Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.182
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.182 2004/10/28 07:07:44 yamt Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.182 2004/10/28 07:07:44 yamt Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 
    172 #include <dev/raidframe/raidframevar.h>
    173 #include <dev/raidframe/raidframeio.h>
    174 #include "raid.h"
    175 #include "opt_raid_autoconfig.h"
    176 #include "rf_raid.h"
    177 #include "rf_copyback.h"
    178 #include "rf_dag.h"
    179 #include "rf_dagflags.h"
    180 #include "rf_desc.h"
    181 #include "rf_diskqueue.h"
    182 #include "rf_etimer.h"
    183 #include "rf_general.h"
    184 #include "rf_kintf.h"
    185 #include "rf_options.h"
    186 #include "rf_driver.h"
    187 #include "rf_parityscan.h"
    188 #include "rf_threadstuff.h"
    189 
    190 #ifdef DEBUG
    191 int     rf_kdebug_level = 0;
    192 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    193 #else				/* DEBUG */
    194 #define db1_printf(a) { }
    195 #endif				/* DEBUG */
    196 
    197 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    198 
    199 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    200 
    201 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    202 						 * spare table */
    203 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    204 						 * installation process */
    205 
    206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    207 
    208 /* prototypes */
    209 static void KernelWakeupFunc(struct buf * bp);
    210 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    211 		   dev_t dev, RF_SectorNum_t startSect,
    212 		   RF_SectorCount_t numSect, caddr_t buf,
    213 		   void (*cbFunc) (struct buf *), void *cbArg,
    214 		   int logBytesPerSector, struct proc * b_proc);
    215 static void raidinit(RF_Raid_t *);
    216 
    217 void raidattach(int);
    218 
    219 dev_type_open(raidopen);
    220 dev_type_close(raidclose);
    221 dev_type_read(raidread);
    222 dev_type_write(raidwrite);
    223 dev_type_ioctl(raidioctl);
    224 dev_type_strategy(raidstrategy);
    225 dev_type_dump(raiddump);
    226 dev_type_size(raidsize);
    227 
    228 const struct bdevsw raid_bdevsw = {
    229 	raidopen, raidclose, raidstrategy, raidioctl,
    230 	raiddump, raidsize, D_DISK
    231 };
    232 
    233 const struct cdevsw raid_cdevsw = {
    234 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    235 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    236 };
    237 
    238 /*
    239  * Pilfered from ccd.c
    240  */
    241 
    242 struct raidbuf {
    243 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    244 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    245 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    246 };
    247 
    248 /* XXX Not sure if the following should be replacing the raidPtrs above,
    249    or if it should be used in conjunction with that...
    250 */
    251 
    252 struct raid_softc {
    253 	int     sc_flags;	/* flags */
    254 	int     sc_cflags;	/* configuration flags */
    255 	size_t  sc_size;        /* size of the raid device */
    256 	char    sc_xname[20];	/* XXX external name */
    257 	struct disk sc_dkdev;	/* generic disk device info */
    258 	struct bufq_state buf_queue;	/* used for the device queue */
    259 };
    260 /* sc_flags */
    261 #define RAIDF_INITED	0x01	/* unit has been initialized */
    262 #define RAIDF_WLABEL	0x02	/* label area is writable */
    263 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    264 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    265 #define RAIDF_LOCKED	0x80	/* unit is locked */
    266 
    267 #define	raidunit(x)	DISKUNIT(x)
    268 int numraid = 0;
    269 
    270 /*
    271  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    272  * Be aware that large numbers can allow the driver to consume a lot of
    273  * kernel memory, especially on writes, and in degraded mode reads.
    274  *
    275  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    276  * a single 64K write will typically require 64K for the old data,
    277  * 64K for the old parity, and 64K for the new parity, for a total
    278  * of 192K (if the parity buffer is not re-used immediately).
    279  * Even it if is used immediately, that's still 128K, which when multiplied
    280  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    281  *
    282  * Now in degraded mode, for example, a 64K read on the above setup may
    283  * require data reconstruction, which will require *all* of the 4 remaining
    284  * disks to participate -- 4 * 32K/disk == 128K again.
    285  */
    286 
    287 #ifndef RAIDOUTSTANDING
    288 #define RAIDOUTSTANDING   6
    289 #endif
    290 
    291 #define RAIDLABELDEV(dev)	\
    292 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    293 
    294 /* declared here, and made public, for the benefit of KVM stuff.. */
    295 struct raid_softc *raid_softc;
    296 
    297 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    298 				     struct disklabel *);
    299 static void raidgetdisklabel(dev_t);
    300 static void raidmakedisklabel(struct raid_softc *);
    301 
    302 static int raidlock(struct raid_softc *);
    303 static void raidunlock(struct raid_softc *);
    304 
    305 static void rf_markalldirty(RF_Raid_t *);
    306 
    307 struct device *raidrootdev;
    308 
    309 void rf_ReconThread(struct rf_recon_req *);
    310 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    311 void rf_CopybackThread(RF_Raid_t *raidPtr);
    312 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    313 int rf_autoconfig(struct device *self);
    314 void rf_buildroothack(RF_ConfigSet_t *);
    315 
    316 RF_AutoConfig_t *rf_find_raid_components(void);
    317 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    318 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    319 static int rf_reasonable_label(RF_ComponentLabel_t *);
    320 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    321 int rf_set_autoconfig(RF_Raid_t *, int);
    322 int rf_set_rootpartition(RF_Raid_t *, int);
    323 void rf_release_all_vps(RF_ConfigSet_t *);
    324 void rf_cleanup_config_set(RF_ConfigSet_t *);
    325 int rf_have_enough_components(RF_ConfigSet_t *);
    326 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    327 
    328 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    329 				  allow autoconfig to take place.
    330 			          Note that this is overridden by having
    331 			          RAID_AUTOCONFIG as an option in the
    332 			          kernel config file.  */
    333 
    334 struct RF_Pools_s rf_pools;
    335 
    336 void
    337 raidattach(int num)
    338 {
    339 	int raidID;
    340 	int i, rc;
    341 
    342 #ifdef DEBUG
    343 	printf("raidattach: Asked for %d units\n", num);
    344 #endif
    345 
    346 	if (num <= 0) {
    347 #ifdef DIAGNOSTIC
    348 		panic("raidattach: count <= 0");
    349 #endif
    350 		return;
    351 	}
    352 	/* This is where all the initialization stuff gets done. */
    353 
    354 	numraid = num;
    355 
    356 	/* Make some space for requested number of units... */
    357 
    358 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    359 	if (raidPtrs == NULL) {
    360 		panic("raidPtrs is NULL!!");
    361 	}
    362 
    363 	/* Initialize the component buffer pool. */
    364 	rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
    365 		     "raidpl", num * RAIDOUTSTANDING,
    366 		     2 * num * RAIDOUTSTANDING);
    367 
    368 	rf_mutex_init(&rf_sparet_wait_mutex);
    369 
    370 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    371 
    372 	for (i = 0; i < num; i++)
    373 		raidPtrs[i] = NULL;
    374 	rc = rf_BootRaidframe();
    375 	if (rc == 0)
    376 		printf("Kernelized RAIDframe activated\n");
    377 	else
    378 		panic("Serious error booting RAID!!");
    379 
    380 	/* put together some datastructures like the CCD device does.. This
    381 	 * lets us lock the device and what-not when it gets opened. */
    382 
    383 	raid_softc = (struct raid_softc *)
    384 		malloc(num * sizeof(struct raid_softc),
    385 		       M_RAIDFRAME, M_NOWAIT);
    386 	if (raid_softc == NULL) {
    387 		printf("WARNING: no memory for RAIDframe driver\n");
    388 		return;
    389 	}
    390 
    391 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    392 
    393 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    394 					      M_RAIDFRAME, M_NOWAIT);
    395 	if (raidrootdev == NULL) {
    396 		panic("No memory for RAIDframe driver!!?!?!");
    397 	}
    398 
    399 	for (raidID = 0; raidID < num; raidID++) {
    400 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    401 
    402 		raidrootdev[raidID].dv_class  = DV_DISK;
    403 		raidrootdev[raidID].dv_cfdata = NULL;
    404 		raidrootdev[raidID].dv_unit   = raidID;
    405 		raidrootdev[raidID].dv_parent = NULL;
    406 		raidrootdev[raidID].dv_flags  = 0;
    407 		snprintf(raidrootdev[raidID].dv_xname,
    408 		    sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
    409 
    410 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    411 			  (RF_Raid_t *));
    412 		if (raidPtrs[raidID] == NULL) {
    413 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    414 			numraid = raidID;
    415 			return;
    416 		}
    417 	}
    418 
    419 #ifdef RAID_AUTOCONFIG
    420 	raidautoconfig = 1;
    421 #endif
    422 
    423 	/*
    424 	 * Register a finalizer which will be used to auto-config RAID
    425 	 * sets once all real hardware devices have been found.
    426 	 */
    427 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    428 		printf("WARNING: unable to register RAIDframe finalizer\n");
    429 }
    430 
    431 int
    432 rf_autoconfig(struct device *self)
    433 {
    434 	RF_AutoConfig_t *ac_list;
    435 	RF_ConfigSet_t *config_sets;
    436 
    437 	if (raidautoconfig == 0)
    438 		return (0);
    439 
    440 	/* XXX This code can only be run once. */
    441 	raidautoconfig = 0;
    442 
    443 	/* 1. locate all RAID components on the system */
    444 #ifdef DEBUG
    445 	printf("Searching for RAID components...\n");
    446 #endif
    447 	ac_list = rf_find_raid_components();
    448 
    449 	/* 2. Sort them into their respective sets. */
    450 	config_sets = rf_create_auto_sets(ac_list);
    451 
    452 	/*
    453 	 * 3. Evaluate each set andconfigure the valid ones.
    454 	 * This gets done in rf_buildroothack().
    455 	 */
    456 	rf_buildroothack(config_sets);
    457 
    458 	return (1);
    459 }
    460 
    461 void
    462 rf_buildroothack(RF_ConfigSet_t *config_sets)
    463 {
    464 	RF_ConfigSet_t *cset;
    465 	RF_ConfigSet_t *next_cset;
    466 	int retcode;
    467 	int raidID;
    468 	int rootID;
    469 	int num_root;
    470 
    471 	rootID = 0;
    472 	num_root = 0;
    473 	cset = config_sets;
    474 	while(cset != NULL ) {
    475 		next_cset = cset->next;
    476 		if (rf_have_enough_components(cset) &&
    477 		    cset->ac->clabel->autoconfigure==1) {
    478 			retcode = rf_auto_config_set(cset,&raidID);
    479 			if (!retcode) {
    480 				if (cset->rootable) {
    481 					rootID = raidID;
    482 					num_root++;
    483 				}
    484 			} else {
    485 				/* The autoconfig didn't work :( */
    486 #if DEBUG
    487 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    488 #endif
    489 				rf_release_all_vps(cset);
    490 			}
    491 		} else {
    492 			/* we're not autoconfiguring this set...
    493 			   release the associated resources */
    494 			rf_release_all_vps(cset);
    495 		}
    496 		/* cleanup */
    497 		rf_cleanup_config_set(cset);
    498 		cset = next_cset;
    499 	}
    500 
    501 	/* we found something bootable... */
    502 
    503 	if (num_root == 1) {
    504 		booted_device = &raidrootdev[rootID];
    505 	} else if (num_root > 1) {
    506 		/* we can't guess.. require the user to answer... */
    507 		boothowto |= RB_ASKNAME;
    508 	}
    509 }
    510 
    511 
    512 int
    513 raidsize(dev_t dev)
    514 {
    515 	struct raid_softc *rs;
    516 	struct disklabel *lp;
    517 	int     part, unit, omask, size;
    518 
    519 	unit = raidunit(dev);
    520 	if (unit >= numraid)
    521 		return (-1);
    522 	rs = &raid_softc[unit];
    523 
    524 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    525 		return (-1);
    526 
    527 	part = DISKPART(dev);
    528 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    529 	lp = rs->sc_dkdev.dk_label;
    530 
    531 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    532 		return (-1);
    533 
    534 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    535 		size = -1;
    536 	else
    537 		size = lp->d_partitions[part].p_size *
    538 		    (lp->d_secsize / DEV_BSIZE);
    539 
    540 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    541 		return (-1);
    542 
    543 	return (size);
    544 
    545 }
    546 
    547 int
    548 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    549 {
    550 	/* Not implemented. */
    551 	return ENXIO;
    552 }
    553 /* ARGSUSED */
    554 int
    555 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
    556 {
    557 	int     unit = raidunit(dev);
    558 	struct raid_softc *rs;
    559 	struct disklabel *lp;
    560 	int     part, pmask;
    561 	int     error = 0;
    562 
    563 	if (unit >= numraid)
    564 		return (ENXIO);
    565 	rs = &raid_softc[unit];
    566 
    567 	if ((error = raidlock(rs)) != 0)
    568 		return (error);
    569 	lp = rs->sc_dkdev.dk_label;
    570 
    571 	part = DISKPART(dev);
    572 	pmask = (1 << part);
    573 
    574 	if ((rs->sc_flags & RAIDF_INITED) &&
    575 	    (rs->sc_dkdev.dk_openmask == 0))
    576 		raidgetdisklabel(dev);
    577 
    578 	/* make sure that this partition exists */
    579 
    580 	if (part != RAW_PART) {
    581 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    582 		    ((part >= lp->d_npartitions) ||
    583 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    584 			error = ENXIO;
    585 			raidunlock(rs);
    586 			return (error);
    587 		}
    588 	}
    589 	/* Prevent this unit from being unconfigured while open. */
    590 	switch (fmt) {
    591 	case S_IFCHR:
    592 		rs->sc_dkdev.dk_copenmask |= pmask;
    593 		break;
    594 
    595 	case S_IFBLK:
    596 		rs->sc_dkdev.dk_bopenmask |= pmask;
    597 		break;
    598 	}
    599 
    600 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    601 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    602 		/* First one... mark things as dirty... Note that we *MUST*
    603 		 have done a configure before this.  I DO NOT WANT TO BE
    604 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    605 		 THAT THEY BELONG TOGETHER!!!!! */
    606 		/* XXX should check to see if we're only open for reading
    607 		   here... If so, we needn't do this, but then need some
    608 		   other way of keeping track of what's happened.. */
    609 
    610 		rf_markalldirty( raidPtrs[unit] );
    611 	}
    612 
    613 
    614 	rs->sc_dkdev.dk_openmask =
    615 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    616 
    617 	raidunlock(rs);
    618 
    619 	return (error);
    620 
    621 
    622 }
    623 /* ARGSUSED */
    624 int
    625 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
    626 {
    627 	int     unit = raidunit(dev);
    628 	struct raid_softc *rs;
    629 	int     error = 0;
    630 	int     part;
    631 
    632 	if (unit >= numraid)
    633 		return (ENXIO);
    634 	rs = &raid_softc[unit];
    635 
    636 	if ((error = raidlock(rs)) != 0)
    637 		return (error);
    638 
    639 	part = DISKPART(dev);
    640 
    641 	/* ...that much closer to allowing unconfiguration... */
    642 	switch (fmt) {
    643 	case S_IFCHR:
    644 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    645 		break;
    646 
    647 	case S_IFBLK:
    648 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    649 		break;
    650 	}
    651 	rs->sc_dkdev.dk_openmask =
    652 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    653 
    654 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    655 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    656 		/* Last one... device is not unconfigured yet.
    657 		   Device shutdown has taken care of setting the
    658 		   clean bits if RAIDF_INITED is not set
    659 		   mark things as clean... */
    660 
    661 		rf_update_component_labels(raidPtrs[unit],
    662 						 RF_FINAL_COMPONENT_UPDATE);
    663 		if (doing_shutdown) {
    664 			/* last one, and we're going down, so
    665 			   lights out for this RAID set too. */
    666 			error = rf_Shutdown(raidPtrs[unit]);
    667 
    668 			/* It's no longer initialized... */
    669 			rs->sc_flags &= ~RAIDF_INITED;
    670 
    671 			/* Detach the disk. */
    672 			disk_detach(&rs->sc_dkdev);
    673 		}
    674 	}
    675 
    676 	raidunlock(rs);
    677 	return (0);
    678 
    679 }
    680 
    681 void
    682 raidstrategy(struct buf *bp)
    683 {
    684 	int s;
    685 
    686 	unsigned int raidID = raidunit(bp->b_dev);
    687 	RF_Raid_t *raidPtr;
    688 	struct raid_softc *rs = &raid_softc[raidID];
    689 	int     wlabel;
    690 
    691 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    692 		bp->b_error = ENXIO;
    693 		bp->b_flags |= B_ERROR;
    694 		bp->b_resid = bp->b_bcount;
    695 		biodone(bp);
    696 		return;
    697 	}
    698 	if (raidID >= numraid || !raidPtrs[raidID]) {
    699 		bp->b_error = ENODEV;
    700 		bp->b_flags |= B_ERROR;
    701 		bp->b_resid = bp->b_bcount;
    702 		biodone(bp);
    703 		return;
    704 	}
    705 	raidPtr = raidPtrs[raidID];
    706 	if (!raidPtr->valid) {
    707 		bp->b_error = ENODEV;
    708 		bp->b_flags |= B_ERROR;
    709 		bp->b_resid = bp->b_bcount;
    710 		biodone(bp);
    711 		return;
    712 	}
    713 	if (bp->b_bcount == 0) {
    714 		db1_printf(("b_bcount is zero..\n"));
    715 		biodone(bp);
    716 		return;
    717 	}
    718 
    719 	/*
    720 	 * Do bounds checking and adjust transfer.  If there's an
    721 	 * error, the bounds check will flag that for us.
    722 	 */
    723 
    724 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    725 	if (DISKPART(bp->b_dev) != RAW_PART)
    726 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    727 			db1_printf(("Bounds check failed!!:%d %d\n",
    728 				(int) bp->b_blkno, (int) wlabel));
    729 			biodone(bp);
    730 			return;
    731 		}
    732 	s = splbio();
    733 
    734 	bp->b_resid = 0;
    735 
    736 	/* stuff it onto our queue */
    737 	BUFQ_PUT(&rs->buf_queue, bp);
    738 
    739 	raidstart(raidPtrs[raidID]);
    740 
    741 	splx(s);
    742 }
    743 /* ARGSUSED */
    744 int
    745 raidread(dev_t dev, struct uio *uio, int flags)
    746 {
    747 	int     unit = raidunit(dev);
    748 	struct raid_softc *rs;
    749 
    750 	if (unit >= numraid)
    751 		return (ENXIO);
    752 	rs = &raid_softc[unit];
    753 
    754 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    755 		return (ENXIO);
    756 
    757 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    758 
    759 }
    760 /* ARGSUSED */
    761 int
    762 raidwrite(dev_t dev, struct uio *uio, int flags)
    763 {
    764 	int     unit = raidunit(dev);
    765 	struct raid_softc *rs;
    766 
    767 	if (unit >= numraid)
    768 		return (ENXIO);
    769 	rs = &raid_softc[unit];
    770 
    771 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    772 		return (ENXIO);
    773 
    774 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    775 
    776 }
    777 
    778 int
    779 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
    780 {
    781 	int     unit = raidunit(dev);
    782 	int     error = 0;
    783 	int     part, pmask;
    784 	struct raid_softc *rs;
    785 	RF_Config_t *k_cfg, *u_cfg;
    786 	RF_Raid_t *raidPtr;
    787 	RF_RaidDisk_t *diskPtr;
    788 	RF_AccTotals_t *totals;
    789 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    790 	u_char *specific_buf;
    791 	int retcode = 0;
    792 	int column;
    793 	int raidid;
    794 	struct rf_recon_req *rrcopy, *rr;
    795 	RF_ComponentLabel_t *clabel;
    796 	RF_ComponentLabel_t ci_label;
    797 	RF_ComponentLabel_t **clabel_ptr;
    798 	RF_SingleComponent_t *sparePtr,*componentPtr;
    799 	RF_SingleComponent_t hot_spare;
    800 	RF_SingleComponent_t component;
    801 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    802 	int i, j, d;
    803 #ifdef __HAVE_OLD_DISKLABEL
    804 	struct disklabel newlabel;
    805 #endif
    806 
    807 	if (unit >= numraid)
    808 		return (ENXIO);
    809 	rs = &raid_softc[unit];
    810 	raidPtr = raidPtrs[unit];
    811 
    812 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    813 		(int) DISKPART(dev), (int) unit, (int) cmd));
    814 
    815 	/* Must be open for writes for these commands... */
    816 	switch (cmd) {
    817 	case DIOCSDINFO:
    818 	case DIOCWDINFO:
    819 #ifdef __HAVE_OLD_DISKLABEL
    820 	case ODIOCWDINFO:
    821 	case ODIOCSDINFO:
    822 #endif
    823 	case DIOCWLABEL:
    824 		if ((flag & FWRITE) == 0)
    825 			return (EBADF);
    826 	}
    827 
    828 	/* Must be initialized for these... */
    829 	switch (cmd) {
    830 	case DIOCGDINFO:
    831 	case DIOCSDINFO:
    832 	case DIOCWDINFO:
    833 #ifdef __HAVE_OLD_DISKLABEL
    834 	case ODIOCGDINFO:
    835 	case ODIOCWDINFO:
    836 	case ODIOCSDINFO:
    837 	case ODIOCGDEFLABEL:
    838 #endif
    839 	case DIOCGPART:
    840 	case DIOCWLABEL:
    841 	case DIOCGDEFLABEL:
    842 	case RAIDFRAME_SHUTDOWN:
    843 	case RAIDFRAME_REWRITEPARITY:
    844 	case RAIDFRAME_GET_INFO:
    845 	case RAIDFRAME_RESET_ACCTOTALS:
    846 	case RAIDFRAME_GET_ACCTOTALS:
    847 	case RAIDFRAME_KEEP_ACCTOTALS:
    848 	case RAIDFRAME_GET_SIZE:
    849 	case RAIDFRAME_FAIL_DISK:
    850 	case RAIDFRAME_COPYBACK:
    851 	case RAIDFRAME_CHECK_RECON_STATUS:
    852 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    853 	case RAIDFRAME_GET_COMPONENT_LABEL:
    854 	case RAIDFRAME_SET_COMPONENT_LABEL:
    855 	case RAIDFRAME_ADD_HOT_SPARE:
    856 	case RAIDFRAME_REMOVE_HOT_SPARE:
    857 	case RAIDFRAME_INIT_LABELS:
    858 	case RAIDFRAME_REBUILD_IN_PLACE:
    859 	case RAIDFRAME_CHECK_PARITY:
    860 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    861 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    862 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    863 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    864 	case RAIDFRAME_SET_AUTOCONFIG:
    865 	case RAIDFRAME_SET_ROOT:
    866 	case RAIDFRAME_DELETE_COMPONENT:
    867 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    868 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    869 			return (ENXIO);
    870 	}
    871 
    872 	switch (cmd) {
    873 
    874 		/* configure the system */
    875 	case RAIDFRAME_CONFIGURE:
    876 
    877 		if (raidPtr->valid) {
    878 			/* There is a valid RAID set running on this unit! */
    879 			printf("raid%d: Device already configured!\n",unit);
    880 			return(EINVAL);
    881 		}
    882 
    883 		/* copy-in the configuration information */
    884 		/* data points to a pointer to the configuration structure */
    885 
    886 		u_cfg = *((RF_Config_t **) data);
    887 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    888 		if (k_cfg == NULL) {
    889 			return (ENOMEM);
    890 		}
    891 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    892 		if (retcode) {
    893 			RF_Free(k_cfg, sizeof(RF_Config_t));
    894 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    895 				retcode));
    896 			return (retcode);
    897 		}
    898 		/* allocate a buffer for the layout-specific data, and copy it
    899 		 * in */
    900 		if (k_cfg->layoutSpecificSize) {
    901 			if (k_cfg->layoutSpecificSize > 10000) {
    902 				/* sanity check */
    903 				RF_Free(k_cfg, sizeof(RF_Config_t));
    904 				return (EINVAL);
    905 			}
    906 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    907 			    (u_char *));
    908 			if (specific_buf == NULL) {
    909 				RF_Free(k_cfg, sizeof(RF_Config_t));
    910 				return (ENOMEM);
    911 			}
    912 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    913 			    k_cfg->layoutSpecificSize);
    914 			if (retcode) {
    915 				RF_Free(k_cfg, sizeof(RF_Config_t));
    916 				RF_Free(specific_buf,
    917 					k_cfg->layoutSpecificSize);
    918 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    919 					retcode));
    920 				return (retcode);
    921 			}
    922 		} else
    923 			specific_buf = NULL;
    924 		k_cfg->layoutSpecific = specific_buf;
    925 
    926 		/* should do some kind of sanity check on the configuration.
    927 		 * Store the sum of all the bytes in the last byte? */
    928 
    929 		/* configure the system */
    930 
    931 		/*
    932 		 * Clear the entire RAID descriptor, just to make sure
    933 		 *  there is no stale data left in the case of a
    934 		 *  reconfiguration
    935 		 */
    936 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    937 		raidPtr->raidid = unit;
    938 
    939 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    940 
    941 		if (retcode == 0) {
    942 
    943 			/* allow this many simultaneous IO's to
    944 			   this RAID device */
    945 			raidPtr->openings = RAIDOUTSTANDING;
    946 
    947 			raidinit(raidPtr);
    948 			rf_markalldirty(raidPtr);
    949 		}
    950 		/* free the buffers.  No return code here. */
    951 		if (k_cfg->layoutSpecificSize) {
    952 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    953 		}
    954 		RF_Free(k_cfg, sizeof(RF_Config_t));
    955 
    956 		return (retcode);
    957 
    958 		/* shutdown the system */
    959 	case RAIDFRAME_SHUTDOWN:
    960 
    961 		if ((error = raidlock(rs)) != 0)
    962 			return (error);
    963 
    964 		/*
    965 		 * If somebody has a partition mounted, we shouldn't
    966 		 * shutdown.
    967 		 */
    968 
    969 		part = DISKPART(dev);
    970 		pmask = (1 << part);
    971 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    972 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    973 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    974 			raidunlock(rs);
    975 			return (EBUSY);
    976 		}
    977 
    978 		retcode = rf_Shutdown(raidPtr);
    979 
    980 		/* It's no longer initialized... */
    981 		rs->sc_flags &= ~RAIDF_INITED;
    982 
    983 		/* Detach the disk. */
    984 		disk_detach(&rs->sc_dkdev);
    985 
    986 		raidunlock(rs);
    987 
    988 		return (retcode);
    989 	case RAIDFRAME_GET_COMPONENT_LABEL:
    990 		clabel_ptr = (RF_ComponentLabel_t **) data;
    991 		/* need to read the component label for the disk indicated
    992 		   by row,column in clabel */
    993 
    994 		/* For practice, let's get it directly fromdisk, rather
    995 		   than from the in-core copy */
    996 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    997 			   (RF_ComponentLabel_t *));
    998 		if (clabel == NULL)
    999 			return (ENOMEM);
   1000 
   1001 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1002 
   1003 		retcode = copyin( *clabel_ptr, clabel,
   1004 				  sizeof(RF_ComponentLabel_t));
   1005 
   1006 		if (retcode) {
   1007 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1008 			return(retcode);
   1009 		}
   1010 
   1011 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1012 
   1013 		column = clabel->column;
   1014 
   1015 		if ((column < 0) || (column >= raidPtr->numCol +
   1016 				     raidPtr->numSpare)) {
   1017 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1018 			return(EINVAL);
   1019 		}
   1020 
   1021 		raidread_component_label(raidPtr->Disks[column].dev,
   1022 				raidPtr->raid_cinfo[column].ci_vp,
   1023 				clabel );
   1024 
   1025 		retcode = copyout(clabel, *clabel_ptr,
   1026 				  sizeof(RF_ComponentLabel_t));
   1027 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1028 		return (retcode);
   1029 
   1030 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1031 		clabel = (RF_ComponentLabel_t *) data;
   1032 
   1033 		/* XXX check the label for valid stuff... */
   1034 		/* Note that some things *should not* get modified --
   1035 		   the user should be re-initing the labels instead of
   1036 		   trying to patch things.
   1037 		   */
   1038 
   1039 		raidid = raidPtr->raidid;
   1040 #if DEBUG
   1041 		printf("raid%d: Got component label:\n", raidid);
   1042 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1043 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1044 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1045 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1046 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1047 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1048 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1049 #endif
   1050 		clabel->row = 0;
   1051 		column = clabel->column;
   1052 
   1053 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1054 			return(EINVAL);
   1055 		}
   1056 
   1057 		/* XXX this isn't allowed to do anything for now :-) */
   1058 
   1059 		/* XXX and before it is, we need to fill in the rest
   1060 		   of the fields!?!?!?! */
   1061 #if 0
   1062 		raidwrite_component_label(
   1063                             raidPtr->Disks[column].dev,
   1064 			    raidPtr->raid_cinfo[column].ci_vp,
   1065 			    clabel );
   1066 #endif
   1067 		return (0);
   1068 
   1069 	case RAIDFRAME_INIT_LABELS:
   1070 		clabel = (RF_ComponentLabel_t *) data;
   1071 		/*
   1072 		   we only want the serial number from
   1073 		   the above.  We get all the rest of the information
   1074 		   from the config that was used to create this RAID
   1075 		   set.
   1076 		   */
   1077 
   1078 		raidPtr->serial_number = clabel->serial_number;
   1079 
   1080 		raid_init_component_label(raidPtr, &ci_label);
   1081 		ci_label.serial_number = clabel->serial_number;
   1082 		ci_label.row = 0; /* we dont' pretend to support more */
   1083 
   1084 		for(column=0;column<raidPtr->numCol;column++) {
   1085 			diskPtr = &raidPtr->Disks[column];
   1086 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1087 				ci_label.partitionSize = diskPtr->partitionSize;
   1088 				ci_label.column = column;
   1089 				raidwrite_component_label(
   1090 							  raidPtr->Disks[column].dev,
   1091 							  raidPtr->raid_cinfo[column].ci_vp,
   1092 							  &ci_label );
   1093 			}
   1094 		}
   1095 
   1096 		return (retcode);
   1097 	case RAIDFRAME_SET_AUTOCONFIG:
   1098 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1099 		printf("raid%d: New autoconfig value is: %d\n",
   1100 		       raidPtr->raidid, d);
   1101 		*(int *) data = d;
   1102 		return (retcode);
   1103 
   1104 	case RAIDFRAME_SET_ROOT:
   1105 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1106 		printf("raid%d: New rootpartition value is: %d\n",
   1107 		       raidPtr->raidid, d);
   1108 		*(int *) data = d;
   1109 		return (retcode);
   1110 
   1111 		/* initialize all parity */
   1112 	case RAIDFRAME_REWRITEPARITY:
   1113 
   1114 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1115 			/* Parity for RAID 0 is trivially correct */
   1116 			raidPtr->parity_good = RF_RAID_CLEAN;
   1117 			return(0);
   1118 		}
   1119 
   1120 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1121 			/* Re-write is already in progress! */
   1122 			return(EINVAL);
   1123 		}
   1124 
   1125 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1126 					   rf_RewriteParityThread,
   1127 					   raidPtr,"raid_parity");
   1128 		return (retcode);
   1129 
   1130 
   1131 	case RAIDFRAME_ADD_HOT_SPARE:
   1132 		sparePtr = (RF_SingleComponent_t *) data;
   1133 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1134 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1135 		return(retcode);
   1136 
   1137 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1138 		return(retcode);
   1139 
   1140 	case RAIDFRAME_DELETE_COMPONENT:
   1141 		componentPtr = (RF_SingleComponent_t *)data;
   1142 		memcpy( &component, componentPtr,
   1143 			sizeof(RF_SingleComponent_t));
   1144 		retcode = rf_delete_component(raidPtr, &component);
   1145 		return(retcode);
   1146 
   1147 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1148 		componentPtr = (RF_SingleComponent_t *)data;
   1149 		memcpy( &component, componentPtr,
   1150 			sizeof(RF_SingleComponent_t));
   1151 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1152 		return(retcode);
   1153 
   1154 	case RAIDFRAME_REBUILD_IN_PLACE:
   1155 
   1156 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1157 			/* Can't do this on a RAID 0!! */
   1158 			return(EINVAL);
   1159 		}
   1160 
   1161 		if (raidPtr->recon_in_progress == 1) {
   1162 			/* a reconstruct is already in progress! */
   1163 			return(EINVAL);
   1164 		}
   1165 
   1166 		componentPtr = (RF_SingleComponent_t *) data;
   1167 		memcpy( &component, componentPtr,
   1168 			sizeof(RF_SingleComponent_t));
   1169 		component.row = 0; /* we don't support any more */
   1170 		column = component.column;
   1171 
   1172 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1173 			return(EINVAL);
   1174 		}
   1175 
   1176 		RF_LOCK_MUTEX(raidPtr->mutex);
   1177 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1178 		    (raidPtr->numFailures > 0)) {
   1179 			/* XXX 0 above shouldn't be constant!!! */
   1180 			/* some component other than this has failed.
   1181 			   Let's not make things worse than they already
   1182 			   are... */
   1183 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1184 			       raidPtr->raidid);
   1185 			printf("raid%d:     Col: %d   Too many failures.\n",
   1186 			       raidPtr->raidid, column);
   1187 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1188 			return (EINVAL);
   1189 		}
   1190 		if (raidPtr->Disks[column].status ==
   1191 		    rf_ds_reconstructing) {
   1192 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1193 			       raidPtr->raidid);
   1194 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1195 
   1196 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1197 			return (EINVAL);
   1198 		}
   1199 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1200 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1201 			return (EINVAL);
   1202 		}
   1203 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1204 
   1205 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1206 		if (rrcopy == NULL)
   1207 			return(ENOMEM);
   1208 
   1209 		rrcopy->raidPtr = (void *) raidPtr;
   1210 		rrcopy->col = column;
   1211 
   1212 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1213 					   rf_ReconstructInPlaceThread,
   1214 					   rrcopy,"raid_reconip");
   1215 		return(retcode);
   1216 
   1217 	case RAIDFRAME_GET_INFO:
   1218 		if (!raidPtr->valid)
   1219 			return (ENODEV);
   1220 		ucfgp = (RF_DeviceConfig_t **) data;
   1221 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1222 			  (RF_DeviceConfig_t *));
   1223 		if (d_cfg == NULL)
   1224 			return (ENOMEM);
   1225 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1226 		d_cfg->rows = 1; /* there is only 1 row now */
   1227 		d_cfg->cols = raidPtr->numCol;
   1228 		d_cfg->ndevs = raidPtr->numCol;
   1229 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1230 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1231 			return (ENOMEM);
   1232 		}
   1233 		d_cfg->nspares = raidPtr->numSpare;
   1234 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1235 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1236 			return (ENOMEM);
   1237 		}
   1238 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1239 		d = 0;
   1240 		for (j = 0; j < d_cfg->cols; j++) {
   1241 			d_cfg->devs[d] = raidPtr->Disks[j];
   1242 			d++;
   1243 		}
   1244 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1245 			d_cfg->spares[i] = raidPtr->Disks[j];
   1246 		}
   1247 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1248 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1249 
   1250 		return (retcode);
   1251 
   1252 	case RAIDFRAME_CHECK_PARITY:
   1253 		*(int *) data = raidPtr->parity_good;
   1254 		return (0);
   1255 
   1256 	case RAIDFRAME_RESET_ACCTOTALS:
   1257 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1258 		return (0);
   1259 
   1260 	case RAIDFRAME_GET_ACCTOTALS:
   1261 		totals = (RF_AccTotals_t *) data;
   1262 		*totals = raidPtr->acc_totals;
   1263 		return (0);
   1264 
   1265 	case RAIDFRAME_KEEP_ACCTOTALS:
   1266 		raidPtr->keep_acc_totals = *(int *)data;
   1267 		return (0);
   1268 
   1269 	case RAIDFRAME_GET_SIZE:
   1270 		*(int *) data = raidPtr->totalSectors;
   1271 		return (0);
   1272 
   1273 		/* fail a disk & optionally start reconstruction */
   1274 	case RAIDFRAME_FAIL_DISK:
   1275 
   1276 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1277 			/* Can't do this on a RAID 0!! */
   1278 			return(EINVAL);
   1279 		}
   1280 
   1281 		rr = (struct rf_recon_req *) data;
   1282 		rr->row = 0;
   1283 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1284 			return (EINVAL);
   1285 
   1286 
   1287 		RF_LOCK_MUTEX(raidPtr->mutex);
   1288 		if ((raidPtr->Disks[rr->col].status ==
   1289 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1290 			/* some other component has failed.  Let's not make
   1291 			   things worse. XXX wrong for RAID6 */
   1292 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1293 			return (EINVAL);
   1294 		}
   1295 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1296 			/* Can't fail a spared disk! */
   1297 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1298 			return (EINVAL);
   1299 		}
   1300 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1301 
   1302 		/* make a copy of the recon request so that we don't rely on
   1303 		 * the user's buffer */
   1304 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1305 		if (rrcopy == NULL)
   1306 			return(ENOMEM);
   1307 		memcpy(rrcopy, rr, sizeof(*rr));
   1308 		rrcopy->raidPtr = (void *) raidPtr;
   1309 
   1310 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1311 					   rf_ReconThread,
   1312 					   rrcopy,"raid_recon");
   1313 		return (0);
   1314 
   1315 		/* invoke a copyback operation after recon on whatever disk
   1316 		 * needs it, if any */
   1317 	case RAIDFRAME_COPYBACK:
   1318 
   1319 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1320 			/* This makes no sense on a RAID 0!! */
   1321 			return(EINVAL);
   1322 		}
   1323 
   1324 		if (raidPtr->copyback_in_progress == 1) {
   1325 			/* Copyback is already in progress! */
   1326 			return(EINVAL);
   1327 		}
   1328 
   1329 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1330 					   rf_CopybackThread,
   1331 					   raidPtr,"raid_copyback");
   1332 		return (retcode);
   1333 
   1334 		/* return the percentage completion of reconstruction */
   1335 	case RAIDFRAME_CHECK_RECON_STATUS:
   1336 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1337 			/* This makes no sense on a RAID 0, so tell the
   1338 			   user it's done. */
   1339 			*(int *) data = 100;
   1340 			return(0);
   1341 		}
   1342 		if (raidPtr->status != rf_rs_reconstructing)
   1343 			*(int *) data = 100;
   1344 		else {
   1345 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1346 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1347 			} else {
   1348 				*(int *) data = 0;
   1349 			}
   1350 		}
   1351 		return (0);
   1352 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1353 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1354 		if (raidPtr->status != rf_rs_reconstructing) {
   1355 			progressInfo.remaining = 0;
   1356 			progressInfo.completed = 100;
   1357 			progressInfo.total = 100;
   1358 		} else {
   1359 			progressInfo.total =
   1360 				raidPtr->reconControl->numRUsTotal;
   1361 			progressInfo.completed =
   1362 				raidPtr->reconControl->numRUsComplete;
   1363 			progressInfo.remaining = progressInfo.total -
   1364 				progressInfo.completed;
   1365 		}
   1366 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1367 				  sizeof(RF_ProgressInfo_t));
   1368 		return (retcode);
   1369 
   1370 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1371 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1372 			/* This makes no sense on a RAID 0, so tell the
   1373 			   user it's done. */
   1374 			*(int *) data = 100;
   1375 			return(0);
   1376 		}
   1377 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1378 			*(int *) data = 100 *
   1379 				raidPtr->parity_rewrite_stripes_done /
   1380 				raidPtr->Layout.numStripe;
   1381 		} else {
   1382 			*(int *) data = 100;
   1383 		}
   1384 		return (0);
   1385 
   1386 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1387 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1388 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1389 			progressInfo.total = raidPtr->Layout.numStripe;
   1390 			progressInfo.completed =
   1391 				raidPtr->parity_rewrite_stripes_done;
   1392 			progressInfo.remaining = progressInfo.total -
   1393 				progressInfo.completed;
   1394 		} else {
   1395 			progressInfo.remaining = 0;
   1396 			progressInfo.completed = 100;
   1397 			progressInfo.total = 100;
   1398 		}
   1399 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1400 				  sizeof(RF_ProgressInfo_t));
   1401 		return (retcode);
   1402 
   1403 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1404 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1405 			/* This makes no sense on a RAID 0 */
   1406 			*(int *) data = 100;
   1407 			return(0);
   1408 		}
   1409 		if (raidPtr->copyback_in_progress == 1) {
   1410 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1411 				raidPtr->Layout.numStripe;
   1412 		} else {
   1413 			*(int *) data = 100;
   1414 		}
   1415 		return (0);
   1416 
   1417 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1418 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1419 		if (raidPtr->copyback_in_progress == 1) {
   1420 			progressInfo.total = raidPtr->Layout.numStripe;
   1421 			progressInfo.completed =
   1422 				raidPtr->copyback_stripes_done;
   1423 			progressInfo.remaining = progressInfo.total -
   1424 				progressInfo.completed;
   1425 		} else {
   1426 			progressInfo.remaining = 0;
   1427 			progressInfo.completed = 100;
   1428 			progressInfo.total = 100;
   1429 		}
   1430 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1431 				  sizeof(RF_ProgressInfo_t));
   1432 		return (retcode);
   1433 
   1434 		/* the sparetable daemon calls this to wait for the kernel to
   1435 		 * need a spare table. this ioctl does not return until a
   1436 		 * spare table is needed. XXX -- calling mpsleep here in the
   1437 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1438 		 * -- I should either compute the spare table in the kernel,
   1439 		 * or have a different -- XXX XXX -- interface (a different
   1440 		 * character device) for delivering the table     -- XXX */
   1441 #if 0
   1442 	case RAIDFRAME_SPARET_WAIT:
   1443 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1444 		while (!rf_sparet_wait_queue)
   1445 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1446 		waitreq = rf_sparet_wait_queue;
   1447 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1448 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1449 
   1450 		/* structure assignment */
   1451 		*((RF_SparetWait_t *) data) = *waitreq;
   1452 
   1453 		RF_Free(waitreq, sizeof(*waitreq));
   1454 		return (0);
   1455 
   1456 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1457 		 * code in it that will cause the dameon to exit */
   1458 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1459 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1460 		waitreq->fcol = -1;
   1461 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1462 		waitreq->next = rf_sparet_wait_queue;
   1463 		rf_sparet_wait_queue = waitreq;
   1464 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1465 		wakeup(&rf_sparet_wait_queue);
   1466 		return (0);
   1467 
   1468 		/* used by the spare table daemon to deliver a spare table
   1469 		 * into the kernel */
   1470 	case RAIDFRAME_SEND_SPARET:
   1471 
   1472 		/* install the spare table */
   1473 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1474 
   1475 		/* respond to the requestor.  the return status of the spare
   1476 		 * table installation is passed in the "fcol" field */
   1477 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1478 		waitreq->fcol = retcode;
   1479 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1480 		waitreq->next = rf_sparet_resp_queue;
   1481 		rf_sparet_resp_queue = waitreq;
   1482 		wakeup(&rf_sparet_resp_queue);
   1483 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1484 
   1485 		return (retcode);
   1486 #endif
   1487 
   1488 	default:
   1489 		break; /* fall through to the os-specific code below */
   1490 
   1491 	}
   1492 
   1493 	if (!raidPtr->valid)
   1494 		return (EINVAL);
   1495 
   1496 	/*
   1497 	 * Add support for "regular" device ioctls here.
   1498 	 */
   1499 
   1500 	switch (cmd) {
   1501 	case DIOCGDINFO:
   1502 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1503 		break;
   1504 #ifdef __HAVE_OLD_DISKLABEL
   1505 	case ODIOCGDINFO:
   1506 		newlabel = *(rs->sc_dkdev.dk_label);
   1507 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1508 			return ENOTTY;
   1509 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1510 		break;
   1511 #endif
   1512 
   1513 	case DIOCGPART:
   1514 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1515 		((struct partinfo *) data)->part =
   1516 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1517 		break;
   1518 
   1519 	case DIOCWDINFO:
   1520 	case DIOCSDINFO:
   1521 #ifdef __HAVE_OLD_DISKLABEL
   1522 	case ODIOCWDINFO:
   1523 	case ODIOCSDINFO:
   1524 #endif
   1525 	{
   1526 		struct disklabel *lp;
   1527 #ifdef __HAVE_OLD_DISKLABEL
   1528 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1529 			memset(&newlabel, 0, sizeof newlabel);
   1530 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1531 			lp = &newlabel;
   1532 		} else
   1533 #endif
   1534 		lp = (struct disklabel *)data;
   1535 
   1536 		if ((error = raidlock(rs)) != 0)
   1537 			return (error);
   1538 
   1539 		rs->sc_flags |= RAIDF_LABELLING;
   1540 
   1541 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1542 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1543 		if (error == 0) {
   1544 			if (cmd == DIOCWDINFO
   1545 #ifdef __HAVE_OLD_DISKLABEL
   1546 			    || cmd == ODIOCWDINFO
   1547 #endif
   1548 			   )
   1549 				error = writedisklabel(RAIDLABELDEV(dev),
   1550 				    raidstrategy, rs->sc_dkdev.dk_label,
   1551 				    rs->sc_dkdev.dk_cpulabel);
   1552 		}
   1553 		rs->sc_flags &= ~RAIDF_LABELLING;
   1554 
   1555 		raidunlock(rs);
   1556 
   1557 		if (error)
   1558 			return (error);
   1559 		break;
   1560 	}
   1561 
   1562 	case DIOCWLABEL:
   1563 		if (*(int *) data != 0)
   1564 			rs->sc_flags |= RAIDF_WLABEL;
   1565 		else
   1566 			rs->sc_flags &= ~RAIDF_WLABEL;
   1567 		break;
   1568 
   1569 	case DIOCGDEFLABEL:
   1570 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1571 		break;
   1572 
   1573 #ifdef __HAVE_OLD_DISKLABEL
   1574 	case ODIOCGDEFLABEL:
   1575 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1576 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1577 			return ENOTTY;
   1578 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1579 		break;
   1580 #endif
   1581 
   1582 	default:
   1583 		retcode = ENOTTY;
   1584 	}
   1585 	return (retcode);
   1586 
   1587 }
   1588 
   1589 
   1590 /* raidinit -- complete the rest of the initialization for the
   1591    RAIDframe device.  */
   1592 
   1593 
   1594 static void
   1595 raidinit(RF_Raid_t *raidPtr)
   1596 {
   1597 	struct raid_softc *rs;
   1598 	int     unit;
   1599 
   1600 	unit = raidPtr->raidid;
   1601 
   1602 	rs = &raid_softc[unit];
   1603 
   1604 	/* XXX should check return code first... */
   1605 	rs->sc_flags |= RAIDF_INITED;
   1606 
   1607 	/* XXX doesn't check bounds. */
   1608 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1609 
   1610 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1611 
   1612 	/* disk_attach actually creates space for the CPU disklabel, among
   1613 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1614 	 * with disklabels. */
   1615 
   1616 	disk_attach(&rs->sc_dkdev);
   1617 
   1618 	/* XXX There may be a weird interaction here between this, and
   1619 	 * protectedSectors, as used in RAIDframe.  */
   1620 
   1621 	rs->sc_size = raidPtr->totalSectors;
   1622 }
   1623 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1624 /* wake up the daemon & tell it to get us a spare table
   1625  * XXX
   1626  * the entries in the queues should be tagged with the raidPtr
   1627  * so that in the extremely rare case that two recons happen at once,
   1628  * we know for which device were requesting a spare table
   1629  * XXX
   1630  *
   1631  * XXX This code is not currently used. GO
   1632  */
   1633 int
   1634 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1635 {
   1636 	int     retcode;
   1637 
   1638 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1639 	req->next = rf_sparet_wait_queue;
   1640 	rf_sparet_wait_queue = req;
   1641 	wakeup(&rf_sparet_wait_queue);
   1642 
   1643 	/* mpsleep unlocks the mutex */
   1644 	while (!rf_sparet_resp_queue) {
   1645 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1646 		    "raidframe getsparetable", 0);
   1647 	}
   1648 	req = rf_sparet_resp_queue;
   1649 	rf_sparet_resp_queue = req->next;
   1650 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1651 
   1652 	retcode = req->fcol;
   1653 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1654 					 * alloc'd */
   1655 	return (retcode);
   1656 }
   1657 #endif
   1658 
   1659 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1660  * bp & passes it down.
   1661  * any calls originating in the kernel must use non-blocking I/O
   1662  * do some extra sanity checking to return "appropriate" error values for
   1663  * certain conditions (to make some standard utilities work)
   1664  *
   1665  * Formerly known as: rf_DoAccessKernel
   1666  */
   1667 void
   1668 raidstart(RF_Raid_t *raidPtr)
   1669 {
   1670 	RF_SectorCount_t num_blocks, pb, sum;
   1671 	RF_RaidAddr_t raid_addr;
   1672 	struct partition *pp;
   1673 	daddr_t blocknum;
   1674 	int     unit;
   1675 	struct raid_softc *rs;
   1676 	int     do_async;
   1677 	struct buf *bp;
   1678 	int rc;
   1679 
   1680 	unit = raidPtr->raidid;
   1681 	rs = &raid_softc[unit];
   1682 
   1683 	/* quick check to see if anything has died recently */
   1684 	RF_LOCK_MUTEX(raidPtr->mutex);
   1685 	if (raidPtr->numNewFailures > 0) {
   1686 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1687 		rf_update_component_labels(raidPtr,
   1688 					   RF_NORMAL_COMPONENT_UPDATE);
   1689 		RF_LOCK_MUTEX(raidPtr->mutex);
   1690 		raidPtr->numNewFailures--;
   1691 	}
   1692 
   1693 	/* Check to see if we're at the limit... */
   1694 	while (raidPtr->openings > 0) {
   1695 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1696 
   1697 		/* get the next item, if any, from the queue */
   1698 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1699 			/* nothing more to do */
   1700 			return;
   1701 		}
   1702 
   1703 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1704 		 * partition.. Need to make it absolute to the underlying
   1705 		 * device.. */
   1706 
   1707 		blocknum = bp->b_blkno;
   1708 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1709 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1710 			blocknum += pp->p_offset;
   1711 		}
   1712 
   1713 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1714 			    (int) blocknum));
   1715 
   1716 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1717 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1718 
   1719 		/* *THIS* is where we adjust what block we're going to...
   1720 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1721 		raid_addr = blocknum;
   1722 
   1723 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1724 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1725 		sum = raid_addr + num_blocks + pb;
   1726 		if (1 || rf_debugKernelAccess) {
   1727 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1728 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1729 				    (int) pb, (int) bp->b_resid));
   1730 		}
   1731 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1732 		    || (sum < num_blocks) || (sum < pb)) {
   1733 			bp->b_error = ENOSPC;
   1734 			bp->b_flags |= B_ERROR;
   1735 			bp->b_resid = bp->b_bcount;
   1736 			biodone(bp);
   1737 			RF_LOCK_MUTEX(raidPtr->mutex);
   1738 			continue;
   1739 		}
   1740 		/*
   1741 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1742 		 */
   1743 
   1744 		if (bp->b_bcount & raidPtr->sectorMask) {
   1745 			bp->b_error = EINVAL;
   1746 			bp->b_flags |= B_ERROR;
   1747 			bp->b_resid = bp->b_bcount;
   1748 			biodone(bp);
   1749 			RF_LOCK_MUTEX(raidPtr->mutex);
   1750 			continue;
   1751 
   1752 		}
   1753 		db1_printf(("Calling DoAccess..\n"));
   1754 
   1755 
   1756 		RF_LOCK_MUTEX(raidPtr->mutex);
   1757 		raidPtr->openings--;
   1758 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1759 
   1760 		/*
   1761 		 * Everything is async.
   1762 		 */
   1763 		do_async = 1;
   1764 
   1765 		disk_busy(&rs->sc_dkdev);
   1766 
   1767 		/* XXX we're still at splbio() here... do we *really*
   1768 		   need to be? */
   1769 
   1770 		/* don't ever condition on bp->b_flags & B_WRITE.
   1771 		 * always condition on B_READ instead */
   1772 
   1773 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1774 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1775 				 do_async, raid_addr, num_blocks,
   1776 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1777 
   1778 		if (rc) {
   1779 			bp->b_error = rc;
   1780 			bp->b_flags |= B_ERROR;
   1781 			bp->b_resid = bp->b_bcount;
   1782 			biodone(bp);
   1783 			/* continue loop */
   1784 		}
   1785 
   1786 		RF_LOCK_MUTEX(raidPtr->mutex);
   1787 	}
   1788 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1789 }
   1790 
   1791 
   1792 
   1793 
   1794 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1795 
   1796 int
   1797 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1798 {
   1799 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1800 	struct buf *bp;
   1801 	struct raidbuf *raidbp = NULL;
   1802 
   1803 	req->queue = queue;
   1804 
   1805 #if DIAGNOSTIC
   1806 	if (queue->raidPtr->raidid >= numraid) {
   1807 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1808 		    numraid);
   1809 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1810 	}
   1811 #endif
   1812 
   1813 	bp = req->bp;
   1814 #if 1
   1815 	/* XXX when there is a physical disk failure, someone is passing us a
   1816 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1817 	 * without taking a performance hit... (not sure where the real bug
   1818 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1819 
   1820 	if (bp->b_flags & B_ERROR) {
   1821 		bp->b_flags &= ~B_ERROR;
   1822 	}
   1823 	if (bp->b_error != 0) {
   1824 		bp->b_error = 0;
   1825 	}
   1826 #endif
   1827 	raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
   1828 	if (raidbp == NULL) {
   1829 		bp->b_flags |= B_ERROR;
   1830 		bp->b_error = ENOMEM;
   1831 		return (ENOMEM);
   1832 	}
   1833 	BUF_INIT(&raidbp->rf_buf);
   1834 
   1835 	/*
   1836 	 * context for raidiodone
   1837 	 */
   1838 	raidbp->rf_obp = bp;
   1839 	raidbp->req = req;
   1840 
   1841 	BIO_COPYPRIO(&raidbp->rf_buf, bp);
   1842 
   1843 	switch (req->type) {
   1844 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1845 		/* XXX need to do something extra here.. */
   1846 		/* I'm leaving this in, as I've never actually seen it used,
   1847 		 * and I'd like folks to report it... GO */
   1848 		printf(("WAKEUP CALLED\n"));
   1849 		queue->numOutstanding++;
   1850 
   1851 		/* XXX need to glue the original buffer into this??  */
   1852 
   1853 		KernelWakeupFunc(&raidbp->rf_buf);
   1854 		break;
   1855 
   1856 	case RF_IO_TYPE_READ:
   1857 	case RF_IO_TYPE_WRITE:
   1858 #if RF_ACC_TRACE > 0
   1859 		if (req->tracerec) {
   1860 			RF_ETIMER_START(req->tracerec->timer);
   1861 		}
   1862 #endif
   1863 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1864 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1865 		    req->sectorOffset, req->numSector,
   1866 		    req->buf, KernelWakeupFunc, (void *) req,
   1867 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1868 
   1869 		if (rf_debugKernelAccess) {
   1870 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1871 				(long) bp->b_blkno));
   1872 		}
   1873 		queue->numOutstanding++;
   1874 		queue->last_deq_sector = req->sectorOffset;
   1875 		/* acc wouldn't have been let in if there were any pending
   1876 		 * reqs at any other priority */
   1877 		queue->curPriority = req->priority;
   1878 
   1879 		db1_printf(("Going for %c to unit %d col %d\n",
   1880 			    req->type, queue->raidPtr->raidid,
   1881 			    queue->col));
   1882 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1883 			(int) req->sectorOffset, (int) req->numSector,
   1884 			(int) (req->numSector <<
   1885 			    queue->raidPtr->logBytesPerSector),
   1886 			(int) queue->raidPtr->logBytesPerSector));
   1887 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1888 			raidbp->rf_buf.b_vp->v_numoutput++;
   1889 		}
   1890 		VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
   1891 
   1892 		break;
   1893 
   1894 	default:
   1895 		panic("bad req->type in rf_DispatchKernelIO");
   1896 	}
   1897 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1898 
   1899 	return (0);
   1900 }
   1901 /* this is the callback function associated with a I/O invoked from
   1902    kernel code.
   1903  */
   1904 static void
   1905 KernelWakeupFunc(struct buf *vbp)
   1906 {
   1907 	RF_DiskQueueData_t *req = NULL;
   1908 	RF_DiskQueue_t *queue;
   1909 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1910 	struct buf *bp;
   1911 	int s;
   1912 
   1913 	s = splbio();
   1914 	db1_printf(("recovering the request queue:\n"));
   1915 	req = raidbp->req;
   1916 
   1917 	bp = raidbp->rf_obp;
   1918 
   1919 	queue = (RF_DiskQueue_t *) req->queue;
   1920 
   1921 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1922 		bp->b_flags |= B_ERROR;
   1923 		bp->b_error = raidbp->rf_buf.b_error ?
   1924 		    raidbp->rf_buf.b_error : EIO;
   1925 	}
   1926 
   1927 	/* XXX methinks this could be wrong... */
   1928 #if 1
   1929 	bp->b_resid = raidbp->rf_buf.b_resid;
   1930 #endif
   1931 #if RF_ACC_TRACE > 0
   1932 	if (req->tracerec) {
   1933 		RF_ETIMER_STOP(req->tracerec->timer);
   1934 		RF_ETIMER_EVAL(req->tracerec->timer);
   1935 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1936 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1937 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1938 		req->tracerec->num_phys_ios++;
   1939 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1940 	}
   1941 #endif
   1942 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1943 
   1944 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1945 	 * ballistic, and mark the component as hosed... */
   1946 
   1947 	if (bp->b_flags & B_ERROR) {
   1948 		/* Mark the disk as dead */
   1949 		/* but only mark it once... */
   1950 		if (queue->raidPtr->Disks[queue->col].status ==
   1951 		    rf_ds_optimal) {
   1952 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1953 			       queue->raidPtr->raidid,
   1954 			       queue->raidPtr->Disks[queue->col].devname);
   1955 			queue->raidPtr->Disks[queue->col].status =
   1956 			    rf_ds_failed;
   1957 			queue->raidPtr->status = rf_rs_degraded;
   1958 			queue->raidPtr->numFailures++;
   1959 			queue->raidPtr->numNewFailures++;
   1960 		} else {	/* Disk is already dead... */
   1961 			/* printf("Disk already marked as dead!\n"); */
   1962 		}
   1963 
   1964 	}
   1965 
   1966 	pool_put(&rf_pools.cbuf, raidbp);
   1967 
   1968 	/* Fill in the error value */
   1969 
   1970 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1971 
   1972 	simple_lock(&queue->raidPtr->iodone_lock);
   1973 
   1974 	/* Drop this one on the "finished" queue... */
   1975 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1976 
   1977 	/* Let the raidio thread know there is work to be done. */
   1978 	wakeup(&(queue->raidPtr->iodone));
   1979 
   1980 	simple_unlock(&queue->raidPtr->iodone_lock);
   1981 
   1982 	splx(s);
   1983 }
   1984 
   1985 
   1986 
   1987 /*
   1988  * initialize a buf structure for doing an I/O in the kernel.
   1989  */
   1990 static void
   1991 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   1992        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t buf,
   1993        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   1994        struct proc *b_proc)
   1995 {
   1996 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1997 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1998 	bp->b_bcount = numSect << logBytesPerSector;
   1999 	bp->b_bufsize = bp->b_bcount;
   2000 	bp->b_error = 0;
   2001 	bp->b_dev = dev;
   2002 	bp->b_data = buf;
   2003 	bp->b_blkno = startSect;
   2004 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2005 	if (bp->b_bcount == 0) {
   2006 		panic("bp->b_bcount is zero in InitBP!!");
   2007 	}
   2008 	bp->b_proc = b_proc;
   2009 	bp->b_iodone = cbFunc;
   2010 	bp->b_vp = b_vp;
   2011 
   2012 }
   2013 
   2014 static void
   2015 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2016 		    struct disklabel *lp)
   2017 {
   2018 	memset(lp, 0, sizeof(*lp));
   2019 
   2020 	/* fabricate a label... */
   2021 	lp->d_secperunit = raidPtr->totalSectors;
   2022 	lp->d_secsize = raidPtr->bytesPerSector;
   2023 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2024 	lp->d_ntracks = 4 * raidPtr->numCol;
   2025 	lp->d_ncylinders = raidPtr->totalSectors /
   2026 		(lp->d_nsectors * lp->d_ntracks);
   2027 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2028 
   2029 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2030 	lp->d_type = DTYPE_RAID;
   2031 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2032 	lp->d_rpm = 3600;
   2033 	lp->d_interleave = 1;
   2034 	lp->d_flags = 0;
   2035 
   2036 	lp->d_partitions[RAW_PART].p_offset = 0;
   2037 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2038 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2039 	lp->d_npartitions = RAW_PART + 1;
   2040 
   2041 	lp->d_magic = DISKMAGIC;
   2042 	lp->d_magic2 = DISKMAGIC;
   2043 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2044 
   2045 }
   2046 /*
   2047  * Read the disklabel from the raid device.  If one is not present, fake one
   2048  * up.
   2049  */
   2050 static void
   2051 raidgetdisklabel(dev_t dev)
   2052 {
   2053 	int     unit = raidunit(dev);
   2054 	struct raid_softc *rs = &raid_softc[unit];
   2055 	const char   *errstring;
   2056 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2057 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2058 	RF_Raid_t *raidPtr;
   2059 
   2060 	db1_printf(("Getting the disklabel...\n"));
   2061 
   2062 	memset(clp, 0, sizeof(*clp));
   2063 
   2064 	raidPtr = raidPtrs[unit];
   2065 
   2066 	raidgetdefaultlabel(raidPtr, rs, lp);
   2067 
   2068 	/*
   2069 	 * Call the generic disklabel extraction routine.
   2070 	 */
   2071 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2072 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2073 	if (errstring)
   2074 		raidmakedisklabel(rs);
   2075 	else {
   2076 		int     i;
   2077 		struct partition *pp;
   2078 
   2079 		/*
   2080 		 * Sanity check whether the found disklabel is valid.
   2081 		 *
   2082 		 * This is necessary since total size of the raid device
   2083 		 * may vary when an interleave is changed even though exactly
   2084 		 * same componets are used, and old disklabel may used
   2085 		 * if that is found.
   2086 		 */
   2087 		if (lp->d_secperunit != rs->sc_size)
   2088 			printf("raid%d: WARNING: %s: "
   2089 			    "total sector size in disklabel (%d) != "
   2090 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2091 			    lp->d_secperunit, (long) rs->sc_size);
   2092 		for (i = 0; i < lp->d_npartitions; i++) {
   2093 			pp = &lp->d_partitions[i];
   2094 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2095 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2096 				       "exceeds the size of raid (%ld)\n",
   2097 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2098 		}
   2099 	}
   2100 
   2101 }
   2102 /*
   2103  * Take care of things one might want to take care of in the event
   2104  * that a disklabel isn't present.
   2105  */
   2106 static void
   2107 raidmakedisklabel(struct raid_softc *rs)
   2108 {
   2109 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2110 	db1_printf(("Making a label..\n"));
   2111 
   2112 	/*
   2113 	 * For historical reasons, if there's no disklabel present
   2114 	 * the raw partition must be marked FS_BSDFFS.
   2115 	 */
   2116 
   2117 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2118 
   2119 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2120 
   2121 	lp->d_checksum = dkcksum(lp);
   2122 }
   2123 /*
   2124  * Lookup the provided name in the filesystem.  If the file exists,
   2125  * is a valid block device, and isn't being used by anyone else,
   2126  * set *vpp to the file's vnode.
   2127  * You'll find the original of this in ccd.c
   2128  */
   2129 int
   2130 raidlookup(char *path, struct proc *p, struct vnode **vpp)
   2131 {
   2132 	struct nameidata nd;
   2133 	struct vnode *vp;
   2134 	struct vattr va;
   2135 	int     error;
   2136 
   2137 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2138 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2139 		return (error);
   2140 	}
   2141 	vp = nd.ni_vp;
   2142 	if (vp->v_usecount > 1) {
   2143 		VOP_UNLOCK(vp, 0);
   2144 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2145 		return (EBUSY);
   2146 	}
   2147 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2148 		VOP_UNLOCK(vp, 0);
   2149 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2150 		return (error);
   2151 	}
   2152 	/* XXX: eventually we should handle VREG, too. */
   2153 	if (va.va_type != VBLK) {
   2154 		VOP_UNLOCK(vp, 0);
   2155 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2156 		return (ENOTBLK);
   2157 	}
   2158 	VOP_UNLOCK(vp, 0);
   2159 	*vpp = vp;
   2160 	return (0);
   2161 }
   2162 /*
   2163  * Wait interruptibly for an exclusive lock.
   2164  *
   2165  * XXX
   2166  * Several drivers do this; it should be abstracted and made MP-safe.
   2167  * (Hmm... where have we seen this warning before :->  GO )
   2168  */
   2169 static int
   2170 raidlock(struct raid_softc *rs)
   2171 {
   2172 	int     error;
   2173 
   2174 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2175 		rs->sc_flags |= RAIDF_WANTED;
   2176 		if ((error =
   2177 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2178 			return (error);
   2179 	}
   2180 	rs->sc_flags |= RAIDF_LOCKED;
   2181 	return (0);
   2182 }
   2183 /*
   2184  * Unlock and wake up any waiters.
   2185  */
   2186 static void
   2187 raidunlock(struct raid_softc *rs)
   2188 {
   2189 
   2190 	rs->sc_flags &= ~RAIDF_LOCKED;
   2191 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2192 		rs->sc_flags &= ~RAIDF_WANTED;
   2193 		wakeup(rs);
   2194 	}
   2195 }
   2196 
   2197 
   2198 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2199 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2200 
   2201 int
   2202 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2203 {
   2204 	RF_ComponentLabel_t clabel;
   2205 	raidread_component_label(dev, b_vp, &clabel);
   2206 	clabel.mod_counter = mod_counter;
   2207 	clabel.clean = RF_RAID_CLEAN;
   2208 	raidwrite_component_label(dev, b_vp, &clabel);
   2209 	return(0);
   2210 }
   2211 
   2212 
   2213 int
   2214 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2215 {
   2216 	RF_ComponentLabel_t clabel;
   2217 	raidread_component_label(dev, b_vp, &clabel);
   2218 	clabel.mod_counter = mod_counter;
   2219 	clabel.clean = RF_RAID_DIRTY;
   2220 	raidwrite_component_label(dev, b_vp, &clabel);
   2221 	return(0);
   2222 }
   2223 
   2224 /* ARGSUSED */
   2225 int
   2226 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2227 			 RF_ComponentLabel_t *clabel)
   2228 {
   2229 	struct buf *bp;
   2230 	const struct bdevsw *bdev;
   2231 	int error;
   2232 
   2233 	/* XXX should probably ensure that we don't try to do this if
   2234 	   someone has changed rf_protected_sectors. */
   2235 
   2236 	if (b_vp == NULL) {
   2237 		/* For whatever reason, this component is not valid.
   2238 		   Don't try to read a component label from it. */
   2239 		return(EINVAL);
   2240 	}
   2241 
   2242 	/* get a block of the appropriate size... */
   2243 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2244 	bp->b_dev = dev;
   2245 
   2246 	/* get our ducks in a row for the read */
   2247 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2248 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2249 	bp->b_flags |= B_READ;
   2250  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2251 
   2252 	bdev = bdevsw_lookup(bp->b_dev);
   2253 	if (bdev == NULL)
   2254 		return (ENXIO);
   2255 	(*bdev->d_strategy)(bp);
   2256 
   2257 	error = biowait(bp);
   2258 
   2259 	if (!error) {
   2260 		memcpy(clabel, bp->b_data,
   2261 		       sizeof(RF_ComponentLabel_t));
   2262         }
   2263 
   2264 	brelse(bp);
   2265 	return(error);
   2266 }
   2267 /* ARGSUSED */
   2268 int
   2269 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2270 			  RF_ComponentLabel_t *clabel)
   2271 {
   2272 	struct buf *bp;
   2273 	const struct bdevsw *bdev;
   2274 	int error;
   2275 
   2276 	/* get a block of the appropriate size... */
   2277 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2278 	bp->b_dev = dev;
   2279 
   2280 	/* get our ducks in a row for the write */
   2281 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2282 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2283 	bp->b_flags |= B_WRITE;
   2284  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2285 
   2286 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2287 
   2288 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2289 
   2290 	bdev = bdevsw_lookup(bp->b_dev);
   2291 	if (bdev == NULL)
   2292 		return (ENXIO);
   2293 	(*bdev->d_strategy)(bp);
   2294 	error = biowait(bp);
   2295 	brelse(bp);
   2296 	if (error) {
   2297 #if 1
   2298 		printf("Failed to write RAID component info!\n");
   2299 #endif
   2300 	}
   2301 
   2302 	return(error);
   2303 }
   2304 
   2305 void
   2306 rf_markalldirty(RF_Raid_t *raidPtr)
   2307 {
   2308 	RF_ComponentLabel_t clabel;
   2309 	int sparecol;
   2310 	int c;
   2311 	int j;
   2312 	int scol = -1;
   2313 
   2314 	raidPtr->mod_counter++;
   2315 	for (c = 0; c < raidPtr->numCol; c++) {
   2316 		/* we don't want to touch (at all) a disk that has
   2317 		   failed */
   2318 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2319 			raidread_component_label(
   2320 						 raidPtr->Disks[c].dev,
   2321 						 raidPtr->raid_cinfo[c].ci_vp,
   2322 						 &clabel);
   2323 			if (clabel.status == rf_ds_spared) {
   2324 				/* XXX do something special...
   2325 				   but whatever you do, don't
   2326 				   try to access it!! */
   2327 			} else {
   2328 				raidmarkdirty(
   2329 					      raidPtr->Disks[c].dev,
   2330 					      raidPtr->raid_cinfo[c].ci_vp,
   2331 					      raidPtr->mod_counter);
   2332 			}
   2333 		}
   2334 	}
   2335 
   2336 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2337 		sparecol = raidPtr->numCol + c;
   2338 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2339 			/*
   2340 
   2341 			   we claim this disk is "optimal" if it's
   2342 			   rf_ds_used_spare, as that means it should be
   2343 			   directly substitutable for the disk it replaced.
   2344 			   We note that too...
   2345 
   2346 			 */
   2347 
   2348 			for(j=0;j<raidPtr->numCol;j++) {
   2349 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2350 					scol = j;
   2351 					break;
   2352 				}
   2353 			}
   2354 
   2355 			raidread_component_label(
   2356 				 raidPtr->Disks[sparecol].dev,
   2357 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2358 				 &clabel);
   2359 			/* make sure status is noted */
   2360 
   2361 			raid_init_component_label(raidPtr, &clabel);
   2362 
   2363 			clabel.row = 0;
   2364 			clabel.column = scol;
   2365 			/* Note: we *don't* change status from rf_ds_used_spare
   2366 			   to rf_ds_optimal */
   2367 			/* clabel.status = rf_ds_optimal; */
   2368 
   2369 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2370 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2371 				      raidPtr->mod_counter);
   2372 		}
   2373 	}
   2374 }
   2375 
   2376 
   2377 void
   2378 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2379 {
   2380 	RF_ComponentLabel_t clabel;
   2381 	int sparecol;
   2382 	int c;
   2383 	int j;
   2384 	int scol;
   2385 
   2386 	scol = -1;
   2387 
   2388 	/* XXX should do extra checks to make sure things really are clean,
   2389 	   rather than blindly setting the clean bit... */
   2390 
   2391 	raidPtr->mod_counter++;
   2392 
   2393 	for (c = 0; c < raidPtr->numCol; c++) {
   2394 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2395 			raidread_component_label(
   2396 						 raidPtr->Disks[c].dev,
   2397 						 raidPtr->raid_cinfo[c].ci_vp,
   2398 						 &clabel);
   2399 				/* make sure status is noted */
   2400 			clabel.status = rf_ds_optimal;
   2401 				/* bump the counter */
   2402 			clabel.mod_counter = raidPtr->mod_counter;
   2403 
   2404 			raidwrite_component_label(
   2405 						  raidPtr->Disks[c].dev,
   2406 						  raidPtr->raid_cinfo[c].ci_vp,
   2407 						  &clabel);
   2408 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2409 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2410 					raidmarkclean(
   2411 						      raidPtr->Disks[c].dev,
   2412 						      raidPtr->raid_cinfo[c].ci_vp,
   2413 						      raidPtr->mod_counter);
   2414 				}
   2415 			}
   2416 		}
   2417 		/* else we don't touch it.. */
   2418 	}
   2419 
   2420 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2421 		sparecol = raidPtr->numCol + c;
   2422 		/* Need to ensure that the reconstruct actually completed! */
   2423 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2424 			/*
   2425 
   2426 			   we claim this disk is "optimal" if it's
   2427 			   rf_ds_used_spare, as that means it should be
   2428 			   directly substitutable for the disk it replaced.
   2429 			   We note that too...
   2430 
   2431 			 */
   2432 
   2433 			for(j=0;j<raidPtr->numCol;j++) {
   2434 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2435 					scol = j;
   2436 					break;
   2437 				}
   2438 			}
   2439 
   2440 			/* XXX shouldn't *really* need this... */
   2441 			raidread_component_label(
   2442 				      raidPtr->Disks[sparecol].dev,
   2443 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2444 				      &clabel);
   2445 			/* make sure status is noted */
   2446 
   2447 			raid_init_component_label(raidPtr, &clabel);
   2448 
   2449 			clabel.mod_counter = raidPtr->mod_counter;
   2450 			clabel.column = scol;
   2451 			clabel.status = rf_ds_optimal;
   2452 
   2453 			raidwrite_component_label(
   2454 				      raidPtr->Disks[sparecol].dev,
   2455 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2456 				      &clabel);
   2457 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2458 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2459 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2460 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2461 						       raidPtr->mod_counter);
   2462 				}
   2463 			}
   2464 		}
   2465 	}
   2466 }
   2467 
   2468 void
   2469 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2470 {
   2471 	struct proc *p;
   2472 
   2473 	p = raidPtr->engine_thread;
   2474 
   2475 	if (vp != NULL) {
   2476 		if (auto_configured == 1) {
   2477 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2478 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2479 			vput(vp);
   2480 
   2481 		} else {
   2482 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2483 		}
   2484 	}
   2485 }
   2486 
   2487 
   2488 void
   2489 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2490 {
   2491 	int r,c;
   2492 	struct vnode *vp;
   2493 	int acd;
   2494 
   2495 
   2496 	/* We take this opportunity to close the vnodes like we should.. */
   2497 
   2498 	for (c = 0; c < raidPtr->numCol; c++) {
   2499 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2500 		acd = raidPtr->Disks[c].auto_configured;
   2501 		rf_close_component(raidPtr, vp, acd);
   2502 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2503 		raidPtr->Disks[c].auto_configured = 0;
   2504 	}
   2505 
   2506 	for (r = 0; r < raidPtr->numSpare; r++) {
   2507 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2508 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2509 		rf_close_component(raidPtr, vp, acd);
   2510 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2511 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2512 	}
   2513 }
   2514 
   2515 
   2516 void
   2517 rf_ReconThread(struct rf_recon_req *req)
   2518 {
   2519 	int     s;
   2520 	RF_Raid_t *raidPtr;
   2521 
   2522 	s = splbio();
   2523 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2524 	raidPtr->recon_in_progress = 1;
   2525 
   2526 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2527 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2528 
   2529 	RF_Free(req, sizeof(*req));
   2530 
   2531 	raidPtr->recon_in_progress = 0;
   2532 	splx(s);
   2533 
   2534 	/* That's all... */
   2535 	kthread_exit(0);        /* does not return */
   2536 }
   2537 
   2538 void
   2539 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2540 {
   2541 	int retcode;
   2542 	int s;
   2543 
   2544 	raidPtr->parity_rewrite_in_progress = 1;
   2545 	s = splbio();
   2546 	retcode = rf_RewriteParity(raidPtr);
   2547 	splx(s);
   2548 	if (retcode) {
   2549 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2550 	} else {
   2551 		/* set the clean bit!  If we shutdown correctly,
   2552 		   the clean bit on each component label will get
   2553 		   set */
   2554 		raidPtr->parity_good = RF_RAID_CLEAN;
   2555 	}
   2556 	raidPtr->parity_rewrite_in_progress = 0;
   2557 
   2558 	/* Anyone waiting for us to stop?  If so, inform them... */
   2559 	if (raidPtr->waitShutdown) {
   2560 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2561 	}
   2562 
   2563 	/* That's all... */
   2564 	kthread_exit(0);        /* does not return */
   2565 }
   2566 
   2567 
   2568 void
   2569 rf_CopybackThread(RF_Raid_t *raidPtr)
   2570 {
   2571 	int s;
   2572 
   2573 	raidPtr->copyback_in_progress = 1;
   2574 	s = splbio();
   2575 	rf_CopybackReconstructedData(raidPtr);
   2576 	splx(s);
   2577 	raidPtr->copyback_in_progress = 0;
   2578 
   2579 	/* That's all... */
   2580 	kthread_exit(0);        /* does not return */
   2581 }
   2582 
   2583 
   2584 void
   2585 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2586 {
   2587 	int s;
   2588 	RF_Raid_t *raidPtr;
   2589 
   2590 	s = splbio();
   2591 	raidPtr = req->raidPtr;
   2592 	raidPtr->recon_in_progress = 1;
   2593 	rf_ReconstructInPlace(raidPtr, req->col);
   2594 	RF_Free(req, sizeof(*req));
   2595 	raidPtr->recon_in_progress = 0;
   2596 	splx(s);
   2597 
   2598 	/* That's all... */
   2599 	kthread_exit(0);        /* does not return */
   2600 }
   2601 
   2602 RF_AutoConfig_t *
   2603 rf_find_raid_components()
   2604 {
   2605 	struct vnode *vp;
   2606 	struct disklabel label;
   2607 	struct device *dv;
   2608 	dev_t dev;
   2609 	int bmajor;
   2610 	int error;
   2611 	int i;
   2612 	int good_one;
   2613 	RF_ComponentLabel_t *clabel;
   2614 	RF_AutoConfig_t *ac_list;
   2615 	RF_AutoConfig_t *ac;
   2616 
   2617 
   2618 	/* initialize the AutoConfig list */
   2619 	ac_list = NULL;
   2620 
   2621 	/* we begin by trolling through *all* the devices on the system */
   2622 
   2623 	for (dv = alldevs.tqh_first; dv != NULL;
   2624 	     dv = dv->dv_list.tqe_next) {
   2625 
   2626 		/* we are only interested in disks... */
   2627 		if (dv->dv_class != DV_DISK)
   2628 			continue;
   2629 
   2630 		/* we don't care about floppies... */
   2631 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2632 			continue;
   2633 		}
   2634 
   2635 		/* we don't care about CD's... */
   2636 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2637 			continue;
   2638 		}
   2639 
   2640 		/* hdfd is the Atari/Hades floppy driver */
   2641 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2642 			continue;
   2643 		}
   2644 		/* fdisa is the Atari/Milan floppy driver */
   2645 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2646 			continue;
   2647 		}
   2648 
   2649 		/* need to find the device_name_to_block_device_major stuff */
   2650 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2651 
   2652 		/* get a vnode for the raw partition of this disk */
   2653 
   2654 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2655 		if (bdevvp(dev, &vp))
   2656 			panic("RAID can't alloc vnode");
   2657 
   2658 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2659 
   2660 		if (error) {
   2661 			/* "Who cares."  Continue looking
   2662 			   for something that exists*/
   2663 			vput(vp);
   2664 			continue;
   2665 		}
   2666 
   2667 		/* Ok, the disk exists.  Go get the disklabel. */
   2668 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2669 		if (error) {
   2670 			/*
   2671 			 * XXX can't happen - open() would
   2672 			 * have errored out (or faked up one)
   2673 			 */
   2674 			if (error != ENOTTY)
   2675 				printf("RAIDframe: can't get label for dev "
   2676 				    "%s (%d)\n", dv->dv_xname, error);
   2677 		}
   2678 
   2679 		/* don't need this any more.  We'll allocate it again
   2680 		   a little later if we really do... */
   2681 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2682 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2683 		vput(vp);
   2684 
   2685 		if (error)
   2686 			continue;
   2687 
   2688 		for (i=0; i < label.d_npartitions; i++) {
   2689 			/* We only support partitions marked as RAID */
   2690 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2691 				continue;
   2692 
   2693 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2694 			if (bdevvp(dev, &vp))
   2695 				panic("RAID can't alloc vnode");
   2696 
   2697 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2698 			if (error) {
   2699 				/* Whatever... */
   2700 				vput(vp);
   2701 				continue;
   2702 			}
   2703 
   2704 			good_one = 0;
   2705 
   2706 			clabel = (RF_ComponentLabel_t *)
   2707 				malloc(sizeof(RF_ComponentLabel_t),
   2708 				       M_RAIDFRAME, M_NOWAIT);
   2709 			if (clabel == NULL) {
   2710 				/* XXX CLEANUP HERE */
   2711 				printf("RAID auto config: out of memory!\n");
   2712 				return(NULL); /* XXX probably should panic? */
   2713 			}
   2714 
   2715 			if (!raidread_component_label(dev, vp, clabel)) {
   2716 				/* Got the label.  Does it look reasonable? */
   2717 				if (rf_reasonable_label(clabel) &&
   2718 				    (clabel->partitionSize <=
   2719 				     label.d_partitions[i].p_size)) {
   2720 #if DEBUG
   2721 					printf("Component on: %s%c: %d\n",
   2722 					       dv->dv_xname, 'a'+i,
   2723 					       label.d_partitions[i].p_size);
   2724 					rf_print_component_label(clabel);
   2725 #endif
   2726 					/* if it's reasonable, add it,
   2727 					   else ignore it. */
   2728 					ac = (RF_AutoConfig_t *)
   2729 						malloc(sizeof(RF_AutoConfig_t),
   2730 						       M_RAIDFRAME,
   2731 						       M_NOWAIT);
   2732 					if (ac == NULL) {
   2733 						/* XXX should panic?? */
   2734 						return(NULL);
   2735 					}
   2736 
   2737 					snprintf(ac->devname,
   2738 					    sizeof(ac->devname), "%s%c",
   2739 					    dv->dv_xname, 'a'+i);
   2740 					ac->dev = dev;
   2741 					ac->vp = vp;
   2742 					ac->clabel = clabel;
   2743 					ac->next = ac_list;
   2744 					ac_list = ac;
   2745 					good_one = 1;
   2746 				}
   2747 			}
   2748 			if (!good_one) {
   2749 				/* cleanup */
   2750 				free(clabel, M_RAIDFRAME);
   2751 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2752 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2753 				vput(vp);
   2754 			}
   2755 		}
   2756 	}
   2757 	return(ac_list);
   2758 }
   2759 
   2760 static int
   2761 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2762 {
   2763 
   2764 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2765 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2766 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2767 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2768 	    clabel->row >=0 &&
   2769 	    clabel->column >= 0 &&
   2770 	    clabel->num_rows > 0 &&
   2771 	    clabel->num_columns > 0 &&
   2772 	    clabel->row < clabel->num_rows &&
   2773 	    clabel->column < clabel->num_columns &&
   2774 	    clabel->blockSize > 0 &&
   2775 	    clabel->numBlocks > 0) {
   2776 		/* label looks reasonable enough... */
   2777 		return(1);
   2778 	}
   2779 	return(0);
   2780 }
   2781 
   2782 
   2783 #if DEBUG
   2784 void
   2785 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2786 {
   2787 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2788 	       clabel->row, clabel->column,
   2789 	       clabel->num_rows, clabel->num_columns);
   2790 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2791 	       clabel->version, clabel->serial_number,
   2792 	       clabel->mod_counter);
   2793 	printf("   Clean: %s Status: %d\n",
   2794 	       clabel->clean ? "Yes" : "No", clabel->status );
   2795 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2796 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2797 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2798 	       (char) clabel->parityConfig, clabel->blockSize,
   2799 	       clabel->numBlocks);
   2800 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2801 	printf("   Contains root partition: %s\n",
   2802 	       clabel->root_partition ? "Yes" : "No" );
   2803 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2804 #if 0
   2805 	   printf("   Config order: %d\n", clabel->config_order);
   2806 #endif
   2807 
   2808 }
   2809 #endif
   2810 
   2811 RF_ConfigSet_t *
   2812 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2813 {
   2814 	RF_AutoConfig_t *ac;
   2815 	RF_ConfigSet_t *config_sets;
   2816 	RF_ConfigSet_t *cset;
   2817 	RF_AutoConfig_t *ac_next;
   2818 
   2819 
   2820 	config_sets = NULL;
   2821 
   2822 	/* Go through the AutoConfig list, and figure out which components
   2823 	   belong to what sets.  */
   2824 	ac = ac_list;
   2825 	while(ac!=NULL) {
   2826 		/* we're going to putz with ac->next, so save it here
   2827 		   for use at the end of the loop */
   2828 		ac_next = ac->next;
   2829 
   2830 		if (config_sets == NULL) {
   2831 			/* will need at least this one... */
   2832 			config_sets = (RF_ConfigSet_t *)
   2833 				malloc(sizeof(RF_ConfigSet_t),
   2834 				       M_RAIDFRAME, M_NOWAIT);
   2835 			if (config_sets == NULL) {
   2836 				panic("rf_create_auto_sets: No memory!");
   2837 			}
   2838 			/* this one is easy :) */
   2839 			config_sets->ac = ac;
   2840 			config_sets->next = NULL;
   2841 			config_sets->rootable = 0;
   2842 			ac->next = NULL;
   2843 		} else {
   2844 			/* which set does this component fit into? */
   2845 			cset = config_sets;
   2846 			while(cset!=NULL) {
   2847 				if (rf_does_it_fit(cset, ac)) {
   2848 					/* looks like it matches... */
   2849 					ac->next = cset->ac;
   2850 					cset->ac = ac;
   2851 					break;
   2852 				}
   2853 				cset = cset->next;
   2854 			}
   2855 			if (cset==NULL) {
   2856 				/* didn't find a match above... new set..*/
   2857 				cset = (RF_ConfigSet_t *)
   2858 					malloc(sizeof(RF_ConfigSet_t),
   2859 					       M_RAIDFRAME, M_NOWAIT);
   2860 				if (cset == NULL) {
   2861 					panic("rf_create_auto_sets: No memory!");
   2862 				}
   2863 				cset->ac = ac;
   2864 				ac->next = NULL;
   2865 				cset->next = config_sets;
   2866 				cset->rootable = 0;
   2867 				config_sets = cset;
   2868 			}
   2869 		}
   2870 		ac = ac_next;
   2871 	}
   2872 
   2873 
   2874 	return(config_sets);
   2875 }
   2876 
   2877 static int
   2878 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2879 {
   2880 	RF_ComponentLabel_t *clabel1, *clabel2;
   2881 
   2882 	/* If this one matches the *first* one in the set, that's good
   2883 	   enough, since the other members of the set would have been
   2884 	   through here too... */
   2885 	/* note that we are not checking partitionSize here..
   2886 
   2887 	   Note that we are also not checking the mod_counters here.
   2888 	   If everything else matches execpt the mod_counter, that's
   2889 	   good enough for this test.  We will deal with the mod_counters
   2890 	   a little later in the autoconfiguration process.
   2891 
   2892 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2893 
   2894 	   The reason we don't check for this is that failed disks
   2895 	   will have lower modification counts.  If those disks are
   2896 	   not added to the set they used to belong to, then they will
   2897 	   form their own set, which may result in 2 different sets,
   2898 	   for example, competing to be configured at raid0, and
   2899 	   perhaps competing to be the root filesystem set.  If the
   2900 	   wrong ones get configured, or both attempt to become /,
   2901 	   weird behaviour and or serious lossage will occur.  Thus we
   2902 	   need to bring them into the fold here, and kick them out at
   2903 	   a later point.
   2904 
   2905 	*/
   2906 
   2907 	clabel1 = cset->ac->clabel;
   2908 	clabel2 = ac->clabel;
   2909 	if ((clabel1->version == clabel2->version) &&
   2910 	    (clabel1->serial_number == clabel2->serial_number) &&
   2911 	    (clabel1->num_rows == clabel2->num_rows) &&
   2912 	    (clabel1->num_columns == clabel2->num_columns) &&
   2913 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2914 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2915 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2916 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2917 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2918 	    (clabel1->blockSize == clabel2->blockSize) &&
   2919 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2920 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2921 	    (clabel1->root_partition == clabel2->root_partition) &&
   2922 	    (clabel1->last_unit == clabel2->last_unit) &&
   2923 	    (clabel1->config_order == clabel2->config_order)) {
   2924 		/* if it get's here, it almost *has* to be a match */
   2925 	} else {
   2926 		/* it's not consistent with somebody in the set..
   2927 		   punt */
   2928 		return(0);
   2929 	}
   2930 	/* all was fine.. it must fit... */
   2931 	return(1);
   2932 }
   2933 
   2934 int
   2935 rf_have_enough_components(RF_ConfigSet_t *cset)
   2936 {
   2937 	RF_AutoConfig_t *ac;
   2938 	RF_AutoConfig_t *auto_config;
   2939 	RF_ComponentLabel_t *clabel;
   2940 	int c;
   2941 	int num_cols;
   2942 	int num_missing;
   2943 	int mod_counter;
   2944 	int mod_counter_found;
   2945 	int even_pair_failed;
   2946 	char parity_type;
   2947 
   2948 
   2949 	/* check to see that we have enough 'live' components
   2950 	   of this set.  If so, we can configure it if necessary */
   2951 
   2952 	num_cols = cset->ac->clabel->num_columns;
   2953 	parity_type = cset->ac->clabel->parityConfig;
   2954 
   2955 	/* XXX Check for duplicate components!?!?!? */
   2956 
   2957 	/* Determine what the mod_counter is supposed to be for this set. */
   2958 
   2959 	mod_counter_found = 0;
   2960 	mod_counter = 0;
   2961 	ac = cset->ac;
   2962 	while(ac!=NULL) {
   2963 		if (mod_counter_found==0) {
   2964 			mod_counter = ac->clabel->mod_counter;
   2965 			mod_counter_found = 1;
   2966 		} else {
   2967 			if (ac->clabel->mod_counter > mod_counter) {
   2968 				mod_counter = ac->clabel->mod_counter;
   2969 			}
   2970 		}
   2971 		ac = ac->next;
   2972 	}
   2973 
   2974 	num_missing = 0;
   2975 	auto_config = cset->ac;
   2976 
   2977 	even_pair_failed = 0;
   2978 	for(c=0; c<num_cols; c++) {
   2979 		ac = auto_config;
   2980 		while(ac!=NULL) {
   2981 			if ((ac->clabel->column == c) &&
   2982 			    (ac->clabel->mod_counter == mod_counter)) {
   2983 				/* it's this one... */
   2984 #if DEBUG
   2985 				printf("Found: %s at %d\n",
   2986 				       ac->devname,c);
   2987 #endif
   2988 				break;
   2989 			}
   2990 			ac=ac->next;
   2991 		}
   2992 		if (ac==NULL) {
   2993 				/* Didn't find one here! */
   2994 				/* special case for RAID 1, especially
   2995 				   where there are more than 2
   2996 				   components (where RAIDframe treats
   2997 				   things a little differently :( ) */
   2998 			if (parity_type == '1') {
   2999 				if (c%2 == 0) { /* even component */
   3000 					even_pair_failed = 1;
   3001 				} else { /* odd component.  If
   3002 					    we're failed, and
   3003 					    so is the even
   3004 					    component, it's
   3005 					    "Good Night, Charlie" */
   3006 					if (even_pair_failed == 1) {
   3007 						return(0);
   3008 					}
   3009 				}
   3010 			} else {
   3011 				/* normal accounting */
   3012 				num_missing++;
   3013 			}
   3014 		}
   3015 		if ((parity_type == '1') && (c%2 == 1)) {
   3016 				/* Just did an even component, and we didn't
   3017 				   bail.. reset the even_pair_failed flag,
   3018 				   and go on to the next component.... */
   3019 			even_pair_failed = 0;
   3020 		}
   3021 	}
   3022 
   3023 	clabel = cset->ac->clabel;
   3024 
   3025 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3026 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3027 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3028 		/* XXX this needs to be made *much* more general */
   3029 		/* Too many failures */
   3030 		return(0);
   3031 	}
   3032 	/* otherwise, all is well, and we've got enough to take a kick
   3033 	   at autoconfiguring this set */
   3034 	return(1);
   3035 }
   3036 
   3037 void
   3038 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3039 			RF_Raid_t *raidPtr)
   3040 {
   3041 	RF_ComponentLabel_t *clabel;
   3042 	int i;
   3043 
   3044 	clabel = ac->clabel;
   3045 
   3046 	/* 1. Fill in the common stuff */
   3047 	config->numRow = clabel->num_rows = 1;
   3048 	config->numCol = clabel->num_columns;
   3049 	config->numSpare = 0; /* XXX should this be set here? */
   3050 	config->sectPerSU = clabel->sectPerSU;
   3051 	config->SUsPerPU = clabel->SUsPerPU;
   3052 	config->SUsPerRU = clabel->SUsPerRU;
   3053 	config->parityConfig = clabel->parityConfig;
   3054 	/* XXX... */
   3055 	strcpy(config->diskQueueType,"fifo");
   3056 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3057 	config->layoutSpecificSize = 0; /* XXX ?? */
   3058 
   3059 	while(ac!=NULL) {
   3060 		/* row/col values will be in range due to the checks
   3061 		   in reasonable_label() */
   3062 		strcpy(config->devnames[0][ac->clabel->column],
   3063 		       ac->devname);
   3064 		ac = ac->next;
   3065 	}
   3066 
   3067 	for(i=0;i<RF_MAXDBGV;i++) {
   3068 		config->debugVars[i][0] = 0;
   3069 	}
   3070 }
   3071 
   3072 int
   3073 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3074 {
   3075 	RF_ComponentLabel_t clabel;
   3076 	struct vnode *vp;
   3077 	dev_t dev;
   3078 	int column;
   3079 	int sparecol;
   3080 
   3081 	raidPtr->autoconfigure = new_value;
   3082 
   3083 	for(column=0; column<raidPtr->numCol; column++) {
   3084 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3085 			dev = raidPtr->Disks[column].dev;
   3086 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3087 			raidread_component_label(dev, vp, &clabel);
   3088 			clabel.autoconfigure = new_value;
   3089 			raidwrite_component_label(dev, vp, &clabel);
   3090 		}
   3091 	}
   3092 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3093 		sparecol = raidPtr->numCol + column;
   3094 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3095 			dev = raidPtr->Disks[sparecol].dev;
   3096 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3097 			raidread_component_label(dev, vp, &clabel);
   3098 			clabel.autoconfigure = new_value;
   3099 			raidwrite_component_label(dev, vp, &clabel);
   3100 		}
   3101 	}
   3102 	return(new_value);
   3103 }
   3104 
   3105 int
   3106 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3107 {
   3108 	RF_ComponentLabel_t clabel;
   3109 	struct vnode *vp;
   3110 	dev_t dev;
   3111 	int column;
   3112 	int sparecol;
   3113 
   3114 	raidPtr->root_partition = new_value;
   3115 	for(column=0; column<raidPtr->numCol; column++) {
   3116 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3117 			dev = raidPtr->Disks[column].dev;
   3118 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3119 			raidread_component_label(dev, vp, &clabel);
   3120 			clabel.root_partition = new_value;
   3121 			raidwrite_component_label(dev, vp, &clabel);
   3122 		}
   3123 	}
   3124 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3125 		sparecol = raidPtr->numCol + column;
   3126 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3127 			dev = raidPtr->Disks[sparecol].dev;
   3128 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3129 			raidread_component_label(dev, vp, &clabel);
   3130 			clabel.root_partition = new_value;
   3131 			raidwrite_component_label(dev, vp, &clabel);
   3132 		}
   3133 	}
   3134 	return(new_value);
   3135 }
   3136 
   3137 void
   3138 rf_release_all_vps(RF_ConfigSet_t *cset)
   3139 {
   3140 	RF_AutoConfig_t *ac;
   3141 
   3142 	ac = cset->ac;
   3143 	while(ac!=NULL) {
   3144 		/* Close the vp, and give it back */
   3145 		if (ac->vp) {
   3146 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3147 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3148 			vput(ac->vp);
   3149 			ac->vp = NULL;
   3150 		}
   3151 		ac = ac->next;
   3152 	}
   3153 }
   3154 
   3155 
   3156 void
   3157 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3158 {
   3159 	RF_AutoConfig_t *ac;
   3160 	RF_AutoConfig_t *next_ac;
   3161 
   3162 	ac = cset->ac;
   3163 	while(ac!=NULL) {
   3164 		next_ac = ac->next;
   3165 		/* nuke the label */
   3166 		free(ac->clabel, M_RAIDFRAME);
   3167 		/* cleanup the config structure */
   3168 		free(ac, M_RAIDFRAME);
   3169 		/* "next.." */
   3170 		ac = next_ac;
   3171 	}
   3172 	/* and, finally, nuke the config set */
   3173 	free(cset, M_RAIDFRAME);
   3174 }
   3175 
   3176 
   3177 void
   3178 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3179 {
   3180 	/* current version number */
   3181 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3182 	clabel->serial_number = raidPtr->serial_number;
   3183 	clabel->mod_counter = raidPtr->mod_counter;
   3184 	clabel->num_rows = 1;
   3185 	clabel->num_columns = raidPtr->numCol;
   3186 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3187 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3188 
   3189 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3190 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3191 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3192 
   3193 	clabel->blockSize = raidPtr->bytesPerSector;
   3194 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3195 
   3196 	/* XXX not portable */
   3197 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3198 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3199 	clabel->autoconfigure = raidPtr->autoconfigure;
   3200 	clabel->root_partition = raidPtr->root_partition;
   3201 	clabel->last_unit = raidPtr->raidid;
   3202 	clabel->config_order = raidPtr->config_order;
   3203 }
   3204 
   3205 int
   3206 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3207 {
   3208 	RF_Raid_t *raidPtr;
   3209 	RF_Config_t *config;
   3210 	int raidID;
   3211 	int retcode;
   3212 
   3213 #if DEBUG
   3214 	printf("RAID autoconfigure\n");
   3215 #endif
   3216 
   3217 	retcode = 0;
   3218 	*unit = -1;
   3219 
   3220 	/* 1. Create a config structure */
   3221 
   3222 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3223 				       M_RAIDFRAME,
   3224 				       M_NOWAIT);
   3225 	if (config==NULL) {
   3226 		printf("Out of mem!?!?\n");
   3227 				/* XXX do something more intelligent here. */
   3228 		return(1);
   3229 	}
   3230 
   3231 	memset(config, 0, sizeof(RF_Config_t));
   3232 
   3233 	/*
   3234 	   2. Figure out what RAID ID this one is supposed to live at
   3235 	   See if we can get the same RAID dev that it was configured
   3236 	   on last time..
   3237 	*/
   3238 
   3239 	raidID = cset->ac->clabel->last_unit;
   3240 	if ((raidID < 0) || (raidID >= numraid)) {
   3241 		/* let's not wander off into lala land. */
   3242 		raidID = numraid - 1;
   3243 	}
   3244 	if (raidPtrs[raidID]->valid != 0) {
   3245 
   3246 		/*
   3247 		   Nope... Go looking for an alternative...
   3248 		   Start high so we don't immediately use raid0 if that's
   3249 		   not taken.
   3250 		*/
   3251 
   3252 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3253 			if (raidPtrs[raidID]->valid == 0) {
   3254 				/* can use this one! */
   3255 				break;
   3256 			}
   3257 		}
   3258 	}
   3259 
   3260 	if (raidID < 0) {
   3261 		/* punt... */
   3262 		printf("Unable to auto configure this set!\n");
   3263 		printf("(Out of RAID devs!)\n");
   3264 		return(1);
   3265 	}
   3266 
   3267 #if DEBUG
   3268 	printf("Configuring raid%d:\n",raidID);
   3269 #endif
   3270 
   3271 	raidPtr = raidPtrs[raidID];
   3272 
   3273 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3274 	raidPtr->raidid = raidID;
   3275 	raidPtr->openings = RAIDOUTSTANDING;
   3276 
   3277 	/* 3. Build the configuration structure */
   3278 	rf_create_configuration(cset->ac, config, raidPtr);
   3279 
   3280 	/* 4. Do the configuration */
   3281 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3282 
   3283 	if (retcode == 0) {
   3284 
   3285 		raidinit(raidPtrs[raidID]);
   3286 
   3287 		rf_markalldirty(raidPtrs[raidID]);
   3288 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3289 		if (cset->ac->clabel->root_partition==1) {
   3290 			/* everything configured just fine.  Make a note
   3291 			   that this set is eligible to be root. */
   3292 			cset->rootable = 1;
   3293 			/* XXX do this here? */
   3294 			raidPtrs[raidID]->root_partition = 1;
   3295 		}
   3296 	}
   3297 
   3298 	/* 5. Cleanup */
   3299 	free(config, M_RAIDFRAME);
   3300 
   3301 	*unit = raidID;
   3302 	return(retcode);
   3303 }
   3304 
   3305 void
   3306 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3307 {
   3308 	struct buf *bp;
   3309 
   3310 	bp = (struct buf *)desc->bp;
   3311 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3312 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3313 }
   3314 
   3315 void
   3316 rf_pool_init(struct pool *p, size_t size, char *w_chan,
   3317 	     size_t min, size_t max)
   3318 {
   3319 	pool_init(p, size, 0, 0, 0, w_chan, NULL);
   3320 	pool_sethiwat(p, max);
   3321 	pool_prime(p, min);
   3322 	pool_setlowat(p, min);
   3323 }
   3324