Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.180
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.180 2004/07/01 17:48:45 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.180 2004/07/01 17:48:45 oster Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/user.h>
    169 #include <sys/reboot.h>
    170 
    171 #include <dev/raidframe/raidframevar.h>
    172 #include <dev/raidframe/raidframeio.h>
    173 #include "raid.h"
    174 #include "opt_raid_autoconfig.h"
    175 #include "rf_raid.h"
    176 #include "rf_copyback.h"
    177 #include "rf_dag.h"
    178 #include "rf_dagflags.h"
    179 #include "rf_desc.h"
    180 #include "rf_diskqueue.h"
    181 #include "rf_etimer.h"
    182 #include "rf_general.h"
    183 #include "rf_kintf.h"
    184 #include "rf_options.h"
    185 #include "rf_driver.h"
    186 #include "rf_parityscan.h"
    187 #include "rf_threadstuff.h"
    188 
    189 #ifdef DEBUG
    190 int     rf_kdebug_level = 0;
    191 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    192 #else				/* DEBUG */
    193 #define db1_printf(a) { }
    194 #endif				/* DEBUG */
    195 
    196 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    197 
    198 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    199 
    200 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    201 						 * spare table */
    202 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    203 						 * installation process */
    204 
    205 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    206 
    207 /* prototypes */
    208 static void KernelWakeupFunc(struct buf * bp);
    209 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    210 		   dev_t dev, RF_SectorNum_t startSect,
    211 		   RF_SectorCount_t numSect, caddr_t buf,
    212 		   void (*cbFunc) (struct buf *), void *cbArg,
    213 		   int logBytesPerSector, struct proc * b_proc);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 
    218 dev_type_open(raidopen);
    219 dev_type_close(raidclose);
    220 dev_type_read(raidread);
    221 dev_type_write(raidwrite);
    222 dev_type_ioctl(raidioctl);
    223 dev_type_strategy(raidstrategy);
    224 dev_type_dump(raiddump);
    225 dev_type_size(raidsize);
    226 
    227 const struct bdevsw raid_bdevsw = {
    228 	raidopen, raidclose, raidstrategy, raidioctl,
    229 	raiddump, raidsize, D_DISK
    230 };
    231 
    232 const struct cdevsw raid_cdevsw = {
    233 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    234 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    235 };
    236 
    237 /*
    238  * Pilfered from ccd.c
    239  */
    240 
    241 struct raidbuf {
    242 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    243 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    244 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    245 };
    246 
    247 /* XXX Not sure if the following should be replacing the raidPtrs above,
    248    or if it should be used in conjunction with that...
    249 */
    250 
    251 struct raid_softc {
    252 	int     sc_flags;	/* flags */
    253 	int     sc_cflags;	/* configuration flags */
    254 	size_t  sc_size;        /* size of the raid device */
    255 	char    sc_xname[20];	/* XXX external name */
    256 	struct disk sc_dkdev;	/* generic disk device info */
    257 	struct bufq_state buf_queue;	/* used for the device queue */
    258 };
    259 /* sc_flags */
    260 #define RAIDF_INITED	0x01	/* unit has been initialized */
    261 #define RAIDF_WLABEL	0x02	/* label area is writable */
    262 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    263 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    264 #define RAIDF_LOCKED	0x80	/* unit is locked */
    265 
    266 #define	raidunit(x)	DISKUNIT(x)
    267 int numraid = 0;
    268 
    269 /*
    270  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    271  * Be aware that large numbers can allow the driver to consume a lot of
    272  * kernel memory, especially on writes, and in degraded mode reads.
    273  *
    274  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    275  * a single 64K write will typically require 64K for the old data,
    276  * 64K for the old parity, and 64K for the new parity, for a total
    277  * of 192K (if the parity buffer is not re-used immediately).
    278  * Even it if is used immediately, that's still 128K, which when multiplied
    279  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    280  *
    281  * Now in degraded mode, for example, a 64K read on the above setup may
    282  * require data reconstruction, which will require *all* of the 4 remaining
    283  * disks to participate -- 4 * 32K/disk == 128K again.
    284  */
    285 
    286 #ifndef RAIDOUTSTANDING
    287 #define RAIDOUTSTANDING   6
    288 #endif
    289 
    290 #define RAIDLABELDEV(dev)	\
    291 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    292 
    293 /* declared here, and made public, for the benefit of KVM stuff.. */
    294 struct raid_softc *raid_softc;
    295 
    296 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    297 				     struct disklabel *);
    298 static void raidgetdisklabel(dev_t);
    299 static void raidmakedisklabel(struct raid_softc *);
    300 
    301 static int raidlock(struct raid_softc *);
    302 static void raidunlock(struct raid_softc *);
    303 
    304 static void rf_markalldirty(RF_Raid_t *);
    305 
    306 struct device *raidrootdev;
    307 
    308 void rf_ReconThread(struct rf_recon_req *);
    309 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    310 void rf_CopybackThread(RF_Raid_t *raidPtr);
    311 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    312 int rf_autoconfig(struct device *self);
    313 void rf_buildroothack(RF_ConfigSet_t *);
    314 
    315 RF_AutoConfig_t *rf_find_raid_components(void);
    316 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    317 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    318 static int rf_reasonable_label(RF_ComponentLabel_t *);
    319 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    320 int rf_set_autoconfig(RF_Raid_t *, int);
    321 int rf_set_rootpartition(RF_Raid_t *, int);
    322 void rf_release_all_vps(RF_ConfigSet_t *);
    323 void rf_cleanup_config_set(RF_ConfigSet_t *);
    324 int rf_have_enough_components(RF_ConfigSet_t *);
    325 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    326 
    327 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    328 				  allow autoconfig to take place.
    329 			          Note that this is overridden by having
    330 			          RAID_AUTOCONFIG as an option in the
    331 			          kernel config file.  */
    332 
    333 struct RF_Pools_s rf_pools;
    334 
    335 void
    336 raidattach(int num)
    337 {
    338 	int raidID;
    339 	int i, rc;
    340 
    341 #ifdef DEBUG
    342 	printf("raidattach: Asked for %d units\n", num);
    343 #endif
    344 
    345 	if (num <= 0) {
    346 #ifdef DIAGNOSTIC
    347 		panic("raidattach: count <= 0");
    348 #endif
    349 		return;
    350 	}
    351 	/* This is where all the initialization stuff gets done. */
    352 
    353 	numraid = num;
    354 
    355 	/* Make some space for requested number of units... */
    356 
    357 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    358 	if (raidPtrs == NULL) {
    359 		panic("raidPtrs is NULL!!");
    360 	}
    361 
    362 	/* Initialize the component buffer pool. */
    363 	rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
    364 		     "raidpl", num * RAIDOUTSTANDING,
    365 		     2 * num * RAIDOUTSTANDING);
    366 
    367 	rf_mutex_init(&rf_sparet_wait_mutex);
    368 
    369 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    370 
    371 	for (i = 0; i < num; i++)
    372 		raidPtrs[i] = NULL;
    373 	rc = rf_BootRaidframe();
    374 	if (rc == 0)
    375 		printf("Kernelized RAIDframe activated\n");
    376 	else
    377 		panic("Serious error booting RAID!!");
    378 
    379 	/* put together some datastructures like the CCD device does.. This
    380 	 * lets us lock the device and what-not when it gets opened. */
    381 
    382 	raid_softc = (struct raid_softc *)
    383 		malloc(num * sizeof(struct raid_softc),
    384 		       M_RAIDFRAME, M_NOWAIT);
    385 	if (raid_softc == NULL) {
    386 		printf("WARNING: no memory for RAIDframe driver\n");
    387 		return;
    388 	}
    389 
    390 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    391 
    392 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    393 					      M_RAIDFRAME, M_NOWAIT);
    394 	if (raidrootdev == NULL) {
    395 		panic("No memory for RAIDframe driver!!?!?!");
    396 	}
    397 
    398 	for (raidID = 0; raidID < num; raidID++) {
    399 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    400 
    401 		raidrootdev[raidID].dv_class  = DV_DISK;
    402 		raidrootdev[raidID].dv_cfdata = NULL;
    403 		raidrootdev[raidID].dv_unit   = raidID;
    404 		raidrootdev[raidID].dv_parent = NULL;
    405 		raidrootdev[raidID].dv_flags  = 0;
    406 		snprintf(raidrootdev[raidID].dv_xname,
    407 		    sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
    408 
    409 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    410 			  (RF_Raid_t *));
    411 		if (raidPtrs[raidID] == NULL) {
    412 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    413 			numraid = raidID;
    414 			return;
    415 		}
    416 	}
    417 
    418 #ifdef RAID_AUTOCONFIG
    419 	raidautoconfig = 1;
    420 #endif
    421 
    422 	/*
    423 	 * Register a finalizer which will be used to auto-config RAID
    424 	 * sets once all real hardware devices have been found.
    425 	 */
    426 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    427 		printf("WARNING: unable to register RAIDframe finalizer\n");
    428 }
    429 
    430 int
    431 rf_autoconfig(struct device *self)
    432 {
    433 	RF_AutoConfig_t *ac_list;
    434 	RF_ConfigSet_t *config_sets;
    435 
    436 	if (raidautoconfig == 0)
    437 		return (0);
    438 
    439 	/* XXX This code can only be run once. */
    440 	raidautoconfig = 0;
    441 
    442 	/* 1. locate all RAID components on the system */
    443 #ifdef DEBUG
    444 	printf("Searching for RAID components...\n");
    445 #endif
    446 	ac_list = rf_find_raid_components();
    447 
    448 	/* 2. Sort them into their respective sets. */
    449 	config_sets = rf_create_auto_sets(ac_list);
    450 
    451 	/*
    452 	 * 3. Evaluate each set andconfigure the valid ones.
    453 	 * This gets done in rf_buildroothack().
    454 	 */
    455 	rf_buildroothack(config_sets);
    456 
    457 	return (1);
    458 }
    459 
    460 void
    461 rf_buildroothack(RF_ConfigSet_t *config_sets)
    462 {
    463 	RF_ConfigSet_t *cset;
    464 	RF_ConfigSet_t *next_cset;
    465 	int retcode;
    466 	int raidID;
    467 	int rootID;
    468 	int num_root;
    469 
    470 	rootID = 0;
    471 	num_root = 0;
    472 	cset = config_sets;
    473 	while(cset != NULL ) {
    474 		next_cset = cset->next;
    475 		if (rf_have_enough_components(cset) &&
    476 		    cset->ac->clabel->autoconfigure==1) {
    477 			retcode = rf_auto_config_set(cset,&raidID);
    478 			if (!retcode) {
    479 				if (cset->rootable) {
    480 					rootID = raidID;
    481 					num_root++;
    482 				}
    483 			} else {
    484 				/* The autoconfig didn't work :( */
    485 #if DEBUG
    486 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    487 #endif
    488 				rf_release_all_vps(cset);
    489 			}
    490 		} else {
    491 			/* we're not autoconfiguring this set...
    492 			   release the associated resources */
    493 			rf_release_all_vps(cset);
    494 		}
    495 		/* cleanup */
    496 		rf_cleanup_config_set(cset);
    497 		cset = next_cset;
    498 	}
    499 
    500 	/* we found something bootable... */
    501 
    502 	if (num_root == 1) {
    503 		booted_device = &raidrootdev[rootID];
    504 	} else if (num_root > 1) {
    505 		/* we can't guess.. require the user to answer... */
    506 		boothowto |= RB_ASKNAME;
    507 	}
    508 }
    509 
    510 
    511 int
    512 raidsize(dev_t dev)
    513 {
    514 	struct raid_softc *rs;
    515 	struct disklabel *lp;
    516 	int     part, unit, omask, size;
    517 
    518 	unit = raidunit(dev);
    519 	if (unit >= numraid)
    520 		return (-1);
    521 	rs = &raid_softc[unit];
    522 
    523 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    524 		return (-1);
    525 
    526 	part = DISKPART(dev);
    527 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    528 	lp = rs->sc_dkdev.dk_label;
    529 
    530 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    531 		return (-1);
    532 
    533 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    534 		size = -1;
    535 	else
    536 		size = lp->d_partitions[part].p_size *
    537 		    (lp->d_secsize / DEV_BSIZE);
    538 
    539 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    540 		return (-1);
    541 
    542 	return (size);
    543 
    544 }
    545 
    546 int
    547 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    548 {
    549 	/* Not implemented. */
    550 	return ENXIO;
    551 }
    552 /* ARGSUSED */
    553 int
    554 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
    555 {
    556 	int     unit = raidunit(dev);
    557 	struct raid_softc *rs;
    558 	struct disklabel *lp;
    559 	int     part, pmask;
    560 	int     error = 0;
    561 
    562 	if (unit >= numraid)
    563 		return (ENXIO);
    564 	rs = &raid_softc[unit];
    565 
    566 	if ((error = raidlock(rs)) != 0)
    567 		return (error);
    568 	lp = rs->sc_dkdev.dk_label;
    569 
    570 	part = DISKPART(dev);
    571 	pmask = (1 << part);
    572 
    573 	if ((rs->sc_flags & RAIDF_INITED) &&
    574 	    (rs->sc_dkdev.dk_openmask == 0))
    575 		raidgetdisklabel(dev);
    576 
    577 	/* make sure that this partition exists */
    578 
    579 	if (part != RAW_PART) {
    580 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    581 		    ((part >= lp->d_npartitions) ||
    582 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    583 			error = ENXIO;
    584 			raidunlock(rs);
    585 			return (error);
    586 		}
    587 	}
    588 	/* Prevent this unit from being unconfigured while open. */
    589 	switch (fmt) {
    590 	case S_IFCHR:
    591 		rs->sc_dkdev.dk_copenmask |= pmask;
    592 		break;
    593 
    594 	case S_IFBLK:
    595 		rs->sc_dkdev.dk_bopenmask |= pmask;
    596 		break;
    597 	}
    598 
    599 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    600 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    601 		/* First one... mark things as dirty... Note that we *MUST*
    602 		 have done a configure before this.  I DO NOT WANT TO BE
    603 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    604 		 THAT THEY BELONG TOGETHER!!!!! */
    605 		/* XXX should check to see if we're only open for reading
    606 		   here... If so, we needn't do this, but then need some
    607 		   other way of keeping track of what's happened.. */
    608 
    609 		rf_markalldirty( raidPtrs[unit] );
    610 	}
    611 
    612 
    613 	rs->sc_dkdev.dk_openmask =
    614 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    615 
    616 	raidunlock(rs);
    617 
    618 	return (error);
    619 
    620 
    621 }
    622 /* ARGSUSED */
    623 int
    624 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
    625 {
    626 	int     unit = raidunit(dev);
    627 	struct raid_softc *rs;
    628 	int     error = 0;
    629 	int     part;
    630 
    631 	if (unit >= numraid)
    632 		return (ENXIO);
    633 	rs = &raid_softc[unit];
    634 
    635 	if ((error = raidlock(rs)) != 0)
    636 		return (error);
    637 
    638 	part = DISKPART(dev);
    639 
    640 	/* ...that much closer to allowing unconfiguration... */
    641 	switch (fmt) {
    642 	case S_IFCHR:
    643 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    644 		break;
    645 
    646 	case S_IFBLK:
    647 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    648 		break;
    649 	}
    650 	rs->sc_dkdev.dk_openmask =
    651 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    652 
    653 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    654 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    655 		/* Last one... device is not unconfigured yet.
    656 		   Device shutdown has taken care of setting the
    657 		   clean bits if RAIDF_INITED is not set
    658 		   mark things as clean... */
    659 
    660 		rf_update_component_labels(raidPtrs[unit],
    661 						 RF_FINAL_COMPONENT_UPDATE);
    662 		if (doing_shutdown) {
    663 			/* last one, and we're going down, so
    664 			   lights out for this RAID set too. */
    665 			error = rf_Shutdown(raidPtrs[unit]);
    666 
    667 			/* It's no longer initialized... */
    668 			rs->sc_flags &= ~RAIDF_INITED;
    669 
    670 			/* Detach the disk. */
    671 			disk_detach(&rs->sc_dkdev);
    672 		}
    673 	}
    674 
    675 	raidunlock(rs);
    676 	return (0);
    677 
    678 }
    679 
    680 void
    681 raidstrategy(struct buf *bp)
    682 {
    683 	int s;
    684 
    685 	unsigned int raidID = raidunit(bp->b_dev);
    686 	RF_Raid_t *raidPtr;
    687 	struct raid_softc *rs = &raid_softc[raidID];
    688 	int     wlabel;
    689 
    690 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    691 		bp->b_error = ENXIO;
    692 		bp->b_flags |= B_ERROR;
    693 		bp->b_resid = bp->b_bcount;
    694 		biodone(bp);
    695 		return;
    696 	}
    697 	if (raidID >= numraid || !raidPtrs[raidID]) {
    698 		bp->b_error = ENODEV;
    699 		bp->b_flags |= B_ERROR;
    700 		bp->b_resid = bp->b_bcount;
    701 		biodone(bp);
    702 		return;
    703 	}
    704 	raidPtr = raidPtrs[raidID];
    705 	if (!raidPtr->valid) {
    706 		bp->b_error = ENODEV;
    707 		bp->b_flags |= B_ERROR;
    708 		bp->b_resid = bp->b_bcount;
    709 		biodone(bp);
    710 		return;
    711 	}
    712 	if (bp->b_bcount == 0) {
    713 		db1_printf(("b_bcount is zero..\n"));
    714 		biodone(bp);
    715 		return;
    716 	}
    717 
    718 	/*
    719 	 * Do bounds checking and adjust transfer.  If there's an
    720 	 * error, the bounds check will flag that for us.
    721 	 */
    722 
    723 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    724 	if (DISKPART(bp->b_dev) != RAW_PART)
    725 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    726 			db1_printf(("Bounds check failed!!:%d %d\n",
    727 				(int) bp->b_blkno, (int) wlabel));
    728 			biodone(bp);
    729 			return;
    730 		}
    731 	s = splbio();
    732 
    733 	bp->b_resid = 0;
    734 
    735 	/* stuff it onto our queue */
    736 	BUFQ_PUT(&rs->buf_queue, bp);
    737 
    738 	raidstart(raidPtrs[raidID]);
    739 
    740 	splx(s);
    741 }
    742 /* ARGSUSED */
    743 int
    744 raidread(dev_t dev, struct uio *uio, int flags)
    745 {
    746 	int     unit = raidunit(dev);
    747 	struct raid_softc *rs;
    748 
    749 	if (unit >= numraid)
    750 		return (ENXIO);
    751 	rs = &raid_softc[unit];
    752 
    753 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    754 		return (ENXIO);
    755 
    756 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    757 
    758 }
    759 /* ARGSUSED */
    760 int
    761 raidwrite(dev_t dev, struct uio *uio, int flags)
    762 {
    763 	int     unit = raidunit(dev);
    764 	struct raid_softc *rs;
    765 
    766 	if (unit >= numraid)
    767 		return (ENXIO);
    768 	rs = &raid_softc[unit];
    769 
    770 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    771 		return (ENXIO);
    772 
    773 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    774 
    775 }
    776 
    777 int
    778 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
    779 {
    780 	int     unit = raidunit(dev);
    781 	int     error = 0;
    782 	int     part, pmask;
    783 	struct raid_softc *rs;
    784 	RF_Config_t *k_cfg, *u_cfg;
    785 	RF_Raid_t *raidPtr;
    786 	RF_RaidDisk_t *diskPtr;
    787 	RF_AccTotals_t *totals;
    788 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    789 	u_char *specific_buf;
    790 	int retcode = 0;
    791 	int column;
    792 	int raidid;
    793 	struct rf_recon_req *rrcopy, *rr;
    794 	RF_ComponentLabel_t *clabel;
    795 	RF_ComponentLabel_t ci_label;
    796 	RF_ComponentLabel_t **clabel_ptr;
    797 	RF_SingleComponent_t *sparePtr,*componentPtr;
    798 	RF_SingleComponent_t hot_spare;
    799 	RF_SingleComponent_t component;
    800 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    801 	int i, j, d;
    802 #ifdef __HAVE_OLD_DISKLABEL
    803 	struct disklabel newlabel;
    804 #endif
    805 
    806 	if (unit >= numraid)
    807 		return (ENXIO);
    808 	rs = &raid_softc[unit];
    809 	raidPtr = raidPtrs[unit];
    810 
    811 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    812 		(int) DISKPART(dev), (int) unit, (int) cmd));
    813 
    814 	/* Must be open for writes for these commands... */
    815 	switch (cmd) {
    816 	case DIOCSDINFO:
    817 	case DIOCWDINFO:
    818 #ifdef __HAVE_OLD_DISKLABEL
    819 	case ODIOCWDINFO:
    820 	case ODIOCSDINFO:
    821 #endif
    822 	case DIOCWLABEL:
    823 		if ((flag & FWRITE) == 0)
    824 			return (EBADF);
    825 	}
    826 
    827 	/* Must be initialized for these... */
    828 	switch (cmd) {
    829 	case DIOCGDINFO:
    830 	case DIOCSDINFO:
    831 	case DIOCWDINFO:
    832 #ifdef __HAVE_OLD_DISKLABEL
    833 	case ODIOCGDINFO:
    834 	case ODIOCWDINFO:
    835 	case ODIOCSDINFO:
    836 	case ODIOCGDEFLABEL:
    837 #endif
    838 	case DIOCGPART:
    839 	case DIOCWLABEL:
    840 	case DIOCGDEFLABEL:
    841 	case RAIDFRAME_SHUTDOWN:
    842 	case RAIDFRAME_REWRITEPARITY:
    843 	case RAIDFRAME_GET_INFO:
    844 	case RAIDFRAME_RESET_ACCTOTALS:
    845 	case RAIDFRAME_GET_ACCTOTALS:
    846 	case RAIDFRAME_KEEP_ACCTOTALS:
    847 	case RAIDFRAME_GET_SIZE:
    848 	case RAIDFRAME_FAIL_DISK:
    849 	case RAIDFRAME_COPYBACK:
    850 	case RAIDFRAME_CHECK_RECON_STATUS:
    851 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    852 	case RAIDFRAME_GET_COMPONENT_LABEL:
    853 	case RAIDFRAME_SET_COMPONENT_LABEL:
    854 	case RAIDFRAME_ADD_HOT_SPARE:
    855 	case RAIDFRAME_REMOVE_HOT_SPARE:
    856 	case RAIDFRAME_INIT_LABELS:
    857 	case RAIDFRAME_REBUILD_IN_PLACE:
    858 	case RAIDFRAME_CHECK_PARITY:
    859 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    860 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    861 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    862 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    863 	case RAIDFRAME_SET_AUTOCONFIG:
    864 	case RAIDFRAME_SET_ROOT:
    865 	case RAIDFRAME_DELETE_COMPONENT:
    866 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    867 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    868 			return (ENXIO);
    869 	}
    870 
    871 	switch (cmd) {
    872 
    873 		/* configure the system */
    874 	case RAIDFRAME_CONFIGURE:
    875 
    876 		if (raidPtr->valid) {
    877 			/* There is a valid RAID set running on this unit! */
    878 			printf("raid%d: Device already configured!\n",unit);
    879 			return(EINVAL);
    880 		}
    881 
    882 		/* copy-in the configuration information */
    883 		/* data points to a pointer to the configuration structure */
    884 
    885 		u_cfg = *((RF_Config_t **) data);
    886 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    887 		if (k_cfg == NULL) {
    888 			return (ENOMEM);
    889 		}
    890 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    891 		if (retcode) {
    892 			RF_Free(k_cfg, sizeof(RF_Config_t));
    893 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    894 				retcode));
    895 			return (retcode);
    896 		}
    897 		/* allocate a buffer for the layout-specific data, and copy it
    898 		 * in */
    899 		if (k_cfg->layoutSpecificSize) {
    900 			if (k_cfg->layoutSpecificSize > 10000) {
    901 				/* sanity check */
    902 				RF_Free(k_cfg, sizeof(RF_Config_t));
    903 				return (EINVAL);
    904 			}
    905 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    906 			    (u_char *));
    907 			if (specific_buf == NULL) {
    908 				RF_Free(k_cfg, sizeof(RF_Config_t));
    909 				return (ENOMEM);
    910 			}
    911 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    912 			    k_cfg->layoutSpecificSize);
    913 			if (retcode) {
    914 				RF_Free(k_cfg, sizeof(RF_Config_t));
    915 				RF_Free(specific_buf,
    916 					k_cfg->layoutSpecificSize);
    917 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    918 					retcode));
    919 				return (retcode);
    920 			}
    921 		} else
    922 			specific_buf = NULL;
    923 		k_cfg->layoutSpecific = specific_buf;
    924 
    925 		/* should do some kind of sanity check on the configuration.
    926 		 * Store the sum of all the bytes in the last byte? */
    927 
    928 		/* configure the system */
    929 
    930 		/*
    931 		 * Clear the entire RAID descriptor, just to make sure
    932 		 *  there is no stale data left in the case of a
    933 		 *  reconfiguration
    934 		 */
    935 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    936 		raidPtr->raidid = unit;
    937 
    938 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    939 
    940 		if (retcode == 0) {
    941 
    942 			/* allow this many simultaneous IO's to
    943 			   this RAID device */
    944 			raidPtr->openings = RAIDOUTSTANDING;
    945 
    946 			raidinit(raidPtr);
    947 			rf_markalldirty(raidPtr);
    948 		}
    949 		/* free the buffers.  No return code here. */
    950 		if (k_cfg->layoutSpecificSize) {
    951 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    952 		}
    953 		RF_Free(k_cfg, sizeof(RF_Config_t));
    954 
    955 		return (retcode);
    956 
    957 		/* shutdown the system */
    958 	case RAIDFRAME_SHUTDOWN:
    959 
    960 		if ((error = raidlock(rs)) != 0)
    961 			return (error);
    962 
    963 		/*
    964 		 * If somebody has a partition mounted, we shouldn't
    965 		 * shutdown.
    966 		 */
    967 
    968 		part = DISKPART(dev);
    969 		pmask = (1 << part);
    970 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    971 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    972 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    973 			raidunlock(rs);
    974 			return (EBUSY);
    975 		}
    976 
    977 		retcode = rf_Shutdown(raidPtr);
    978 
    979 		/* It's no longer initialized... */
    980 		rs->sc_flags &= ~RAIDF_INITED;
    981 
    982 		/* Detach the disk. */
    983 		disk_detach(&rs->sc_dkdev);
    984 
    985 		raidunlock(rs);
    986 
    987 		return (retcode);
    988 	case RAIDFRAME_GET_COMPONENT_LABEL:
    989 		clabel_ptr = (RF_ComponentLabel_t **) data;
    990 		/* need to read the component label for the disk indicated
    991 		   by row,column in clabel */
    992 
    993 		/* For practice, let's get it directly fromdisk, rather
    994 		   than from the in-core copy */
    995 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    996 			   (RF_ComponentLabel_t *));
    997 		if (clabel == NULL)
    998 			return (ENOMEM);
    999 
   1000 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1001 
   1002 		retcode = copyin( *clabel_ptr, clabel,
   1003 				  sizeof(RF_ComponentLabel_t));
   1004 
   1005 		if (retcode) {
   1006 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1007 			return(retcode);
   1008 		}
   1009 
   1010 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1011 
   1012 		column = clabel->column;
   1013 
   1014 		if ((column < 0) || (column >= raidPtr->numCol +
   1015 				     raidPtr->numSpare)) {
   1016 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1017 			return(EINVAL);
   1018 		}
   1019 
   1020 		raidread_component_label(raidPtr->Disks[column].dev,
   1021 				raidPtr->raid_cinfo[column].ci_vp,
   1022 				clabel );
   1023 
   1024 		retcode = copyout(clabel, *clabel_ptr,
   1025 				  sizeof(RF_ComponentLabel_t));
   1026 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1027 		return (retcode);
   1028 
   1029 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1030 		clabel = (RF_ComponentLabel_t *) data;
   1031 
   1032 		/* XXX check the label for valid stuff... */
   1033 		/* Note that some things *should not* get modified --
   1034 		   the user should be re-initing the labels instead of
   1035 		   trying to patch things.
   1036 		   */
   1037 
   1038 		raidid = raidPtr->raidid;
   1039 #if DEBUG
   1040 		printf("raid%d: Got component label:\n", raidid);
   1041 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1042 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1043 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1044 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1045 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1046 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1047 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1048 #endif
   1049 		clabel->row = 0;
   1050 		column = clabel->column;
   1051 
   1052 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1053 			return(EINVAL);
   1054 		}
   1055 
   1056 		/* XXX this isn't allowed to do anything for now :-) */
   1057 
   1058 		/* XXX and before it is, we need to fill in the rest
   1059 		   of the fields!?!?!?! */
   1060 #if 0
   1061 		raidwrite_component_label(
   1062                             raidPtr->Disks[column].dev,
   1063 			    raidPtr->raid_cinfo[column].ci_vp,
   1064 			    clabel );
   1065 #endif
   1066 		return (0);
   1067 
   1068 	case RAIDFRAME_INIT_LABELS:
   1069 		clabel = (RF_ComponentLabel_t *) data;
   1070 		/*
   1071 		   we only want the serial number from
   1072 		   the above.  We get all the rest of the information
   1073 		   from the config that was used to create this RAID
   1074 		   set.
   1075 		   */
   1076 
   1077 		raidPtr->serial_number = clabel->serial_number;
   1078 
   1079 		raid_init_component_label(raidPtr, &ci_label);
   1080 		ci_label.serial_number = clabel->serial_number;
   1081 		ci_label.row = 0; /* we dont' pretend to support more */
   1082 
   1083 		for(column=0;column<raidPtr->numCol;column++) {
   1084 			diskPtr = &raidPtr->Disks[column];
   1085 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1086 				ci_label.partitionSize = diskPtr->partitionSize;
   1087 				ci_label.column = column;
   1088 				raidwrite_component_label(
   1089 							  raidPtr->Disks[column].dev,
   1090 							  raidPtr->raid_cinfo[column].ci_vp,
   1091 							  &ci_label );
   1092 			}
   1093 		}
   1094 
   1095 		return (retcode);
   1096 	case RAIDFRAME_SET_AUTOCONFIG:
   1097 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1098 		printf("raid%d: New autoconfig value is: %d\n",
   1099 		       raidPtr->raidid, d);
   1100 		*(int *) data = d;
   1101 		return (retcode);
   1102 
   1103 	case RAIDFRAME_SET_ROOT:
   1104 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1105 		printf("raid%d: New rootpartition value is: %d\n",
   1106 		       raidPtr->raidid, d);
   1107 		*(int *) data = d;
   1108 		return (retcode);
   1109 
   1110 		/* initialize all parity */
   1111 	case RAIDFRAME_REWRITEPARITY:
   1112 
   1113 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1114 			/* Parity for RAID 0 is trivially correct */
   1115 			raidPtr->parity_good = RF_RAID_CLEAN;
   1116 			return(0);
   1117 		}
   1118 
   1119 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1120 			/* Re-write is already in progress! */
   1121 			return(EINVAL);
   1122 		}
   1123 
   1124 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1125 					   rf_RewriteParityThread,
   1126 					   raidPtr,"raid_parity");
   1127 		return (retcode);
   1128 
   1129 
   1130 	case RAIDFRAME_ADD_HOT_SPARE:
   1131 		sparePtr = (RF_SingleComponent_t *) data;
   1132 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1133 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1134 		return(retcode);
   1135 
   1136 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1137 		return(retcode);
   1138 
   1139 	case RAIDFRAME_DELETE_COMPONENT:
   1140 		componentPtr = (RF_SingleComponent_t *)data;
   1141 		memcpy( &component, componentPtr,
   1142 			sizeof(RF_SingleComponent_t));
   1143 		retcode = rf_delete_component(raidPtr, &component);
   1144 		return(retcode);
   1145 
   1146 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1147 		componentPtr = (RF_SingleComponent_t *)data;
   1148 		memcpy( &component, componentPtr,
   1149 			sizeof(RF_SingleComponent_t));
   1150 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1151 		return(retcode);
   1152 
   1153 	case RAIDFRAME_REBUILD_IN_PLACE:
   1154 
   1155 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1156 			/* Can't do this on a RAID 0!! */
   1157 			return(EINVAL);
   1158 		}
   1159 
   1160 		if (raidPtr->recon_in_progress == 1) {
   1161 			/* a reconstruct is already in progress! */
   1162 			return(EINVAL);
   1163 		}
   1164 
   1165 		componentPtr = (RF_SingleComponent_t *) data;
   1166 		memcpy( &component, componentPtr,
   1167 			sizeof(RF_SingleComponent_t));
   1168 		component.row = 0; /* we don't support any more */
   1169 		column = component.column;
   1170 
   1171 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1172 			return(EINVAL);
   1173 		}
   1174 
   1175 		RF_LOCK_MUTEX(raidPtr->mutex);
   1176 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1177 		    (raidPtr->numFailures > 0)) {
   1178 			/* XXX 0 above shouldn't be constant!!! */
   1179 			/* some component other than this has failed.
   1180 			   Let's not make things worse than they already
   1181 			   are... */
   1182 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1183 			       raidPtr->raidid);
   1184 			printf("raid%d:     Col: %d   Too many failures.\n",
   1185 			       raidPtr->raidid, column);
   1186 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1187 			return (EINVAL);
   1188 		}
   1189 		if (raidPtr->Disks[column].status ==
   1190 		    rf_ds_reconstructing) {
   1191 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1192 			       raidPtr->raidid);
   1193 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1194 
   1195 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1196 			return (EINVAL);
   1197 		}
   1198 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1199 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1200 			return (EINVAL);
   1201 		}
   1202 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1203 
   1204 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1205 		if (rrcopy == NULL)
   1206 			return(ENOMEM);
   1207 
   1208 		rrcopy->raidPtr = (void *) raidPtr;
   1209 		rrcopy->col = column;
   1210 
   1211 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1212 					   rf_ReconstructInPlaceThread,
   1213 					   rrcopy,"raid_reconip");
   1214 		return(retcode);
   1215 
   1216 	case RAIDFRAME_GET_INFO:
   1217 		if (!raidPtr->valid)
   1218 			return (ENODEV);
   1219 		ucfgp = (RF_DeviceConfig_t **) data;
   1220 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1221 			  (RF_DeviceConfig_t *));
   1222 		if (d_cfg == NULL)
   1223 			return (ENOMEM);
   1224 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1225 		d_cfg->rows = 1; /* there is only 1 row now */
   1226 		d_cfg->cols = raidPtr->numCol;
   1227 		d_cfg->ndevs = raidPtr->numCol;
   1228 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1229 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1230 			return (ENOMEM);
   1231 		}
   1232 		d_cfg->nspares = raidPtr->numSpare;
   1233 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1234 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1235 			return (ENOMEM);
   1236 		}
   1237 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1238 		d = 0;
   1239 		for (j = 0; j < d_cfg->cols; j++) {
   1240 			d_cfg->devs[d] = raidPtr->Disks[j];
   1241 			d++;
   1242 		}
   1243 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1244 			d_cfg->spares[i] = raidPtr->Disks[j];
   1245 		}
   1246 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1247 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1248 
   1249 		return (retcode);
   1250 
   1251 	case RAIDFRAME_CHECK_PARITY:
   1252 		*(int *) data = raidPtr->parity_good;
   1253 		return (0);
   1254 
   1255 	case RAIDFRAME_RESET_ACCTOTALS:
   1256 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1257 		return (0);
   1258 
   1259 	case RAIDFRAME_GET_ACCTOTALS:
   1260 		totals = (RF_AccTotals_t *) data;
   1261 		*totals = raidPtr->acc_totals;
   1262 		return (0);
   1263 
   1264 	case RAIDFRAME_KEEP_ACCTOTALS:
   1265 		raidPtr->keep_acc_totals = *(int *)data;
   1266 		return (0);
   1267 
   1268 	case RAIDFRAME_GET_SIZE:
   1269 		*(int *) data = raidPtr->totalSectors;
   1270 		return (0);
   1271 
   1272 		/* fail a disk & optionally start reconstruction */
   1273 	case RAIDFRAME_FAIL_DISK:
   1274 
   1275 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1276 			/* Can't do this on a RAID 0!! */
   1277 			return(EINVAL);
   1278 		}
   1279 
   1280 		rr = (struct rf_recon_req *) data;
   1281 		rr->row = 0;
   1282 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1283 			return (EINVAL);
   1284 
   1285 
   1286 		RF_LOCK_MUTEX(raidPtr->mutex);
   1287 		if ((raidPtr->Disks[rr->col].status ==
   1288 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1289 			/* some other component has failed.  Let's not make
   1290 			   things worse. XXX wrong for RAID6 */
   1291 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1292 			return (EINVAL);
   1293 		}
   1294 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1295 			/* Can't fail a spared disk! */
   1296 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1297 			return (EINVAL);
   1298 		}
   1299 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1300 
   1301 		/* make a copy of the recon request so that we don't rely on
   1302 		 * the user's buffer */
   1303 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1304 		if (rrcopy == NULL)
   1305 			return(ENOMEM);
   1306 		memcpy(rrcopy, rr, sizeof(*rr));
   1307 		rrcopy->raidPtr = (void *) raidPtr;
   1308 
   1309 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1310 					   rf_ReconThread,
   1311 					   rrcopy,"raid_recon");
   1312 		return (0);
   1313 
   1314 		/* invoke a copyback operation after recon on whatever disk
   1315 		 * needs it, if any */
   1316 	case RAIDFRAME_COPYBACK:
   1317 
   1318 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1319 			/* This makes no sense on a RAID 0!! */
   1320 			return(EINVAL);
   1321 		}
   1322 
   1323 		if (raidPtr->copyback_in_progress == 1) {
   1324 			/* Copyback is already in progress! */
   1325 			return(EINVAL);
   1326 		}
   1327 
   1328 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1329 					   rf_CopybackThread,
   1330 					   raidPtr,"raid_copyback");
   1331 		return (retcode);
   1332 
   1333 		/* return the percentage completion of reconstruction */
   1334 	case RAIDFRAME_CHECK_RECON_STATUS:
   1335 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1336 			/* This makes no sense on a RAID 0, so tell the
   1337 			   user it's done. */
   1338 			*(int *) data = 100;
   1339 			return(0);
   1340 		}
   1341 		if (raidPtr->status != rf_rs_reconstructing)
   1342 			*(int *) data = 100;
   1343 		else {
   1344 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1345 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1346 			} else {
   1347 				*(int *) data = 0;
   1348 			}
   1349 		}
   1350 		return (0);
   1351 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1352 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1353 		if (raidPtr->status != rf_rs_reconstructing) {
   1354 			progressInfo.remaining = 0;
   1355 			progressInfo.completed = 100;
   1356 			progressInfo.total = 100;
   1357 		} else {
   1358 			progressInfo.total =
   1359 				raidPtr->reconControl->numRUsTotal;
   1360 			progressInfo.completed =
   1361 				raidPtr->reconControl->numRUsComplete;
   1362 			progressInfo.remaining = progressInfo.total -
   1363 				progressInfo.completed;
   1364 		}
   1365 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1366 				  sizeof(RF_ProgressInfo_t));
   1367 		return (retcode);
   1368 
   1369 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1370 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1371 			/* This makes no sense on a RAID 0, so tell the
   1372 			   user it's done. */
   1373 			*(int *) data = 100;
   1374 			return(0);
   1375 		}
   1376 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1377 			*(int *) data = 100 *
   1378 				raidPtr->parity_rewrite_stripes_done /
   1379 				raidPtr->Layout.numStripe;
   1380 		} else {
   1381 			*(int *) data = 100;
   1382 		}
   1383 		return (0);
   1384 
   1385 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1386 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1387 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1388 			progressInfo.total = raidPtr->Layout.numStripe;
   1389 			progressInfo.completed =
   1390 				raidPtr->parity_rewrite_stripes_done;
   1391 			progressInfo.remaining = progressInfo.total -
   1392 				progressInfo.completed;
   1393 		} else {
   1394 			progressInfo.remaining = 0;
   1395 			progressInfo.completed = 100;
   1396 			progressInfo.total = 100;
   1397 		}
   1398 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1399 				  sizeof(RF_ProgressInfo_t));
   1400 		return (retcode);
   1401 
   1402 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1403 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1404 			/* This makes no sense on a RAID 0 */
   1405 			*(int *) data = 100;
   1406 			return(0);
   1407 		}
   1408 		if (raidPtr->copyback_in_progress == 1) {
   1409 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1410 				raidPtr->Layout.numStripe;
   1411 		} else {
   1412 			*(int *) data = 100;
   1413 		}
   1414 		return (0);
   1415 
   1416 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1417 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1418 		if (raidPtr->copyback_in_progress == 1) {
   1419 			progressInfo.total = raidPtr->Layout.numStripe;
   1420 			progressInfo.completed =
   1421 				raidPtr->copyback_stripes_done;
   1422 			progressInfo.remaining = progressInfo.total -
   1423 				progressInfo.completed;
   1424 		} else {
   1425 			progressInfo.remaining = 0;
   1426 			progressInfo.completed = 100;
   1427 			progressInfo.total = 100;
   1428 		}
   1429 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1430 				  sizeof(RF_ProgressInfo_t));
   1431 		return (retcode);
   1432 
   1433 		/* the sparetable daemon calls this to wait for the kernel to
   1434 		 * need a spare table. this ioctl does not return until a
   1435 		 * spare table is needed. XXX -- calling mpsleep here in the
   1436 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1437 		 * -- I should either compute the spare table in the kernel,
   1438 		 * or have a different -- XXX XXX -- interface (a different
   1439 		 * character device) for delivering the table     -- XXX */
   1440 #if 0
   1441 	case RAIDFRAME_SPARET_WAIT:
   1442 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1443 		while (!rf_sparet_wait_queue)
   1444 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1445 		waitreq = rf_sparet_wait_queue;
   1446 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1447 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1448 
   1449 		/* structure assignment */
   1450 		*((RF_SparetWait_t *) data) = *waitreq;
   1451 
   1452 		RF_Free(waitreq, sizeof(*waitreq));
   1453 		return (0);
   1454 
   1455 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1456 		 * code in it that will cause the dameon to exit */
   1457 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1458 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1459 		waitreq->fcol = -1;
   1460 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1461 		waitreq->next = rf_sparet_wait_queue;
   1462 		rf_sparet_wait_queue = waitreq;
   1463 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1464 		wakeup(&rf_sparet_wait_queue);
   1465 		return (0);
   1466 
   1467 		/* used by the spare table daemon to deliver a spare table
   1468 		 * into the kernel */
   1469 	case RAIDFRAME_SEND_SPARET:
   1470 
   1471 		/* install the spare table */
   1472 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1473 
   1474 		/* respond to the requestor.  the return status of the spare
   1475 		 * table installation is passed in the "fcol" field */
   1476 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1477 		waitreq->fcol = retcode;
   1478 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1479 		waitreq->next = rf_sparet_resp_queue;
   1480 		rf_sparet_resp_queue = waitreq;
   1481 		wakeup(&rf_sparet_resp_queue);
   1482 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1483 
   1484 		return (retcode);
   1485 #endif
   1486 
   1487 	default:
   1488 		break; /* fall through to the os-specific code below */
   1489 
   1490 	}
   1491 
   1492 	if (!raidPtr->valid)
   1493 		return (EINVAL);
   1494 
   1495 	/*
   1496 	 * Add support for "regular" device ioctls here.
   1497 	 */
   1498 
   1499 	switch (cmd) {
   1500 	case DIOCGDINFO:
   1501 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1502 		break;
   1503 #ifdef __HAVE_OLD_DISKLABEL
   1504 	case ODIOCGDINFO:
   1505 		newlabel = *(rs->sc_dkdev.dk_label);
   1506 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1507 			return ENOTTY;
   1508 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1509 		break;
   1510 #endif
   1511 
   1512 	case DIOCGPART:
   1513 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1514 		((struct partinfo *) data)->part =
   1515 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1516 		break;
   1517 
   1518 	case DIOCWDINFO:
   1519 	case DIOCSDINFO:
   1520 #ifdef __HAVE_OLD_DISKLABEL
   1521 	case ODIOCWDINFO:
   1522 	case ODIOCSDINFO:
   1523 #endif
   1524 	{
   1525 		struct disklabel *lp;
   1526 #ifdef __HAVE_OLD_DISKLABEL
   1527 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1528 			memset(&newlabel, 0, sizeof newlabel);
   1529 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1530 			lp = &newlabel;
   1531 		} else
   1532 #endif
   1533 		lp = (struct disklabel *)data;
   1534 
   1535 		if ((error = raidlock(rs)) != 0)
   1536 			return (error);
   1537 
   1538 		rs->sc_flags |= RAIDF_LABELLING;
   1539 
   1540 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1541 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1542 		if (error == 0) {
   1543 			if (cmd == DIOCWDINFO
   1544 #ifdef __HAVE_OLD_DISKLABEL
   1545 			    || cmd == ODIOCWDINFO
   1546 #endif
   1547 			   )
   1548 				error = writedisklabel(RAIDLABELDEV(dev),
   1549 				    raidstrategy, rs->sc_dkdev.dk_label,
   1550 				    rs->sc_dkdev.dk_cpulabel);
   1551 		}
   1552 		rs->sc_flags &= ~RAIDF_LABELLING;
   1553 
   1554 		raidunlock(rs);
   1555 
   1556 		if (error)
   1557 			return (error);
   1558 		break;
   1559 	}
   1560 
   1561 	case DIOCWLABEL:
   1562 		if (*(int *) data != 0)
   1563 			rs->sc_flags |= RAIDF_WLABEL;
   1564 		else
   1565 			rs->sc_flags &= ~RAIDF_WLABEL;
   1566 		break;
   1567 
   1568 	case DIOCGDEFLABEL:
   1569 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1570 		break;
   1571 
   1572 #ifdef __HAVE_OLD_DISKLABEL
   1573 	case ODIOCGDEFLABEL:
   1574 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1575 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1576 			return ENOTTY;
   1577 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1578 		break;
   1579 #endif
   1580 
   1581 	default:
   1582 		retcode = ENOTTY;
   1583 	}
   1584 	return (retcode);
   1585 
   1586 }
   1587 
   1588 
   1589 /* raidinit -- complete the rest of the initialization for the
   1590    RAIDframe device.  */
   1591 
   1592 
   1593 static void
   1594 raidinit(RF_Raid_t *raidPtr)
   1595 {
   1596 	struct raid_softc *rs;
   1597 	int     unit;
   1598 
   1599 	unit = raidPtr->raidid;
   1600 
   1601 	rs = &raid_softc[unit];
   1602 
   1603 	/* XXX should check return code first... */
   1604 	rs->sc_flags |= RAIDF_INITED;
   1605 
   1606 	/* XXX doesn't check bounds. */
   1607 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1608 
   1609 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1610 
   1611 	/* disk_attach actually creates space for the CPU disklabel, among
   1612 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1613 	 * with disklabels. */
   1614 
   1615 	disk_attach(&rs->sc_dkdev);
   1616 
   1617 	/* XXX There may be a weird interaction here between this, and
   1618 	 * protectedSectors, as used in RAIDframe.  */
   1619 
   1620 	rs->sc_size = raidPtr->totalSectors;
   1621 }
   1622 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1623 /* wake up the daemon & tell it to get us a spare table
   1624  * XXX
   1625  * the entries in the queues should be tagged with the raidPtr
   1626  * so that in the extremely rare case that two recons happen at once,
   1627  * we know for which device were requesting a spare table
   1628  * XXX
   1629  *
   1630  * XXX This code is not currently used. GO
   1631  */
   1632 int
   1633 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1634 {
   1635 	int     retcode;
   1636 
   1637 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1638 	req->next = rf_sparet_wait_queue;
   1639 	rf_sparet_wait_queue = req;
   1640 	wakeup(&rf_sparet_wait_queue);
   1641 
   1642 	/* mpsleep unlocks the mutex */
   1643 	while (!rf_sparet_resp_queue) {
   1644 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1645 		    "raidframe getsparetable", 0);
   1646 	}
   1647 	req = rf_sparet_resp_queue;
   1648 	rf_sparet_resp_queue = req->next;
   1649 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1650 
   1651 	retcode = req->fcol;
   1652 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1653 					 * alloc'd */
   1654 	return (retcode);
   1655 }
   1656 #endif
   1657 
   1658 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1659  * bp & passes it down.
   1660  * any calls originating in the kernel must use non-blocking I/O
   1661  * do some extra sanity checking to return "appropriate" error values for
   1662  * certain conditions (to make some standard utilities work)
   1663  *
   1664  * Formerly known as: rf_DoAccessKernel
   1665  */
   1666 void
   1667 raidstart(RF_Raid_t *raidPtr)
   1668 {
   1669 	RF_SectorCount_t num_blocks, pb, sum;
   1670 	RF_RaidAddr_t raid_addr;
   1671 	struct partition *pp;
   1672 	daddr_t blocknum;
   1673 	int     unit;
   1674 	struct raid_softc *rs;
   1675 	int     do_async;
   1676 	struct buf *bp;
   1677 	int rc;
   1678 
   1679 	unit = raidPtr->raidid;
   1680 	rs = &raid_softc[unit];
   1681 
   1682 	/* quick check to see if anything has died recently */
   1683 	RF_LOCK_MUTEX(raidPtr->mutex);
   1684 	if (raidPtr->numNewFailures > 0) {
   1685 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1686 		rf_update_component_labels(raidPtr,
   1687 					   RF_NORMAL_COMPONENT_UPDATE);
   1688 		RF_LOCK_MUTEX(raidPtr->mutex);
   1689 		raidPtr->numNewFailures--;
   1690 	}
   1691 
   1692 	/* Check to see if we're at the limit... */
   1693 	while (raidPtr->openings > 0) {
   1694 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1695 
   1696 		/* get the next item, if any, from the queue */
   1697 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1698 			/* nothing more to do */
   1699 			return;
   1700 		}
   1701 
   1702 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1703 		 * partition.. Need to make it absolute to the underlying
   1704 		 * device.. */
   1705 
   1706 		blocknum = bp->b_blkno;
   1707 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1708 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1709 			blocknum += pp->p_offset;
   1710 		}
   1711 
   1712 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1713 			    (int) blocknum));
   1714 
   1715 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1716 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1717 
   1718 		/* *THIS* is where we adjust what block we're going to...
   1719 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1720 		raid_addr = blocknum;
   1721 
   1722 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1723 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1724 		sum = raid_addr + num_blocks + pb;
   1725 		if (1 || rf_debugKernelAccess) {
   1726 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1727 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1728 				    (int) pb, (int) bp->b_resid));
   1729 		}
   1730 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1731 		    || (sum < num_blocks) || (sum < pb)) {
   1732 			bp->b_error = ENOSPC;
   1733 			bp->b_flags |= B_ERROR;
   1734 			bp->b_resid = bp->b_bcount;
   1735 			biodone(bp);
   1736 			RF_LOCK_MUTEX(raidPtr->mutex);
   1737 			continue;
   1738 		}
   1739 		/*
   1740 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1741 		 */
   1742 
   1743 		if (bp->b_bcount & raidPtr->sectorMask) {
   1744 			bp->b_error = EINVAL;
   1745 			bp->b_flags |= B_ERROR;
   1746 			bp->b_resid = bp->b_bcount;
   1747 			biodone(bp);
   1748 			RF_LOCK_MUTEX(raidPtr->mutex);
   1749 			continue;
   1750 
   1751 		}
   1752 		db1_printf(("Calling DoAccess..\n"));
   1753 
   1754 
   1755 		RF_LOCK_MUTEX(raidPtr->mutex);
   1756 		raidPtr->openings--;
   1757 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1758 
   1759 		/*
   1760 		 * Everything is async.
   1761 		 */
   1762 		do_async = 1;
   1763 
   1764 		disk_busy(&rs->sc_dkdev);
   1765 
   1766 		/* XXX we're still at splbio() here... do we *really*
   1767 		   need to be? */
   1768 
   1769 		/* don't ever condition on bp->b_flags & B_WRITE.
   1770 		 * always condition on B_READ instead */
   1771 
   1772 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1773 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1774 				 do_async, raid_addr, num_blocks,
   1775 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1776 
   1777 		if (rc) {
   1778 			bp->b_error = rc;
   1779 			bp->b_flags |= B_ERROR;
   1780 			bp->b_resid = bp->b_bcount;
   1781 			biodone(bp);
   1782 			/* continue loop */
   1783 		}
   1784 
   1785 		RF_LOCK_MUTEX(raidPtr->mutex);
   1786 	}
   1787 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1788 }
   1789 
   1790 
   1791 
   1792 
   1793 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1794 
   1795 int
   1796 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1797 {
   1798 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1799 	struct buf *bp;
   1800 	struct raidbuf *raidbp = NULL;
   1801 
   1802 	req->queue = queue;
   1803 
   1804 #if DIAGNOSTIC
   1805 	if (queue->raidPtr->raidid >= numraid) {
   1806 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1807 		    numraid);
   1808 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1809 	}
   1810 #endif
   1811 
   1812 	bp = req->bp;
   1813 #if 1
   1814 	/* XXX when there is a physical disk failure, someone is passing us a
   1815 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1816 	 * without taking a performance hit... (not sure where the real bug
   1817 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1818 
   1819 	if (bp->b_flags & B_ERROR) {
   1820 		bp->b_flags &= ~B_ERROR;
   1821 	}
   1822 	if (bp->b_error != 0) {
   1823 		bp->b_error = 0;
   1824 	}
   1825 #endif
   1826 	raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
   1827 	if (raidbp == NULL) {
   1828 		bp->b_flags |= B_ERROR;
   1829 		bp->b_error = ENOMEM;
   1830 		return (ENOMEM);
   1831 	}
   1832 	BUF_INIT(&raidbp->rf_buf);
   1833 
   1834 	/*
   1835 	 * context for raidiodone
   1836 	 */
   1837 	raidbp->rf_obp = bp;
   1838 	raidbp->req = req;
   1839 
   1840 	BIO_COPYPRIO(&raidbp->rf_buf, bp);
   1841 
   1842 	switch (req->type) {
   1843 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1844 		/* XXX need to do something extra here.. */
   1845 		/* I'm leaving this in, as I've never actually seen it used,
   1846 		 * and I'd like folks to report it... GO */
   1847 		printf(("WAKEUP CALLED\n"));
   1848 		queue->numOutstanding++;
   1849 
   1850 		/* XXX need to glue the original buffer into this??  */
   1851 
   1852 		KernelWakeupFunc(&raidbp->rf_buf);
   1853 		break;
   1854 
   1855 	case RF_IO_TYPE_READ:
   1856 	case RF_IO_TYPE_WRITE:
   1857 #if RF_ACC_TRACE > 0
   1858 		if (req->tracerec) {
   1859 			RF_ETIMER_START(req->tracerec->timer);
   1860 		}
   1861 #endif
   1862 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1863 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1864 		    req->sectorOffset, req->numSector,
   1865 		    req->buf, KernelWakeupFunc, (void *) req,
   1866 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1867 
   1868 		if (rf_debugKernelAccess) {
   1869 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1870 				(long) bp->b_blkno));
   1871 		}
   1872 		queue->numOutstanding++;
   1873 		queue->last_deq_sector = req->sectorOffset;
   1874 		/* acc wouldn't have been let in if there were any pending
   1875 		 * reqs at any other priority */
   1876 		queue->curPriority = req->priority;
   1877 
   1878 		db1_printf(("Going for %c to unit %d col %d\n",
   1879 			    req->type, queue->raidPtr->raidid,
   1880 			    queue->col));
   1881 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1882 			(int) req->sectorOffset, (int) req->numSector,
   1883 			(int) (req->numSector <<
   1884 			    queue->raidPtr->logBytesPerSector),
   1885 			(int) queue->raidPtr->logBytesPerSector));
   1886 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1887 			raidbp->rf_buf.b_vp->v_numoutput++;
   1888 		}
   1889 		VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
   1890 
   1891 		break;
   1892 
   1893 	default:
   1894 		panic("bad req->type in rf_DispatchKernelIO");
   1895 	}
   1896 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1897 
   1898 	return (0);
   1899 }
   1900 /* this is the callback function associated with a I/O invoked from
   1901    kernel code.
   1902  */
   1903 static void
   1904 KernelWakeupFunc(struct buf *vbp)
   1905 {
   1906 	RF_DiskQueueData_t *req = NULL;
   1907 	RF_DiskQueue_t *queue;
   1908 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1909 	struct buf *bp;
   1910 	int s;
   1911 
   1912 	s = splbio();
   1913 	db1_printf(("recovering the request queue:\n"));
   1914 	req = raidbp->req;
   1915 
   1916 	bp = raidbp->rf_obp;
   1917 
   1918 	queue = (RF_DiskQueue_t *) req->queue;
   1919 
   1920 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1921 		bp->b_flags |= B_ERROR;
   1922 		bp->b_error = raidbp->rf_buf.b_error ?
   1923 		    raidbp->rf_buf.b_error : EIO;
   1924 	}
   1925 
   1926 	/* XXX methinks this could be wrong... */
   1927 #if 1
   1928 	bp->b_resid = raidbp->rf_buf.b_resid;
   1929 #endif
   1930 #if RF_ACC_TRACE > 0
   1931 	if (req->tracerec) {
   1932 		RF_ETIMER_STOP(req->tracerec->timer);
   1933 		RF_ETIMER_EVAL(req->tracerec->timer);
   1934 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1935 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1936 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1937 		req->tracerec->num_phys_ios++;
   1938 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1939 	}
   1940 #endif
   1941 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1942 
   1943 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1944 	 * ballistic, and mark the component as hosed... */
   1945 
   1946 	if (bp->b_flags & B_ERROR) {
   1947 		/* Mark the disk as dead */
   1948 		/* but only mark it once... */
   1949 		if (queue->raidPtr->Disks[queue->col].status ==
   1950 		    rf_ds_optimal) {
   1951 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1952 			       queue->raidPtr->raidid,
   1953 			       queue->raidPtr->Disks[queue->col].devname);
   1954 			queue->raidPtr->Disks[queue->col].status =
   1955 			    rf_ds_failed;
   1956 			queue->raidPtr->status = rf_rs_degraded;
   1957 			queue->raidPtr->numFailures++;
   1958 			queue->raidPtr->numNewFailures++;
   1959 		} else {	/* Disk is already dead... */
   1960 			/* printf("Disk already marked as dead!\n"); */
   1961 		}
   1962 
   1963 	}
   1964 
   1965 	pool_put(&rf_pools.cbuf, raidbp);
   1966 
   1967 	/* Fill in the error value */
   1968 
   1969 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1970 
   1971 	simple_lock(&queue->raidPtr->iodone_lock);
   1972 
   1973 	/* Drop this one on the "finished" queue... */
   1974 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1975 
   1976 	/* Let the raidio thread know there is work to be done. */
   1977 	wakeup(&(queue->raidPtr->iodone));
   1978 
   1979 	simple_unlock(&queue->raidPtr->iodone_lock);
   1980 
   1981 	splx(s);
   1982 }
   1983 
   1984 
   1985 
   1986 /*
   1987  * initialize a buf structure for doing an I/O in the kernel.
   1988  */
   1989 static void
   1990 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   1991        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
   1992        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   1993        struct proc *b_proc)
   1994 {
   1995 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1996 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1997 	bp->b_bcount = numSect << logBytesPerSector;
   1998 	bp->b_bufsize = bp->b_bcount;
   1999 	bp->b_error = 0;
   2000 	bp->b_dev = dev;
   2001 	bp->b_data = buf;
   2002 	bp->b_blkno = startSect;
   2003 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2004 	if (bp->b_bcount == 0) {
   2005 		panic("bp->b_bcount is zero in InitBP!!");
   2006 	}
   2007 	bp->b_proc = b_proc;
   2008 	bp->b_iodone = cbFunc;
   2009 	bp->b_vp = b_vp;
   2010 
   2011 }
   2012 
   2013 static void
   2014 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2015 		    struct disklabel *lp)
   2016 {
   2017 	memset(lp, 0, sizeof(*lp));
   2018 
   2019 	/* fabricate a label... */
   2020 	lp->d_secperunit = raidPtr->totalSectors;
   2021 	lp->d_secsize = raidPtr->bytesPerSector;
   2022 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2023 	lp->d_ntracks = 4 * raidPtr->numCol;
   2024 	lp->d_ncylinders = raidPtr->totalSectors /
   2025 		(lp->d_nsectors * lp->d_ntracks);
   2026 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2027 
   2028 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2029 	lp->d_type = DTYPE_RAID;
   2030 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2031 	lp->d_rpm = 3600;
   2032 	lp->d_interleave = 1;
   2033 	lp->d_flags = 0;
   2034 
   2035 	lp->d_partitions[RAW_PART].p_offset = 0;
   2036 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2037 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2038 	lp->d_npartitions = RAW_PART + 1;
   2039 
   2040 	lp->d_magic = DISKMAGIC;
   2041 	lp->d_magic2 = DISKMAGIC;
   2042 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2043 
   2044 }
   2045 /*
   2046  * Read the disklabel from the raid device.  If one is not present, fake one
   2047  * up.
   2048  */
   2049 static void
   2050 raidgetdisklabel(dev_t dev)
   2051 {
   2052 	int     unit = raidunit(dev);
   2053 	struct raid_softc *rs = &raid_softc[unit];
   2054 	const char   *errstring;
   2055 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2056 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2057 	RF_Raid_t *raidPtr;
   2058 
   2059 	db1_printf(("Getting the disklabel...\n"));
   2060 
   2061 	memset(clp, 0, sizeof(*clp));
   2062 
   2063 	raidPtr = raidPtrs[unit];
   2064 
   2065 	raidgetdefaultlabel(raidPtr, rs, lp);
   2066 
   2067 	/*
   2068 	 * Call the generic disklabel extraction routine.
   2069 	 */
   2070 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2071 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2072 	if (errstring)
   2073 		raidmakedisklabel(rs);
   2074 	else {
   2075 		int     i;
   2076 		struct partition *pp;
   2077 
   2078 		/*
   2079 		 * Sanity check whether the found disklabel is valid.
   2080 		 *
   2081 		 * This is necessary since total size of the raid device
   2082 		 * may vary when an interleave is changed even though exactly
   2083 		 * same componets are used, and old disklabel may used
   2084 		 * if that is found.
   2085 		 */
   2086 		if (lp->d_secperunit != rs->sc_size)
   2087 			printf("raid%d: WARNING: %s: "
   2088 			    "total sector size in disklabel (%d) != "
   2089 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2090 			    lp->d_secperunit, (long) rs->sc_size);
   2091 		for (i = 0; i < lp->d_npartitions; i++) {
   2092 			pp = &lp->d_partitions[i];
   2093 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2094 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2095 				       "exceeds the size of raid (%ld)\n",
   2096 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2097 		}
   2098 	}
   2099 
   2100 }
   2101 /*
   2102  * Take care of things one might want to take care of in the event
   2103  * that a disklabel isn't present.
   2104  */
   2105 static void
   2106 raidmakedisklabel(struct raid_softc *rs)
   2107 {
   2108 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2109 	db1_printf(("Making a label..\n"));
   2110 
   2111 	/*
   2112 	 * For historical reasons, if there's no disklabel present
   2113 	 * the raw partition must be marked FS_BSDFFS.
   2114 	 */
   2115 
   2116 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2117 
   2118 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2119 
   2120 	lp->d_checksum = dkcksum(lp);
   2121 }
   2122 /*
   2123  * Lookup the provided name in the filesystem.  If the file exists,
   2124  * is a valid block device, and isn't being used by anyone else,
   2125  * set *vpp to the file's vnode.
   2126  * You'll find the original of this in ccd.c
   2127  */
   2128 int
   2129 raidlookup(char *path, struct proc *p, struct vnode **vpp)
   2130 {
   2131 	struct nameidata nd;
   2132 	struct vnode *vp;
   2133 	struct vattr va;
   2134 	int     error;
   2135 
   2136 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2137 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2138 		return (error);
   2139 	}
   2140 	vp = nd.ni_vp;
   2141 	if (vp->v_usecount > 1) {
   2142 		VOP_UNLOCK(vp, 0);
   2143 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2144 		return (EBUSY);
   2145 	}
   2146 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2147 		VOP_UNLOCK(vp, 0);
   2148 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2149 		return (error);
   2150 	}
   2151 	/* XXX: eventually we should handle VREG, too. */
   2152 	if (va.va_type != VBLK) {
   2153 		VOP_UNLOCK(vp, 0);
   2154 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2155 		return (ENOTBLK);
   2156 	}
   2157 	VOP_UNLOCK(vp, 0);
   2158 	*vpp = vp;
   2159 	return (0);
   2160 }
   2161 /*
   2162  * Wait interruptibly for an exclusive lock.
   2163  *
   2164  * XXX
   2165  * Several drivers do this; it should be abstracted and made MP-safe.
   2166  * (Hmm... where have we seen this warning before :->  GO )
   2167  */
   2168 static int
   2169 raidlock(struct raid_softc *rs)
   2170 {
   2171 	int     error;
   2172 
   2173 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2174 		rs->sc_flags |= RAIDF_WANTED;
   2175 		if ((error =
   2176 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2177 			return (error);
   2178 	}
   2179 	rs->sc_flags |= RAIDF_LOCKED;
   2180 	return (0);
   2181 }
   2182 /*
   2183  * Unlock and wake up any waiters.
   2184  */
   2185 static void
   2186 raidunlock(struct raid_softc *rs)
   2187 {
   2188 
   2189 	rs->sc_flags &= ~RAIDF_LOCKED;
   2190 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2191 		rs->sc_flags &= ~RAIDF_WANTED;
   2192 		wakeup(rs);
   2193 	}
   2194 }
   2195 
   2196 
   2197 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2198 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2199 
   2200 int
   2201 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2202 {
   2203 	RF_ComponentLabel_t clabel;
   2204 	raidread_component_label(dev, b_vp, &clabel);
   2205 	clabel.mod_counter = mod_counter;
   2206 	clabel.clean = RF_RAID_CLEAN;
   2207 	raidwrite_component_label(dev, b_vp, &clabel);
   2208 	return(0);
   2209 }
   2210 
   2211 
   2212 int
   2213 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2214 {
   2215 	RF_ComponentLabel_t clabel;
   2216 	raidread_component_label(dev, b_vp, &clabel);
   2217 	clabel.mod_counter = mod_counter;
   2218 	clabel.clean = RF_RAID_DIRTY;
   2219 	raidwrite_component_label(dev, b_vp, &clabel);
   2220 	return(0);
   2221 }
   2222 
   2223 /* ARGSUSED */
   2224 int
   2225 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2226 			 RF_ComponentLabel_t *clabel)
   2227 {
   2228 	struct buf *bp;
   2229 	const struct bdevsw *bdev;
   2230 	int error;
   2231 
   2232 	/* XXX should probably ensure that we don't try to do this if
   2233 	   someone has changed rf_protected_sectors. */
   2234 
   2235 	if (b_vp == NULL) {
   2236 		/* For whatever reason, this component is not valid.
   2237 		   Don't try to read a component label from it. */
   2238 		return(EINVAL);
   2239 	}
   2240 
   2241 	/* get a block of the appropriate size... */
   2242 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2243 	bp->b_dev = dev;
   2244 
   2245 	/* get our ducks in a row for the read */
   2246 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2247 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2248 	bp->b_flags |= B_READ;
   2249  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2250 
   2251 	bdev = bdevsw_lookup(bp->b_dev);
   2252 	if (bdev == NULL)
   2253 		return (ENXIO);
   2254 	(*bdev->d_strategy)(bp);
   2255 
   2256 	error = biowait(bp);
   2257 
   2258 	if (!error) {
   2259 		memcpy(clabel, bp->b_data,
   2260 		       sizeof(RF_ComponentLabel_t));
   2261         }
   2262 
   2263 	brelse(bp);
   2264 	return(error);
   2265 }
   2266 /* ARGSUSED */
   2267 int
   2268 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2269 			  RF_ComponentLabel_t *clabel)
   2270 {
   2271 	struct buf *bp;
   2272 	const struct bdevsw *bdev;
   2273 	int error;
   2274 
   2275 	/* get a block of the appropriate size... */
   2276 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2277 	bp->b_dev = dev;
   2278 
   2279 	/* get our ducks in a row for the write */
   2280 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2281 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2282 	bp->b_flags |= B_WRITE;
   2283  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2284 
   2285 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2286 
   2287 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2288 
   2289 	bdev = bdevsw_lookup(bp->b_dev);
   2290 	if (bdev == NULL)
   2291 		return (ENXIO);
   2292 	(*bdev->d_strategy)(bp);
   2293 	error = biowait(bp);
   2294 	brelse(bp);
   2295 	if (error) {
   2296 #if 1
   2297 		printf("Failed to write RAID component info!\n");
   2298 #endif
   2299 	}
   2300 
   2301 	return(error);
   2302 }
   2303 
   2304 void
   2305 rf_markalldirty(RF_Raid_t *raidPtr)
   2306 {
   2307 	RF_ComponentLabel_t clabel;
   2308 	int sparecol;
   2309 	int c;
   2310 	int j;
   2311 	int scol = -1;
   2312 
   2313 	raidPtr->mod_counter++;
   2314 	for (c = 0; c < raidPtr->numCol; c++) {
   2315 		/* we don't want to touch (at all) a disk that has
   2316 		   failed */
   2317 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2318 			raidread_component_label(
   2319 						 raidPtr->Disks[c].dev,
   2320 						 raidPtr->raid_cinfo[c].ci_vp,
   2321 						 &clabel);
   2322 			if (clabel.status == rf_ds_spared) {
   2323 				/* XXX do something special...
   2324 				   but whatever you do, don't
   2325 				   try to access it!! */
   2326 			} else {
   2327 				raidmarkdirty(
   2328 					      raidPtr->Disks[c].dev,
   2329 					      raidPtr->raid_cinfo[c].ci_vp,
   2330 					      raidPtr->mod_counter);
   2331 			}
   2332 		}
   2333 	}
   2334 
   2335 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2336 		sparecol = raidPtr->numCol + c;
   2337 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2338 			/*
   2339 
   2340 			   we claim this disk is "optimal" if it's
   2341 			   rf_ds_used_spare, as that means it should be
   2342 			   directly substitutable for the disk it replaced.
   2343 			   We note that too...
   2344 
   2345 			 */
   2346 
   2347 			for(j=0;j<raidPtr->numCol;j++) {
   2348 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2349 					scol = j;
   2350 					break;
   2351 				}
   2352 			}
   2353 
   2354 			raidread_component_label(
   2355 				 raidPtr->Disks[sparecol].dev,
   2356 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2357 				 &clabel);
   2358 			/* make sure status is noted */
   2359 
   2360 			raid_init_component_label(raidPtr, &clabel);
   2361 
   2362 			clabel.row = 0;
   2363 			clabel.column = scol;
   2364 			/* Note: we *don't* change status from rf_ds_used_spare
   2365 			   to rf_ds_optimal */
   2366 			/* clabel.status = rf_ds_optimal; */
   2367 
   2368 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2369 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2370 				      raidPtr->mod_counter);
   2371 		}
   2372 	}
   2373 }
   2374 
   2375 
   2376 void
   2377 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2378 {
   2379 	RF_ComponentLabel_t clabel;
   2380 	int sparecol;
   2381 	int c;
   2382 	int j;
   2383 	int scol;
   2384 
   2385 	scol = -1;
   2386 
   2387 	/* XXX should do extra checks to make sure things really are clean,
   2388 	   rather than blindly setting the clean bit... */
   2389 
   2390 	raidPtr->mod_counter++;
   2391 
   2392 	for (c = 0; c < raidPtr->numCol; c++) {
   2393 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2394 			raidread_component_label(
   2395 						 raidPtr->Disks[c].dev,
   2396 						 raidPtr->raid_cinfo[c].ci_vp,
   2397 						 &clabel);
   2398 				/* make sure status is noted */
   2399 			clabel.status = rf_ds_optimal;
   2400 				/* bump the counter */
   2401 			clabel.mod_counter = raidPtr->mod_counter;
   2402 
   2403 			raidwrite_component_label(
   2404 						  raidPtr->Disks[c].dev,
   2405 						  raidPtr->raid_cinfo[c].ci_vp,
   2406 						  &clabel);
   2407 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2408 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2409 					raidmarkclean(
   2410 						      raidPtr->Disks[c].dev,
   2411 						      raidPtr->raid_cinfo[c].ci_vp,
   2412 						      raidPtr->mod_counter);
   2413 				}
   2414 			}
   2415 		}
   2416 		/* else we don't touch it.. */
   2417 	}
   2418 
   2419 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2420 		sparecol = raidPtr->numCol + c;
   2421 		/* Need to ensure that the reconstruct actually completed! */
   2422 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2423 			/*
   2424 
   2425 			   we claim this disk is "optimal" if it's
   2426 			   rf_ds_used_spare, as that means it should be
   2427 			   directly substitutable for the disk it replaced.
   2428 			   We note that too...
   2429 
   2430 			 */
   2431 
   2432 			for(j=0;j<raidPtr->numCol;j++) {
   2433 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2434 					scol = j;
   2435 					break;
   2436 				}
   2437 			}
   2438 
   2439 			/* XXX shouldn't *really* need this... */
   2440 			raidread_component_label(
   2441 				      raidPtr->Disks[sparecol].dev,
   2442 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2443 				      &clabel);
   2444 			/* make sure status is noted */
   2445 
   2446 			raid_init_component_label(raidPtr, &clabel);
   2447 
   2448 			clabel.mod_counter = raidPtr->mod_counter;
   2449 			clabel.column = scol;
   2450 			clabel.status = rf_ds_optimal;
   2451 
   2452 			raidwrite_component_label(
   2453 				      raidPtr->Disks[sparecol].dev,
   2454 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2455 				      &clabel);
   2456 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2457 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2458 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2459 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2460 						       raidPtr->mod_counter);
   2461 				}
   2462 			}
   2463 		}
   2464 	}
   2465 }
   2466 
   2467 void
   2468 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2469 {
   2470 	struct proc *p;
   2471 
   2472 	p = raidPtr->engine_thread;
   2473 
   2474 	if (vp != NULL) {
   2475 		if (auto_configured == 1) {
   2476 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2477 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2478 			vput(vp);
   2479 
   2480 		} else {
   2481 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2482 		}
   2483 	}
   2484 }
   2485 
   2486 
   2487 void
   2488 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2489 {
   2490 	int r,c;
   2491 	struct vnode *vp;
   2492 	int acd;
   2493 
   2494 
   2495 	/* We take this opportunity to close the vnodes like we should.. */
   2496 
   2497 	for (c = 0; c < raidPtr->numCol; c++) {
   2498 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2499 		acd = raidPtr->Disks[c].auto_configured;
   2500 		rf_close_component(raidPtr, vp, acd);
   2501 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2502 		raidPtr->Disks[c].auto_configured = 0;
   2503 	}
   2504 
   2505 	for (r = 0; r < raidPtr->numSpare; r++) {
   2506 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2507 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2508 		rf_close_component(raidPtr, vp, acd);
   2509 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2510 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2511 	}
   2512 }
   2513 
   2514 
   2515 void
   2516 rf_ReconThread(struct rf_recon_req *req)
   2517 {
   2518 	int     s;
   2519 	RF_Raid_t *raidPtr;
   2520 
   2521 	s = splbio();
   2522 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2523 	raidPtr->recon_in_progress = 1;
   2524 
   2525 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2526 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2527 
   2528 	RF_Free(req, sizeof(*req));
   2529 
   2530 	raidPtr->recon_in_progress = 0;
   2531 	splx(s);
   2532 
   2533 	/* That's all... */
   2534 	kthread_exit(0);        /* does not return */
   2535 }
   2536 
   2537 void
   2538 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2539 {
   2540 	int retcode;
   2541 	int s;
   2542 
   2543 	raidPtr->parity_rewrite_in_progress = 1;
   2544 	s = splbio();
   2545 	retcode = rf_RewriteParity(raidPtr);
   2546 	splx(s);
   2547 	if (retcode) {
   2548 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2549 	} else {
   2550 		/* set the clean bit!  If we shutdown correctly,
   2551 		   the clean bit on each component label will get
   2552 		   set */
   2553 		raidPtr->parity_good = RF_RAID_CLEAN;
   2554 	}
   2555 	raidPtr->parity_rewrite_in_progress = 0;
   2556 
   2557 	/* Anyone waiting for us to stop?  If so, inform them... */
   2558 	if (raidPtr->waitShutdown) {
   2559 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2560 	}
   2561 
   2562 	/* That's all... */
   2563 	kthread_exit(0);        /* does not return */
   2564 }
   2565 
   2566 
   2567 void
   2568 rf_CopybackThread(RF_Raid_t *raidPtr)
   2569 {
   2570 	int s;
   2571 
   2572 	raidPtr->copyback_in_progress = 1;
   2573 	s = splbio();
   2574 	rf_CopybackReconstructedData(raidPtr);
   2575 	splx(s);
   2576 	raidPtr->copyback_in_progress = 0;
   2577 
   2578 	/* That's all... */
   2579 	kthread_exit(0);        /* does not return */
   2580 }
   2581 
   2582 
   2583 void
   2584 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2585 {
   2586 	int s;
   2587 	RF_Raid_t *raidPtr;
   2588 
   2589 	s = splbio();
   2590 	raidPtr = req->raidPtr;
   2591 	raidPtr->recon_in_progress = 1;
   2592 	rf_ReconstructInPlace(raidPtr, req->col);
   2593 	RF_Free(req, sizeof(*req));
   2594 	raidPtr->recon_in_progress = 0;
   2595 	splx(s);
   2596 
   2597 	/* That's all... */
   2598 	kthread_exit(0);        /* does not return */
   2599 }
   2600 
   2601 RF_AutoConfig_t *
   2602 rf_find_raid_components()
   2603 {
   2604 	struct vnode *vp;
   2605 	struct disklabel label;
   2606 	struct device *dv;
   2607 	dev_t dev;
   2608 	int bmajor;
   2609 	int error;
   2610 	int i;
   2611 	int good_one;
   2612 	RF_ComponentLabel_t *clabel;
   2613 	RF_AutoConfig_t *ac_list;
   2614 	RF_AutoConfig_t *ac;
   2615 
   2616 
   2617 	/* initialize the AutoConfig list */
   2618 	ac_list = NULL;
   2619 
   2620 	/* we begin by trolling through *all* the devices on the system */
   2621 
   2622 	for (dv = alldevs.tqh_first; dv != NULL;
   2623 	     dv = dv->dv_list.tqe_next) {
   2624 
   2625 		/* we are only interested in disks... */
   2626 		if (dv->dv_class != DV_DISK)
   2627 			continue;
   2628 
   2629 		/* we don't care about floppies... */
   2630 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2631 			continue;
   2632 		}
   2633 
   2634 		/* we don't care about CD's... */
   2635 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2636 			continue;
   2637 		}
   2638 
   2639 		/* hdfd is the Atari/Hades floppy driver */
   2640 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2641 			continue;
   2642 		}
   2643 		/* fdisa is the Atari/Milan floppy driver */
   2644 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2645 			continue;
   2646 		}
   2647 
   2648 		/* need to find the device_name_to_block_device_major stuff */
   2649 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2650 
   2651 		/* get a vnode for the raw partition of this disk */
   2652 
   2653 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2654 		if (bdevvp(dev, &vp))
   2655 			panic("RAID can't alloc vnode");
   2656 
   2657 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2658 
   2659 		if (error) {
   2660 			/* "Who cares."  Continue looking
   2661 			   for something that exists*/
   2662 			vput(vp);
   2663 			continue;
   2664 		}
   2665 
   2666 		/* Ok, the disk exists.  Go get the disklabel. */
   2667 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2668 		if (error) {
   2669 			/*
   2670 			 * XXX can't happen - open() would
   2671 			 * have errored out (or faked up one)
   2672 			 */
   2673 			printf("can't get label for dev %s%c (%d)!?!?\n",
   2674 			       dv->dv_xname, 'a' + RAW_PART, error);
   2675 		}
   2676 
   2677 		/* don't need this any more.  We'll allocate it again
   2678 		   a little later if we really do... */
   2679 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2680 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2681 		vput(vp);
   2682 
   2683 		for (i=0; i < label.d_npartitions; i++) {
   2684 			/* We only support partitions marked as RAID */
   2685 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2686 				continue;
   2687 
   2688 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2689 			if (bdevvp(dev, &vp))
   2690 				panic("RAID can't alloc vnode");
   2691 
   2692 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2693 			if (error) {
   2694 				/* Whatever... */
   2695 				vput(vp);
   2696 				continue;
   2697 			}
   2698 
   2699 			good_one = 0;
   2700 
   2701 			clabel = (RF_ComponentLabel_t *)
   2702 				malloc(sizeof(RF_ComponentLabel_t),
   2703 				       M_RAIDFRAME, M_NOWAIT);
   2704 			if (clabel == NULL) {
   2705 				/* XXX CLEANUP HERE */
   2706 				printf("RAID auto config: out of memory!\n");
   2707 				return(NULL); /* XXX probably should panic? */
   2708 			}
   2709 
   2710 			if (!raidread_component_label(dev, vp, clabel)) {
   2711 				/* Got the label.  Does it look reasonable? */
   2712 				if (rf_reasonable_label(clabel) &&
   2713 				    (clabel->partitionSize <=
   2714 				     label.d_partitions[i].p_size)) {
   2715 #if DEBUG
   2716 					printf("Component on: %s%c: %d\n",
   2717 					       dv->dv_xname, 'a'+i,
   2718 					       label.d_partitions[i].p_size);
   2719 					rf_print_component_label(clabel);
   2720 #endif
   2721 					/* if it's reasonable, add it,
   2722 					   else ignore it. */
   2723 					ac = (RF_AutoConfig_t *)
   2724 						malloc(sizeof(RF_AutoConfig_t),
   2725 						       M_RAIDFRAME,
   2726 						       M_NOWAIT);
   2727 					if (ac == NULL) {
   2728 						/* XXX should panic?? */
   2729 						return(NULL);
   2730 					}
   2731 
   2732 					snprintf(ac->devname,
   2733 					    sizeof(ac->devname), "%s%c",
   2734 					    dv->dv_xname, 'a'+i);
   2735 					ac->dev = dev;
   2736 					ac->vp = vp;
   2737 					ac->clabel = clabel;
   2738 					ac->next = ac_list;
   2739 					ac_list = ac;
   2740 					good_one = 1;
   2741 				}
   2742 			}
   2743 			if (!good_one) {
   2744 				/* cleanup */
   2745 				free(clabel, M_RAIDFRAME);
   2746 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2747 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2748 				vput(vp);
   2749 			}
   2750 		}
   2751 	}
   2752 	return(ac_list);
   2753 }
   2754 
   2755 static int
   2756 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2757 {
   2758 
   2759 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2760 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2761 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2762 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2763 	    clabel->row >=0 &&
   2764 	    clabel->column >= 0 &&
   2765 	    clabel->num_rows > 0 &&
   2766 	    clabel->num_columns > 0 &&
   2767 	    clabel->row < clabel->num_rows &&
   2768 	    clabel->column < clabel->num_columns &&
   2769 	    clabel->blockSize > 0 &&
   2770 	    clabel->numBlocks > 0) {
   2771 		/* label looks reasonable enough... */
   2772 		return(1);
   2773 	}
   2774 	return(0);
   2775 }
   2776 
   2777 
   2778 #if DEBUG
   2779 void
   2780 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2781 {
   2782 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2783 	       clabel->row, clabel->column,
   2784 	       clabel->num_rows, clabel->num_columns);
   2785 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2786 	       clabel->version, clabel->serial_number,
   2787 	       clabel->mod_counter);
   2788 	printf("   Clean: %s Status: %d\n",
   2789 	       clabel->clean ? "Yes" : "No", clabel->status );
   2790 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2791 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2792 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2793 	       (char) clabel->parityConfig, clabel->blockSize,
   2794 	       clabel->numBlocks);
   2795 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2796 	printf("   Contains root partition: %s\n",
   2797 	       clabel->root_partition ? "Yes" : "No" );
   2798 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2799 #if 0
   2800 	   printf("   Config order: %d\n", clabel->config_order);
   2801 #endif
   2802 
   2803 }
   2804 #endif
   2805 
   2806 RF_ConfigSet_t *
   2807 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2808 {
   2809 	RF_AutoConfig_t *ac;
   2810 	RF_ConfigSet_t *config_sets;
   2811 	RF_ConfigSet_t *cset;
   2812 	RF_AutoConfig_t *ac_next;
   2813 
   2814 
   2815 	config_sets = NULL;
   2816 
   2817 	/* Go through the AutoConfig list, and figure out which components
   2818 	   belong to what sets.  */
   2819 	ac = ac_list;
   2820 	while(ac!=NULL) {
   2821 		/* we're going to putz with ac->next, so save it here
   2822 		   for use at the end of the loop */
   2823 		ac_next = ac->next;
   2824 
   2825 		if (config_sets == NULL) {
   2826 			/* will need at least this one... */
   2827 			config_sets = (RF_ConfigSet_t *)
   2828 				malloc(sizeof(RF_ConfigSet_t),
   2829 				       M_RAIDFRAME, M_NOWAIT);
   2830 			if (config_sets == NULL) {
   2831 				panic("rf_create_auto_sets: No memory!");
   2832 			}
   2833 			/* this one is easy :) */
   2834 			config_sets->ac = ac;
   2835 			config_sets->next = NULL;
   2836 			config_sets->rootable = 0;
   2837 			ac->next = NULL;
   2838 		} else {
   2839 			/* which set does this component fit into? */
   2840 			cset = config_sets;
   2841 			while(cset!=NULL) {
   2842 				if (rf_does_it_fit(cset, ac)) {
   2843 					/* looks like it matches... */
   2844 					ac->next = cset->ac;
   2845 					cset->ac = ac;
   2846 					break;
   2847 				}
   2848 				cset = cset->next;
   2849 			}
   2850 			if (cset==NULL) {
   2851 				/* didn't find a match above... new set..*/
   2852 				cset = (RF_ConfigSet_t *)
   2853 					malloc(sizeof(RF_ConfigSet_t),
   2854 					       M_RAIDFRAME, M_NOWAIT);
   2855 				if (cset == NULL) {
   2856 					panic("rf_create_auto_sets: No memory!");
   2857 				}
   2858 				cset->ac = ac;
   2859 				ac->next = NULL;
   2860 				cset->next = config_sets;
   2861 				cset->rootable = 0;
   2862 				config_sets = cset;
   2863 			}
   2864 		}
   2865 		ac = ac_next;
   2866 	}
   2867 
   2868 
   2869 	return(config_sets);
   2870 }
   2871 
   2872 static int
   2873 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2874 {
   2875 	RF_ComponentLabel_t *clabel1, *clabel2;
   2876 
   2877 	/* If this one matches the *first* one in the set, that's good
   2878 	   enough, since the other members of the set would have been
   2879 	   through here too... */
   2880 	/* note that we are not checking partitionSize here..
   2881 
   2882 	   Note that we are also not checking the mod_counters here.
   2883 	   If everything else matches execpt the mod_counter, that's
   2884 	   good enough for this test.  We will deal with the mod_counters
   2885 	   a little later in the autoconfiguration process.
   2886 
   2887 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2888 
   2889 	   The reason we don't check for this is that failed disks
   2890 	   will have lower modification counts.  If those disks are
   2891 	   not added to the set they used to belong to, then they will
   2892 	   form their own set, which may result in 2 different sets,
   2893 	   for example, competing to be configured at raid0, and
   2894 	   perhaps competing to be the root filesystem set.  If the
   2895 	   wrong ones get configured, or both attempt to become /,
   2896 	   weird behaviour and or serious lossage will occur.  Thus we
   2897 	   need to bring them into the fold here, and kick them out at
   2898 	   a later point.
   2899 
   2900 	*/
   2901 
   2902 	clabel1 = cset->ac->clabel;
   2903 	clabel2 = ac->clabel;
   2904 	if ((clabel1->version == clabel2->version) &&
   2905 	    (clabel1->serial_number == clabel2->serial_number) &&
   2906 	    (clabel1->num_rows == clabel2->num_rows) &&
   2907 	    (clabel1->num_columns == clabel2->num_columns) &&
   2908 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2909 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2910 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2911 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2912 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2913 	    (clabel1->blockSize == clabel2->blockSize) &&
   2914 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2915 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2916 	    (clabel1->root_partition == clabel2->root_partition) &&
   2917 	    (clabel1->last_unit == clabel2->last_unit) &&
   2918 	    (clabel1->config_order == clabel2->config_order)) {
   2919 		/* if it get's here, it almost *has* to be a match */
   2920 	} else {
   2921 		/* it's not consistent with somebody in the set..
   2922 		   punt */
   2923 		return(0);
   2924 	}
   2925 	/* all was fine.. it must fit... */
   2926 	return(1);
   2927 }
   2928 
   2929 int
   2930 rf_have_enough_components(RF_ConfigSet_t *cset)
   2931 {
   2932 	RF_AutoConfig_t *ac;
   2933 	RF_AutoConfig_t *auto_config;
   2934 	RF_ComponentLabel_t *clabel;
   2935 	int c;
   2936 	int num_cols;
   2937 	int num_missing;
   2938 	int mod_counter;
   2939 	int mod_counter_found;
   2940 	int even_pair_failed;
   2941 	char parity_type;
   2942 
   2943 
   2944 	/* check to see that we have enough 'live' components
   2945 	   of this set.  If so, we can configure it if necessary */
   2946 
   2947 	num_cols = cset->ac->clabel->num_columns;
   2948 	parity_type = cset->ac->clabel->parityConfig;
   2949 
   2950 	/* XXX Check for duplicate components!?!?!? */
   2951 
   2952 	/* Determine what the mod_counter is supposed to be for this set. */
   2953 
   2954 	mod_counter_found = 0;
   2955 	mod_counter = 0;
   2956 	ac = cset->ac;
   2957 	while(ac!=NULL) {
   2958 		if (mod_counter_found==0) {
   2959 			mod_counter = ac->clabel->mod_counter;
   2960 			mod_counter_found = 1;
   2961 		} else {
   2962 			if (ac->clabel->mod_counter > mod_counter) {
   2963 				mod_counter = ac->clabel->mod_counter;
   2964 			}
   2965 		}
   2966 		ac = ac->next;
   2967 	}
   2968 
   2969 	num_missing = 0;
   2970 	auto_config = cset->ac;
   2971 
   2972 	even_pair_failed = 0;
   2973 	for(c=0; c<num_cols; c++) {
   2974 		ac = auto_config;
   2975 		while(ac!=NULL) {
   2976 			if ((ac->clabel->column == c) &&
   2977 			    (ac->clabel->mod_counter == mod_counter)) {
   2978 				/* it's this one... */
   2979 #if DEBUG
   2980 				printf("Found: %s at %d\n",
   2981 				       ac->devname,c);
   2982 #endif
   2983 				break;
   2984 			}
   2985 			ac=ac->next;
   2986 		}
   2987 		if (ac==NULL) {
   2988 				/* Didn't find one here! */
   2989 				/* special case for RAID 1, especially
   2990 				   where there are more than 2
   2991 				   components (where RAIDframe treats
   2992 				   things a little differently :( ) */
   2993 			if (parity_type == '1') {
   2994 				if (c%2 == 0) { /* even component */
   2995 					even_pair_failed = 1;
   2996 				} else { /* odd component.  If
   2997 					    we're failed, and
   2998 					    so is the even
   2999 					    component, it's
   3000 					    "Good Night, Charlie" */
   3001 					if (even_pair_failed == 1) {
   3002 						return(0);
   3003 					}
   3004 				}
   3005 			} else {
   3006 				/* normal accounting */
   3007 				num_missing++;
   3008 			}
   3009 		}
   3010 		if ((parity_type == '1') && (c%2 == 1)) {
   3011 				/* Just did an even component, and we didn't
   3012 				   bail.. reset the even_pair_failed flag,
   3013 				   and go on to the next component.... */
   3014 			even_pair_failed = 0;
   3015 		}
   3016 	}
   3017 
   3018 	clabel = cset->ac->clabel;
   3019 
   3020 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3021 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3022 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3023 		/* XXX this needs to be made *much* more general */
   3024 		/* Too many failures */
   3025 		return(0);
   3026 	}
   3027 	/* otherwise, all is well, and we've got enough to take a kick
   3028 	   at autoconfiguring this set */
   3029 	return(1);
   3030 }
   3031 
   3032 void
   3033 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3034 			RF_Raid_t *raidPtr)
   3035 {
   3036 	RF_ComponentLabel_t *clabel;
   3037 	int i;
   3038 
   3039 	clabel = ac->clabel;
   3040 
   3041 	/* 1. Fill in the common stuff */
   3042 	config->numRow = clabel->num_rows = 1;
   3043 	config->numCol = clabel->num_columns;
   3044 	config->numSpare = 0; /* XXX should this be set here? */
   3045 	config->sectPerSU = clabel->sectPerSU;
   3046 	config->SUsPerPU = clabel->SUsPerPU;
   3047 	config->SUsPerRU = clabel->SUsPerRU;
   3048 	config->parityConfig = clabel->parityConfig;
   3049 	/* XXX... */
   3050 	strcpy(config->diskQueueType,"fifo");
   3051 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3052 	config->layoutSpecificSize = 0; /* XXX ?? */
   3053 
   3054 	while(ac!=NULL) {
   3055 		/* row/col values will be in range due to the checks
   3056 		   in reasonable_label() */
   3057 		strcpy(config->devnames[0][ac->clabel->column],
   3058 		       ac->devname);
   3059 		ac = ac->next;
   3060 	}
   3061 
   3062 	for(i=0;i<RF_MAXDBGV;i++) {
   3063 		config->debugVars[i][0] = 0;
   3064 	}
   3065 }
   3066 
   3067 int
   3068 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3069 {
   3070 	RF_ComponentLabel_t clabel;
   3071 	struct vnode *vp;
   3072 	dev_t dev;
   3073 	int column;
   3074 	int sparecol;
   3075 
   3076 	raidPtr->autoconfigure = new_value;
   3077 
   3078 	for(column=0; column<raidPtr->numCol; column++) {
   3079 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3080 			dev = raidPtr->Disks[column].dev;
   3081 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3082 			raidread_component_label(dev, vp, &clabel);
   3083 			clabel.autoconfigure = new_value;
   3084 			raidwrite_component_label(dev, vp, &clabel);
   3085 		}
   3086 	}
   3087 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3088 		sparecol = raidPtr->numCol + column;
   3089 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3090 			dev = raidPtr->Disks[sparecol].dev;
   3091 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3092 			raidread_component_label(dev, vp, &clabel);
   3093 			clabel.autoconfigure = new_value;
   3094 			raidwrite_component_label(dev, vp, &clabel);
   3095 		}
   3096 	}
   3097 	return(new_value);
   3098 }
   3099 
   3100 int
   3101 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3102 {
   3103 	RF_ComponentLabel_t clabel;
   3104 	struct vnode *vp;
   3105 	dev_t dev;
   3106 	int column;
   3107 	int sparecol;
   3108 
   3109 	raidPtr->root_partition = new_value;
   3110 	for(column=0; column<raidPtr->numCol; column++) {
   3111 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3112 			dev = raidPtr->Disks[column].dev;
   3113 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3114 			raidread_component_label(dev, vp, &clabel);
   3115 			clabel.root_partition = new_value;
   3116 			raidwrite_component_label(dev, vp, &clabel);
   3117 		}
   3118 	}
   3119 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3120 		sparecol = raidPtr->numCol + column;
   3121 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3122 			dev = raidPtr->Disks[sparecol].dev;
   3123 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3124 			raidread_component_label(dev, vp, &clabel);
   3125 			clabel.root_partition = new_value;
   3126 			raidwrite_component_label(dev, vp, &clabel);
   3127 		}
   3128 	}
   3129 	return(new_value);
   3130 }
   3131 
   3132 void
   3133 rf_release_all_vps(RF_ConfigSet_t *cset)
   3134 {
   3135 	RF_AutoConfig_t *ac;
   3136 
   3137 	ac = cset->ac;
   3138 	while(ac!=NULL) {
   3139 		/* Close the vp, and give it back */
   3140 		if (ac->vp) {
   3141 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3142 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3143 			vput(ac->vp);
   3144 			ac->vp = NULL;
   3145 		}
   3146 		ac = ac->next;
   3147 	}
   3148 }
   3149 
   3150 
   3151 void
   3152 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3153 {
   3154 	RF_AutoConfig_t *ac;
   3155 	RF_AutoConfig_t *next_ac;
   3156 
   3157 	ac = cset->ac;
   3158 	while(ac!=NULL) {
   3159 		next_ac = ac->next;
   3160 		/* nuke the label */
   3161 		free(ac->clabel, M_RAIDFRAME);
   3162 		/* cleanup the config structure */
   3163 		free(ac, M_RAIDFRAME);
   3164 		/* "next.." */
   3165 		ac = next_ac;
   3166 	}
   3167 	/* and, finally, nuke the config set */
   3168 	free(cset, M_RAIDFRAME);
   3169 }
   3170 
   3171 
   3172 void
   3173 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3174 {
   3175 	/* current version number */
   3176 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3177 	clabel->serial_number = raidPtr->serial_number;
   3178 	clabel->mod_counter = raidPtr->mod_counter;
   3179 	clabel->num_rows = 1;
   3180 	clabel->num_columns = raidPtr->numCol;
   3181 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3182 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3183 
   3184 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3185 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3186 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3187 
   3188 	clabel->blockSize = raidPtr->bytesPerSector;
   3189 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3190 
   3191 	/* XXX not portable */
   3192 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3193 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3194 	clabel->autoconfigure = raidPtr->autoconfigure;
   3195 	clabel->root_partition = raidPtr->root_partition;
   3196 	clabel->last_unit = raidPtr->raidid;
   3197 	clabel->config_order = raidPtr->config_order;
   3198 }
   3199 
   3200 int
   3201 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3202 {
   3203 	RF_Raid_t *raidPtr;
   3204 	RF_Config_t *config;
   3205 	int raidID;
   3206 	int retcode;
   3207 
   3208 #if DEBUG
   3209 	printf("RAID autoconfigure\n");
   3210 #endif
   3211 
   3212 	retcode = 0;
   3213 	*unit = -1;
   3214 
   3215 	/* 1. Create a config structure */
   3216 
   3217 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3218 				       M_RAIDFRAME,
   3219 				       M_NOWAIT);
   3220 	if (config==NULL) {
   3221 		printf("Out of mem!?!?\n");
   3222 				/* XXX do something more intelligent here. */
   3223 		return(1);
   3224 	}
   3225 
   3226 	memset(config, 0, sizeof(RF_Config_t));
   3227 
   3228 	/*
   3229 	   2. Figure out what RAID ID this one is supposed to live at
   3230 	   See if we can get the same RAID dev that it was configured
   3231 	   on last time..
   3232 	*/
   3233 
   3234 	raidID = cset->ac->clabel->last_unit;
   3235 	if ((raidID < 0) || (raidID >= numraid)) {
   3236 		/* let's not wander off into lala land. */
   3237 		raidID = numraid - 1;
   3238 	}
   3239 	if (raidPtrs[raidID]->valid != 0) {
   3240 
   3241 		/*
   3242 		   Nope... Go looking for an alternative...
   3243 		   Start high so we don't immediately use raid0 if that's
   3244 		   not taken.
   3245 		*/
   3246 
   3247 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3248 			if (raidPtrs[raidID]->valid == 0) {
   3249 				/* can use this one! */
   3250 				break;
   3251 			}
   3252 		}
   3253 	}
   3254 
   3255 	if (raidID < 0) {
   3256 		/* punt... */
   3257 		printf("Unable to auto configure this set!\n");
   3258 		printf("(Out of RAID devs!)\n");
   3259 		return(1);
   3260 	}
   3261 
   3262 #if DEBUG
   3263 	printf("Configuring raid%d:\n",raidID);
   3264 #endif
   3265 
   3266 	raidPtr = raidPtrs[raidID];
   3267 
   3268 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3269 	raidPtr->raidid = raidID;
   3270 	raidPtr->openings = RAIDOUTSTANDING;
   3271 
   3272 	/* 3. Build the configuration structure */
   3273 	rf_create_configuration(cset->ac, config, raidPtr);
   3274 
   3275 	/* 4. Do the configuration */
   3276 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3277 
   3278 	if (retcode == 0) {
   3279 
   3280 		raidinit(raidPtrs[raidID]);
   3281 
   3282 		rf_markalldirty(raidPtrs[raidID]);
   3283 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3284 		if (cset->ac->clabel->root_partition==1) {
   3285 			/* everything configured just fine.  Make a note
   3286 			   that this set is eligible to be root. */
   3287 			cset->rootable = 1;
   3288 			/* XXX do this here? */
   3289 			raidPtrs[raidID]->root_partition = 1;
   3290 		}
   3291 	}
   3292 
   3293 	/* 5. Cleanup */
   3294 	free(config, M_RAIDFRAME);
   3295 
   3296 	*unit = raidID;
   3297 	return(retcode);
   3298 }
   3299 
   3300 void
   3301 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3302 {
   3303 	struct buf *bp;
   3304 
   3305 	bp = (struct buf *)desc->bp;
   3306 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3307 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3308 }
   3309 
   3310 void
   3311 rf_pool_init(struct pool *p, size_t size, char *w_chan,
   3312 	     size_t min, size_t max)
   3313 {
   3314 	pool_init(p, size, 0, 0, 0, w_chan, NULL);
   3315 	pool_sethiwat(p, max);
   3316 	pool_prime(p, min);
   3317 	pool_setlowat(p, min);
   3318 }
   3319