rf_netbsdkintf.c revision 1.178.2.1.2.1 1 /* $NetBSD: rf_netbsdkintf.c,v 1.178.2.1.2.1 2005/04/06 12:14:02 tron Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.178.2.1.2.1 2005/04/06 12:14:02 tron Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/user.h>
169 #include <sys/reboot.h>
170
171 #include <dev/raidframe/raidframevar.h>
172 #include <dev/raidframe/raidframeio.h>
173 #include "raid.h"
174 #include "opt_raid_autoconfig.h"
175 #include "rf_raid.h"
176 #include "rf_copyback.h"
177 #include "rf_dag.h"
178 #include "rf_dagflags.h"
179 #include "rf_desc.h"
180 #include "rf_diskqueue.h"
181 #include "rf_etimer.h"
182 #include "rf_general.h"
183 #include "rf_kintf.h"
184 #include "rf_options.h"
185 #include "rf_driver.h"
186 #include "rf_parityscan.h"
187 #include "rf_threadstuff.h"
188
189 #ifdef DEBUG
190 int rf_kdebug_level = 0;
191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
192 #else /* DEBUG */
193 #define db1_printf(a) { }
194 #endif /* DEBUG */
195
196 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
197
198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
199
200 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
201 * spare table */
202 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
203 * installation process */
204
205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
206
207 /* prototypes */
208 static void KernelWakeupFunc(struct buf * bp);
209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
210 dev_t dev, RF_SectorNum_t startSect,
211 RF_SectorCount_t numSect, caddr_t buf,
212 void (*cbFunc) (struct buf *), void *cbArg,
213 int logBytesPerSector, struct proc * b_proc);
214 static void raidinit(RF_Raid_t *);
215
216 void raidattach(int);
217
218 dev_type_open(raidopen);
219 dev_type_close(raidclose);
220 dev_type_read(raidread);
221 dev_type_write(raidwrite);
222 dev_type_ioctl(raidioctl);
223 dev_type_strategy(raidstrategy);
224 dev_type_dump(raiddump);
225 dev_type_size(raidsize);
226
227 const struct bdevsw raid_bdevsw = {
228 raidopen, raidclose, raidstrategy, raidioctl,
229 raiddump, raidsize, D_DISK
230 };
231
232 const struct cdevsw raid_cdevsw = {
233 raidopen, raidclose, raidread, raidwrite, raidioctl,
234 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
235 };
236
237 /*
238 * Pilfered from ccd.c
239 */
240
241 struct raidbuf {
242 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
243 struct buf *rf_obp; /* ptr. to original I/O buf */
244 RF_DiskQueueData_t *req;/* the request that this was part of.. */
245 };
246
247 /* XXX Not sure if the following should be replacing the raidPtrs above,
248 or if it should be used in conjunction with that...
249 */
250
251 struct raid_softc {
252 int sc_flags; /* flags */
253 int sc_cflags; /* configuration flags */
254 size_t sc_size; /* size of the raid device */
255 char sc_xname[20]; /* XXX external name */
256 struct disk sc_dkdev; /* generic disk device info */
257 struct bufq_state buf_queue; /* used for the device queue */
258 };
259 /* sc_flags */
260 #define RAIDF_INITED 0x01 /* unit has been initialized */
261 #define RAIDF_WLABEL 0x02 /* label area is writable */
262 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
263 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
264 #define RAIDF_LOCKED 0x80 /* unit is locked */
265
266 #define raidunit(x) DISKUNIT(x)
267 int numraid = 0;
268
269 /*
270 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
271 * Be aware that large numbers can allow the driver to consume a lot of
272 * kernel memory, especially on writes, and in degraded mode reads.
273 *
274 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
275 * a single 64K write will typically require 64K for the old data,
276 * 64K for the old parity, and 64K for the new parity, for a total
277 * of 192K (if the parity buffer is not re-used immediately).
278 * Even it if is used immediately, that's still 128K, which when multiplied
279 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
280 *
281 * Now in degraded mode, for example, a 64K read on the above setup may
282 * require data reconstruction, which will require *all* of the 4 remaining
283 * disks to participate -- 4 * 32K/disk == 128K again.
284 */
285
286 #ifndef RAIDOUTSTANDING
287 #define RAIDOUTSTANDING 6
288 #endif
289
290 #define RAIDLABELDEV(dev) \
291 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
292
293 /* declared here, and made public, for the benefit of KVM stuff.. */
294 struct raid_softc *raid_softc;
295
296 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
297 struct disklabel *);
298 static void raidgetdisklabel(dev_t);
299 static void raidmakedisklabel(struct raid_softc *);
300
301 static int raidlock(struct raid_softc *);
302 static void raidunlock(struct raid_softc *);
303
304 static void rf_markalldirty(RF_Raid_t *);
305
306 struct device *raidrootdev;
307
308 void rf_ReconThread(struct rf_recon_req *);
309 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
310 void rf_CopybackThread(RF_Raid_t *raidPtr);
311 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
312 int rf_autoconfig(struct device *self);
313 void rf_buildroothack(RF_ConfigSet_t *);
314
315 RF_AutoConfig_t *rf_find_raid_components(void);
316 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
317 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
318 static int rf_reasonable_label(RF_ComponentLabel_t *);
319 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
320 int rf_set_autoconfig(RF_Raid_t *, int);
321 int rf_set_rootpartition(RF_Raid_t *, int);
322 void rf_release_all_vps(RF_ConfigSet_t *);
323 void rf_cleanup_config_set(RF_ConfigSet_t *);
324 int rf_have_enough_components(RF_ConfigSet_t *);
325 int rf_auto_config_set(RF_ConfigSet_t *, int *);
326
327 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
328 allow autoconfig to take place.
329 Note that this is overridden by having
330 RAID_AUTOCONFIG as an option in the
331 kernel config file. */
332
333 struct RF_Pools_s rf_pools;
334
335 void
336 raidattach(int num)
337 {
338 int raidID;
339 int i, rc;
340
341 #ifdef DEBUG
342 printf("raidattach: Asked for %d units\n", num);
343 #endif
344
345 if (num <= 0) {
346 #ifdef DIAGNOSTIC
347 panic("raidattach: count <= 0");
348 #endif
349 return;
350 }
351 /* This is where all the initialization stuff gets done. */
352
353 numraid = num;
354
355 /* Make some space for requested number of units... */
356
357 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
358 if (raidPtrs == NULL) {
359 panic("raidPtrs is NULL!!");
360 }
361
362 /* Initialize the component buffer pool. */
363 rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
364 "raidpl", num * RAIDOUTSTANDING,
365 2 * num * RAIDOUTSTANDING);
366
367 rf_mutex_init(&rf_sparet_wait_mutex);
368
369 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
370
371 for (i = 0; i < num; i++)
372 raidPtrs[i] = NULL;
373 rc = rf_BootRaidframe();
374 if (rc == 0)
375 printf("Kernelized RAIDframe activated\n");
376 else
377 panic("Serious error booting RAID!!");
378
379 /* put together some datastructures like the CCD device does.. This
380 * lets us lock the device and what-not when it gets opened. */
381
382 raid_softc = (struct raid_softc *)
383 malloc(num * sizeof(struct raid_softc),
384 M_RAIDFRAME, M_NOWAIT);
385 if (raid_softc == NULL) {
386 printf("WARNING: no memory for RAIDframe driver\n");
387 return;
388 }
389
390 memset(raid_softc, 0, num * sizeof(struct raid_softc));
391
392 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
393 M_RAIDFRAME, M_NOWAIT);
394 if (raidrootdev == NULL) {
395 panic("No memory for RAIDframe driver!!?!?!");
396 }
397
398 for (raidID = 0; raidID < num; raidID++) {
399 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
400
401 raidrootdev[raidID].dv_class = DV_DISK;
402 raidrootdev[raidID].dv_cfdata = NULL;
403 raidrootdev[raidID].dv_unit = raidID;
404 raidrootdev[raidID].dv_parent = NULL;
405 raidrootdev[raidID].dv_flags = 0;
406 sprintf(raidrootdev[raidID].dv_xname,"raid%d",raidID);
407
408 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
409 (RF_Raid_t *));
410 if (raidPtrs[raidID] == NULL) {
411 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
412 numraid = raidID;
413 return;
414 }
415 }
416
417 #ifdef RAID_AUTOCONFIG
418 raidautoconfig = 1;
419 #endif
420
421 /*
422 * Register a finalizer which will be used to auto-config RAID
423 * sets once all real hardware devices have been found.
424 */
425 if (config_finalize_register(NULL, rf_autoconfig) != 0)
426 printf("WARNING: unable to register RAIDframe finalizer\n");
427 }
428
429 int
430 rf_autoconfig(struct device *self)
431 {
432 RF_AutoConfig_t *ac_list;
433 RF_ConfigSet_t *config_sets;
434
435 if (raidautoconfig == 0)
436 return (0);
437
438 /* XXX This code can only be run once. */
439 raidautoconfig = 0;
440
441 /* 1. locate all RAID components on the system */
442 #ifdef DEBUG
443 printf("Searching for RAID components...\n");
444 #endif
445 ac_list = rf_find_raid_components();
446
447 /* 2. Sort them into their respective sets. */
448 config_sets = rf_create_auto_sets(ac_list);
449
450 /*
451 * 3. Evaluate each set andconfigure the valid ones.
452 * This gets done in rf_buildroothack().
453 */
454 rf_buildroothack(config_sets);
455
456 return (1);
457 }
458
459 void
460 rf_buildroothack(RF_ConfigSet_t *config_sets)
461 {
462 RF_ConfigSet_t *cset;
463 RF_ConfigSet_t *next_cset;
464 int retcode;
465 int raidID;
466 int rootID;
467 int num_root;
468
469 rootID = 0;
470 num_root = 0;
471 cset = config_sets;
472 while(cset != NULL ) {
473 next_cset = cset->next;
474 if (rf_have_enough_components(cset) &&
475 cset->ac->clabel->autoconfigure==1) {
476 retcode = rf_auto_config_set(cset,&raidID);
477 if (!retcode) {
478 if (cset->rootable) {
479 rootID = raidID;
480 num_root++;
481 }
482 } else {
483 /* The autoconfig didn't work :( */
484 #if DEBUG
485 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
486 #endif
487 rf_release_all_vps(cset);
488 }
489 } else {
490 /* we're not autoconfiguring this set...
491 release the associated resources */
492 rf_release_all_vps(cset);
493 }
494 /* cleanup */
495 rf_cleanup_config_set(cset);
496 cset = next_cset;
497 }
498
499 /* we found something bootable... */
500
501 if (num_root == 1) {
502 booted_device = &raidrootdev[rootID];
503 } else if (num_root > 1) {
504 /* we can't guess.. require the user to answer... */
505 boothowto |= RB_ASKNAME;
506 }
507 }
508
509
510 int
511 raidsize(dev_t dev)
512 {
513 struct raid_softc *rs;
514 struct disklabel *lp;
515 int part, unit, omask, size;
516
517 unit = raidunit(dev);
518 if (unit >= numraid)
519 return (-1);
520 rs = &raid_softc[unit];
521
522 if ((rs->sc_flags & RAIDF_INITED) == 0)
523 return (-1);
524
525 part = DISKPART(dev);
526 omask = rs->sc_dkdev.dk_openmask & (1 << part);
527 lp = rs->sc_dkdev.dk_label;
528
529 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
530 return (-1);
531
532 if (lp->d_partitions[part].p_fstype != FS_SWAP)
533 size = -1;
534 else
535 size = lp->d_partitions[part].p_size *
536 (lp->d_secsize / DEV_BSIZE);
537
538 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
539 return (-1);
540
541 return (size);
542
543 }
544
545 int
546 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
547 {
548 /* Not implemented. */
549 return ENXIO;
550 }
551 /* ARGSUSED */
552 int
553 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
554 {
555 int unit = raidunit(dev);
556 struct raid_softc *rs;
557 struct disklabel *lp;
558 int part, pmask;
559 int error = 0;
560
561 if (unit >= numraid)
562 return (ENXIO);
563 rs = &raid_softc[unit];
564
565 if ((error = raidlock(rs)) != 0)
566 return (error);
567 lp = rs->sc_dkdev.dk_label;
568
569 part = DISKPART(dev);
570 pmask = (1 << part);
571
572 if ((rs->sc_flags & RAIDF_INITED) &&
573 (rs->sc_dkdev.dk_openmask == 0))
574 raidgetdisklabel(dev);
575
576 /* make sure that this partition exists */
577
578 if (part != RAW_PART) {
579 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
580 ((part >= lp->d_npartitions) ||
581 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
582 error = ENXIO;
583 raidunlock(rs);
584 return (error);
585 }
586 }
587 /* Prevent this unit from being unconfigured while open. */
588 switch (fmt) {
589 case S_IFCHR:
590 rs->sc_dkdev.dk_copenmask |= pmask;
591 break;
592
593 case S_IFBLK:
594 rs->sc_dkdev.dk_bopenmask |= pmask;
595 break;
596 }
597
598 if ((rs->sc_dkdev.dk_openmask == 0) &&
599 ((rs->sc_flags & RAIDF_INITED) != 0)) {
600 /* First one... mark things as dirty... Note that we *MUST*
601 have done a configure before this. I DO NOT WANT TO BE
602 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
603 THAT THEY BELONG TOGETHER!!!!! */
604 /* XXX should check to see if we're only open for reading
605 here... If so, we needn't do this, but then need some
606 other way of keeping track of what's happened.. */
607
608 rf_markalldirty( raidPtrs[unit] );
609 }
610
611
612 rs->sc_dkdev.dk_openmask =
613 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
614
615 raidunlock(rs);
616
617 return (error);
618
619
620 }
621 /* ARGSUSED */
622 int
623 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
624 {
625 int unit = raidunit(dev);
626 struct raid_softc *rs;
627 int error = 0;
628 int part;
629
630 if (unit >= numraid)
631 return (ENXIO);
632 rs = &raid_softc[unit];
633
634 if ((error = raidlock(rs)) != 0)
635 return (error);
636
637 part = DISKPART(dev);
638
639 /* ...that much closer to allowing unconfiguration... */
640 switch (fmt) {
641 case S_IFCHR:
642 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
643 break;
644
645 case S_IFBLK:
646 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
647 break;
648 }
649 rs->sc_dkdev.dk_openmask =
650 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
651
652 if ((rs->sc_dkdev.dk_openmask == 0) &&
653 ((rs->sc_flags & RAIDF_INITED) != 0)) {
654 /* Last one... device is not unconfigured yet.
655 Device shutdown has taken care of setting the
656 clean bits if RAIDF_INITED is not set
657 mark things as clean... */
658
659 rf_update_component_labels(raidPtrs[unit],
660 RF_FINAL_COMPONENT_UPDATE);
661 if (doing_shutdown) {
662 /* last one, and we're going down, so
663 lights out for this RAID set too. */
664 error = rf_Shutdown(raidPtrs[unit]);
665
666 /* It's no longer initialized... */
667 rs->sc_flags &= ~RAIDF_INITED;
668
669 /* Detach the disk. */
670 disk_detach(&rs->sc_dkdev);
671 }
672 }
673
674 raidunlock(rs);
675 return (0);
676
677 }
678
679 void
680 raidstrategy(struct buf *bp)
681 {
682 int s;
683
684 unsigned int raidID = raidunit(bp->b_dev);
685 RF_Raid_t *raidPtr;
686 struct raid_softc *rs = &raid_softc[raidID];
687 int wlabel;
688
689 if ((rs->sc_flags & RAIDF_INITED) ==0) {
690 bp->b_error = ENXIO;
691 bp->b_flags |= B_ERROR;
692 bp->b_resid = bp->b_bcount;
693 biodone(bp);
694 return;
695 }
696 if (raidID >= numraid || !raidPtrs[raidID]) {
697 bp->b_error = ENODEV;
698 bp->b_flags |= B_ERROR;
699 bp->b_resid = bp->b_bcount;
700 biodone(bp);
701 return;
702 }
703 raidPtr = raidPtrs[raidID];
704 if (!raidPtr->valid) {
705 bp->b_error = ENODEV;
706 bp->b_flags |= B_ERROR;
707 bp->b_resid = bp->b_bcount;
708 biodone(bp);
709 return;
710 }
711 if (bp->b_bcount == 0) {
712 db1_printf(("b_bcount is zero..\n"));
713 biodone(bp);
714 return;
715 }
716
717 /*
718 * Do bounds checking and adjust transfer. If there's an
719 * error, the bounds check will flag that for us.
720 */
721
722 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
723 if (DISKPART(bp->b_dev) != RAW_PART)
724 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
725 db1_printf(("Bounds check failed!!:%d %d\n",
726 (int) bp->b_blkno, (int) wlabel));
727 biodone(bp);
728 return;
729 }
730 s = splbio();
731
732 bp->b_resid = 0;
733
734 /* stuff it onto our queue */
735 BUFQ_PUT(&rs->buf_queue, bp);
736
737 raidstart(raidPtrs[raidID]);
738
739 splx(s);
740 }
741 /* ARGSUSED */
742 int
743 raidread(dev_t dev, struct uio *uio, int flags)
744 {
745 int unit = raidunit(dev);
746 struct raid_softc *rs;
747
748 if (unit >= numraid)
749 return (ENXIO);
750 rs = &raid_softc[unit];
751
752 if ((rs->sc_flags & RAIDF_INITED) == 0)
753 return (ENXIO);
754
755 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
756
757 }
758 /* ARGSUSED */
759 int
760 raidwrite(dev_t dev, struct uio *uio, int flags)
761 {
762 int unit = raidunit(dev);
763 struct raid_softc *rs;
764
765 if (unit >= numraid)
766 return (ENXIO);
767 rs = &raid_softc[unit];
768
769 if ((rs->sc_flags & RAIDF_INITED) == 0)
770 return (ENXIO);
771
772 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
773
774 }
775
776 int
777 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
778 {
779 int unit = raidunit(dev);
780 int error = 0;
781 int part, pmask;
782 struct raid_softc *rs;
783 RF_Config_t *k_cfg, *u_cfg;
784 RF_Raid_t *raidPtr;
785 RF_RaidDisk_t *diskPtr;
786 RF_AccTotals_t *totals;
787 RF_DeviceConfig_t *d_cfg, **ucfgp;
788 u_char *specific_buf;
789 int retcode = 0;
790 int column;
791 int raidid;
792 struct rf_recon_req *rrcopy, *rr;
793 RF_ComponentLabel_t *clabel;
794 RF_ComponentLabel_t ci_label;
795 RF_ComponentLabel_t **clabel_ptr;
796 RF_SingleComponent_t *sparePtr,*componentPtr;
797 RF_SingleComponent_t hot_spare;
798 RF_SingleComponent_t component;
799 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
800 int i, j, d;
801 #ifdef __HAVE_OLD_DISKLABEL
802 struct disklabel newlabel;
803 #endif
804
805 if (unit >= numraid)
806 return (ENXIO);
807 rs = &raid_softc[unit];
808 raidPtr = raidPtrs[unit];
809
810 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
811 (int) DISKPART(dev), (int) unit, (int) cmd));
812
813 /* Must be open for writes for these commands... */
814 switch (cmd) {
815 case DIOCSDINFO:
816 case DIOCWDINFO:
817 #ifdef __HAVE_OLD_DISKLABEL
818 case ODIOCWDINFO:
819 case ODIOCSDINFO:
820 #endif
821 case DIOCWLABEL:
822 if ((flag & FWRITE) == 0)
823 return (EBADF);
824 }
825
826 /* Must be initialized for these... */
827 switch (cmd) {
828 case DIOCGDINFO:
829 case DIOCSDINFO:
830 case DIOCWDINFO:
831 #ifdef __HAVE_OLD_DISKLABEL
832 case ODIOCGDINFO:
833 case ODIOCWDINFO:
834 case ODIOCSDINFO:
835 case ODIOCGDEFLABEL:
836 #endif
837 case DIOCGPART:
838 case DIOCWLABEL:
839 case DIOCGDEFLABEL:
840 case RAIDFRAME_SHUTDOWN:
841 case RAIDFRAME_REWRITEPARITY:
842 case RAIDFRAME_GET_INFO:
843 case RAIDFRAME_RESET_ACCTOTALS:
844 case RAIDFRAME_GET_ACCTOTALS:
845 case RAIDFRAME_KEEP_ACCTOTALS:
846 case RAIDFRAME_GET_SIZE:
847 case RAIDFRAME_FAIL_DISK:
848 case RAIDFRAME_COPYBACK:
849 case RAIDFRAME_CHECK_RECON_STATUS:
850 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
851 case RAIDFRAME_GET_COMPONENT_LABEL:
852 case RAIDFRAME_SET_COMPONENT_LABEL:
853 case RAIDFRAME_ADD_HOT_SPARE:
854 case RAIDFRAME_REMOVE_HOT_SPARE:
855 case RAIDFRAME_INIT_LABELS:
856 case RAIDFRAME_REBUILD_IN_PLACE:
857 case RAIDFRAME_CHECK_PARITY:
858 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
859 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
860 case RAIDFRAME_CHECK_COPYBACK_STATUS:
861 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
862 case RAIDFRAME_SET_AUTOCONFIG:
863 case RAIDFRAME_SET_ROOT:
864 case RAIDFRAME_DELETE_COMPONENT:
865 case RAIDFRAME_INCORPORATE_HOT_SPARE:
866 if ((rs->sc_flags & RAIDF_INITED) == 0)
867 return (ENXIO);
868 }
869
870 switch (cmd) {
871
872 /* configure the system */
873 case RAIDFRAME_CONFIGURE:
874
875 if (raidPtr->valid) {
876 /* There is a valid RAID set running on this unit! */
877 printf("raid%d: Device already configured!\n",unit);
878 return(EINVAL);
879 }
880
881 /* copy-in the configuration information */
882 /* data points to a pointer to the configuration structure */
883
884 u_cfg = *((RF_Config_t **) data);
885 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
886 if (k_cfg == NULL) {
887 return (ENOMEM);
888 }
889 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
890 if (retcode) {
891 RF_Free(k_cfg, sizeof(RF_Config_t));
892 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
893 retcode));
894 return (retcode);
895 }
896 /* allocate a buffer for the layout-specific data, and copy it
897 * in */
898 if (k_cfg->layoutSpecificSize) {
899 if (k_cfg->layoutSpecificSize > 10000) {
900 /* sanity check */
901 RF_Free(k_cfg, sizeof(RF_Config_t));
902 return (EINVAL);
903 }
904 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
905 (u_char *));
906 if (specific_buf == NULL) {
907 RF_Free(k_cfg, sizeof(RF_Config_t));
908 return (ENOMEM);
909 }
910 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
911 k_cfg->layoutSpecificSize);
912 if (retcode) {
913 RF_Free(k_cfg, sizeof(RF_Config_t));
914 RF_Free(specific_buf,
915 k_cfg->layoutSpecificSize);
916 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
917 retcode));
918 return (retcode);
919 }
920 } else
921 specific_buf = NULL;
922 k_cfg->layoutSpecific = specific_buf;
923
924 /* should do some kind of sanity check on the configuration.
925 * Store the sum of all the bytes in the last byte? */
926
927 /* configure the system */
928
929 /*
930 * Clear the entire RAID descriptor, just to make sure
931 * there is no stale data left in the case of a
932 * reconfiguration
933 */
934 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
935 raidPtr->raidid = unit;
936
937 retcode = rf_Configure(raidPtr, k_cfg, NULL);
938
939 if (retcode == 0) {
940
941 /* allow this many simultaneous IO's to
942 this RAID device */
943 raidPtr->openings = RAIDOUTSTANDING;
944
945 raidinit(raidPtr);
946 rf_markalldirty(raidPtr);
947 }
948 /* free the buffers. No return code here. */
949 if (k_cfg->layoutSpecificSize) {
950 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
951 }
952 RF_Free(k_cfg, sizeof(RF_Config_t));
953
954 return (retcode);
955
956 /* shutdown the system */
957 case RAIDFRAME_SHUTDOWN:
958
959 if ((error = raidlock(rs)) != 0)
960 return (error);
961
962 /*
963 * If somebody has a partition mounted, we shouldn't
964 * shutdown.
965 */
966
967 part = DISKPART(dev);
968 pmask = (1 << part);
969 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
970 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
971 (rs->sc_dkdev.dk_copenmask & pmask))) {
972 raidunlock(rs);
973 return (EBUSY);
974 }
975
976 retcode = rf_Shutdown(raidPtr);
977
978 /* It's no longer initialized... */
979 rs->sc_flags &= ~RAIDF_INITED;
980
981 /* Detach the disk. */
982 disk_detach(&rs->sc_dkdev);
983
984 raidunlock(rs);
985
986 return (retcode);
987 case RAIDFRAME_GET_COMPONENT_LABEL:
988 clabel_ptr = (RF_ComponentLabel_t **) data;
989 /* need to read the component label for the disk indicated
990 by row,column in clabel */
991
992 /* For practice, let's get it directly fromdisk, rather
993 than from the in-core copy */
994 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
995 (RF_ComponentLabel_t *));
996 if (clabel == NULL)
997 return (ENOMEM);
998
999 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1000
1001 retcode = copyin( *clabel_ptr, clabel,
1002 sizeof(RF_ComponentLabel_t));
1003
1004 if (retcode) {
1005 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1006 return(retcode);
1007 }
1008
1009 clabel->row = 0; /* Don't allow looking at anything else.*/
1010
1011 column = clabel->column;
1012
1013 if ((column < 0) || (column >= raidPtr->numCol +
1014 raidPtr->numSpare)) {
1015 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1016 return(EINVAL);
1017 }
1018
1019 raidread_component_label(raidPtr->Disks[column].dev,
1020 raidPtr->raid_cinfo[column].ci_vp,
1021 clabel );
1022
1023 retcode = copyout(clabel, *clabel_ptr,
1024 sizeof(RF_ComponentLabel_t));
1025 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1026 return (retcode);
1027
1028 case RAIDFRAME_SET_COMPONENT_LABEL:
1029 clabel = (RF_ComponentLabel_t *) data;
1030
1031 /* XXX check the label for valid stuff... */
1032 /* Note that some things *should not* get modified --
1033 the user should be re-initing the labels instead of
1034 trying to patch things.
1035 */
1036
1037 raidid = raidPtr->raidid;
1038 #if DEBUG
1039 printf("raid%d: Got component label:\n", raidid);
1040 printf("raid%d: Version: %d\n", raidid, clabel->version);
1041 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1042 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1043 printf("raid%d: Column: %d\n", raidid, clabel->column);
1044 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1045 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1046 printf("raid%d: Status: %d\n", raidid, clabel->status);
1047 #endif
1048 clabel->row = 0;
1049 column = clabel->column;
1050
1051 if ((column < 0) || (column >= raidPtr->numCol)) {
1052 return(EINVAL);
1053 }
1054
1055 /* XXX this isn't allowed to do anything for now :-) */
1056
1057 /* XXX and before it is, we need to fill in the rest
1058 of the fields!?!?!?! */
1059 #if 0
1060 raidwrite_component_label(
1061 raidPtr->Disks[column].dev,
1062 raidPtr->raid_cinfo[column].ci_vp,
1063 clabel );
1064 #endif
1065 return (0);
1066
1067 case RAIDFRAME_INIT_LABELS:
1068 clabel = (RF_ComponentLabel_t *) data;
1069 /*
1070 we only want the serial number from
1071 the above. We get all the rest of the information
1072 from the config that was used to create this RAID
1073 set.
1074 */
1075
1076 raidPtr->serial_number = clabel->serial_number;
1077
1078 raid_init_component_label(raidPtr, &ci_label);
1079 ci_label.serial_number = clabel->serial_number;
1080 ci_label.row = 0; /* we dont' pretend to support more */
1081
1082 for(column=0;column<raidPtr->numCol;column++) {
1083 diskPtr = &raidPtr->Disks[column];
1084 if (!RF_DEAD_DISK(diskPtr->status)) {
1085 ci_label.partitionSize = diskPtr->partitionSize;
1086 ci_label.column = column;
1087 raidwrite_component_label(
1088 raidPtr->Disks[column].dev,
1089 raidPtr->raid_cinfo[column].ci_vp,
1090 &ci_label );
1091 }
1092 }
1093
1094 return (retcode);
1095 case RAIDFRAME_SET_AUTOCONFIG:
1096 d = rf_set_autoconfig(raidPtr, *(int *) data);
1097 printf("raid%d: New autoconfig value is: %d\n",
1098 raidPtr->raidid, d);
1099 *(int *) data = d;
1100 return (retcode);
1101
1102 case RAIDFRAME_SET_ROOT:
1103 d = rf_set_rootpartition(raidPtr, *(int *) data);
1104 printf("raid%d: New rootpartition value is: %d\n",
1105 raidPtr->raidid, d);
1106 *(int *) data = d;
1107 return (retcode);
1108
1109 /* initialize all parity */
1110 case RAIDFRAME_REWRITEPARITY:
1111
1112 if (raidPtr->Layout.map->faultsTolerated == 0) {
1113 /* Parity for RAID 0 is trivially correct */
1114 raidPtr->parity_good = RF_RAID_CLEAN;
1115 return(0);
1116 }
1117
1118 if (raidPtr->parity_rewrite_in_progress == 1) {
1119 /* Re-write is already in progress! */
1120 return(EINVAL);
1121 }
1122
1123 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1124 rf_RewriteParityThread,
1125 raidPtr,"raid_parity");
1126 return (retcode);
1127
1128
1129 case RAIDFRAME_ADD_HOT_SPARE:
1130 sparePtr = (RF_SingleComponent_t *) data;
1131 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1132 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1133 return(retcode);
1134
1135 case RAIDFRAME_REMOVE_HOT_SPARE:
1136 return(retcode);
1137
1138 case RAIDFRAME_DELETE_COMPONENT:
1139 componentPtr = (RF_SingleComponent_t *)data;
1140 memcpy( &component, componentPtr,
1141 sizeof(RF_SingleComponent_t));
1142 retcode = rf_delete_component(raidPtr, &component);
1143 return(retcode);
1144
1145 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1146 componentPtr = (RF_SingleComponent_t *)data;
1147 memcpy( &component, componentPtr,
1148 sizeof(RF_SingleComponent_t));
1149 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1150 return(retcode);
1151
1152 case RAIDFRAME_REBUILD_IN_PLACE:
1153
1154 if (raidPtr->Layout.map->faultsTolerated == 0) {
1155 /* Can't do this on a RAID 0!! */
1156 return(EINVAL);
1157 }
1158
1159 if (raidPtr->recon_in_progress == 1) {
1160 /* a reconstruct is already in progress! */
1161 return(EINVAL);
1162 }
1163
1164 componentPtr = (RF_SingleComponent_t *) data;
1165 memcpy( &component, componentPtr,
1166 sizeof(RF_SingleComponent_t));
1167 component.row = 0; /* we don't support any more */
1168 column = component.column;
1169
1170 if ((column < 0) || (column >= raidPtr->numCol)) {
1171 return(EINVAL);
1172 }
1173
1174 RF_LOCK_MUTEX(raidPtr->mutex);
1175 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1176 (raidPtr->numFailures > 0)) {
1177 /* XXX 0 above shouldn't be constant!!! */
1178 /* some component other than this has failed.
1179 Let's not make things worse than they already
1180 are... */
1181 printf("raid%d: Unable to reconstruct to disk at:\n",
1182 raidPtr->raidid);
1183 printf("raid%d: Col: %d Too many failures.\n",
1184 raidPtr->raidid, column);
1185 RF_UNLOCK_MUTEX(raidPtr->mutex);
1186 return (EINVAL);
1187 }
1188 if (raidPtr->Disks[column].status ==
1189 rf_ds_reconstructing) {
1190 printf("raid%d: Unable to reconstruct to disk at:\n",
1191 raidPtr->raidid);
1192 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1193
1194 RF_UNLOCK_MUTEX(raidPtr->mutex);
1195 return (EINVAL);
1196 }
1197 if (raidPtr->Disks[column].status == rf_ds_spared) {
1198 RF_UNLOCK_MUTEX(raidPtr->mutex);
1199 return (EINVAL);
1200 }
1201 RF_UNLOCK_MUTEX(raidPtr->mutex);
1202
1203 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1204 if (rrcopy == NULL)
1205 return(ENOMEM);
1206
1207 rrcopy->raidPtr = (void *) raidPtr;
1208 rrcopy->col = column;
1209
1210 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1211 rf_ReconstructInPlaceThread,
1212 rrcopy,"raid_reconip");
1213 return(retcode);
1214
1215 case RAIDFRAME_GET_INFO:
1216 if (!raidPtr->valid)
1217 return (ENODEV);
1218 ucfgp = (RF_DeviceConfig_t **) data;
1219 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1220 (RF_DeviceConfig_t *));
1221 if (d_cfg == NULL)
1222 return (ENOMEM);
1223 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1224 d_cfg->rows = 1; /* there is only 1 row now */
1225 d_cfg->cols = raidPtr->numCol;
1226 d_cfg->ndevs = raidPtr->numCol;
1227 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1228 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1229 return (ENOMEM);
1230 }
1231 d_cfg->nspares = raidPtr->numSpare;
1232 if (d_cfg->nspares >= RF_MAX_DISKS) {
1233 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1234 return (ENOMEM);
1235 }
1236 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1237 d = 0;
1238 for (j = 0; j < d_cfg->cols; j++) {
1239 d_cfg->devs[d] = raidPtr->Disks[j];
1240 d++;
1241 }
1242 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1243 d_cfg->spares[i] = raidPtr->Disks[j];
1244 }
1245 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1246 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1247
1248 return (retcode);
1249
1250 case RAIDFRAME_CHECK_PARITY:
1251 *(int *) data = raidPtr->parity_good;
1252 return (0);
1253
1254 case RAIDFRAME_RESET_ACCTOTALS:
1255 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1256 return (0);
1257
1258 case RAIDFRAME_GET_ACCTOTALS:
1259 totals = (RF_AccTotals_t *) data;
1260 *totals = raidPtr->acc_totals;
1261 return (0);
1262
1263 case RAIDFRAME_KEEP_ACCTOTALS:
1264 raidPtr->keep_acc_totals = *(int *)data;
1265 return (0);
1266
1267 case RAIDFRAME_GET_SIZE:
1268 *(int *) data = raidPtr->totalSectors;
1269 return (0);
1270
1271 /* fail a disk & optionally start reconstruction */
1272 case RAIDFRAME_FAIL_DISK:
1273
1274 if (raidPtr->Layout.map->faultsTolerated == 0) {
1275 /* Can't do this on a RAID 0!! */
1276 return(EINVAL);
1277 }
1278
1279 rr = (struct rf_recon_req *) data;
1280 rr->row = 0;
1281 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1282 return (EINVAL);
1283
1284
1285 RF_LOCK_MUTEX(raidPtr->mutex);
1286 if ((raidPtr->Disks[rr->col].status ==
1287 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1288 /* some other component has failed. Let's not make
1289 things worse. XXX wrong for RAID6 */
1290 RF_UNLOCK_MUTEX(raidPtr->mutex);
1291 return (EINVAL);
1292 }
1293 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1294 /* Can't fail a spared disk! */
1295 RF_UNLOCK_MUTEX(raidPtr->mutex);
1296 return (EINVAL);
1297 }
1298 RF_UNLOCK_MUTEX(raidPtr->mutex);
1299
1300 /* make a copy of the recon request so that we don't rely on
1301 * the user's buffer */
1302 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1303 if (rrcopy == NULL)
1304 return(ENOMEM);
1305 memcpy(rrcopy, rr, sizeof(*rr));
1306 rrcopy->raidPtr = (void *) raidPtr;
1307
1308 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1309 rf_ReconThread,
1310 rrcopy,"raid_recon");
1311 return (0);
1312
1313 /* invoke a copyback operation after recon on whatever disk
1314 * needs it, if any */
1315 case RAIDFRAME_COPYBACK:
1316
1317 if (raidPtr->Layout.map->faultsTolerated == 0) {
1318 /* This makes no sense on a RAID 0!! */
1319 return(EINVAL);
1320 }
1321
1322 if (raidPtr->copyback_in_progress == 1) {
1323 /* Copyback is already in progress! */
1324 return(EINVAL);
1325 }
1326
1327 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1328 rf_CopybackThread,
1329 raidPtr,"raid_copyback");
1330 return (retcode);
1331
1332 /* return the percentage completion of reconstruction */
1333 case RAIDFRAME_CHECK_RECON_STATUS:
1334 if (raidPtr->Layout.map->faultsTolerated == 0) {
1335 /* This makes no sense on a RAID 0, so tell the
1336 user it's done. */
1337 *(int *) data = 100;
1338 return(0);
1339 }
1340 if (raidPtr->status != rf_rs_reconstructing)
1341 *(int *) data = 100;
1342 else {
1343 if (raidPtr->reconControl->numRUsTotal > 0) {
1344 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1345 } else {
1346 *(int *) data = 0;
1347 }
1348 }
1349 return (0);
1350 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1351 progressInfoPtr = (RF_ProgressInfo_t **) data;
1352 if (raidPtr->status != rf_rs_reconstructing) {
1353 progressInfo.remaining = 0;
1354 progressInfo.completed = 100;
1355 progressInfo.total = 100;
1356 } else {
1357 progressInfo.total =
1358 raidPtr->reconControl->numRUsTotal;
1359 progressInfo.completed =
1360 raidPtr->reconControl->numRUsComplete;
1361 progressInfo.remaining = progressInfo.total -
1362 progressInfo.completed;
1363 }
1364 retcode = copyout(&progressInfo, *progressInfoPtr,
1365 sizeof(RF_ProgressInfo_t));
1366 return (retcode);
1367
1368 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1369 if (raidPtr->Layout.map->faultsTolerated == 0) {
1370 /* This makes no sense on a RAID 0, so tell the
1371 user it's done. */
1372 *(int *) data = 100;
1373 return(0);
1374 }
1375 if (raidPtr->parity_rewrite_in_progress == 1) {
1376 *(int *) data = 100 *
1377 raidPtr->parity_rewrite_stripes_done /
1378 raidPtr->Layout.numStripe;
1379 } else {
1380 *(int *) data = 100;
1381 }
1382 return (0);
1383
1384 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1385 progressInfoPtr = (RF_ProgressInfo_t **) data;
1386 if (raidPtr->parity_rewrite_in_progress == 1) {
1387 progressInfo.total = raidPtr->Layout.numStripe;
1388 progressInfo.completed =
1389 raidPtr->parity_rewrite_stripes_done;
1390 progressInfo.remaining = progressInfo.total -
1391 progressInfo.completed;
1392 } else {
1393 progressInfo.remaining = 0;
1394 progressInfo.completed = 100;
1395 progressInfo.total = 100;
1396 }
1397 retcode = copyout(&progressInfo, *progressInfoPtr,
1398 sizeof(RF_ProgressInfo_t));
1399 return (retcode);
1400
1401 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1402 if (raidPtr->Layout.map->faultsTolerated == 0) {
1403 /* This makes no sense on a RAID 0 */
1404 *(int *) data = 100;
1405 return(0);
1406 }
1407 if (raidPtr->copyback_in_progress == 1) {
1408 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1409 raidPtr->Layout.numStripe;
1410 } else {
1411 *(int *) data = 100;
1412 }
1413 return (0);
1414
1415 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1416 progressInfoPtr = (RF_ProgressInfo_t **) data;
1417 if (raidPtr->copyback_in_progress == 1) {
1418 progressInfo.total = raidPtr->Layout.numStripe;
1419 progressInfo.completed =
1420 raidPtr->copyback_stripes_done;
1421 progressInfo.remaining = progressInfo.total -
1422 progressInfo.completed;
1423 } else {
1424 progressInfo.remaining = 0;
1425 progressInfo.completed = 100;
1426 progressInfo.total = 100;
1427 }
1428 retcode = copyout(&progressInfo, *progressInfoPtr,
1429 sizeof(RF_ProgressInfo_t));
1430 return (retcode);
1431
1432 /* the sparetable daemon calls this to wait for the kernel to
1433 * need a spare table. this ioctl does not return until a
1434 * spare table is needed. XXX -- calling mpsleep here in the
1435 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1436 * -- I should either compute the spare table in the kernel,
1437 * or have a different -- XXX XXX -- interface (a different
1438 * character device) for delivering the table -- XXX */
1439 #if 0
1440 case RAIDFRAME_SPARET_WAIT:
1441 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1442 while (!rf_sparet_wait_queue)
1443 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1444 waitreq = rf_sparet_wait_queue;
1445 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1446 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1447
1448 /* structure assignment */
1449 *((RF_SparetWait_t *) data) = *waitreq;
1450
1451 RF_Free(waitreq, sizeof(*waitreq));
1452 return (0);
1453
1454 /* wakes up a process waiting on SPARET_WAIT and puts an error
1455 * code in it that will cause the dameon to exit */
1456 case RAIDFRAME_ABORT_SPARET_WAIT:
1457 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1458 waitreq->fcol = -1;
1459 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1460 waitreq->next = rf_sparet_wait_queue;
1461 rf_sparet_wait_queue = waitreq;
1462 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1463 wakeup(&rf_sparet_wait_queue);
1464 return (0);
1465
1466 /* used by the spare table daemon to deliver a spare table
1467 * into the kernel */
1468 case RAIDFRAME_SEND_SPARET:
1469
1470 /* install the spare table */
1471 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1472
1473 /* respond to the requestor. the return status of the spare
1474 * table installation is passed in the "fcol" field */
1475 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1476 waitreq->fcol = retcode;
1477 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1478 waitreq->next = rf_sparet_resp_queue;
1479 rf_sparet_resp_queue = waitreq;
1480 wakeup(&rf_sparet_resp_queue);
1481 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1482
1483 return (retcode);
1484 #endif
1485
1486 default:
1487 break; /* fall through to the os-specific code below */
1488
1489 }
1490
1491 if (!raidPtr->valid)
1492 return (EINVAL);
1493
1494 /*
1495 * Add support for "regular" device ioctls here.
1496 */
1497
1498 switch (cmd) {
1499 case DIOCGDINFO:
1500 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1501 break;
1502 #ifdef __HAVE_OLD_DISKLABEL
1503 case ODIOCGDINFO:
1504 newlabel = *(rs->sc_dkdev.dk_label);
1505 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1506 return ENOTTY;
1507 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1508 break;
1509 #endif
1510
1511 case DIOCGPART:
1512 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1513 ((struct partinfo *) data)->part =
1514 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1515 break;
1516
1517 case DIOCWDINFO:
1518 case DIOCSDINFO:
1519 #ifdef __HAVE_OLD_DISKLABEL
1520 case ODIOCWDINFO:
1521 case ODIOCSDINFO:
1522 #endif
1523 {
1524 struct disklabel *lp;
1525 #ifdef __HAVE_OLD_DISKLABEL
1526 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1527 memset(&newlabel, 0, sizeof newlabel);
1528 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1529 lp = &newlabel;
1530 } else
1531 #endif
1532 lp = (struct disklabel *)data;
1533
1534 if ((error = raidlock(rs)) != 0)
1535 return (error);
1536
1537 rs->sc_flags |= RAIDF_LABELLING;
1538
1539 error = setdisklabel(rs->sc_dkdev.dk_label,
1540 lp, 0, rs->sc_dkdev.dk_cpulabel);
1541 if (error == 0) {
1542 if (cmd == DIOCWDINFO
1543 #ifdef __HAVE_OLD_DISKLABEL
1544 || cmd == ODIOCWDINFO
1545 #endif
1546 )
1547 error = writedisklabel(RAIDLABELDEV(dev),
1548 raidstrategy, rs->sc_dkdev.dk_label,
1549 rs->sc_dkdev.dk_cpulabel);
1550 }
1551 rs->sc_flags &= ~RAIDF_LABELLING;
1552
1553 raidunlock(rs);
1554
1555 if (error)
1556 return (error);
1557 break;
1558 }
1559
1560 case DIOCWLABEL:
1561 if (*(int *) data != 0)
1562 rs->sc_flags |= RAIDF_WLABEL;
1563 else
1564 rs->sc_flags &= ~RAIDF_WLABEL;
1565 break;
1566
1567 case DIOCGDEFLABEL:
1568 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1569 break;
1570
1571 #ifdef __HAVE_OLD_DISKLABEL
1572 case ODIOCGDEFLABEL:
1573 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1574 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1575 return ENOTTY;
1576 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1577 break;
1578 #endif
1579
1580 default:
1581 retcode = ENOTTY;
1582 }
1583 return (retcode);
1584
1585 }
1586
1587
1588 /* raidinit -- complete the rest of the initialization for the
1589 RAIDframe device. */
1590
1591
1592 static void
1593 raidinit(RF_Raid_t *raidPtr)
1594 {
1595 struct raid_softc *rs;
1596 int unit;
1597
1598 unit = raidPtr->raidid;
1599
1600 rs = &raid_softc[unit];
1601
1602 /* XXX should check return code first... */
1603 rs->sc_flags |= RAIDF_INITED;
1604
1605 sprintf(rs->sc_xname, "raid%d", unit); /* XXX doesn't check bounds. */
1606
1607 rs->sc_dkdev.dk_name = rs->sc_xname;
1608
1609 /* disk_attach actually creates space for the CPU disklabel, among
1610 * other things, so it's critical to call this *BEFORE* we try putzing
1611 * with disklabels. */
1612
1613 disk_attach(&rs->sc_dkdev);
1614
1615 /* XXX There may be a weird interaction here between this, and
1616 * protectedSectors, as used in RAIDframe. */
1617
1618 rs->sc_size = raidPtr->totalSectors;
1619 }
1620 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1621 /* wake up the daemon & tell it to get us a spare table
1622 * XXX
1623 * the entries in the queues should be tagged with the raidPtr
1624 * so that in the extremely rare case that two recons happen at once,
1625 * we know for which device were requesting a spare table
1626 * XXX
1627 *
1628 * XXX This code is not currently used. GO
1629 */
1630 int
1631 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1632 {
1633 int retcode;
1634
1635 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1636 req->next = rf_sparet_wait_queue;
1637 rf_sparet_wait_queue = req;
1638 wakeup(&rf_sparet_wait_queue);
1639
1640 /* mpsleep unlocks the mutex */
1641 while (!rf_sparet_resp_queue) {
1642 tsleep(&rf_sparet_resp_queue, PRIBIO,
1643 "raidframe getsparetable", 0);
1644 }
1645 req = rf_sparet_resp_queue;
1646 rf_sparet_resp_queue = req->next;
1647 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1648
1649 retcode = req->fcol;
1650 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1651 * alloc'd */
1652 return (retcode);
1653 }
1654 #endif
1655
1656 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1657 * bp & passes it down.
1658 * any calls originating in the kernel must use non-blocking I/O
1659 * do some extra sanity checking to return "appropriate" error values for
1660 * certain conditions (to make some standard utilities work)
1661 *
1662 * Formerly known as: rf_DoAccessKernel
1663 */
1664 void
1665 raidstart(RF_Raid_t *raidPtr)
1666 {
1667 RF_SectorCount_t num_blocks, pb, sum;
1668 RF_RaidAddr_t raid_addr;
1669 struct partition *pp;
1670 daddr_t blocknum;
1671 int unit;
1672 struct raid_softc *rs;
1673 int do_async;
1674 struct buf *bp;
1675 int rc;
1676
1677 unit = raidPtr->raidid;
1678 rs = &raid_softc[unit];
1679
1680 /* quick check to see if anything has died recently */
1681 RF_LOCK_MUTEX(raidPtr->mutex);
1682 if (raidPtr->numNewFailures > 0) {
1683 RF_UNLOCK_MUTEX(raidPtr->mutex);
1684 rf_update_component_labels(raidPtr,
1685 RF_NORMAL_COMPONENT_UPDATE);
1686 RF_LOCK_MUTEX(raidPtr->mutex);
1687 raidPtr->numNewFailures--;
1688 }
1689
1690 /* Check to see if we're at the limit... */
1691 while (raidPtr->openings > 0) {
1692 RF_UNLOCK_MUTEX(raidPtr->mutex);
1693
1694 /* get the next item, if any, from the queue */
1695 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1696 /* nothing more to do */
1697 return;
1698 }
1699
1700 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1701 * partition.. Need to make it absolute to the underlying
1702 * device.. */
1703
1704 blocknum = bp->b_blkno;
1705 if (DISKPART(bp->b_dev) != RAW_PART) {
1706 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1707 blocknum += pp->p_offset;
1708 }
1709
1710 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1711 (int) blocknum));
1712
1713 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1714 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1715
1716 /* *THIS* is where we adjust what block we're going to...
1717 * but DO NOT TOUCH bp->b_blkno!!! */
1718 raid_addr = blocknum;
1719
1720 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1721 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1722 sum = raid_addr + num_blocks + pb;
1723 if (1 || rf_debugKernelAccess) {
1724 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1725 (int) raid_addr, (int) sum, (int) num_blocks,
1726 (int) pb, (int) bp->b_resid));
1727 }
1728 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1729 || (sum < num_blocks) || (sum < pb)) {
1730 bp->b_error = ENOSPC;
1731 bp->b_flags |= B_ERROR;
1732 bp->b_resid = bp->b_bcount;
1733 biodone(bp);
1734 RF_LOCK_MUTEX(raidPtr->mutex);
1735 continue;
1736 }
1737 /*
1738 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1739 */
1740
1741 if (bp->b_bcount & raidPtr->sectorMask) {
1742 bp->b_error = EINVAL;
1743 bp->b_flags |= B_ERROR;
1744 bp->b_resid = bp->b_bcount;
1745 biodone(bp);
1746 RF_LOCK_MUTEX(raidPtr->mutex);
1747 continue;
1748
1749 }
1750 db1_printf(("Calling DoAccess..\n"));
1751
1752
1753 RF_LOCK_MUTEX(raidPtr->mutex);
1754 raidPtr->openings--;
1755 RF_UNLOCK_MUTEX(raidPtr->mutex);
1756
1757 /*
1758 * Everything is async.
1759 */
1760 do_async = 1;
1761
1762 disk_busy(&rs->sc_dkdev);
1763
1764 /* XXX we're still at splbio() here... do we *really*
1765 need to be? */
1766
1767 /* don't ever condition on bp->b_flags & B_WRITE.
1768 * always condition on B_READ instead */
1769
1770 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1771 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1772 do_async, raid_addr, num_blocks,
1773 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1774
1775 if (rc) {
1776 bp->b_error = rc;
1777 bp->b_flags |= B_ERROR;
1778 bp->b_resid = bp->b_bcount;
1779 biodone(bp);
1780 /* continue loop */
1781 }
1782
1783 RF_LOCK_MUTEX(raidPtr->mutex);
1784 }
1785 RF_UNLOCK_MUTEX(raidPtr->mutex);
1786 }
1787
1788
1789
1790
1791 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1792
1793 int
1794 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1795 {
1796 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1797 struct buf *bp;
1798 struct raidbuf *raidbp = NULL;
1799
1800 req->queue = queue;
1801
1802 #if DIAGNOSTIC
1803 if (queue->raidPtr->raidid >= numraid) {
1804 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1805 numraid);
1806 panic("Invalid Unit number in rf_DispatchKernelIO");
1807 }
1808 #endif
1809
1810 bp = req->bp;
1811 #if 1
1812 /* XXX when there is a physical disk failure, someone is passing us a
1813 * buffer that contains old stuff!! Attempt to deal with this problem
1814 * without taking a performance hit... (not sure where the real bug
1815 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1816
1817 if (bp->b_flags & B_ERROR) {
1818 bp->b_flags &= ~B_ERROR;
1819 }
1820 if (bp->b_error != 0) {
1821 bp->b_error = 0;
1822 }
1823 #endif
1824 raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
1825 if (raidbp == NULL) {
1826 bp->b_flags |= B_ERROR;
1827 bp->b_error = ENOMEM;
1828 return (ENOMEM);
1829 }
1830 BUF_INIT(&raidbp->rf_buf);
1831
1832 /*
1833 * context for raidiodone
1834 */
1835 raidbp->rf_obp = bp;
1836 raidbp->req = req;
1837
1838 BIO_COPYPRIO(&raidbp->rf_buf, bp);
1839
1840 switch (req->type) {
1841 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1842 /* XXX need to do something extra here.. */
1843 /* I'm leaving this in, as I've never actually seen it used,
1844 * and I'd like folks to report it... GO */
1845 printf(("WAKEUP CALLED\n"));
1846 queue->numOutstanding++;
1847
1848 /* XXX need to glue the original buffer into this?? */
1849
1850 KernelWakeupFunc(&raidbp->rf_buf);
1851 break;
1852
1853 case RF_IO_TYPE_READ:
1854 case RF_IO_TYPE_WRITE:
1855 #if RF_ACC_TRACE > 0
1856 if (req->tracerec) {
1857 RF_ETIMER_START(req->tracerec->timer);
1858 }
1859 #endif
1860 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1861 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1862 req->sectorOffset, req->numSector,
1863 req->buf, KernelWakeupFunc, (void *) req,
1864 queue->raidPtr->logBytesPerSector, req->b_proc);
1865
1866 if (rf_debugKernelAccess) {
1867 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1868 (long) bp->b_blkno));
1869 }
1870 queue->numOutstanding++;
1871 queue->last_deq_sector = req->sectorOffset;
1872 /* acc wouldn't have been let in if there were any pending
1873 * reqs at any other priority */
1874 queue->curPriority = req->priority;
1875
1876 db1_printf(("Going for %c to unit %d col %d\n",
1877 req->type, queue->raidPtr->raidid,
1878 queue->col));
1879 db1_printf(("sector %d count %d (%d bytes) %d\n",
1880 (int) req->sectorOffset, (int) req->numSector,
1881 (int) (req->numSector <<
1882 queue->raidPtr->logBytesPerSector),
1883 (int) queue->raidPtr->logBytesPerSector));
1884 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1885 raidbp->rf_buf.b_vp->v_numoutput++;
1886 }
1887 VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
1888
1889 break;
1890
1891 default:
1892 panic("bad req->type in rf_DispatchKernelIO");
1893 }
1894 db1_printf(("Exiting from DispatchKernelIO\n"));
1895
1896 return (0);
1897 }
1898 /* this is the callback function associated with a I/O invoked from
1899 kernel code.
1900 */
1901 static void
1902 KernelWakeupFunc(struct buf *vbp)
1903 {
1904 RF_DiskQueueData_t *req = NULL;
1905 RF_DiskQueue_t *queue;
1906 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1907 struct buf *bp;
1908 int s;
1909
1910 s = splbio();
1911 db1_printf(("recovering the request queue:\n"));
1912 req = raidbp->req;
1913
1914 bp = raidbp->rf_obp;
1915
1916 queue = (RF_DiskQueue_t *) req->queue;
1917
1918 if (raidbp->rf_buf.b_flags & B_ERROR) {
1919 bp->b_flags |= B_ERROR;
1920 bp->b_error = raidbp->rf_buf.b_error ?
1921 raidbp->rf_buf.b_error : EIO;
1922 }
1923
1924 /* XXX methinks this could be wrong... */
1925 #if 1
1926 bp->b_resid = raidbp->rf_buf.b_resid;
1927 #endif
1928 #if RF_ACC_TRACE > 0
1929 if (req->tracerec) {
1930 RF_ETIMER_STOP(req->tracerec->timer);
1931 RF_ETIMER_EVAL(req->tracerec->timer);
1932 RF_LOCK_MUTEX(rf_tracing_mutex);
1933 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1934 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1935 req->tracerec->num_phys_ios++;
1936 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1937 }
1938 #endif
1939 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1940
1941 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1942 * ballistic, and mark the component as hosed... */
1943
1944 if (bp->b_flags & B_ERROR) {
1945 /* Mark the disk as dead */
1946 /* but only mark it once... */
1947 /* and only if it wouldn't leave this RAID set
1948 completely broken */
1949 if ((queue->raidPtr->Disks[queue->col].status ==
1950 rf_ds_optimal) && (queue->raidPtr->numFailures <
1951 queue->raidPtr->Layout.map->faultsTolerated)) {
1952 printf("raid%d: IO Error. Marking %s as failed.\n",
1953 queue->raidPtr->raidid,
1954 queue->raidPtr->Disks[queue->col].devname);
1955 queue->raidPtr->Disks[queue->col].status =
1956 rf_ds_failed;
1957 queue->raidPtr->status = rf_rs_degraded;
1958 queue->raidPtr->numFailures++;
1959 queue->raidPtr->numNewFailures++;
1960 } else { /* Disk is already dead... */
1961 /* printf("Disk already marked as dead!\n"); */
1962 }
1963
1964 }
1965
1966 pool_put(&rf_pools.cbuf, raidbp);
1967
1968 /* Fill in the error value */
1969
1970 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1971
1972 simple_lock(&queue->raidPtr->iodone_lock);
1973
1974 /* Drop this one on the "finished" queue... */
1975 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1976
1977 /* Let the raidio thread know there is work to be done. */
1978 wakeup(&(queue->raidPtr->iodone));
1979
1980 simple_unlock(&queue->raidPtr->iodone_lock);
1981
1982 splx(s);
1983 }
1984
1985
1986
1987 /*
1988 * initialize a buf structure for doing an I/O in the kernel.
1989 */
1990 static void
1991 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
1992 RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
1993 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
1994 struct proc *b_proc)
1995 {
1996 /* bp->b_flags = B_PHYS | rw_flag; */
1997 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
1998 bp->b_bcount = numSect << logBytesPerSector;
1999 bp->b_bufsize = bp->b_bcount;
2000 bp->b_error = 0;
2001 bp->b_dev = dev;
2002 bp->b_data = buf;
2003 bp->b_blkno = startSect;
2004 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2005 if (bp->b_bcount == 0) {
2006 panic("bp->b_bcount is zero in InitBP!!");
2007 }
2008 bp->b_proc = b_proc;
2009 bp->b_iodone = cbFunc;
2010 bp->b_vp = b_vp;
2011
2012 }
2013
2014 static void
2015 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2016 struct disklabel *lp)
2017 {
2018 memset(lp, 0, sizeof(*lp));
2019
2020 /* fabricate a label... */
2021 lp->d_secperunit = raidPtr->totalSectors;
2022 lp->d_secsize = raidPtr->bytesPerSector;
2023 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2024 lp->d_ntracks = 4 * raidPtr->numCol;
2025 lp->d_ncylinders = raidPtr->totalSectors /
2026 (lp->d_nsectors * lp->d_ntracks);
2027 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2028
2029 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2030 lp->d_type = DTYPE_RAID;
2031 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2032 lp->d_rpm = 3600;
2033 lp->d_interleave = 1;
2034 lp->d_flags = 0;
2035
2036 lp->d_partitions[RAW_PART].p_offset = 0;
2037 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2038 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2039 lp->d_npartitions = RAW_PART + 1;
2040
2041 lp->d_magic = DISKMAGIC;
2042 lp->d_magic2 = DISKMAGIC;
2043 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2044
2045 }
2046 /*
2047 * Read the disklabel from the raid device. If one is not present, fake one
2048 * up.
2049 */
2050 static void
2051 raidgetdisklabel(dev_t dev)
2052 {
2053 int unit = raidunit(dev);
2054 struct raid_softc *rs = &raid_softc[unit];
2055 const char *errstring;
2056 struct disklabel *lp = rs->sc_dkdev.dk_label;
2057 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2058 RF_Raid_t *raidPtr;
2059
2060 db1_printf(("Getting the disklabel...\n"));
2061
2062 memset(clp, 0, sizeof(*clp));
2063
2064 raidPtr = raidPtrs[unit];
2065
2066 raidgetdefaultlabel(raidPtr, rs, lp);
2067
2068 /*
2069 * Call the generic disklabel extraction routine.
2070 */
2071 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2072 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2073 if (errstring)
2074 raidmakedisklabel(rs);
2075 else {
2076 int i;
2077 struct partition *pp;
2078
2079 /*
2080 * Sanity check whether the found disklabel is valid.
2081 *
2082 * This is necessary since total size of the raid device
2083 * may vary when an interleave is changed even though exactly
2084 * same componets are used, and old disklabel may used
2085 * if that is found.
2086 */
2087 if (lp->d_secperunit != rs->sc_size)
2088 printf("raid%d: WARNING: %s: "
2089 "total sector size in disklabel (%d) != "
2090 "the size of raid (%ld)\n", unit, rs->sc_xname,
2091 lp->d_secperunit, (long) rs->sc_size);
2092 for (i = 0; i < lp->d_npartitions; i++) {
2093 pp = &lp->d_partitions[i];
2094 if (pp->p_offset + pp->p_size > rs->sc_size)
2095 printf("raid%d: WARNING: %s: end of partition `%c' "
2096 "exceeds the size of raid (%ld)\n",
2097 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2098 }
2099 }
2100
2101 }
2102 /*
2103 * Take care of things one might want to take care of in the event
2104 * that a disklabel isn't present.
2105 */
2106 static void
2107 raidmakedisklabel(struct raid_softc *rs)
2108 {
2109 struct disklabel *lp = rs->sc_dkdev.dk_label;
2110 db1_printf(("Making a label..\n"));
2111
2112 /*
2113 * For historical reasons, if there's no disklabel present
2114 * the raw partition must be marked FS_BSDFFS.
2115 */
2116
2117 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2118
2119 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2120
2121 lp->d_checksum = dkcksum(lp);
2122 }
2123 /*
2124 * Lookup the provided name in the filesystem. If the file exists,
2125 * is a valid block device, and isn't being used by anyone else,
2126 * set *vpp to the file's vnode.
2127 * You'll find the original of this in ccd.c
2128 */
2129 int
2130 raidlookup(char *path, struct proc *p, struct vnode **vpp)
2131 {
2132 struct nameidata nd;
2133 struct vnode *vp;
2134 struct vattr va;
2135 int error;
2136
2137 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2138 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2139 return (error);
2140 }
2141 vp = nd.ni_vp;
2142 if (vp->v_usecount > 1) {
2143 VOP_UNLOCK(vp, 0);
2144 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2145 return (EBUSY);
2146 }
2147 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2148 VOP_UNLOCK(vp, 0);
2149 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2150 return (error);
2151 }
2152 /* XXX: eventually we should handle VREG, too. */
2153 if (va.va_type != VBLK) {
2154 VOP_UNLOCK(vp, 0);
2155 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2156 return (ENOTBLK);
2157 }
2158 VOP_UNLOCK(vp, 0);
2159 *vpp = vp;
2160 return (0);
2161 }
2162 /*
2163 * Wait interruptibly for an exclusive lock.
2164 *
2165 * XXX
2166 * Several drivers do this; it should be abstracted and made MP-safe.
2167 * (Hmm... where have we seen this warning before :-> GO )
2168 */
2169 static int
2170 raidlock(struct raid_softc *rs)
2171 {
2172 int error;
2173
2174 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2175 rs->sc_flags |= RAIDF_WANTED;
2176 if ((error =
2177 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2178 return (error);
2179 }
2180 rs->sc_flags |= RAIDF_LOCKED;
2181 return (0);
2182 }
2183 /*
2184 * Unlock and wake up any waiters.
2185 */
2186 static void
2187 raidunlock(struct raid_softc *rs)
2188 {
2189
2190 rs->sc_flags &= ~RAIDF_LOCKED;
2191 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2192 rs->sc_flags &= ~RAIDF_WANTED;
2193 wakeup(rs);
2194 }
2195 }
2196
2197
2198 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2199 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2200
2201 int
2202 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2203 {
2204 RF_ComponentLabel_t clabel;
2205 raidread_component_label(dev, b_vp, &clabel);
2206 clabel.mod_counter = mod_counter;
2207 clabel.clean = RF_RAID_CLEAN;
2208 raidwrite_component_label(dev, b_vp, &clabel);
2209 return(0);
2210 }
2211
2212
2213 int
2214 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2215 {
2216 RF_ComponentLabel_t clabel;
2217 raidread_component_label(dev, b_vp, &clabel);
2218 clabel.mod_counter = mod_counter;
2219 clabel.clean = RF_RAID_DIRTY;
2220 raidwrite_component_label(dev, b_vp, &clabel);
2221 return(0);
2222 }
2223
2224 /* ARGSUSED */
2225 int
2226 raidread_component_label(dev_t dev, struct vnode *b_vp,
2227 RF_ComponentLabel_t *clabel)
2228 {
2229 struct buf *bp;
2230 const struct bdevsw *bdev;
2231 int error;
2232
2233 /* XXX should probably ensure that we don't try to do this if
2234 someone has changed rf_protected_sectors. */
2235
2236 if (b_vp == NULL) {
2237 /* For whatever reason, this component is not valid.
2238 Don't try to read a component label from it. */
2239 return(EINVAL);
2240 }
2241
2242 /* get a block of the appropriate size... */
2243 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2244 bp->b_dev = dev;
2245
2246 /* get our ducks in a row for the read */
2247 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2248 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2249 bp->b_flags |= B_READ;
2250 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2251
2252 bdev = bdevsw_lookup(bp->b_dev);
2253 if (bdev == NULL)
2254 return (ENXIO);
2255 (*bdev->d_strategy)(bp);
2256
2257 error = biowait(bp);
2258
2259 if (!error) {
2260 memcpy(clabel, bp->b_data,
2261 sizeof(RF_ComponentLabel_t));
2262 }
2263
2264 brelse(bp);
2265 return(error);
2266 }
2267 /* ARGSUSED */
2268 int
2269 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2270 RF_ComponentLabel_t *clabel)
2271 {
2272 struct buf *bp;
2273 const struct bdevsw *bdev;
2274 int error;
2275
2276 /* get a block of the appropriate size... */
2277 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2278 bp->b_dev = dev;
2279
2280 /* get our ducks in a row for the write */
2281 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2282 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2283 bp->b_flags |= B_WRITE;
2284 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2285
2286 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2287
2288 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2289
2290 bdev = bdevsw_lookup(bp->b_dev);
2291 if (bdev == NULL)
2292 return (ENXIO);
2293 (*bdev->d_strategy)(bp);
2294 error = biowait(bp);
2295 brelse(bp);
2296 if (error) {
2297 #if 1
2298 printf("Failed to write RAID component info!\n");
2299 #endif
2300 }
2301
2302 return(error);
2303 }
2304
2305 void
2306 rf_markalldirty(RF_Raid_t *raidPtr)
2307 {
2308 RF_ComponentLabel_t clabel;
2309 int sparecol;
2310 int c;
2311 int j;
2312 int scol = -1;
2313
2314 raidPtr->mod_counter++;
2315 for (c = 0; c < raidPtr->numCol; c++) {
2316 /* we don't want to touch (at all) a disk that has
2317 failed */
2318 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2319 raidread_component_label(
2320 raidPtr->Disks[c].dev,
2321 raidPtr->raid_cinfo[c].ci_vp,
2322 &clabel);
2323 if (clabel.status == rf_ds_spared) {
2324 /* XXX do something special...
2325 but whatever you do, don't
2326 try to access it!! */
2327 } else {
2328 raidmarkdirty(
2329 raidPtr->Disks[c].dev,
2330 raidPtr->raid_cinfo[c].ci_vp,
2331 raidPtr->mod_counter);
2332 }
2333 }
2334 }
2335
2336 for( c = 0; c < raidPtr->numSpare ; c++) {
2337 sparecol = raidPtr->numCol + c;
2338 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2339 /*
2340
2341 we claim this disk is "optimal" if it's
2342 rf_ds_used_spare, as that means it should be
2343 directly substitutable for the disk it replaced.
2344 We note that too...
2345
2346 */
2347
2348 for(j=0;j<raidPtr->numCol;j++) {
2349 if (raidPtr->Disks[j].spareCol == sparecol) {
2350 scol = j;
2351 break;
2352 }
2353 }
2354
2355 raidread_component_label(
2356 raidPtr->Disks[sparecol].dev,
2357 raidPtr->raid_cinfo[sparecol].ci_vp,
2358 &clabel);
2359 /* make sure status is noted */
2360
2361 raid_init_component_label(raidPtr, &clabel);
2362
2363 clabel.row = 0;
2364 clabel.column = scol;
2365 /* Note: we *don't* change status from rf_ds_used_spare
2366 to rf_ds_optimal */
2367 /* clabel.status = rf_ds_optimal; */
2368
2369 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2370 raidPtr->raid_cinfo[sparecol].ci_vp,
2371 raidPtr->mod_counter);
2372 }
2373 }
2374 }
2375
2376
2377 void
2378 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2379 {
2380 RF_ComponentLabel_t clabel;
2381 int sparecol;
2382 int c;
2383 int j;
2384 int scol;
2385
2386 scol = -1;
2387
2388 /* XXX should do extra checks to make sure things really are clean,
2389 rather than blindly setting the clean bit... */
2390
2391 raidPtr->mod_counter++;
2392
2393 for (c = 0; c < raidPtr->numCol; c++) {
2394 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2395 raidread_component_label(
2396 raidPtr->Disks[c].dev,
2397 raidPtr->raid_cinfo[c].ci_vp,
2398 &clabel);
2399 /* make sure status is noted */
2400 clabel.status = rf_ds_optimal;
2401 /* bump the counter */
2402 clabel.mod_counter = raidPtr->mod_counter;
2403
2404 raidwrite_component_label(
2405 raidPtr->Disks[c].dev,
2406 raidPtr->raid_cinfo[c].ci_vp,
2407 &clabel);
2408 if (final == RF_FINAL_COMPONENT_UPDATE) {
2409 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2410 raidmarkclean(
2411 raidPtr->Disks[c].dev,
2412 raidPtr->raid_cinfo[c].ci_vp,
2413 raidPtr->mod_counter);
2414 }
2415 }
2416 }
2417 /* else we don't touch it.. */
2418 }
2419
2420 for( c = 0; c < raidPtr->numSpare ; c++) {
2421 sparecol = raidPtr->numCol + c;
2422 /* Need to ensure that the reconstruct actually completed! */
2423 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2424 /*
2425
2426 we claim this disk is "optimal" if it's
2427 rf_ds_used_spare, as that means it should be
2428 directly substitutable for the disk it replaced.
2429 We note that too...
2430
2431 */
2432
2433 for(j=0;j<raidPtr->numCol;j++) {
2434 if (raidPtr->Disks[j].spareCol == sparecol) {
2435 scol = j;
2436 break;
2437 }
2438 }
2439
2440 /* XXX shouldn't *really* need this... */
2441 raidread_component_label(
2442 raidPtr->Disks[sparecol].dev,
2443 raidPtr->raid_cinfo[sparecol].ci_vp,
2444 &clabel);
2445 /* make sure status is noted */
2446
2447 raid_init_component_label(raidPtr, &clabel);
2448
2449 clabel.mod_counter = raidPtr->mod_counter;
2450 clabel.column = scol;
2451 clabel.status = rf_ds_optimal;
2452
2453 raidwrite_component_label(
2454 raidPtr->Disks[sparecol].dev,
2455 raidPtr->raid_cinfo[sparecol].ci_vp,
2456 &clabel);
2457 if (final == RF_FINAL_COMPONENT_UPDATE) {
2458 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2459 raidmarkclean( raidPtr->Disks[sparecol].dev,
2460 raidPtr->raid_cinfo[sparecol].ci_vp,
2461 raidPtr->mod_counter);
2462 }
2463 }
2464 }
2465 }
2466 }
2467
2468 void
2469 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2470 {
2471 struct proc *p;
2472
2473 p = raidPtr->engine_thread;
2474
2475 if (vp != NULL) {
2476 if (auto_configured == 1) {
2477 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2478 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2479 vput(vp);
2480
2481 } else {
2482 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2483 }
2484 }
2485 }
2486
2487
2488 void
2489 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2490 {
2491 int r,c;
2492 struct vnode *vp;
2493 int acd;
2494
2495
2496 /* We take this opportunity to close the vnodes like we should.. */
2497
2498 for (c = 0; c < raidPtr->numCol; c++) {
2499 vp = raidPtr->raid_cinfo[c].ci_vp;
2500 acd = raidPtr->Disks[c].auto_configured;
2501 rf_close_component(raidPtr, vp, acd);
2502 raidPtr->raid_cinfo[c].ci_vp = NULL;
2503 raidPtr->Disks[c].auto_configured = 0;
2504 }
2505
2506 for (r = 0; r < raidPtr->numSpare; r++) {
2507 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2508 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2509 rf_close_component(raidPtr, vp, acd);
2510 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2511 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2512 }
2513 }
2514
2515
2516 void
2517 rf_ReconThread(struct rf_recon_req *req)
2518 {
2519 int s;
2520 RF_Raid_t *raidPtr;
2521
2522 s = splbio();
2523 raidPtr = (RF_Raid_t *) req->raidPtr;
2524 raidPtr->recon_in_progress = 1;
2525
2526 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2527 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2528
2529 RF_Free(req, sizeof(*req));
2530
2531 raidPtr->recon_in_progress = 0;
2532 splx(s);
2533
2534 /* That's all... */
2535 kthread_exit(0); /* does not return */
2536 }
2537
2538 void
2539 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2540 {
2541 int retcode;
2542 int s;
2543
2544 raidPtr->parity_rewrite_in_progress = 1;
2545 s = splbio();
2546 retcode = rf_RewriteParity(raidPtr);
2547 splx(s);
2548 if (retcode) {
2549 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2550 } else {
2551 /* set the clean bit! If we shutdown correctly,
2552 the clean bit on each component label will get
2553 set */
2554 raidPtr->parity_good = RF_RAID_CLEAN;
2555 }
2556 raidPtr->parity_rewrite_in_progress = 0;
2557
2558 /* Anyone waiting for us to stop? If so, inform them... */
2559 if (raidPtr->waitShutdown) {
2560 wakeup(&raidPtr->parity_rewrite_in_progress);
2561 }
2562
2563 /* That's all... */
2564 kthread_exit(0); /* does not return */
2565 }
2566
2567
2568 void
2569 rf_CopybackThread(RF_Raid_t *raidPtr)
2570 {
2571 int s;
2572
2573 raidPtr->copyback_in_progress = 1;
2574 s = splbio();
2575 rf_CopybackReconstructedData(raidPtr);
2576 splx(s);
2577 raidPtr->copyback_in_progress = 0;
2578
2579 /* That's all... */
2580 kthread_exit(0); /* does not return */
2581 }
2582
2583
2584 void
2585 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2586 {
2587 int s;
2588 RF_Raid_t *raidPtr;
2589
2590 s = splbio();
2591 raidPtr = req->raidPtr;
2592 raidPtr->recon_in_progress = 1;
2593 rf_ReconstructInPlace(raidPtr, req->col);
2594 RF_Free(req, sizeof(*req));
2595 raidPtr->recon_in_progress = 0;
2596 splx(s);
2597
2598 /* That's all... */
2599 kthread_exit(0); /* does not return */
2600 }
2601
2602 RF_AutoConfig_t *
2603 rf_find_raid_components()
2604 {
2605 struct vnode *vp;
2606 struct disklabel label;
2607 struct device *dv;
2608 dev_t dev;
2609 int bmajor;
2610 int error;
2611 int i;
2612 int good_one;
2613 RF_ComponentLabel_t *clabel;
2614 RF_AutoConfig_t *ac_list;
2615 RF_AutoConfig_t *ac;
2616
2617
2618 /* initialize the AutoConfig list */
2619 ac_list = NULL;
2620
2621 /* we begin by trolling through *all* the devices on the system */
2622
2623 for (dv = alldevs.tqh_first; dv != NULL;
2624 dv = dv->dv_list.tqe_next) {
2625
2626 /* we are only interested in disks... */
2627 if (dv->dv_class != DV_DISK)
2628 continue;
2629
2630 /* we don't care about floppies... */
2631 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2632 continue;
2633 }
2634
2635 /* we don't care about CD's... */
2636 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2637 continue;
2638 }
2639
2640 /* hdfd is the Atari/Hades floppy driver */
2641 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2642 continue;
2643 }
2644 /* fdisa is the Atari/Milan floppy driver */
2645 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2646 continue;
2647 }
2648
2649 /* need to find the device_name_to_block_device_major stuff */
2650 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2651
2652 /* get a vnode for the raw partition of this disk */
2653
2654 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2655 if (bdevvp(dev, &vp))
2656 panic("RAID can't alloc vnode");
2657
2658 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2659
2660 if (error) {
2661 /* "Who cares." Continue looking
2662 for something that exists*/
2663 vput(vp);
2664 continue;
2665 }
2666
2667 /* Ok, the disk exists. Go get the disklabel. */
2668 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2669 if (error) {
2670 /*
2671 * XXX can't happen - open() would
2672 * have errored out (or faked up one)
2673 */
2674 printf("can't get label for dev %s%c (%d)!?!?\n",
2675 dv->dv_xname, 'a' + RAW_PART, error);
2676 }
2677
2678 /* don't need this any more. We'll allocate it again
2679 a little later if we really do... */
2680 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2681 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2682 vput(vp);
2683
2684 for (i=0; i < label.d_npartitions; i++) {
2685 /* We only support partitions marked as RAID */
2686 if (label.d_partitions[i].p_fstype != FS_RAID)
2687 continue;
2688
2689 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2690 if (bdevvp(dev, &vp))
2691 panic("RAID can't alloc vnode");
2692
2693 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2694 if (error) {
2695 /* Whatever... */
2696 vput(vp);
2697 continue;
2698 }
2699
2700 good_one = 0;
2701
2702 clabel = (RF_ComponentLabel_t *)
2703 malloc(sizeof(RF_ComponentLabel_t),
2704 M_RAIDFRAME, M_NOWAIT);
2705 if (clabel == NULL) {
2706 /* XXX CLEANUP HERE */
2707 printf("RAID auto config: out of memory!\n");
2708 return(NULL); /* XXX probably should panic? */
2709 }
2710
2711 if (!raidread_component_label(dev, vp, clabel)) {
2712 /* Got the label. Does it look reasonable? */
2713 if (rf_reasonable_label(clabel) &&
2714 (clabel->partitionSize <=
2715 label.d_partitions[i].p_size)) {
2716 #if DEBUG
2717 printf("Component on: %s%c: %d\n",
2718 dv->dv_xname, 'a'+i,
2719 label.d_partitions[i].p_size);
2720 rf_print_component_label(clabel);
2721 #endif
2722 /* if it's reasonable, add it,
2723 else ignore it. */
2724 ac = (RF_AutoConfig_t *)
2725 malloc(sizeof(RF_AutoConfig_t),
2726 M_RAIDFRAME,
2727 M_NOWAIT);
2728 if (ac == NULL) {
2729 /* XXX should panic?? */
2730 return(NULL);
2731 }
2732
2733 sprintf(ac->devname, "%s%c",
2734 dv->dv_xname, 'a'+i);
2735 ac->dev = dev;
2736 ac->vp = vp;
2737 ac->clabel = clabel;
2738 ac->next = ac_list;
2739 ac_list = ac;
2740 good_one = 1;
2741 }
2742 }
2743 if (!good_one) {
2744 /* cleanup */
2745 free(clabel, M_RAIDFRAME);
2746 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2747 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2748 vput(vp);
2749 }
2750 }
2751 }
2752 return(ac_list);
2753 }
2754
2755 static int
2756 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2757 {
2758
2759 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2760 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2761 ((clabel->clean == RF_RAID_CLEAN) ||
2762 (clabel->clean == RF_RAID_DIRTY)) &&
2763 clabel->row >=0 &&
2764 clabel->column >= 0 &&
2765 clabel->num_rows > 0 &&
2766 clabel->num_columns > 0 &&
2767 clabel->row < clabel->num_rows &&
2768 clabel->column < clabel->num_columns &&
2769 clabel->blockSize > 0 &&
2770 clabel->numBlocks > 0) {
2771 /* label looks reasonable enough... */
2772 return(1);
2773 }
2774 return(0);
2775 }
2776
2777
2778 #if DEBUG
2779 void
2780 rf_print_component_label(RF_ComponentLabel_t *clabel)
2781 {
2782 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2783 clabel->row, clabel->column,
2784 clabel->num_rows, clabel->num_columns);
2785 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2786 clabel->version, clabel->serial_number,
2787 clabel->mod_counter);
2788 printf(" Clean: %s Status: %d\n",
2789 clabel->clean ? "Yes" : "No", clabel->status );
2790 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2791 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2792 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2793 (char) clabel->parityConfig, clabel->blockSize,
2794 clabel->numBlocks);
2795 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2796 printf(" Contains root partition: %s\n",
2797 clabel->root_partition ? "Yes" : "No" );
2798 printf(" Last configured as: raid%d\n", clabel->last_unit );
2799 #if 0
2800 printf(" Config order: %d\n", clabel->config_order);
2801 #endif
2802
2803 }
2804 #endif
2805
2806 RF_ConfigSet_t *
2807 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2808 {
2809 RF_AutoConfig_t *ac;
2810 RF_ConfigSet_t *config_sets;
2811 RF_ConfigSet_t *cset;
2812 RF_AutoConfig_t *ac_next;
2813
2814
2815 config_sets = NULL;
2816
2817 /* Go through the AutoConfig list, and figure out which components
2818 belong to what sets. */
2819 ac = ac_list;
2820 while(ac!=NULL) {
2821 /* we're going to putz with ac->next, so save it here
2822 for use at the end of the loop */
2823 ac_next = ac->next;
2824
2825 if (config_sets == NULL) {
2826 /* will need at least this one... */
2827 config_sets = (RF_ConfigSet_t *)
2828 malloc(sizeof(RF_ConfigSet_t),
2829 M_RAIDFRAME, M_NOWAIT);
2830 if (config_sets == NULL) {
2831 panic("rf_create_auto_sets: No memory!");
2832 }
2833 /* this one is easy :) */
2834 config_sets->ac = ac;
2835 config_sets->next = NULL;
2836 config_sets->rootable = 0;
2837 ac->next = NULL;
2838 } else {
2839 /* which set does this component fit into? */
2840 cset = config_sets;
2841 while(cset!=NULL) {
2842 if (rf_does_it_fit(cset, ac)) {
2843 /* looks like it matches... */
2844 ac->next = cset->ac;
2845 cset->ac = ac;
2846 break;
2847 }
2848 cset = cset->next;
2849 }
2850 if (cset==NULL) {
2851 /* didn't find a match above... new set..*/
2852 cset = (RF_ConfigSet_t *)
2853 malloc(sizeof(RF_ConfigSet_t),
2854 M_RAIDFRAME, M_NOWAIT);
2855 if (cset == NULL) {
2856 panic("rf_create_auto_sets: No memory!");
2857 }
2858 cset->ac = ac;
2859 ac->next = NULL;
2860 cset->next = config_sets;
2861 cset->rootable = 0;
2862 config_sets = cset;
2863 }
2864 }
2865 ac = ac_next;
2866 }
2867
2868
2869 return(config_sets);
2870 }
2871
2872 static int
2873 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2874 {
2875 RF_ComponentLabel_t *clabel1, *clabel2;
2876
2877 /* If this one matches the *first* one in the set, that's good
2878 enough, since the other members of the set would have been
2879 through here too... */
2880 /* note that we are not checking partitionSize here..
2881
2882 Note that we are also not checking the mod_counters here.
2883 If everything else matches execpt the mod_counter, that's
2884 good enough for this test. We will deal with the mod_counters
2885 a little later in the autoconfiguration process.
2886
2887 (clabel1->mod_counter == clabel2->mod_counter) &&
2888
2889 The reason we don't check for this is that failed disks
2890 will have lower modification counts. If those disks are
2891 not added to the set they used to belong to, then they will
2892 form their own set, which may result in 2 different sets,
2893 for example, competing to be configured at raid0, and
2894 perhaps competing to be the root filesystem set. If the
2895 wrong ones get configured, or both attempt to become /,
2896 weird behaviour and or serious lossage will occur. Thus we
2897 need to bring them into the fold here, and kick them out at
2898 a later point.
2899
2900 */
2901
2902 clabel1 = cset->ac->clabel;
2903 clabel2 = ac->clabel;
2904 if ((clabel1->version == clabel2->version) &&
2905 (clabel1->serial_number == clabel2->serial_number) &&
2906 (clabel1->num_rows == clabel2->num_rows) &&
2907 (clabel1->num_columns == clabel2->num_columns) &&
2908 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2909 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2910 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2911 (clabel1->parityConfig == clabel2->parityConfig) &&
2912 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2913 (clabel1->blockSize == clabel2->blockSize) &&
2914 (clabel1->numBlocks == clabel2->numBlocks) &&
2915 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2916 (clabel1->root_partition == clabel2->root_partition) &&
2917 (clabel1->last_unit == clabel2->last_unit) &&
2918 (clabel1->config_order == clabel2->config_order)) {
2919 /* if it get's here, it almost *has* to be a match */
2920 } else {
2921 /* it's not consistent with somebody in the set..
2922 punt */
2923 return(0);
2924 }
2925 /* all was fine.. it must fit... */
2926 return(1);
2927 }
2928
2929 int
2930 rf_have_enough_components(RF_ConfigSet_t *cset)
2931 {
2932 RF_AutoConfig_t *ac;
2933 RF_AutoConfig_t *auto_config;
2934 RF_ComponentLabel_t *clabel;
2935 int c;
2936 int num_cols;
2937 int num_missing;
2938 int mod_counter;
2939 int mod_counter_found;
2940 int even_pair_failed;
2941 char parity_type;
2942
2943
2944 /* check to see that we have enough 'live' components
2945 of this set. If so, we can configure it if necessary */
2946
2947 num_cols = cset->ac->clabel->num_columns;
2948 parity_type = cset->ac->clabel->parityConfig;
2949
2950 /* XXX Check for duplicate components!?!?!? */
2951
2952 /* Determine what the mod_counter is supposed to be for this set. */
2953
2954 mod_counter_found = 0;
2955 mod_counter = 0;
2956 ac = cset->ac;
2957 while(ac!=NULL) {
2958 if (mod_counter_found==0) {
2959 mod_counter = ac->clabel->mod_counter;
2960 mod_counter_found = 1;
2961 } else {
2962 if (ac->clabel->mod_counter > mod_counter) {
2963 mod_counter = ac->clabel->mod_counter;
2964 }
2965 }
2966 ac = ac->next;
2967 }
2968
2969 num_missing = 0;
2970 auto_config = cset->ac;
2971
2972 even_pair_failed = 0;
2973 for(c=0; c<num_cols; c++) {
2974 ac = auto_config;
2975 while(ac!=NULL) {
2976 if ((ac->clabel->column == c) &&
2977 (ac->clabel->mod_counter == mod_counter)) {
2978 /* it's this one... */
2979 #if DEBUG
2980 printf("Found: %s at %d\n",
2981 ac->devname,c);
2982 #endif
2983 break;
2984 }
2985 ac=ac->next;
2986 }
2987 if (ac==NULL) {
2988 /* Didn't find one here! */
2989 /* special case for RAID 1, especially
2990 where there are more than 2
2991 components (where RAIDframe treats
2992 things a little differently :( ) */
2993 if (parity_type == '1') {
2994 if (c%2 == 0) { /* even component */
2995 even_pair_failed = 1;
2996 } else { /* odd component. If
2997 we're failed, and
2998 so is the even
2999 component, it's
3000 "Good Night, Charlie" */
3001 if (even_pair_failed == 1) {
3002 return(0);
3003 }
3004 }
3005 } else {
3006 /* normal accounting */
3007 num_missing++;
3008 }
3009 }
3010 if ((parity_type == '1') && (c%2 == 1)) {
3011 /* Just did an even component, and we didn't
3012 bail.. reset the even_pair_failed flag,
3013 and go on to the next component.... */
3014 even_pair_failed = 0;
3015 }
3016 }
3017
3018 clabel = cset->ac->clabel;
3019
3020 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3021 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3022 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3023 /* XXX this needs to be made *much* more general */
3024 /* Too many failures */
3025 return(0);
3026 }
3027 /* otherwise, all is well, and we've got enough to take a kick
3028 at autoconfiguring this set */
3029 return(1);
3030 }
3031
3032 void
3033 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3034 RF_Raid_t *raidPtr)
3035 {
3036 RF_ComponentLabel_t *clabel;
3037 int i;
3038
3039 clabel = ac->clabel;
3040
3041 /* 1. Fill in the common stuff */
3042 config->numRow = clabel->num_rows = 1;
3043 config->numCol = clabel->num_columns;
3044 config->numSpare = 0; /* XXX should this be set here? */
3045 config->sectPerSU = clabel->sectPerSU;
3046 config->SUsPerPU = clabel->SUsPerPU;
3047 config->SUsPerRU = clabel->SUsPerRU;
3048 config->parityConfig = clabel->parityConfig;
3049 /* XXX... */
3050 strcpy(config->diskQueueType,"fifo");
3051 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3052 config->layoutSpecificSize = 0; /* XXX ?? */
3053
3054 while(ac!=NULL) {
3055 /* row/col values will be in range due to the checks
3056 in reasonable_label() */
3057 strcpy(config->devnames[0][ac->clabel->column],
3058 ac->devname);
3059 ac = ac->next;
3060 }
3061
3062 for(i=0;i<RF_MAXDBGV;i++) {
3063 config->debugVars[i][0] = 0;
3064 }
3065 }
3066
3067 int
3068 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3069 {
3070 RF_ComponentLabel_t clabel;
3071 struct vnode *vp;
3072 dev_t dev;
3073 int column;
3074 int sparecol;
3075
3076 raidPtr->autoconfigure = new_value;
3077
3078 for(column=0; column<raidPtr->numCol; column++) {
3079 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3080 dev = raidPtr->Disks[column].dev;
3081 vp = raidPtr->raid_cinfo[column].ci_vp;
3082 raidread_component_label(dev, vp, &clabel);
3083 clabel.autoconfigure = new_value;
3084 raidwrite_component_label(dev, vp, &clabel);
3085 }
3086 }
3087 for(column = 0; column < raidPtr->numSpare ; column++) {
3088 sparecol = raidPtr->numCol + column;
3089 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3090 dev = raidPtr->Disks[sparecol].dev;
3091 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3092 raidread_component_label(dev, vp, &clabel);
3093 clabel.autoconfigure = new_value;
3094 raidwrite_component_label(dev, vp, &clabel);
3095 }
3096 }
3097 return(new_value);
3098 }
3099
3100 int
3101 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3102 {
3103 RF_ComponentLabel_t clabel;
3104 struct vnode *vp;
3105 dev_t dev;
3106 int column;
3107 int sparecol;
3108
3109 raidPtr->root_partition = new_value;
3110 for(column=0; column<raidPtr->numCol; column++) {
3111 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3112 dev = raidPtr->Disks[column].dev;
3113 vp = raidPtr->raid_cinfo[column].ci_vp;
3114 raidread_component_label(dev, vp, &clabel);
3115 clabel.root_partition = new_value;
3116 raidwrite_component_label(dev, vp, &clabel);
3117 }
3118 }
3119 for(column = 0; column < raidPtr->numSpare ; column++) {
3120 sparecol = raidPtr->numCol + column;
3121 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3122 dev = raidPtr->Disks[sparecol].dev;
3123 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3124 raidread_component_label(dev, vp, &clabel);
3125 clabel.root_partition = new_value;
3126 raidwrite_component_label(dev, vp, &clabel);
3127 }
3128 }
3129 return(new_value);
3130 }
3131
3132 void
3133 rf_release_all_vps(RF_ConfigSet_t *cset)
3134 {
3135 RF_AutoConfig_t *ac;
3136
3137 ac = cset->ac;
3138 while(ac!=NULL) {
3139 /* Close the vp, and give it back */
3140 if (ac->vp) {
3141 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3142 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3143 vput(ac->vp);
3144 ac->vp = NULL;
3145 }
3146 ac = ac->next;
3147 }
3148 }
3149
3150
3151 void
3152 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3153 {
3154 RF_AutoConfig_t *ac;
3155 RF_AutoConfig_t *next_ac;
3156
3157 ac = cset->ac;
3158 while(ac!=NULL) {
3159 next_ac = ac->next;
3160 /* nuke the label */
3161 free(ac->clabel, M_RAIDFRAME);
3162 /* cleanup the config structure */
3163 free(ac, M_RAIDFRAME);
3164 /* "next.." */
3165 ac = next_ac;
3166 }
3167 /* and, finally, nuke the config set */
3168 free(cset, M_RAIDFRAME);
3169 }
3170
3171
3172 void
3173 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3174 {
3175 /* current version number */
3176 clabel->version = RF_COMPONENT_LABEL_VERSION;
3177 clabel->serial_number = raidPtr->serial_number;
3178 clabel->mod_counter = raidPtr->mod_counter;
3179 clabel->num_rows = 1;
3180 clabel->num_columns = raidPtr->numCol;
3181 clabel->clean = RF_RAID_DIRTY; /* not clean */
3182 clabel->status = rf_ds_optimal; /* "It's good!" */
3183
3184 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3185 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3186 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3187
3188 clabel->blockSize = raidPtr->bytesPerSector;
3189 clabel->numBlocks = raidPtr->sectorsPerDisk;
3190
3191 /* XXX not portable */
3192 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3193 clabel->maxOutstanding = raidPtr->maxOutstanding;
3194 clabel->autoconfigure = raidPtr->autoconfigure;
3195 clabel->root_partition = raidPtr->root_partition;
3196 clabel->last_unit = raidPtr->raidid;
3197 clabel->config_order = raidPtr->config_order;
3198 }
3199
3200 int
3201 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3202 {
3203 RF_Raid_t *raidPtr;
3204 RF_Config_t *config;
3205 int raidID;
3206 int retcode;
3207
3208 #if DEBUG
3209 printf("RAID autoconfigure\n");
3210 #endif
3211
3212 retcode = 0;
3213 *unit = -1;
3214
3215 /* 1. Create a config structure */
3216
3217 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3218 M_RAIDFRAME,
3219 M_NOWAIT);
3220 if (config==NULL) {
3221 printf("Out of mem!?!?\n");
3222 /* XXX do something more intelligent here. */
3223 return(1);
3224 }
3225
3226 memset(config, 0, sizeof(RF_Config_t));
3227
3228 /*
3229 2. Figure out what RAID ID this one is supposed to live at
3230 See if we can get the same RAID dev that it was configured
3231 on last time..
3232 */
3233
3234 raidID = cset->ac->clabel->last_unit;
3235 if ((raidID < 0) || (raidID >= numraid)) {
3236 /* let's not wander off into lala land. */
3237 raidID = numraid - 1;
3238 }
3239 if (raidPtrs[raidID]->valid != 0) {
3240
3241 /*
3242 Nope... Go looking for an alternative...
3243 Start high so we don't immediately use raid0 if that's
3244 not taken.
3245 */
3246
3247 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3248 if (raidPtrs[raidID]->valid == 0) {
3249 /* can use this one! */
3250 break;
3251 }
3252 }
3253 }
3254
3255 if (raidID < 0) {
3256 /* punt... */
3257 printf("Unable to auto configure this set!\n");
3258 printf("(Out of RAID devs!)\n");
3259 return(1);
3260 }
3261
3262 #if DEBUG
3263 printf("Configuring raid%d:\n",raidID);
3264 #endif
3265
3266 raidPtr = raidPtrs[raidID];
3267
3268 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3269 raidPtr->raidid = raidID;
3270 raidPtr->openings = RAIDOUTSTANDING;
3271
3272 /* 3. Build the configuration structure */
3273 rf_create_configuration(cset->ac, config, raidPtr);
3274
3275 /* 4. Do the configuration */
3276 retcode = rf_Configure(raidPtr, config, cset->ac);
3277
3278 if (retcode == 0) {
3279
3280 raidinit(raidPtrs[raidID]);
3281
3282 rf_markalldirty(raidPtrs[raidID]);
3283 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3284 if (cset->ac->clabel->root_partition==1) {
3285 /* everything configured just fine. Make a note
3286 that this set is eligible to be root. */
3287 cset->rootable = 1;
3288 /* XXX do this here? */
3289 raidPtrs[raidID]->root_partition = 1;
3290 }
3291 }
3292
3293 /* 5. Cleanup */
3294 free(config, M_RAIDFRAME);
3295
3296 *unit = raidID;
3297 return(retcode);
3298 }
3299
3300 void
3301 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3302 {
3303 struct buf *bp;
3304
3305 bp = (struct buf *)desc->bp;
3306 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3307 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3308 }
3309
3310 void
3311 rf_pool_init(struct pool *p, size_t size, char *w_chan,
3312 size_t min, size_t max)
3313 {
3314 pool_init(p, size, 0, 0, 0, w_chan, NULL);
3315 pool_sethiwat(p, max);
3316 pool_prime(p, min);
3317 pool_setlowat(p, min);
3318 }
3319