Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.178.2.1
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.178.2.1 2004/07/02 18:03:06 he Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.178.2.1 2004/07/02 18:03:06 he Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/user.h>
    169 #include <sys/reboot.h>
    170 
    171 #include <dev/raidframe/raidframevar.h>
    172 #include <dev/raidframe/raidframeio.h>
    173 #include "raid.h"
    174 #include "opt_raid_autoconfig.h"
    175 #include "rf_raid.h"
    176 #include "rf_copyback.h"
    177 #include "rf_dag.h"
    178 #include "rf_dagflags.h"
    179 #include "rf_desc.h"
    180 #include "rf_diskqueue.h"
    181 #include "rf_etimer.h"
    182 #include "rf_general.h"
    183 #include "rf_kintf.h"
    184 #include "rf_options.h"
    185 #include "rf_driver.h"
    186 #include "rf_parityscan.h"
    187 #include "rf_threadstuff.h"
    188 
    189 #ifdef DEBUG
    190 int     rf_kdebug_level = 0;
    191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    192 #else				/* DEBUG */
    193 #define db1_printf(a) { }
    194 #endif				/* DEBUG */
    195 
    196 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    197 
    198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    199 
    200 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    201 						 * spare table */
    202 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    203 						 * installation process */
    204 
    205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    206 
    207 /* prototypes */
    208 static void KernelWakeupFunc(struct buf * bp);
    209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    210 		   dev_t dev, RF_SectorNum_t startSect,
    211 		   RF_SectorCount_t numSect, caddr_t buf,
    212 		   void (*cbFunc) (struct buf *), void *cbArg,
    213 		   int logBytesPerSector, struct proc * b_proc);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 
    218 dev_type_open(raidopen);
    219 dev_type_close(raidclose);
    220 dev_type_read(raidread);
    221 dev_type_write(raidwrite);
    222 dev_type_ioctl(raidioctl);
    223 dev_type_strategy(raidstrategy);
    224 dev_type_dump(raiddump);
    225 dev_type_size(raidsize);
    226 
    227 const struct bdevsw raid_bdevsw = {
    228 	raidopen, raidclose, raidstrategy, raidioctl,
    229 	raiddump, raidsize, D_DISK
    230 };
    231 
    232 const struct cdevsw raid_cdevsw = {
    233 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    234 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    235 };
    236 
    237 /*
    238  * Pilfered from ccd.c
    239  */
    240 
    241 struct raidbuf {
    242 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    243 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    244 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    245 };
    246 
    247 /* XXX Not sure if the following should be replacing the raidPtrs above,
    248    or if it should be used in conjunction with that...
    249 */
    250 
    251 struct raid_softc {
    252 	int     sc_flags;	/* flags */
    253 	int     sc_cflags;	/* configuration flags */
    254 	size_t  sc_size;        /* size of the raid device */
    255 	char    sc_xname[20];	/* XXX external name */
    256 	struct disk sc_dkdev;	/* generic disk device info */
    257 	struct bufq_state buf_queue;	/* used for the device queue */
    258 };
    259 /* sc_flags */
    260 #define RAIDF_INITED	0x01	/* unit has been initialized */
    261 #define RAIDF_WLABEL	0x02	/* label area is writable */
    262 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    263 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    264 #define RAIDF_LOCKED	0x80	/* unit is locked */
    265 
    266 #define	raidunit(x)	DISKUNIT(x)
    267 int numraid = 0;
    268 
    269 /*
    270  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    271  * Be aware that large numbers can allow the driver to consume a lot of
    272  * kernel memory, especially on writes, and in degraded mode reads.
    273  *
    274  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    275  * a single 64K write will typically require 64K for the old data,
    276  * 64K for the old parity, and 64K for the new parity, for a total
    277  * of 192K (if the parity buffer is not re-used immediately).
    278  * Even it if is used immediately, that's still 128K, which when multiplied
    279  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    280  *
    281  * Now in degraded mode, for example, a 64K read on the above setup may
    282  * require data reconstruction, which will require *all* of the 4 remaining
    283  * disks to participate -- 4 * 32K/disk == 128K again.
    284  */
    285 
    286 #ifndef RAIDOUTSTANDING
    287 #define RAIDOUTSTANDING   6
    288 #endif
    289 
    290 #define RAIDLABELDEV(dev)	\
    291 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    292 
    293 /* declared here, and made public, for the benefit of KVM stuff.. */
    294 struct raid_softc *raid_softc;
    295 
    296 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    297 				     struct disklabel *);
    298 static void raidgetdisklabel(dev_t);
    299 static void raidmakedisklabel(struct raid_softc *);
    300 
    301 static int raidlock(struct raid_softc *);
    302 static void raidunlock(struct raid_softc *);
    303 
    304 static void rf_markalldirty(RF_Raid_t *);
    305 
    306 struct device *raidrootdev;
    307 
    308 void rf_ReconThread(struct rf_recon_req *);
    309 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    310 void rf_CopybackThread(RF_Raid_t *raidPtr);
    311 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    312 int rf_autoconfig(struct device *self);
    313 void rf_buildroothack(RF_ConfigSet_t *);
    314 
    315 RF_AutoConfig_t *rf_find_raid_components(void);
    316 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    317 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    318 static int rf_reasonable_label(RF_ComponentLabel_t *);
    319 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    320 int rf_set_autoconfig(RF_Raid_t *, int);
    321 int rf_set_rootpartition(RF_Raid_t *, int);
    322 void rf_release_all_vps(RF_ConfigSet_t *);
    323 void rf_cleanup_config_set(RF_ConfigSet_t *);
    324 int rf_have_enough_components(RF_ConfigSet_t *);
    325 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    326 
    327 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    328 				  allow autoconfig to take place.
    329 			          Note that this is overridden by having
    330 			          RAID_AUTOCONFIG as an option in the
    331 			          kernel config file.  */
    332 
    333 struct RF_Pools_s rf_pools;
    334 
    335 void
    336 raidattach(int num)
    337 {
    338 	int raidID;
    339 	int i, rc;
    340 
    341 #ifdef DEBUG
    342 	printf("raidattach: Asked for %d units\n", num);
    343 #endif
    344 
    345 	if (num <= 0) {
    346 #ifdef DIAGNOSTIC
    347 		panic("raidattach: count <= 0");
    348 #endif
    349 		return;
    350 	}
    351 	/* This is where all the initialization stuff gets done. */
    352 
    353 	numraid = num;
    354 
    355 	/* Make some space for requested number of units... */
    356 
    357 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    358 	if (raidPtrs == NULL) {
    359 		panic("raidPtrs is NULL!!");
    360 	}
    361 
    362 	/* Initialize the component buffer pool. */
    363 	rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
    364 		     "raidpl", num * RAIDOUTSTANDING,
    365 		     2 * num * RAIDOUTSTANDING);
    366 
    367 	rf_mutex_init(&rf_sparet_wait_mutex);
    368 
    369 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    370 
    371 	for (i = 0; i < num; i++)
    372 		raidPtrs[i] = NULL;
    373 	rc = rf_BootRaidframe();
    374 	if (rc == 0)
    375 		printf("Kernelized RAIDframe activated\n");
    376 	else
    377 		panic("Serious error booting RAID!!");
    378 
    379 	/* put together some datastructures like the CCD device does.. This
    380 	 * lets us lock the device and what-not when it gets opened. */
    381 
    382 	raid_softc = (struct raid_softc *)
    383 		malloc(num * sizeof(struct raid_softc),
    384 		       M_RAIDFRAME, M_NOWAIT);
    385 	if (raid_softc == NULL) {
    386 		printf("WARNING: no memory for RAIDframe driver\n");
    387 		return;
    388 	}
    389 
    390 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    391 
    392 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    393 					      M_RAIDFRAME, M_NOWAIT);
    394 	if (raidrootdev == NULL) {
    395 		panic("No memory for RAIDframe driver!!?!?!");
    396 	}
    397 
    398 	for (raidID = 0; raidID < num; raidID++) {
    399 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    400 
    401 		raidrootdev[raidID].dv_class  = DV_DISK;
    402 		raidrootdev[raidID].dv_cfdata = NULL;
    403 		raidrootdev[raidID].dv_unit   = raidID;
    404 		raidrootdev[raidID].dv_parent = NULL;
    405 		raidrootdev[raidID].dv_flags  = 0;
    406 		sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
    407 
    408 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    409 			  (RF_Raid_t *));
    410 		if (raidPtrs[raidID] == NULL) {
    411 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    412 			numraid = raidID;
    413 			return;
    414 		}
    415 	}
    416 
    417 #ifdef RAID_AUTOCONFIG
    418 	raidautoconfig = 1;
    419 #endif
    420 
    421 	/*
    422 	 * Register a finalizer which will be used to auto-config RAID
    423 	 * sets once all real hardware devices have been found.
    424 	 */
    425 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    426 		printf("WARNING: unable to register RAIDframe finalizer\n");
    427 }
    428 
    429 int
    430 rf_autoconfig(struct device *self)
    431 {
    432 	RF_AutoConfig_t *ac_list;
    433 	RF_ConfigSet_t *config_sets;
    434 
    435 	if (raidautoconfig == 0)
    436 		return (0);
    437 
    438 	/* XXX This code can only be run once. */
    439 	raidautoconfig = 0;
    440 
    441 	/* 1. locate all RAID components on the system */
    442 #ifdef DEBUG
    443 	printf("Searching for RAID components...\n");
    444 #endif
    445 	ac_list = rf_find_raid_components();
    446 
    447 	/* 2. Sort them into their respective sets. */
    448 	config_sets = rf_create_auto_sets(ac_list);
    449 
    450 	/*
    451 	 * 3. Evaluate each set andconfigure the valid ones.
    452 	 * This gets done in rf_buildroothack().
    453 	 */
    454 	rf_buildroothack(config_sets);
    455 
    456 	return (1);
    457 }
    458 
    459 void
    460 rf_buildroothack(RF_ConfigSet_t *config_sets)
    461 {
    462 	RF_ConfigSet_t *cset;
    463 	RF_ConfigSet_t *next_cset;
    464 	int retcode;
    465 	int raidID;
    466 	int rootID;
    467 	int num_root;
    468 
    469 	rootID = 0;
    470 	num_root = 0;
    471 	cset = config_sets;
    472 	while(cset != NULL ) {
    473 		next_cset = cset->next;
    474 		if (rf_have_enough_components(cset) &&
    475 		    cset->ac->clabel->autoconfigure==1) {
    476 			retcode = rf_auto_config_set(cset,&raidID);
    477 			if (!retcode) {
    478 				if (cset->rootable) {
    479 					rootID = raidID;
    480 					num_root++;
    481 				}
    482 			} else {
    483 				/* The autoconfig didn't work :( */
    484 #if DEBUG
    485 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    486 #endif
    487 				rf_release_all_vps(cset);
    488 			}
    489 		} else {
    490 			/* we're not autoconfiguring this set...
    491 			   release the associated resources */
    492 			rf_release_all_vps(cset);
    493 		}
    494 		/* cleanup */
    495 		rf_cleanup_config_set(cset);
    496 		cset = next_cset;
    497 	}
    498 
    499 	/* we found something bootable... */
    500 
    501 	if (num_root == 1) {
    502 		booted_device = &raidrootdev[rootID];
    503 	} else if (num_root > 1) {
    504 		/* we can't guess.. require the user to answer... */
    505 		boothowto |= RB_ASKNAME;
    506 	}
    507 }
    508 
    509 
    510 int
    511 raidsize(dev_t dev)
    512 {
    513 	struct raid_softc *rs;
    514 	struct disklabel *lp;
    515 	int     part, unit, omask, size;
    516 
    517 	unit = raidunit(dev);
    518 	if (unit >= numraid)
    519 		return (-1);
    520 	rs = &raid_softc[unit];
    521 
    522 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    523 		return (-1);
    524 
    525 	part = DISKPART(dev);
    526 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    527 	lp = rs->sc_dkdev.dk_label;
    528 
    529 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    530 		return (-1);
    531 
    532 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    533 		size = -1;
    534 	else
    535 		size = lp->d_partitions[part].p_size *
    536 		    (lp->d_secsize / DEV_BSIZE);
    537 
    538 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    539 		return (-1);
    540 
    541 	return (size);
    542 
    543 }
    544 
    545 int
    546 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    547 {
    548 	/* Not implemented. */
    549 	return ENXIO;
    550 }
    551 /* ARGSUSED */
    552 int
    553 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
    554 {
    555 	int     unit = raidunit(dev);
    556 	struct raid_softc *rs;
    557 	struct disklabel *lp;
    558 	int     part, pmask;
    559 	int     error = 0;
    560 
    561 	if (unit >= numraid)
    562 		return (ENXIO);
    563 	rs = &raid_softc[unit];
    564 
    565 	if ((error = raidlock(rs)) != 0)
    566 		return (error);
    567 	lp = rs->sc_dkdev.dk_label;
    568 
    569 	part = DISKPART(dev);
    570 	pmask = (1 << part);
    571 
    572 	if ((rs->sc_flags & RAIDF_INITED) &&
    573 	    (rs->sc_dkdev.dk_openmask == 0))
    574 		raidgetdisklabel(dev);
    575 
    576 	/* make sure that this partition exists */
    577 
    578 	if (part != RAW_PART) {
    579 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    580 		    ((part >= lp->d_npartitions) ||
    581 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    582 			error = ENXIO;
    583 			raidunlock(rs);
    584 			return (error);
    585 		}
    586 	}
    587 	/* Prevent this unit from being unconfigured while open. */
    588 	switch (fmt) {
    589 	case S_IFCHR:
    590 		rs->sc_dkdev.dk_copenmask |= pmask;
    591 		break;
    592 
    593 	case S_IFBLK:
    594 		rs->sc_dkdev.dk_bopenmask |= pmask;
    595 		break;
    596 	}
    597 
    598 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    599 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    600 		/* First one... mark things as dirty... Note that we *MUST*
    601 		 have done a configure before this.  I DO NOT WANT TO BE
    602 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    603 		 THAT THEY BELONG TOGETHER!!!!! */
    604 		/* XXX should check to see if we're only open for reading
    605 		   here... If so, we needn't do this, but then need some
    606 		   other way of keeping track of what's happened.. */
    607 
    608 		rf_markalldirty( raidPtrs[unit] );
    609 	}
    610 
    611 
    612 	rs->sc_dkdev.dk_openmask =
    613 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    614 
    615 	raidunlock(rs);
    616 
    617 	return (error);
    618 
    619 
    620 }
    621 /* ARGSUSED */
    622 int
    623 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
    624 {
    625 	int     unit = raidunit(dev);
    626 	struct raid_softc *rs;
    627 	int     error = 0;
    628 	int     part;
    629 
    630 	if (unit >= numraid)
    631 		return (ENXIO);
    632 	rs = &raid_softc[unit];
    633 
    634 	if ((error = raidlock(rs)) != 0)
    635 		return (error);
    636 
    637 	part = DISKPART(dev);
    638 
    639 	/* ...that much closer to allowing unconfiguration... */
    640 	switch (fmt) {
    641 	case S_IFCHR:
    642 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    643 		break;
    644 
    645 	case S_IFBLK:
    646 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    647 		break;
    648 	}
    649 	rs->sc_dkdev.dk_openmask =
    650 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    651 
    652 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    653 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    654 		/* Last one... device is not unconfigured yet.
    655 		   Device shutdown has taken care of setting the
    656 		   clean bits if RAIDF_INITED is not set
    657 		   mark things as clean... */
    658 
    659 		rf_update_component_labels(raidPtrs[unit],
    660 						 RF_FINAL_COMPONENT_UPDATE);
    661 		if (doing_shutdown) {
    662 			/* last one, and we're going down, so
    663 			   lights out for this RAID set too. */
    664 			error = rf_Shutdown(raidPtrs[unit]);
    665 
    666 			/* It's no longer initialized... */
    667 			rs->sc_flags &= ~RAIDF_INITED;
    668 
    669 			/* Detach the disk. */
    670 			disk_detach(&rs->sc_dkdev);
    671 		}
    672 	}
    673 
    674 	raidunlock(rs);
    675 	return (0);
    676 
    677 }
    678 
    679 void
    680 raidstrategy(struct buf *bp)
    681 {
    682 	int s;
    683 
    684 	unsigned int raidID = raidunit(bp->b_dev);
    685 	RF_Raid_t *raidPtr;
    686 	struct raid_softc *rs = &raid_softc[raidID];
    687 	int     wlabel;
    688 
    689 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    690 		bp->b_error = ENXIO;
    691 		bp->b_flags |= B_ERROR;
    692 		bp->b_resid = bp->b_bcount;
    693 		biodone(bp);
    694 		return;
    695 	}
    696 	if (raidID >= numraid || !raidPtrs[raidID]) {
    697 		bp->b_error = ENODEV;
    698 		bp->b_flags |= B_ERROR;
    699 		bp->b_resid = bp->b_bcount;
    700 		biodone(bp);
    701 		return;
    702 	}
    703 	raidPtr = raidPtrs[raidID];
    704 	if (!raidPtr->valid) {
    705 		bp->b_error = ENODEV;
    706 		bp->b_flags |= B_ERROR;
    707 		bp->b_resid = bp->b_bcount;
    708 		biodone(bp);
    709 		return;
    710 	}
    711 	if (bp->b_bcount == 0) {
    712 		db1_printf(("b_bcount is zero..\n"));
    713 		biodone(bp);
    714 		return;
    715 	}
    716 
    717 	/*
    718 	 * Do bounds checking and adjust transfer.  If there's an
    719 	 * error, the bounds check will flag that for us.
    720 	 */
    721 
    722 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    723 	if (DISKPART(bp->b_dev) != RAW_PART)
    724 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    725 			db1_printf(("Bounds check failed!!:%d %d\n",
    726 				(int) bp->b_blkno, (int) wlabel));
    727 			biodone(bp);
    728 			return;
    729 		}
    730 	s = splbio();
    731 
    732 	bp->b_resid = 0;
    733 
    734 	/* stuff it onto our queue */
    735 	BUFQ_PUT(&rs->buf_queue, bp);
    736 
    737 	raidstart(raidPtrs[raidID]);
    738 
    739 	splx(s);
    740 }
    741 /* ARGSUSED */
    742 int
    743 raidread(dev_t dev, struct uio *uio, int flags)
    744 {
    745 	int     unit = raidunit(dev);
    746 	struct raid_softc *rs;
    747 
    748 	if (unit >= numraid)
    749 		return (ENXIO);
    750 	rs = &raid_softc[unit];
    751 
    752 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    753 		return (ENXIO);
    754 
    755 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    756 
    757 }
    758 /* ARGSUSED */
    759 int
    760 raidwrite(dev_t dev, struct uio *uio, int flags)
    761 {
    762 	int     unit = raidunit(dev);
    763 	struct raid_softc *rs;
    764 
    765 	if (unit >= numraid)
    766 		return (ENXIO);
    767 	rs = &raid_softc[unit];
    768 
    769 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    770 		return (ENXIO);
    771 
    772 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    773 
    774 }
    775 
    776 int
    777 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
    778 {
    779 	int     unit = raidunit(dev);
    780 	int     error = 0;
    781 	int     part, pmask;
    782 	struct raid_softc *rs;
    783 	RF_Config_t *k_cfg, *u_cfg;
    784 	RF_Raid_t *raidPtr;
    785 	RF_RaidDisk_t *diskPtr;
    786 	RF_AccTotals_t *totals;
    787 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    788 	u_char *specific_buf;
    789 	int retcode = 0;
    790 	int column;
    791 	int raidid;
    792 	struct rf_recon_req *rrcopy, *rr;
    793 	RF_ComponentLabel_t *clabel;
    794 	RF_ComponentLabel_t ci_label;
    795 	RF_ComponentLabel_t **clabel_ptr;
    796 	RF_SingleComponent_t *sparePtr,*componentPtr;
    797 	RF_SingleComponent_t hot_spare;
    798 	RF_SingleComponent_t component;
    799 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    800 	int i, j, d;
    801 #ifdef __HAVE_OLD_DISKLABEL
    802 	struct disklabel newlabel;
    803 #endif
    804 
    805 	if (unit >= numraid)
    806 		return (ENXIO);
    807 	rs = &raid_softc[unit];
    808 	raidPtr = raidPtrs[unit];
    809 
    810 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    811 		(int) DISKPART(dev), (int) unit, (int) cmd));
    812 
    813 	/* Must be open for writes for these commands... */
    814 	switch (cmd) {
    815 	case DIOCSDINFO:
    816 	case DIOCWDINFO:
    817 #ifdef __HAVE_OLD_DISKLABEL
    818 	case ODIOCWDINFO:
    819 	case ODIOCSDINFO:
    820 #endif
    821 	case DIOCWLABEL:
    822 		if ((flag & FWRITE) == 0)
    823 			return (EBADF);
    824 	}
    825 
    826 	/* Must be initialized for these... */
    827 	switch (cmd) {
    828 	case DIOCGDINFO:
    829 	case DIOCSDINFO:
    830 	case DIOCWDINFO:
    831 #ifdef __HAVE_OLD_DISKLABEL
    832 	case ODIOCGDINFO:
    833 	case ODIOCWDINFO:
    834 	case ODIOCSDINFO:
    835 	case ODIOCGDEFLABEL:
    836 #endif
    837 	case DIOCGPART:
    838 	case DIOCWLABEL:
    839 	case DIOCGDEFLABEL:
    840 	case RAIDFRAME_SHUTDOWN:
    841 	case RAIDFRAME_REWRITEPARITY:
    842 	case RAIDFRAME_GET_INFO:
    843 	case RAIDFRAME_RESET_ACCTOTALS:
    844 	case RAIDFRAME_GET_ACCTOTALS:
    845 	case RAIDFRAME_KEEP_ACCTOTALS:
    846 	case RAIDFRAME_GET_SIZE:
    847 	case RAIDFRAME_FAIL_DISK:
    848 	case RAIDFRAME_COPYBACK:
    849 	case RAIDFRAME_CHECK_RECON_STATUS:
    850 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    851 	case RAIDFRAME_GET_COMPONENT_LABEL:
    852 	case RAIDFRAME_SET_COMPONENT_LABEL:
    853 	case RAIDFRAME_ADD_HOT_SPARE:
    854 	case RAIDFRAME_REMOVE_HOT_SPARE:
    855 	case RAIDFRAME_INIT_LABELS:
    856 	case RAIDFRAME_REBUILD_IN_PLACE:
    857 	case RAIDFRAME_CHECK_PARITY:
    858 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    859 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    860 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    861 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    862 	case RAIDFRAME_SET_AUTOCONFIG:
    863 	case RAIDFRAME_SET_ROOT:
    864 	case RAIDFRAME_DELETE_COMPONENT:
    865 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    866 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    867 			return (ENXIO);
    868 	}
    869 
    870 	switch (cmd) {
    871 
    872 		/* configure the system */
    873 	case RAIDFRAME_CONFIGURE:
    874 
    875 		if (raidPtr->valid) {
    876 			/* There is a valid RAID set running on this unit! */
    877 			printf("raid%d: Device already configured!\n",unit);
    878 			return(EINVAL);
    879 		}
    880 
    881 		/* copy-in the configuration information */
    882 		/* data points to a pointer to the configuration structure */
    883 
    884 		u_cfg = *((RF_Config_t **) data);
    885 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    886 		if (k_cfg == NULL) {
    887 			return (ENOMEM);
    888 		}
    889 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    890 		if (retcode) {
    891 			RF_Free(k_cfg, sizeof(RF_Config_t));
    892 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    893 				retcode));
    894 			return (retcode);
    895 		}
    896 		/* allocate a buffer for the layout-specific data, and copy it
    897 		 * in */
    898 		if (k_cfg->layoutSpecificSize) {
    899 			if (k_cfg->layoutSpecificSize > 10000) {
    900 				/* sanity check */
    901 				RF_Free(k_cfg, sizeof(RF_Config_t));
    902 				return (EINVAL);
    903 			}
    904 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    905 			    (u_char *));
    906 			if (specific_buf == NULL) {
    907 				RF_Free(k_cfg, sizeof(RF_Config_t));
    908 				return (ENOMEM);
    909 			}
    910 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    911 			    k_cfg->layoutSpecificSize);
    912 			if (retcode) {
    913 				RF_Free(k_cfg, sizeof(RF_Config_t));
    914 				RF_Free(specific_buf,
    915 					k_cfg->layoutSpecificSize);
    916 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    917 					retcode));
    918 				return (retcode);
    919 			}
    920 		} else
    921 			specific_buf = NULL;
    922 		k_cfg->layoutSpecific = specific_buf;
    923 
    924 		/* should do some kind of sanity check on the configuration.
    925 		 * Store the sum of all the bytes in the last byte? */
    926 
    927 		/* configure the system */
    928 
    929 		/*
    930 		 * Clear the entire RAID descriptor, just to make sure
    931 		 *  there is no stale data left in the case of a
    932 		 *  reconfiguration
    933 		 */
    934 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    935 		raidPtr->raidid = unit;
    936 
    937 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    938 
    939 		if (retcode == 0) {
    940 
    941 			/* allow this many simultaneous IO's to
    942 			   this RAID device */
    943 			raidPtr->openings = RAIDOUTSTANDING;
    944 
    945 			raidinit(raidPtr);
    946 			rf_markalldirty(raidPtr);
    947 		}
    948 		/* free the buffers.  No return code here. */
    949 		if (k_cfg->layoutSpecificSize) {
    950 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    951 		}
    952 		RF_Free(k_cfg, sizeof(RF_Config_t));
    953 
    954 		return (retcode);
    955 
    956 		/* shutdown the system */
    957 	case RAIDFRAME_SHUTDOWN:
    958 
    959 		if ((error = raidlock(rs)) != 0)
    960 			return (error);
    961 
    962 		/*
    963 		 * If somebody has a partition mounted, we shouldn't
    964 		 * shutdown.
    965 		 */
    966 
    967 		part = DISKPART(dev);
    968 		pmask = (1 << part);
    969 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    970 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    971 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    972 			raidunlock(rs);
    973 			return (EBUSY);
    974 		}
    975 
    976 		retcode = rf_Shutdown(raidPtr);
    977 
    978 		/* It's no longer initialized... */
    979 		rs->sc_flags &= ~RAIDF_INITED;
    980 
    981 		/* Detach the disk. */
    982 		disk_detach(&rs->sc_dkdev);
    983 
    984 		raidunlock(rs);
    985 
    986 		return (retcode);
    987 	case RAIDFRAME_GET_COMPONENT_LABEL:
    988 		clabel_ptr = (RF_ComponentLabel_t **) data;
    989 		/* need to read the component label for the disk indicated
    990 		   by row,column in clabel */
    991 
    992 		/* For practice, let's get it directly fromdisk, rather
    993 		   than from the in-core copy */
    994 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    995 			   (RF_ComponentLabel_t *));
    996 		if (clabel == NULL)
    997 			return (ENOMEM);
    998 
    999 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1000 
   1001 		retcode = copyin( *clabel_ptr, clabel,
   1002 				  sizeof(RF_ComponentLabel_t));
   1003 
   1004 		if (retcode) {
   1005 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1006 			return(retcode);
   1007 		}
   1008 
   1009 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1010 
   1011 		column = clabel->column;
   1012 
   1013 		if ((column < 0) || (column >= raidPtr->numCol +
   1014 				     raidPtr->numSpare)) {
   1015 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1016 			return(EINVAL);
   1017 		}
   1018 
   1019 		raidread_component_label(raidPtr->Disks[column].dev,
   1020 				raidPtr->raid_cinfo[column].ci_vp,
   1021 				clabel );
   1022 
   1023 		retcode = copyout(clabel, *clabel_ptr,
   1024 				  sizeof(RF_ComponentLabel_t));
   1025 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1026 		return (retcode);
   1027 
   1028 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1029 		clabel = (RF_ComponentLabel_t *) data;
   1030 
   1031 		/* XXX check the label for valid stuff... */
   1032 		/* Note that some things *should not* get modified --
   1033 		   the user should be re-initing the labels instead of
   1034 		   trying to patch things.
   1035 		   */
   1036 
   1037 		raidid = raidPtr->raidid;
   1038 #if DEBUG
   1039 		printf("raid%d: Got component label:\n", raidid);
   1040 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1041 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1042 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1043 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1044 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1045 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1046 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1047 #endif
   1048 		clabel->row = 0;
   1049 		column = clabel->column;
   1050 
   1051 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1052 			return(EINVAL);
   1053 		}
   1054 
   1055 		/* XXX this isn't allowed to do anything for now :-) */
   1056 
   1057 		/* XXX and before it is, we need to fill in the rest
   1058 		   of the fields!?!?!?! */
   1059 #if 0
   1060 		raidwrite_component_label(
   1061                             raidPtr->Disks[column].dev,
   1062 			    raidPtr->raid_cinfo[column].ci_vp,
   1063 			    clabel );
   1064 #endif
   1065 		return (0);
   1066 
   1067 	case RAIDFRAME_INIT_LABELS:
   1068 		clabel = (RF_ComponentLabel_t *) data;
   1069 		/*
   1070 		   we only want the serial number from
   1071 		   the above.  We get all the rest of the information
   1072 		   from the config that was used to create this RAID
   1073 		   set.
   1074 		   */
   1075 
   1076 		raidPtr->serial_number = clabel->serial_number;
   1077 
   1078 		raid_init_component_label(raidPtr, &ci_label);
   1079 		ci_label.serial_number = clabel->serial_number;
   1080 		ci_label.row = 0; /* we dont' pretend to support more */
   1081 
   1082 		for(column=0;column<raidPtr->numCol;column++) {
   1083 			diskPtr = &raidPtr->Disks[column];
   1084 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1085 				ci_label.partitionSize = diskPtr->partitionSize;
   1086 				ci_label.column = column;
   1087 				raidwrite_component_label(
   1088 							  raidPtr->Disks[column].dev,
   1089 							  raidPtr->raid_cinfo[column].ci_vp,
   1090 							  &ci_label );
   1091 			}
   1092 		}
   1093 
   1094 		return (retcode);
   1095 	case RAIDFRAME_SET_AUTOCONFIG:
   1096 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1097 		printf("raid%d: New autoconfig value is: %d\n",
   1098 		       raidPtr->raidid, d);
   1099 		*(int *) data = d;
   1100 		return (retcode);
   1101 
   1102 	case RAIDFRAME_SET_ROOT:
   1103 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1104 		printf("raid%d: New rootpartition value is: %d\n",
   1105 		       raidPtr->raidid, d);
   1106 		*(int *) data = d;
   1107 		return (retcode);
   1108 
   1109 		/* initialize all parity */
   1110 	case RAIDFRAME_REWRITEPARITY:
   1111 
   1112 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1113 			/* Parity for RAID 0 is trivially correct */
   1114 			raidPtr->parity_good = RF_RAID_CLEAN;
   1115 			return(0);
   1116 		}
   1117 
   1118 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1119 			/* Re-write is already in progress! */
   1120 			return(EINVAL);
   1121 		}
   1122 
   1123 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1124 					   rf_RewriteParityThread,
   1125 					   raidPtr,"raid_parity");
   1126 		return (retcode);
   1127 
   1128 
   1129 	case RAIDFRAME_ADD_HOT_SPARE:
   1130 		sparePtr = (RF_SingleComponent_t *) data;
   1131 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1132 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1133 		return(retcode);
   1134 
   1135 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1136 		return(retcode);
   1137 
   1138 	case RAIDFRAME_DELETE_COMPONENT:
   1139 		componentPtr = (RF_SingleComponent_t *)data;
   1140 		memcpy( &component, componentPtr,
   1141 			sizeof(RF_SingleComponent_t));
   1142 		retcode = rf_delete_component(raidPtr, &component);
   1143 		return(retcode);
   1144 
   1145 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1146 		componentPtr = (RF_SingleComponent_t *)data;
   1147 		memcpy( &component, componentPtr,
   1148 			sizeof(RF_SingleComponent_t));
   1149 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1150 		return(retcode);
   1151 
   1152 	case RAIDFRAME_REBUILD_IN_PLACE:
   1153 
   1154 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1155 			/* Can't do this on a RAID 0!! */
   1156 			return(EINVAL);
   1157 		}
   1158 
   1159 		if (raidPtr->recon_in_progress == 1) {
   1160 			/* a reconstruct is already in progress! */
   1161 			return(EINVAL);
   1162 		}
   1163 
   1164 		componentPtr = (RF_SingleComponent_t *) data;
   1165 		memcpy( &component, componentPtr,
   1166 			sizeof(RF_SingleComponent_t));
   1167 		component.row = 0; /* we don't support any more */
   1168 		column = component.column;
   1169 
   1170 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1171 			return(EINVAL);
   1172 		}
   1173 
   1174 		RF_LOCK_MUTEX(raidPtr->mutex);
   1175 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1176 		    (raidPtr->numFailures > 0)) {
   1177 			/* XXX 0 above shouldn't be constant!!! */
   1178 			/* some component other than this has failed.
   1179 			   Let's not make things worse than they already
   1180 			   are... */
   1181 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1182 			       raidPtr->raidid);
   1183 			printf("raid%d:     Col: %d   Too many failures.\n",
   1184 			       raidPtr->raidid, column);
   1185 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1186 			return (EINVAL);
   1187 		}
   1188 		if (raidPtr->Disks[column].status ==
   1189 		    rf_ds_reconstructing) {
   1190 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1191 			       raidPtr->raidid);
   1192 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1193 
   1194 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1195 			return (EINVAL);
   1196 		}
   1197 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1198 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1199 			return (EINVAL);
   1200 		}
   1201 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1202 
   1203 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1204 		if (rrcopy == NULL)
   1205 			return(ENOMEM);
   1206 
   1207 		rrcopy->raidPtr = (void *) raidPtr;
   1208 		rrcopy->col = column;
   1209 
   1210 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1211 					   rf_ReconstructInPlaceThread,
   1212 					   rrcopy,"raid_reconip");
   1213 		return(retcode);
   1214 
   1215 	case RAIDFRAME_GET_INFO:
   1216 		if (!raidPtr->valid)
   1217 			return (ENODEV);
   1218 		ucfgp = (RF_DeviceConfig_t **) data;
   1219 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1220 			  (RF_DeviceConfig_t *));
   1221 		if (d_cfg == NULL)
   1222 			return (ENOMEM);
   1223 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1224 		d_cfg->rows = 1; /* there is only 1 row now */
   1225 		d_cfg->cols = raidPtr->numCol;
   1226 		d_cfg->ndevs = raidPtr->numCol;
   1227 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1228 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1229 			return (ENOMEM);
   1230 		}
   1231 		d_cfg->nspares = raidPtr->numSpare;
   1232 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1233 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1234 			return (ENOMEM);
   1235 		}
   1236 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1237 		d = 0;
   1238 		for (j = 0; j < d_cfg->cols; j++) {
   1239 			d_cfg->devs[d] = raidPtr->Disks[j];
   1240 			d++;
   1241 		}
   1242 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1243 			d_cfg->spares[i] = raidPtr->Disks[j];
   1244 		}
   1245 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1246 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1247 
   1248 		return (retcode);
   1249 
   1250 	case RAIDFRAME_CHECK_PARITY:
   1251 		*(int *) data = raidPtr->parity_good;
   1252 		return (0);
   1253 
   1254 	case RAIDFRAME_RESET_ACCTOTALS:
   1255 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1256 		return (0);
   1257 
   1258 	case RAIDFRAME_GET_ACCTOTALS:
   1259 		totals = (RF_AccTotals_t *) data;
   1260 		*totals = raidPtr->acc_totals;
   1261 		return (0);
   1262 
   1263 	case RAIDFRAME_KEEP_ACCTOTALS:
   1264 		raidPtr->keep_acc_totals = *(int *)data;
   1265 		return (0);
   1266 
   1267 	case RAIDFRAME_GET_SIZE:
   1268 		*(int *) data = raidPtr->totalSectors;
   1269 		return (0);
   1270 
   1271 		/* fail a disk & optionally start reconstruction */
   1272 	case RAIDFRAME_FAIL_DISK:
   1273 
   1274 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1275 			/* Can't do this on a RAID 0!! */
   1276 			return(EINVAL);
   1277 		}
   1278 
   1279 		rr = (struct rf_recon_req *) data;
   1280 		rr->row = 0;
   1281 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1282 			return (EINVAL);
   1283 
   1284 
   1285 		RF_LOCK_MUTEX(raidPtr->mutex);
   1286 		if ((raidPtr->Disks[rr->col].status ==
   1287 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1288 			/* some other component has failed.  Let's not make
   1289 			   things worse. XXX wrong for RAID6 */
   1290 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1291 			return (EINVAL);
   1292 		}
   1293 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1294 			/* Can't fail a spared disk! */
   1295 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1296 			return (EINVAL);
   1297 		}
   1298 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1299 
   1300 		/* make a copy of the recon request so that we don't rely on
   1301 		 * the user's buffer */
   1302 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1303 		if (rrcopy == NULL)
   1304 			return(ENOMEM);
   1305 		memcpy(rrcopy, rr, sizeof(*rr));
   1306 		rrcopy->raidPtr = (void *) raidPtr;
   1307 
   1308 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1309 					   rf_ReconThread,
   1310 					   rrcopy,"raid_recon");
   1311 		return (0);
   1312 
   1313 		/* invoke a copyback operation after recon on whatever disk
   1314 		 * needs it, if any */
   1315 	case RAIDFRAME_COPYBACK:
   1316 
   1317 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1318 			/* This makes no sense on a RAID 0!! */
   1319 			return(EINVAL);
   1320 		}
   1321 
   1322 		if (raidPtr->copyback_in_progress == 1) {
   1323 			/* Copyback is already in progress! */
   1324 			return(EINVAL);
   1325 		}
   1326 
   1327 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1328 					   rf_CopybackThread,
   1329 					   raidPtr,"raid_copyback");
   1330 		return (retcode);
   1331 
   1332 		/* return the percentage completion of reconstruction */
   1333 	case RAIDFRAME_CHECK_RECON_STATUS:
   1334 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1335 			/* This makes no sense on a RAID 0, so tell the
   1336 			   user it's done. */
   1337 			*(int *) data = 100;
   1338 			return(0);
   1339 		}
   1340 		if (raidPtr->status != rf_rs_reconstructing)
   1341 			*(int *) data = 100;
   1342 		else {
   1343 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1344 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1345 			} else {
   1346 				*(int *) data = 0;
   1347 			}
   1348 		}
   1349 		return (0);
   1350 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1351 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1352 		if (raidPtr->status != rf_rs_reconstructing) {
   1353 			progressInfo.remaining = 0;
   1354 			progressInfo.completed = 100;
   1355 			progressInfo.total = 100;
   1356 		} else {
   1357 			progressInfo.total =
   1358 				raidPtr->reconControl->numRUsTotal;
   1359 			progressInfo.completed =
   1360 				raidPtr->reconControl->numRUsComplete;
   1361 			progressInfo.remaining = progressInfo.total -
   1362 				progressInfo.completed;
   1363 		}
   1364 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1365 				  sizeof(RF_ProgressInfo_t));
   1366 		return (retcode);
   1367 
   1368 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1369 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1370 			/* This makes no sense on a RAID 0, so tell the
   1371 			   user it's done. */
   1372 			*(int *) data = 100;
   1373 			return(0);
   1374 		}
   1375 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1376 			*(int *) data = 100 *
   1377 				raidPtr->parity_rewrite_stripes_done /
   1378 				raidPtr->Layout.numStripe;
   1379 		} else {
   1380 			*(int *) data = 100;
   1381 		}
   1382 		return (0);
   1383 
   1384 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1385 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1386 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1387 			progressInfo.total = raidPtr->Layout.numStripe;
   1388 			progressInfo.completed =
   1389 				raidPtr->parity_rewrite_stripes_done;
   1390 			progressInfo.remaining = progressInfo.total -
   1391 				progressInfo.completed;
   1392 		} else {
   1393 			progressInfo.remaining = 0;
   1394 			progressInfo.completed = 100;
   1395 			progressInfo.total = 100;
   1396 		}
   1397 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1398 				  sizeof(RF_ProgressInfo_t));
   1399 		return (retcode);
   1400 
   1401 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1402 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1403 			/* This makes no sense on a RAID 0 */
   1404 			*(int *) data = 100;
   1405 			return(0);
   1406 		}
   1407 		if (raidPtr->copyback_in_progress == 1) {
   1408 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1409 				raidPtr->Layout.numStripe;
   1410 		} else {
   1411 			*(int *) data = 100;
   1412 		}
   1413 		return (0);
   1414 
   1415 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1416 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1417 		if (raidPtr->copyback_in_progress == 1) {
   1418 			progressInfo.total = raidPtr->Layout.numStripe;
   1419 			progressInfo.completed =
   1420 				raidPtr->copyback_stripes_done;
   1421 			progressInfo.remaining = progressInfo.total -
   1422 				progressInfo.completed;
   1423 		} else {
   1424 			progressInfo.remaining = 0;
   1425 			progressInfo.completed = 100;
   1426 			progressInfo.total = 100;
   1427 		}
   1428 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1429 				  sizeof(RF_ProgressInfo_t));
   1430 		return (retcode);
   1431 
   1432 		/* the sparetable daemon calls this to wait for the kernel to
   1433 		 * need a spare table. this ioctl does not return until a
   1434 		 * spare table is needed. XXX -- calling mpsleep here in the
   1435 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1436 		 * -- I should either compute the spare table in the kernel,
   1437 		 * or have a different -- XXX XXX -- interface (a different
   1438 		 * character device) for delivering the table     -- XXX */
   1439 #if 0
   1440 	case RAIDFRAME_SPARET_WAIT:
   1441 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1442 		while (!rf_sparet_wait_queue)
   1443 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1444 		waitreq = rf_sparet_wait_queue;
   1445 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1446 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1447 
   1448 		/* structure assignment */
   1449 		*((RF_SparetWait_t *) data) = *waitreq;
   1450 
   1451 		RF_Free(waitreq, sizeof(*waitreq));
   1452 		return (0);
   1453 
   1454 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1455 		 * code in it that will cause the dameon to exit */
   1456 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1457 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1458 		waitreq->fcol = -1;
   1459 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1460 		waitreq->next = rf_sparet_wait_queue;
   1461 		rf_sparet_wait_queue = waitreq;
   1462 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1463 		wakeup(&rf_sparet_wait_queue);
   1464 		return (0);
   1465 
   1466 		/* used by the spare table daemon to deliver a spare table
   1467 		 * into the kernel */
   1468 	case RAIDFRAME_SEND_SPARET:
   1469 
   1470 		/* install the spare table */
   1471 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1472 
   1473 		/* respond to the requestor.  the return status of the spare
   1474 		 * table installation is passed in the "fcol" field */
   1475 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1476 		waitreq->fcol = retcode;
   1477 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1478 		waitreq->next = rf_sparet_resp_queue;
   1479 		rf_sparet_resp_queue = waitreq;
   1480 		wakeup(&rf_sparet_resp_queue);
   1481 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1482 
   1483 		return (retcode);
   1484 #endif
   1485 
   1486 	default:
   1487 		break; /* fall through to the os-specific code below */
   1488 
   1489 	}
   1490 
   1491 	if (!raidPtr->valid)
   1492 		return (EINVAL);
   1493 
   1494 	/*
   1495 	 * Add support for "regular" device ioctls here.
   1496 	 */
   1497 
   1498 	switch (cmd) {
   1499 	case DIOCGDINFO:
   1500 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1501 		break;
   1502 #ifdef __HAVE_OLD_DISKLABEL
   1503 	case ODIOCGDINFO:
   1504 		newlabel = *(rs->sc_dkdev.dk_label);
   1505 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1506 			return ENOTTY;
   1507 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1508 		break;
   1509 #endif
   1510 
   1511 	case DIOCGPART:
   1512 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1513 		((struct partinfo *) data)->part =
   1514 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1515 		break;
   1516 
   1517 	case DIOCWDINFO:
   1518 	case DIOCSDINFO:
   1519 #ifdef __HAVE_OLD_DISKLABEL
   1520 	case ODIOCWDINFO:
   1521 	case ODIOCSDINFO:
   1522 #endif
   1523 	{
   1524 		struct disklabel *lp;
   1525 #ifdef __HAVE_OLD_DISKLABEL
   1526 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1527 			memset(&newlabel, 0, sizeof newlabel);
   1528 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1529 			lp = &newlabel;
   1530 		} else
   1531 #endif
   1532 		lp = (struct disklabel *)data;
   1533 
   1534 		if ((error = raidlock(rs)) != 0)
   1535 			return (error);
   1536 
   1537 		rs->sc_flags |= RAIDF_LABELLING;
   1538 
   1539 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1540 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1541 		if (error == 0) {
   1542 			if (cmd == DIOCWDINFO
   1543 #ifdef __HAVE_OLD_DISKLABEL
   1544 			    || cmd == ODIOCWDINFO
   1545 #endif
   1546 			   )
   1547 				error = writedisklabel(RAIDLABELDEV(dev),
   1548 				    raidstrategy, rs->sc_dkdev.dk_label,
   1549 				    rs->sc_dkdev.dk_cpulabel);
   1550 		}
   1551 		rs->sc_flags &= ~RAIDF_LABELLING;
   1552 
   1553 		raidunlock(rs);
   1554 
   1555 		if (error)
   1556 			return (error);
   1557 		break;
   1558 	}
   1559 
   1560 	case DIOCWLABEL:
   1561 		if (*(int *) data != 0)
   1562 			rs->sc_flags |= RAIDF_WLABEL;
   1563 		else
   1564 			rs->sc_flags &= ~RAIDF_WLABEL;
   1565 		break;
   1566 
   1567 	case DIOCGDEFLABEL:
   1568 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1569 		break;
   1570 
   1571 #ifdef __HAVE_OLD_DISKLABEL
   1572 	case ODIOCGDEFLABEL:
   1573 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1574 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1575 			return ENOTTY;
   1576 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1577 		break;
   1578 #endif
   1579 
   1580 	default:
   1581 		retcode = ENOTTY;
   1582 	}
   1583 	return (retcode);
   1584 
   1585 }
   1586 
   1587 
   1588 /* raidinit -- complete the rest of the initialization for the
   1589    RAIDframe device.  */
   1590 
   1591 
   1592 static void
   1593 raidinit(RF_Raid_t *raidPtr)
   1594 {
   1595 	struct raid_softc *rs;
   1596 	int     unit;
   1597 
   1598 	unit = raidPtr->raidid;
   1599 
   1600 	rs = &raid_softc[unit];
   1601 
   1602 	/* XXX should check return code first... */
   1603 	rs->sc_flags |= RAIDF_INITED;
   1604 
   1605 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1606 
   1607 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1608 
   1609 	/* disk_attach actually creates space for the CPU disklabel, among
   1610 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1611 	 * with disklabels. */
   1612 
   1613 	disk_attach(&rs->sc_dkdev);
   1614 
   1615 	/* XXX There may be a weird interaction here between this, and
   1616 	 * protectedSectors, as used in RAIDframe.  */
   1617 
   1618 	rs->sc_size = raidPtr->totalSectors;
   1619 }
   1620 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1621 /* wake up the daemon & tell it to get us a spare table
   1622  * XXX
   1623  * the entries in the queues should be tagged with the raidPtr
   1624  * so that in the extremely rare case that two recons happen at once,
   1625  * we know for which device were requesting a spare table
   1626  * XXX
   1627  *
   1628  * XXX This code is not currently used. GO
   1629  */
   1630 int
   1631 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1632 {
   1633 	int     retcode;
   1634 
   1635 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1636 	req->next = rf_sparet_wait_queue;
   1637 	rf_sparet_wait_queue = req;
   1638 	wakeup(&rf_sparet_wait_queue);
   1639 
   1640 	/* mpsleep unlocks the mutex */
   1641 	while (!rf_sparet_resp_queue) {
   1642 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1643 		    "raidframe getsparetable", 0);
   1644 	}
   1645 	req = rf_sparet_resp_queue;
   1646 	rf_sparet_resp_queue = req->next;
   1647 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1648 
   1649 	retcode = req->fcol;
   1650 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1651 					 * alloc'd */
   1652 	return (retcode);
   1653 }
   1654 #endif
   1655 
   1656 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1657  * bp & passes it down.
   1658  * any calls originating in the kernel must use non-blocking I/O
   1659  * do some extra sanity checking to return "appropriate" error values for
   1660  * certain conditions (to make some standard utilities work)
   1661  *
   1662  * Formerly known as: rf_DoAccessKernel
   1663  */
   1664 void
   1665 raidstart(RF_Raid_t *raidPtr)
   1666 {
   1667 	RF_SectorCount_t num_blocks, pb, sum;
   1668 	RF_RaidAddr_t raid_addr;
   1669 	struct partition *pp;
   1670 	daddr_t blocknum;
   1671 	int     unit;
   1672 	struct raid_softc *rs;
   1673 	int     do_async;
   1674 	struct buf *bp;
   1675 	int rc;
   1676 
   1677 	unit = raidPtr->raidid;
   1678 	rs = &raid_softc[unit];
   1679 
   1680 	/* quick check to see if anything has died recently */
   1681 	RF_LOCK_MUTEX(raidPtr->mutex);
   1682 	if (raidPtr->numNewFailures > 0) {
   1683 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1684 		rf_update_component_labels(raidPtr,
   1685 					   RF_NORMAL_COMPONENT_UPDATE);
   1686 		RF_LOCK_MUTEX(raidPtr->mutex);
   1687 		raidPtr->numNewFailures--;
   1688 	}
   1689 
   1690 	/* Check to see if we're at the limit... */
   1691 	while (raidPtr->openings > 0) {
   1692 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1693 
   1694 		/* get the next item, if any, from the queue */
   1695 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1696 			/* nothing more to do */
   1697 			return;
   1698 		}
   1699 
   1700 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1701 		 * partition.. Need to make it absolute to the underlying
   1702 		 * device.. */
   1703 
   1704 		blocknum = bp->b_blkno;
   1705 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1706 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1707 			blocknum += pp->p_offset;
   1708 		}
   1709 
   1710 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1711 			    (int) blocknum));
   1712 
   1713 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1714 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1715 
   1716 		/* *THIS* is where we adjust what block we're going to...
   1717 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1718 		raid_addr = blocknum;
   1719 
   1720 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1721 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1722 		sum = raid_addr + num_blocks + pb;
   1723 		if (1 || rf_debugKernelAccess) {
   1724 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1725 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1726 				    (int) pb, (int) bp->b_resid));
   1727 		}
   1728 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1729 		    || (sum < num_blocks) || (sum < pb)) {
   1730 			bp->b_error = ENOSPC;
   1731 			bp->b_flags |= B_ERROR;
   1732 			bp->b_resid = bp->b_bcount;
   1733 			biodone(bp);
   1734 			RF_LOCK_MUTEX(raidPtr->mutex);
   1735 			continue;
   1736 		}
   1737 		/*
   1738 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1739 		 */
   1740 
   1741 		if (bp->b_bcount & raidPtr->sectorMask) {
   1742 			bp->b_error = EINVAL;
   1743 			bp->b_flags |= B_ERROR;
   1744 			bp->b_resid = bp->b_bcount;
   1745 			biodone(bp);
   1746 			RF_LOCK_MUTEX(raidPtr->mutex);
   1747 			continue;
   1748 
   1749 		}
   1750 		db1_printf(("Calling DoAccess..\n"));
   1751 
   1752 
   1753 		RF_LOCK_MUTEX(raidPtr->mutex);
   1754 		raidPtr->openings--;
   1755 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1756 
   1757 		/*
   1758 		 * Everything is async.
   1759 		 */
   1760 		do_async = 1;
   1761 
   1762 		disk_busy(&rs->sc_dkdev);
   1763 
   1764 		/* XXX we're still at splbio() here... do we *really*
   1765 		   need to be? */
   1766 
   1767 		/* don't ever condition on bp->b_flags & B_WRITE.
   1768 		 * always condition on B_READ instead */
   1769 
   1770 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1771 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1772 				 do_async, raid_addr, num_blocks,
   1773 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1774 
   1775 		if (rc) {
   1776 			bp->b_error = rc;
   1777 			bp->b_flags |= B_ERROR;
   1778 			bp->b_resid = bp->b_bcount;
   1779 			biodone(bp);
   1780 			/* continue loop */
   1781 		}
   1782 
   1783 		RF_LOCK_MUTEX(raidPtr->mutex);
   1784 	}
   1785 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1786 }
   1787 
   1788 
   1789 
   1790 
   1791 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1792 
   1793 int
   1794 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1795 {
   1796 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1797 	struct buf *bp;
   1798 	struct raidbuf *raidbp = NULL;
   1799 
   1800 	req->queue = queue;
   1801 
   1802 #if DIAGNOSTIC
   1803 	if (queue->raidPtr->raidid >= numraid) {
   1804 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1805 		    numraid);
   1806 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1807 	}
   1808 #endif
   1809 
   1810 	bp = req->bp;
   1811 #if 1
   1812 	/* XXX when there is a physical disk failure, someone is passing us a
   1813 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1814 	 * without taking a performance hit... (not sure where the real bug
   1815 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1816 
   1817 	if (bp->b_flags & B_ERROR) {
   1818 		bp->b_flags &= ~B_ERROR;
   1819 	}
   1820 	if (bp->b_error != 0) {
   1821 		bp->b_error = 0;
   1822 	}
   1823 #endif
   1824 	raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
   1825 	if (raidbp == NULL) {
   1826 		bp->b_flags |= B_ERROR;
   1827 		bp->b_error = ENOMEM;
   1828 		return (ENOMEM);
   1829 	}
   1830 	BUF_INIT(&raidbp->rf_buf);
   1831 
   1832 	/*
   1833 	 * context for raidiodone
   1834 	 */
   1835 	raidbp->rf_obp = bp;
   1836 	raidbp->req = req;
   1837 
   1838 	BIO_COPYPRIO(&raidbp->rf_buf, bp);
   1839 
   1840 	switch (req->type) {
   1841 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1842 		/* XXX need to do something extra here.. */
   1843 		/* I'm leaving this in, as I've never actually seen it used,
   1844 		 * and I'd like folks to report it... GO */
   1845 		printf(("WAKEUP CALLED\n"));
   1846 		queue->numOutstanding++;
   1847 
   1848 		/* XXX need to glue the original buffer into this??  */
   1849 
   1850 		KernelWakeupFunc(&raidbp->rf_buf);
   1851 		break;
   1852 
   1853 	case RF_IO_TYPE_READ:
   1854 	case RF_IO_TYPE_WRITE:
   1855 #if RF_ACC_TRACE > 0
   1856 		if (req->tracerec) {
   1857 			RF_ETIMER_START(req->tracerec->timer);
   1858 		}
   1859 #endif
   1860 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1861 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1862 		    req->sectorOffset, req->numSector,
   1863 		    req->buf, KernelWakeupFunc, (void *) req,
   1864 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1865 
   1866 		if (rf_debugKernelAccess) {
   1867 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1868 				(long) bp->b_blkno));
   1869 		}
   1870 		queue->numOutstanding++;
   1871 		queue->last_deq_sector = req->sectorOffset;
   1872 		/* acc wouldn't have been let in if there were any pending
   1873 		 * reqs at any other priority */
   1874 		queue->curPriority = req->priority;
   1875 
   1876 		db1_printf(("Going for %c to unit %d col %d\n",
   1877 			    req->type, queue->raidPtr->raidid,
   1878 			    queue->col));
   1879 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1880 			(int) req->sectorOffset, (int) req->numSector,
   1881 			(int) (req->numSector <<
   1882 			    queue->raidPtr->logBytesPerSector),
   1883 			(int) queue->raidPtr->logBytesPerSector));
   1884 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1885 			raidbp->rf_buf.b_vp->v_numoutput++;
   1886 		}
   1887 		VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
   1888 
   1889 		break;
   1890 
   1891 	default:
   1892 		panic("bad req->type in rf_DispatchKernelIO");
   1893 	}
   1894 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1895 
   1896 	return (0);
   1897 }
   1898 /* this is the callback function associated with a I/O invoked from
   1899    kernel code.
   1900  */
   1901 static void
   1902 KernelWakeupFunc(struct buf *vbp)
   1903 {
   1904 	RF_DiskQueueData_t *req = NULL;
   1905 	RF_DiskQueue_t *queue;
   1906 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1907 	struct buf *bp;
   1908 	int s;
   1909 
   1910 	s = splbio();
   1911 	db1_printf(("recovering the request queue:\n"));
   1912 	req = raidbp->req;
   1913 
   1914 	bp = raidbp->rf_obp;
   1915 
   1916 	queue = (RF_DiskQueue_t *) req->queue;
   1917 
   1918 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1919 		bp->b_flags |= B_ERROR;
   1920 		bp->b_error = raidbp->rf_buf.b_error ?
   1921 		    raidbp->rf_buf.b_error : EIO;
   1922 	}
   1923 
   1924 	/* XXX methinks this could be wrong... */
   1925 #if 1
   1926 	bp->b_resid = raidbp->rf_buf.b_resid;
   1927 #endif
   1928 #if RF_ACC_TRACE > 0
   1929 	if (req->tracerec) {
   1930 		RF_ETIMER_STOP(req->tracerec->timer);
   1931 		RF_ETIMER_EVAL(req->tracerec->timer);
   1932 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1933 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1934 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1935 		req->tracerec->num_phys_ios++;
   1936 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1937 	}
   1938 #endif
   1939 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1940 
   1941 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1942 	 * ballistic, and mark the component as hosed... */
   1943 
   1944 	if (bp->b_flags & B_ERROR) {
   1945 		/* Mark the disk as dead */
   1946 		/* but only mark it once... */
   1947 		if (queue->raidPtr->Disks[queue->col].status ==
   1948 		    rf_ds_optimal) {
   1949 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1950 			       queue->raidPtr->raidid,
   1951 			       queue->raidPtr->Disks[queue->col].devname);
   1952 			queue->raidPtr->Disks[queue->col].status =
   1953 			    rf_ds_failed;
   1954 			queue->raidPtr->status = rf_rs_degraded;
   1955 			queue->raidPtr->numFailures++;
   1956 			queue->raidPtr->numNewFailures++;
   1957 		} else {	/* Disk is already dead... */
   1958 			/* printf("Disk already marked as dead!\n"); */
   1959 		}
   1960 
   1961 	}
   1962 
   1963 	pool_put(&rf_pools.cbuf, raidbp);
   1964 
   1965 	/* Fill in the error value */
   1966 
   1967 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1968 
   1969 	simple_lock(&queue->raidPtr->iodone_lock);
   1970 
   1971 	/* Drop this one on the "finished" queue... */
   1972 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1973 
   1974 	/* Let the raidio thread know there is work to be done. */
   1975 	wakeup(&(queue->raidPtr->iodone));
   1976 
   1977 	simple_unlock(&queue->raidPtr->iodone_lock);
   1978 
   1979 	splx(s);
   1980 }
   1981 
   1982 
   1983 
   1984 /*
   1985  * initialize a buf structure for doing an I/O in the kernel.
   1986  */
   1987 static void
   1988 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   1989        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
   1990        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   1991        struct proc *b_proc)
   1992 {
   1993 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1994 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1995 	bp->b_bcount = numSect << logBytesPerSector;
   1996 	bp->b_bufsize = bp->b_bcount;
   1997 	bp->b_error = 0;
   1998 	bp->b_dev = dev;
   1999 	bp->b_data = buf;
   2000 	bp->b_blkno = startSect;
   2001 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2002 	if (bp->b_bcount == 0) {
   2003 		panic("bp->b_bcount is zero in InitBP!!");
   2004 	}
   2005 	bp->b_proc = b_proc;
   2006 	bp->b_iodone = cbFunc;
   2007 	bp->b_vp = b_vp;
   2008 
   2009 }
   2010 
   2011 static void
   2012 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2013 		    struct disklabel *lp)
   2014 {
   2015 	memset(lp, 0, sizeof(*lp));
   2016 
   2017 	/* fabricate a label... */
   2018 	lp->d_secperunit = raidPtr->totalSectors;
   2019 	lp->d_secsize = raidPtr->bytesPerSector;
   2020 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2021 	lp->d_ntracks = 4 * raidPtr->numCol;
   2022 	lp->d_ncylinders = raidPtr->totalSectors /
   2023 		(lp->d_nsectors * lp->d_ntracks);
   2024 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2025 
   2026 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2027 	lp->d_type = DTYPE_RAID;
   2028 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2029 	lp->d_rpm = 3600;
   2030 	lp->d_interleave = 1;
   2031 	lp->d_flags = 0;
   2032 
   2033 	lp->d_partitions[RAW_PART].p_offset = 0;
   2034 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2035 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2036 	lp->d_npartitions = RAW_PART + 1;
   2037 
   2038 	lp->d_magic = DISKMAGIC;
   2039 	lp->d_magic2 = DISKMAGIC;
   2040 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2041 
   2042 }
   2043 /*
   2044  * Read the disklabel from the raid device.  If one is not present, fake one
   2045  * up.
   2046  */
   2047 static void
   2048 raidgetdisklabel(dev_t dev)
   2049 {
   2050 	int     unit = raidunit(dev);
   2051 	struct raid_softc *rs = &raid_softc[unit];
   2052 	const char   *errstring;
   2053 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2054 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2055 	RF_Raid_t *raidPtr;
   2056 
   2057 	db1_printf(("Getting the disklabel...\n"));
   2058 
   2059 	memset(clp, 0, sizeof(*clp));
   2060 
   2061 	raidPtr = raidPtrs[unit];
   2062 
   2063 	raidgetdefaultlabel(raidPtr, rs, lp);
   2064 
   2065 	/*
   2066 	 * Call the generic disklabel extraction routine.
   2067 	 */
   2068 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2069 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2070 	if (errstring)
   2071 		raidmakedisklabel(rs);
   2072 	else {
   2073 		int     i;
   2074 		struct partition *pp;
   2075 
   2076 		/*
   2077 		 * Sanity check whether the found disklabel is valid.
   2078 		 *
   2079 		 * This is necessary since total size of the raid device
   2080 		 * may vary when an interleave is changed even though exactly
   2081 		 * same componets are used, and old disklabel may used
   2082 		 * if that is found.
   2083 		 */
   2084 		if (lp->d_secperunit != rs->sc_size)
   2085 			printf("raid%d: WARNING: %s: "
   2086 			    "total sector size in disklabel (%d) != "
   2087 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2088 			    lp->d_secperunit, (long) rs->sc_size);
   2089 		for (i = 0; i < lp->d_npartitions; i++) {
   2090 			pp = &lp->d_partitions[i];
   2091 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2092 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2093 				       "exceeds the size of raid (%ld)\n",
   2094 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2095 		}
   2096 	}
   2097 
   2098 }
   2099 /*
   2100  * Take care of things one might want to take care of in the event
   2101  * that a disklabel isn't present.
   2102  */
   2103 static void
   2104 raidmakedisklabel(struct raid_softc *rs)
   2105 {
   2106 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2107 	db1_printf(("Making a label..\n"));
   2108 
   2109 	/*
   2110 	 * For historical reasons, if there's no disklabel present
   2111 	 * the raw partition must be marked FS_BSDFFS.
   2112 	 */
   2113 
   2114 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2115 
   2116 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2117 
   2118 	lp->d_checksum = dkcksum(lp);
   2119 }
   2120 /*
   2121  * Lookup the provided name in the filesystem.  If the file exists,
   2122  * is a valid block device, and isn't being used by anyone else,
   2123  * set *vpp to the file's vnode.
   2124  * You'll find the original of this in ccd.c
   2125  */
   2126 int
   2127 raidlookup(char *path, struct proc *p, struct vnode **vpp)
   2128 {
   2129 	struct nameidata nd;
   2130 	struct vnode *vp;
   2131 	struct vattr va;
   2132 	int     error;
   2133 
   2134 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2135 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2136 		return (error);
   2137 	}
   2138 	vp = nd.ni_vp;
   2139 	if (vp->v_usecount > 1) {
   2140 		VOP_UNLOCK(vp, 0);
   2141 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2142 		return (EBUSY);
   2143 	}
   2144 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2145 		VOP_UNLOCK(vp, 0);
   2146 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2147 		return (error);
   2148 	}
   2149 	/* XXX: eventually we should handle VREG, too. */
   2150 	if (va.va_type != VBLK) {
   2151 		VOP_UNLOCK(vp, 0);
   2152 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2153 		return (ENOTBLK);
   2154 	}
   2155 	VOP_UNLOCK(vp, 0);
   2156 	*vpp = vp;
   2157 	return (0);
   2158 }
   2159 /*
   2160  * Wait interruptibly for an exclusive lock.
   2161  *
   2162  * XXX
   2163  * Several drivers do this; it should be abstracted and made MP-safe.
   2164  * (Hmm... where have we seen this warning before :->  GO )
   2165  */
   2166 static int
   2167 raidlock(struct raid_softc *rs)
   2168 {
   2169 	int     error;
   2170 
   2171 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2172 		rs->sc_flags |= RAIDF_WANTED;
   2173 		if ((error =
   2174 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2175 			return (error);
   2176 	}
   2177 	rs->sc_flags |= RAIDF_LOCKED;
   2178 	return (0);
   2179 }
   2180 /*
   2181  * Unlock and wake up any waiters.
   2182  */
   2183 static void
   2184 raidunlock(struct raid_softc *rs)
   2185 {
   2186 
   2187 	rs->sc_flags &= ~RAIDF_LOCKED;
   2188 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2189 		rs->sc_flags &= ~RAIDF_WANTED;
   2190 		wakeup(rs);
   2191 	}
   2192 }
   2193 
   2194 
   2195 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2196 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2197 
   2198 int
   2199 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2200 {
   2201 	RF_ComponentLabel_t clabel;
   2202 	raidread_component_label(dev, b_vp, &clabel);
   2203 	clabel.mod_counter = mod_counter;
   2204 	clabel.clean = RF_RAID_CLEAN;
   2205 	raidwrite_component_label(dev, b_vp, &clabel);
   2206 	return(0);
   2207 }
   2208 
   2209 
   2210 int
   2211 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2212 {
   2213 	RF_ComponentLabel_t clabel;
   2214 	raidread_component_label(dev, b_vp, &clabel);
   2215 	clabel.mod_counter = mod_counter;
   2216 	clabel.clean = RF_RAID_DIRTY;
   2217 	raidwrite_component_label(dev, b_vp, &clabel);
   2218 	return(0);
   2219 }
   2220 
   2221 /* ARGSUSED */
   2222 int
   2223 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2224 			 RF_ComponentLabel_t *clabel)
   2225 {
   2226 	struct buf *bp;
   2227 	const struct bdevsw *bdev;
   2228 	int error;
   2229 
   2230 	/* XXX should probably ensure that we don't try to do this if
   2231 	   someone has changed rf_protected_sectors. */
   2232 
   2233 	if (b_vp == NULL) {
   2234 		/* For whatever reason, this component is not valid.
   2235 		   Don't try to read a component label from it. */
   2236 		return(EINVAL);
   2237 	}
   2238 
   2239 	/* get a block of the appropriate size... */
   2240 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2241 	bp->b_dev = dev;
   2242 
   2243 	/* get our ducks in a row for the read */
   2244 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2245 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2246 	bp->b_flags |= B_READ;
   2247  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2248 
   2249 	bdev = bdevsw_lookup(bp->b_dev);
   2250 	if (bdev == NULL)
   2251 		return (ENXIO);
   2252 	(*bdev->d_strategy)(bp);
   2253 
   2254 	error = biowait(bp);
   2255 
   2256 	if (!error) {
   2257 		memcpy(clabel, bp->b_data,
   2258 		       sizeof(RF_ComponentLabel_t));
   2259         }
   2260 
   2261 	brelse(bp);
   2262 	return(error);
   2263 }
   2264 /* ARGSUSED */
   2265 int
   2266 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2267 			  RF_ComponentLabel_t *clabel)
   2268 {
   2269 	struct buf *bp;
   2270 	const struct bdevsw *bdev;
   2271 	int error;
   2272 
   2273 	/* get a block of the appropriate size... */
   2274 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2275 	bp->b_dev = dev;
   2276 
   2277 	/* get our ducks in a row for the write */
   2278 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2279 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2280 	bp->b_flags |= B_WRITE;
   2281  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2282 
   2283 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2284 
   2285 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2286 
   2287 	bdev = bdevsw_lookup(bp->b_dev);
   2288 	if (bdev == NULL)
   2289 		return (ENXIO);
   2290 	(*bdev->d_strategy)(bp);
   2291 	error = biowait(bp);
   2292 	brelse(bp);
   2293 	if (error) {
   2294 #if 1
   2295 		printf("Failed to write RAID component info!\n");
   2296 #endif
   2297 	}
   2298 
   2299 	return(error);
   2300 }
   2301 
   2302 void
   2303 rf_markalldirty(RF_Raid_t *raidPtr)
   2304 {
   2305 	RF_ComponentLabel_t clabel;
   2306 	int sparecol;
   2307 	int c;
   2308 	int j;
   2309 	int scol = -1;
   2310 
   2311 	raidPtr->mod_counter++;
   2312 	for (c = 0; c < raidPtr->numCol; c++) {
   2313 		/* we don't want to touch (at all) a disk that has
   2314 		   failed */
   2315 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2316 			raidread_component_label(
   2317 						 raidPtr->Disks[c].dev,
   2318 						 raidPtr->raid_cinfo[c].ci_vp,
   2319 						 &clabel);
   2320 			if (clabel.status == rf_ds_spared) {
   2321 				/* XXX do something special...
   2322 				   but whatever you do, don't
   2323 				   try to access it!! */
   2324 			} else {
   2325 				raidmarkdirty(
   2326 					      raidPtr->Disks[c].dev,
   2327 					      raidPtr->raid_cinfo[c].ci_vp,
   2328 					      raidPtr->mod_counter);
   2329 			}
   2330 		}
   2331 	}
   2332 
   2333 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2334 		sparecol = raidPtr->numCol + c;
   2335 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2336 			/*
   2337 
   2338 			   we claim this disk is "optimal" if it's
   2339 			   rf_ds_used_spare, as that means it should be
   2340 			   directly substitutable for the disk it replaced.
   2341 			   We note that too...
   2342 
   2343 			 */
   2344 
   2345 			for(j=0;j<raidPtr->numCol;j++) {
   2346 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2347 					scol = j;
   2348 					break;
   2349 				}
   2350 			}
   2351 
   2352 			raidread_component_label(
   2353 				 raidPtr->Disks[sparecol].dev,
   2354 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2355 				 &clabel);
   2356 			/* make sure status is noted */
   2357 
   2358 			raid_init_component_label(raidPtr, &clabel);
   2359 
   2360 			clabel.row = 0;
   2361 			clabel.column = scol;
   2362 			/* Note: we *don't* change status from rf_ds_used_spare
   2363 			   to rf_ds_optimal */
   2364 			/* clabel.status = rf_ds_optimal; */
   2365 
   2366 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2367 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2368 				      raidPtr->mod_counter);
   2369 		}
   2370 	}
   2371 }
   2372 
   2373 
   2374 void
   2375 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2376 {
   2377 	RF_ComponentLabel_t clabel;
   2378 	int sparecol;
   2379 	int c;
   2380 	int j;
   2381 	int scol;
   2382 
   2383 	scol = -1;
   2384 
   2385 	/* XXX should do extra checks to make sure things really are clean,
   2386 	   rather than blindly setting the clean bit... */
   2387 
   2388 	raidPtr->mod_counter++;
   2389 
   2390 	for (c = 0; c < raidPtr->numCol; c++) {
   2391 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2392 			raidread_component_label(
   2393 						 raidPtr->Disks[c].dev,
   2394 						 raidPtr->raid_cinfo[c].ci_vp,
   2395 						 &clabel);
   2396 				/* make sure status is noted */
   2397 			clabel.status = rf_ds_optimal;
   2398 				/* bump the counter */
   2399 			clabel.mod_counter = raidPtr->mod_counter;
   2400 
   2401 			raidwrite_component_label(
   2402 						  raidPtr->Disks[c].dev,
   2403 						  raidPtr->raid_cinfo[c].ci_vp,
   2404 						  &clabel);
   2405 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2406 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2407 					raidmarkclean(
   2408 						      raidPtr->Disks[c].dev,
   2409 						      raidPtr->raid_cinfo[c].ci_vp,
   2410 						      raidPtr->mod_counter);
   2411 				}
   2412 			}
   2413 		}
   2414 		/* else we don't touch it.. */
   2415 	}
   2416 
   2417 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2418 		sparecol = raidPtr->numCol + c;
   2419 		/* Need to ensure that the reconstruct actually completed! */
   2420 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2421 			/*
   2422 
   2423 			   we claim this disk is "optimal" if it's
   2424 			   rf_ds_used_spare, as that means it should be
   2425 			   directly substitutable for the disk it replaced.
   2426 			   We note that too...
   2427 
   2428 			 */
   2429 
   2430 			for(j=0;j<raidPtr->numCol;j++) {
   2431 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2432 					scol = j;
   2433 					break;
   2434 				}
   2435 			}
   2436 
   2437 			/* XXX shouldn't *really* need this... */
   2438 			raidread_component_label(
   2439 				      raidPtr->Disks[sparecol].dev,
   2440 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2441 				      &clabel);
   2442 			/* make sure status is noted */
   2443 
   2444 			raid_init_component_label(raidPtr, &clabel);
   2445 
   2446 			clabel.mod_counter = raidPtr->mod_counter;
   2447 			clabel.column = scol;
   2448 			clabel.status = rf_ds_optimal;
   2449 
   2450 			raidwrite_component_label(
   2451 				      raidPtr->Disks[sparecol].dev,
   2452 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2453 				      &clabel);
   2454 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2455 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2456 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2457 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2458 						       raidPtr->mod_counter);
   2459 				}
   2460 			}
   2461 		}
   2462 	}
   2463 }
   2464 
   2465 void
   2466 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2467 {
   2468 	struct proc *p;
   2469 
   2470 	p = raidPtr->engine_thread;
   2471 
   2472 	if (vp != NULL) {
   2473 		if (auto_configured == 1) {
   2474 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2475 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2476 			vput(vp);
   2477 
   2478 		} else {
   2479 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2480 		}
   2481 	}
   2482 }
   2483 
   2484 
   2485 void
   2486 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2487 {
   2488 	int r,c;
   2489 	struct vnode *vp;
   2490 	int acd;
   2491 
   2492 
   2493 	/* We take this opportunity to close the vnodes like we should.. */
   2494 
   2495 	for (c = 0; c < raidPtr->numCol; c++) {
   2496 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2497 		acd = raidPtr->Disks[c].auto_configured;
   2498 		rf_close_component(raidPtr, vp, acd);
   2499 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2500 		raidPtr->Disks[c].auto_configured = 0;
   2501 	}
   2502 
   2503 	for (r = 0; r < raidPtr->numSpare; r++) {
   2504 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2505 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2506 		rf_close_component(raidPtr, vp, acd);
   2507 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2508 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2509 	}
   2510 }
   2511 
   2512 
   2513 void
   2514 rf_ReconThread(struct rf_recon_req *req)
   2515 {
   2516 	int     s;
   2517 	RF_Raid_t *raidPtr;
   2518 
   2519 	s = splbio();
   2520 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2521 	raidPtr->recon_in_progress = 1;
   2522 
   2523 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2524 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2525 
   2526 	RF_Free(req, sizeof(*req));
   2527 
   2528 	raidPtr->recon_in_progress = 0;
   2529 	splx(s);
   2530 
   2531 	/* That's all... */
   2532 	kthread_exit(0);        /* does not return */
   2533 }
   2534 
   2535 void
   2536 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2537 {
   2538 	int retcode;
   2539 	int s;
   2540 
   2541 	raidPtr->parity_rewrite_in_progress = 1;
   2542 	s = splbio();
   2543 	retcode = rf_RewriteParity(raidPtr);
   2544 	splx(s);
   2545 	if (retcode) {
   2546 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2547 	} else {
   2548 		/* set the clean bit!  If we shutdown correctly,
   2549 		   the clean bit on each component label will get
   2550 		   set */
   2551 		raidPtr->parity_good = RF_RAID_CLEAN;
   2552 	}
   2553 	raidPtr->parity_rewrite_in_progress = 0;
   2554 
   2555 	/* Anyone waiting for us to stop?  If so, inform them... */
   2556 	if (raidPtr->waitShutdown) {
   2557 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2558 	}
   2559 
   2560 	/* That's all... */
   2561 	kthread_exit(0);        /* does not return */
   2562 }
   2563 
   2564 
   2565 void
   2566 rf_CopybackThread(RF_Raid_t *raidPtr)
   2567 {
   2568 	int s;
   2569 
   2570 	raidPtr->copyback_in_progress = 1;
   2571 	s = splbio();
   2572 	rf_CopybackReconstructedData(raidPtr);
   2573 	splx(s);
   2574 	raidPtr->copyback_in_progress = 0;
   2575 
   2576 	/* That's all... */
   2577 	kthread_exit(0);        /* does not return */
   2578 }
   2579 
   2580 
   2581 void
   2582 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2583 {
   2584 	int s;
   2585 	RF_Raid_t *raidPtr;
   2586 
   2587 	s = splbio();
   2588 	raidPtr = req->raidPtr;
   2589 	raidPtr->recon_in_progress = 1;
   2590 	rf_ReconstructInPlace(raidPtr, req->col);
   2591 	RF_Free(req, sizeof(*req));
   2592 	raidPtr->recon_in_progress = 0;
   2593 	splx(s);
   2594 
   2595 	/* That's all... */
   2596 	kthread_exit(0);        /* does not return */
   2597 }
   2598 
   2599 RF_AutoConfig_t *
   2600 rf_find_raid_components()
   2601 {
   2602 	struct vnode *vp;
   2603 	struct disklabel label;
   2604 	struct device *dv;
   2605 	dev_t dev;
   2606 	int bmajor;
   2607 	int error;
   2608 	int i;
   2609 	int good_one;
   2610 	RF_ComponentLabel_t *clabel;
   2611 	RF_AutoConfig_t *ac_list;
   2612 	RF_AutoConfig_t *ac;
   2613 
   2614 
   2615 	/* initialize the AutoConfig list */
   2616 	ac_list = NULL;
   2617 
   2618 	/* we begin by trolling through *all* the devices on the system */
   2619 
   2620 	for (dv = alldevs.tqh_first; dv != NULL;
   2621 	     dv = dv->dv_list.tqe_next) {
   2622 
   2623 		/* we are only interested in disks... */
   2624 		if (dv->dv_class != DV_DISK)
   2625 			continue;
   2626 
   2627 		/* we don't care about floppies... */
   2628 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2629 			continue;
   2630 		}
   2631 
   2632 		/* we don't care about CD's... */
   2633 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2634 			continue;
   2635 		}
   2636 
   2637 		/* hdfd is the Atari/Hades floppy driver */
   2638 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2639 			continue;
   2640 		}
   2641 		/* fdisa is the Atari/Milan floppy driver */
   2642 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2643 			continue;
   2644 		}
   2645 
   2646 		/* need to find the device_name_to_block_device_major stuff */
   2647 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2648 
   2649 		/* get a vnode for the raw partition of this disk */
   2650 
   2651 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2652 		if (bdevvp(dev, &vp))
   2653 			panic("RAID can't alloc vnode");
   2654 
   2655 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2656 
   2657 		if (error) {
   2658 			/* "Who cares."  Continue looking
   2659 			   for something that exists*/
   2660 			vput(vp);
   2661 			continue;
   2662 		}
   2663 
   2664 		/* Ok, the disk exists.  Go get the disklabel. */
   2665 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2666 		if (error) {
   2667 			/*
   2668 			 * XXX can't happen - open() would
   2669 			 * have errored out (or faked up one)
   2670 			 */
   2671 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2672 			       dv->dv_xname, 'a' + RAW_PART, error);
   2673 		}
   2674 
   2675 		/* don't need this any more.  We'll allocate it again
   2676 		   a little later if we really do... */
   2677 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2678 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2679 		vput(vp);
   2680 
   2681 		for (i=0; i < label.d_npartitions; i++) {
   2682 			/* We only support partitions marked as RAID */
   2683 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2684 				continue;
   2685 
   2686 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2687 			if (bdevvp(dev, &vp))
   2688 				panic("RAID can't alloc vnode");
   2689 
   2690 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2691 			if (error) {
   2692 				/* Whatever... */
   2693 				vput(vp);
   2694 				continue;
   2695 			}
   2696 
   2697 			good_one = 0;
   2698 
   2699 			clabel = (RF_ComponentLabel_t *)
   2700 				malloc(sizeof(RF_ComponentLabel_t),
   2701 				       M_RAIDFRAME, M_NOWAIT);
   2702 			if (clabel == NULL) {
   2703 				/* XXX CLEANUP HERE */
   2704 				printf("RAID auto config: out of memory!\n");
   2705 				return(NULL); /* XXX probably should panic? */
   2706 			}
   2707 
   2708 			if (!raidread_component_label(dev, vp, clabel)) {
   2709 				/* Got the label.  Does it look reasonable? */
   2710 				if (rf_reasonable_label(clabel) &&
   2711 				    (clabel->partitionSize <=
   2712 				     label.d_partitions[i].p_size)) {
   2713 #if DEBUG
   2714 					printf("Component on: %s%c: %d\n",
   2715 					       dv->dv_xname, 'a'+i,
   2716 					       label.d_partitions[i].p_size);
   2717 					rf_print_component_label(clabel);
   2718 #endif
   2719 					/* if it's reasonable, add it,
   2720 					   else ignore it. */
   2721 					ac = (RF_AutoConfig_t *)
   2722 						malloc(sizeof(RF_AutoConfig_t),
   2723 						       M_RAIDFRAME,
   2724 						       M_NOWAIT);
   2725 					if (ac == NULL) {
   2726 						/* XXX should panic?? */
   2727 						return(NULL);
   2728 					}
   2729 
   2730 					sprintf(ac->devname, "%s%c",
   2731 						dv->dv_xname, 'a'+i);
   2732 					ac->dev = dev;
   2733 					ac->vp = vp;
   2734 					ac->clabel = clabel;
   2735 					ac->next = ac_list;
   2736 					ac_list = ac;
   2737 					good_one = 1;
   2738 				}
   2739 			}
   2740 			if (!good_one) {
   2741 				/* cleanup */
   2742 				free(clabel, M_RAIDFRAME);
   2743 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2744 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2745 				vput(vp);
   2746 			}
   2747 		}
   2748 	}
   2749 	return(ac_list);
   2750 }
   2751 
   2752 static int
   2753 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2754 {
   2755 
   2756 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2757 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2758 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2759 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2760 	    clabel->row >=0 &&
   2761 	    clabel->column >= 0 &&
   2762 	    clabel->num_rows > 0 &&
   2763 	    clabel->num_columns > 0 &&
   2764 	    clabel->row < clabel->num_rows &&
   2765 	    clabel->column < clabel->num_columns &&
   2766 	    clabel->blockSize > 0 &&
   2767 	    clabel->numBlocks > 0) {
   2768 		/* label looks reasonable enough... */
   2769 		return(1);
   2770 	}
   2771 	return(0);
   2772 }
   2773 
   2774 
   2775 #if DEBUG
   2776 void
   2777 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2778 {
   2779 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2780 	       clabel->row, clabel->column,
   2781 	       clabel->num_rows, clabel->num_columns);
   2782 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2783 	       clabel->version, clabel->serial_number,
   2784 	       clabel->mod_counter);
   2785 	printf("   Clean: %s Status: %d\n",
   2786 	       clabel->clean ? "Yes" : "No", clabel->status );
   2787 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2788 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2789 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2790 	       (char) clabel->parityConfig, clabel->blockSize,
   2791 	       clabel->numBlocks);
   2792 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2793 	printf("   Contains root partition: %s\n",
   2794 	       clabel->root_partition ? "Yes" : "No" );
   2795 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2796 #if 0
   2797 	   printf("   Config order: %d\n", clabel->config_order);
   2798 #endif
   2799 
   2800 }
   2801 #endif
   2802 
   2803 RF_ConfigSet_t *
   2804 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2805 {
   2806 	RF_AutoConfig_t *ac;
   2807 	RF_ConfigSet_t *config_sets;
   2808 	RF_ConfigSet_t *cset;
   2809 	RF_AutoConfig_t *ac_next;
   2810 
   2811 
   2812 	config_sets = NULL;
   2813 
   2814 	/* Go through the AutoConfig list, and figure out which components
   2815 	   belong to what sets.  */
   2816 	ac = ac_list;
   2817 	while(ac!=NULL) {
   2818 		/* we're going to putz with ac->next, so save it here
   2819 		   for use at the end of the loop */
   2820 		ac_next = ac->next;
   2821 
   2822 		if (config_sets == NULL) {
   2823 			/* will need at least this one... */
   2824 			config_sets = (RF_ConfigSet_t *)
   2825 				malloc(sizeof(RF_ConfigSet_t),
   2826 				       M_RAIDFRAME, M_NOWAIT);
   2827 			if (config_sets == NULL) {
   2828 				panic("rf_create_auto_sets: No memory!");
   2829 			}
   2830 			/* this one is easy :) */
   2831 			config_sets->ac = ac;
   2832 			config_sets->next = NULL;
   2833 			config_sets->rootable = 0;
   2834 			ac->next = NULL;
   2835 		} else {
   2836 			/* which set does this component fit into? */
   2837 			cset = config_sets;
   2838 			while(cset!=NULL) {
   2839 				if (rf_does_it_fit(cset, ac)) {
   2840 					/* looks like it matches... */
   2841 					ac->next = cset->ac;
   2842 					cset->ac = ac;
   2843 					break;
   2844 				}
   2845 				cset = cset->next;
   2846 			}
   2847 			if (cset==NULL) {
   2848 				/* didn't find a match above... new set..*/
   2849 				cset = (RF_ConfigSet_t *)
   2850 					malloc(sizeof(RF_ConfigSet_t),
   2851 					       M_RAIDFRAME, M_NOWAIT);
   2852 				if (cset == NULL) {
   2853 					panic("rf_create_auto_sets: No memory!");
   2854 				}
   2855 				cset->ac = ac;
   2856 				ac->next = NULL;
   2857 				cset->next = config_sets;
   2858 				cset->rootable = 0;
   2859 				config_sets = cset;
   2860 			}
   2861 		}
   2862 		ac = ac_next;
   2863 	}
   2864 
   2865 
   2866 	return(config_sets);
   2867 }
   2868 
   2869 static int
   2870 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2871 {
   2872 	RF_ComponentLabel_t *clabel1, *clabel2;
   2873 
   2874 	/* If this one matches the *first* one in the set, that's good
   2875 	   enough, since the other members of the set would have been
   2876 	   through here too... */
   2877 	/* note that we are not checking partitionSize here..
   2878 
   2879 	   Note that we are also not checking the mod_counters here.
   2880 	   If everything else matches execpt the mod_counter, that's
   2881 	   good enough for this test.  We will deal with the mod_counters
   2882 	   a little later in the autoconfiguration process.
   2883 
   2884 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2885 
   2886 	   The reason we don't check for this is that failed disks
   2887 	   will have lower modification counts.  If those disks are
   2888 	   not added to the set they used to belong to, then they will
   2889 	   form their own set, which may result in 2 different sets,
   2890 	   for example, competing to be configured at raid0, and
   2891 	   perhaps competing to be the root filesystem set.  If the
   2892 	   wrong ones get configured, or both attempt to become /,
   2893 	   weird behaviour and or serious lossage will occur.  Thus we
   2894 	   need to bring them into the fold here, and kick them out at
   2895 	   a later point.
   2896 
   2897 	*/
   2898 
   2899 	clabel1 = cset->ac->clabel;
   2900 	clabel2 = ac->clabel;
   2901 	if ((clabel1->version == clabel2->version) &&
   2902 	    (clabel1->serial_number == clabel2->serial_number) &&
   2903 	    (clabel1->num_rows == clabel2->num_rows) &&
   2904 	    (clabel1->num_columns == clabel2->num_columns) &&
   2905 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2906 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2907 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2908 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2909 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2910 	    (clabel1->blockSize == clabel2->blockSize) &&
   2911 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2912 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2913 	    (clabel1->root_partition == clabel2->root_partition) &&
   2914 	    (clabel1->last_unit == clabel2->last_unit) &&
   2915 	    (clabel1->config_order == clabel2->config_order)) {
   2916 		/* if it get's here, it almost *has* to be a match */
   2917 	} else {
   2918 		/* it's not consistent with somebody in the set..
   2919 		   punt */
   2920 		return(0);
   2921 	}
   2922 	/* all was fine.. it must fit... */
   2923 	return(1);
   2924 }
   2925 
   2926 int
   2927 rf_have_enough_components(RF_ConfigSet_t *cset)
   2928 {
   2929 	RF_AutoConfig_t *ac;
   2930 	RF_AutoConfig_t *auto_config;
   2931 	RF_ComponentLabel_t *clabel;
   2932 	int c;
   2933 	int num_cols;
   2934 	int num_missing;
   2935 	int mod_counter;
   2936 	int mod_counter_found;
   2937 	int even_pair_failed;
   2938 	char parity_type;
   2939 
   2940 
   2941 	/* check to see that we have enough 'live' components
   2942 	   of this set.  If so, we can configure it if necessary */
   2943 
   2944 	num_cols = cset->ac->clabel->num_columns;
   2945 	parity_type = cset->ac->clabel->parityConfig;
   2946 
   2947 	/* XXX Check for duplicate components!?!?!? */
   2948 
   2949 	/* Determine what the mod_counter is supposed to be for this set. */
   2950 
   2951 	mod_counter_found = 0;
   2952 	mod_counter = 0;
   2953 	ac = cset->ac;
   2954 	while(ac!=NULL) {
   2955 		if (mod_counter_found==0) {
   2956 			mod_counter = ac->clabel->mod_counter;
   2957 			mod_counter_found = 1;
   2958 		} else {
   2959 			if (ac->clabel->mod_counter > mod_counter) {
   2960 				mod_counter = ac->clabel->mod_counter;
   2961 			}
   2962 		}
   2963 		ac = ac->next;
   2964 	}
   2965 
   2966 	num_missing = 0;
   2967 	auto_config = cset->ac;
   2968 
   2969 	even_pair_failed = 0;
   2970 	for(c=0; c<num_cols; c++) {
   2971 		ac = auto_config;
   2972 		while(ac!=NULL) {
   2973 			if ((ac->clabel->column == c) &&
   2974 			    (ac->clabel->mod_counter == mod_counter)) {
   2975 				/* it's this one... */
   2976 #if DEBUG
   2977 				printf("Found: %s at %d\n",
   2978 				       ac->devname,c);
   2979 #endif
   2980 				break;
   2981 			}
   2982 			ac=ac->next;
   2983 		}
   2984 		if (ac==NULL) {
   2985 				/* Didn't find one here! */
   2986 				/* special case for RAID 1, especially
   2987 				   where there are more than 2
   2988 				   components (where RAIDframe treats
   2989 				   things a little differently :( ) */
   2990 			if (parity_type == '1') {
   2991 				if (c%2 == 0) { /* even component */
   2992 					even_pair_failed = 1;
   2993 				} else { /* odd component.  If
   2994 					    we're failed, and
   2995 					    so is the even
   2996 					    component, it's
   2997 					    "Good Night, Charlie" */
   2998 					if (even_pair_failed == 1) {
   2999 						return(0);
   3000 					}
   3001 				}
   3002 			} else {
   3003 				/* normal accounting */
   3004 				num_missing++;
   3005 			}
   3006 		}
   3007 		if ((parity_type == '1') && (c%2 == 1)) {
   3008 				/* Just did an even component, and we didn't
   3009 				   bail.. reset the even_pair_failed flag,
   3010 				   and go on to the next component.... */
   3011 			even_pair_failed = 0;
   3012 		}
   3013 	}
   3014 
   3015 	clabel = cset->ac->clabel;
   3016 
   3017 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3018 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3019 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3020 		/* XXX this needs to be made *much* more general */
   3021 		/* Too many failures */
   3022 		return(0);
   3023 	}
   3024 	/* otherwise, all is well, and we've got enough to take a kick
   3025 	   at autoconfiguring this set */
   3026 	return(1);
   3027 }
   3028 
   3029 void
   3030 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3031 			RF_Raid_t *raidPtr)
   3032 {
   3033 	RF_ComponentLabel_t *clabel;
   3034 	int i;
   3035 
   3036 	clabel = ac->clabel;
   3037 
   3038 	/* 1. Fill in the common stuff */
   3039 	config->numRow = clabel->num_rows = 1;
   3040 	config->numCol = clabel->num_columns;
   3041 	config->numSpare = 0; /* XXX should this be set here? */
   3042 	config->sectPerSU = clabel->sectPerSU;
   3043 	config->SUsPerPU = clabel->SUsPerPU;
   3044 	config->SUsPerRU = clabel->SUsPerRU;
   3045 	config->parityConfig = clabel->parityConfig;
   3046 	/* XXX... */
   3047 	strcpy(config->diskQueueType,"fifo");
   3048 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3049 	config->layoutSpecificSize = 0; /* XXX ?? */
   3050 
   3051 	while(ac!=NULL) {
   3052 		/* row/col values will be in range due to the checks
   3053 		   in reasonable_label() */
   3054 		strcpy(config->devnames[0][ac->clabel->column],
   3055 		       ac->devname);
   3056 		ac = ac->next;
   3057 	}
   3058 
   3059 	for(i=0;i<RF_MAXDBGV;i++) {
   3060 		config->debugVars[i][0] = 0;
   3061 	}
   3062 }
   3063 
   3064 int
   3065 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3066 {
   3067 	RF_ComponentLabel_t clabel;
   3068 	struct vnode *vp;
   3069 	dev_t dev;
   3070 	int column;
   3071 	int sparecol;
   3072 
   3073 	raidPtr->autoconfigure = new_value;
   3074 
   3075 	for(column=0; column<raidPtr->numCol; column++) {
   3076 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3077 			dev = raidPtr->Disks[column].dev;
   3078 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3079 			raidread_component_label(dev, vp, &clabel);
   3080 			clabel.autoconfigure = new_value;
   3081 			raidwrite_component_label(dev, vp, &clabel);
   3082 		}
   3083 	}
   3084 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3085 		sparecol = raidPtr->numCol + column;
   3086 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3087 			dev = raidPtr->Disks[sparecol].dev;
   3088 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3089 			raidread_component_label(dev, vp, &clabel);
   3090 			clabel.autoconfigure = new_value;
   3091 			raidwrite_component_label(dev, vp, &clabel);
   3092 		}
   3093 	}
   3094 	return(new_value);
   3095 }
   3096 
   3097 int
   3098 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3099 {
   3100 	RF_ComponentLabel_t clabel;
   3101 	struct vnode *vp;
   3102 	dev_t dev;
   3103 	int column;
   3104 	int sparecol;
   3105 
   3106 	raidPtr->root_partition = new_value;
   3107 	for(column=0; column<raidPtr->numCol; column++) {
   3108 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3109 			dev = raidPtr->Disks[column].dev;
   3110 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3111 			raidread_component_label(dev, vp, &clabel);
   3112 			clabel.root_partition = new_value;
   3113 			raidwrite_component_label(dev, vp, &clabel);
   3114 		}
   3115 	}
   3116 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3117 		sparecol = raidPtr->numCol + column;
   3118 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3119 			dev = raidPtr->Disks[sparecol].dev;
   3120 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3121 			raidread_component_label(dev, vp, &clabel);
   3122 			clabel.root_partition = new_value;
   3123 			raidwrite_component_label(dev, vp, &clabel);
   3124 		}
   3125 	}
   3126 	return(new_value);
   3127 }
   3128 
   3129 void
   3130 rf_release_all_vps(RF_ConfigSet_t *cset)
   3131 {
   3132 	RF_AutoConfig_t *ac;
   3133 
   3134 	ac = cset->ac;
   3135 	while(ac!=NULL) {
   3136 		/* Close the vp, and give it back */
   3137 		if (ac->vp) {
   3138 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3139 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3140 			vput(ac->vp);
   3141 			ac->vp = NULL;
   3142 		}
   3143 		ac = ac->next;
   3144 	}
   3145 }
   3146 
   3147 
   3148 void
   3149 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3150 {
   3151 	RF_AutoConfig_t *ac;
   3152 	RF_AutoConfig_t *next_ac;
   3153 
   3154 	ac = cset->ac;
   3155 	while(ac!=NULL) {
   3156 		next_ac = ac->next;
   3157 		/* nuke the label */
   3158 		free(ac->clabel, M_RAIDFRAME);
   3159 		/* cleanup the config structure */
   3160 		free(ac, M_RAIDFRAME);
   3161 		/* "next.." */
   3162 		ac = next_ac;
   3163 	}
   3164 	/* and, finally, nuke the config set */
   3165 	free(cset, M_RAIDFRAME);
   3166 }
   3167 
   3168 
   3169 void
   3170 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3171 {
   3172 	/* current version number */
   3173 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3174 	clabel->serial_number = raidPtr->serial_number;
   3175 	clabel->mod_counter = raidPtr->mod_counter;
   3176 	clabel->num_rows = 1;
   3177 	clabel->num_columns = raidPtr->numCol;
   3178 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3179 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3180 
   3181 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3182 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3183 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3184 
   3185 	clabel->blockSize = raidPtr->bytesPerSector;
   3186 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3187 
   3188 	/* XXX not portable */
   3189 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3190 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3191 	clabel->autoconfigure = raidPtr->autoconfigure;
   3192 	clabel->root_partition = raidPtr->root_partition;
   3193 	clabel->last_unit = raidPtr->raidid;
   3194 	clabel->config_order = raidPtr->config_order;
   3195 }
   3196 
   3197 int
   3198 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3199 {
   3200 	RF_Raid_t *raidPtr;
   3201 	RF_Config_t *config;
   3202 	int raidID;
   3203 	int retcode;
   3204 
   3205 #if DEBUG
   3206 	printf("RAID autoconfigure\n");
   3207 #endif
   3208 
   3209 	retcode = 0;
   3210 	*unit = -1;
   3211 
   3212 	/* 1. Create a config structure */
   3213 
   3214 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3215 				       M_RAIDFRAME,
   3216 				       M_NOWAIT);
   3217 	if (config==NULL) {
   3218 		printf("Out of mem!?!?\n");
   3219 				/* XXX do something more intelligent here. */
   3220 		return(1);
   3221 	}
   3222 
   3223 	memset(config, 0, sizeof(RF_Config_t));
   3224 
   3225 	/*
   3226 	   2. Figure out what RAID ID this one is supposed to live at
   3227 	   See if we can get the same RAID dev that it was configured
   3228 	   on last time..
   3229 	*/
   3230 
   3231 	raidID = cset->ac->clabel->last_unit;
   3232 	if ((raidID < 0) || (raidID >= numraid)) {
   3233 		/* let's not wander off into lala land. */
   3234 		raidID = numraid - 1;
   3235 	}
   3236 	if (raidPtrs[raidID]->valid != 0) {
   3237 
   3238 		/*
   3239 		   Nope... Go looking for an alternative...
   3240 		   Start high so we don't immediately use raid0 if that's
   3241 		   not taken.
   3242 		*/
   3243 
   3244 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3245 			if (raidPtrs[raidID]->valid == 0) {
   3246 				/* can use this one! */
   3247 				break;
   3248 			}
   3249 		}
   3250 	}
   3251 
   3252 	if (raidID < 0) {
   3253 		/* punt... */
   3254 		printf("Unable to auto configure this set!\n");
   3255 		printf("(Out of RAID devs!)\n");
   3256 		return(1);
   3257 	}
   3258 
   3259 #if DEBUG
   3260 	printf("Configuring raid%d:\n",raidID);
   3261 #endif
   3262 
   3263 	raidPtr = raidPtrs[raidID];
   3264 
   3265 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3266 	raidPtr->raidid = raidID;
   3267 	raidPtr->openings = RAIDOUTSTANDING;
   3268 
   3269 	/* 3. Build the configuration structure */
   3270 	rf_create_configuration(cset->ac, config, raidPtr);
   3271 
   3272 	/* 4. Do the configuration */
   3273 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3274 
   3275 	if (retcode == 0) {
   3276 
   3277 		raidinit(raidPtrs[raidID]);
   3278 
   3279 		rf_markalldirty(raidPtrs[raidID]);
   3280 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3281 		if (cset->ac->clabel->root_partition==1) {
   3282 			/* everything configured just fine.  Make a note
   3283 			   that this set is eligible to be root. */
   3284 			cset->rootable = 1;
   3285 			/* XXX do this here? */
   3286 			raidPtrs[raidID]->root_partition = 1;
   3287 		}
   3288 	}
   3289 
   3290 	/* 5. Cleanup */
   3291 	free(config, M_RAIDFRAME);
   3292 
   3293 	*unit = raidID;
   3294 	return(retcode);
   3295 }
   3296 
   3297 void
   3298 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3299 {
   3300 	struct buf *bp;
   3301 
   3302 	bp = (struct buf *)desc->bp;
   3303 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3304 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3305 }
   3306 
   3307 void
   3308 rf_pool_init(struct pool *p, size_t size, char *w_chan,
   3309 	     size_t min, size_t max)
   3310 {
   3311 	pool_init(p, size, 0, 0, 0, w_chan, NULL);
   3312 	pool_sethiwat(p, max);
   3313 	pool_prime(p, min);
   3314 	pool_setlowat(p, min);
   3315 }
   3316