Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.176
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.176 2004/03/05 02:53:58 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.176 2004/03/05 02:53:58 oster Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/user.h>
    169 #include <sys/reboot.h>
    170 
    171 #include <dev/raidframe/raidframevar.h>
    172 #include <dev/raidframe/raidframeio.h>
    173 #include "raid.h"
    174 #include "opt_raid_autoconfig.h"
    175 #include "rf_raid.h"
    176 #include "rf_copyback.h"
    177 #include "rf_dag.h"
    178 #include "rf_dagflags.h"
    179 #include "rf_desc.h"
    180 #include "rf_diskqueue.h"
    181 #include "rf_etimer.h"
    182 #include "rf_general.h"
    183 #include "rf_kintf.h"
    184 #include "rf_options.h"
    185 #include "rf_driver.h"
    186 #include "rf_parityscan.h"
    187 #include "rf_threadstuff.h"
    188 
    189 #ifdef DEBUG
    190 int     rf_kdebug_level = 0;
    191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    192 #else				/* DEBUG */
    193 #define db1_printf(a) { }
    194 #endif				/* DEBUG */
    195 
    196 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    197 
    198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    199 
    200 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    201 						 * spare table */
    202 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    203 						 * installation process */
    204 
    205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    206 
    207 /* prototypes */
    208 static void KernelWakeupFunc(struct buf * bp);
    209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    210 		   dev_t dev, RF_SectorNum_t startSect,
    211 		   RF_SectorCount_t numSect, caddr_t buf,
    212 		   void (*cbFunc) (struct buf *), void *cbArg,
    213 		   int logBytesPerSector, struct proc * b_proc);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 
    218 dev_type_open(raidopen);
    219 dev_type_close(raidclose);
    220 dev_type_read(raidread);
    221 dev_type_write(raidwrite);
    222 dev_type_ioctl(raidioctl);
    223 dev_type_strategy(raidstrategy);
    224 dev_type_dump(raiddump);
    225 dev_type_size(raidsize);
    226 
    227 const struct bdevsw raid_bdevsw = {
    228 	raidopen, raidclose, raidstrategy, raidioctl,
    229 	raiddump, raidsize, D_DISK
    230 };
    231 
    232 const struct cdevsw raid_cdevsw = {
    233 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    234 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    235 };
    236 
    237 /*
    238  * Pilfered from ccd.c
    239  */
    240 
    241 struct raidbuf {
    242 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    243 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    244 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    245 };
    246 
    247 /* component buffer pool */
    248 struct pool raidframe_cbufpool;
    249 
    250 /* XXX Not sure if the following should be replacing the raidPtrs above,
    251    or if it should be used in conjunction with that...
    252 */
    253 
    254 struct raid_softc {
    255 	int     sc_flags;	/* flags */
    256 	int     sc_cflags;	/* configuration flags */
    257 	size_t  sc_size;        /* size of the raid device */
    258 	char    sc_xname[20];	/* XXX external name */
    259 	struct disk sc_dkdev;	/* generic disk device info */
    260 	struct bufq_state buf_queue;	/* used for the device queue */
    261 };
    262 /* sc_flags */
    263 #define RAIDF_INITED	0x01	/* unit has been initialized */
    264 #define RAIDF_WLABEL	0x02	/* label area is writable */
    265 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    266 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    267 #define RAIDF_LOCKED	0x80	/* unit is locked */
    268 
    269 #define	raidunit(x)	DISKUNIT(x)
    270 int numraid = 0;
    271 
    272 /*
    273  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    274  * Be aware that large numbers can allow the driver to consume a lot of
    275  * kernel memory, especially on writes, and in degraded mode reads.
    276  *
    277  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    278  * a single 64K write will typically require 64K for the old data,
    279  * 64K for the old parity, and 64K for the new parity, for a total
    280  * of 192K (if the parity buffer is not re-used immediately).
    281  * Even it if is used immediately, that's still 128K, which when multiplied
    282  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    283  *
    284  * Now in degraded mode, for example, a 64K read on the above setup may
    285  * require data reconstruction, which will require *all* of the 4 remaining
    286  * disks to participate -- 4 * 32K/disk == 128K again.
    287  */
    288 
    289 #ifndef RAIDOUTSTANDING
    290 #define RAIDOUTSTANDING   6
    291 #endif
    292 
    293 #define RAIDLABELDEV(dev)	\
    294 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    295 
    296 /* declared here, and made public, for the benefit of KVM stuff.. */
    297 struct raid_softc *raid_softc;
    298 
    299 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    300 				     struct disklabel *);
    301 static void raidgetdisklabel(dev_t);
    302 static void raidmakedisklabel(struct raid_softc *);
    303 
    304 static int raidlock(struct raid_softc *);
    305 static void raidunlock(struct raid_softc *);
    306 
    307 static void rf_markalldirty(RF_Raid_t *);
    308 
    309 struct device *raidrootdev;
    310 
    311 void rf_ReconThread(struct rf_recon_req *);
    312 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    313 void rf_CopybackThread(RF_Raid_t *raidPtr);
    314 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    315 int rf_autoconfig(struct device *self);
    316 void rf_buildroothack(RF_ConfigSet_t *);
    317 
    318 RF_AutoConfig_t *rf_find_raid_components(void);
    319 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    320 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    321 static int rf_reasonable_label(RF_ComponentLabel_t *);
    322 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    323 int rf_set_autoconfig(RF_Raid_t *, int);
    324 int rf_set_rootpartition(RF_Raid_t *, int);
    325 void rf_release_all_vps(RF_ConfigSet_t *);
    326 void rf_cleanup_config_set(RF_ConfigSet_t *);
    327 int rf_have_enough_components(RF_ConfigSet_t *);
    328 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    329 
    330 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    331 				  allow autoconfig to take place.
    332 			          Note that this is overridden by having
    333 			          RAID_AUTOCONFIG as an option in the
    334 			          kernel config file.  */
    335 
    336 void
    337 raidattach(int num)
    338 {
    339 	int raidID;
    340 	int i, rc;
    341 
    342 #ifdef DEBUG
    343 	printf("raidattach: Asked for %d units\n", num);
    344 #endif
    345 
    346 	if (num <= 0) {
    347 #ifdef DIAGNOSTIC
    348 		panic("raidattach: count <= 0");
    349 #endif
    350 		return;
    351 	}
    352 	/* This is where all the initialization stuff gets done. */
    353 
    354 	numraid = num;
    355 
    356 	/* Make some space for requested number of units... */
    357 
    358 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    359 	if (raidPtrs == NULL) {
    360 		panic("raidPtrs is NULL!!");
    361 	}
    362 
    363 	/* Initialize the component buffer pool. */
    364 	pool_init(&raidframe_cbufpool, sizeof(struct raidbuf), 0,
    365 	    0, 0, "raidpl", NULL);
    366 	pool_prime(&raidframe_cbufpool, num * RAIDOUTSTANDING);
    367 	pool_setlowat(&raidframe_cbufpool, num * RAIDOUTSTANDING);
    368 
    369 	rf_mutex_init(&rf_sparet_wait_mutex);
    370 
    371 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    372 
    373 	for (i = 0; i < num; i++)
    374 		raidPtrs[i] = NULL;
    375 	rc = rf_BootRaidframe();
    376 	if (rc == 0)
    377 		printf("Kernelized RAIDframe activated\n");
    378 	else
    379 		panic("Serious error booting RAID!!");
    380 
    381 	/* put together some datastructures like the CCD device does.. This
    382 	 * lets us lock the device and what-not when it gets opened. */
    383 
    384 	raid_softc = (struct raid_softc *)
    385 		malloc(num * sizeof(struct raid_softc),
    386 		       M_RAIDFRAME, M_NOWAIT);
    387 	if (raid_softc == NULL) {
    388 		printf("WARNING: no memory for RAIDframe driver\n");
    389 		return;
    390 	}
    391 
    392 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    393 
    394 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    395 					      M_RAIDFRAME, M_NOWAIT);
    396 	if (raidrootdev == NULL) {
    397 		panic("No memory for RAIDframe driver!!?!?!");
    398 	}
    399 
    400 	for (raidID = 0; raidID < num; raidID++) {
    401 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    402 
    403 		raidrootdev[raidID].dv_class  = DV_DISK;
    404 		raidrootdev[raidID].dv_cfdata = NULL;
    405 		raidrootdev[raidID].dv_unit   = raidID;
    406 		raidrootdev[raidID].dv_parent = NULL;
    407 		raidrootdev[raidID].dv_flags  = 0;
    408 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    409 
    410 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    411 			  (RF_Raid_t *));
    412 		if (raidPtrs[raidID] == NULL) {
    413 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    414 			numraid = raidID;
    415 			return;
    416 		}
    417 	}
    418 
    419 #ifdef RAID_AUTOCONFIG
    420 	raidautoconfig = 1;
    421 #endif
    422 
    423 	/*
    424 	 * Register a finalizer which will be used to auto-config RAID
    425 	 * sets once all real hardware devices have been found.
    426 	 */
    427 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    428 		printf("WARNING: unable to register RAIDframe finalizer\n");
    429 }
    430 
    431 int
    432 rf_autoconfig(struct device *self)
    433 {
    434 	RF_AutoConfig_t *ac_list;
    435 	RF_ConfigSet_t *config_sets;
    436 
    437 	if (raidautoconfig == 0)
    438 		return (0);
    439 
    440 	/* XXX This code can only be run once. */
    441 	raidautoconfig = 0;
    442 
    443 	/* 1. locate all RAID components on the system */
    444 #ifdef DEBUG
    445 	printf("Searching for RAID components...\n");
    446 #endif
    447 	ac_list = rf_find_raid_components();
    448 
    449 	/* 2. Sort them into their respective sets. */
    450 	config_sets = rf_create_auto_sets(ac_list);
    451 
    452 	/*
    453 	 * 3. Evaluate each set andconfigure the valid ones.
    454 	 * This gets done in rf_buildroothack().
    455 	 */
    456 	rf_buildroothack(config_sets);
    457 
    458 	return (1);
    459 }
    460 
    461 void
    462 rf_buildroothack(RF_ConfigSet_t *config_sets)
    463 {
    464 	RF_ConfigSet_t *cset;
    465 	RF_ConfigSet_t *next_cset;
    466 	int retcode;
    467 	int raidID;
    468 	int rootID;
    469 	int num_root;
    470 
    471 	rootID = 0;
    472 	num_root = 0;
    473 	cset = config_sets;
    474 	while(cset != NULL ) {
    475 		next_cset = cset->next;
    476 		if (rf_have_enough_components(cset) &&
    477 		    cset->ac->clabel->autoconfigure==1) {
    478 			retcode = rf_auto_config_set(cset,&raidID);
    479 			if (!retcode) {
    480 				if (cset->rootable) {
    481 					rootID = raidID;
    482 					num_root++;
    483 				}
    484 			} else {
    485 				/* The autoconfig didn't work :( */
    486 #if DEBUG
    487 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    488 #endif
    489 				rf_release_all_vps(cset);
    490 			}
    491 		} else {
    492 			/* we're not autoconfiguring this set...
    493 			   release the associated resources */
    494 			rf_release_all_vps(cset);
    495 		}
    496 		/* cleanup */
    497 		rf_cleanup_config_set(cset);
    498 		cset = next_cset;
    499 	}
    500 
    501 	/* we found something bootable... */
    502 
    503 	if (num_root == 1) {
    504 		booted_device = &raidrootdev[rootID];
    505 	} else if (num_root > 1) {
    506 		/* we can't guess.. require the user to answer... */
    507 		boothowto |= RB_ASKNAME;
    508 	}
    509 }
    510 
    511 
    512 int
    513 raidsize(dev_t dev)
    514 {
    515 	struct raid_softc *rs;
    516 	struct disklabel *lp;
    517 	int     part, unit, omask, size;
    518 
    519 	unit = raidunit(dev);
    520 	if (unit >= numraid)
    521 		return (-1);
    522 	rs = &raid_softc[unit];
    523 
    524 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    525 		return (-1);
    526 
    527 	part = DISKPART(dev);
    528 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    529 	lp = rs->sc_dkdev.dk_label;
    530 
    531 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    532 		return (-1);
    533 
    534 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    535 		size = -1;
    536 	else
    537 		size = lp->d_partitions[part].p_size *
    538 		    (lp->d_secsize / DEV_BSIZE);
    539 
    540 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    541 		return (-1);
    542 
    543 	return (size);
    544 
    545 }
    546 
    547 int
    548 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    549 {
    550 	/* Not implemented. */
    551 	return ENXIO;
    552 }
    553 /* ARGSUSED */
    554 int
    555 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
    556 {
    557 	int     unit = raidunit(dev);
    558 	struct raid_softc *rs;
    559 	struct disklabel *lp;
    560 	int     part, pmask;
    561 	int     error = 0;
    562 
    563 	if (unit >= numraid)
    564 		return (ENXIO);
    565 	rs = &raid_softc[unit];
    566 
    567 	if ((error = raidlock(rs)) != 0)
    568 		return (error);
    569 	lp = rs->sc_dkdev.dk_label;
    570 
    571 	part = DISKPART(dev);
    572 	pmask = (1 << part);
    573 
    574 	if ((rs->sc_flags & RAIDF_INITED) &&
    575 	    (rs->sc_dkdev.dk_openmask == 0))
    576 		raidgetdisklabel(dev);
    577 
    578 	/* make sure that this partition exists */
    579 
    580 	if (part != RAW_PART) {
    581 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    582 		    ((part >= lp->d_npartitions) ||
    583 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    584 			error = ENXIO;
    585 			raidunlock(rs);
    586 			return (error);
    587 		}
    588 	}
    589 	/* Prevent this unit from being unconfigured while open. */
    590 	switch (fmt) {
    591 	case S_IFCHR:
    592 		rs->sc_dkdev.dk_copenmask |= pmask;
    593 		break;
    594 
    595 	case S_IFBLK:
    596 		rs->sc_dkdev.dk_bopenmask |= pmask;
    597 		break;
    598 	}
    599 
    600 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    601 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    602 		/* First one... mark things as dirty... Note that we *MUST*
    603 		 have done a configure before this.  I DO NOT WANT TO BE
    604 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    605 		 THAT THEY BELONG TOGETHER!!!!! */
    606 		/* XXX should check to see if we're only open for reading
    607 		   here... If so, we needn't do this, but then need some
    608 		   other way of keeping track of what's happened.. */
    609 
    610 		rf_markalldirty( raidPtrs[unit] );
    611 	}
    612 
    613 
    614 	rs->sc_dkdev.dk_openmask =
    615 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    616 
    617 	raidunlock(rs);
    618 
    619 	return (error);
    620 
    621 
    622 }
    623 /* ARGSUSED */
    624 int
    625 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
    626 {
    627 	int     unit = raidunit(dev);
    628 	struct raid_softc *rs;
    629 	int     error = 0;
    630 	int     part;
    631 
    632 	if (unit >= numraid)
    633 		return (ENXIO);
    634 	rs = &raid_softc[unit];
    635 
    636 	if ((error = raidlock(rs)) != 0)
    637 		return (error);
    638 
    639 	part = DISKPART(dev);
    640 
    641 	/* ...that much closer to allowing unconfiguration... */
    642 	switch (fmt) {
    643 	case S_IFCHR:
    644 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    645 		break;
    646 
    647 	case S_IFBLK:
    648 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    649 		break;
    650 	}
    651 	rs->sc_dkdev.dk_openmask =
    652 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    653 
    654 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    655 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    656 		/* Last one... device is not unconfigured yet.
    657 		   Device shutdown has taken care of setting the
    658 		   clean bits if RAIDF_INITED is not set
    659 		   mark things as clean... */
    660 
    661 		rf_update_component_labels(raidPtrs[unit],
    662 						 RF_FINAL_COMPONENT_UPDATE);
    663 		if (doing_shutdown) {
    664 			/* last one, and we're going down, so
    665 			   lights out for this RAID set too. */
    666 			error = rf_Shutdown(raidPtrs[unit]);
    667 
    668 			/* It's no longer initialized... */
    669 			rs->sc_flags &= ~RAIDF_INITED;
    670 
    671 			/* Detach the disk. */
    672 			disk_detach(&rs->sc_dkdev);
    673 		}
    674 	}
    675 
    676 	raidunlock(rs);
    677 	return (0);
    678 
    679 }
    680 
    681 void
    682 raidstrategy(struct buf *bp)
    683 {
    684 	int s;
    685 
    686 	unsigned int raidID = raidunit(bp->b_dev);
    687 	RF_Raid_t *raidPtr;
    688 	struct raid_softc *rs = &raid_softc[raidID];
    689 	int     wlabel;
    690 
    691 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    692 		bp->b_error = ENXIO;
    693 		bp->b_flags |= B_ERROR;
    694 		bp->b_resid = bp->b_bcount;
    695 		biodone(bp);
    696 		return;
    697 	}
    698 	if (raidID >= numraid || !raidPtrs[raidID]) {
    699 		bp->b_error = ENODEV;
    700 		bp->b_flags |= B_ERROR;
    701 		bp->b_resid = bp->b_bcount;
    702 		biodone(bp);
    703 		return;
    704 	}
    705 	raidPtr = raidPtrs[raidID];
    706 	if (!raidPtr->valid) {
    707 		bp->b_error = ENODEV;
    708 		bp->b_flags |= B_ERROR;
    709 		bp->b_resid = bp->b_bcount;
    710 		biodone(bp);
    711 		return;
    712 	}
    713 	if (bp->b_bcount == 0) {
    714 		db1_printf(("b_bcount is zero..\n"));
    715 		biodone(bp);
    716 		return;
    717 	}
    718 
    719 	/*
    720 	 * Do bounds checking and adjust transfer.  If there's an
    721 	 * error, the bounds check will flag that for us.
    722 	 */
    723 
    724 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    725 	if (DISKPART(bp->b_dev) != RAW_PART)
    726 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    727 			db1_printf(("Bounds check failed!!:%d %d\n",
    728 				(int) bp->b_blkno, (int) wlabel));
    729 			biodone(bp);
    730 			return;
    731 		}
    732 	s = splbio();
    733 
    734 	bp->b_resid = 0;
    735 
    736 	/* stuff it onto our queue */
    737 	BUFQ_PUT(&rs->buf_queue, bp);
    738 
    739 	raidstart(raidPtrs[raidID]);
    740 
    741 	splx(s);
    742 }
    743 /* ARGSUSED */
    744 int
    745 raidread(dev_t dev, struct uio *uio, int flags)
    746 {
    747 	int     unit = raidunit(dev);
    748 	struct raid_softc *rs;
    749 
    750 	if (unit >= numraid)
    751 		return (ENXIO);
    752 	rs = &raid_softc[unit];
    753 
    754 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    755 		return (ENXIO);
    756 
    757 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    758 
    759 }
    760 /* ARGSUSED */
    761 int
    762 raidwrite(dev_t dev, struct uio *uio, int flags)
    763 {
    764 	int     unit = raidunit(dev);
    765 	struct raid_softc *rs;
    766 
    767 	if (unit >= numraid)
    768 		return (ENXIO);
    769 	rs = &raid_softc[unit];
    770 
    771 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    772 		return (ENXIO);
    773 
    774 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    775 
    776 }
    777 
    778 int
    779 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
    780 {
    781 	int     unit = raidunit(dev);
    782 	int     error = 0;
    783 	int     part, pmask;
    784 	struct raid_softc *rs;
    785 	RF_Config_t *k_cfg, *u_cfg;
    786 	RF_Raid_t *raidPtr;
    787 	RF_RaidDisk_t *diskPtr;
    788 	RF_AccTotals_t *totals;
    789 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    790 	u_char *specific_buf;
    791 	int retcode = 0;
    792 	int column;
    793 	int raidid;
    794 	struct rf_recon_req *rrcopy, *rr;
    795 	RF_ComponentLabel_t *clabel;
    796 	RF_ComponentLabel_t ci_label;
    797 	RF_ComponentLabel_t **clabel_ptr;
    798 	RF_SingleComponent_t *sparePtr,*componentPtr;
    799 	RF_SingleComponent_t hot_spare;
    800 	RF_SingleComponent_t component;
    801 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    802 	int i, j, d;
    803 #ifdef __HAVE_OLD_DISKLABEL
    804 	struct disklabel newlabel;
    805 #endif
    806 
    807 	if (unit >= numraid)
    808 		return (ENXIO);
    809 	rs = &raid_softc[unit];
    810 	raidPtr = raidPtrs[unit];
    811 
    812 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    813 		(int) DISKPART(dev), (int) unit, (int) cmd));
    814 
    815 	/* Must be open for writes for these commands... */
    816 	switch (cmd) {
    817 	case DIOCSDINFO:
    818 	case DIOCWDINFO:
    819 #ifdef __HAVE_OLD_DISKLABEL
    820 	case ODIOCWDINFO:
    821 	case ODIOCSDINFO:
    822 #endif
    823 	case DIOCWLABEL:
    824 		if ((flag & FWRITE) == 0)
    825 			return (EBADF);
    826 	}
    827 
    828 	/* Must be initialized for these... */
    829 	switch (cmd) {
    830 	case DIOCGDINFO:
    831 	case DIOCSDINFO:
    832 	case DIOCWDINFO:
    833 #ifdef __HAVE_OLD_DISKLABEL
    834 	case ODIOCGDINFO:
    835 	case ODIOCWDINFO:
    836 	case ODIOCSDINFO:
    837 	case ODIOCGDEFLABEL:
    838 #endif
    839 	case DIOCGPART:
    840 	case DIOCWLABEL:
    841 	case DIOCGDEFLABEL:
    842 	case RAIDFRAME_SHUTDOWN:
    843 	case RAIDFRAME_REWRITEPARITY:
    844 	case RAIDFRAME_GET_INFO:
    845 	case RAIDFRAME_RESET_ACCTOTALS:
    846 	case RAIDFRAME_GET_ACCTOTALS:
    847 	case RAIDFRAME_KEEP_ACCTOTALS:
    848 	case RAIDFRAME_GET_SIZE:
    849 	case RAIDFRAME_FAIL_DISK:
    850 	case RAIDFRAME_COPYBACK:
    851 	case RAIDFRAME_CHECK_RECON_STATUS:
    852 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    853 	case RAIDFRAME_GET_COMPONENT_LABEL:
    854 	case RAIDFRAME_SET_COMPONENT_LABEL:
    855 	case RAIDFRAME_ADD_HOT_SPARE:
    856 	case RAIDFRAME_REMOVE_HOT_SPARE:
    857 	case RAIDFRAME_INIT_LABELS:
    858 	case RAIDFRAME_REBUILD_IN_PLACE:
    859 	case RAIDFRAME_CHECK_PARITY:
    860 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    861 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    862 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    863 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    864 	case RAIDFRAME_SET_AUTOCONFIG:
    865 	case RAIDFRAME_SET_ROOT:
    866 	case RAIDFRAME_DELETE_COMPONENT:
    867 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    868 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    869 			return (ENXIO);
    870 	}
    871 
    872 	switch (cmd) {
    873 
    874 		/* configure the system */
    875 	case RAIDFRAME_CONFIGURE:
    876 
    877 		if (raidPtr->valid) {
    878 			/* There is a valid RAID set running on this unit! */
    879 			printf("raid%d: Device already configured!\n",unit);
    880 			return(EINVAL);
    881 		}
    882 
    883 		/* copy-in the configuration information */
    884 		/* data points to a pointer to the configuration structure */
    885 
    886 		u_cfg = *((RF_Config_t **) data);
    887 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    888 		if (k_cfg == NULL) {
    889 			return (ENOMEM);
    890 		}
    891 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    892 		if (retcode) {
    893 			RF_Free(k_cfg, sizeof(RF_Config_t));
    894 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    895 				retcode));
    896 			return (retcode);
    897 		}
    898 		/* allocate a buffer for the layout-specific data, and copy it
    899 		 * in */
    900 		if (k_cfg->layoutSpecificSize) {
    901 			if (k_cfg->layoutSpecificSize > 10000) {
    902 				/* sanity check */
    903 				RF_Free(k_cfg, sizeof(RF_Config_t));
    904 				return (EINVAL);
    905 			}
    906 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    907 			    (u_char *));
    908 			if (specific_buf == NULL) {
    909 				RF_Free(k_cfg, sizeof(RF_Config_t));
    910 				return (ENOMEM);
    911 			}
    912 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    913 			    k_cfg->layoutSpecificSize);
    914 			if (retcode) {
    915 				RF_Free(k_cfg, sizeof(RF_Config_t));
    916 				RF_Free(specific_buf,
    917 					k_cfg->layoutSpecificSize);
    918 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    919 					retcode));
    920 				return (retcode);
    921 			}
    922 		} else
    923 			specific_buf = NULL;
    924 		k_cfg->layoutSpecific = specific_buf;
    925 
    926 		/* should do some kind of sanity check on the configuration.
    927 		 * Store the sum of all the bytes in the last byte? */
    928 
    929 		/* configure the system */
    930 
    931 		/*
    932 		 * Clear the entire RAID descriptor, just to make sure
    933 		 *  there is no stale data left in the case of a
    934 		 *  reconfiguration
    935 		 */
    936 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    937 		raidPtr->raidid = unit;
    938 
    939 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    940 
    941 		if (retcode == 0) {
    942 
    943 			/* allow this many simultaneous IO's to
    944 			   this RAID device */
    945 			raidPtr->openings = RAIDOUTSTANDING;
    946 
    947 			raidinit(raidPtr);
    948 			rf_markalldirty(raidPtr);
    949 		}
    950 		/* free the buffers.  No return code here. */
    951 		if (k_cfg->layoutSpecificSize) {
    952 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    953 		}
    954 		RF_Free(k_cfg, sizeof(RF_Config_t));
    955 
    956 		return (retcode);
    957 
    958 		/* shutdown the system */
    959 	case RAIDFRAME_SHUTDOWN:
    960 
    961 		if ((error = raidlock(rs)) != 0)
    962 			return (error);
    963 
    964 		/*
    965 		 * If somebody has a partition mounted, we shouldn't
    966 		 * shutdown.
    967 		 */
    968 
    969 		part = DISKPART(dev);
    970 		pmask = (1 << part);
    971 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    972 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    973 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    974 			raidunlock(rs);
    975 			return (EBUSY);
    976 		}
    977 
    978 		retcode = rf_Shutdown(raidPtr);
    979 
    980 		/* It's no longer initialized... */
    981 		rs->sc_flags &= ~RAIDF_INITED;
    982 
    983 		/* Detach the disk. */
    984 		disk_detach(&rs->sc_dkdev);
    985 
    986 		raidunlock(rs);
    987 
    988 		return (retcode);
    989 	case RAIDFRAME_GET_COMPONENT_LABEL:
    990 		clabel_ptr = (RF_ComponentLabel_t **) data;
    991 		/* need to read the component label for the disk indicated
    992 		   by row,column in clabel */
    993 
    994 		/* For practice, let's get it directly fromdisk, rather
    995 		   than from the in-core copy */
    996 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    997 			   (RF_ComponentLabel_t *));
    998 		if (clabel == NULL)
    999 			return (ENOMEM);
   1000 
   1001 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1002 
   1003 		retcode = copyin( *clabel_ptr, clabel,
   1004 				  sizeof(RF_ComponentLabel_t));
   1005 
   1006 		if (retcode) {
   1007 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1008 			return(retcode);
   1009 		}
   1010 
   1011 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1012 
   1013 		column = clabel->column;
   1014 
   1015 		if ((column < 0) || (column >= raidPtr->numCol +
   1016 				     raidPtr->numSpare)) {
   1017 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1018 			return(EINVAL);
   1019 		}
   1020 
   1021 		raidread_component_label(raidPtr->Disks[column].dev,
   1022 				raidPtr->raid_cinfo[column].ci_vp,
   1023 				clabel );
   1024 
   1025 		retcode = copyout(clabel, *clabel_ptr,
   1026 				  sizeof(RF_ComponentLabel_t));
   1027 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1028 		return (retcode);
   1029 
   1030 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1031 		clabel = (RF_ComponentLabel_t *) data;
   1032 
   1033 		/* XXX check the label for valid stuff... */
   1034 		/* Note that some things *should not* get modified --
   1035 		   the user should be re-initing the labels instead of
   1036 		   trying to patch things.
   1037 		   */
   1038 
   1039 		raidid = raidPtr->raidid;
   1040 #if DEBUG
   1041 		printf("raid%d: Got component label:\n", raidid);
   1042 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1043 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1044 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1045 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1046 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1047 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1048 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1049 #endif
   1050 		clabel->row = 0;
   1051 		column = clabel->column;
   1052 
   1053 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1054 			return(EINVAL);
   1055 		}
   1056 
   1057 		/* XXX this isn't allowed to do anything for now :-) */
   1058 
   1059 		/* XXX and before it is, we need to fill in the rest
   1060 		   of the fields!?!?!?! */
   1061 #if 0
   1062 		raidwrite_component_label(
   1063                             raidPtr->Disks[column].dev,
   1064 			    raidPtr->raid_cinfo[column].ci_vp,
   1065 			    clabel );
   1066 #endif
   1067 		return (0);
   1068 
   1069 	case RAIDFRAME_INIT_LABELS:
   1070 		clabel = (RF_ComponentLabel_t *) data;
   1071 		/*
   1072 		   we only want the serial number from
   1073 		   the above.  We get all the rest of the information
   1074 		   from the config that was used to create this RAID
   1075 		   set.
   1076 		   */
   1077 
   1078 		raidPtr->serial_number = clabel->serial_number;
   1079 
   1080 		raid_init_component_label(raidPtr, &ci_label);
   1081 		ci_label.serial_number = clabel->serial_number;
   1082 		ci_label.row = 0; /* we dont' pretend to support more */
   1083 
   1084 		for(column=0;column<raidPtr->numCol;column++) {
   1085 			diskPtr = &raidPtr->Disks[column];
   1086 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1087 				ci_label.partitionSize = diskPtr->partitionSize;
   1088 				ci_label.column = column;
   1089 				raidwrite_component_label(
   1090 							  raidPtr->Disks[column].dev,
   1091 							  raidPtr->raid_cinfo[column].ci_vp,
   1092 							  &ci_label );
   1093 			}
   1094 		}
   1095 
   1096 		return (retcode);
   1097 	case RAIDFRAME_SET_AUTOCONFIG:
   1098 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1099 		printf("raid%d: New autoconfig value is: %d\n",
   1100 		       raidPtr->raidid, d);
   1101 		*(int *) data = d;
   1102 		return (retcode);
   1103 
   1104 	case RAIDFRAME_SET_ROOT:
   1105 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1106 		printf("raid%d: New rootpartition value is: %d\n",
   1107 		       raidPtr->raidid, d);
   1108 		*(int *) data = d;
   1109 		return (retcode);
   1110 
   1111 		/* initialize all parity */
   1112 	case RAIDFRAME_REWRITEPARITY:
   1113 
   1114 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1115 			/* Parity for RAID 0 is trivially correct */
   1116 			raidPtr->parity_good = RF_RAID_CLEAN;
   1117 			return(0);
   1118 		}
   1119 
   1120 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1121 			/* Re-write is already in progress! */
   1122 			return(EINVAL);
   1123 		}
   1124 
   1125 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1126 					   rf_RewriteParityThread,
   1127 					   raidPtr,"raid_parity");
   1128 		return (retcode);
   1129 
   1130 
   1131 	case RAIDFRAME_ADD_HOT_SPARE:
   1132 		sparePtr = (RF_SingleComponent_t *) data;
   1133 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1134 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1135 		return(retcode);
   1136 
   1137 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1138 		return(retcode);
   1139 
   1140 	case RAIDFRAME_DELETE_COMPONENT:
   1141 		componentPtr = (RF_SingleComponent_t *)data;
   1142 		memcpy( &component, componentPtr,
   1143 			sizeof(RF_SingleComponent_t));
   1144 		retcode = rf_delete_component(raidPtr, &component);
   1145 		return(retcode);
   1146 
   1147 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1148 		componentPtr = (RF_SingleComponent_t *)data;
   1149 		memcpy( &component, componentPtr,
   1150 			sizeof(RF_SingleComponent_t));
   1151 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1152 		return(retcode);
   1153 
   1154 	case RAIDFRAME_REBUILD_IN_PLACE:
   1155 
   1156 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1157 			/* Can't do this on a RAID 0!! */
   1158 			return(EINVAL);
   1159 		}
   1160 
   1161 		if (raidPtr->recon_in_progress == 1) {
   1162 			/* a reconstruct is already in progress! */
   1163 			return(EINVAL);
   1164 		}
   1165 
   1166 		componentPtr = (RF_SingleComponent_t *) data;
   1167 		memcpy( &component, componentPtr,
   1168 			sizeof(RF_SingleComponent_t));
   1169 		component.row = 0; /* we don't support any more */
   1170 		column = component.column;
   1171 
   1172 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1173 			return(EINVAL);
   1174 		}
   1175 
   1176 		RF_LOCK_MUTEX(raidPtr->mutex);
   1177 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1178 		    (raidPtr->numFailures > 0)) {
   1179 			/* XXX 0 above shouldn't be constant!!! */
   1180 			/* some component other than this has failed.
   1181 			   Let's not make things worse than they already
   1182 			   are... */
   1183 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1184 			       raidPtr->raidid);
   1185 			printf("raid%d:     Col: %d   Too many failures.\n",
   1186 			       raidPtr->raidid, column);
   1187 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1188 			return (EINVAL);
   1189 		}
   1190 		if (raidPtr->Disks[column].status ==
   1191 		    rf_ds_reconstructing) {
   1192 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1193 			       raidPtr->raidid);
   1194 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1195 
   1196 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1197 			return (EINVAL);
   1198 		}
   1199 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1200 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1201 			return (EINVAL);
   1202 		}
   1203 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1204 
   1205 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1206 		if (rrcopy == NULL)
   1207 			return(ENOMEM);
   1208 
   1209 		rrcopy->raidPtr = (void *) raidPtr;
   1210 		rrcopy->col = column;
   1211 
   1212 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1213 					   rf_ReconstructInPlaceThread,
   1214 					   rrcopy,"raid_reconip");
   1215 		return(retcode);
   1216 
   1217 	case RAIDFRAME_GET_INFO:
   1218 		if (!raidPtr->valid)
   1219 			return (ENODEV);
   1220 		ucfgp = (RF_DeviceConfig_t **) data;
   1221 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1222 			  (RF_DeviceConfig_t *));
   1223 		if (d_cfg == NULL)
   1224 			return (ENOMEM);
   1225 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1226 		d_cfg->rows = 1; /* there is only 1 row now */
   1227 		d_cfg->cols = raidPtr->numCol;
   1228 		d_cfg->ndevs = raidPtr->numCol;
   1229 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1230 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1231 			return (ENOMEM);
   1232 		}
   1233 		d_cfg->nspares = raidPtr->numSpare;
   1234 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1235 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1236 			return (ENOMEM);
   1237 		}
   1238 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1239 		d = 0;
   1240 		for (j = 0; j < d_cfg->cols; j++) {
   1241 			d_cfg->devs[d] = raidPtr->Disks[j];
   1242 			d++;
   1243 		}
   1244 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1245 			d_cfg->spares[i] = raidPtr->Disks[j];
   1246 		}
   1247 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1248 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1249 
   1250 		return (retcode);
   1251 
   1252 	case RAIDFRAME_CHECK_PARITY:
   1253 		*(int *) data = raidPtr->parity_good;
   1254 		return (0);
   1255 
   1256 	case RAIDFRAME_RESET_ACCTOTALS:
   1257 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1258 		return (0);
   1259 
   1260 	case RAIDFRAME_GET_ACCTOTALS:
   1261 		totals = (RF_AccTotals_t *) data;
   1262 		*totals = raidPtr->acc_totals;
   1263 		return (0);
   1264 
   1265 	case RAIDFRAME_KEEP_ACCTOTALS:
   1266 		raidPtr->keep_acc_totals = *(int *)data;
   1267 		return (0);
   1268 
   1269 	case RAIDFRAME_GET_SIZE:
   1270 		*(int *) data = raidPtr->totalSectors;
   1271 		return (0);
   1272 
   1273 		/* fail a disk & optionally start reconstruction */
   1274 	case RAIDFRAME_FAIL_DISK:
   1275 
   1276 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1277 			/* Can't do this on a RAID 0!! */
   1278 			return(EINVAL);
   1279 		}
   1280 
   1281 		rr = (struct rf_recon_req *) data;
   1282 		rr->row = 0;
   1283 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1284 			return (EINVAL);
   1285 
   1286 
   1287 		RF_LOCK_MUTEX(raidPtr->mutex);
   1288 		if ((raidPtr->Disks[rr->col].status ==
   1289 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1290 			/* some other component has failed.  Let's not make
   1291 			   things worse. XXX wrong for RAID6 */
   1292 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1293 			return (EINVAL);
   1294 		}
   1295 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1296 			/* Can't fail a spared disk! */
   1297 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1298 			return (EINVAL);
   1299 		}
   1300 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1301 
   1302 		/* make a copy of the recon request so that we don't rely on
   1303 		 * the user's buffer */
   1304 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1305 		if (rrcopy == NULL)
   1306 			return(ENOMEM);
   1307 		memcpy(rrcopy, rr, sizeof(*rr));
   1308 		rrcopy->raidPtr = (void *) raidPtr;
   1309 
   1310 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1311 					   rf_ReconThread,
   1312 					   rrcopy,"raid_recon");
   1313 		return (0);
   1314 
   1315 		/* invoke a copyback operation after recon on whatever disk
   1316 		 * needs it, if any */
   1317 	case RAIDFRAME_COPYBACK:
   1318 
   1319 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1320 			/* This makes no sense on a RAID 0!! */
   1321 			return(EINVAL);
   1322 		}
   1323 
   1324 		if (raidPtr->copyback_in_progress == 1) {
   1325 			/* Copyback is already in progress! */
   1326 			return(EINVAL);
   1327 		}
   1328 
   1329 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1330 					   rf_CopybackThread,
   1331 					   raidPtr,"raid_copyback");
   1332 		return (retcode);
   1333 
   1334 		/* return the percentage completion of reconstruction */
   1335 	case RAIDFRAME_CHECK_RECON_STATUS:
   1336 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1337 			/* This makes no sense on a RAID 0, so tell the
   1338 			   user it's done. */
   1339 			*(int *) data = 100;
   1340 			return(0);
   1341 		}
   1342 		if (raidPtr->status != rf_rs_reconstructing)
   1343 			*(int *) data = 100;
   1344 		else {
   1345 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1346 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1347 			} else {
   1348 				*(int *) data = 0;
   1349 			}
   1350 		}
   1351 		return (0);
   1352 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1353 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1354 		if (raidPtr->status != rf_rs_reconstructing) {
   1355 			progressInfo.remaining = 0;
   1356 			progressInfo.completed = 100;
   1357 			progressInfo.total = 100;
   1358 		} else {
   1359 			progressInfo.total =
   1360 				raidPtr->reconControl->numRUsTotal;
   1361 			progressInfo.completed =
   1362 				raidPtr->reconControl->numRUsComplete;
   1363 			progressInfo.remaining = progressInfo.total -
   1364 				progressInfo.completed;
   1365 		}
   1366 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1367 				  sizeof(RF_ProgressInfo_t));
   1368 		return (retcode);
   1369 
   1370 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1371 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1372 			/* This makes no sense on a RAID 0, so tell the
   1373 			   user it's done. */
   1374 			*(int *) data = 100;
   1375 			return(0);
   1376 		}
   1377 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1378 			*(int *) data = 100 *
   1379 				raidPtr->parity_rewrite_stripes_done /
   1380 				raidPtr->Layout.numStripe;
   1381 		} else {
   1382 			*(int *) data = 100;
   1383 		}
   1384 		return (0);
   1385 
   1386 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1387 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1388 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1389 			progressInfo.total = raidPtr->Layout.numStripe;
   1390 			progressInfo.completed =
   1391 				raidPtr->parity_rewrite_stripes_done;
   1392 			progressInfo.remaining = progressInfo.total -
   1393 				progressInfo.completed;
   1394 		} else {
   1395 			progressInfo.remaining = 0;
   1396 			progressInfo.completed = 100;
   1397 			progressInfo.total = 100;
   1398 		}
   1399 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1400 				  sizeof(RF_ProgressInfo_t));
   1401 		return (retcode);
   1402 
   1403 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1404 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1405 			/* This makes no sense on a RAID 0 */
   1406 			*(int *) data = 100;
   1407 			return(0);
   1408 		}
   1409 		if (raidPtr->copyback_in_progress == 1) {
   1410 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1411 				raidPtr->Layout.numStripe;
   1412 		} else {
   1413 			*(int *) data = 100;
   1414 		}
   1415 		return (0);
   1416 
   1417 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1418 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1419 		if (raidPtr->copyback_in_progress == 1) {
   1420 			progressInfo.total = raidPtr->Layout.numStripe;
   1421 			progressInfo.completed =
   1422 				raidPtr->copyback_stripes_done;
   1423 			progressInfo.remaining = progressInfo.total -
   1424 				progressInfo.completed;
   1425 		} else {
   1426 			progressInfo.remaining = 0;
   1427 			progressInfo.completed = 100;
   1428 			progressInfo.total = 100;
   1429 		}
   1430 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1431 				  sizeof(RF_ProgressInfo_t));
   1432 		return (retcode);
   1433 
   1434 		/* the sparetable daemon calls this to wait for the kernel to
   1435 		 * need a spare table. this ioctl does not return until a
   1436 		 * spare table is needed. XXX -- calling mpsleep here in the
   1437 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1438 		 * -- I should either compute the spare table in the kernel,
   1439 		 * or have a different -- XXX XXX -- interface (a different
   1440 		 * character device) for delivering the table     -- XXX */
   1441 #if 0
   1442 	case RAIDFRAME_SPARET_WAIT:
   1443 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1444 		while (!rf_sparet_wait_queue)
   1445 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1446 		waitreq = rf_sparet_wait_queue;
   1447 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1448 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1449 
   1450 		/* structure assignment */
   1451 		*((RF_SparetWait_t *) data) = *waitreq;
   1452 
   1453 		RF_Free(waitreq, sizeof(*waitreq));
   1454 		return (0);
   1455 
   1456 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1457 		 * code in it that will cause the dameon to exit */
   1458 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1459 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1460 		waitreq->fcol = -1;
   1461 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1462 		waitreq->next = rf_sparet_wait_queue;
   1463 		rf_sparet_wait_queue = waitreq;
   1464 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1465 		wakeup(&rf_sparet_wait_queue);
   1466 		return (0);
   1467 
   1468 		/* used by the spare table daemon to deliver a spare table
   1469 		 * into the kernel */
   1470 	case RAIDFRAME_SEND_SPARET:
   1471 
   1472 		/* install the spare table */
   1473 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1474 
   1475 		/* respond to the requestor.  the return status of the spare
   1476 		 * table installation is passed in the "fcol" field */
   1477 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1478 		waitreq->fcol = retcode;
   1479 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1480 		waitreq->next = rf_sparet_resp_queue;
   1481 		rf_sparet_resp_queue = waitreq;
   1482 		wakeup(&rf_sparet_resp_queue);
   1483 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1484 
   1485 		return (retcode);
   1486 #endif
   1487 
   1488 	default:
   1489 		break; /* fall through to the os-specific code below */
   1490 
   1491 	}
   1492 
   1493 	if (!raidPtr->valid)
   1494 		return (EINVAL);
   1495 
   1496 	/*
   1497 	 * Add support for "regular" device ioctls here.
   1498 	 */
   1499 
   1500 	switch (cmd) {
   1501 	case DIOCGDINFO:
   1502 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1503 		break;
   1504 #ifdef __HAVE_OLD_DISKLABEL
   1505 	case ODIOCGDINFO:
   1506 		newlabel = *(rs->sc_dkdev.dk_label);
   1507 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1508 			return ENOTTY;
   1509 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1510 		break;
   1511 #endif
   1512 
   1513 	case DIOCGPART:
   1514 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1515 		((struct partinfo *) data)->part =
   1516 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1517 		break;
   1518 
   1519 	case DIOCWDINFO:
   1520 	case DIOCSDINFO:
   1521 #ifdef __HAVE_OLD_DISKLABEL
   1522 	case ODIOCWDINFO:
   1523 	case ODIOCSDINFO:
   1524 #endif
   1525 	{
   1526 		struct disklabel *lp;
   1527 #ifdef __HAVE_OLD_DISKLABEL
   1528 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1529 			memset(&newlabel, 0, sizeof newlabel);
   1530 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1531 			lp = &newlabel;
   1532 		} else
   1533 #endif
   1534 		lp = (struct disklabel *)data;
   1535 
   1536 		if ((error = raidlock(rs)) != 0)
   1537 			return (error);
   1538 
   1539 		rs->sc_flags |= RAIDF_LABELLING;
   1540 
   1541 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1542 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1543 		if (error == 0) {
   1544 			if (cmd == DIOCWDINFO
   1545 #ifdef __HAVE_OLD_DISKLABEL
   1546 			    || cmd == ODIOCWDINFO
   1547 #endif
   1548 			   )
   1549 				error = writedisklabel(RAIDLABELDEV(dev),
   1550 				    raidstrategy, rs->sc_dkdev.dk_label,
   1551 				    rs->sc_dkdev.dk_cpulabel);
   1552 		}
   1553 		rs->sc_flags &= ~RAIDF_LABELLING;
   1554 
   1555 		raidunlock(rs);
   1556 
   1557 		if (error)
   1558 			return (error);
   1559 		break;
   1560 	}
   1561 
   1562 	case DIOCWLABEL:
   1563 		if (*(int *) data != 0)
   1564 			rs->sc_flags |= RAIDF_WLABEL;
   1565 		else
   1566 			rs->sc_flags &= ~RAIDF_WLABEL;
   1567 		break;
   1568 
   1569 	case DIOCGDEFLABEL:
   1570 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1571 		break;
   1572 
   1573 #ifdef __HAVE_OLD_DISKLABEL
   1574 	case ODIOCGDEFLABEL:
   1575 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1576 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1577 			return ENOTTY;
   1578 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1579 		break;
   1580 #endif
   1581 
   1582 	default:
   1583 		retcode = ENOTTY;
   1584 	}
   1585 	return (retcode);
   1586 
   1587 }
   1588 
   1589 
   1590 /* raidinit -- complete the rest of the initialization for the
   1591    RAIDframe device.  */
   1592 
   1593 
   1594 static void
   1595 raidinit(RF_Raid_t *raidPtr)
   1596 {
   1597 	struct raid_softc *rs;
   1598 	int     unit;
   1599 
   1600 	unit = raidPtr->raidid;
   1601 
   1602 	rs = &raid_softc[unit];
   1603 
   1604 	/* XXX should check return code first... */
   1605 	rs->sc_flags |= RAIDF_INITED;
   1606 
   1607 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1608 
   1609 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1610 
   1611 	/* disk_attach actually creates space for the CPU disklabel, among
   1612 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1613 	 * with disklabels. */
   1614 
   1615 	disk_attach(&rs->sc_dkdev);
   1616 
   1617 	/* XXX There may be a weird interaction here between this, and
   1618 	 * protectedSectors, as used in RAIDframe.  */
   1619 
   1620 	rs->sc_size = raidPtr->totalSectors;
   1621 }
   1622 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1623 /* wake up the daemon & tell it to get us a spare table
   1624  * XXX
   1625  * the entries in the queues should be tagged with the raidPtr
   1626  * so that in the extremely rare case that two recons happen at once,
   1627  * we know for which device were requesting a spare table
   1628  * XXX
   1629  *
   1630  * XXX This code is not currently used. GO
   1631  */
   1632 int
   1633 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1634 {
   1635 	int     retcode;
   1636 
   1637 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1638 	req->next = rf_sparet_wait_queue;
   1639 	rf_sparet_wait_queue = req;
   1640 	wakeup(&rf_sparet_wait_queue);
   1641 
   1642 	/* mpsleep unlocks the mutex */
   1643 	while (!rf_sparet_resp_queue) {
   1644 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1645 		    "raidframe getsparetable", 0);
   1646 	}
   1647 	req = rf_sparet_resp_queue;
   1648 	rf_sparet_resp_queue = req->next;
   1649 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1650 
   1651 	retcode = req->fcol;
   1652 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1653 					 * alloc'd */
   1654 	return (retcode);
   1655 }
   1656 #endif
   1657 
   1658 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1659  * bp & passes it down.
   1660  * any calls originating in the kernel must use non-blocking I/O
   1661  * do some extra sanity checking to return "appropriate" error values for
   1662  * certain conditions (to make some standard utilities work)
   1663  *
   1664  * Formerly known as: rf_DoAccessKernel
   1665  */
   1666 void
   1667 raidstart(RF_Raid_t *raidPtr)
   1668 {
   1669 	RF_SectorCount_t num_blocks, pb, sum;
   1670 	RF_RaidAddr_t raid_addr;
   1671 	struct partition *pp;
   1672 	daddr_t blocknum;
   1673 	int     unit;
   1674 	struct raid_softc *rs;
   1675 	int     do_async;
   1676 	struct buf *bp;
   1677 
   1678 	unit = raidPtr->raidid;
   1679 	rs = &raid_softc[unit];
   1680 
   1681 	/* quick check to see if anything has died recently */
   1682 	RF_LOCK_MUTEX(raidPtr->mutex);
   1683 	if (raidPtr->numNewFailures > 0) {
   1684 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1685 		rf_update_component_labels(raidPtr,
   1686 					   RF_NORMAL_COMPONENT_UPDATE);
   1687 		RF_LOCK_MUTEX(raidPtr->mutex);
   1688 		raidPtr->numNewFailures--;
   1689 	}
   1690 
   1691 	/* Check to see if we're at the limit... */
   1692 	while (raidPtr->openings > 0) {
   1693 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1694 
   1695 		/* get the next item, if any, from the queue */
   1696 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1697 			/* nothing more to do */
   1698 			return;
   1699 		}
   1700 
   1701 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1702 		 * partition.. Need to make it absolute to the underlying
   1703 		 * device.. */
   1704 
   1705 		blocknum = bp->b_blkno;
   1706 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1707 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1708 			blocknum += pp->p_offset;
   1709 		}
   1710 
   1711 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1712 			    (int) blocknum));
   1713 
   1714 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1715 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1716 
   1717 		/* *THIS* is where we adjust what block we're going to...
   1718 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1719 		raid_addr = blocknum;
   1720 
   1721 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1722 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1723 		sum = raid_addr + num_blocks + pb;
   1724 		if (1 || rf_debugKernelAccess) {
   1725 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1726 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1727 				    (int) pb, (int) bp->b_resid));
   1728 		}
   1729 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1730 		    || (sum < num_blocks) || (sum < pb)) {
   1731 			bp->b_error = ENOSPC;
   1732 			bp->b_flags |= B_ERROR;
   1733 			bp->b_resid = bp->b_bcount;
   1734 			biodone(bp);
   1735 			RF_LOCK_MUTEX(raidPtr->mutex);
   1736 			continue;
   1737 		}
   1738 		/*
   1739 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1740 		 */
   1741 
   1742 		if (bp->b_bcount & raidPtr->sectorMask) {
   1743 			bp->b_error = EINVAL;
   1744 			bp->b_flags |= B_ERROR;
   1745 			bp->b_resid = bp->b_bcount;
   1746 			biodone(bp);
   1747 			RF_LOCK_MUTEX(raidPtr->mutex);
   1748 			continue;
   1749 
   1750 		}
   1751 		db1_printf(("Calling DoAccess..\n"));
   1752 
   1753 
   1754 		RF_LOCK_MUTEX(raidPtr->mutex);
   1755 		raidPtr->openings--;
   1756 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1757 
   1758 		/*
   1759 		 * Everything is async.
   1760 		 */
   1761 		do_async = 1;
   1762 
   1763 		disk_busy(&rs->sc_dkdev);
   1764 
   1765 		/* XXX we're still at splbio() here... do we *really*
   1766 		   need to be? */
   1767 
   1768 		/* don't ever condition on bp->b_flags & B_WRITE.
   1769 		 * always condition on B_READ instead */
   1770 
   1771 		bp->b_error = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1772 				      RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1773 				      do_async, raid_addr, num_blocks,
   1774 				      bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1775 
   1776 		if (bp->b_error) {
   1777 			bp->b_flags |= B_ERROR;
   1778 		}
   1779 
   1780 		RF_LOCK_MUTEX(raidPtr->mutex);
   1781 	}
   1782 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1783 }
   1784 
   1785 
   1786 
   1787 
   1788 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1789 
   1790 int
   1791 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1792 {
   1793 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1794 	struct buf *bp;
   1795 	struct raidbuf *raidbp = NULL;
   1796 
   1797 	req->queue = queue;
   1798 
   1799 #if DIAGNOSTIC
   1800 	if (queue->raidPtr->raidid >= numraid) {
   1801 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1802 		    numraid);
   1803 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1804 	}
   1805 #endif
   1806 
   1807 	bp = req->bp;
   1808 #if 1
   1809 	/* XXX when there is a physical disk failure, someone is passing us a
   1810 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1811 	 * without taking a performance hit... (not sure where the real bug
   1812 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1813 
   1814 	if (bp->b_flags & B_ERROR) {
   1815 		bp->b_flags &= ~B_ERROR;
   1816 	}
   1817 	if (bp->b_error != 0) {
   1818 		bp->b_error = 0;
   1819 	}
   1820 #endif
   1821 	raidbp = pool_get(&raidframe_cbufpool, PR_NOWAIT);
   1822 	if (raidbp == NULL) {
   1823 		bp->b_flags |= B_ERROR;
   1824 		bp->b_error = ENOMEM;
   1825 		return (ENOMEM);
   1826 	}
   1827 	BUF_INIT(&raidbp->rf_buf);
   1828 
   1829 	/*
   1830 	 * context for raidiodone
   1831 	 */
   1832 	raidbp->rf_obp = bp;
   1833 	raidbp->req = req;
   1834 
   1835 	BIO_COPYPRIO(&raidbp->rf_buf, bp);
   1836 
   1837 	switch (req->type) {
   1838 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1839 		/* XXX need to do something extra here.. */
   1840 		/* I'm leaving this in, as I've never actually seen it used,
   1841 		 * and I'd like folks to report it... GO */
   1842 		printf(("WAKEUP CALLED\n"));
   1843 		queue->numOutstanding++;
   1844 
   1845 		/* XXX need to glue the original buffer into this??  */
   1846 
   1847 		KernelWakeupFunc(&raidbp->rf_buf);
   1848 		break;
   1849 
   1850 	case RF_IO_TYPE_READ:
   1851 	case RF_IO_TYPE_WRITE:
   1852 #if RF_ACC_TRACE > 0
   1853 		if (req->tracerec) {
   1854 			RF_ETIMER_START(req->tracerec->timer);
   1855 		}
   1856 #endif
   1857 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1858 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1859 		    req->sectorOffset, req->numSector,
   1860 		    req->buf, KernelWakeupFunc, (void *) req,
   1861 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1862 
   1863 		if (rf_debugKernelAccess) {
   1864 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1865 				(long) bp->b_blkno));
   1866 		}
   1867 		queue->numOutstanding++;
   1868 		queue->last_deq_sector = req->sectorOffset;
   1869 		/* acc wouldn't have been let in if there were any pending
   1870 		 * reqs at any other priority */
   1871 		queue->curPriority = req->priority;
   1872 
   1873 		db1_printf(("Going for %c to unit %d col %d\n",
   1874 			    req->type, queue->raidPtr->raidid,
   1875 			    queue->col));
   1876 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1877 			(int) req->sectorOffset, (int) req->numSector,
   1878 			(int) (req->numSector <<
   1879 			    queue->raidPtr->logBytesPerSector),
   1880 			(int) queue->raidPtr->logBytesPerSector));
   1881 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1882 			raidbp->rf_buf.b_vp->v_numoutput++;
   1883 		}
   1884 		VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
   1885 
   1886 		break;
   1887 
   1888 	default:
   1889 		panic("bad req->type in rf_DispatchKernelIO");
   1890 	}
   1891 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1892 
   1893 	return (0);
   1894 }
   1895 /* this is the callback function associated with a I/O invoked from
   1896    kernel code.
   1897  */
   1898 static void
   1899 KernelWakeupFunc(struct buf *vbp)
   1900 {
   1901 	RF_DiskQueueData_t *req = NULL;
   1902 	RF_DiskQueue_t *queue;
   1903 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1904 	struct buf *bp;
   1905 	int s;
   1906 
   1907 	s = splbio();
   1908 	db1_printf(("recovering the request queue:\n"));
   1909 	req = raidbp->req;
   1910 
   1911 	bp = raidbp->rf_obp;
   1912 
   1913 	queue = (RF_DiskQueue_t *) req->queue;
   1914 
   1915 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1916 		bp->b_flags |= B_ERROR;
   1917 		bp->b_error = raidbp->rf_buf.b_error ?
   1918 		    raidbp->rf_buf.b_error : EIO;
   1919 	}
   1920 
   1921 	/* XXX methinks this could be wrong... */
   1922 #if 1
   1923 	bp->b_resid = raidbp->rf_buf.b_resid;
   1924 #endif
   1925 #if RF_ACC_TRACE > 0
   1926 	if (req->tracerec) {
   1927 		RF_ETIMER_STOP(req->tracerec->timer);
   1928 		RF_ETIMER_EVAL(req->tracerec->timer);
   1929 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1930 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1931 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1932 		req->tracerec->num_phys_ios++;
   1933 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1934 	}
   1935 #endif
   1936 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1937 
   1938 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1939 	 * ballistic, and mark the component as hosed... */
   1940 
   1941 	if (bp->b_flags & B_ERROR) {
   1942 		/* Mark the disk as dead */
   1943 		/* but only mark it once... */
   1944 		if (queue->raidPtr->Disks[queue->col].status ==
   1945 		    rf_ds_optimal) {
   1946 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1947 			       queue->raidPtr->raidid,
   1948 			       queue->raidPtr->Disks[queue->col].devname);
   1949 			queue->raidPtr->Disks[queue->col].status =
   1950 			    rf_ds_failed;
   1951 			queue->raidPtr->status = rf_rs_degraded;
   1952 			queue->raidPtr->numFailures++;
   1953 			queue->raidPtr->numNewFailures++;
   1954 		} else {	/* Disk is already dead... */
   1955 			/* printf("Disk already marked as dead!\n"); */
   1956 		}
   1957 
   1958 	}
   1959 
   1960 	pool_put(&raidframe_cbufpool, raidbp);
   1961 
   1962 	/* Fill in the error value */
   1963 
   1964 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1965 
   1966 	simple_lock(&queue->raidPtr->iodone_lock);
   1967 
   1968 	/* Drop this one on the "finished" queue... */
   1969 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1970 
   1971 	/* Let the raidio thread know there is work to be done. */
   1972 	wakeup(&(queue->raidPtr->iodone));
   1973 
   1974 	simple_unlock(&queue->raidPtr->iodone_lock);
   1975 
   1976 	splx(s);
   1977 }
   1978 
   1979 
   1980 
   1981 /*
   1982  * initialize a buf structure for doing an I/O in the kernel.
   1983  */
   1984 static void
   1985 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   1986        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
   1987        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   1988        struct proc *b_proc)
   1989 {
   1990 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1991 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1992 	bp->b_bcount = numSect << logBytesPerSector;
   1993 	bp->b_bufsize = bp->b_bcount;
   1994 	bp->b_error = 0;
   1995 	bp->b_dev = dev;
   1996 	bp->b_data = buf;
   1997 	bp->b_blkno = startSect;
   1998 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1999 	if (bp->b_bcount == 0) {
   2000 		panic("bp->b_bcount is zero in InitBP!!");
   2001 	}
   2002 	bp->b_proc = b_proc;
   2003 	bp->b_iodone = cbFunc;
   2004 	bp->b_vp = b_vp;
   2005 
   2006 }
   2007 
   2008 static void
   2009 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2010 		    struct disklabel *lp)
   2011 {
   2012 	memset(lp, 0, sizeof(*lp));
   2013 
   2014 	/* fabricate a label... */
   2015 	lp->d_secperunit = raidPtr->totalSectors;
   2016 	lp->d_secsize = raidPtr->bytesPerSector;
   2017 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2018 	lp->d_ntracks = 4 * raidPtr->numCol;
   2019 	lp->d_ncylinders = raidPtr->totalSectors /
   2020 		(lp->d_nsectors * lp->d_ntracks);
   2021 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2022 
   2023 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2024 	lp->d_type = DTYPE_RAID;
   2025 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2026 	lp->d_rpm = 3600;
   2027 	lp->d_interleave = 1;
   2028 	lp->d_flags = 0;
   2029 
   2030 	lp->d_partitions[RAW_PART].p_offset = 0;
   2031 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2032 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2033 	lp->d_npartitions = RAW_PART + 1;
   2034 
   2035 	lp->d_magic = DISKMAGIC;
   2036 	lp->d_magic2 = DISKMAGIC;
   2037 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2038 
   2039 }
   2040 /*
   2041  * Read the disklabel from the raid device.  If one is not present, fake one
   2042  * up.
   2043  */
   2044 static void
   2045 raidgetdisklabel(dev_t dev)
   2046 {
   2047 	int     unit = raidunit(dev);
   2048 	struct raid_softc *rs = &raid_softc[unit];
   2049 	const char   *errstring;
   2050 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2051 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2052 	RF_Raid_t *raidPtr;
   2053 
   2054 	db1_printf(("Getting the disklabel...\n"));
   2055 
   2056 	memset(clp, 0, sizeof(*clp));
   2057 
   2058 	raidPtr = raidPtrs[unit];
   2059 
   2060 	raidgetdefaultlabel(raidPtr, rs, lp);
   2061 
   2062 	/*
   2063 	 * Call the generic disklabel extraction routine.
   2064 	 */
   2065 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2066 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2067 	if (errstring)
   2068 		raidmakedisklabel(rs);
   2069 	else {
   2070 		int     i;
   2071 		struct partition *pp;
   2072 
   2073 		/*
   2074 		 * Sanity check whether the found disklabel is valid.
   2075 		 *
   2076 		 * This is necessary since total size of the raid device
   2077 		 * may vary when an interleave is changed even though exactly
   2078 		 * same componets are used, and old disklabel may used
   2079 		 * if that is found.
   2080 		 */
   2081 		if (lp->d_secperunit != rs->sc_size)
   2082 			printf("raid%d: WARNING: %s: "
   2083 			    "total sector size in disklabel (%d) != "
   2084 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2085 			    lp->d_secperunit, (long) rs->sc_size);
   2086 		for (i = 0; i < lp->d_npartitions; i++) {
   2087 			pp = &lp->d_partitions[i];
   2088 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2089 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2090 				       "exceeds the size of raid (%ld)\n",
   2091 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2092 		}
   2093 	}
   2094 
   2095 }
   2096 /*
   2097  * Take care of things one might want to take care of in the event
   2098  * that a disklabel isn't present.
   2099  */
   2100 static void
   2101 raidmakedisklabel(struct raid_softc *rs)
   2102 {
   2103 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2104 	db1_printf(("Making a label..\n"));
   2105 
   2106 	/*
   2107 	 * For historical reasons, if there's no disklabel present
   2108 	 * the raw partition must be marked FS_BSDFFS.
   2109 	 */
   2110 
   2111 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2112 
   2113 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2114 
   2115 	lp->d_checksum = dkcksum(lp);
   2116 }
   2117 /*
   2118  * Lookup the provided name in the filesystem.  If the file exists,
   2119  * is a valid block device, and isn't being used by anyone else,
   2120  * set *vpp to the file's vnode.
   2121  * You'll find the original of this in ccd.c
   2122  */
   2123 int
   2124 raidlookup(char *path, struct proc *p, struct vnode **vpp)
   2125 {
   2126 	struct nameidata nd;
   2127 	struct vnode *vp;
   2128 	struct vattr va;
   2129 	int     error;
   2130 
   2131 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2132 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2133 		return (error);
   2134 	}
   2135 	vp = nd.ni_vp;
   2136 	if (vp->v_usecount > 1) {
   2137 		VOP_UNLOCK(vp, 0);
   2138 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2139 		return (EBUSY);
   2140 	}
   2141 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2142 		VOP_UNLOCK(vp, 0);
   2143 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2144 		return (error);
   2145 	}
   2146 	/* XXX: eventually we should handle VREG, too. */
   2147 	if (va.va_type != VBLK) {
   2148 		VOP_UNLOCK(vp, 0);
   2149 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2150 		return (ENOTBLK);
   2151 	}
   2152 	VOP_UNLOCK(vp, 0);
   2153 	*vpp = vp;
   2154 	return (0);
   2155 }
   2156 /*
   2157  * Wait interruptibly for an exclusive lock.
   2158  *
   2159  * XXX
   2160  * Several drivers do this; it should be abstracted and made MP-safe.
   2161  * (Hmm... where have we seen this warning before :->  GO )
   2162  */
   2163 static int
   2164 raidlock(struct raid_softc *rs)
   2165 {
   2166 	int     error;
   2167 
   2168 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2169 		rs->sc_flags |= RAIDF_WANTED;
   2170 		if ((error =
   2171 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2172 			return (error);
   2173 	}
   2174 	rs->sc_flags |= RAIDF_LOCKED;
   2175 	return (0);
   2176 }
   2177 /*
   2178  * Unlock and wake up any waiters.
   2179  */
   2180 static void
   2181 raidunlock(struct raid_softc *rs)
   2182 {
   2183 
   2184 	rs->sc_flags &= ~RAIDF_LOCKED;
   2185 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2186 		rs->sc_flags &= ~RAIDF_WANTED;
   2187 		wakeup(rs);
   2188 	}
   2189 }
   2190 
   2191 
   2192 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2193 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2194 
   2195 int
   2196 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2197 {
   2198 	RF_ComponentLabel_t clabel;
   2199 	raidread_component_label(dev, b_vp, &clabel);
   2200 	clabel.mod_counter = mod_counter;
   2201 	clabel.clean = RF_RAID_CLEAN;
   2202 	raidwrite_component_label(dev, b_vp, &clabel);
   2203 	return(0);
   2204 }
   2205 
   2206 
   2207 int
   2208 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2209 {
   2210 	RF_ComponentLabel_t clabel;
   2211 	raidread_component_label(dev, b_vp, &clabel);
   2212 	clabel.mod_counter = mod_counter;
   2213 	clabel.clean = RF_RAID_DIRTY;
   2214 	raidwrite_component_label(dev, b_vp, &clabel);
   2215 	return(0);
   2216 }
   2217 
   2218 /* ARGSUSED */
   2219 int
   2220 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2221 			 RF_ComponentLabel_t *clabel)
   2222 {
   2223 	struct buf *bp;
   2224 	const struct bdevsw *bdev;
   2225 	int error;
   2226 
   2227 	/* XXX should probably ensure that we don't try to do this if
   2228 	   someone has changed rf_protected_sectors. */
   2229 
   2230 	if (b_vp == NULL) {
   2231 		/* For whatever reason, this component is not valid.
   2232 		   Don't try to read a component label from it. */
   2233 		return(EINVAL);
   2234 	}
   2235 
   2236 	/* get a block of the appropriate size... */
   2237 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2238 	bp->b_dev = dev;
   2239 
   2240 	/* get our ducks in a row for the read */
   2241 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2242 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2243 	bp->b_flags |= B_READ;
   2244  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2245 
   2246 	bdev = bdevsw_lookup(bp->b_dev);
   2247 	if (bdev == NULL)
   2248 		return (ENXIO);
   2249 	(*bdev->d_strategy)(bp);
   2250 
   2251 	error = biowait(bp);
   2252 
   2253 	if (!error) {
   2254 		memcpy(clabel, bp->b_data,
   2255 		       sizeof(RF_ComponentLabel_t));
   2256         }
   2257 
   2258 	brelse(bp);
   2259 	return(error);
   2260 }
   2261 /* ARGSUSED */
   2262 int
   2263 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2264 			  RF_ComponentLabel_t *clabel)
   2265 {
   2266 	struct buf *bp;
   2267 	const struct bdevsw *bdev;
   2268 	int error;
   2269 
   2270 	/* get a block of the appropriate size... */
   2271 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2272 	bp->b_dev = dev;
   2273 
   2274 	/* get our ducks in a row for the write */
   2275 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2276 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2277 	bp->b_flags |= B_WRITE;
   2278  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2279 
   2280 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2281 
   2282 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2283 
   2284 	bdev = bdevsw_lookup(bp->b_dev);
   2285 	if (bdev == NULL)
   2286 		return (ENXIO);
   2287 	(*bdev->d_strategy)(bp);
   2288 	error = biowait(bp);
   2289 	brelse(bp);
   2290 	if (error) {
   2291 #if 1
   2292 		printf("Failed to write RAID component info!\n");
   2293 #endif
   2294 	}
   2295 
   2296 	return(error);
   2297 }
   2298 
   2299 void
   2300 rf_markalldirty(RF_Raid_t *raidPtr)
   2301 {
   2302 	RF_ComponentLabel_t clabel;
   2303 	int sparecol;
   2304 	int c;
   2305 	int j;
   2306 	int scol = -1;
   2307 
   2308 	raidPtr->mod_counter++;
   2309 	for (c = 0; c < raidPtr->numCol; c++) {
   2310 		/* we don't want to touch (at all) a disk that has
   2311 		   failed */
   2312 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2313 			raidread_component_label(
   2314 						 raidPtr->Disks[c].dev,
   2315 						 raidPtr->raid_cinfo[c].ci_vp,
   2316 						 &clabel);
   2317 			if (clabel.status == rf_ds_spared) {
   2318 				/* XXX do something special...
   2319 				   but whatever you do, don't
   2320 				   try to access it!! */
   2321 			} else {
   2322 				raidmarkdirty(
   2323 					      raidPtr->Disks[c].dev,
   2324 					      raidPtr->raid_cinfo[c].ci_vp,
   2325 					      raidPtr->mod_counter);
   2326 			}
   2327 		}
   2328 	}
   2329 
   2330 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2331 		sparecol = raidPtr->numCol + c;
   2332 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2333 			/*
   2334 
   2335 			   we claim this disk is "optimal" if it's
   2336 			   rf_ds_used_spare, as that means it should be
   2337 			   directly substitutable for the disk it replaced.
   2338 			   We note that too...
   2339 
   2340 			 */
   2341 
   2342 			for(j=0;j<raidPtr->numCol;j++) {
   2343 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2344 					scol = j;
   2345 					break;
   2346 				}
   2347 			}
   2348 
   2349 			raidread_component_label(
   2350 				 raidPtr->Disks[sparecol].dev,
   2351 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2352 				 &clabel);
   2353 			/* make sure status is noted */
   2354 
   2355 			raid_init_component_label(raidPtr, &clabel);
   2356 
   2357 			clabel.row = 0;
   2358 			clabel.column = scol;
   2359 			/* Note: we *don't* change status from rf_ds_used_spare
   2360 			   to rf_ds_optimal */
   2361 			/* clabel.status = rf_ds_optimal; */
   2362 
   2363 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2364 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2365 				      raidPtr->mod_counter);
   2366 		}
   2367 	}
   2368 }
   2369 
   2370 
   2371 void
   2372 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2373 {
   2374 	RF_ComponentLabel_t clabel;
   2375 	int sparecol;
   2376 	int c;
   2377 	int j;
   2378 	int scol;
   2379 
   2380 	scol = -1;
   2381 
   2382 	/* XXX should do extra checks to make sure things really are clean,
   2383 	   rather than blindly setting the clean bit... */
   2384 
   2385 	raidPtr->mod_counter++;
   2386 
   2387 	for (c = 0; c < raidPtr->numCol; c++) {
   2388 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2389 			raidread_component_label(
   2390 						 raidPtr->Disks[c].dev,
   2391 						 raidPtr->raid_cinfo[c].ci_vp,
   2392 						 &clabel);
   2393 				/* make sure status is noted */
   2394 			clabel.status = rf_ds_optimal;
   2395 				/* bump the counter */
   2396 			clabel.mod_counter = raidPtr->mod_counter;
   2397 
   2398 			raidwrite_component_label(
   2399 						  raidPtr->Disks[c].dev,
   2400 						  raidPtr->raid_cinfo[c].ci_vp,
   2401 						  &clabel);
   2402 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2403 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2404 					raidmarkclean(
   2405 						      raidPtr->Disks[c].dev,
   2406 						      raidPtr->raid_cinfo[c].ci_vp,
   2407 						      raidPtr->mod_counter);
   2408 				}
   2409 			}
   2410 		}
   2411 		/* else we don't touch it.. */
   2412 	}
   2413 
   2414 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2415 		sparecol = raidPtr->numCol + c;
   2416 		/* Need to ensure that the reconstruct actually completed! */
   2417 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2418 			/*
   2419 
   2420 			   we claim this disk is "optimal" if it's
   2421 			   rf_ds_used_spare, as that means it should be
   2422 			   directly substitutable for the disk it replaced.
   2423 			   We note that too...
   2424 
   2425 			 */
   2426 
   2427 			for(j=0;j<raidPtr->numCol;j++) {
   2428 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2429 					scol = j;
   2430 					break;
   2431 				}
   2432 			}
   2433 
   2434 			/* XXX shouldn't *really* need this... */
   2435 			raidread_component_label(
   2436 				      raidPtr->Disks[sparecol].dev,
   2437 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2438 				      &clabel);
   2439 			/* make sure status is noted */
   2440 
   2441 			raid_init_component_label(raidPtr, &clabel);
   2442 
   2443 			clabel.mod_counter = raidPtr->mod_counter;
   2444 			clabel.column = scol;
   2445 			clabel.status = rf_ds_optimal;
   2446 
   2447 			raidwrite_component_label(
   2448 				      raidPtr->Disks[sparecol].dev,
   2449 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2450 				      &clabel);
   2451 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2452 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2453 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2454 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2455 						       raidPtr->mod_counter);
   2456 				}
   2457 			}
   2458 		}
   2459 	}
   2460 }
   2461 
   2462 void
   2463 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2464 {
   2465 	struct proc *p;
   2466 
   2467 	p = raidPtr->engine_thread;
   2468 
   2469 	if (vp != NULL) {
   2470 		if (auto_configured == 1) {
   2471 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2472 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2473 			vput(vp);
   2474 
   2475 		} else {
   2476 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2477 		}
   2478 	}
   2479 }
   2480 
   2481 
   2482 void
   2483 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2484 {
   2485 	int r,c;
   2486 	struct vnode *vp;
   2487 	int acd;
   2488 
   2489 
   2490 	/* We take this opportunity to close the vnodes like we should.. */
   2491 
   2492 	for (c = 0; c < raidPtr->numCol; c++) {
   2493 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2494 		acd = raidPtr->Disks[c].auto_configured;
   2495 		rf_close_component(raidPtr, vp, acd);
   2496 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2497 		raidPtr->Disks[c].auto_configured = 0;
   2498 	}
   2499 
   2500 	for (r = 0; r < raidPtr->numSpare; r++) {
   2501 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2502 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2503 		rf_close_component(raidPtr, vp, acd);
   2504 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2505 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2506 	}
   2507 }
   2508 
   2509 
   2510 void
   2511 rf_ReconThread(struct rf_recon_req *req)
   2512 {
   2513 	int     s;
   2514 	RF_Raid_t *raidPtr;
   2515 
   2516 	s = splbio();
   2517 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2518 	raidPtr->recon_in_progress = 1;
   2519 
   2520 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2521 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2522 
   2523 	RF_Free(req, sizeof(*req));
   2524 
   2525 	raidPtr->recon_in_progress = 0;
   2526 	splx(s);
   2527 
   2528 	/* That's all... */
   2529 	kthread_exit(0);        /* does not return */
   2530 }
   2531 
   2532 void
   2533 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2534 {
   2535 	int retcode;
   2536 	int s;
   2537 
   2538 	raidPtr->parity_rewrite_in_progress = 1;
   2539 	s = splbio();
   2540 	retcode = rf_RewriteParity(raidPtr);
   2541 	splx(s);
   2542 	if (retcode) {
   2543 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2544 	} else {
   2545 		/* set the clean bit!  If we shutdown correctly,
   2546 		   the clean bit on each component label will get
   2547 		   set */
   2548 		raidPtr->parity_good = RF_RAID_CLEAN;
   2549 	}
   2550 	raidPtr->parity_rewrite_in_progress = 0;
   2551 
   2552 	/* Anyone waiting for us to stop?  If so, inform them... */
   2553 	if (raidPtr->waitShutdown) {
   2554 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2555 	}
   2556 
   2557 	/* That's all... */
   2558 	kthread_exit(0);        /* does not return */
   2559 }
   2560 
   2561 
   2562 void
   2563 rf_CopybackThread(RF_Raid_t *raidPtr)
   2564 {
   2565 	int s;
   2566 
   2567 	raidPtr->copyback_in_progress = 1;
   2568 	s = splbio();
   2569 	rf_CopybackReconstructedData(raidPtr);
   2570 	splx(s);
   2571 	raidPtr->copyback_in_progress = 0;
   2572 
   2573 	/* That's all... */
   2574 	kthread_exit(0);        /* does not return */
   2575 }
   2576 
   2577 
   2578 void
   2579 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2580 {
   2581 	int s;
   2582 	RF_Raid_t *raidPtr;
   2583 
   2584 	s = splbio();
   2585 	raidPtr = req->raidPtr;
   2586 	raidPtr->recon_in_progress = 1;
   2587 	rf_ReconstructInPlace(raidPtr, req->col);
   2588 	RF_Free(req, sizeof(*req));
   2589 	raidPtr->recon_in_progress = 0;
   2590 	splx(s);
   2591 
   2592 	/* That's all... */
   2593 	kthread_exit(0);        /* does not return */
   2594 }
   2595 
   2596 RF_AutoConfig_t *
   2597 rf_find_raid_components()
   2598 {
   2599 	struct vnode *vp;
   2600 	struct disklabel label;
   2601 	struct device *dv;
   2602 	dev_t dev;
   2603 	int bmajor;
   2604 	int error;
   2605 	int i;
   2606 	int good_one;
   2607 	RF_ComponentLabel_t *clabel;
   2608 	RF_AutoConfig_t *ac_list;
   2609 	RF_AutoConfig_t *ac;
   2610 
   2611 
   2612 	/* initialize the AutoConfig list */
   2613 	ac_list = NULL;
   2614 
   2615 	/* we begin by trolling through *all* the devices on the system */
   2616 
   2617 	for (dv = alldevs.tqh_first; dv != NULL;
   2618 	     dv = dv->dv_list.tqe_next) {
   2619 
   2620 		/* we are only interested in disks... */
   2621 		if (dv->dv_class != DV_DISK)
   2622 			continue;
   2623 
   2624 		/* we don't care about floppies... */
   2625 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2626 			continue;
   2627 		}
   2628 
   2629 		/* we don't care about CD's... */
   2630 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2631 			continue;
   2632 		}
   2633 
   2634 		/* hdfd is the Atari/Hades floppy driver */
   2635 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2636 			continue;
   2637 		}
   2638 		/* fdisa is the Atari/Milan floppy driver */
   2639 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2640 			continue;
   2641 		}
   2642 
   2643 		/* need to find the device_name_to_block_device_major stuff */
   2644 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2645 
   2646 		/* get a vnode for the raw partition of this disk */
   2647 
   2648 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2649 		if (bdevvp(dev, &vp))
   2650 			panic("RAID can't alloc vnode");
   2651 
   2652 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2653 
   2654 		if (error) {
   2655 			/* "Who cares."  Continue looking
   2656 			   for something that exists*/
   2657 			vput(vp);
   2658 			continue;
   2659 		}
   2660 
   2661 		/* Ok, the disk exists.  Go get the disklabel. */
   2662 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2663 		if (error) {
   2664 			/*
   2665 			 * XXX can't happen - open() would
   2666 			 * have errored out (or faked up one)
   2667 			 */
   2668 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2669 			       dv->dv_xname, 'a' + RAW_PART, error);
   2670 		}
   2671 
   2672 		/* don't need this any more.  We'll allocate it again
   2673 		   a little later if we really do... */
   2674 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2675 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2676 		vput(vp);
   2677 
   2678 		for (i=0; i < label.d_npartitions; i++) {
   2679 			/* We only support partitions marked as RAID */
   2680 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2681 				continue;
   2682 
   2683 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2684 			if (bdevvp(dev, &vp))
   2685 				panic("RAID can't alloc vnode");
   2686 
   2687 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2688 			if (error) {
   2689 				/* Whatever... */
   2690 				vput(vp);
   2691 				continue;
   2692 			}
   2693 
   2694 			good_one = 0;
   2695 
   2696 			clabel = (RF_ComponentLabel_t *)
   2697 				malloc(sizeof(RF_ComponentLabel_t),
   2698 				       M_RAIDFRAME, M_NOWAIT);
   2699 			if (clabel == NULL) {
   2700 				/* XXX CLEANUP HERE */
   2701 				printf("RAID auto config: out of memory!\n");
   2702 				return(NULL); /* XXX probably should panic? */
   2703 			}
   2704 
   2705 			if (!raidread_component_label(dev, vp, clabel)) {
   2706 				/* Got the label.  Does it look reasonable? */
   2707 				if (rf_reasonable_label(clabel) &&
   2708 				    (clabel->partitionSize <=
   2709 				     label.d_partitions[i].p_size)) {
   2710 #if DEBUG
   2711 					printf("Component on: %s%c: %d\n",
   2712 					       dv->dv_xname, 'a'+i,
   2713 					       label.d_partitions[i].p_size);
   2714 					rf_print_component_label(clabel);
   2715 #endif
   2716 					/* if it's reasonable, add it,
   2717 					   else ignore it. */
   2718 					ac = (RF_AutoConfig_t *)
   2719 						malloc(sizeof(RF_AutoConfig_t),
   2720 						       M_RAIDFRAME,
   2721 						       M_NOWAIT);
   2722 					if (ac == NULL) {
   2723 						/* XXX should panic?? */
   2724 						return(NULL);
   2725 					}
   2726 
   2727 					sprintf(ac->devname, "%s%c",
   2728 						dv->dv_xname, 'a'+i);
   2729 					ac->dev = dev;
   2730 					ac->vp = vp;
   2731 					ac->clabel = clabel;
   2732 					ac->next = ac_list;
   2733 					ac_list = ac;
   2734 					good_one = 1;
   2735 				}
   2736 			}
   2737 			if (!good_one) {
   2738 				/* cleanup */
   2739 				free(clabel, M_RAIDFRAME);
   2740 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2741 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2742 				vput(vp);
   2743 			}
   2744 		}
   2745 	}
   2746 	return(ac_list);
   2747 }
   2748 
   2749 static int
   2750 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2751 {
   2752 
   2753 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2754 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2755 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2756 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2757 	    clabel->row >=0 &&
   2758 	    clabel->column >= 0 &&
   2759 	    clabel->num_rows > 0 &&
   2760 	    clabel->num_columns > 0 &&
   2761 	    clabel->row < clabel->num_rows &&
   2762 	    clabel->column < clabel->num_columns &&
   2763 	    clabel->blockSize > 0 &&
   2764 	    clabel->numBlocks > 0) {
   2765 		/* label looks reasonable enough... */
   2766 		return(1);
   2767 	}
   2768 	return(0);
   2769 }
   2770 
   2771 
   2772 #if DEBUG
   2773 void
   2774 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2775 {
   2776 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2777 	       clabel->row, clabel->column,
   2778 	       clabel->num_rows, clabel->num_columns);
   2779 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2780 	       clabel->version, clabel->serial_number,
   2781 	       clabel->mod_counter);
   2782 	printf("   Clean: %s Status: %d\n",
   2783 	       clabel->clean ? "Yes" : "No", clabel->status );
   2784 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2785 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2786 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2787 	       (char) clabel->parityConfig, clabel->blockSize,
   2788 	       clabel->numBlocks);
   2789 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2790 	printf("   Contains root partition: %s\n",
   2791 	       clabel->root_partition ? "Yes" : "No" );
   2792 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2793 #if 0
   2794 	   printf("   Config order: %d\n", clabel->config_order);
   2795 #endif
   2796 
   2797 }
   2798 #endif
   2799 
   2800 RF_ConfigSet_t *
   2801 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2802 {
   2803 	RF_AutoConfig_t *ac;
   2804 	RF_ConfigSet_t *config_sets;
   2805 	RF_ConfigSet_t *cset;
   2806 	RF_AutoConfig_t *ac_next;
   2807 
   2808 
   2809 	config_sets = NULL;
   2810 
   2811 	/* Go through the AutoConfig list, and figure out which components
   2812 	   belong to what sets.  */
   2813 	ac = ac_list;
   2814 	while(ac!=NULL) {
   2815 		/* we're going to putz with ac->next, so save it here
   2816 		   for use at the end of the loop */
   2817 		ac_next = ac->next;
   2818 
   2819 		if (config_sets == NULL) {
   2820 			/* will need at least this one... */
   2821 			config_sets = (RF_ConfigSet_t *)
   2822 				malloc(sizeof(RF_ConfigSet_t),
   2823 				       M_RAIDFRAME, M_NOWAIT);
   2824 			if (config_sets == NULL) {
   2825 				panic("rf_create_auto_sets: No memory!");
   2826 			}
   2827 			/* this one is easy :) */
   2828 			config_sets->ac = ac;
   2829 			config_sets->next = NULL;
   2830 			config_sets->rootable = 0;
   2831 			ac->next = NULL;
   2832 		} else {
   2833 			/* which set does this component fit into? */
   2834 			cset = config_sets;
   2835 			while(cset!=NULL) {
   2836 				if (rf_does_it_fit(cset, ac)) {
   2837 					/* looks like it matches... */
   2838 					ac->next = cset->ac;
   2839 					cset->ac = ac;
   2840 					break;
   2841 				}
   2842 				cset = cset->next;
   2843 			}
   2844 			if (cset==NULL) {
   2845 				/* didn't find a match above... new set..*/
   2846 				cset = (RF_ConfigSet_t *)
   2847 					malloc(sizeof(RF_ConfigSet_t),
   2848 					       M_RAIDFRAME, M_NOWAIT);
   2849 				if (cset == NULL) {
   2850 					panic("rf_create_auto_sets: No memory!");
   2851 				}
   2852 				cset->ac = ac;
   2853 				ac->next = NULL;
   2854 				cset->next = config_sets;
   2855 				cset->rootable = 0;
   2856 				config_sets = cset;
   2857 			}
   2858 		}
   2859 		ac = ac_next;
   2860 	}
   2861 
   2862 
   2863 	return(config_sets);
   2864 }
   2865 
   2866 static int
   2867 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2868 {
   2869 	RF_ComponentLabel_t *clabel1, *clabel2;
   2870 
   2871 	/* If this one matches the *first* one in the set, that's good
   2872 	   enough, since the other members of the set would have been
   2873 	   through here too... */
   2874 	/* note that we are not checking partitionSize here..
   2875 
   2876 	   Note that we are also not checking the mod_counters here.
   2877 	   If everything else matches execpt the mod_counter, that's
   2878 	   good enough for this test.  We will deal with the mod_counters
   2879 	   a little later in the autoconfiguration process.
   2880 
   2881 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2882 
   2883 	   The reason we don't check for this is that failed disks
   2884 	   will have lower modification counts.  If those disks are
   2885 	   not added to the set they used to belong to, then they will
   2886 	   form their own set, which may result in 2 different sets,
   2887 	   for example, competing to be configured at raid0, and
   2888 	   perhaps competing to be the root filesystem set.  If the
   2889 	   wrong ones get configured, or both attempt to become /,
   2890 	   weird behaviour and or serious lossage will occur.  Thus we
   2891 	   need to bring them into the fold here, and kick them out at
   2892 	   a later point.
   2893 
   2894 	*/
   2895 
   2896 	clabel1 = cset->ac->clabel;
   2897 	clabel2 = ac->clabel;
   2898 	if ((clabel1->version == clabel2->version) &&
   2899 	    (clabel1->serial_number == clabel2->serial_number) &&
   2900 	    (clabel1->num_rows == clabel2->num_rows) &&
   2901 	    (clabel1->num_columns == clabel2->num_columns) &&
   2902 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2903 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2904 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2905 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2906 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2907 	    (clabel1->blockSize == clabel2->blockSize) &&
   2908 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2909 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2910 	    (clabel1->root_partition == clabel2->root_partition) &&
   2911 	    (clabel1->last_unit == clabel2->last_unit) &&
   2912 	    (clabel1->config_order == clabel2->config_order)) {
   2913 		/* if it get's here, it almost *has* to be a match */
   2914 	} else {
   2915 		/* it's not consistent with somebody in the set..
   2916 		   punt */
   2917 		return(0);
   2918 	}
   2919 	/* all was fine.. it must fit... */
   2920 	return(1);
   2921 }
   2922 
   2923 int
   2924 rf_have_enough_components(RF_ConfigSet_t *cset)
   2925 {
   2926 	RF_AutoConfig_t *ac;
   2927 	RF_AutoConfig_t *auto_config;
   2928 	RF_ComponentLabel_t *clabel;
   2929 	int c;
   2930 	int num_cols;
   2931 	int num_missing;
   2932 	int mod_counter;
   2933 	int mod_counter_found;
   2934 	int even_pair_failed;
   2935 	char parity_type;
   2936 
   2937 
   2938 	/* check to see that we have enough 'live' components
   2939 	   of this set.  If so, we can configure it if necessary */
   2940 
   2941 	num_cols = cset->ac->clabel->num_columns;
   2942 	parity_type = cset->ac->clabel->parityConfig;
   2943 
   2944 	/* XXX Check for duplicate components!?!?!? */
   2945 
   2946 	/* Determine what the mod_counter is supposed to be for this set. */
   2947 
   2948 	mod_counter_found = 0;
   2949 	mod_counter = 0;
   2950 	ac = cset->ac;
   2951 	while(ac!=NULL) {
   2952 		if (mod_counter_found==0) {
   2953 			mod_counter = ac->clabel->mod_counter;
   2954 			mod_counter_found = 1;
   2955 		} else {
   2956 			if (ac->clabel->mod_counter > mod_counter) {
   2957 				mod_counter = ac->clabel->mod_counter;
   2958 			}
   2959 		}
   2960 		ac = ac->next;
   2961 	}
   2962 
   2963 	num_missing = 0;
   2964 	auto_config = cset->ac;
   2965 
   2966 	even_pair_failed = 0;
   2967 	for(c=0; c<num_cols; c++) {
   2968 		ac = auto_config;
   2969 		while(ac!=NULL) {
   2970 			if ((ac->clabel->column == c) &&
   2971 			    (ac->clabel->mod_counter == mod_counter)) {
   2972 				/* it's this one... */
   2973 #if DEBUG
   2974 				printf("Found: %s at %d\n",
   2975 				       ac->devname,c);
   2976 #endif
   2977 				break;
   2978 			}
   2979 			ac=ac->next;
   2980 		}
   2981 		if (ac==NULL) {
   2982 				/* Didn't find one here! */
   2983 				/* special case for RAID 1, especially
   2984 				   where there are more than 2
   2985 				   components (where RAIDframe treats
   2986 				   things a little differently :( ) */
   2987 			if (parity_type == '1') {
   2988 				if (c%2 == 0) { /* even component */
   2989 					even_pair_failed = 1;
   2990 				} else { /* odd component.  If
   2991 					    we're failed, and
   2992 					    so is the even
   2993 					    component, it's
   2994 					    "Good Night, Charlie" */
   2995 					if (even_pair_failed == 1) {
   2996 						return(0);
   2997 					}
   2998 				}
   2999 			} else {
   3000 				/* normal accounting */
   3001 				num_missing++;
   3002 			}
   3003 		}
   3004 		if ((parity_type == '1') && (c%2 == 1)) {
   3005 				/* Just did an even component, and we didn't
   3006 				   bail.. reset the even_pair_failed flag,
   3007 				   and go on to the next component.... */
   3008 			even_pair_failed = 0;
   3009 		}
   3010 	}
   3011 
   3012 	clabel = cset->ac->clabel;
   3013 
   3014 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3015 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3016 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3017 		/* XXX this needs to be made *much* more general */
   3018 		/* Too many failures */
   3019 		return(0);
   3020 	}
   3021 	/* otherwise, all is well, and we've got enough to take a kick
   3022 	   at autoconfiguring this set */
   3023 	return(1);
   3024 }
   3025 
   3026 void
   3027 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3028 			RF_Raid_t *raidPtr)
   3029 {
   3030 	RF_ComponentLabel_t *clabel;
   3031 	int i;
   3032 
   3033 	clabel = ac->clabel;
   3034 
   3035 	/* 1. Fill in the common stuff */
   3036 	config->numRow = clabel->num_rows = 1;
   3037 	config->numCol = clabel->num_columns;
   3038 	config->numSpare = 0; /* XXX should this be set here? */
   3039 	config->sectPerSU = clabel->sectPerSU;
   3040 	config->SUsPerPU = clabel->SUsPerPU;
   3041 	config->SUsPerRU = clabel->SUsPerRU;
   3042 	config->parityConfig = clabel->parityConfig;
   3043 	/* XXX... */
   3044 	strcpy(config->diskQueueType,"fifo");
   3045 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3046 	config->layoutSpecificSize = 0; /* XXX ?? */
   3047 
   3048 	while(ac!=NULL) {
   3049 		/* row/col values will be in range due to the checks
   3050 		   in reasonable_label() */
   3051 		strcpy(config->devnames[0][ac->clabel->column],
   3052 		       ac->devname);
   3053 		ac = ac->next;
   3054 	}
   3055 
   3056 	for(i=0;i<RF_MAXDBGV;i++) {
   3057 		config->debugVars[i][0] = 0;
   3058 	}
   3059 }
   3060 
   3061 int
   3062 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3063 {
   3064 	RF_ComponentLabel_t clabel;
   3065 	struct vnode *vp;
   3066 	dev_t dev;
   3067 	int column;
   3068 	int sparecol;
   3069 
   3070 	raidPtr->autoconfigure = new_value;
   3071 
   3072 	for(column=0; column<raidPtr->numCol; column++) {
   3073 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3074 			dev = raidPtr->Disks[column].dev;
   3075 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3076 			raidread_component_label(dev, vp, &clabel);
   3077 			clabel.autoconfigure = new_value;
   3078 			raidwrite_component_label(dev, vp, &clabel);
   3079 		}
   3080 	}
   3081 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3082 		sparecol = raidPtr->numCol + column;
   3083 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3084 			dev = raidPtr->Disks[sparecol].dev;
   3085 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3086 			raidread_component_label(dev, vp, &clabel);
   3087 			clabel.autoconfigure = new_value;
   3088 			raidwrite_component_label(dev, vp, &clabel);
   3089 		}
   3090 	}
   3091 	return(new_value);
   3092 }
   3093 
   3094 int
   3095 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3096 {
   3097 	RF_ComponentLabel_t clabel;
   3098 	struct vnode *vp;
   3099 	dev_t dev;
   3100 	int column;
   3101 	int sparecol;
   3102 
   3103 	raidPtr->root_partition = new_value;
   3104 	for(column=0; column<raidPtr->numCol; column++) {
   3105 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3106 			dev = raidPtr->Disks[column].dev;
   3107 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3108 			raidread_component_label(dev, vp, &clabel);
   3109 			clabel.root_partition = new_value;
   3110 			raidwrite_component_label(dev, vp, &clabel);
   3111 		}
   3112 	}
   3113 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3114 		sparecol = raidPtr->numCol + column;
   3115 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3116 			dev = raidPtr->Disks[sparecol].dev;
   3117 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3118 			raidread_component_label(dev, vp, &clabel);
   3119 			clabel.root_partition = new_value;
   3120 			raidwrite_component_label(dev, vp, &clabel);
   3121 		}
   3122 	}
   3123 	return(new_value);
   3124 }
   3125 
   3126 void
   3127 rf_release_all_vps(RF_ConfigSet_t *cset)
   3128 {
   3129 	RF_AutoConfig_t *ac;
   3130 
   3131 	ac = cset->ac;
   3132 	while(ac!=NULL) {
   3133 		/* Close the vp, and give it back */
   3134 		if (ac->vp) {
   3135 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3136 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3137 			vput(ac->vp);
   3138 			ac->vp = NULL;
   3139 		}
   3140 		ac = ac->next;
   3141 	}
   3142 }
   3143 
   3144 
   3145 void
   3146 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3147 {
   3148 	RF_AutoConfig_t *ac;
   3149 	RF_AutoConfig_t *next_ac;
   3150 
   3151 	ac = cset->ac;
   3152 	while(ac!=NULL) {
   3153 		next_ac = ac->next;
   3154 		/* nuke the label */
   3155 		free(ac->clabel, M_RAIDFRAME);
   3156 		/* cleanup the config structure */
   3157 		free(ac, M_RAIDFRAME);
   3158 		/* "next.." */
   3159 		ac = next_ac;
   3160 	}
   3161 	/* and, finally, nuke the config set */
   3162 	free(cset, M_RAIDFRAME);
   3163 }
   3164 
   3165 
   3166 void
   3167 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3168 {
   3169 	/* current version number */
   3170 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3171 	clabel->serial_number = raidPtr->serial_number;
   3172 	clabel->mod_counter = raidPtr->mod_counter;
   3173 	clabel->num_rows = 1;
   3174 	clabel->num_columns = raidPtr->numCol;
   3175 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3176 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3177 
   3178 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3179 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3180 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3181 
   3182 	clabel->blockSize = raidPtr->bytesPerSector;
   3183 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3184 
   3185 	/* XXX not portable */
   3186 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3187 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3188 	clabel->autoconfigure = raidPtr->autoconfigure;
   3189 	clabel->root_partition = raidPtr->root_partition;
   3190 	clabel->last_unit = raidPtr->raidid;
   3191 	clabel->config_order = raidPtr->config_order;
   3192 }
   3193 
   3194 int
   3195 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3196 {
   3197 	RF_Raid_t *raidPtr;
   3198 	RF_Config_t *config;
   3199 	int raidID;
   3200 	int retcode;
   3201 
   3202 #if DEBUG
   3203 	printf("RAID autoconfigure\n");
   3204 #endif
   3205 
   3206 	retcode = 0;
   3207 	*unit = -1;
   3208 
   3209 	/* 1. Create a config structure */
   3210 
   3211 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3212 				       M_RAIDFRAME,
   3213 				       M_NOWAIT);
   3214 	if (config==NULL) {
   3215 		printf("Out of mem!?!?\n");
   3216 				/* XXX do something more intelligent here. */
   3217 		return(1);
   3218 	}
   3219 
   3220 	memset(config, 0, sizeof(RF_Config_t));
   3221 
   3222 	/*
   3223 	   2. Figure out what RAID ID this one is supposed to live at
   3224 	   See if we can get the same RAID dev that it was configured
   3225 	   on last time..
   3226 	*/
   3227 
   3228 	raidID = cset->ac->clabel->last_unit;
   3229 	if ((raidID < 0) || (raidID >= numraid)) {
   3230 		/* let's not wander off into lala land. */
   3231 		raidID = numraid - 1;
   3232 	}
   3233 	if (raidPtrs[raidID]->valid != 0) {
   3234 
   3235 		/*
   3236 		   Nope... Go looking for an alternative...
   3237 		   Start high so we don't immediately use raid0 if that's
   3238 		   not taken.
   3239 		*/
   3240 
   3241 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3242 			if (raidPtrs[raidID]->valid == 0) {
   3243 				/* can use this one! */
   3244 				break;
   3245 			}
   3246 		}
   3247 	}
   3248 
   3249 	if (raidID < 0) {
   3250 		/* punt... */
   3251 		printf("Unable to auto configure this set!\n");
   3252 		printf("(Out of RAID devs!)\n");
   3253 		return(1);
   3254 	}
   3255 
   3256 #if DEBUG
   3257 	printf("Configuring raid%d:\n",raidID);
   3258 #endif
   3259 
   3260 	raidPtr = raidPtrs[raidID];
   3261 
   3262 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3263 	raidPtr->raidid = raidID;
   3264 	raidPtr->openings = RAIDOUTSTANDING;
   3265 
   3266 	/* 3. Build the configuration structure */
   3267 	rf_create_configuration(cset->ac, config, raidPtr);
   3268 
   3269 	/* 4. Do the configuration */
   3270 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3271 
   3272 	if (retcode == 0) {
   3273 
   3274 		raidinit(raidPtrs[raidID]);
   3275 
   3276 		rf_markalldirty(raidPtrs[raidID]);
   3277 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3278 		if (cset->ac->clabel->root_partition==1) {
   3279 			/* everything configured just fine.  Make a note
   3280 			   that this set is eligible to be root. */
   3281 			cset->rootable = 1;
   3282 			/* XXX do this here? */
   3283 			raidPtrs[raidID]->root_partition = 1;
   3284 		}
   3285 	}
   3286 
   3287 	/* 5. Cleanup */
   3288 	free(config, M_RAIDFRAME);
   3289 
   3290 	*unit = raidID;
   3291 	return(retcode);
   3292 }
   3293 
   3294 void
   3295 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3296 {
   3297 	struct buf *bp;
   3298 
   3299 	bp = (struct buf *)desc->bp;
   3300 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3301 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3302 }
   3303