rf_netbsdkintf.c revision 1.176 1 /* $NetBSD: rf_netbsdkintf.c,v 1.176 2004/03/05 02:53:58 oster Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.176 2004/03/05 02:53:58 oster Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/user.h>
169 #include <sys/reboot.h>
170
171 #include <dev/raidframe/raidframevar.h>
172 #include <dev/raidframe/raidframeio.h>
173 #include "raid.h"
174 #include "opt_raid_autoconfig.h"
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188
189 #ifdef DEBUG
190 int rf_kdebug_level = 0;
191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
192 #else /* DEBUG */
193 #define db1_printf(a) { }
194 #endif /* DEBUG */
195
196 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
197
198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
199
200 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
201 * spare table */
202 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
203 * installation process */
204
205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
206
207 /* prototypes */
208 static void KernelWakeupFunc(struct buf * bp);
209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
210 dev_t dev, RF_SectorNum_t startSect,
211 RF_SectorCount_t numSect, caddr_t buf,
212 void (*cbFunc) (struct buf *), void *cbArg,
213 int logBytesPerSector, struct proc * b_proc);
214 static void raidinit(RF_Raid_t *);
215
216 void raidattach(int);
217
218 dev_type_open(raidopen);
219 dev_type_close(raidclose);
220 dev_type_read(raidread);
221 dev_type_write(raidwrite);
222 dev_type_ioctl(raidioctl);
223 dev_type_strategy(raidstrategy);
224 dev_type_dump(raiddump);
225 dev_type_size(raidsize);
226
227 const struct bdevsw raid_bdevsw = {
228 raidopen, raidclose, raidstrategy, raidioctl,
229 raiddump, raidsize, D_DISK
230 };
231
232 const struct cdevsw raid_cdevsw = {
233 raidopen, raidclose, raidread, raidwrite, raidioctl,
234 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
235 };
236
237 /*
238 * Pilfered from ccd.c
239 */
240
241 struct raidbuf {
242 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
243 struct buf *rf_obp; /* ptr. to original I/O buf */
244 RF_DiskQueueData_t *req;/* the request that this was part of.. */
245 };
246
247 /* component buffer pool */
248 struct pool raidframe_cbufpool;
249
250 /* XXX Not sure if the following should be replacing the raidPtrs above,
251 or if it should be used in conjunction with that...
252 */
253
254 struct raid_softc {
255 int sc_flags; /* flags */
256 int sc_cflags; /* configuration flags */
257 size_t sc_size; /* size of the raid device */
258 char sc_xname[20]; /* XXX external name */
259 struct disk sc_dkdev; /* generic disk device info */
260 struct bufq_state buf_queue; /* used for the device queue */
261 };
262 /* sc_flags */
263 #define RAIDF_INITED 0x01 /* unit has been initialized */
264 #define RAIDF_WLABEL 0x02 /* label area is writable */
265 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
266 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
267 #define RAIDF_LOCKED 0x80 /* unit is locked */
268
269 #define raidunit(x) DISKUNIT(x)
270 int numraid = 0;
271
272 /*
273 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
274 * Be aware that large numbers can allow the driver to consume a lot of
275 * kernel memory, especially on writes, and in degraded mode reads.
276 *
277 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
278 * a single 64K write will typically require 64K for the old data,
279 * 64K for the old parity, and 64K for the new parity, for a total
280 * of 192K (if the parity buffer is not re-used immediately).
281 * Even it if is used immediately, that's still 128K, which when multiplied
282 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
283 *
284 * Now in degraded mode, for example, a 64K read on the above setup may
285 * require data reconstruction, which will require *all* of the 4 remaining
286 * disks to participate -- 4 * 32K/disk == 128K again.
287 */
288
289 #ifndef RAIDOUTSTANDING
290 #define RAIDOUTSTANDING 6
291 #endif
292
293 #define RAIDLABELDEV(dev) \
294 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
295
296 /* declared here, and made public, for the benefit of KVM stuff.. */
297 struct raid_softc *raid_softc;
298
299 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
300 struct disklabel *);
301 static void raidgetdisklabel(dev_t);
302 static void raidmakedisklabel(struct raid_softc *);
303
304 static int raidlock(struct raid_softc *);
305 static void raidunlock(struct raid_softc *);
306
307 static void rf_markalldirty(RF_Raid_t *);
308
309 struct device *raidrootdev;
310
311 void rf_ReconThread(struct rf_recon_req *);
312 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
313 void rf_CopybackThread(RF_Raid_t *raidPtr);
314 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
315 int rf_autoconfig(struct device *self);
316 void rf_buildroothack(RF_ConfigSet_t *);
317
318 RF_AutoConfig_t *rf_find_raid_components(void);
319 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
320 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
321 static int rf_reasonable_label(RF_ComponentLabel_t *);
322 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
323 int rf_set_autoconfig(RF_Raid_t *, int);
324 int rf_set_rootpartition(RF_Raid_t *, int);
325 void rf_release_all_vps(RF_ConfigSet_t *);
326 void rf_cleanup_config_set(RF_ConfigSet_t *);
327 int rf_have_enough_components(RF_ConfigSet_t *);
328 int rf_auto_config_set(RF_ConfigSet_t *, int *);
329
330 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
331 allow autoconfig to take place.
332 Note that this is overridden by having
333 RAID_AUTOCONFIG as an option in the
334 kernel config file. */
335
336 void
337 raidattach(int num)
338 {
339 int raidID;
340 int i, rc;
341
342 #ifdef DEBUG
343 printf("raidattach: Asked for %d units\n", num);
344 #endif
345
346 if (num <= 0) {
347 #ifdef DIAGNOSTIC
348 panic("raidattach: count <= 0");
349 #endif
350 return;
351 }
352 /* This is where all the initialization stuff gets done. */
353
354 numraid = num;
355
356 /* Make some space for requested number of units... */
357
358 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
359 if (raidPtrs == NULL) {
360 panic("raidPtrs is NULL!!");
361 }
362
363 /* Initialize the component buffer pool. */
364 pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
365 0, 0, "raidpl", NULL);
366 pool_prime(&raidframe_cbufpool, num * RAIDOUTSTANDING);
367 pool_setlowat(&raidframe_cbufpool, num * RAIDOUTSTANDING);
368
369 rf_mutex_init(&rf_sparet_wait_mutex);
370
371 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
372
373 for (i = 0; i < num; i++)
374 raidPtrs[i] = NULL;
375 rc = rf_BootRaidframe();
376 if (rc == 0)
377 printf("Kernelized RAIDframe activated\n");
378 else
379 panic("Serious error booting RAID!!");
380
381 /* put together some datastructures like the CCD device does.. This
382 * lets us lock the device and what-not when it gets opened. */
383
384 raid_softc = (struct raid_softc *)
385 malloc(num * sizeof(struct raid_softc),
386 M_RAIDFRAME, M_NOWAIT);
387 if (raid_softc == NULL) {
388 printf("WARNING: no memory for RAIDframe driver\n");
389 return;
390 }
391
392 memset(raid_softc, 0, num * sizeof(struct raid_softc));
393
394 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
395 M_RAIDFRAME, M_NOWAIT);
396 if (raidrootdev == NULL) {
397 panic("No memory for RAIDframe driver!!?!?!");
398 }
399
400 for (raidID = 0; raidID < num; raidID++) {
401 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
402
403 raidrootdev[raidID].dv_class = DV_DISK;
404 raidrootdev[raidID].dv_cfdata = NULL;
405 raidrootdev[raidID].dv_unit = raidID;
406 raidrootdev[raidID].dv_parent = NULL;
407 raidrootdev[raidID].dv_flags = 0;
408 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
409
410 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
411 (RF_Raid_t *));
412 if (raidPtrs[raidID] == NULL) {
413 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
414 numraid = raidID;
415 return;
416 }
417 }
418
419 #ifdef RAID_AUTOCONFIG
420 raidautoconfig = 1;
421 #endif
422
423 /*
424 * Register a finalizer which will be used to auto-config RAID
425 * sets once all real hardware devices have been found.
426 */
427 if (config_finalize_register(NULL, rf_autoconfig) != 0)
428 printf("WARNING: unable to register RAIDframe finalizer\n");
429 }
430
431 int
432 rf_autoconfig(struct device *self)
433 {
434 RF_AutoConfig_t *ac_list;
435 RF_ConfigSet_t *config_sets;
436
437 if (raidautoconfig == 0)
438 return (0);
439
440 /* XXX This code can only be run once. */
441 raidautoconfig = 0;
442
443 /* 1. locate all RAID components on the system */
444 #ifdef DEBUG
445 printf("Searching for RAID components...\n");
446 #endif
447 ac_list = rf_find_raid_components();
448
449 /* 2. Sort them into their respective sets. */
450 config_sets = rf_create_auto_sets(ac_list);
451
452 /*
453 * 3. Evaluate each set andconfigure the valid ones.
454 * This gets done in rf_buildroothack().
455 */
456 rf_buildroothack(config_sets);
457
458 return (1);
459 }
460
461 void
462 rf_buildroothack(RF_ConfigSet_t *config_sets)
463 {
464 RF_ConfigSet_t *cset;
465 RF_ConfigSet_t *next_cset;
466 int retcode;
467 int raidID;
468 int rootID;
469 int num_root;
470
471 rootID = 0;
472 num_root = 0;
473 cset = config_sets;
474 while(cset != NULL ) {
475 next_cset = cset->next;
476 if (rf_have_enough_components(cset) &&
477 cset->ac->clabel->autoconfigure==1) {
478 retcode = rf_auto_config_set(cset,&raidID);
479 if (!retcode) {
480 if (cset->rootable) {
481 rootID = raidID;
482 num_root++;
483 }
484 } else {
485 /* The autoconfig didn't work :( */
486 #if DEBUG
487 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
488 #endif
489 rf_release_all_vps(cset);
490 }
491 } else {
492 /* we're not autoconfiguring this set...
493 release the associated resources */
494 rf_release_all_vps(cset);
495 }
496 /* cleanup */
497 rf_cleanup_config_set(cset);
498 cset = next_cset;
499 }
500
501 /* we found something bootable... */
502
503 if (num_root == 1) {
504 booted_device = &raidrootdev[rootID];
505 } else if (num_root > 1) {
506 /* we can't guess.. require the user to answer... */
507 boothowto |= RB_ASKNAME;
508 }
509 }
510
511
512 int
513 raidsize(dev_t dev)
514 {
515 struct raid_softc *rs;
516 struct disklabel *lp;
517 int part, unit, omask, size;
518
519 unit = raidunit(dev);
520 if (unit >= numraid)
521 return (-1);
522 rs = &raid_softc[unit];
523
524 if ((rs->sc_flags & RAIDF_INITED) == 0)
525 return (-1);
526
527 part = DISKPART(dev);
528 omask = rs->sc_dkdev.dk_openmask & (1 << part);
529 lp = rs->sc_dkdev.dk_label;
530
531 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
532 return (-1);
533
534 if (lp->d_partitions[part].p_fstype != FS_SWAP)
535 size = -1;
536 else
537 size = lp->d_partitions[part].p_size *
538 (lp->d_secsize / DEV_BSIZE);
539
540 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
541 return (-1);
542
543 return (size);
544
545 }
546
547 int
548 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
549 {
550 /* Not implemented. */
551 return ENXIO;
552 }
553 /* ARGSUSED */
554 int
555 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
556 {
557 int unit = raidunit(dev);
558 struct raid_softc *rs;
559 struct disklabel *lp;
560 int part, pmask;
561 int error = 0;
562
563 if (unit >= numraid)
564 return (ENXIO);
565 rs = &raid_softc[unit];
566
567 if ((error = raidlock(rs)) != 0)
568 return (error);
569 lp = rs->sc_dkdev.dk_label;
570
571 part = DISKPART(dev);
572 pmask = (1 << part);
573
574 if ((rs->sc_flags & RAIDF_INITED) &&
575 (rs->sc_dkdev.dk_openmask == 0))
576 raidgetdisklabel(dev);
577
578 /* make sure that this partition exists */
579
580 if (part != RAW_PART) {
581 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
582 ((part >= lp->d_npartitions) ||
583 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
584 error = ENXIO;
585 raidunlock(rs);
586 return (error);
587 }
588 }
589 /* Prevent this unit from being unconfigured while open. */
590 switch (fmt) {
591 case S_IFCHR:
592 rs->sc_dkdev.dk_copenmask |= pmask;
593 break;
594
595 case S_IFBLK:
596 rs->sc_dkdev.dk_bopenmask |= pmask;
597 break;
598 }
599
600 if ((rs->sc_dkdev.dk_openmask == 0) &&
601 ((rs->sc_flags & RAIDF_INITED) != 0)) {
602 /* First one... mark things as dirty... Note that we *MUST*
603 have done a configure before this. I DO NOT WANT TO BE
604 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
605 THAT THEY BELONG TOGETHER!!!!! */
606 /* XXX should check to see if we're only open for reading
607 here... If so, we needn't do this, but then need some
608 other way of keeping track of what's happened.. */
609
610 rf_markalldirty( raidPtrs[unit] );
611 }
612
613
614 rs->sc_dkdev.dk_openmask =
615 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
616
617 raidunlock(rs);
618
619 return (error);
620
621
622 }
623 /* ARGSUSED */
624 int
625 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
626 {
627 int unit = raidunit(dev);
628 struct raid_softc *rs;
629 int error = 0;
630 int part;
631
632 if (unit >= numraid)
633 return (ENXIO);
634 rs = &raid_softc[unit];
635
636 if ((error = raidlock(rs)) != 0)
637 return (error);
638
639 part = DISKPART(dev);
640
641 /* ...that much closer to allowing unconfiguration... */
642 switch (fmt) {
643 case S_IFCHR:
644 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
645 break;
646
647 case S_IFBLK:
648 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
649 break;
650 }
651 rs->sc_dkdev.dk_openmask =
652 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
653
654 if ((rs->sc_dkdev.dk_openmask == 0) &&
655 ((rs->sc_flags & RAIDF_INITED) != 0)) {
656 /* Last one... device is not unconfigured yet.
657 Device shutdown has taken care of setting the
658 clean bits if RAIDF_INITED is not set
659 mark things as clean... */
660
661 rf_update_component_labels(raidPtrs[unit],
662 RF_FINAL_COMPONENT_UPDATE);
663 if (doing_shutdown) {
664 /* last one, and we're going down, so
665 lights out for this RAID set too. */
666 error = rf_Shutdown(raidPtrs[unit]);
667
668 /* It's no longer initialized... */
669 rs->sc_flags &= ~RAIDF_INITED;
670
671 /* Detach the disk. */
672 disk_detach(&rs->sc_dkdev);
673 }
674 }
675
676 raidunlock(rs);
677 return (0);
678
679 }
680
681 void
682 raidstrategy(struct buf *bp)
683 {
684 int s;
685
686 unsigned int raidID = raidunit(bp->b_dev);
687 RF_Raid_t *raidPtr;
688 struct raid_softc *rs = &raid_softc[raidID];
689 int wlabel;
690
691 if ((rs->sc_flags & RAIDF_INITED) ==0) {
692 bp->b_error = ENXIO;
693 bp->b_flags |= B_ERROR;
694 bp->b_resid = bp->b_bcount;
695 biodone(bp);
696 return;
697 }
698 if (raidID >= numraid || !raidPtrs[raidID]) {
699 bp->b_error = ENODEV;
700 bp->b_flags |= B_ERROR;
701 bp->b_resid = bp->b_bcount;
702 biodone(bp);
703 return;
704 }
705 raidPtr = raidPtrs[raidID];
706 if (!raidPtr->valid) {
707 bp->b_error = ENODEV;
708 bp->b_flags |= B_ERROR;
709 bp->b_resid = bp->b_bcount;
710 biodone(bp);
711 return;
712 }
713 if (bp->b_bcount == 0) {
714 db1_printf(("b_bcount is zero..\n"));
715 biodone(bp);
716 return;
717 }
718
719 /*
720 * Do bounds checking and adjust transfer. If there's an
721 * error, the bounds check will flag that for us.
722 */
723
724 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
725 if (DISKPART(bp->b_dev) != RAW_PART)
726 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
727 db1_printf(("Bounds check failed!!:%d %d\n",
728 (int) bp->b_blkno, (int) wlabel));
729 biodone(bp);
730 return;
731 }
732 s = splbio();
733
734 bp->b_resid = 0;
735
736 /* stuff it onto our queue */
737 BUFQ_PUT(&rs->buf_queue, bp);
738
739 raidstart(raidPtrs[raidID]);
740
741 splx(s);
742 }
743 /* ARGSUSED */
744 int
745 raidread(dev_t dev, struct uio *uio, int flags)
746 {
747 int unit = raidunit(dev);
748 struct raid_softc *rs;
749
750 if (unit >= numraid)
751 return (ENXIO);
752 rs = &raid_softc[unit];
753
754 if ((rs->sc_flags & RAIDF_INITED) == 0)
755 return (ENXIO);
756
757 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
758
759 }
760 /* ARGSUSED */
761 int
762 raidwrite(dev_t dev, struct uio *uio, int flags)
763 {
764 int unit = raidunit(dev);
765 struct raid_softc *rs;
766
767 if (unit >= numraid)
768 return (ENXIO);
769 rs = &raid_softc[unit];
770
771 if ((rs->sc_flags & RAIDF_INITED) == 0)
772 return (ENXIO);
773
774 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
775
776 }
777
778 int
779 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
780 {
781 int unit = raidunit(dev);
782 int error = 0;
783 int part, pmask;
784 struct raid_softc *rs;
785 RF_Config_t *k_cfg, *u_cfg;
786 RF_Raid_t *raidPtr;
787 RF_RaidDisk_t *diskPtr;
788 RF_AccTotals_t *totals;
789 RF_DeviceConfig_t *d_cfg, **ucfgp;
790 u_char *specific_buf;
791 int retcode = 0;
792 int column;
793 int raidid;
794 struct rf_recon_req *rrcopy, *rr;
795 RF_ComponentLabel_t *clabel;
796 RF_ComponentLabel_t ci_label;
797 RF_ComponentLabel_t **clabel_ptr;
798 RF_SingleComponent_t *sparePtr,*componentPtr;
799 RF_SingleComponent_t hot_spare;
800 RF_SingleComponent_t component;
801 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
802 int i, j, d;
803 #ifdef __HAVE_OLD_DISKLABEL
804 struct disklabel newlabel;
805 #endif
806
807 if (unit >= numraid)
808 return (ENXIO);
809 rs = &raid_softc[unit];
810 raidPtr = raidPtrs[unit];
811
812 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
813 (int) DISKPART(dev), (int) unit, (int) cmd));
814
815 /* Must be open for writes for these commands... */
816 switch (cmd) {
817 case DIOCSDINFO:
818 case DIOCWDINFO:
819 #ifdef __HAVE_OLD_DISKLABEL
820 case ODIOCWDINFO:
821 case ODIOCSDINFO:
822 #endif
823 case DIOCWLABEL:
824 if ((flag & FWRITE) == 0)
825 return (EBADF);
826 }
827
828 /* Must be initialized for these... */
829 switch (cmd) {
830 case DIOCGDINFO:
831 case DIOCSDINFO:
832 case DIOCWDINFO:
833 #ifdef __HAVE_OLD_DISKLABEL
834 case ODIOCGDINFO:
835 case ODIOCWDINFO:
836 case ODIOCSDINFO:
837 case ODIOCGDEFLABEL:
838 #endif
839 case DIOCGPART:
840 case DIOCWLABEL:
841 case DIOCGDEFLABEL:
842 case RAIDFRAME_SHUTDOWN:
843 case RAIDFRAME_REWRITEPARITY:
844 case RAIDFRAME_GET_INFO:
845 case RAIDFRAME_RESET_ACCTOTALS:
846 case RAIDFRAME_GET_ACCTOTALS:
847 case RAIDFRAME_KEEP_ACCTOTALS:
848 case RAIDFRAME_GET_SIZE:
849 case RAIDFRAME_FAIL_DISK:
850 case RAIDFRAME_COPYBACK:
851 case RAIDFRAME_CHECK_RECON_STATUS:
852 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
853 case RAIDFRAME_GET_COMPONENT_LABEL:
854 case RAIDFRAME_SET_COMPONENT_LABEL:
855 case RAIDFRAME_ADD_HOT_SPARE:
856 case RAIDFRAME_REMOVE_HOT_SPARE:
857 case RAIDFRAME_INIT_LABELS:
858 case RAIDFRAME_REBUILD_IN_PLACE:
859 case RAIDFRAME_CHECK_PARITY:
860 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
861 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
862 case RAIDFRAME_CHECK_COPYBACK_STATUS:
863 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
864 case RAIDFRAME_SET_AUTOCONFIG:
865 case RAIDFRAME_SET_ROOT:
866 case RAIDFRAME_DELETE_COMPONENT:
867 case RAIDFRAME_INCORPORATE_HOT_SPARE:
868 if ((rs->sc_flags & RAIDF_INITED) == 0)
869 return (ENXIO);
870 }
871
872 switch (cmd) {
873
874 /* configure the system */
875 case RAIDFRAME_CONFIGURE:
876
877 if (raidPtr->valid) {
878 /* There is a valid RAID set running on this unit! */
879 printf("raid%d: Device already configured!\n",unit);
880 return(EINVAL);
881 }
882
883 /* copy-in the configuration information */
884 /* data points to a pointer to the configuration structure */
885
886 u_cfg = *((RF_Config_t **) data);
887 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
888 if (k_cfg == NULL) {
889 return (ENOMEM);
890 }
891 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
892 if (retcode) {
893 RF_Free(k_cfg, sizeof(RF_Config_t));
894 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
895 retcode));
896 return (retcode);
897 }
898 /* allocate a buffer for the layout-specific data, and copy it
899 * in */
900 if (k_cfg->layoutSpecificSize) {
901 if (k_cfg->layoutSpecificSize > 10000) {
902 /* sanity check */
903 RF_Free(k_cfg, sizeof(RF_Config_t));
904 return (EINVAL);
905 }
906 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
907 (u_char *));
908 if (specific_buf == NULL) {
909 RF_Free(k_cfg, sizeof(RF_Config_t));
910 return (ENOMEM);
911 }
912 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
913 k_cfg->layoutSpecificSize);
914 if (retcode) {
915 RF_Free(k_cfg, sizeof(RF_Config_t));
916 RF_Free(specific_buf,
917 k_cfg->layoutSpecificSize);
918 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
919 retcode));
920 return (retcode);
921 }
922 } else
923 specific_buf = NULL;
924 k_cfg->layoutSpecific = specific_buf;
925
926 /* should do some kind of sanity check on the configuration.
927 * Store the sum of all the bytes in the last byte? */
928
929 /* configure the system */
930
931 /*
932 * Clear the entire RAID descriptor, just to make sure
933 * there is no stale data left in the case of a
934 * reconfiguration
935 */
936 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
937 raidPtr->raidid = unit;
938
939 retcode = rf_Configure(raidPtr, k_cfg, NULL);
940
941 if (retcode == 0) {
942
943 /* allow this many simultaneous IO's to
944 this RAID device */
945 raidPtr->openings = RAIDOUTSTANDING;
946
947 raidinit(raidPtr);
948 rf_markalldirty(raidPtr);
949 }
950 /* free the buffers. No return code here. */
951 if (k_cfg->layoutSpecificSize) {
952 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
953 }
954 RF_Free(k_cfg, sizeof(RF_Config_t));
955
956 return (retcode);
957
958 /* shutdown the system */
959 case RAIDFRAME_SHUTDOWN:
960
961 if ((error = raidlock(rs)) != 0)
962 return (error);
963
964 /*
965 * If somebody has a partition mounted, we shouldn't
966 * shutdown.
967 */
968
969 part = DISKPART(dev);
970 pmask = (1 << part);
971 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
972 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
973 (rs->sc_dkdev.dk_copenmask & pmask))) {
974 raidunlock(rs);
975 return (EBUSY);
976 }
977
978 retcode = rf_Shutdown(raidPtr);
979
980 /* It's no longer initialized... */
981 rs->sc_flags &= ~RAIDF_INITED;
982
983 /* Detach the disk. */
984 disk_detach(&rs->sc_dkdev);
985
986 raidunlock(rs);
987
988 return (retcode);
989 case RAIDFRAME_GET_COMPONENT_LABEL:
990 clabel_ptr = (RF_ComponentLabel_t **) data;
991 /* need to read the component label for the disk indicated
992 by row,column in clabel */
993
994 /* For practice, let's get it directly fromdisk, rather
995 than from the in-core copy */
996 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
997 (RF_ComponentLabel_t *));
998 if (clabel == NULL)
999 return (ENOMEM);
1000
1001 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1002
1003 retcode = copyin( *clabel_ptr, clabel,
1004 sizeof(RF_ComponentLabel_t));
1005
1006 if (retcode) {
1007 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1008 return(retcode);
1009 }
1010
1011 clabel->row = 0; /* Don't allow looking at anything else.*/
1012
1013 column = clabel->column;
1014
1015 if ((column < 0) || (column >= raidPtr->numCol +
1016 raidPtr->numSpare)) {
1017 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1018 return(EINVAL);
1019 }
1020
1021 raidread_component_label(raidPtr->Disks[column].dev,
1022 raidPtr->raid_cinfo[column].ci_vp,
1023 clabel );
1024
1025 retcode = copyout(clabel, *clabel_ptr,
1026 sizeof(RF_ComponentLabel_t));
1027 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1028 return (retcode);
1029
1030 case RAIDFRAME_SET_COMPONENT_LABEL:
1031 clabel = (RF_ComponentLabel_t *) data;
1032
1033 /* XXX check the label for valid stuff... */
1034 /* Note that some things *should not* get modified --
1035 the user should be re-initing the labels instead of
1036 trying to patch things.
1037 */
1038
1039 raidid = raidPtr->raidid;
1040 #if DEBUG
1041 printf("raid%d: Got component label:\n", raidid);
1042 printf("raid%d: Version: %d\n", raidid, clabel->version);
1043 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1044 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1045 printf("raid%d: Column: %d\n", raidid, clabel->column);
1046 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1047 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1048 printf("raid%d: Status: %d\n", raidid, clabel->status);
1049 #endif
1050 clabel->row = 0;
1051 column = clabel->column;
1052
1053 if ((column < 0) || (column >= raidPtr->numCol)) {
1054 return(EINVAL);
1055 }
1056
1057 /* XXX this isn't allowed to do anything for now :-) */
1058
1059 /* XXX and before it is, we need to fill in the rest
1060 of the fields!?!?!?! */
1061 #if 0
1062 raidwrite_component_label(
1063 raidPtr->Disks[column].dev,
1064 raidPtr->raid_cinfo[column].ci_vp,
1065 clabel );
1066 #endif
1067 return (0);
1068
1069 case RAIDFRAME_INIT_LABELS:
1070 clabel = (RF_ComponentLabel_t *) data;
1071 /*
1072 we only want the serial number from
1073 the above. We get all the rest of the information
1074 from the config that was used to create this RAID
1075 set.
1076 */
1077
1078 raidPtr->serial_number = clabel->serial_number;
1079
1080 raid_init_component_label(raidPtr, &ci_label);
1081 ci_label.serial_number = clabel->serial_number;
1082 ci_label.row = 0; /* we dont' pretend to support more */
1083
1084 for(column=0;column<raidPtr->numCol;column++) {
1085 diskPtr = &raidPtr->Disks[column];
1086 if (!RF_DEAD_DISK(diskPtr->status)) {
1087 ci_label.partitionSize = diskPtr->partitionSize;
1088 ci_label.column = column;
1089 raidwrite_component_label(
1090 raidPtr->Disks[column].dev,
1091 raidPtr->raid_cinfo[column].ci_vp,
1092 &ci_label );
1093 }
1094 }
1095
1096 return (retcode);
1097 case RAIDFRAME_SET_AUTOCONFIG:
1098 d = rf_set_autoconfig(raidPtr, *(int *) data);
1099 printf("raid%d: New autoconfig value is: %d\n",
1100 raidPtr->raidid, d);
1101 *(int *) data = d;
1102 return (retcode);
1103
1104 case RAIDFRAME_SET_ROOT:
1105 d = rf_set_rootpartition(raidPtr, *(int *) data);
1106 printf("raid%d: New rootpartition value is: %d\n",
1107 raidPtr->raidid, d);
1108 *(int *) data = d;
1109 return (retcode);
1110
1111 /* initialize all parity */
1112 case RAIDFRAME_REWRITEPARITY:
1113
1114 if (raidPtr->Layout.map->faultsTolerated == 0) {
1115 /* Parity for RAID 0 is trivially correct */
1116 raidPtr->parity_good = RF_RAID_CLEAN;
1117 return(0);
1118 }
1119
1120 if (raidPtr->parity_rewrite_in_progress == 1) {
1121 /* Re-write is already in progress! */
1122 return(EINVAL);
1123 }
1124
1125 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1126 rf_RewriteParityThread,
1127 raidPtr,"raid_parity");
1128 return (retcode);
1129
1130
1131 case RAIDFRAME_ADD_HOT_SPARE:
1132 sparePtr = (RF_SingleComponent_t *) data;
1133 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1134 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1135 return(retcode);
1136
1137 case RAIDFRAME_REMOVE_HOT_SPARE:
1138 return(retcode);
1139
1140 case RAIDFRAME_DELETE_COMPONENT:
1141 componentPtr = (RF_SingleComponent_t *)data;
1142 memcpy( &component, componentPtr,
1143 sizeof(RF_SingleComponent_t));
1144 retcode = rf_delete_component(raidPtr, &component);
1145 return(retcode);
1146
1147 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1148 componentPtr = (RF_SingleComponent_t *)data;
1149 memcpy( &component, componentPtr,
1150 sizeof(RF_SingleComponent_t));
1151 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1152 return(retcode);
1153
1154 case RAIDFRAME_REBUILD_IN_PLACE:
1155
1156 if (raidPtr->Layout.map->faultsTolerated == 0) {
1157 /* Can't do this on a RAID 0!! */
1158 return(EINVAL);
1159 }
1160
1161 if (raidPtr->recon_in_progress == 1) {
1162 /* a reconstruct is already in progress! */
1163 return(EINVAL);
1164 }
1165
1166 componentPtr = (RF_SingleComponent_t *) data;
1167 memcpy( &component, componentPtr,
1168 sizeof(RF_SingleComponent_t));
1169 component.row = 0; /* we don't support any more */
1170 column = component.column;
1171
1172 if ((column < 0) || (column >= raidPtr->numCol)) {
1173 return(EINVAL);
1174 }
1175
1176 RF_LOCK_MUTEX(raidPtr->mutex);
1177 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1178 (raidPtr->numFailures > 0)) {
1179 /* XXX 0 above shouldn't be constant!!! */
1180 /* some component other than this has failed.
1181 Let's not make things worse than they already
1182 are... */
1183 printf("raid%d: Unable to reconstruct to disk at:\n",
1184 raidPtr->raidid);
1185 printf("raid%d: Col: %d Too many failures.\n",
1186 raidPtr->raidid, column);
1187 RF_UNLOCK_MUTEX(raidPtr->mutex);
1188 return (EINVAL);
1189 }
1190 if (raidPtr->Disks[column].status ==
1191 rf_ds_reconstructing) {
1192 printf("raid%d: Unable to reconstruct to disk at:\n",
1193 raidPtr->raidid);
1194 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1195
1196 RF_UNLOCK_MUTEX(raidPtr->mutex);
1197 return (EINVAL);
1198 }
1199 if (raidPtr->Disks[column].status == rf_ds_spared) {
1200 RF_UNLOCK_MUTEX(raidPtr->mutex);
1201 return (EINVAL);
1202 }
1203 RF_UNLOCK_MUTEX(raidPtr->mutex);
1204
1205 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1206 if (rrcopy == NULL)
1207 return(ENOMEM);
1208
1209 rrcopy->raidPtr = (void *) raidPtr;
1210 rrcopy->col = column;
1211
1212 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1213 rf_ReconstructInPlaceThread,
1214 rrcopy,"raid_reconip");
1215 return(retcode);
1216
1217 case RAIDFRAME_GET_INFO:
1218 if (!raidPtr->valid)
1219 return (ENODEV);
1220 ucfgp = (RF_DeviceConfig_t **) data;
1221 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1222 (RF_DeviceConfig_t *));
1223 if (d_cfg == NULL)
1224 return (ENOMEM);
1225 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1226 d_cfg->rows = 1; /* there is only 1 row now */
1227 d_cfg->cols = raidPtr->numCol;
1228 d_cfg->ndevs = raidPtr->numCol;
1229 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1230 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1231 return (ENOMEM);
1232 }
1233 d_cfg->nspares = raidPtr->numSpare;
1234 if (d_cfg->nspares >= RF_MAX_DISKS) {
1235 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1236 return (ENOMEM);
1237 }
1238 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1239 d = 0;
1240 for (j = 0; j < d_cfg->cols; j++) {
1241 d_cfg->devs[d] = raidPtr->Disks[j];
1242 d++;
1243 }
1244 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1245 d_cfg->spares[i] = raidPtr->Disks[j];
1246 }
1247 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1248 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1249
1250 return (retcode);
1251
1252 case RAIDFRAME_CHECK_PARITY:
1253 *(int *) data = raidPtr->parity_good;
1254 return (0);
1255
1256 case RAIDFRAME_RESET_ACCTOTALS:
1257 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1258 return (0);
1259
1260 case RAIDFRAME_GET_ACCTOTALS:
1261 totals = (RF_AccTotals_t *) data;
1262 *totals = raidPtr->acc_totals;
1263 return (0);
1264
1265 case RAIDFRAME_KEEP_ACCTOTALS:
1266 raidPtr->keep_acc_totals = *(int *)data;
1267 return (0);
1268
1269 case RAIDFRAME_GET_SIZE:
1270 *(int *) data = raidPtr->totalSectors;
1271 return (0);
1272
1273 /* fail a disk & optionally start reconstruction */
1274 case RAIDFRAME_FAIL_DISK:
1275
1276 if (raidPtr->Layout.map->faultsTolerated == 0) {
1277 /* Can't do this on a RAID 0!! */
1278 return(EINVAL);
1279 }
1280
1281 rr = (struct rf_recon_req *) data;
1282 rr->row = 0;
1283 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1284 return (EINVAL);
1285
1286
1287 RF_LOCK_MUTEX(raidPtr->mutex);
1288 if ((raidPtr->Disks[rr->col].status ==
1289 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1290 /* some other component has failed. Let's not make
1291 things worse. XXX wrong for RAID6 */
1292 RF_UNLOCK_MUTEX(raidPtr->mutex);
1293 return (EINVAL);
1294 }
1295 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1296 /* Can't fail a spared disk! */
1297 RF_UNLOCK_MUTEX(raidPtr->mutex);
1298 return (EINVAL);
1299 }
1300 RF_UNLOCK_MUTEX(raidPtr->mutex);
1301
1302 /* make a copy of the recon request so that we don't rely on
1303 * the user's buffer */
1304 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1305 if (rrcopy == NULL)
1306 return(ENOMEM);
1307 memcpy(rrcopy, rr, sizeof(*rr));
1308 rrcopy->raidPtr = (void *) raidPtr;
1309
1310 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1311 rf_ReconThread,
1312 rrcopy,"raid_recon");
1313 return (0);
1314
1315 /* invoke a copyback operation after recon on whatever disk
1316 * needs it, if any */
1317 case RAIDFRAME_COPYBACK:
1318
1319 if (raidPtr->Layout.map->faultsTolerated == 0) {
1320 /* This makes no sense on a RAID 0!! */
1321 return(EINVAL);
1322 }
1323
1324 if (raidPtr->copyback_in_progress == 1) {
1325 /* Copyback is already in progress! */
1326 return(EINVAL);
1327 }
1328
1329 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1330 rf_CopybackThread,
1331 raidPtr,"raid_copyback");
1332 return (retcode);
1333
1334 /* return the percentage completion of reconstruction */
1335 case RAIDFRAME_CHECK_RECON_STATUS:
1336 if (raidPtr->Layout.map->faultsTolerated == 0) {
1337 /* This makes no sense on a RAID 0, so tell the
1338 user it's done. */
1339 *(int *) data = 100;
1340 return(0);
1341 }
1342 if (raidPtr->status != rf_rs_reconstructing)
1343 *(int *) data = 100;
1344 else {
1345 if (raidPtr->reconControl->numRUsTotal > 0) {
1346 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1347 } else {
1348 *(int *) data = 0;
1349 }
1350 }
1351 return (0);
1352 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1353 progressInfoPtr = (RF_ProgressInfo_t **) data;
1354 if (raidPtr->status != rf_rs_reconstructing) {
1355 progressInfo.remaining = 0;
1356 progressInfo.completed = 100;
1357 progressInfo.total = 100;
1358 } else {
1359 progressInfo.total =
1360 raidPtr->reconControl->numRUsTotal;
1361 progressInfo.completed =
1362 raidPtr->reconControl->numRUsComplete;
1363 progressInfo.remaining = progressInfo.total -
1364 progressInfo.completed;
1365 }
1366 retcode = copyout(&progressInfo, *progressInfoPtr,
1367 sizeof(RF_ProgressInfo_t));
1368 return (retcode);
1369
1370 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1371 if (raidPtr->Layout.map->faultsTolerated == 0) {
1372 /* This makes no sense on a RAID 0, so tell the
1373 user it's done. */
1374 *(int *) data = 100;
1375 return(0);
1376 }
1377 if (raidPtr->parity_rewrite_in_progress == 1) {
1378 *(int *) data = 100 *
1379 raidPtr->parity_rewrite_stripes_done /
1380 raidPtr->Layout.numStripe;
1381 } else {
1382 *(int *) data = 100;
1383 }
1384 return (0);
1385
1386 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1387 progressInfoPtr = (RF_ProgressInfo_t **) data;
1388 if (raidPtr->parity_rewrite_in_progress == 1) {
1389 progressInfo.total = raidPtr->Layout.numStripe;
1390 progressInfo.completed =
1391 raidPtr->parity_rewrite_stripes_done;
1392 progressInfo.remaining = progressInfo.total -
1393 progressInfo.completed;
1394 } else {
1395 progressInfo.remaining = 0;
1396 progressInfo.completed = 100;
1397 progressInfo.total = 100;
1398 }
1399 retcode = copyout(&progressInfo, *progressInfoPtr,
1400 sizeof(RF_ProgressInfo_t));
1401 return (retcode);
1402
1403 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1404 if (raidPtr->Layout.map->faultsTolerated == 0) {
1405 /* This makes no sense on a RAID 0 */
1406 *(int *) data = 100;
1407 return(0);
1408 }
1409 if (raidPtr->copyback_in_progress == 1) {
1410 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1411 raidPtr->Layout.numStripe;
1412 } else {
1413 *(int *) data = 100;
1414 }
1415 return (0);
1416
1417 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1418 progressInfoPtr = (RF_ProgressInfo_t **) data;
1419 if (raidPtr->copyback_in_progress == 1) {
1420 progressInfo.total = raidPtr->Layout.numStripe;
1421 progressInfo.completed =
1422 raidPtr->copyback_stripes_done;
1423 progressInfo.remaining = progressInfo.total -
1424 progressInfo.completed;
1425 } else {
1426 progressInfo.remaining = 0;
1427 progressInfo.completed = 100;
1428 progressInfo.total = 100;
1429 }
1430 retcode = copyout(&progressInfo, *progressInfoPtr,
1431 sizeof(RF_ProgressInfo_t));
1432 return (retcode);
1433
1434 /* the sparetable daemon calls this to wait for the kernel to
1435 * need a spare table. this ioctl does not return until a
1436 * spare table is needed. XXX -- calling mpsleep here in the
1437 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1438 * -- I should either compute the spare table in the kernel,
1439 * or have a different -- XXX XXX -- interface (a different
1440 * character device) for delivering the table -- XXX */
1441 #if 0
1442 case RAIDFRAME_SPARET_WAIT:
1443 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1444 while (!rf_sparet_wait_queue)
1445 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1446 waitreq = rf_sparet_wait_queue;
1447 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1448 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1449
1450 /* structure assignment */
1451 *((RF_SparetWait_t *) data) = *waitreq;
1452
1453 RF_Free(waitreq, sizeof(*waitreq));
1454 return (0);
1455
1456 /* wakes up a process waiting on SPARET_WAIT and puts an error
1457 * code in it that will cause the dameon to exit */
1458 case RAIDFRAME_ABORT_SPARET_WAIT:
1459 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1460 waitreq->fcol = -1;
1461 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1462 waitreq->next = rf_sparet_wait_queue;
1463 rf_sparet_wait_queue = waitreq;
1464 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1465 wakeup(&rf_sparet_wait_queue);
1466 return (0);
1467
1468 /* used by the spare table daemon to deliver a spare table
1469 * into the kernel */
1470 case RAIDFRAME_SEND_SPARET:
1471
1472 /* install the spare table */
1473 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1474
1475 /* respond to the requestor. the return status of the spare
1476 * table installation is passed in the "fcol" field */
1477 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1478 waitreq->fcol = retcode;
1479 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1480 waitreq->next = rf_sparet_resp_queue;
1481 rf_sparet_resp_queue = waitreq;
1482 wakeup(&rf_sparet_resp_queue);
1483 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1484
1485 return (retcode);
1486 #endif
1487
1488 default:
1489 break; /* fall through to the os-specific code below */
1490
1491 }
1492
1493 if (!raidPtr->valid)
1494 return (EINVAL);
1495
1496 /*
1497 * Add support for "regular" device ioctls here.
1498 */
1499
1500 switch (cmd) {
1501 case DIOCGDINFO:
1502 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1503 break;
1504 #ifdef __HAVE_OLD_DISKLABEL
1505 case ODIOCGDINFO:
1506 newlabel = *(rs->sc_dkdev.dk_label);
1507 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1508 return ENOTTY;
1509 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1510 break;
1511 #endif
1512
1513 case DIOCGPART:
1514 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1515 ((struct partinfo *) data)->part =
1516 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1517 break;
1518
1519 case DIOCWDINFO:
1520 case DIOCSDINFO:
1521 #ifdef __HAVE_OLD_DISKLABEL
1522 case ODIOCWDINFO:
1523 case ODIOCSDINFO:
1524 #endif
1525 {
1526 struct disklabel *lp;
1527 #ifdef __HAVE_OLD_DISKLABEL
1528 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1529 memset(&newlabel, 0, sizeof newlabel);
1530 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1531 lp = &newlabel;
1532 } else
1533 #endif
1534 lp = (struct disklabel *)data;
1535
1536 if ((error = raidlock(rs)) != 0)
1537 return (error);
1538
1539 rs->sc_flags |= RAIDF_LABELLING;
1540
1541 error = setdisklabel(rs->sc_dkdev.dk_label,
1542 lp, 0, rs->sc_dkdev.dk_cpulabel);
1543 if (error == 0) {
1544 if (cmd == DIOCWDINFO
1545 #ifdef __HAVE_OLD_DISKLABEL
1546 || cmd == ODIOCWDINFO
1547 #endif
1548 )
1549 error = writedisklabel(RAIDLABELDEV(dev),
1550 raidstrategy, rs->sc_dkdev.dk_label,
1551 rs->sc_dkdev.dk_cpulabel);
1552 }
1553 rs->sc_flags &= ~RAIDF_LABELLING;
1554
1555 raidunlock(rs);
1556
1557 if (error)
1558 return (error);
1559 break;
1560 }
1561
1562 case DIOCWLABEL:
1563 if (*(int *) data != 0)
1564 rs->sc_flags |= RAIDF_WLABEL;
1565 else
1566 rs->sc_flags &= ~RAIDF_WLABEL;
1567 break;
1568
1569 case DIOCGDEFLABEL:
1570 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1571 break;
1572
1573 #ifdef __HAVE_OLD_DISKLABEL
1574 case ODIOCGDEFLABEL:
1575 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1576 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1577 return ENOTTY;
1578 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1579 break;
1580 #endif
1581
1582 default:
1583 retcode = ENOTTY;
1584 }
1585 return (retcode);
1586
1587 }
1588
1589
1590 /* raidinit -- complete the rest of the initialization for the
1591 RAIDframe device. */
1592
1593
1594 static void
1595 raidinit(RF_Raid_t *raidPtr)
1596 {
1597 struct raid_softc *rs;
1598 int unit;
1599
1600 unit = raidPtr->raidid;
1601
1602 rs = &raid_softc[unit];
1603
1604 /* XXX should check return code first... */
1605 rs->sc_flags |= RAIDF_INITED;
1606
1607 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1608
1609 rs->sc_dkdev.dk_name = rs->sc_xname;
1610
1611 /* disk_attach actually creates space for the CPU disklabel, among
1612 * other things, so it's critical to call this *BEFORE* we try putzing
1613 * with disklabels. */
1614
1615 disk_attach(&rs->sc_dkdev);
1616
1617 /* XXX There may be a weird interaction here between this, and
1618 * protectedSectors, as used in RAIDframe. */
1619
1620 rs->sc_size = raidPtr->totalSectors;
1621 }
1622 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1623 /* wake up the daemon & tell it to get us a spare table
1624 * XXX
1625 * the entries in the queues should be tagged with the raidPtr
1626 * so that in the extremely rare case that two recons happen at once,
1627 * we know for which device were requesting a spare table
1628 * XXX
1629 *
1630 * XXX This code is not currently used. GO
1631 */
1632 int
1633 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1634 {
1635 int retcode;
1636
1637 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1638 req->next = rf_sparet_wait_queue;
1639 rf_sparet_wait_queue = req;
1640 wakeup(&rf_sparet_wait_queue);
1641
1642 /* mpsleep unlocks the mutex */
1643 while (!rf_sparet_resp_queue) {
1644 tsleep(&rf_sparet_resp_queue, PRIBIO,
1645 "raidframe getsparetable", 0);
1646 }
1647 req = rf_sparet_resp_queue;
1648 rf_sparet_resp_queue = req->next;
1649 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1650
1651 retcode = req->fcol;
1652 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1653 * alloc'd */
1654 return (retcode);
1655 }
1656 #endif
1657
1658 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1659 * bp & passes it down.
1660 * any calls originating in the kernel must use non-blocking I/O
1661 * do some extra sanity checking to return "appropriate" error values for
1662 * certain conditions (to make some standard utilities work)
1663 *
1664 * Formerly known as: rf_DoAccessKernel
1665 */
1666 void
1667 raidstart(RF_Raid_t *raidPtr)
1668 {
1669 RF_SectorCount_t num_blocks, pb, sum;
1670 RF_RaidAddr_t raid_addr;
1671 struct partition *pp;
1672 daddr_t blocknum;
1673 int unit;
1674 struct raid_softc *rs;
1675 int do_async;
1676 struct buf *bp;
1677
1678 unit = raidPtr->raidid;
1679 rs = &raid_softc[unit];
1680
1681 /* quick check to see if anything has died recently */
1682 RF_LOCK_MUTEX(raidPtr->mutex);
1683 if (raidPtr->numNewFailures > 0) {
1684 RF_UNLOCK_MUTEX(raidPtr->mutex);
1685 rf_update_component_labels(raidPtr,
1686 RF_NORMAL_COMPONENT_UPDATE);
1687 RF_LOCK_MUTEX(raidPtr->mutex);
1688 raidPtr->numNewFailures--;
1689 }
1690
1691 /* Check to see if we're at the limit... */
1692 while (raidPtr->openings > 0) {
1693 RF_UNLOCK_MUTEX(raidPtr->mutex);
1694
1695 /* get the next item, if any, from the queue */
1696 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1697 /* nothing more to do */
1698 return;
1699 }
1700
1701 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1702 * partition.. Need to make it absolute to the underlying
1703 * device.. */
1704
1705 blocknum = bp->b_blkno;
1706 if (DISKPART(bp->b_dev) != RAW_PART) {
1707 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1708 blocknum += pp->p_offset;
1709 }
1710
1711 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1712 (int) blocknum));
1713
1714 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1715 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1716
1717 /* *THIS* is where we adjust what block we're going to...
1718 * but DO NOT TOUCH bp->b_blkno!!! */
1719 raid_addr = blocknum;
1720
1721 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1722 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1723 sum = raid_addr + num_blocks + pb;
1724 if (1 || rf_debugKernelAccess) {
1725 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1726 (int) raid_addr, (int) sum, (int) num_blocks,
1727 (int) pb, (int) bp->b_resid));
1728 }
1729 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1730 || (sum < num_blocks) || (sum < pb)) {
1731 bp->b_error = ENOSPC;
1732 bp->b_flags |= B_ERROR;
1733 bp->b_resid = bp->b_bcount;
1734 biodone(bp);
1735 RF_LOCK_MUTEX(raidPtr->mutex);
1736 continue;
1737 }
1738 /*
1739 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1740 */
1741
1742 if (bp->b_bcount & raidPtr->sectorMask) {
1743 bp->b_error = EINVAL;
1744 bp->b_flags |= B_ERROR;
1745 bp->b_resid = bp->b_bcount;
1746 biodone(bp);
1747 RF_LOCK_MUTEX(raidPtr->mutex);
1748 continue;
1749
1750 }
1751 db1_printf(("Calling DoAccess..\n"));
1752
1753
1754 RF_LOCK_MUTEX(raidPtr->mutex);
1755 raidPtr->openings--;
1756 RF_UNLOCK_MUTEX(raidPtr->mutex);
1757
1758 /*
1759 * Everything is async.
1760 */
1761 do_async = 1;
1762
1763 disk_busy(&rs->sc_dkdev);
1764
1765 /* XXX we're still at splbio() here... do we *really*
1766 need to be? */
1767
1768 /* don't ever condition on bp->b_flags & B_WRITE.
1769 * always condition on B_READ instead */
1770
1771 bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1772 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1773 do_async, raid_addr, num_blocks,
1774 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1775
1776 if (bp->b_error) {
1777 bp->b_flags |= B_ERROR;
1778 }
1779
1780 RF_LOCK_MUTEX(raidPtr->mutex);
1781 }
1782 RF_UNLOCK_MUTEX(raidPtr->mutex);
1783 }
1784
1785
1786
1787
1788 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1789
1790 int
1791 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1792 {
1793 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1794 struct buf *bp;
1795 struct raidbuf *raidbp = NULL;
1796
1797 req->queue = queue;
1798
1799 #if DIAGNOSTIC
1800 if (queue->raidPtr->raidid >= numraid) {
1801 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1802 numraid);
1803 panic("Invalid Unit number in rf_DispatchKernelIO");
1804 }
1805 #endif
1806
1807 bp = req->bp;
1808 #if 1
1809 /* XXX when there is a physical disk failure, someone is passing us a
1810 * buffer that contains old stuff!! Attempt to deal with this problem
1811 * without taking a performance hit... (not sure where the real bug
1812 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1813
1814 if (bp->b_flags & B_ERROR) {
1815 bp->b_flags &= ~B_ERROR;
1816 }
1817 if (bp->b_error != 0) {
1818 bp->b_error = 0;
1819 }
1820 #endif
1821 raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
1822 if (raidbp == NULL) {
1823 bp->b_flags |= B_ERROR;
1824 bp->b_error = ENOMEM;
1825 return (ENOMEM);
1826 }
1827 BUF_INIT(&raidbp->rf_buf);
1828
1829 /*
1830 * context for raidiodone
1831 */
1832 raidbp->rf_obp = bp;
1833 raidbp->req = req;
1834
1835 BIO_COPYPRIO(&raidbp->rf_buf, bp);
1836
1837 switch (req->type) {
1838 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1839 /* XXX need to do something extra here.. */
1840 /* I'm leaving this in, as I've never actually seen it used,
1841 * and I'd like folks to report it... GO */
1842 printf(("WAKEUP CALLED\n"));
1843 queue->numOutstanding++;
1844
1845 /* XXX need to glue the original buffer into this?? */
1846
1847 KernelWakeupFunc(&raidbp->rf_buf);
1848 break;
1849
1850 case RF_IO_TYPE_READ:
1851 case RF_IO_TYPE_WRITE:
1852 #if RF_ACC_TRACE > 0
1853 if (req->tracerec) {
1854 RF_ETIMER_START(req->tracerec->timer);
1855 }
1856 #endif
1857 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1858 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1859 req->sectorOffset, req->numSector,
1860 req->buf, KernelWakeupFunc, (void *) req,
1861 queue->raidPtr->logBytesPerSector, req->b_proc);
1862
1863 if (rf_debugKernelAccess) {
1864 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1865 (long) bp->b_blkno));
1866 }
1867 queue->numOutstanding++;
1868 queue->last_deq_sector = req->sectorOffset;
1869 /* acc wouldn't have been let in if there were any pending
1870 * reqs at any other priority */
1871 queue->curPriority = req->priority;
1872
1873 db1_printf(("Going for %c to unit %d col %d\n",
1874 req->type, queue->raidPtr->raidid,
1875 queue->col));
1876 db1_printf(("sector %d count %d (%d bytes) %d\n",
1877 (int) req->sectorOffset, (int) req->numSector,
1878 (int) (req->numSector <<
1879 queue->raidPtr->logBytesPerSector),
1880 (int) queue->raidPtr->logBytesPerSector));
1881 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1882 raidbp->rf_buf.b_vp->v_numoutput++;
1883 }
1884 VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
1885
1886 break;
1887
1888 default:
1889 panic("bad req->type in rf_DispatchKernelIO");
1890 }
1891 db1_printf(("Exiting from DispatchKernelIO\n"));
1892
1893 return (0);
1894 }
1895 /* this is the callback function associated with a I/O invoked from
1896 kernel code.
1897 */
1898 static void
1899 KernelWakeupFunc(struct buf *vbp)
1900 {
1901 RF_DiskQueueData_t *req = NULL;
1902 RF_DiskQueue_t *queue;
1903 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1904 struct buf *bp;
1905 int s;
1906
1907 s = splbio();
1908 db1_printf(("recovering the request queue:\n"));
1909 req = raidbp->req;
1910
1911 bp = raidbp->rf_obp;
1912
1913 queue = (RF_DiskQueue_t *) req->queue;
1914
1915 if (raidbp->rf_buf.b_flags & B_ERROR) {
1916 bp->b_flags |= B_ERROR;
1917 bp->b_error = raidbp->rf_buf.b_error ?
1918 raidbp->rf_buf.b_error : EIO;
1919 }
1920
1921 /* XXX methinks this could be wrong... */
1922 #if 1
1923 bp->b_resid = raidbp->rf_buf.b_resid;
1924 #endif
1925 #if RF_ACC_TRACE > 0
1926 if (req->tracerec) {
1927 RF_ETIMER_STOP(req->tracerec->timer);
1928 RF_ETIMER_EVAL(req->tracerec->timer);
1929 RF_LOCK_MUTEX(rf_tracing_mutex);
1930 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1931 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1932 req->tracerec->num_phys_ios++;
1933 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1934 }
1935 #endif
1936 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1937
1938 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1939 * ballistic, and mark the component as hosed... */
1940
1941 if (bp->b_flags & B_ERROR) {
1942 /* Mark the disk as dead */
1943 /* but only mark it once... */
1944 if (queue->raidPtr->Disks[queue->col].status ==
1945 rf_ds_optimal) {
1946 printf("raid%d: IO Error. Marking %s as failed.\n",
1947 queue->raidPtr->raidid,
1948 queue->raidPtr->Disks[queue->col].devname);
1949 queue->raidPtr->Disks[queue->col].status =
1950 rf_ds_failed;
1951 queue->raidPtr->status = rf_rs_degraded;
1952 queue->raidPtr->numFailures++;
1953 queue->raidPtr->numNewFailures++;
1954 } else { /* Disk is already dead... */
1955 /* printf("Disk already marked as dead!\n"); */
1956 }
1957
1958 }
1959
1960 pool_put(&raidframe_cbufpool, raidbp);
1961
1962 /* Fill in the error value */
1963
1964 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1965
1966 simple_lock(&queue->raidPtr->iodone_lock);
1967
1968 /* Drop this one on the "finished" queue... */
1969 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1970
1971 /* Let the raidio thread know there is work to be done. */
1972 wakeup(&(queue->raidPtr->iodone));
1973
1974 simple_unlock(&queue->raidPtr->iodone_lock);
1975
1976 splx(s);
1977 }
1978
1979
1980
1981 /*
1982 * initialize a buf structure for doing an I/O in the kernel.
1983 */
1984 static void
1985 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
1986 RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
1987 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
1988 struct proc *b_proc)
1989 {
1990 /* bp->b_flags = B_PHYS | rw_flag; */
1991 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
1992 bp->b_bcount = numSect << logBytesPerSector;
1993 bp->b_bufsize = bp->b_bcount;
1994 bp->b_error = 0;
1995 bp->b_dev = dev;
1996 bp->b_data = buf;
1997 bp->b_blkno = startSect;
1998 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
1999 if (bp->b_bcount == 0) {
2000 panic("bp->b_bcount is zero in InitBP!!");
2001 }
2002 bp->b_proc = b_proc;
2003 bp->b_iodone = cbFunc;
2004 bp->b_vp = b_vp;
2005
2006 }
2007
2008 static void
2009 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2010 struct disklabel *lp)
2011 {
2012 memset(lp, 0, sizeof(*lp));
2013
2014 /* fabricate a label... */
2015 lp->d_secperunit = raidPtr->totalSectors;
2016 lp->d_secsize = raidPtr->bytesPerSector;
2017 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2018 lp->d_ntracks = 4 * raidPtr->numCol;
2019 lp->d_ncylinders = raidPtr->totalSectors /
2020 (lp->d_nsectors * lp->d_ntracks);
2021 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2022
2023 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2024 lp->d_type = DTYPE_RAID;
2025 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2026 lp->d_rpm = 3600;
2027 lp->d_interleave = 1;
2028 lp->d_flags = 0;
2029
2030 lp->d_partitions[RAW_PART].p_offset = 0;
2031 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2032 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2033 lp->d_npartitions = RAW_PART + 1;
2034
2035 lp->d_magic = DISKMAGIC;
2036 lp->d_magic2 = DISKMAGIC;
2037 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2038
2039 }
2040 /*
2041 * Read the disklabel from the raid device. If one is not present, fake one
2042 * up.
2043 */
2044 static void
2045 raidgetdisklabel(dev_t dev)
2046 {
2047 int unit = raidunit(dev);
2048 struct raid_softc *rs = &raid_softc[unit];
2049 const char *errstring;
2050 struct disklabel *lp = rs->sc_dkdev.dk_label;
2051 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2052 RF_Raid_t *raidPtr;
2053
2054 db1_printf(("Getting the disklabel...\n"));
2055
2056 memset(clp, 0, sizeof(*clp));
2057
2058 raidPtr = raidPtrs[unit];
2059
2060 raidgetdefaultlabel(raidPtr, rs, lp);
2061
2062 /*
2063 * Call the generic disklabel extraction routine.
2064 */
2065 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2066 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2067 if (errstring)
2068 raidmakedisklabel(rs);
2069 else {
2070 int i;
2071 struct partition *pp;
2072
2073 /*
2074 * Sanity check whether the found disklabel is valid.
2075 *
2076 * This is necessary since total size of the raid device
2077 * may vary when an interleave is changed even though exactly
2078 * same componets are used, and old disklabel may used
2079 * if that is found.
2080 */
2081 if (lp->d_secperunit != rs->sc_size)
2082 printf("raid%d: WARNING: %s: "
2083 "total sector size in disklabel (%d) != "
2084 "the size of raid (%ld)\n", unit, rs->sc_xname,
2085 lp->d_secperunit, (long) rs->sc_size);
2086 for (i = 0; i < lp->d_npartitions; i++) {
2087 pp = &lp->d_partitions[i];
2088 if (pp->p_offset + pp->p_size > rs->sc_size)
2089 printf("raid%d: WARNING: %s: end of partition `%c' "
2090 "exceeds the size of raid (%ld)\n",
2091 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2092 }
2093 }
2094
2095 }
2096 /*
2097 * Take care of things one might want to take care of in the event
2098 * that a disklabel isn't present.
2099 */
2100 static void
2101 raidmakedisklabel(struct raid_softc *rs)
2102 {
2103 struct disklabel *lp = rs->sc_dkdev.dk_label;
2104 db1_printf(("Making a label..\n"));
2105
2106 /*
2107 * For historical reasons, if there's no disklabel present
2108 * the raw partition must be marked FS_BSDFFS.
2109 */
2110
2111 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2112
2113 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2114
2115 lp->d_checksum = dkcksum(lp);
2116 }
2117 /*
2118 * Lookup the provided name in the filesystem. If the file exists,
2119 * is a valid block device, and isn't being used by anyone else,
2120 * set *vpp to the file's vnode.
2121 * You'll find the original of this in ccd.c
2122 */
2123 int
2124 raidlookup(char *path, struct proc *p, struct vnode **vpp)
2125 {
2126 struct nameidata nd;
2127 struct vnode *vp;
2128 struct vattr va;
2129 int error;
2130
2131 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2132 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2133 return (error);
2134 }
2135 vp = nd.ni_vp;
2136 if (vp->v_usecount > 1) {
2137 VOP_UNLOCK(vp, 0);
2138 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2139 return (EBUSY);
2140 }
2141 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2142 VOP_UNLOCK(vp, 0);
2143 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2144 return (error);
2145 }
2146 /* XXX: eventually we should handle VREG, too. */
2147 if (va.va_type != VBLK) {
2148 VOP_UNLOCK(vp, 0);
2149 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2150 return (ENOTBLK);
2151 }
2152 VOP_UNLOCK(vp, 0);
2153 *vpp = vp;
2154 return (0);
2155 }
2156 /*
2157 * Wait interruptibly for an exclusive lock.
2158 *
2159 * XXX
2160 * Several drivers do this; it should be abstracted and made MP-safe.
2161 * (Hmm... where have we seen this warning before :-> GO )
2162 */
2163 static int
2164 raidlock(struct raid_softc *rs)
2165 {
2166 int error;
2167
2168 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2169 rs->sc_flags |= RAIDF_WANTED;
2170 if ((error =
2171 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2172 return (error);
2173 }
2174 rs->sc_flags |= RAIDF_LOCKED;
2175 return (0);
2176 }
2177 /*
2178 * Unlock and wake up any waiters.
2179 */
2180 static void
2181 raidunlock(struct raid_softc *rs)
2182 {
2183
2184 rs->sc_flags &= ~RAIDF_LOCKED;
2185 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2186 rs->sc_flags &= ~RAIDF_WANTED;
2187 wakeup(rs);
2188 }
2189 }
2190
2191
2192 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2193 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2194
2195 int
2196 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2197 {
2198 RF_ComponentLabel_t clabel;
2199 raidread_component_label(dev, b_vp, &clabel);
2200 clabel.mod_counter = mod_counter;
2201 clabel.clean = RF_RAID_CLEAN;
2202 raidwrite_component_label(dev, b_vp, &clabel);
2203 return(0);
2204 }
2205
2206
2207 int
2208 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2209 {
2210 RF_ComponentLabel_t clabel;
2211 raidread_component_label(dev, b_vp, &clabel);
2212 clabel.mod_counter = mod_counter;
2213 clabel.clean = RF_RAID_DIRTY;
2214 raidwrite_component_label(dev, b_vp, &clabel);
2215 return(0);
2216 }
2217
2218 /* ARGSUSED */
2219 int
2220 raidread_component_label(dev_t dev, struct vnode *b_vp,
2221 RF_ComponentLabel_t *clabel)
2222 {
2223 struct buf *bp;
2224 const struct bdevsw *bdev;
2225 int error;
2226
2227 /* XXX should probably ensure that we don't try to do this if
2228 someone has changed rf_protected_sectors. */
2229
2230 if (b_vp == NULL) {
2231 /* For whatever reason, this component is not valid.
2232 Don't try to read a component label from it. */
2233 return(EINVAL);
2234 }
2235
2236 /* get a block of the appropriate size... */
2237 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2238 bp->b_dev = dev;
2239
2240 /* get our ducks in a row for the read */
2241 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2242 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2243 bp->b_flags |= B_READ;
2244 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2245
2246 bdev = bdevsw_lookup(bp->b_dev);
2247 if (bdev == NULL)
2248 return (ENXIO);
2249 (*bdev->d_strategy)(bp);
2250
2251 error = biowait(bp);
2252
2253 if (!error) {
2254 memcpy(clabel, bp->b_data,
2255 sizeof(RF_ComponentLabel_t));
2256 }
2257
2258 brelse(bp);
2259 return(error);
2260 }
2261 /* ARGSUSED */
2262 int
2263 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2264 RF_ComponentLabel_t *clabel)
2265 {
2266 struct buf *bp;
2267 const struct bdevsw *bdev;
2268 int error;
2269
2270 /* get a block of the appropriate size... */
2271 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2272 bp->b_dev = dev;
2273
2274 /* get our ducks in a row for the write */
2275 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2276 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2277 bp->b_flags |= B_WRITE;
2278 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2279
2280 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2281
2282 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2283
2284 bdev = bdevsw_lookup(bp->b_dev);
2285 if (bdev == NULL)
2286 return (ENXIO);
2287 (*bdev->d_strategy)(bp);
2288 error = biowait(bp);
2289 brelse(bp);
2290 if (error) {
2291 #if 1
2292 printf("Failed to write RAID component info!\n");
2293 #endif
2294 }
2295
2296 return(error);
2297 }
2298
2299 void
2300 rf_markalldirty(RF_Raid_t *raidPtr)
2301 {
2302 RF_ComponentLabel_t clabel;
2303 int sparecol;
2304 int c;
2305 int j;
2306 int scol = -1;
2307
2308 raidPtr->mod_counter++;
2309 for (c = 0; c < raidPtr->numCol; c++) {
2310 /* we don't want to touch (at all) a disk that has
2311 failed */
2312 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2313 raidread_component_label(
2314 raidPtr->Disks[c].dev,
2315 raidPtr->raid_cinfo[c].ci_vp,
2316 &clabel);
2317 if (clabel.status == rf_ds_spared) {
2318 /* XXX do something special...
2319 but whatever you do, don't
2320 try to access it!! */
2321 } else {
2322 raidmarkdirty(
2323 raidPtr->Disks[c].dev,
2324 raidPtr->raid_cinfo[c].ci_vp,
2325 raidPtr->mod_counter);
2326 }
2327 }
2328 }
2329
2330 for( c = 0; c < raidPtr->numSpare ; c++) {
2331 sparecol = raidPtr->numCol + c;
2332 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2333 /*
2334
2335 we claim this disk is "optimal" if it's
2336 rf_ds_used_spare, as that means it should be
2337 directly substitutable for the disk it replaced.
2338 We note that too...
2339
2340 */
2341
2342 for(j=0;j<raidPtr->numCol;j++) {
2343 if (raidPtr->Disks[j].spareCol == sparecol) {
2344 scol = j;
2345 break;
2346 }
2347 }
2348
2349 raidread_component_label(
2350 raidPtr->Disks[sparecol].dev,
2351 raidPtr->raid_cinfo[sparecol].ci_vp,
2352 &clabel);
2353 /* make sure status is noted */
2354
2355 raid_init_component_label(raidPtr, &clabel);
2356
2357 clabel.row = 0;
2358 clabel.column = scol;
2359 /* Note: we *don't* change status from rf_ds_used_spare
2360 to rf_ds_optimal */
2361 /* clabel.status = rf_ds_optimal; */
2362
2363 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2364 raidPtr->raid_cinfo[sparecol].ci_vp,
2365 raidPtr->mod_counter);
2366 }
2367 }
2368 }
2369
2370
2371 void
2372 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2373 {
2374 RF_ComponentLabel_t clabel;
2375 int sparecol;
2376 int c;
2377 int j;
2378 int scol;
2379
2380 scol = -1;
2381
2382 /* XXX should do extra checks to make sure things really are clean,
2383 rather than blindly setting the clean bit... */
2384
2385 raidPtr->mod_counter++;
2386
2387 for (c = 0; c < raidPtr->numCol; c++) {
2388 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2389 raidread_component_label(
2390 raidPtr->Disks[c].dev,
2391 raidPtr->raid_cinfo[c].ci_vp,
2392 &clabel);
2393 /* make sure status is noted */
2394 clabel.status = rf_ds_optimal;
2395 /* bump the counter */
2396 clabel.mod_counter = raidPtr->mod_counter;
2397
2398 raidwrite_component_label(
2399 raidPtr->Disks[c].dev,
2400 raidPtr->raid_cinfo[c].ci_vp,
2401 &clabel);
2402 if (final == RF_FINAL_COMPONENT_UPDATE) {
2403 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2404 raidmarkclean(
2405 raidPtr->Disks[c].dev,
2406 raidPtr->raid_cinfo[c].ci_vp,
2407 raidPtr->mod_counter);
2408 }
2409 }
2410 }
2411 /* else we don't touch it.. */
2412 }
2413
2414 for( c = 0; c < raidPtr->numSpare ; c++) {
2415 sparecol = raidPtr->numCol + c;
2416 /* Need to ensure that the reconstruct actually completed! */
2417 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2418 /*
2419
2420 we claim this disk is "optimal" if it's
2421 rf_ds_used_spare, as that means it should be
2422 directly substitutable for the disk it replaced.
2423 We note that too...
2424
2425 */
2426
2427 for(j=0;j<raidPtr->numCol;j++) {
2428 if (raidPtr->Disks[j].spareCol == sparecol) {
2429 scol = j;
2430 break;
2431 }
2432 }
2433
2434 /* XXX shouldn't *really* need this... */
2435 raidread_component_label(
2436 raidPtr->Disks[sparecol].dev,
2437 raidPtr->raid_cinfo[sparecol].ci_vp,
2438 &clabel);
2439 /* make sure status is noted */
2440
2441 raid_init_component_label(raidPtr, &clabel);
2442
2443 clabel.mod_counter = raidPtr->mod_counter;
2444 clabel.column = scol;
2445 clabel.status = rf_ds_optimal;
2446
2447 raidwrite_component_label(
2448 raidPtr->Disks[sparecol].dev,
2449 raidPtr->raid_cinfo[sparecol].ci_vp,
2450 &clabel);
2451 if (final == RF_FINAL_COMPONENT_UPDATE) {
2452 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2453 raidmarkclean( raidPtr->Disks[sparecol].dev,
2454 raidPtr->raid_cinfo[sparecol].ci_vp,
2455 raidPtr->mod_counter);
2456 }
2457 }
2458 }
2459 }
2460 }
2461
2462 void
2463 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2464 {
2465 struct proc *p;
2466
2467 p = raidPtr->engine_thread;
2468
2469 if (vp != NULL) {
2470 if (auto_configured == 1) {
2471 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2472 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2473 vput(vp);
2474
2475 } else {
2476 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2477 }
2478 }
2479 }
2480
2481
2482 void
2483 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2484 {
2485 int r,c;
2486 struct vnode *vp;
2487 int acd;
2488
2489
2490 /* We take this opportunity to close the vnodes like we should.. */
2491
2492 for (c = 0; c < raidPtr->numCol; c++) {
2493 vp = raidPtr->raid_cinfo[c].ci_vp;
2494 acd = raidPtr->Disks[c].auto_configured;
2495 rf_close_component(raidPtr, vp, acd);
2496 raidPtr->raid_cinfo[c].ci_vp = NULL;
2497 raidPtr->Disks[c].auto_configured = 0;
2498 }
2499
2500 for (r = 0; r < raidPtr->numSpare; r++) {
2501 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2502 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2503 rf_close_component(raidPtr, vp, acd);
2504 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2505 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2506 }
2507 }
2508
2509
2510 void
2511 rf_ReconThread(struct rf_recon_req *req)
2512 {
2513 int s;
2514 RF_Raid_t *raidPtr;
2515
2516 s = splbio();
2517 raidPtr = (RF_Raid_t *) req->raidPtr;
2518 raidPtr->recon_in_progress = 1;
2519
2520 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2521 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2522
2523 RF_Free(req, sizeof(*req));
2524
2525 raidPtr->recon_in_progress = 0;
2526 splx(s);
2527
2528 /* That's all... */
2529 kthread_exit(0); /* does not return */
2530 }
2531
2532 void
2533 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2534 {
2535 int retcode;
2536 int s;
2537
2538 raidPtr->parity_rewrite_in_progress = 1;
2539 s = splbio();
2540 retcode = rf_RewriteParity(raidPtr);
2541 splx(s);
2542 if (retcode) {
2543 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2544 } else {
2545 /* set the clean bit! If we shutdown correctly,
2546 the clean bit on each component label will get
2547 set */
2548 raidPtr->parity_good = RF_RAID_CLEAN;
2549 }
2550 raidPtr->parity_rewrite_in_progress = 0;
2551
2552 /* Anyone waiting for us to stop? If so, inform them... */
2553 if (raidPtr->waitShutdown) {
2554 wakeup(&raidPtr->parity_rewrite_in_progress);
2555 }
2556
2557 /* That's all... */
2558 kthread_exit(0); /* does not return */
2559 }
2560
2561
2562 void
2563 rf_CopybackThread(RF_Raid_t *raidPtr)
2564 {
2565 int s;
2566
2567 raidPtr->copyback_in_progress = 1;
2568 s = splbio();
2569 rf_CopybackReconstructedData(raidPtr);
2570 splx(s);
2571 raidPtr->copyback_in_progress = 0;
2572
2573 /* That's all... */
2574 kthread_exit(0); /* does not return */
2575 }
2576
2577
2578 void
2579 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2580 {
2581 int s;
2582 RF_Raid_t *raidPtr;
2583
2584 s = splbio();
2585 raidPtr = req->raidPtr;
2586 raidPtr->recon_in_progress = 1;
2587 rf_ReconstructInPlace(raidPtr, req->col);
2588 RF_Free(req, sizeof(*req));
2589 raidPtr->recon_in_progress = 0;
2590 splx(s);
2591
2592 /* That's all... */
2593 kthread_exit(0); /* does not return */
2594 }
2595
2596 RF_AutoConfig_t *
2597 rf_find_raid_components()
2598 {
2599 struct vnode *vp;
2600 struct disklabel label;
2601 struct device *dv;
2602 dev_t dev;
2603 int bmajor;
2604 int error;
2605 int i;
2606 int good_one;
2607 RF_ComponentLabel_t *clabel;
2608 RF_AutoConfig_t *ac_list;
2609 RF_AutoConfig_t *ac;
2610
2611
2612 /* initialize the AutoConfig list */
2613 ac_list = NULL;
2614
2615 /* we begin by trolling through *all* the devices on the system */
2616
2617 for (dv = alldevs.tqh_first; dv != NULL;
2618 dv = dv->dv_list.tqe_next) {
2619
2620 /* we are only interested in disks... */
2621 if (dv->dv_class != DV_DISK)
2622 continue;
2623
2624 /* we don't care about floppies... */
2625 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2626 continue;
2627 }
2628
2629 /* we don't care about CD's... */
2630 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2631 continue;
2632 }
2633
2634 /* hdfd is the Atari/Hades floppy driver */
2635 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2636 continue;
2637 }
2638 /* fdisa is the Atari/Milan floppy driver */
2639 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2640 continue;
2641 }
2642
2643 /* need to find the device_name_to_block_device_major stuff */
2644 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2645
2646 /* get a vnode for the raw partition of this disk */
2647
2648 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2649 if (bdevvp(dev, &vp))
2650 panic("RAID can't alloc vnode");
2651
2652 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2653
2654 if (error) {
2655 /* "Who cares." Continue looking
2656 for something that exists*/
2657 vput(vp);
2658 continue;
2659 }
2660
2661 /* Ok, the disk exists. Go get the disklabel. */
2662 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2663 if (error) {
2664 /*
2665 * XXX can't happen - open() would
2666 * have errored out (or faked up one)
2667 */
2668 printf("can't get label for dev %s%c (%d)!?!?\n",
2669 dv->dv_xname, 'a' + RAW_PART, error);
2670 }
2671
2672 /* don't need this any more. We'll allocate it again
2673 a little later if we really do... */
2674 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2675 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2676 vput(vp);
2677
2678 for (i=0; i < label.d_npartitions; i++) {
2679 /* We only support partitions marked as RAID */
2680 if (label.d_partitions[i].p_fstype != FS_RAID)
2681 continue;
2682
2683 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2684 if (bdevvp(dev, &vp))
2685 panic("RAID can't alloc vnode");
2686
2687 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2688 if (error) {
2689 /* Whatever... */
2690 vput(vp);
2691 continue;
2692 }
2693
2694 good_one = 0;
2695
2696 clabel = (RF_ComponentLabel_t *)
2697 malloc(sizeof(RF_ComponentLabel_t),
2698 M_RAIDFRAME, M_NOWAIT);
2699 if (clabel == NULL) {
2700 /* XXX CLEANUP HERE */
2701 printf("RAID auto config: out of memory!\n");
2702 return(NULL); /* XXX probably should panic? */
2703 }
2704
2705 if (!raidread_component_label(dev, vp, clabel)) {
2706 /* Got the label. Does it look reasonable? */
2707 if (rf_reasonable_label(clabel) &&
2708 (clabel->partitionSize <=
2709 label.d_partitions[i].p_size)) {
2710 #if DEBUG
2711 printf("Component on: %s%c: %d\n",
2712 dv->dv_xname, 'a'+i,
2713 label.d_partitions[i].p_size);
2714 rf_print_component_label(clabel);
2715 #endif
2716 /* if it's reasonable, add it,
2717 else ignore it. */
2718 ac = (RF_AutoConfig_t *)
2719 malloc(sizeof(RF_AutoConfig_t),
2720 M_RAIDFRAME,
2721 M_NOWAIT);
2722 if (ac == NULL) {
2723 /* XXX should panic?? */
2724 return(NULL);
2725 }
2726
2727 sprintf(ac->devname, "%s%c",
2728 dv->dv_xname, 'a'+i);
2729 ac->dev = dev;
2730 ac->vp = vp;
2731 ac->clabel = clabel;
2732 ac->next = ac_list;
2733 ac_list = ac;
2734 good_one = 1;
2735 }
2736 }
2737 if (!good_one) {
2738 /* cleanup */
2739 free(clabel, M_RAIDFRAME);
2740 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2741 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2742 vput(vp);
2743 }
2744 }
2745 }
2746 return(ac_list);
2747 }
2748
2749 static int
2750 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2751 {
2752
2753 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2754 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2755 ((clabel->clean == RF_RAID_CLEAN) ||
2756 (clabel->clean == RF_RAID_DIRTY)) &&
2757 clabel->row >=0 &&
2758 clabel->column >= 0 &&
2759 clabel->num_rows > 0 &&
2760 clabel->num_columns > 0 &&
2761 clabel->row < clabel->num_rows &&
2762 clabel->column < clabel->num_columns &&
2763 clabel->blockSize > 0 &&
2764 clabel->numBlocks > 0) {
2765 /* label looks reasonable enough... */
2766 return(1);
2767 }
2768 return(0);
2769 }
2770
2771
2772 #if DEBUG
2773 void
2774 rf_print_component_label(RF_ComponentLabel_t *clabel)
2775 {
2776 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2777 clabel->row, clabel->column,
2778 clabel->num_rows, clabel->num_columns);
2779 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2780 clabel->version, clabel->serial_number,
2781 clabel->mod_counter);
2782 printf(" Clean: %s Status: %d\n",
2783 clabel->clean ? "Yes" : "No", clabel->status );
2784 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2785 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2786 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2787 (char) clabel->parityConfig, clabel->blockSize,
2788 clabel->numBlocks);
2789 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2790 printf(" Contains root partition: %s\n",
2791 clabel->root_partition ? "Yes" : "No" );
2792 printf(" Last configured as: raid%d\n", clabel->last_unit );
2793 #if 0
2794 printf(" Config order: %d\n", clabel->config_order);
2795 #endif
2796
2797 }
2798 #endif
2799
2800 RF_ConfigSet_t *
2801 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2802 {
2803 RF_AutoConfig_t *ac;
2804 RF_ConfigSet_t *config_sets;
2805 RF_ConfigSet_t *cset;
2806 RF_AutoConfig_t *ac_next;
2807
2808
2809 config_sets = NULL;
2810
2811 /* Go through the AutoConfig list, and figure out which components
2812 belong to what sets. */
2813 ac = ac_list;
2814 while(ac!=NULL) {
2815 /* we're going to putz with ac->next, so save it here
2816 for use at the end of the loop */
2817 ac_next = ac->next;
2818
2819 if (config_sets == NULL) {
2820 /* will need at least this one... */
2821 config_sets = (RF_ConfigSet_t *)
2822 malloc(sizeof(RF_ConfigSet_t),
2823 M_RAIDFRAME, M_NOWAIT);
2824 if (config_sets == NULL) {
2825 panic("rf_create_auto_sets: No memory!");
2826 }
2827 /* this one is easy :) */
2828 config_sets->ac = ac;
2829 config_sets->next = NULL;
2830 config_sets->rootable = 0;
2831 ac->next = NULL;
2832 } else {
2833 /* which set does this component fit into? */
2834 cset = config_sets;
2835 while(cset!=NULL) {
2836 if (rf_does_it_fit(cset, ac)) {
2837 /* looks like it matches... */
2838 ac->next = cset->ac;
2839 cset->ac = ac;
2840 break;
2841 }
2842 cset = cset->next;
2843 }
2844 if (cset==NULL) {
2845 /* didn't find a match above... new set..*/
2846 cset = (RF_ConfigSet_t *)
2847 malloc(sizeof(RF_ConfigSet_t),
2848 M_RAIDFRAME, M_NOWAIT);
2849 if (cset == NULL) {
2850 panic("rf_create_auto_sets: No memory!");
2851 }
2852 cset->ac = ac;
2853 ac->next = NULL;
2854 cset->next = config_sets;
2855 cset->rootable = 0;
2856 config_sets = cset;
2857 }
2858 }
2859 ac = ac_next;
2860 }
2861
2862
2863 return(config_sets);
2864 }
2865
2866 static int
2867 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2868 {
2869 RF_ComponentLabel_t *clabel1, *clabel2;
2870
2871 /* If this one matches the *first* one in the set, that's good
2872 enough, since the other members of the set would have been
2873 through here too... */
2874 /* note that we are not checking partitionSize here..
2875
2876 Note that we are also not checking the mod_counters here.
2877 If everything else matches execpt the mod_counter, that's
2878 good enough for this test. We will deal with the mod_counters
2879 a little later in the autoconfiguration process.
2880
2881 (clabel1->mod_counter == clabel2->mod_counter) &&
2882
2883 The reason we don't check for this is that failed disks
2884 will have lower modification counts. If those disks are
2885 not added to the set they used to belong to, then they will
2886 form their own set, which may result in 2 different sets,
2887 for example, competing to be configured at raid0, and
2888 perhaps competing to be the root filesystem set. If the
2889 wrong ones get configured, or both attempt to become /,
2890 weird behaviour and or serious lossage will occur. Thus we
2891 need to bring them into the fold here, and kick them out at
2892 a later point.
2893
2894 */
2895
2896 clabel1 = cset->ac->clabel;
2897 clabel2 = ac->clabel;
2898 if ((clabel1->version == clabel2->version) &&
2899 (clabel1->serial_number == clabel2->serial_number) &&
2900 (clabel1->num_rows == clabel2->num_rows) &&
2901 (clabel1->num_columns == clabel2->num_columns) &&
2902 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2903 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2904 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2905 (clabel1->parityConfig == clabel2->parityConfig) &&
2906 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2907 (clabel1->blockSize == clabel2->blockSize) &&
2908 (clabel1->numBlocks == clabel2->numBlocks) &&
2909 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2910 (clabel1->root_partition == clabel2->root_partition) &&
2911 (clabel1->last_unit == clabel2->last_unit) &&
2912 (clabel1->config_order == clabel2->config_order)) {
2913 /* if it get's here, it almost *has* to be a match */
2914 } else {
2915 /* it's not consistent with somebody in the set..
2916 punt */
2917 return(0);
2918 }
2919 /* all was fine.. it must fit... */
2920 return(1);
2921 }
2922
2923 int
2924 rf_have_enough_components(RF_ConfigSet_t *cset)
2925 {
2926 RF_AutoConfig_t *ac;
2927 RF_AutoConfig_t *auto_config;
2928 RF_ComponentLabel_t *clabel;
2929 int c;
2930 int num_cols;
2931 int num_missing;
2932 int mod_counter;
2933 int mod_counter_found;
2934 int even_pair_failed;
2935 char parity_type;
2936
2937
2938 /* check to see that we have enough 'live' components
2939 of this set. If so, we can configure it if necessary */
2940
2941 num_cols = cset->ac->clabel->num_columns;
2942 parity_type = cset->ac->clabel->parityConfig;
2943
2944 /* XXX Check for duplicate components!?!?!? */
2945
2946 /* Determine what the mod_counter is supposed to be for this set. */
2947
2948 mod_counter_found = 0;
2949 mod_counter = 0;
2950 ac = cset->ac;
2951 while(ac!=NULL) {
2952 if (mod_counter_found==0) {
2953 mod_counter = ac->clabel->mod_counter;
2954 mod_counter_found = 1;
2955 } else {
2956 if (ac->clabel->mod_counter > mod_counter) {
2957 mod_counter = ac->clabel->mod_counter;
2958 }
2959 }
2960 ac = ac->next;
2961 }
2962
2963 num_missing = 0;
2964 auto_config = cset->ac;
2965
2966 even_pair_failed = 0;
2967 for(c=0; c<num_cols; c++) {
2968 ac = auto_config;
2969 while(ac!=NULL) {
2970 if ((ac->clabel->column == c) &&
2971 (ac->clabel->mod_counter == mod_counter)) {
2972 /* it's this one... */
2973 #if DEBUG
2974 printf("Found: %s at %d\n",
2975 ac->devname,c);
2976 #endif
2977 break;
2978 }
2979 ac=ac->next;
2980 }
2981 if (ac==NULL) {
2982 /* Didn't find one here! */
2983 /* special case for RAID 1, especially
2984 where there are more than 2
2985 components (where RAIDframe treats
2986 things a little differently :( ) */
2987 if (parity_type == '1') {
2988 if (c%2 == 0) { /* even component */
2989 even_pair_failed = 1;
2990 } else { /* odd component. If
2991 we're failed, and
2992 so is the even
2993 component, it's
2994 "Good Night, Charlie" */
2995 if (even_pair_failed == 1) {
2996 return(0);
2997 }
2998 }
2999 } else {
3000 /* normal accounting */
3001 num_missing++;
3002 }
3003 }
3004 if ((parity_type == '1') && (c%2 == 1)) {
3005 /* Just did an even component, and we didn't
3006 bail.. reset the even_pair_failed flag,
3007 and go on to the next component.... */
3008 even_pair_failed = 0;
3009 }
3010 }
3011
3012 clabel = cset->ac->clabel;
3013
3014 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3015 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3016 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3017 /* XXX this needs to be made *much* more general */
3018 /* Too many failures */
3019 return(0);
3020 }
3021 /* otherwise, all is well, and we've got enough to take a kick
3022 at autoconfiguring this set */
3023 return(1);
3024 }
3025
3026 void
3027 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3028 RF_Raid_t *raidPtr)
3029 {
3030 RF_ComponentLabel_t *clabel;
3031 int i;
3032
3033 clabel = ac->clabel;
3034
3035 /* 1. Fill in the common stuff */
3036 config->numRow = clabel->num_rows = 1;
3037 config->numCol = clabel->num_columns;
3038 config->numSpare = 0; /* XXX should this be set here? */
3039 config->sectPerSU = clabel->sectPerSU;
3040 config->SUsPerPU = clabel->SUsPerPU;
3041 config->SUsPerRU = clabel->SUsPerRU;
3042 config->parityConfig = clabel->parityConfig;
3043 /* XXX... */
3044 strcpy(config->diskQueueType,"fifo");
3045 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3046 config->layoutSpecificSize = 0; /* XXX ?? */
3047
3048 while(ac!=NULL) {
3049 /* row/col values will be in range due to the checks
3050 in reasonable_label() */
3051 strcpy(config->devnames[0][ac->clabel->column],
3052 ac->devname);
3053 ac = ac->next;
3054 }
3055
3056 for(i=0;i<RF_MAXDBGV;i++) {
3057 config->debugVars[i][0] = 0;
3058 }
3059 }
3060
3061 int
3062 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3063 {
3064 RF_ComponentLabel_t clabel;
3065 struct vnode *vp;
3066 dev_t dev;
3067 int column;
3068 int sparecol;
3069
3070 raidPtr->autoconfigure = new_value;
3071
3072 for(column=0; column<raidPtr->numCol; column++) {
3073 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3074 dev = raidPtr->Disks[column].dev;
3075 vp = raidPtr->raid_cinfo[column].ci_vp;
3076 raidread_component_label(dev, vp, &clabel);
3077 clabel.autoconfigure = new_value;
3078 raidwrite_component_label(dev, vp, &clabel);
3079 }
3080 }
3081 for(column = 0; column < raidPtr->numSpare ; column++) {
3082 sparecol = raidPtr->numCol + column;
3083 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3084 dev = raidPtr->Disks[sparecol].dev;
3085 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3086 raidread_component_label(dev, vp, &clabel);
3087 clabel.autoconfigure = new_value;
3088 raidwrite_component_label(dev, vp, &clabel);
3089 }
3090 }
3091 return(new_value);
3092 }
3093
3094 int
3095 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3096 {
3097 RF_ComponentLabel_t clabel;
3098 struct vnode *vp;
3099 dev_t dev;
3100 int column;
3101 int sparecol;
3102
3103 raidPtr->root_partition = new_value;
3104 for(column=0; column<raidPtr->numCol; column++) {
3105 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3106 dev = raidPtr->Disks[column].dev;
3107 vp = raidPtr->raid_cinfo[column].ci_vp;
3108 raidread_component_label(dev, vp, &clabel);
3109 clabel.root_partition = new_value;
3110 raidwrite_component_label(dev, vp, &clabel);
3111 }
3112 }
3113 for(column = 0; column < raidPtr->numSpare ; column++) {
3114 sparecol = raidPtr->numCol + column;
3115 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3116 dev = raidPtr->Disks[sparecol].dev;
3117 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3118 raidread_component_label(dev, vp, &clabel);
3119 clabel.root_partition = new_value;
3120 raidwrite_component_label(dev, vp, &clabel);
3121 }
3122 }
3123 return(new_value);
3124 }
3125
3126 void
3127 rf_release_all_vps(RF_ConfigSet_t *cset)
3128 {
3129 RF_AutoConfig_t *ac;
3130
3131 ac = cset->ac;
3132 while(ac!=NULL) {
3133 /* Close the vp, and give it back */
3134 if (ac->vp) {
3135 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3136 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3137 vput(ac->vp);
3138 ac->vp = NULL;
3139 }
3140 ac = ac->next;
3141 }
3142 }
3143
3144
3145 void
3146 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3147 {
3148 RF_AutoConfig_t *ac;
3149 RF_AutoConfig_t *next_ac;
3150
3151 ac = cset->ac;
3152 while(ac!=NULL) {
3153 next_ac = ac->next;
3154 /* nuke the label */
3155 free(ac->clabel, M_RAIDFRAME);
3156 /* cleanup the config structure */
3157 free(ac, M_RAIDFRAME);
3158 /* "next.." */
3159 ac = next_ac;
3160 }
3161 /* and, finally, nuke the config set */
3162 free(cset, M_RAIDFRAME);
3163 }
3164
3165
3166 void
3167 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3168 {
3169 /* current version number */
3170 clabel->version = RF_COMPONENT_LABEL_VERSION;
3171 clabel->serial_number = raidPtr->serial_number;
3172 clabel->mod_counter = raidPtr->mod_counter;
3173 clabel->num_rows = 1;
3174 clabel->num_columns = raidPtr->numCol;
3175 clabel->clean = RF_RAID_DIRTY; /* not clean */
3176 clabel->status = rf_ds_optimal; /* "It's good!" */
3177
3178 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3179 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3180 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3181
3182 clabel->blockSize = raidPtr->bytesPerSector;
3183 clabel->numBlocks = raidPtr->sectorsPerDisk;
3184
3185 /* XXX not portable */
3186 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3187 clabel->maxOutstanding = raidPtr->maxOutstanding;
3188 clabel->autoconfigure = raidPtr->autoconfigure;
3189 clabel->root_partition = raidPtr->root_partition;
3190 clabel->last_unit = raidPtr->raidid;
3191 clabel->config_order = raidPtr->config_order;
3192 }
3193
3194 int
3195 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3196 {
3197 RF_Raid_t *raidPtr;
3198 RF_Config_t *config;
3199 int raidID;
3200 int retcode;
3201
3202 #if DEBUG
3203 printf("RAID autoconfigure\n");
3204 #endif
3205
3206 retcode = 0;
3207 *unit = -1;
3208
3209 /* 1. Create a config structure */
3210
3211 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3212 M_RAIDFRAME,
3213 M_NOWAIT);
3214 if (config==NULL) {
3215 printf("Out of mem!?!?\n");
3216 /* XXX do something more intelligent here. */
3217 return(1);
3218 }
3219
3220 memset(config, 0, sizeof(RF_Config_t));
3221
3222 /*
3223 2. Figure out what RAID ID this one is supposed to live at
3224 See if we can get the same RAID dev that it was configured
3225 on last time..
3226 */
3227
3228 raidID = cset->ac->clabel->last_unit;
3229 if ((raidID < 0) || (raidID >= numraid)) {
3230 /* let's not wander off into lala land. */
3231 raidID = numraid - 1;
3232 }
3233 if (raidPtrs[raidID]->valid != 0) {
3234
3235 /*
3236 Nope... Go looking for an alternative...
3237 Start high so we don't immediately use raid0 if that's
3238 not taken.
3239 */
3240
3241 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3242 if (raidPtrs[raidID]->valid == 0) {
3243 /* can use this one! */
3244 break;
3245 }
3246 }
3247 }
3248
3249 if (raidID < 0) {
3250 /* punt... */
3251 printf("Unable to auto configure this set!\n");
3252 printf("(Out of RAID devs!)\n");
3253 return(1);
3254 }
3255
3256 #if DEBUG
3257 printf("Configuring raid%d:\n",raidID);
3258 #endif
3259
3260 raidPtr = raidPtrs[raidID];
3261
3262 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3263 raidPtr->raidid = raidID;
3264 raidPtr->openings = RAIDOUTSTANDING;
3265
3266 /* 3. Build the configuration structure */
3267 rf_create_configuration(cset->ac, config, raidPtr);
3268
3269 /* 4. Do the configuration */
3270 retcode = rf_Configure(raidPtr, config, cset->ac);
3271
3272 if (retcode == 0) {
3273
3274 raidinit(raidPtrs[raidID]);
3275
3276 rf_markalldirty(raidPtrs[raidID]);
3277 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3278 if (cset->ac->clabel->root_partition==1) {
3279 /* everything configured just fine. Make a note
3280 that this set is eligible to be root. */
3281 cset->rootable = 1;
3282 /* XXX do this here? */
3283 raidPtrs[raidID]->root_partition = 1;
3284 }
3285 }
3286
3287 /* 5. Cleanup */
3288 free(config, M_RAIDFRAME);
3289
3290 *unit = raidID;
3291 return(retcode);
3292 }
3293
3294 void
3295 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3296 {
3297 struct buf *bp;
3298
3299 bp = (struct buf *)desc->bp;
3300 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3301 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3302 }
3303