910 (clabel1->config_order == clabel2->config_order)) {
2911 /* if it get's here, it almost *has* to be a match */
2912 } else {
2913 /* it's not consistent with somebody in the set..
2914 punt */
2915 return(0);
2916 }
2917 /* all was fine.. it must fit... */
2918 return(1);
2919 }
2920
2921 int
2922 rf_have_enough_components(RF_ConfigSet_t *cset)
2923 {
2924 RF_AutoConfig_t *ac;
2925 RF_AutoConfig_t *auto_config;
2926 RF_ComponentLabel_t *clabel;
2927 int c;
2928 int num_cols;
2929 int num_missing;
2930 int mod_counter;
2931 int mod_counter_found;
2932 int even_pair_failed;
2933 char parity_type;
2934
2935
2936 /* check to see that we have enough 'live' components
2937 of this set. If so, we can configure it if necessary */
2938
2939 num_cols = cset->ac->clabel->num_columns;
2940 parity_type = cset->ac->clabel->parityConfig;
2941
2942 /* XXX Check for duplicate components!?!?!? */
2943
2944 /* Determine what the mod_counter is supposed to be for this set. */
2945
2946 mod_counter_found = 0;
2947 mod_counter = 0;
2948 ac = cset->ac;
2949 while(ac!=NULL) {
2950 if (mod_counter_found==0) {
2951 mod_counter = ac->clabel->mod_counter;
2952 mod_counter_found = 1;
2953 } else {
2954 if (ac->clabel->mod_counter > mod_counter) {
2955 mod_counter = ac->clabel->mod_counter;
2956 }
2957 }
2958 ac = ac->next;
2959 }
2960
2961 num_missing = 0;
2962 auto_config = cset->ac;
2963
2964 even_pair_failed = 0;
2965 for(c=0; c<num_cols; c++) {
2966 ac = auto_config;
2967 while(ac!=NULL) {
2968 if ((ac->clabel->column == c) &&
2969 (ac->clabel->mod_counter == mod_counter)) {
2970 /* it's this one... */
2971 #if DEBUG
2972 printf("Found: %s at %d\n",
2973 ac->devname,c);
2974 #endif
2975 break;
2976 }
2977 ac=ac->next;
2978 }
2979 if (ac==NULL) {
2980 /* Didn't find one here! */
2981 /* special case for RAID 1, especially
2982 where there are more than 2
2983 components (where RAIDframe treats
2984 things a little differently :( ) */
2985 if (parity_type == '1') {
2986 if (c%2 == 0) { /* even component */
2987 even_pair_failed = 1;
2988 } else { /* odd component. If
2989 we're failed, and
2990 so is the even
2991 component, it's
2992 "Good Night, Charlie" */
2993 if (even_pair_failed == 1) {
2994 return(0);
2995 }
2996 }
2997 } else {
2998 /* normal accounting */
2999 num_missing++;
3000 }
3001 }
3002 if ((parity_type == '1') && (c%2 == 1)) {
3003 /* Just did an even component, and we didn't
3004 bail.. reset the even_pair_failed flag,
3005 and go on to the next component.... */
3006 even_pair_failed = 0;
3007 }
3008 }
3009
3010 clabel = cset->ac->clabel;
3011
3012 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3013 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3014 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3015 /* XXX this needs to be made *much* more general */
3016 /* Too many failures */
3017 return(0);
3018 }
3019 /* otherwise, all is well, and we've got enough to take a kick
3020 at autoconfiguring this set */
3021 return(1);
3022 }
3023
3024 void
3025 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3026 RF_Raid_t *raidPtr)
3027 {
3028 RF_ComponentLabel_t *clabel;
3029 int i;
3030
3031 clabel = ac->clabel;
3032
3033 /* 1. Fill in the common stuff */
3034 config->numRow = clabel->num_rows = 1;
3035 config->numCol = clabel->num_columns;
3036 config->numSpare = 0; /* XXX should this be set here? */
3037 config->sectPerSU = clabel->sectPerSU;
3038 config->SUsPerPU = clabel->SUsPerPU;
3039 config->SUsPerRU = clabel->SUsPerRU;
3040 config->parityConfig = clabel->parityConfig;
3041 /* XXX... */
3042 strcpy(config->diskQueueType,"fifo");
3043 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3044 config->layoutSpecificSize = 0; /* XXX ?? */
3045
3046 while(ac!=NULL) {
3047 /* row/col values will be in range due to the checks
3048 in reasonable_label() */
3049 strcpy(config->devnames[0][ac->clabel->column],
3050 ac->devname);
3051 ac = ac->next;
3052 }
3053
3054 for(i=0;i<RF_MAXDBGV;i++) {
3055 config->debugVars[i][0] = 0;
3056 }
3057 }
3058
3059 int
3060 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3061 {
3062 RF_ComponentLabel_t clabel;
3063 struct vnode *vp;
3064 dev_t dev;
3065 int column;
3066 int sparecol;
3067
3068 raidPtr->autoconfigure = new_value;
3069
3070 for(column=0; column<raidPtr->numCol; column++) {
3071 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3072 dev = raidPtr->Disks[column].dev;
3073 vp = raidPtr->raid_cinfo[column].ci_vp;
3074 raidread_component_label(dev, vp, &clabel);
3075 clabel.autoconfigure = new_value;
3076 raidwrite_component_label(dev, vp, &clabel);
3077 }
3078 }
3079 for(column = 0; column < raidPtr->numSpare ; column++) {
3080 sparecol = raidPtr->numCol + column;
3081 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3082 dev = raidPtr->Disks[sparecol].dev;
3083 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3084 raidread_component_label(dev, vp, &clabel);
3085 clabel.autoconfigure = new_value;
3086 raidwrite_component_label(dev, vp, &clabel);
3087 }
3088 }
3089 return(new_value);
3090 }
3091
3092 int
3093 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3094 {
3095 RF_ComponentLabel_t clabel;
3096 struct vnode *vp;
3097 dev_t dev;
3098 int column;
3099 int sparecol;
3100
3101 raidPtr->root_partition = new_value;
3102 for(column=0; column<raidPtr->numCol; column++) {
3103 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3104 dev = raidPtr->Disks[column].dev;
3105 vp = raidPtr->raid_cinfo[column].ci_vp;
3106 raidread_component_label(dev, vp, &clabel);
3107 clabel.root_partition = new_value;
3108 raidwrite_component_label(dev, vp, &clabel);
3109 }
3110 }
3111 for(column = 0; column < raidPtr->numSpare ; column++) {
3112 sparecol = raidPtr->numCol + column;
3113 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3114 dev = raidPtr->Disks[sparecol].dev;
3115 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3116 raidread_component_label(dev, vp, &clabel);
3117 clabel.root_partition = new_value;
3118 raidwrite_component_label(dev, vp, &clabel);
3119 }
3120 }
3121 return(new_value);
3122 }
3123
3124 void
3125 rf_release_all_vps(RF_ConfigSet_t *cset)
3126 {
3127 RF_AutoConfig_t *ac;
3128
3129 ac = cset->ac;
3130 while(ac!=NULL) {
3131 /* Close the vp, and give it back */
3132 if (ac->vp) {
3133 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3134 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3135 vput(ac->vp);
3136 ac->vp = NULL;
3137 }
3138 ac = ac->next;
3139 }
3140 }
3141
3142
3143 void
3144 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3145 {
3146 RF_AutoConfig_t *ac;
3147 RF_AutoConfig_t *next_ac;
3148
3149 ac = cset->ac;
3150 while(ac!=NULL) {
3151 next_ac = ac->next;
3152 /* nuke the label */
3153 free(ac->clabel, M_RAIDFRAME);
3154 /* cleanup the config structure */
3155 free(ac, M_RAIDFRAME);
3156 /* "next.." */
3157 ac = next_ac;
3158 }
3159 /* and, finally, nuke the config set */
3160 free(cset, M_RAIDFRAME);
3161 }
3162
3163
3164 void
3165 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3166 {
3167 /* current version number */
3168 clabel->version = RF_COMPONENT_LABEL_VERSION;
3169 clabel->serial_number = raidPtr->serial_number;
3170 clabel->mod_counter = raidPtr->mod_counter;
3171 clabel->num_rows = 1;
3172 clabel->num_columns = raidPtr->numCol;
3173 clabel->clean = RF_RAID_DIRTY; /* not clean */
3174 clabel->status = rf_ds_optimal; /* "It's good!" */
3175
3176 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3177 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3178 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3179
3180 clabel->blockSize = raidPtr->bytesPerSector;
3181 clabel->numBlocks = raidPtr->sectorsPerDisk;
3182
3183 /* XXX not portable */
3184 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3185 clabel->maxOutstanding = raidPtr->maxOutstanding;
3186 clabel->autoconfigure = raidPtr->autoconfigure;
3187 clabel->root_partition = raidPtr->root_partition;
3188 clabel->last_unit = raidPtr->raidid;
3189 clabel->config_order = raidPtr->config_order;
3190 }
3191
3192 int
3193 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3194 {
3195 RF_Raid_t *raidPtr;
3196 RF_Config_t *config;
3197 int raidID;
3198 int retcode;
3199
3200 #if DEBUG
3201 printf("RAID autoconfigure\n");
3202 #endif
3203
3204 retcode = 0;
3205 *unit = -1;
3206
3207 /* 1. Create a config structure */
3208
3209 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3210 M_RAIDFRAME,
3211 M_NOWAIT);
3212 if (config==NULL) {
3213 printf("Out of mem!?!?\n");
3214 /* XXX do something more intelligent here. */
3215 return(1);
3216 }
3217
3218 memset(config, 0, sizeof(RF_Config_t));
3219
3220 /*
3221 2. Figure out what RAID ID this one is supposed to live at
3222 See if we can get the same RAID dev that it was configured
3223 on last time..
3224 */
3225
3226 raidID = cset->ac->clabel->last_unit;
3227 if ((raidID < 0) || (raidID >= numraid)) {
3228 /* let's not wander off into lala land. */
3229 raidID = numraid - 1;
3230 }
3231 if (raidPtrs[raidID]->valid != 0) {
3232
3233 /*
3234 Nope... Go looking for an alternative...
3235 Start high so we don't immediately use raid0 if that's
3236 not taken.
3237 */
3238
3239 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3240 if (raidPtrs[raidID]->valid == 0) {
3241 /* can use this one! */
3242 break;
3243 }
3244 }
3245 }
3246
3247 if (raidID < 0) {
3248 /* punt... */
3249 printf("Unable to auto configure this set!\n");
3250 printf("(Out of RAID devs!)\n");
3251 return(1);
3252 }
3253
3254 #if DEBUG
3255 printf("Configuring raid%d:\n",raidID);
3256 #endif
3257
3258 raidPtr = raidPtrs[raidID];
3259
3260 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3261 raidPtr->raidid = raidID;
3262 raidPtr->openings = RAIDOUTSTANDING;
3263
3264 /* 3. Build the configuration structure */
3265 rf_create_configuration(cset->ac, config, raidPtr);
3266
3267 /* 4. Do the configuration */
3268 retcode = rf_Configure(raidPtr, config, cset->ac);
3269
3270 if (retcode == 0) {
3271
3272 raidinit(raidPtrs[raidID]);
3273
3274 rf_markalldirty(raidPtrs[raidID]);
3275 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3276 if (cset->ac->clabel->root_partition==1) {
3277 /* everything configured just fine. Make a note
3278 that this set is eligible to be root. */
3279 cset->rootable = 1;
3280 /* XXX do this here? */
3281 raidPtrs[raidID]->root_partition = 1;
3282 }
3283 }
3284
3285 /* 5. Cleanup */
3286 free(config, M_RAIDFRAME);
3287
3288 *unit = raidID;
3289 return(retcode);
3290 }
3291
3292 void
3293 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3294 {
3295 struct buf *bp;
3296
3297 bp = (struct buf *)desc->bp;
3298 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3299 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3300 }
3301