Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.186.2.3
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.186.2.3 2006/01/11 17:18:00 tron Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.186.2.3 2006/01/11 17:18:00 tron Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 
    172 #include <dev/raidframe/raidframevar.h>
    173 #include <dev/raidframe/raidframeio.h>
    174 #include "raid.h"
    175 #include "opt_raid_autoconfig.h"
    176 #include "rf_raid.h"
    177 #include "rf_copyback.h"
    178 #include "rf_dag.h"
    179 #include "rf_dagflags.h"
    180 #include "rf_desc.h"
    181 #include "rf_diskqueue.h"
    182 #include "rf_etimer.h"
    183 #include "rf_general.h"
    184 #include "rf_kintf.h"
    185 #include "rf_options.h"
    186 #include "rf_driver.h"
    187 #include "rf_parityscan.h"
    188 #include "rf_threadstuff.h"
    189 
    190 #ifdef DEBUG
    191 int     rf_kdebug_level = 0;
    192 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    193 #else				/* DEBUG */
    194 #define db1_printf(a) { }
    195 #endif				/* DEBUG */
    196 
    197 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    198 
    199 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    200 
    201 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    202 						 * spare table */
    203 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    204 						 * installation process */
    205 
    206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    207 
    208 /* prototypes */
    209 static void KernelWakeupFunc(struct buf *);
    210 static void InitBP(struct buf *, struct vnode *, unsigned,
    211     dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*) (struct buf *),
    212     void *, int, struct proc *);
    213 static void raidinit(RF_Raid_t *);
    214 
    215 void raidattach(int);
    216 
    217 dev_type_open(raidopen);
    218 dev_type_close(raidclose);
    219 dev_type_read(raidread);
    220 dev_type_write(raidwrite);
    221 dev_type_ioctl(raidioctl);
    222 dev_type_strategy(raidstrategy);
    223 dev_type_dump(raiddump);
    224 dev_type_size(raidsize);
    225 
    226 const struct bdevsw raid_bdevsw = {
    227 	raidopen, raidclose, raidstrategy, raidioctl,
    228 	raiddump, raidsize, D_DISK
    229 };
    230 
    231 const struct cdevsw raid_cdevsw = {
    232 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    233 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    234 };
    235 
    236 /*
    237  * Pilfered from ccd.c
    238  */
    239 
    240 struct raidbuf {
    241 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    242 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    243 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    244 };
    245 
    246 /* XXX Not sure if the following should be replacing the raidPtrs above,
    247    or if it should be used in conjunction with that...
    248 */
    249 
    250 struct raid_softc {
    251 	int     sc_flags;	/* flags */
    252 	int     sc_cflags;	/* configuration flags */
    253 	size_t  sc_size;        /* size of the raid device */
    254 	char    sc_xname[20];	/* XXX external name */
    255 	struct disk sc_dkdev;	/* generic disk device info */
    256 	struct bufq_state buf_queue;	/* used for the device queue */
    257 };
    258 /* sc_flags */
    259 #define RAIDF_INITED	0x01	/* unit has been initialized */
    260 #define RAIDF_WLABEL	0x02	/* label area is writable */
    261 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    262 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    263 #define RAIDF_LOCKED	0x80	/* unit is locked */
    264 
    265 #define	raidunit(x)	DISKUNIT(x)
    266 int numraid = 0;
    267 
    268 /*
    269  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    270  * Be aware that large numbers can allow the driver to consume a lot of
    271  * kernel memory, especially on writes, and in degraded mode reads.
    272  *
    273  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    274  * a single 64K write will typically require 64K for the old data,
    275  * 64K for the old parity, and 64K for the new parity, for a total
    276  * of 192K (if the parity buffer is not re-used immediately).
    277  * Even it if is used immediately, that's still 128K, which when multiplied
    278  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    279  *
    280  * Now in degraded mode, for example, a 64K read on the above setup may
    281  * require data reconstruction, which will require *all* of the 4 remaining
    282  * disks to participate -- 4 * 32K/disk == 128K again.
    283  */
    284 
    285 #ifndef RAIDOUTSTANDING
    286 #define RAIDOUTSTANDING   6
    287 #endif
    288 
    289 #define RAIDLABELDEV(dev)	\
    290 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    291 
    292 /* declared here, and made public, for the benefit of KVM stuff.. */
    293 struct raid_softc *raid_softc;
    294 
    295 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    296 				     struct disklabel *);
    297 static void raidgetdisklabel(dev_t);
    298 static void raidmakedisklabel(struct raid_softc *);
    299 
    300 static int raidlock(struct raid_softc *);
    301 static void raidunlock(struct raid_softc *);
    302 
    303 static void rf_markalldirty(RF_Raid_t *);
    304 
    305 struct device *raidrootdev;
    306 
    307 void rf_ReconThread(struct rf_recon_req *);
    308 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    309 void rf_CopybackThread(RF_Raid_t *raidPtr);
    310 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    311 int rf_autoconfig(struct device *self);
    312 void rf_buildroothack(RF_ConfigSet_t *);
    313 
    314 RF_AutoConfig_t *rf_find_raid_components(void);
    315 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    316 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    317 static int rf_reasonable_label(RF_ComponentLabel_t *);
    318 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    319 int rf_set_autoconfig(RF_Raid_t *, int);
    320 int rf_set_rootpartition(RF_Raid_t *, int);
    321 void rf_release_all_vps(RF_ConfigSet_t *);
    322 void rf_cleanup_config_set(RF_ConfigSet_t *);
    323 int rf_have_enough_components(RF_ConfigSet_t *);
    324 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    325 
    326 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    327 				  allow autoconfig to take place.
    328 			          Note that this is overridden by having
    329 			          RAID_AUTOCONFIG as an option in the
    330 			          kernel config file.  */
    331 
    332 struct RF_Pools_s rf_pools;
    333 
    334 void
    335 raidattach(int num)
    336 {
    337 	int raidID;
    338 	int i, rc;
    339 
    340 #ifdef DEBUG
    341 	printf("raidattach: Asked for %d units\n", num);
    342 #endif
    343 
    344 	if (num <= 0) {
    345 #ifdef DIAGNOSTIC
    346 		panic("raidattach: count <= 0");
    347 #endif
    348 		return;
    349 	}
    350 	/* This is where all the initialization stuff gets done. */
    351 
    352 	numraid = num;
    353 
    354 	/* Make some space for requested number of units... */
    355 
    356 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    357 	if (raidPtrs == NULL) {
    358 		panic("raidPtrs is NULL!!");
    359 	}
    360 
    361 	/* Initialize the component buffer pool. */
    362 	rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
    363 		     "raidpl", num * RAIDOUTSTANDING,
    364 		     2 * num * RAIDOUTSTANDING);
    365 
    366 	rf_mutex_init(&rf_sparet_wait_mutex);
    367 
    368 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    369 
    370 	for (i = 0; i < num; i++)
    371 		raidPtrs[i] = NULL;
    372 	rc = rf_BootRaidframe();
    373 	if (rc == 0)
    374 		printf("Kernelized RAIDframe activated\n");
    375 	else
    376 		panic("Serious error booting RAID!!");
    377 
    378 	/* put together some datastructures like the CCD device does.. This
    379 	 * lets us lock the device and what-not when it gets opened. */
    380 
    381 	raid_softc = (struct raid_softc *)
    382 		malloc(num * sizeof(struct raid_softc),
    383 		       M_RAIDFRAME, M_NOWAIT);
    384 	if (raid_softc == NULL) {
    385 		printf("WARNING: no memory for RAIDframe driver\n");
    386 		return;
    387 	}
    388 
    389 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    390 
    391 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    392 					      M_RAIDFRAME, M_NOWAIT);
    393 	if (raidrootdev == NULL) {
    394 		panic("No memory for RAIDframe driver!!?!?!");
    395 	}
    396 
    397 	for (raidID = 0; raidID < num; raidID++) {
    398 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    399 
    400 		raidrootdev[raidID].dv_class  = DV_DISK;
    401 		raidrootdev[raidID].dv_cfdata = NULL;
    402 		raidrootdev[raidID].dv_unit   = raidID;
    403 		raidrootdev[raidID].dv_parent = NULL;
    404 		raidrootdev[raidID].dv_flags  = 0;
    405 		snprintf(raidrootdev[raidID].dv_xname,
    406 		    sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
    407 
    408 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    409 			  (RF_Raid_t *));
    410 		if (raidPtrs[raidID] == NULL) {
    411 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    412 			numraid = raidID;
    413 			return;
    414 		}
    415 	}
    416 
    417 #ifdef RAID_AUTOCONFIG
    418 	raidautoconfig = 1;
    419 #endif
    420 
    421 	/*
    422 	 * Register a finalizer which will be used to auto-config RAID
    423 	 * sets once all real hardware devices have been found.
    424 	 */
    425 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    426 		printf("WARNING: unable to register RAIDframe finalizer\n");
    427 }
    428 
    429 int
    430 rf_autoconfig(struct device *self)
    431 {
    432 	RF_AutoConfig_t *ac_list;
    433 	RF_ConfigSet_t *config_sets;
    434 
    435 	if (raidautoconfig == 0)
    436 		return (0);
    437 
    438 	/* XXX This code can only be run once. */
    439 	raidautoconfig = 0;
    440 
    441 	/* 1. locate all RAID components on the system */
    442 #ifdef DEBUG
    443 	printf("Searching for RAID components...\n");
    444 #endif
    445 	ac_list = rf_find_raid_components();
    446 
    447 	/* 2. Sort them into their respective sets. */
    448 	config_sets = rf_create_auto_sets(ac_list);
    449 
    450 	/*
    451 	 * 3. Evaluate each set andconfigure the valid ones.
    452 	 * This gets done in rf_buildroothack().
    453 	 */
    454 	rf_buildroothack(config_sets);
    455 
    456 	return (1);
    457 }
    458 
    459 void
    460 rf_buildroothack(RF_ConfigSet_t *config_sets)
    461 {
    462 	RF_ConfigSet_t *cset;
    463 	RF_ConfigSet_t *next_cset;
    464 	int retcode;
    465 	int raidID;
    466 	int rootID;
    467 	int num_root;
    468 
    469 	rootID = 0;
    470 	num_root = 0;
    471 	cset = config_sets;
    472 	while(cset != NULL ) {
    473 		next_cset = cset->next;
    474 		if (rf_have_enough_components(cset) &&
    475 		    cset->ac->clabel->autoconfigure==1) {
    476 			retcode = rf_auto_config_set(cset,&raidID);
    477 			if (!retcode) {
    478 				if (cset->rootable) {
    479 					rootID = raidID;
    480 					num_root++;
    481 				}
    482 			} else {
    483 				/* The autoconfig didn't work :( */
    484 #if DEBUG
    485 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    486 #endif
    487 				rf_release_all_vps(cset);
    488 			}
    489 		} else {
    490 			/* we're not autoconfiguring this set...
    491 			   release the associated resources */
    492 			rf_release_all_vps(cset);
    493 		}
    494 		/* cleanup */
    495 		rf_cleanup_config_set(cset);
    496 		cset = next_cset;
    497 	}
    498 
    499 	/* we found something bootable... */
    500 
    501 	if (num_root == 1) {
    502 		booted_device = &raidrootdev[rootID];
    503 	} else if (num_root > 1) {
    504 		/* we can't guess.. require the user to answer... */
    505 		boothowto |= RB_ASKNAME;
    506 	}
    507 }
    508 
    509 
    510 int
    511 raidsize(dev_t dev)
    512 {
    513 	struct raid_softc *rs;
    514 	struct disklabel *lp;
    515 	int     part, unit, omask, size;
    516 
    517 	unit = raidunit(dev);
    518 	if (unit >= numraid)
    519 		return (-1);
    520 	rs = &raid_softc[unit];
    521 
    522 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    523 		return (-1);
    524 
    525 	part = DISKPART(dev);
    526 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    527 	lp = rs->sc_dkdev.dk_label;
    528 
    529 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    530 		return (-1);
    531 
    532 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    533 		size = -1;
    534 	else
    535 		size = lp->d_partitions[part].p_size *
    536 		    (lp->d_secsize / DEV_BSIZE);
    537 
    538 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    539 		return (-1);
    540 
    541 	return (size);
    542 
    543 }
    544 
    545 int
    546 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    547 {
    548 	/* Not implemented. */
    549 	return ENXIO;
    550 }
    551 /* ARGSUSED */
    552 int
    553 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
    554 {
    555 	int     unit = raidunit(dev);
    556 	struct raid_softc *rs;
    557 	struct disklabel *lp;
    558 	int     part, pmask;
    559 	int     error = 0;
    560 
    561 	if (unit >= numraid)
    562 		return (ENXIO);
    563 	rs = &raid_softc[unit];
    564 
    565 	if ((error = raidlock(rs)) != 0)
    566 		return (error);
    567 	lp = rs->sc_dkdev.dk_label;
    568 
    569 	part = DISKPART(dev);
    570 	pmask = (1 << part);
    571 
    572 	if ((rs->sc_flags & RAIDF_INITED) &&
    573 	    (rs->sc_dkdev.dk_openmask == 0))
    574 		raidgetdisklabel(dev);
    575 
    576 	/* make sure that this partition exists */
    577 
    578 	if (part != RAW_PART) {
    579 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    580 		    ((part >= lp->d_npartitions) ||
    581 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    582 			error = ENXIO;
    583 			raidunlock(rs);
    584 			return (error);
    585 		}
    586 	}
    587 	/* Prevent this unit from being unconfigured while open. */
    588 	switch (fmt) {
    589 	case S_IFCHR:
    590 		rs->sc_dkdev.dk_copenmask |= pmask;
    591 		break;
    592 
    593 	case S_IFBLK:
    594 		rs->sc_dkdev.dk_bopenmask |= pmask;
    595 		break;
    596 	}
    597 
    598 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    599 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    600 		/* First one... mark things as dirty... Note that we *MUST*
    601 		 have done a configure before this.  I DO NOT WANT TO BE
    602 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    603 		 THAT THEY BELONG TOGETHER!!!!! */
    604 		/* XXX should check to see if we're only open for reading
    605 		   here... If so, we needn't do this, but then need some
    606 		   other way of keeping track of what's happened.. */
    607 
    608 		rf_markalldirty( raidPtrs[unit] );
    609 	}
    610 
    611 
    612 	rs->sc_dkdev.dk_openmask =
    613 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    614 
    615 	raidunlock(rs);
    616 
    617 	return (error);
    618 
    619 
    620 }
    621 /* ARGSUSED */
    622 int
    623 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
    624 {
    625 	int     unit = raidunit(dev);
    626 	struct raid_softc *rs;
    627 	int     error = 0;
    628 	int     part;
    629 
    630 	if (unit >= numraid)
    631 		return (ENXIO);
    632 	rs = &raid_softc[unit];
    633 
    634 	if ((error = raidlock(rs)) != 0)
    635 		return (error);
    636 
    637 	part = DISKPART(dev);
    638 
    639 	/* ...that much closer to allowing unconfiguration... */
    640 	switch (fmt) {
    641 	case S_IFCHR:
    642 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    643 		break;
    644 
    645 	case S_IFBLK:
    646 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    647 		break;
    648 	}
    649 	rs->sc_dkdev.dk_openmask =
    650 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    651 
    652 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    653 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    654 		/* Last one... device is not unconfigured yet.
    655 		   Device shutdown has taken care of setting the
    656 		   clean bits if RAIDF_INITED is not set
    657 		   mark things as clean... */
    658 
    659 		rf_update_component_labels(raidPtrs[unit],
    660 						 RF_FINAL_COMPONENT_UPDATE);
    661 		if (doing_shutdown) {
    662 			/* last one, and we're going down, so
    663 			   lights out for this RAID set too. */
    664 			error = rf_Shutdown(raidPtrs[unit]);
    665 
    666 			/* It's no longer initialized... */
    667 			rs->sc_flags &= ~RAIDF_INITED;
    668 
    669 			/* Detach the disk. */
    670 			disk_detach(&rs->sc_dkdev);
    671 		}
    672 	}
    673 
    674 	raidunlock(rs);
    675 	return (0);
    676 
    677 }
    678 
    679 void
    680 raidstrategy(struct buf *bp)
    681 {
    682 	int s;
    683 
    684 	unsigned int raidID = raidunit(bp->b_dev);
    685 	RF_Raid_t *raidPtr;
    686 	struct raid_softc *rs = &raid_softc[raidID];
    687 	int     wlabel;
    688 
    689 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    690 		bp->b_error = ENXIO;
    691 		bp->b_flags |= B_ERROR;
    692 		bp->b_resid = bp->b_bcount;
    693 		biodone(bp);
    694 		return;
    695 	}
    696 	if (raidID >= numraid || !raidPtrs[raidID]) {
    697 		bp->b_error = ENODEV;
    698 		bp->b_flags |= B_ERROR;
    699 		bp->b_resid = bp->b_bcount;
    700 		biodone(bp);
    701 		return;
    702 	}
    703 	raidPtr = raidPtrs[raidID];
    704 	if (!raidPtr->valid) {
    705 		bp->b_error = ENODEV;
    706 		bp->b_flags |= B_ERROR;
    707 		bp->b_resid = bp->b_bcount;
    708 		biodone(bp);
    709 		return;
    710 	}
    711 	if (bp->b_bcount == 0) {
    712 		db1_printf(("b_bcount is zero..\n"));
    713 		biodone(bp);
    714 		return;
    715 	}
    716 
    717 	/*
    718 	 * Do bounds checking and adjust transfer.  If there's an
    719 	 * error, the bounds check will flag that for us.
    720 	 */
    721 
    722 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    723 	if (DISKPART(bp->b_dev) != RAW_PART)
    724 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    725 			db1_printf(("Bounds check failed!!:%d %d\n",
    726 				(int) bp->b_blkno, (int) wlabel));
    727 			biodone(bp);
    728 			return;
    729 		}
    730 	s = splbio();
    731 
    732 	bp->b_resid = 0;
    733 
    734 	/* stuff it onto our queue */
    735 	BUFQ_PUT(&rs->buf_queue, bp);
    736 
    737 	/* scheduled the IO to happen at the next convenient time */
    738 	wakeup(&(raidPtrs[raidID]->iodone));
    739 
    740 	splx(s);
    741 }
    742 /* ARGSUSED */
    743 int
    744 raidread(dev_t dev, struct uio *uio, int flags)
    745 {
    746 	int     unit = raidunit(dev);
    747 	struct raid_softc *rs;
    748 
    749 	if (unit >= numraid)
    750 		return (ENXIO);
    751 	rs = &raid_softc[unit];
    752 
    753 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    754 		return (ENXIO);
    755 
    756 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    757 
    758 }
    759 /* ARGSUSED */
    760 int
    761 raidwrite(dev_t dev, struct uio *uio, int flags)
    762 {
    763 	int     unit = raidunit(dev);
    764 	struct raid_softc *rs;
    765 
    766 	if (unit >= numraid)
    767 		return (ENXIO);
    768 	rs = &raid_softc[unit];
    769 
    770 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    771 		return (ENXIO);
    772 
    773 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    774 
    775 }
    776 
    777 int
    778 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
    779 {
    780 	int     unit = raidunit(dev);
    781 	int     error = 0;
    782 	int     part, pmask;
    783 	struct raid_softc *rs;
    784 	RF_Config_t *k_cfg, *u_cfg;
    785 	RF_Raid_t *raidPtr;
    786 	RF_RaidDisk_t *diskPtr;
    787 	RF_AccTotals_t *totals;
    788 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    789 	u_char *specific_buf;
    790 	int retcode = 0;
    791 	int column;
    792 	int raidid;
    793 	struct rf_recon_req *rrcopy, *rr;
    794 	RF_ComponentLabel_t *clabel;
    795 	RF_ComponentLabel_t ci_label;
    796 	RF_ComponentLabel_t **clabel_ptr;
    797 	RF_SingleComponent_t *sparePtr,*componentPtr;
    798 	RF_SingleComponent_t hot_spare;
    799 	RF_SingleComponent_t component;
    800 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    801 	int i, j, d;
    802 #ifdef __HAVE_OLD_DISKLABEL
    803 	struct disklabel newlabel;
    804 #endif
    805 
    806 	if (unit >= numraid)
    807 		return (ENXIO);
    808 	rs = &raid_softc[unit];
    809 	raidPtr = raidPtrs[unit];
    810 
    811 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    812 		(int) DISKPART(dev), (int) unit, (int) cmd));
    813 
    814 	/* Must be open for writes for these commands... */
    815 	switch (cmd) {
    816 	case DIOCSDINFO:
    817 	case DIOCWDINFO:
    818 #ifdef __HAVE_OLD_DISKLABEL
    819 	case ODIOCWDINFO:
    820 	case ODIOCSDINFO:
    821 #endif
    822 	case DIOCWLABEL:
    823 		if ((flag & FWRITE) == 0)
    824 			return (EBADF);
    825 	}
    826 
    827 	/* Must be initialized for these... */
    828 	switch (cmd) {
    829 	case DIOCGDINFO:
    830 	case DIOCSDINFO:
    831 	case DIOCWDINFO:
    832 #ifdef __HAVE_OLD_DISKLABEL
    833 	case ODIOCGDINFO:
    834 	case ODIOCWDINFO:
    835 	case ODIOCSDINFO:
    836 	case ODIOCGDEFLABEL:
    837 #endif
    838 	case DIOCGPART:
    839 	case DIOCWLABEL:
    840 	case DIOCGDEFLABEL:
    841 	case RAIDFRAME_SHUTDOWN:
    842 	case RAIDFRAME_REWRITEPARITY:
    843 	case RAIDFRAME_GET_INFO:
    844 	case RAIDFRAME_RESET_ACCTOTALS:
    845 	case RAIDFRAME_GET_ACCTOTALS:
    846 	case RAIDFRAME_KEEP_ACCTOTALS:
    847 	case RAIDFRAME_GET_SIZE:
    848 	case RAIDFRAME_FAIL_DISK:
    849 	case RAIDFRAME_COPYBACK:
    850 	case RAIDFRAME_CHECK_RECON_STATUS:
    851 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    852 	case RAIDFRAME_GET_COMPONENT_LABEL:
    853 	case RAIDFRAME_SET_COMPONENT_LABEL:
    854 	case RAIDFRAME_ADD_HOT_SPARE:
    855 	case RAIDFRAME_REMOVE_HOT_SPARE:
    856 	case RAIDFRAME_INIT_LABELS:
    857 	case RAIDFRAME_REBUILD_IN_PLACE:
    858 	case RAIDFRAME_CHECK_PARITY:
    859 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    860 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    861 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    862 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    863 	case RAIDFRAME_SET_AUTOCONFIG:
    864 	case RAIDFRAME_SET_ROOT:
    865 	case RAIDFRAME_DELETE_COMPONENT:
    866 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    867 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    868 			return (ENXIO);
    869 	}
    870 
    871 	switch (cmd) {
    872 
    873 		/* configure the system */
    874 	case RAIDFRAME_CONFIGURE:
    875 
    876 		if (raidPtr->valid) {
    877 			/* There is a valid RAID set running on this unit! */
    878 			printf("raid%d: Device already configured!\n",unit);
    879 			return(EINVAL);
    880 		}
    881 
    882 		/* copy-in the configuration information */
    883 		/* data points to a pointer to the configuration structure */
    884 
    885 		u_cfg = *((RF_Config_t **) data);
    886 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    887 		if (k_cfg == NULL) {
    888 			return (ENOMEM);
    889 		}
    890 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    891 		if (retcode) {
    892 			RF_Free(k_cfg, sizeof(RF_Config_t));
    893 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    894 				retcode));
    895 			return (retcode);
    896 		}
    897 		/* allocate a buffer for the layout-specific data, and copy it
    898 		 * in */
    899 		if (k_cfg->layoutSpecificSize) {
    900 			if (k_cfg->layoutSpecificSize > 10000) {
    901 				/* sanity check */
    902 				RF_Free(k_cfg, sizeof(RF_Config_t));
    903 				return (EINVAL);
    904 			}
    905 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    906 			    (u_char *));
    907 			if (specific_buf == NULL) {
    908 				RF_Free(k_cfg, sizeof(RF_Config_t));
    909 				return (ENOMEM);
    910 			}
    911 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    912 			    k_cfg->layoutSpecificSize);
    913 			if (retcode) {
    914 				RF_Free(k_cfg, sizeof(RF_Config_t));
    915 				RF_Free(specific_buf,
    916 					k_cfg->layoutSpecificSize);
    917 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    918 					retcode));
    919 				return (retcode);
    920 			}
    921 		} else
    922 			specific_buf = NULL;
    923 		k_cfg->layoutSpecific = specific_buf;
    924 
    925 		/* should do some kind of sanity check on the configuration.
    926 		 * Store the sum of all the bytes in the last byte? */
    927 
    928 		/* configure the system */
    929 
    930 		/*
    931 		 * Clear the entire RAID descriptor, just to make sure
    932 		 *  there is no stale data left in the case of a
    933 		 *  reconfiguration
    934 		 */
    935 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    936 		raidPtr->raidid = unit;
    937 
    938 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    939 
    940 		if (retcode == 0) {
    941 
    942 			/* allow this many simultaneous IO's to
    943 			   this RAID device */
    944 			raidPtr->openings = RAIDOUTSTANDING;
    945 
    946 			raidinit(raidPtr);
    947 			rf_markalldirty(raidPtr);
    948 		}
    949 		/* free the buffers.  No return code here. */
    950 		if (k_cfg->layoutSpecificSize) {
    951 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    952 		}
    953 		RF_Free(k_cfg, sizeof(RF_Config_t));
    954 
    955 		return (retcode);
    956 
    957 		/* shutdown the system */
    958 	case RAIDFRAME_SHUTDOWN:
    959 
    960 		if ((error = raidlock(rs)) != 0)
    961 			return (error);
    962 
    963 		/*
    964 		 * If somebody has a partition mounted, we shouldn't
    965 		 * shutdown.
    966 		 */
    967 
    968 		part = DISKPART(dev);
    969 		pmask = (1 << part);
    970 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    971 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    972 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    973 			raidunlock(rs);
    974 			return (EBUSY);
    975 		}
    976 
    977 		retcode = rf_Shutdown(raidPtr);
    978 
    979 		/* It's no longer initialized... */
    980 		rs->sc_flags &= ~RAIDF_INITED;
    981 
    982 		/* Detach the disk. */
    983 		disk_detach(&rs->sc_dkdev);
    984 
    985 		raidunlock(rs);
    986 
    987 		return (retcode);
    988 	case RAIDFRAME_GET_COMPONENT_LABEL:
    989 		clabel_ptr = (RF_ComponentLabel_t **) data;
    990 		/* need to read the component label for the disk indicated
    991 		   by row,column in clabel */
    992 
    993 		/* For practice, let's get it directly fromdisk, rather
    994 		   than from the in-core copy */
    995 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    996 			   (RF_ComponentLabel_t *));
    997 		if (clabel == NULL)
    998 			return (ENOMEM);
    999 
   1000 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1001 
   1002 		retcode = copyin( *clabel_ptr, clabel,
   1003 				  sizeof(RF_ComponentLabel_t));
   1004 
   1005 		if (retcode) {
   1006 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1007 			return(retcode);
   1008 		}
   1009 
   1010 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1011 
   1012 		column = clabel->column;
   1013 
   1014 		if ((column < 0) || (column >= raidPtr->numCol +
   1015 				     raidPtr->numSpare)) {
   1016 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1017 			return(EINVAL);
   1018 		}
   1019 
   1020 		raidread_component_label(raidPtr->Disks[column].dev,
   1021 				raidPtr->raid_cinfo[column].ci_vp,
   1022 				clabel );
   1023 
   1024 		retcode = copyout(clabel, *clabel_ptr,
   1025 				  sizeof(RF_ComponentLabel_t));
   1026 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1027 		return (retcode);
   1028 
   1029 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1030 		clabel = (RF_ComponentLabel_t *) data;
   1031 
   1032 		/* XXX check the label for valid stuff... */
   1033 		/* Note that some things *should not* get modified --
   1034 		   the user should be re-initing the labels instead of
   1035 		   trying to patch things.
   1036 		   */
   1037 
   1038 		raidid = raidPtr->raidid;
   1039 #if DEBUG
   1040 		printf("raid%d: Got component label:\n", raidid);
   1041 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1042 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1043 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1044 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1045 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1046 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1047 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1048 #endif
   1049 		clabel->row = 0;
   1050 		column = clabel->column;
   1051 
   1052 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1053 			return(EINVAL);
   1054 		}
   1055 
   1056 		/* XXX this isn't allowed to do anything for now :-) */
   1057 
   1058 		/* XXX and before it is, we need to fill in the rest
   1059 		   of the fields!?!?!?! */
   1060 #if 0
   1061 		raidwrite_component_label(
   1062                             raidPtr->Disks[column].dev,
   1063 			    raidPtr->raid_cinfo[column].ci_vp,
   1064 			    clabel );
   1065 #endif
   1066 		return (0);
   1067 
   1068 	case RAIDFRAME_INIT_LABELS:
   1069 		clabel = (RF_ComponentLabel_t *) data;
   1070 		/*
   1071 		   we only want the serial number from
   1072 		   the above.  We get all the rest of the information
   1073 		   from the config that was used to create this RAID
   1074 		   set.
   1075 		   */
   1076 
   1077 		raidPtr->serial_number = clabel->serial_number;
   1078 
   1079 		raid_init_component_label(raidPtr, &ci_label);
   1080 		ci_label.serial_number = clabel->serial_number;
   1081 		ci_label.row = 0; /* we dont' pretend to support more */
   1082 
   1083 		for(column=0;column<raidPtr->numCol;column++) {
   1084 			diskPtr = &raidPtr->Disks[column];
   1085 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1086 				ci_label.partitionSize = diskPtr->partitionSize;
   1087 				ci_label.column = column;
   1088 				raidwrite_component_label(
   1089 							  raidPtr->Disks[column].dev,
   1090 							  raidPtr->raid_cinfo[column].ci_vp,
   1091 							  &ci_label );
   1092 			}
   1093 		}
   1094 
   1095 		return (retcode);
   1096 	case RAIDFRAME_SET_AUTOCONFIG:
   1097 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1098 		printf("raid%d: New autoconfig value is: %d\n",
   1099 		       raidPtr->raidid, d);
   1100 		*(int *) data = d;
   1101 		return (retcode);
   1102 
   1103 	case RAIDFRAME_SET_ROOT:
   1104 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1105 		printf("raid%d: New rootpartition value is: %d\n",
   1106 		       raidPtr->raidid, d);
   1107 		*(int *) data = d;
   1108 		return (retcode);
   1109 
   1110 		/* initialize all parity */
   1111 	case RAIDFRAME_REWRITEPARITY:
   1112 
   1113 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1114 			/* Parity for RAID 0 is trivially correct */
   1115 			raidPtr->parity_good = RF_RAID_CLEAN;
   1116 			return(0);
   1117 		}
   1118 
   1119 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1120 			/* Re-write is already in progress! */
   1121 			return(EINVAL);
   1122 		}
   1123 
   1124 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1125 					   rf_RewriteParityThread,
   1126 					   raidPtr,"raid_parity");
   1127 		return (retcode);
   1128 
   1129 
   1130 	case RAIDFRAME_ADD_HOT_SPARE:
   1131 		sparePtr = (RF_SingleComponent_t *) data;
   1132 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1133 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1134 		return(retcode);
   1135 
   1136 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1137 		return(retcode);
   1138 
   1139 	case RAIDFRAME_DELETE_COMPONENT:
   1140 		componentPtr = (RF_SingleComponent_t *)data;
   1141 		memcpy( &component, componentPtr,
   1142 			sizeof(RF_SingleComponent_t));
   1143 		retcode = rf_delete_component(raidPtr, &component);
   1144 		return(retcode);
   1145 
   1146 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1147 		componentPtr = (RF_SingleComponent_t *)data;
   1148 		memcpy( &component, componentPtr,
   1149 			sizeof(RF_SingleComponent_t));
   1150 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1151 		return(retcode);
   1152 
   1153 	case RAIDFRAME_REBUILD_IN_PLACE:
   1154 
   1155 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1156 			/* Can't do this on a RAID 0!! */
   1157 			return(EINVAL);
   1158 		}
   1159 
   1160 		if (raidPtr->recon_in_progress == 1) {
   1161 			/* a reconstruct is already in progress! */
   1162 			return(EINVAL);
   1163 		}
   1164 
   1165 		componentPtr = (RF_SingleComponent_t *) data;
   1166 		memcpy( &component, componentPtr,
   1167 			sizeof(RF_SingleComponent_t));
   1168 		component.row = 0; /* we don't support any more */
   1169 		column = component.column;
   1170 
   1171 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1172 			return(EINVAL);
   1173 		}
   1174 
   1175 		RF_LOCK_MUTEX(raidPtr->mutex);
   1176 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1177 		    (raidPtr->numFailures > 0)) {
   1178 			/* XXX 0 above shouldn't be constant!!! */
   1179 			/* some component other than this has failed.
   1180 			   Let's not make things worse than they already
   1181 			   are... */
   1182 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1183 			       raidPtr->raidid);
   1184 			printf("raid%d:     Col: %d   Too many failures.\n",
   1185 			       raidPtr->raidid, column);
   1186 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1187 			return (EINVAL);
   1188 		}
   1189 		if (raidPtr->Disks[column].status ==
   1190 		    rf_ds_reconstructing) {
   1191 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1192 			       raidPtr->raidid);
   1193 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1194 
   1195 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1196 			return (EINVAL);
   1197 		}
   1198 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1199 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1200 			return (EINVAL);
   1201 		}
   1202 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1203 
   1204 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1205 		if (rrcopy == NULL)
   1206 			return(ENOMEM);
   1207 
   1208 		rrcopy->raidPtr = (void *) raidPtr;
   1209 		rrcopy->col = column;
   1210 
   1211 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1212 					   rf_ReconstructInPlaceThread,
   1213 					   rrcopy,"raid_reconip");
   1214 		return(retcode);
   1215 
   1216 	case RAIDFRAME_GET_INFO:
   1217 		if (!raidPtr->valid)
   1218 			return (ENODEV);
   1219 		ucfgp = (RF_DeviceConfig_t **) data;
   1220 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1221 			  (RF_DeviceConfig_t *));
   1222 		if (d_cfg == NULL)
   1223 			return (ENOMEM);
   1224 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1225 		d_cfg->rows = 1; /* there is only 1 row now */
   1226 		d_cfg->cols = raidPtr->numCol;
   1227 		d_cfg->ndevs = raidPtr->numCol;
   1228 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1229 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1230 			return (ENOMEM);
   1231 		}
   1232 		d_cfg->nspares = raidPtr->numSpare;
   1233 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1234 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1235 			return (ENOMEM);
   1236 		}
   1237 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1238 		d = 0;
   1239 		for (j = 0; j < d_cfg->cols; j++) {
   1240 			d_cfg->devs[d] = raidPtr->Disks[j];
   1241 			d++;
   1242 		}
   1243 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1244 			d_cfg->spares[i] = raidPtr->Disks[j];
   1245 		}
   1246 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1247 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1248 
   1249 		return (retcode);
   1250 
   1251 	case RAIDFRAME_CHECK_PARITY:
   1252 		*(int *) data = raidPtr->parity_good;
   1253 		return (0);
   1254 
   1255 	case RAIDFRAME_RESET_ACCTOTALS:
   1256 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1257 		return (0);
   1258 
   1259 	case RAIDFRAME_GET_ACCTOTALS:
   1260 		totals = (RF_AccTotals_t *) data;
   1261 		*totals = raidPtr->acc_totals;
   1262 		return (0);
   1263 
   1264 	case RAIDFRAME_KEEP_ACCTOTALS:
   1265 		raidPtr->keep_acc_totals = *(int *)data;
   1266 		return (0);
   1267 
   1268 	case RAIDFRAME_GET_SIZE:
   1269 		*(int *) data = raidPtr->totalSectors;
   1270 		return (0);
   1271 
   1272 		/* fail a disk & optionally start reconstruction */
   1273 	case RAIDFRAME_FAIL_DISK:
   1274 
   1275 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1276 			/* Can't do this on a RAID 0!! */
   1277 			return(EINVAL);
   1278 		}
   1279 
   1280 		rr = (struct rf_recon_req *) data;
   1281 		rr->row = 0;
   1282 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1283 			return (EINVAL);
   1284 
   1285 
   1286 		RF_LOCK_MUTEX(raidPtr->mutex);
   1287 		if (raidPtr->status == rf_rs_reconstructing) {
   1288 			/* you can't fail a disk while we're reconstructing! */
   1289 			/* XXX wrong for RAID6 */
   1290 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1291 			return (EINVAL);
   1292 		}
   1293 		if ((raidPtr->Disks[rr->col].status ==
   1294 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1295 			/* some other component has failed.  Let's not make
   1296 			   things worse. XXX wrong for RAID6 */
   1297 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1298 			return (EINVAL);
   1299 		}
   1300 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1301 			/* Can't fail a spared disk! */
   1302 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1303 			return (EINVAL);
   1304 		}
   1305 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1306 
   1307 		/* make a copy of the recon request so that we don't rely on
   1308 		 * the user's buffer */
   1309 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1310 		if (rrcopy == NULL)
   1311 			return(ENOMEM);
   1312 		memcpy(rrcopy, rr, sizeof(*rr));
   1313 		rrcopy->raidPtr = (void *) raidPtr;
   1314 
   1315 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1316 					   rf_ReconThread,
   1317 					   rrcopy,"raid_recon");
   1318 		return (0);
   1319 
   1320 		/* invoke a copyback operation after recon on whatever disk
   1321 		 * needs it, if any */
   1322 	case RAIDFRAME_COPYBACK:
   1323 
   1324 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1325 			/* This makes no sense on a RAID 0!! */
   1326 			return(EINVAL);
   1327 		}
   1328 
   1329 		if (raidPtr->copyback_in_progress == 1) {
   1330 			/* Copyback is already in progress! */
   1331 			return(EINVAL);
   1332 		}
   1333 
   1334 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1335 					   rf_CopybackThread,
   1336 					   raidPtr,"raid_copyback");
   1337 		return (retcode);
   1338 
   1339 		/* return the percentage completion of reconstruction */
   1340 	case RAIDFRAME_CHECK_RECON_STATUS:
   1341 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1342 			/* This makes no sense on a RAID 0, so tell the
   1343 			   user it's done. */
   1344 			*(int *) data = 100;
   1345 			return(0);
   1346 		}
   1347 		if (raidPtr->status != rf_rs_reconstructing)
   1348 			*(int *) data = 100;
   1349 		else {
   1350 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1351 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1352 			} else {
   1353 				*(int *) data = 0;
   1354 			}
   1355 		}
   1356 		return (0);
   1357 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1358 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1359 		if (raidPtr->status != rf_rs_reconstructing) {
   1360 			progressInfo.remaining = 0;
   1361 			progressInfo.completed = 100;
   1362 			progressInfo.total = 100;
   1363 		} else {
   1364 			progressInfo.total =
   1365 				raidPtr->reconControl->numRUsTotal;
   1366 			progressInfo.completed =
   1367 				raidPtr->reconControl->numRUsComplete;
   1368 			progressInfo.remaining = progressInfo.total -
   1369 				progressInfo.completed;
   1370 		}
   1371 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1372 				  sizeof(RF_ProgressInfo_t));
   1373 		return (retcode);
   1374 
   1375 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1376 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1377 			/* This makes no sense on a RAID 0, so tell the
   1378 			   user it's done. */
   1379 			*(int *) data = 100;
   1380 			return(0);
   1381 		}
   1382 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1383 			*(int *) data = 100 *
   1384 				raidPtr->parity_rewrite_stripes_done /
   1385 				raidPtr->Layout.numStripe;
   1386 		} else {
   1387 			*(int *) data = 100;
   1388 		}
   1389 		return (0);
   1390 
   1391 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1392 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1393 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1394 			progressInfo.total = raidPtr->Layout.numStripe;
   1395 			progressInfo.completed =
   1396 				raidPtr->parity_rewrite_stripes_done;
   1397 			progressInfo.remaining = progressInfo.total -
   1398 				progressInfo.completed;
   1399 		} else {
   1400 			progressInfo.remaining = 0;
   1401 			progressInfo.completed = 100;
   1402 			progressInfo.total = 100;
   1403 		}
   1404 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1405 				  sizeof(RF_ProgressInfo_t));
   1406 		return (retcode);
   1407 
   1408 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1409 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1410 			/* This makes no sense on a RAID 0 */
   1411 			*(int *) data = 100;
   1412 			return(0);
   1413 		}
   1414 		if (raidPtr->copyback_in_progress == 1) {
   1415 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1416 				raidPtr->Layout.numStripe;
   1417 		} else {
   1418 			*(int *) data = 100;
   1419 		}
   1420 		return (0);
   1421 
   1422 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1423 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1424 		if (raidPtr->copyback_in_progress == 1) {
   1425 			progressInfo.total = raidPtr->Layout.numStripe;
   1426 			progressInfo.completed =
   1427 				raidPtr->copyback_stripes_done;
   1428 			progressInfo.remaining = progressInfo.total -
   1429 				progressInfo.completed;
   1430 		} else {
   1431 			progressInfo.remaining = 0;
   1432 			progressInfo.completed = 100;
   1433 			progressInfo.total = 100;
   1434 		}
   1435 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1436 				  sizeof(RF_ProgressInfo_t));
   1437 		return (retcode);
   1438 
   1439 		/* the sparetable daemon calls this to wait for the kernel to
   1440 		 * need a spare table. this ioctl does not return until a
   1441 		 * spare table is needed. XXX -- calling mpsleep here in the
   1442 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1443 		 * -- I should either compute the spare table in the kernel,
   1444 		 * or have a different -- XXX XXX -- interface (a different
   1445 		 * character device) for delivering the table     -- XXX */
   1446 #if 0
   1447 	case RAIDFRAME_SPARET_WAIT:
   1448 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1449 		while (!rf_sparet_wait_queue)
   1450 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1451 		waitreq = rf_sparet_wait_queue;
   1452 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1453 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1454 
   1455 		/* structure assignment */
   1456 		*((RF_SparetWait_t *) data) = *waitreq;
   1457 
   1458 		RF_Free(waitreq, sizeof(*waitreq));
   1459 		return (0);
   1460 
   1461 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1462 		 * code in it that will cause the dameon to exit */
   1463 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1464 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1465 		waitreq->fcol = -1;
   1466 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1467 		waitreq->next = rf_sparet_wait_queue;
   1468 		rf_sparet_wait_queue = waitreq;
   1469 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1470 		wakeup(&rf_sparet_wait_queue);
   1471 		return (0);
   1472 
   1473 		/* used by the spare table daemon to deliver a spare table
   1474 		 * into the kernel */
   1475 	case RAIDFRAME_SEND_SPARET:
   1476 
   1477 		/* install the spare table */
   1478 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1479 
   1480 		/* respond to the requestor.  the return status of the spare
   1481 		 * table installation is passed in the "fcol" field */
   1482 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1483 		waitreq->fcol = retcode;
   1484 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1485 		waitreq->next = rf_sparet_resp_queue;
   1486 		rf_sparet_resp_queue = waitreq;
   1487 		wakeup(&rf_sparet_resp_queue);
   1488 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1489 
   1490 		return (retcode);
   1491 #endif
   1492 
   1493 	default:
   1494 		break; /* fall through to the os-specific code below */
   1495 
   1496 	}
   1497 
   1498 	if (!raidPtr->valid)
   1499 		return (EINVAL);
   1500 
   1501 	/*
   1502 	 * Add support for "regular" device ioctls here.
   1503 	 */
   1504 
   1505 	switch (cmd) {
   1506 	case DIOCGDINFO:
   1507 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1508 		break;
   1509 #ifdef __HAVE_OLD_DISKLABEL
   1510 	case ODIOCGDINFO:
   1511 		newlabel = *(rs->sc_dkdev.dk_label);
   1512 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1513 			return ENOTTY;
   1514 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1515 		break;
   1516 #endif
   1517 
   1518 	case DIOCGPART:
   1519 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1520 		((struct partinfo *) data)->part =
   1521 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1522 		break;
   1523 
   1524 	case DIOCWDINFO:
   1525 	case DIOCSDINFO:
   1526 #ifdef __HAVE_OLD_DISKLABEL
   1527 	case ODIOCWDINFO:
   1528 	case ODIOCSDINFO:
   1529 #endif
   1530 	{
   1531 		struct disklabel *lp;
   1532 #ifdef __HAVE_OLD_DISKLABEL
   1533 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1534 			memset(&newlabel, 0, sizeof newlabel);
   1535 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1536 			lp = &newlabel;
   1537 		} else
   1538 #endif
   1539 		lp = (struct disklabel *)data;
   1540 
   1541 		if ((error = raidlock(rs)) != 0)
   1542 			return (error);
   1543 
   1544 		rs->sc_flags |= RAIDF_LABELLING;
   1545 
   1546 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1547 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1548 		if (error == 0) {
   1549 			if (cmd == DIOCWDINFO
   1550 #ifdef __HAVE_OLD_DISKLABEL
   1551 			    || cmd == ODIOCWDINFO
   1552 #endif
   1553 			   )
   1554 				error = writedisklabel(RAIDLABELDEV(dev),
   1555 				    raidstrategy, rs->sc_dkdev.dk_label,
   1556 				    rs->sc_dkdev.dk_cpulabel);
   1557 		}
   1558 		rs->sc_flags &= ~RAIDF_LABELLING;
   1559 
   1560 		raidunlock(rs);
   1561 
   1562 		if (error)
   1563 			return (error);
   1564 		break;
   1565 	}
   1566 
   1567 	case DIOCWLABEL:
   1568 		if (*(int *) data != 0)
   1569 			rs->sc_flags |= RAIDF_WLABEL;
   1570 		else
   1571 			rs->sc_flags &= ~RAIDF_WLABEL;
   1572 		break;
   1573 
   1574 	case DIOCGDEFLABEL:
   1575 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1576 		break;
   1577 
   1578 #ifdef __HAVE_OLD_DISKLABEL
   1579 	case ODIOCGDEFLABEL:
   1580 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1581 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1582 			return ENOTTY;
   1583 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1584 		break;
   1585 #endif
   1586 
   1587 	default:
   1588 		retcode = ENOTTY;
   1589 	}
   1590 	return (retcode);
   1591 
   1592 }
   1593 
   1594 
   1595 /* raidinit -- complete the rest of the initialization for the
   1596    RAIDframe device.  */
   1597 
   1598 
   1599 static void
   1600 raidinit(RF_Raid_t *raidPtr)
   1601 {
   1602 	struct raid_softc *rs;
   1603 	int     unit;
   1604 
   1605 	unit = raidPtr->raidid;
   1606 
   1607 	rs = &raid_softc[unit];
   1608 
   1609 	/* XXX should check return code first... */
   1610 	rs->sc_flags |= RAIDF_INITED;
   1611 
   1612 	/* XXX doesn't check bounds. */
   1613 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1614 
   1615 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1616 
   1617 	/* disk_attach actually creates space for the CPU disklabel, among
   1618 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1619 	 * with disklabels. */
   1620 
   1621 	disk_attach(&rs->sc_dkdev);
   1622 
   1623 	/* XXX There may be a weird interaction here between this, and
   1624 	 * protectedSectors, as used in RAIDframe.  */
   1625 
   1626 	rs->sc_size = raidPtr->totalSectors;
   1627 }
   1628 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1629 /* wake up the daemon & tell it to get us a spare table
   1630  * XXX
   1631  * the entries in the queues should be tagged with the raidPtr
   1632  * so that in the extremely rare case that two recons happen at once,
   1633  * we know for which device were requesting a spare table
   1634  * XXX
   1635  *
   1636  * XXX This code is not currently used. GO
   1637  */
   1638 int
   1639 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1640 {
   1641 	int     retcode;
   1642 
   1643 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1644 	req->next = rf_sparet_wait_queue;
   1645 	rf_sparet_wait_queue = req;
   1646 	wakeup(&rf_sparet_wait_queue);
   1647 
   1648 	/* mpsleep unlocks the mutex */
   1649 	while (!rf_sparet_resp_queue) {
   1650 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1651 		    "raidframe getsparetable", 0);
   1652 	}
   1653 	req = rf_sparet_resp_queue;
   1654 	rf_sparet_resp_queue = req->next;
   1655 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1656 
   1657 	retcode = req->fcol;
   1658 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1659 					 * alloc'd */
   1660 	return (retcode);
   1661 }
   1662 #endif
   1663 
   1664 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1665  * bp & passes it down.
   1666  * any calls originating in the kernel must use non-blocking I/O
   1667  * do some extra sanity checking to return "appropriate" error values for
   1668  * certain conditions (to make some standard utilities work)
   1669  *
   1670  * Formerly known as: rf_DoAccessKernel
   1671  */
   1672 void
   1673 raidstart(RF_Raid_t *raidPtr)
   1674 {
   1675 	RF_SectorCount_t num_blocks, pb, sum;
   1676 	RF_RaidAddr_t raid_addr;
   1677 	struct partition *pp;
   1678 	daddr_t blocknum;
   1679 	int     unit;
   1680 	struct raid_softc *rs;
   1681 	int     do_async;
   1682 	struct buf *bp;
   1683 	int rc;
   1684 
   1685 	unit = raidPtr->raidid;
   1686 	rs = &raid_softc[unit];
   1687 
   1688 	/* quick check to see if anything has died recently */
   1689 	RF_LOCK_MUTEX(raidPtr->mutex);
   1690 	if (raidPtr->numNewFailures > 0) {
   1691 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1692 		rf_update_component_labels(raidPtr,
   1693 					   RF_NORMAL_COMPONENT_UPDATE);
   1694 		RF_LOCK_MUTEX(raidPtr->mutex);
   1695 		raidPtr->numNewFailures--;
   1696 	}
   1697 
   1698 	/* Check to see if we're at the limit... */
   1699 	while (raidPtr->openings > 0) {
   1700 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1701 
   1702 		/* get the next item, if any, from the queue */
   1703 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1704 			/* nothing more to do */
   1705 			return;
   1706 		}
   1707 
   1708 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1709 		 * partition.. Need to make it absolute to the underlying
   1710 		 * device.. */
   1711 
   1712 		blocknum = bp->b_blkno;
   1713 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1714 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1715 			blocknum += pp->p_offset;
   1716 		}
   1717 
   1718 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1719 			    (int) blocknum));
   1720 
   1721 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1722 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1723 
   1724 		/* *THIS* is where we adjust what block we're going to...
   1725 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1726 		raid_addr = blocknum;
   1727 
   1728 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1729 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1730 		sum = raid_addr + num_blocks + pb;
   1731 		if (1 || rf_debugKernelAccess) {
   1732 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1733 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1734 				    (int) pb, (int) bp->b_resid));
   1735 		}
   1736 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1737 		    || (sum < num_blocks) || (sum < pb)) {
   1738 			bp->b_error = ENOSPC;
   1739 			bp->b_flags |= B_ERROR;
   1740 			bp->b_resid = bp->b_bcount;
   1741 			biodone(bp);
   1742 			RF_LOCK_MUTEX(raidPtr->mutex);
   1743 			continue;
   1744 		}
   1745 		/*
   1746 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1747 		 */
   1748 
   1749 		if (bp->b_bcount & raidPtr->sectorMask) {
   1750 			bp->b_error = EINVAL;
   1751 			bp->b_flags |= B_ERROR;
   1752 			bp->b_resid = bp->b_bcount;
   1753 			biodone(bp);
   1754 			RF_LOCK_MUTEX(raidPtr->mutex);
   1755 			continue;
   1756 
   1757 		}
   1758 		db1_printf(("Calling DoAccess..\n"));
   1759 
   1760 
   1761 		RF_LOCK_MUTEX(raidPtr->mutex);
   1762 		raidPtr->openings--;
   1763 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1764 
   1765 		/*
   1766 		 * Everything is async.
   1767 		 */
   1768 		do_async = 1;
   1769 
   1770 		disk_busy(&rs->sc_dkdev);
   1771 
   1772 		/* XXX we're still at splbio() here... do we *really*
   1773 		   need to be? */
   1774 
   1775 		/* don't ever condition on bp->b_flags & B_WRITE.
   1776 		 * always condition on B_READ instead */
   1777 
   1778 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1779 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1780 				 do_async, raid_addr, num_blocks,
   1781 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1782 
   1783 		if (rc) {
   1784 			bp->b_error = rc;
   1785 			bp->b_flags |= B_ERROR;
   1786 			bp->b_resid = bp->b_bcount;
   1787 			biodone(bp);
   1788 			/* continue loop */
   1789 		}
   1790 
   1791 		RF_LOCK_MUTEX(raidPtr->mutex);
   1792 	}
   1793 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1794 }
   1795 
   1796 
   1797 
   1798 
   1799 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1800 
   1801 int
   1802 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1803 {
   1804 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1805 	struct buf *bp;
   1806 	struct raidbuf *raidbp = NULL;
   1807 
   1808 	req->queue = queue;
   1809 
   1810 #if DIAGNOSTIC
   1811 	if (queue->raidPtr->raidid >= numraid) {
   1812 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1813 		    numraid);
   1814 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1815 	}
   1816 #endif
   1817 
   1818 	bp = req->bp;
   1819 #if 1
   1820 	/* XXX when there is a physical disk failure, someone is passing us a
   1821 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1822 	 * without taking a performance hit... (not sure where the real bug
   1823 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1824 
   1825 	if (bp->b_flags & B_ERROR) {
   1826 		bp->b_flags &= ~B_ERROR;
   1827 	}
   1828 	if (bp->b_error != 0) {
   1829 		bp->b_error = 0;
   1830 	}
   1831 #endif
   1832 	raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
   1833 	if (raidbp == NULL) {
   1834 		bp->b_flags |= B_ERROR;
   1835 		bp->b_error = ENOMEM;
   1836 		return (ENOMEM);
   1837 	}
   1838 	BUF_INIT(&raidbp->rf_buf);
   1839 
   1840 	/*
   1841 	 * context for raidiodone
   1842 	 */
   1843 	raidbp->rf_obp = bp;
   1844 	raidbp->req = req;
   1845 
   1846 	BIO_COPYPRIO(&raidbp->rf_buf, bp);
   1847 
   1848 	switch (req->type) {
   1849 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1850 		/* XXX need to do something extra here.. */
   1851 		/* I'm leaving this in, as I've never actually seen it used,
   1852 		 * and I'd like folks to report it... GO */
   1853 		printf(("WAKEUP CALLED\n"));
   1854 		queue->numOutstanding++;
   1855 
   1856 		/* XXX need to glue the original buffer into this??  */
   1857 
   1858 		KernelWakeupFunc(&raidbp->rf_buf);
   1859 		break;
   1860 
   1861 	case RF_IO_TYPE_READ:
   1862 	case RF_IO_TYPE_WRITE:
   1863 #if RF_ACC_TRACE > 0
   1864 		if (req->tracerec) {
   1865 			RF_ETIMER_START(req->tracerec->timer);
   1866 		}
   1867 #endif
   1868 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1869 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1870 		    req->sectorOffset, req->numSector,
   1871 		    req->buf, KernelWakeupFunc, (void *) req,
   1872 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1873 
   1874 		if (rf_debugKernelAccess) {
   1875 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1876 				(long) bp->b_blkno));
   1877 		}
   1878 		queue->numOutstanding++;
   1879 		queue->last_deq_sector = req->sectorOffset;
   1880 		/* acc wouldn't have been let in if there were any pending
   1881 		 * reqs at any other priority */
   1882 		queue->curPriority = req->priority;
   1883 
   1884 		db1_printf(("Going for %c to unit %d col %d\n",
   1885 			    req->type, queue->raidPtr->raidid,
   1886 			    queue->col));
   1887 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1888 			(int) req->sectorOffset, (int) req->numSector,
   1889 			(int) (req->numSector <<
   1890 			    queue->raidPtr->logBytesPerSector),
   1891 			(int) queue->raidPtr->logBytesPerSector));
   1892 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1893 			raidbp->rf_buf.b_vp->v_numoutput++;
   1894 		}
   1895 		VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
   1896 
   1897 		break;
   1898 
   1899 	default:
   1900 		panic("bad req->type in rf_DispatchKernelIO");
   1901 	}
   1902 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1903 
   1904 	return (0);
   1905 }
   1906 /* this is the callback function associated with a I/O invoked from
   1907    kernel code.
   1908  */
   1909 static void
   1910 KernelWakeupFunc(struct buf *vbp)
   1911 {
   1912 	RF_DiskQueueData_t *req = NULL;
   1913 	RF_DiskQueue_t *queue;
   1914 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1915 	struct buf *bp;
   1916 	int s;
   1917 
   1918 	s = splbio();
   1919 	db1_printf(("recovering the request queue:\n"));
   1920 	req = raidbp->req;
   1921 
   1922 	bp = raidbp->rf_obp;
   1923 
   1924 	queue = (RF_DiskQueue_t *) req->queue;
   1925 
   1926 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1927 		bp->b_flags |= B_ERROR;
   1928 		bp->b_error = raidbp->rf_buf.b_error ?
   1929 		    raidbp->rf_buf.b_error : EIO;
   1930 	}
   1931 
   1932 	/* XXX methinks this could be wrong... */
   1933 #if 1
   1934 	bp->b_resid = raidbp->rf_buf.b_resid;
   1935 #endif
   1936 #if RF_ACC_TRACE > 0
   1937 	if (req->tracerec) {
   1938 		RF_ETIMER_STOP(req->tracerec->timer);
   1939 		RF_ETIMER_EVAL(req->tracerec->timer);
   1940 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1941 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1942 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1943 		req->tracerec->num_phys_ios++;
   1944 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1945 	}
   1946 #endif
   1947 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1948 
   1949 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1950 	 * ballistic, and mark the component as hosed... */
   1951 
   1952 	if (bp->b_flags & B_ERROR) {
   1953 		/* Mark the disk as dead */
   1954 		/* but only mark it once... */
   1955 		/* and only if it wouldn't leave this RAID set
   1956 		   completely broken */
   1957 		if (((queue->raidPtr->Disks[queue->col].status ==
   1958 		      rf_ds_optimal) ||
   1959 		     (queue->raidPtr->Disks[queue->col].status ==
   1960 		      rf_ds_used_spare)) &&
   1961 		     (queue->raidPtr->numFailures <
   1962 		         queue->raidPtr->Layout.map->faultsTolerated)) {
   1963 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1964 			       queue->raidPtr->raidid,
   1965 			       queue->raidPtr->Disks[queue->col].devname);
   1966 			queue->raidPtr->Disks[queue->col].status =
   1967 			    rf_ds_failed;
   1968 			queue->raidPtr->status = rf_rs_degraded;
   1969 			queue->raidPtr->numFailures++;
   1970 			queue->raidPtr->numNewFailures++;
   1971 		} else {	/* Disk is already dead... */
   1972 			/* printf("Disk already marked as dead!\n"); */
   1973 		}
   1974 
   1975 	}
   1976 
   1977 	pool_put(&rf_pools.cbuf, raidbp);
   1978 
   1979 	/* Fill in the error value */
   1980 
   1981 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1982 
   1983 	simple_lock(&queue->raidPtr->iodone_lock);
   1984 
   1985 	/* Drop this one on the "finished" queue... */
   1986 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1987 
   1988 	/* Let the raidio thread know there is work to be done. */
   1989 	wakeup(&(queue->raidPtr->iodone));
   1990 
   1991 	simple_unlock(&queue->raidPtr->iodone_lock);
   1992 
   1993 	splx(s);
   1994 }
   1995 
   1996 
   1997 
   1998 /*
   1999  * initialize a buf structure for doing an I/O in the kernel.
   2000  */
   2001 static void
   2002 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2003        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t bf,
   2004        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2005        struct proc *b_proc)
   2006 {
   2007 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2008 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2009 	bp->b_bcount = numSect << logBytesPerSector;
   2010 	bp->b_bufsize = bp->b_bcount;
   2011 	bp->b_error = 0;
   2012 	bp->b_dev = dev;
   2013 	bp->b_data = bf;
   2014 	bp->b_blkno = startSect;
   2015 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2016 	if (bp->b_bcount == 0) {
   2017 		panic("bp->b_bcount is zero in InitBP!!");
   2018 	}
   2019 	bp->b_proc = b_proc;
   2020 	bp->b_iodone = cbFunc;
   2021 	bp->b_vp = b_vp;
   2022 
   2023 }
   2024 
   2025 static void
   2026 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2027 		    struct disklabel *lp)
   2028 {
   2029 	memset(lp, 0, sizeof(*lp));
   2030 
   2031 	/* fabricate a label... */
   2032 	lp->d_secperunit = raidPtr->totalSectors;
   2033 	lp->d_secsize = raidPtr->bytesPerSector;
   2034 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2035 	lp->d_ntracks = 4 * raidPtr->numCol;
   2036 	lp->d_ncylinders = raidPtr->totalSectors /
   2037 		(lp->d_nsectors * lp->d_ntracks);
   2038 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2039 
   2040 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2041 	lp->d_type = DTYPE_RAID;
   2042 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2043 	lp->d_rpm = 3600;
   2044 	lp->d_interleave = 1;
   2045 	lp->d_flags = 0;
   2046 
   2047 	lp->d_partitions[RAW_PART].p_offset = 0;
   2048 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2049 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2050 	lp->d_npartitions = RAW_PART + 1;
   2051 
   2052 	lp->d_magic = DISKMAGIC;
   2053 	lp->d_magic2 = DISKMAGIC;
   2054 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2055 
   2056 }
   2057 /*
   2058  * Read the disklabel from the raid device.  If one is not present, fake one
   2059  * up.
   2060  */
   2061 static void
   2062 raidgetdisklabel(dev_t dev)
   2063 {
   2064 	int     unit = raidunit(dev);
   2065 	struct raid_softc *rs = &raid_softc[unit];
   2066 	const char   *errstring;
   2067 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2068 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2069 	RF_Raid_t *raidPtr;
   2070 
   2071 	db1_printf(("Getting the disklabel...\n"));
   2072 
   2073 	memset(clp, 0, sizeof(*clp));
   2074 
   2075 	raidPtr = raidPtrs[unit];
   2076 
   2077 	raidgetdefaultlabel(raidPtr, rs, lp);
   2078 
   2079 	/*
   2080 	 * Call the generic disklabel extraction routine.
   2081 	 */
   2082 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2083 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2084 	if (errstring)
   2085 		raidmakedisklabel(rs);
   2086 	else {
   2087 		int     i;
   2088 		struct partition *pp;
   2089 
   2090 		/*
   2091 		 * Sanity check whether the found disklabel is valid.
   2092 		 *
   2093 		 * This is necessary since total size of the raid device
   2094 		 * may vary when an interleave is changed even though exactly
   2095 		 * same componets are used, and old disklabel may used
   2096 		 * if that is found.
   2097 		 */
   2098 		if (lp->d_secperunit != rs->sc_size)
   2099 			printf("raid%d: WARNING: %s: "
   2100 			    "total sector size in disklabel (%d) != "
   2101 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2102 			    lp->d_secperunit, (long) rs->sc_size);
   2103 		for (i = 0; i < lp->d_npartitions; i++) {
   2104 			pp = &lp->d_partitions[i];
   2105 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2106 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2107 				       "exceeds the size of raid (%ld)\n",
   2108 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2109 		}
   2110 	}
   2111 
   2112 }
   2113 /*
   2114  * Take care of things one might want to take care of in the event
   2115  * that a disklabel isn't present.
   2116  */
   2117 static void
   2118 raidmakedisklabel(struct raid_softc *rs)
   2119 {
   2120 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2121 	db1_printf(("Making a label..\n"));
   2122 
   2123 	/*
   2124 	 * For historical reasons, if there's no disklabel present
   2125 	 * the raw partition must be marked FS_BSDFFS.
   2126 	 */
   2127 
   2128 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2129 
   2130 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2131 
   2132 	lp->d_checksum = dkcksum(lp);
   2133 }
   2134 /*
   2135  * Lookup the provided name in the filesystem.  If the file exists,
   2136  * is a valid block device, and isn't being used by anyone else,
   2137  * set *vpp to the file's vnode.
   2138  * You'll find the original of this in ccd.c
   2139  */
   2140 int
   2141 raidlookup(char *path, struct proc *p, struct vnode **vpp)
   2142 {
   2143 	struct nameidata nd;
   2144 	struct vnode *vp;
   2145 	struct vattr va;
   2146 	int     error;
   2147 
   2148 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2149 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2150 		return (error);
   2151 	}
   2152 	vp = nd.ni_vp;
   2153 	if (vp->v_usecount > 1) {
   2154 		VOP_UNLOCK(vp, 0);
   2155 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2156 		return (EBUSY);
   2157 	}
   2158 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2159 		VOP_UNLOCK(vp, 0);
   2160 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2161 		return (error);
   2162 	}
   2163 	/* XXX: eventually we should handle VREG, too. */
   2164 	if (va.va_type != VBLK) {
   2165 		VOP_UNLOCK(vp, 0);
   2166 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2167 		return (ENOTBLK);
   2168 	}
   2169 	VOP_UNLOCK(vp, 0);
   2170 	*vpp = vp;
   2171 	return (0);
   2172 }
   2173 /*
   2174  * Wait interruptibly for an exclusive lock.
   2175  *
   2176  * XXX
   2177  * Several drivers do this; it should be abstracted and made MP-safe.
   2178  * (Hmm... where have we seen this warning before :->  GO )
   2179  */
   2180 static int
   2181 raidlock(struct raid_softc *rs)
   2182 {
   2183 	int     error;
   2184 
   2185 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2186 		rs->sc_flags |= RAIDF_WANTED;
   2187 		if ((error =
   2188 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2189 			return (error);
   2190 	}
   2191 	rs->sc_flags |= RAIDF_LOCKED;
   2192 	return (0);
   2193 }
   2194 /*
   2195  * Unlock and wake up any waiters.
   2196  */
   2197 static void
   2198 raidunlock(struct raid_softc *rs)
   2199 {
   2200 
   2201 	rs->sc_flags &= ~RAIDF_LOCKED;
   2202 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2203 		rs->sc_flags &= ~RAIDF_WANTED;
   2204 		wakeup(rs);
   2205 	}
   2206 }
   2207 
   2208 
   2209 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2210 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2211 
   2212 int
   2213 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2214 {
   2215 	RF_ComponentLabel_t clabel;
   2216 	raidread_component_label(dev, b_vp, &clabel);
   2217 	clabel.mod_counter = mod_counter;
   2218 	clabel.clean = RF_RAID_CLEAN;
   2219 	raidwrite_component_label(dev, b_vp, &clabel);
   2220 	return(0);
   2221 }
   2222 
   2223 
   2224 int
   2225 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2226 {
   2227 	RF_ComponentLabel_t clabel;
   2228 	raidread_component_label(dev, b_vp, &clabel);
   2229 	clabel.mod_counter = mod_counter;
   2230 	clabel.clean = RF_RAID_DIRTY;
   2231 	raidwrite_component_label(dev, b_vp, &clabel);
   2232 	return(0);
   2233 }
   2234 
   2235 /* ARGSUSED */
   2236 int
   2237 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2238 			 RF_ComponentLabel_t *clabel)
   2239 {
   2240 	struct buf *bp;
   2241 	const struct bdevsw *bdev;
   2242 	int error;
   2243 
   2244 	/* XXX should probably ensure that we don't try to do this if
   2245 	   someone has changed rf_protected_sectors. */
   2246 
   2247 	if (b_vp == NULL) {
   2248 		/* For whatever reason, this component is not valid.
   2249 		   Don't try to read a component label from it. */
   2250 		return(EINVAL);
   2251 	}
   2252 
   2253 	/* get a block of the appropriate size... */
   2254 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2255 	bp->b_dev = dev;
   2256 
   2257 	/* get our ducks in a row for the read */
   2258 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2259 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2260 	bp->b_flags |= B_READ;
   2261  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2262 
   2263 	bdev = bdevsw_lookup(bp->b_dev);
   2264 	if (bdev == NULL)
   2265 		return (ENXIO);
   2266 	(*bdev->d_strategy)(bp);
   2267 
   2268 	error = biowait(bp);
   2269 
   2270 	if (!error) {
   2271 		memcpy(clabel, bp->b_data,
   2272 		       sizeof(RF_ComponentLabel_t));
   2273         }
   2274 
   2275 	brelse(bp);
   2276 	return(error);
   2277 }
   2278 /* ARGSUSED */
   2279 int
   2280 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2281 			  RF_ComponentLabel_t *clabel)
   2282 {
   2283 	struct buf *bp;
   2284 	const struct bdevsw *bdev;
   2285 	int error;
   2286 
   2287 	/* get a block of the appropriate size... */
   2288 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2289 	bp->b_dev = dev;
   2290 
   2291 	/* get our ducks in a row for the write */
   2292 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2293 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2294 	bp->b_flags |= B_WRITE;
   2295  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2296 
   2297 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2298 
   2299 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2300 
   2301 	bdev = bdevsw_lookup(bp->b_dev);
   2302 	if (bdev == NULL)
   2303 		return (ENXIO);
   2304 	(*bdev->d_strategy)(bp);
   2305 	error = biowait(bp);
   2306 	brelse(bp);
   2307 	if (error) {
   2308 #if 1
   2309 		printf("Failed to write RAID component info!\n");
   2310 #endif
   2311 	}
   2312 
   2313 	return(error);
   2314 }
   2315 
   2316 void
   2317 rf_markalldirty(RF_Raid_t *raidPtr)
   2318 {
   2319 	RF_ComponentLabel_t clabel;
   2320 	int sparecol;
   2321 	int c;
   2322 	int j;
   2323 	int scol = -1;
   2324 
   2325 	raidPtr->mod_counter++;
   2326 	for (c = 0; c < raidPtr->numCol; c++) {
   2327 		/* we don't want to touch (at all) a disk that has
   2328 		   failed */
   2329 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2330 			raidread_component_label(
   2331 						 raidPtr->Disks[c].dev,
   2332 						 raidPtr->raid_cinfo[c].ci_vp,
   2333 						 &clabel);
   2334 			if (clabel.status == rf_ds_spared) {
   2335 				/* XXX do something special...
   2336 				   but whatever you do, don't
   2337 				   try to access it!! */
   2338 			} else {
   2339 				raidmarkdirty(
   2340 					      raidPtr->Disks[c].dev,
   2341 					      raidPtr->raid_cinfo[c].ci_vp,
   2342 					      raidPtr->mod_counter);
   2343 			}
   2344 		}
   2345 	}
   2346 
   2347 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2348 		sparecol = raidPtr->numCol + c;
   2349 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2350 			/*
   2351 
   2352 			   we claim this disk is "optimal" if it's
   2353 			   rf_ds_used_spare, as that means it should be
   2354 			   directly substitutable for the disk it replaced.
   2355 			   We note that too...
   2356 
   2357 			 */
   2358 
   2359 			for(j=0;j<raidPtr->numCol;j++) {
   2360 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2361 					scol = j;
   2362 					break;
   2363 				}
   2364 			}
   2365 
   2366 			raidread_component_label(
   2367 				 raidPtr->Disks[sparecol].dev,
   2368 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2369 				 &clabel);
   2370 			/* make sure status is noted */
   2371 
   2372 			raid_init_component_label(raidPtr, &clabel);
   2373 
   2374 			clabel.row = 0;
   2375 			clabel.column = scol;
   2376 			/* Note: we *don't* change status from rf_ds_used_spare
   2377 			   to rf_ds_optimal */
   2378 			/* clabel.status = rf_ds_optimal; */
   2379 
   2380 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2381 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2382 				      raidPtr->mod_counter);
   2383 		}
   2384 	}
   2385 }
   2386 
   2387 
   2388 void
   2389 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2390 {
   2391 	RF_ComponentLabel_t clabel;
   2392 	int sparecol;
   2393 	int c;
   2394 	int j;
   2395 	int scol;
   2396 
   2397 	scol = -1;
   2398 
   2399 	/* XXX should do extra checks to make sure things really are clean,
   2400 	   rather than blindly setting the clean bit... */
   2401 
   2402 	raidPtr->mod_counter++;
   2403 
   2404 	for (c = 0; c < raidPtr->numCol; c++) {
   2405 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2406 			raidread_component_label(
   2407 						 raidPtr->Disks[c].dev,
   2408 						 raidPtr->raid_cinfo[c].ci_vp,
   2409 						 &clabel);
   2410 				/* make sure status is noted */
   2411 			clabel.status = rf_ds_optimal;
   2412 				/* bump the counter */
   2413 			clabel.mod_counter = raidPtr->mod_counter;
   2414 
   2415 			raidwrite_component_label(
   2416 						  raidPtr->Disks[c].dev,
   2417 						  raidPtr->raid_cinfo[c].ci_vp,
   2418 						  &clabel);
   2419 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2420 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2421 					raidmarkclean(
   2422 						      raidPtr->Disks[c].dev,
   2423 						      raidPtr->raid_cinfo[c].ci_vp,
   2424 						      raidPtr->mod_counter);
   2425 				}
   2426 			}
   2427 		}
   2428 		/* else we don't touch it.. */
   2429 	}
   2430 
   2431 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2432 		sparecol = raidPtr->numCol + c;
   2433 		/* Need to ensure that the reconstruct actually completed! */
   2434 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2435 			/*
   2436 
   2437 			   we claim this disk is "optimal" if it's
   2438 			   rf_ds_used_spare, as that means it should be
   2439 			   directly substitutable for the disk it replaced.
   2440 			   We note that too...
   2441 
   2442 			 */
   2443 
   2444 			for(j=0;j<raidPtr->numCol;j++) {
   2445 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2446 					scol = j;
   2447 					break;
   2448 				}
   2449 			}
   2450 
   2451 			/* XXX shouldn't *really* need this... */
   2452 			raidread_component_label(
   2453 				      raidPtr->Disks[sparecol].dev,
   2454 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2455 				      &clabel);
   2456 			/* make sure status is noted */
   2457 
   2458 			raid_init_component_label(raidPtr, &clabel);
   2459 
   2460 			clabel.mod_counter = raidPtr->mod_counter;
   2461 			clabel.column = scol;
   2462 			clabel.status = rf_ds_optimal;
   2463 
   2464 			raidwrite_component_label(
   2465 				      raidPtr->Disks[sparecol].dev,
   2466 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2467 				      &clabel);
   2468 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2469 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2470 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2471 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2472 						       raidPtr->mod_counter);
   2473 				}
   2474 			}
   2475 		}
   2476 	}
   2477 }
   2478 
   2479 void
   2480 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2481 {
   2482 	struct proc *p;
   2483 
   2484 	p = raidPtr->engine_thread;
   2485 
   2486 	if (vp != NULL) {
   2487 		if (auto_configured == 1) {
   2488 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2489 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2490 			vput(vp);
   2491 
   2492 		} else {
   2493 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2494 		}
   2495 	}
   2496 }
   2497 
   2498 
   2499 void
   2500 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2501 {
   2502 	int r,c;
   2503 	struct vnode *vp;
   2504 	int acd;
   2505 
   2506 
   2507 	/* We take this opportunity to close the vnodes like we should.. */
   2508 
   2509 	for (c = 0; c < raidPtr->numCol; c++) {
   2510 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2511 		acd = raidPtr->Disks[c].auto_configured;
   2512 		rf_close_component(raidPtr, vp, acd);
   2513 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2514 		raidPtr->Disks[c].auto_configured = 0;
   2515 	}
   2516 
   2517 	for (r = 0; r < raidPtr->numSpare; r++) {
   2518 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2519 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2520 		rf_close_component(raidPtr, vp, acd);
   2521 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2522 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2523 	}
   2524 }
   2525 
   2526 
   2527 void
   2528 rf_ReconThread(struct rf_recon_req *req)
   2529 {
   2530 	int     s;
   2531 	RF_Raid_t *raidPtr;
   2532 
   2533 	s = splbio();
   2534 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2535 	raidPtr->recon_in_progress = 1;
   2536 
   2537 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2538 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2539 
   2540 	RF_Free(req, sizeof(*req));
   2541 
   2542 	raidPtr->recon_in_progress = 0;
   2543 	splx(s);
   2544 
   2545 	/* That's all... */
   2546 	kthread_exit(0);        /* does not return */
   2547 }
   2548 
   2549 void
   2550 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2551 {
   2552 	int retcode;
   2553 	int s;
   2554 
   2555 	raidPtr->parity_rewrite_stripes_done = 0;
   2556 	raidPtr->parity_rewrite_in_progress = 1;
   2557 	s = splbio();
   2558 	retcode = rf_RewriteParity(raidPtr);
   2559 	splx(s);
   2560 	if (retcode) {
   2561 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2562 	} else {
   2563 		/* set the clean bit!  If we shutdown correctly,
   2564 		   the clean bit on each component label will get
   2565 		   set */
   2566 		raidPtr->parity_good = RF_RAID_CLEAN;
   2567 	}
   2568 	raidPtr->parity_rewrite_in_progress = 0;
   2569 
   2570 	/* Anyone waiting for us to stop?  If so, inform them... */
   2571 	if (raidPtr->waitShutdown) {
   2572 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2573 	}
   2574 
   2575 	/* That's all... */
   2576 	kthread_exit(0);        /* does not return */
   2577 }
   2578 
   2579 
   2580 void
   2581 rf_CopybackThread(RF_Raid_t *raidPtr)
   2582 {
   2583 	int s;
   2584 
   2585 	raidPtr->copyback_in_progress = 1;
   2586 	s = splbio();
   2587 	rf_CopybackReconstructedData(raidPtr);
   2588 	splx(s);
   2589 	raidPtr->copyback_in_progress = 0;
   2590 
   2591 	/* That's all... */
   2592 	kthread_exit(0);        /* does not return */
   2593 }
   2594 
   2595 
   2596 void
   2597 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2598 {
   2599 	int s;
   2600 	RF_Raid_t *raidPtr;
   2601 
   2602 	s = splbio();
   2603 	raidPtr = req->raidPtr;
   2604 	raidPtr->recon_in_progress = 1;
   2605 	rf_ReconstructInPlace(raidPtr, req->col);
   2606 	RF_Free(req, sizeof(*req));
   2607 	raidPtr->recon_in_progress = 0;
   2608 	splx(s);
   2609 
   2610 	/* That's all... */
   2611 	kthread_exit(0);        /* does not return */
   2612 }
   2613 
   2614 RF_AutoConfig_t *
   2615 rf_find_raid_components()
   2616 {
   2617 	struct vnode *vp;
   2618 	struct disklabel label;
   2619 	struct device *dv;
   2620 	dev_t dev;
   2621 	int bmajor;
   2622 	int error;
   2623 	int i;
   2624 	int good_one;
   2625 	RF_ComponentLabel_t *clabel;
   2626 	RF_AutoConfig_t *ac_list;
   2627 	RF_AutoConfig_t *ac;
   2628 
   2629 
   2630 	/* initialize the AutoConfig list */
   2631 	ac_list = NULL;
   2632 
   2633 	/* we begin by trolling through *all* the devices on the system */
   2634 
   2635 	for (dv = alldevs.tqh_first; dv != NULL;
   2636 	     dv = dv->dv_list.tqe_next) {
   2637 
   2638 		/* we are only interested in disks... */
   2639 		if (dv->dv_class != DV_DISK)
   2640 			continue;
   2641 
   2642 		/* we don't care about floppies... */
   2643 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2644 			continue;
   2645 		}
   2646 
   2647 		/* we don't care about CD's... */
   2648 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2649 			continue;
   2650 		}
   2651 
   2652 		/* hdfd is the Atari/Hades floppy driver */
   2653 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2654 			continue;
   2655 		}
   2656 		/* fdisa is the Atari/Milan floppy driver */
   2657 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2658 			continue;
   2659 		}
   2660 
   2661 		/* need to find the device_name_to_block_device_major stuff */
   2662 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2663 
   2664 		/* get a vnode for the raw partition of this disk */
   2665 
   2666 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2667 		if (bdevvp(dev, &vp))
   2668 			panic("RAID can't alloc vnode");
   2669 
   2670 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2671 
   2672 		if (error) {
   2673 			/* "Who cares."  Continue looking
   2674 			   for something that exists*/
   2675 			vput(vp);
   2676 			continue;
   2677 		}
   2678 
   2679 		/* Ok, the disk exists.  Go get the disklabel. */
   2680 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2681 		if (error) {
   2682 			/*
   2683 			 * XXX can't happen - open() would
   2684 			 * have errored out (or faked up one)
   2685 			 */
   2686 			if (error != ENOTTY)
   2687 				printf("RAIDframe: can't get label for dev "
   2688 				    "%s (%d)\n", dv->dv_xname, error);
   2689 		}
   2690 
   2691 		/* don't need this any more.  We'll allocate it again
   2692 		   a little later if we really do... */
   2693 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2694 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2695 		vput(vp);
   2696 
   2697 		if (error)
   2698 			continue;
   2699 
   2700 		for (i=0; i < label.d_npartitions; i++) {
   2701 			/* We only support partitions marked as RAID */
   2702 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2703 				continue;
   2704 
   2705 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2706 			if (bdevvp(dev, &vp))
   2707 				panic("RAID can't alloc vnode");
   2708 
   2709 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2710 			if (error) {
   2711 				/* Whatever... */
   2712 				vput(vp);
   2713 				continue;
   2714 			}
   2715 
   2716 			good_one = 0;
   2717 
   2718 			clabel = (RF_ComponentLabel_t *)
   2719 				malloc(sizeof(RF_ComponentLabel_t),
   2720 				       M_RAIDFRAME, M_NOWAIT);
   2721 			if (clabel == NULL) {
   2722 				/* XXX CLEANUP HERE */
   2723 				printf("RAID auto config: out of memory!\n");
   2724 				return(NULL); /* XXX probably should panic? */
   2725 			}
   2726 
   2727 			if (!raidread_component_label(dev, vp, clabel)) {
   2728 				/* Got the label.  Does it look reasonable? */
   2729 				if (rf_reasonable_label(clabel) &&
   2730 				    (clabel->partitionSize <=
   2731 				     label.d_partitions[i].p_size)) {
   2732 #if DEBUG
   2733 					printf("Component on: %s%c: %d\n",
   2734 					       dv->dv_xname, 'a'+i,
   2735 					       label.d_partitions[i].p_size);
   2736 					rf_print_component_label(clabel);
   2737 #endif
   2738 					/* if it's reasonable, add it,
   2739 					   else ignore it. */
   2740 					ac = (RF_AutoConfig_t *)
   2741 						malloc(sizeof(RF_AutoConfig_t),
   2742 						       M_RAIDFRAME,
   2743 						       M_NOWAIT);
   2744 					if (ac == NULL) {
   2745 						/* XXX should panic?? */
   2746 						return(NULL);
   2747 					}
   2748 
   2749 					snprintf(ac->devname,
   2750 					    sizeof(ac->devname), "%s%c",
   2751 					    dv->dv_xname, 'a'+i);
   2752 					ac->dev = dev;
   2753 					ac->vp = vp;
   2754 					ac->clabel = clabel;
   2755 					ac->next = ac_list;
   2756 					ac_list = ac;
   2757 					good_one = 1;
   2758 				}
   2759 			}
   2760 			if (!good_one) {
   2761 				/* cleanup */
   2762 				free(clabel, M_RAIDFRAME);
   2763 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2764 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2765 				vput(vp);
   2766 			}
   2767 		}
   2768 	}
   2769 	return(ac_list);
   2770 }
   2771 
   2772 static int
   2773 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2774 {
   2775 
   2776 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2777 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2778 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2779 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2780 	    clabel->row >=0 &&
   2781 	    clabel->column >= 0 &&
   2782 	    clabel->num_rows > 0 &&
   2783 	    clabel->num_columns > 0 &&
   2784 	    clabel->row < clabel->num_rows &&
   2785 	    clabel->column < clabel->num_columns &&
   2786 	    clabel->blockSize > 0 &&
   2787 	    clabel->numBlocks > 0) {
   2788 		/* label looks reasonable enough... */
   2789 		return(1);
   2790 	}
   2791 	return(0);
   2792 }
   2793 
   2794 
   2795 #if DEBUG
   2796 void
   2797 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2798 {
   2799 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2800 	       clabel->row, clabel->column,
   2801 	       clabel->num_rows, clabel->num_columns);
   2802 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2803 	       clabel->version, clabel->serial_number,
   2804 	       clabel->mod_counter);
   2805 	printf("   Clean: %s Status: %d\n",
   2806 	       clabel->clean ? "Yes" : "No", clabel->status );
   2807 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2808 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2809 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2810 	       (char) clabel->parityConfig, clabel->blockSize,
   2811 	       clabel->numBlocks);
   2812 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2813 	printf("   Contains root partition: %s\n",
   2814 	       clabel->root_partition ? "Yes" : "No" );
   2815 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2816 #if 0
   2817 	   printf("   Config order: %d\n", clabel->config_order);
   2818 #endif
   2819 
   2820 }
   2821 #endif
   2822 
   2823 RF_ConfigSet_t *
   2824 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2825 {
   2826 	RF_AutoConfig_t *ac;
   2827 	RF_ConfigSet_t *config_sets;
   2828 	RF_ConfigSet_t *cset;
   2829 	RF_AutoConfig_t *ac_next;
   2830 
   2831 
   2832 	config_sets = NULL;
   2833 
   2834 	/* Go through the AutoConfig list, and figure out which components
   2835 	   belong to what sets.  */
   2836 	ac = ac_list;
   2837 	while(ac!=NULL) {
   2838 		/* we're going to putz with ac->next, so save it here
   2839 		   for use at the end of the loop */
   2840 		ac_next = ac->next;
   2841 
   2842 		if (config_sets == NULL) {
   2843 			/* will need at least this one... */
   2844 			config_sets = (RF_ConfigSet_t *)
   2845 				malloc(sizeof(RF_ConfigSet_t),
   2846 				       M_RAIDFRAME, M_NOWAIT);
   2847 			if (config_sets == NULL) {
   2848 				panic("rf_create_auto_sets: No memory!");
   2849 			}
   2850 			/* this one is easy :) */
   2851 			config_sets->ac = ac;
   2852 			config_sets->next = NULL;
   2853 			config_sets->rootable = 0;
   2854 			ac->next = NULL;
   2855 		} else {
   2856 			/* which set does this component fit into? */
   2857 			cset = config_sets;
   2858 			while(cset!=NULL) {
   2859 				if (rf_does_it_fit(cset, ac)) {
   2860 					/* looks like it matches... */
   2861 					ac->next = cset->ac;
   2862 					cset->ac = ac;
   2863 					break;
   2864 				}
   2865 				cset = cset->next;
   2866 			}
   2867 			if (cset==NULL) {
   2868 				/* didn't find a match above... new set..*/
   2869 				cset = (RF_ConfigSet_t *)
   2870 					malloc(sizeof(RF_ConfigSet_t),
   2871 					       M_RAIDFRAME, M_NOWAIT);
   2872 				if (cset == NULL) {
   2873 					panic("rf_create_auto_sets: No memory!");
   2874 				}
   2875 				cset->ac = ac;
   2876 				ac->next = NULL;
   2877 				cset->next = config_sets;
   2878 				cset->rootable = 0;
   2879 				config_sets = cset;
   2880 			}
   2881 		}
   2882 		ac = ac_next;
   2883 	}
   2884 
   2885 
   2886 	return(config_sets);
   2887 }
   2888 
   2889 static int
   2890 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2891 {
   2892 	RF_ComponentLabel_t *clabel1, *clabel2;
   2893 
   2894 	/* If this one matches the *first* one in the set, that's good
   2895 	   enough, since the other members of the set would have been
   2896 	   through here too... */
   2897 	/* note that we are not checking partitionSize here..
   2898 
   2899 	   Note that we are also not checking the mod_counters here.
   2900 	   If everything else matches execpt the mod_counter, that's
   2901 	   good enough for this test.  We will deal with the mod_counters
   2902 	   a little later in the autoconfiguration process.
   2903 
   2904 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2905 
   2906 	   The reason we don't check for this is that failed disks
   2907 	   will have lower modification counts.  If those disks are
   2908 	   not added to the set they used to belong to, then they will
   2909 	   form their own set, which may result in 2 different sets,
   2910 	   for example, competing to be configured at raid0, and
   2911 	   perhaps competing to be the root filesystem set.  If the
   2912 	   wrong ones get configured, or both attempt to become /,
   2913 	   weird behaviour and or serious lossage will occur.  Thus we
   2914 	   need to bring them into the fold here, and kick them out at
   2915 	   a later point.
   2916 
   2917 	*/
   2918 
   2919 	clabel1 = cset->ac->clabel;
   2920 	clabel2 = ac->clabel;
   2921 	if ((clabel1->version == clabel2->version) &&
   2922 	    (clabel1->serial_number == clabel2->serial_number) &&
   2923 	    (clabel1->num_rows == clabel2->num_rows) &&
   2924 	    (clabel1->num_columns == clabel2->num_columns) &&
   2925 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2926 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2927 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2928 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2929 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2930 	    (clabel1->blockSize == clabel2->blockSize) &&
   2931 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2932 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2933 	    (clabel1->root_partition == clabel2->root_partition) &&
   2934 	    (clabel1->last_unit == clabel2->last_unit) &&
   2935 	    (clabel1->config_order == clabel2->config_order)) {
   2936 		/* if it get's here, it almost *has* to be a match */
   2937 	} else {
   2938 		/* it's not consistent with somebody in the set..
   2939 		   punt */
   2940 		return(0);
   2941 	}
   2942 	/* all was fine.. it must fit... */
   2943 	return(1);
   2944 }
   2945 
   2946 int
   2947 rf_have_enough_components(RF_ConfigSet_t *cset)
   2948 {
   2949 	RF_AutoConfig_t *ac;
   2950 	RF_AutoConfig_t *auto_config;
   2951 	RF_ComponentLabel_t *clabel;
   2952 	int c;
   2953 	int num_cols;
   2954 	int num_missing;
   2955 	int mod_counter;
   2956 	int mod_counter_found;
   2957 	int even_pair_failed;
   2958 	char parity_type;
   2959 
   2960 
   2961 	/* check to see that we have enough 'live' components
   2962 	   of this set.  If so, we can configure it if necessary */
   2963 
   2964 	num_cols = cset->ac->clabel->num_columns;
   2965 	parity_type = cset->ac->clabel->parityConfig;
   2966 
   2967 	/* XXX Check for duplicate components!?!?!? */
   2968 
   2969 	/* Determine what the mod_counter is supposed to be for this set. */
   2970 
   2971 	mod_counter_found = 0;
   2972 	mod_counter = 0;
   2973 	ac = cset->ac;
   2974 	while(ac!=NULL) {
   2975 		if (mod_counter_found==0) {
   2976 			mod_counter = ac->clabel->mod_counter;
   2977 			mod_counter_found = 1;
   2978 		} else {
   2979 			if (ac->clabel->mod_counter > mod_counter) {
   2980 				mod_counter = ac->clabel->mod_counter;
   2981 			}
   2982 		}
   2983 		ac = ac->next;
   2984 	}
   2985 
   2986 	num_missing = 0;
   2987 	auto_config = cset->ac;
   2988 
   2989 	even_pair_failed = 0;
   2990 	for(c=0; c<num_cols; c++) {
   2991 		ac = auto_config;
   2992 		while(ac!=NULL) {
   2993 			if ((ac->clabel->column == c) &&
   2994 			    (ac->clabel->mod_counter == mod_counter)) {
   2995 				/* it's this one... */
   2996 #if DEBUG
   2997 				printf("Found: %s at %d\n",
   2998 				       ac->devname,c);
   2999 #endif
   3000 				break;
   3001 			}
   3002 			ac=ac->next;
   3003 		}
   3004 		if (ac==NULL) {
   3005 				/* Didn't find one here! */
   3006 				/* special case for RAID 1, especially
   3007 				   where there are more than 2
   3008 				   components (where RAIDframe treats
   3009 				   things a little differently :( ) */
   3010 			if (parity_type == '1') {
   3011 				if (c%2 == 0) { /* even component */
   3012 					even_pair_failed = 1;
   3013 				} else { /* odd component.  If
   3014 					    we're failed, and
   3015 					    so is the even
   3016 					    component, it's
   3017 					    "Good Night, Charlie" */
   3018 					if (even_pair_failed == 1) {
   3019 						return(0);
   3020 					}
   3021 				}
   3022 			} else {
   3023 				/* normal accounting */
   3024 				num_missing++;
   3025 			}
   3026 		}
   3027 		if ((parity_type == '1') && (c%2 == 1)) {
   3028 				/* Just did an even component, and we didn't
   3029 				   bail.. reset the even_pair_failed flag,
   3030 				   and go on to the next component.... */
   3031 			even_pair_failed = 0;
   3032 		}
   3033 	}
   3034 
   3035 	clabel = cset->ac->clabel;
   3036 
   3037 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3038 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3039 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3040 		/* XXX this needs to be made *much* more general */
   3041 		/* Too many failures */
   3042 		return(0);
   3043 	}
   3044 	/* otherwise, all is well, and we've got enough to take a kick
   3045 	   at autoconfiguring this set */
   3046 	return(1);
   3047 }
   3048 
   3049 void
   3050 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3051 			RF_Raid_t *raidPtr)
   3052 {
   3053 	RF_ComponentLabel_t *clabel;
   3054 	int i;
   3055 
   3056 	clabel = ac->clabel;
   3057 
   3058 	/* 1. Fill in the common stuff */
   3059 	config->numRow = clabel->num_rows = 1;
   3060 	config->numCol = clabel->num_columns;
   3061 	config->numSpare = 0; /* XXX should this be set here? */
   3062 	config->sectPerSU = clabel->sectPerSU;
   3063 	config->SUsPerPU = clabel->SUsPerPU;
   3064 	config->SUsPerRU = clabel->SUsPerRU;
   3065 	config->parityConfig = clabel->parityConfig;
   3066 	/* XXX... */
   3067 	strcpy(config->diskQueueType,"fifo");
   3068 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3069 	config->layoutSpecificSize = 0; /* XXX ?? */
   3070 
   3071 	while(ac!=NULL) {
   3072 		/* row/col values will be in range due to the checks
   3073 		   in reasonable_label() */
   3074 		strcpy(config->devnames[0][ac->clabel->column],
   3075 		       ac->devname);
   3076 		ac = ac->next;
   3077 	}
   3078 
   3079 	for(i=0;i<RF_MAXDBGV;i++) {
   3080 		config->debugVars[i][0] = 0;
   3081 	}
   3082 }
   3083 
   3084 int
   3085 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3086 {
   3087 	RF_ComponentLabel_t clabel;
   3088 	struct vnode *vp;
   3089 	dev_t dev;
   3090 	int column;
   3091 	int sparecol;
   3092 
   3093 	raidPtr->autoconfigure = new_value;
   3094 
   3095 	for(column=0; column<raidPtr->numCol; column++) {
   3096 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3097 			dev = raidPtr->Disks[column].dev;
   3098 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3099 			raidread_component_label(dev, vp, &clabel);
   3100 			clabel.autoconfigure = new_value;
   3101 			raidwrite_component_label(dev, vp, &clabel);
   3102 		}
   3103 	}
   3104 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3105 		sparecol = raidPtr->numCol + column;
   3106 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3107 			dev = raidPtr->Disks[sparecol].dev;
   3108 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3109 			raidread_component_label(dev, vp, &clabel);
   3110 			clabel.autoconfigure = new_value;
   3111 			raidwrite_component_label(dev, vp, &clabel);
   3112 		}
   3113 	}
   3114 	return(new_value);
   3115 }
   3116 
   3117 int
   3118 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3119 {
   3120 	RF_ComponentLabel_t clabel;
   3121 	struct vnode *vp;
   3122 	dev_t dev;
   3123 	int column;
   3124 	int sparecol;
   3125 
   3126 	raidPtr->root_partition = new_value;
   3127 	for(column=0; column<raidPtr->numCol; column++) {
   3128 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3129 			dev = raidPtr->Disks[column].dev;
   3130 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3131 			raidread_component_label(dev, vp, &clabel);
   3132 			clabel.root_partition = new_value;
   3133 			raidwrite_component_label(dev, vp, &clabel);
   3134 		}
   3135 	}
   3136 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3137 		sparecol = raidPtr->numCol + column;
   3138 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3139 			dev = raidPtr->Disks[sparecol].dev;
   3140 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3141 			raidread_component_label(dev, vp, &clabel);
   3142 			clabel.root_partition = new_value;
   3143 			raidwrite_component_label(dev, vp, &clabel);
   3144 		}
   3145 	}
   3146 	return(new_value);
   3147 }
   3148 
   3149 void
   3150 rf_release_all_vps(RF_ConfigSet_t *cset)
   3151 {
   3152 	RF_AutoConfig_t *ac;
   3153 
   3154 	ac = cset->ac;
   3155 	while(ac!=NULL) {
   3156 		/* Close the vp, and give it back */
   3157 		if (ac->vp) {
   3158 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3159 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3160 			vput(ac->vp);
   3161 			ac->vp = NULL;
   3162 		}
   3163 		ac = ac->next;
   3164 	}
   3165 }
   3166 
   3167 
   3168 void
   3169 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3170 {
   3171 	RF_AutoConfig_t *ac;
   3172 	RF_AutoConfig_t *next_ac;
   3173 
   3174 	ac = cset->ac;
   3175 	while(ac!=NULL) {
   3176 		next_ac = ac->next;
   3177 		/* nuke the label */
   3178 		free(ac->clabel, M_RAIDFRAME);
   3179 		/* cleanup the config structure */
   3180 		free(ac, M_RAIDFRAME);
   3181 		/* "next.." */
   3182 		ac = next_ac;
   3183 	}
   3184 	/* and, finally, nuke the config set */
   3185 	free(cset, M_RAIDFRAME);
   3186 }
   3187 
   3188 
   3189 void
   3190 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3191 {
   3192 	/* current version number */
   3193 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3194 	clabel->serial_number = raidPtr->serial_number;
   3195 	clabel->mod_counter = raidPtr->mod_counter;
   3196 	clabel->num_rows = 1;
   3197 	clabel->num_columns = raidPtr->numCol;
   3198 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3199 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3200 
   3201 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3202 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3203 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3204 
   3205 	clabel->blockSize = raidPtr->bytesPerSector;
   3206 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3207 
   3208 	/* XXX not portable */
   3209 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3210 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3211 	clabel->autoconfigure = raidPtr->autoconfigure;
   3212 	clabel->root_partition = raidPtr->root_partition;
   3213 	clabel->last_unit = raidPtr->raidid;
   3214 	clabel->config_order = raidPtr->config_order;
   3215 }
   3216 
   3217 int
   3218 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3219 {
   3220 	RF_Raid_t *raidPtr;
   3221 	RF_Config_t *config;
   3222 	int raidID;
   3223 	int retcode;
   3224 
   3225 #if DEBUG
   3226 	printf("RAID autoconfigure\n");
   3227 #endif
   3228 
   3229 	retcode = 0;
   3230 	*unit = -1;
   3231 
   3232 	/* 1. Create a config structure */
   3233 
   3234 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3235 				       M_RAIDFRAME,
   3236 				       M_NOWAIT);
   3237 	if (config==NULL) {
   3238 		printf("Out of mem!?!?\n");
   3239 				/* XXX do something more intelligent here. */
   3240 		return(1);
   3241 	}
   3242 
   3243 	memset(config, 0, sizeof(RF_Config_t));
   3244 
   3245 	/*
   3246 	   2. Figure out what RAID ID this one is supposed to live at
   3247 	   See if we can get the same RAID dev that it was configured
   3248 	   on last time..
   3249 	*/
   3250 
   3251 	raidID = cset->ac->clabel->last_unit;
   3252 	if ((raidID < 0) || (raidID >= numraid)) {
   3253 		/* let's not wander off into lala land. */
   3254 		raidID = numraid - 1;
   3255 	}
   3256 	if (raidPtrs[raidID]->valid != 0) {
   3257 
   3258 		/*
   3259 		   Nope... Go looking for an alternative...
   3260 		   Start high so we don't immediately use raid0 if that's
   3261 		   not taken.
   3262 		*/
   3263 
   3264 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3265 			if (raidPtrs[raidID]->valid == 0) {
   3266 				/* can use this one! */
   3267 				break;
   3268 			}
   3269 		}
   3270 	}
   3271 
   3272 	if (raidID < 0) {
   3273 		/* punt... */
   3274 		printf("Unable to auto configure this set!\n");
   3275 		printf("(Out of RAID devs!)\n");
   3276 		return(1);
   3277 	}
   3278 
   3279 #if DEBUG
   3280 	printf("Configuring raid%d:\n",raidID);
   3281 #endif
   3282 
   3283 	raidPtr = raidPtrs[raidID];
   3284 
   3285 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3286 	raidPtr->raidid = raidID;
   3287 	raidPtr->openings = RAIDOUTSTANDING;
   3288 
   3289 	/* 3. Build the configuration structure */
   3290 	rf_create_configuration(cset->ac, config, raidPtr);
   3291 
   3292 	/* 4. Do the configuration */
   3293 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3294 
   3295 	if (retcode == 0) {
   3296 
   3297 		raidinit(raidPtrs[raidID]);
   3298 
   3299 		rf_markalldirty(raidPtrs[raidID]);
   3300 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3301 		if (cset->ac->clabel->root_partition==1) {
   3302 			/* everything configured just fine.  Make a note
   3303 			   that this set is eligible to be root. */
   3304 			cset->rootable = 1;
   3305 			/* XXX do this here? */
   3306 			raidPtrs[raidID]->root_partition = 1;
   3307 		}
   3308 	}
   3309 
   3310 	/* 5. Cleanup */
   3311 	free(config, M_RAIDFRAME);
   3312 
   3313 	*unit = raidID;
   3314 	return(retcode);
   3315 }
   3316 
   3317 void
   3318 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3319 {
   3320 	struct buf *bp;
   3321 
   3322 	bp = (struct buf *)desc->bp;
   3323 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3324 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3325 }
   3326 
   3327 void
   3328 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3329 	     size_t xmin, size_t xmax)
   3330 {
   3331 	pool_init(p, size, 0, 0, 0, w_chan, NULL);
   3332 	pool_sethiwat(p, xmax);
   3333 	pool_prime(p, xmin);
   3334 	pool_setlowat(p, xmin);
   3335 }
   3336 
   3337 /*
   3338  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3339  * if there is IO pending and if that IO could possibly be done for a
   3340  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3341  * otherwise.
   3342  *
   3343  */
   3344 
   3345 int
   3346 rf_buf_queue_check(int raidid)
   3347 {
   3348 	if ((BUFQ_PEEK(&(raid_softc[raidid].buf_queue)) != NULL) &&
   3349 	    raidPtrs[raidid]->openings > 0) {
   3350 		/* there is work to do */
   3351 		return 0;
   3352 	}
   3353 	/* default is nothing to do */
   3354 	return 1;
   3355 }
   3356