Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.186.2.4
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.186.2.4 2007/12/19 18:31:14 ghen Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.186.2.4 2007/12/19 18:31:14 ghen Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 
    172 #include <dev/raidframe/raidframevar.h>
    173 #include <dev/raidframe/raidframeio.h>
    174 #include "raid.h"
    175 #include "opt_raid_autoconfig.h"
    176 #include "rf_raid.h"
    177 #include "rf_copyback.h"
    178 #include "rf_dag.h"
    179 #include "rf_dagflags.h"
    180 #include "rf_desc.h"
    181 #include "rf_diskqueue.h"
    182 #include "rf_etimer.h"
    183 #include "rf_general.h"
    184 #include "rf_kintf.h"
    185 #include "rf_options.h"
    186 #include "rf_driver.h"
    187 #include "rf_parityscan.h"
    188 #include "rf_threadstuff.h"
    189 
    190 #ifdef DEBUG
    191 int     rf_kdebug_level = 0;
    192 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    193 #else				/* DEBUG */
    194 #define db1_printf(a) { }
    195 #endif				/* DEBUG */
    196 
    197 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    198 
    199 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    200 
    201 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    202 						 * spare table */
    203 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    204 						 * installation process */
    205 
    206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    207 
    208 /* prototypes */
    209 static void KernelWakeupFunc(struct buf *);
    210 static void InitBP(struct buf *, struct vnode *, unsigned,
    211     dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*) (struct buf *),
    212     void *, int, struct proc *);
    213 static void raidinit(RF_Raid_t *);
    214 
    215 void raidattach(int);
    216 
    217 dev_type_open(raidopen);
    218 dev_type_close(raidclose);
    219 dev_type_read(raidread);
    220 dev_type_write(raidwrite);
    221 dev_type_ioctl(raidioctl);
    222 dev_type_strategy(raidstrategy);
    223 dev_type_dump(raiddump);
    224 dev_type_size(raidsize);
    225 
    226 const struct bdevsw raid_bdevsw = {
    227 	raidopen, raidclose, raidstrategy, raidioctl,
    228 	raiddump, raidsize, D_DISK
    229 };
    230 
    231 const struct cdevsw raid_cdevsw = {
    232 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    233 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    234 };
    235 
    236 /*
    237  * Pilfered from ccd.c
    238  */
    239 
    240 struct raidbuf {
    241 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    242 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    243 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    244 };
    245 
    246 /* XXX Not sure if the following should be replacing the raidPtrs above,
    247    or if it should be used in conjunction with that...
    248 */
    249 
    250 struct raid_softc {
    251 	int     sc_flags;	/* flags */
    252 	int     sc_cflags;	/* configuration flags */
    253 	size_t  sc_size;        /* size of the raid device */
    254 	char    sc_xname[20];	/* XXX external name */
    255 	struct disk sc_dkdev;	/* generic disk device info */
    256 	struct bufq_state buf_queue;	/* used for the device queue */
    257 };
    258 /* sc_flags */
    259 #define RAIDF_INITED	0x01	/* unit has been initialized */
    260 #define RAIDF_WLABEL	0x02	/* label area is writable */
    261 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    262 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    263 #define RAIDF_LOCKED	0x80	/* unit is locked */
    264 
    265 #define	raidunit(x)	DISKUNIT(x)
    266 int numraid = 0;
    267 
    268 /*
    269  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    270  * Be aware that large numbers can allow the driver to consume a lot of
    271  * kernel memory, especially on writes, and in degraded mode reads.
    272  *
    273  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    274  * a single 64K write will typically require 64K for the old data,
    275  * 64K for the old parity, and 64K for the new parity, for a total
    276  * of 192K (if the parity buffer is not re-used immediately).
    277  * Even it if is used immediately, that's still 128K, which when multiplied
    278  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    279  *
    280  * Now in degraded mode, for example, a 64K read on the above setup may
    281  * require data reconstruction, which will require *all* of the 4 remaining
    282  * disks to participate -- 4 * 32K/disk == 128K again.
    283  */
    284 
    285 #ifndef RAIDOUTSTANDING
    286 #define RAIDOUTSTANDING   6
    287 #endif
    288 
    289 #define RAIDLABELDEV(dev)	\
    290 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    291 
    292 /* declared here, and made public, for the benefit of KVM stuff.. */
    293 struct raid_softc *raid_softc;
    294 
    295 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    296 				     struct disklabel *);
    297 static void raidgetdisklabel(dev_t);
    298 static void raidmakedisklabel(struct raid_softc *);
    299 
    300 static int raidlock(struct raid_softc *);
    301 static void raidunlock(struct raid_softc *);
    302 
    303 static void rf_markalldirty(RF_Raid_t *);
    304 
    305 struct device *raidrootdev;
    306 
    307 void rf_ReconThread(struct rf_recon_req *);
    308 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    309 void rf_CopybackThread(RF_Raid_t *raidPtr);
    310 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    311 int rf_autoconfig(struct device *self);
    312 void rf_buildroothack(RF_ConfigSet_t *);
    313 
    314 RF_AutoConfig_t *rf_find_raid_components(void);
    315 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    316 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    317 static int rf_reasonable_label(RF_ComponentLabel_t *);
    318 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    319 int rf_set_autoconfig(RF_Raid_t *, int);
    320 int rf_set_rootpartition(RF_Raid_t *, int);
    321 void rf_release_all_vps(RF_ConfigSet_t *);
    322 void rf_cleanup_config_set(RF_ConfigSet_t *);
    323 int rf_have_enough_components(RF_ConfigSet_t *);
    324 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    325 
    326 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    327 				  allow autoconfig to take place.
    328 			          Note that this is overridden by having
    329 			          RAID_AUTOCONFIG as an option in the
    330 			          kernel config file.  */
    331 
    332 struct RF_Pools_s rf_pools;
    333 
    334 void
    335 raidattach(int num)
    336 {
    337 	int raidID;
    338 	int i, rc;
    339 
    340 #ifdef DEBUG
    341 	printf("raidattach: Asked for %d units\n", num);
    342 #endif
    343 
    344 	if (num <= 0) {
    345 #ifdef DIAGNOSTIC
    346 		panic("raidattach: count <= 0");
    347 #endif
    348 		return;
    349 	}
    350 	/* This is where all the initialization stuff gets done. */
    351 
    352 	numraid = num;
    353 
    354 	/* Make some space for requested number of units... */
    355 
    356 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    357 	if (raidPtrs == NULL) {
    358 		panic("raidPtrs is NULL!!");
    359 	}
    360 
    361 	/* Initialize the component buffer pool. */
    362 	rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
    363 		     "raidpl", num * RAIDOUTSTANDING,
    364 		     2 * num * RAIDOUTSTANDING);
    365 
    366 	rf_mutex_init(&rf_sparet_wait_mutex);
    367 
    368 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    369 
    370 	for (i = 0; i < num; i++)
    371 		raidPtrs[i] = NULL;
    372 	rc = rf_BootRaidframe();
    373 	if (rc == 0)
    374 		printf("Kernelized RAIDframe activated\n");
    375 	else
    376 		panic("Serious error booting RAID!!");
    377 
    378 	/* put together some datastructures like the CCD device does.. This
    379 	 * lets us lock the device and what-not when it gets opened. */
    380 
    381 	raid_softc = (struct raid_softc *)
    382 		malloc(num * sizeof(struct raid_softc),
    383 		       M_RAIDFRAME, M_NOWAIT);
    384 	if (raid_softc == NULL) {
    385 		printf("WARNING: no memory for RAIDframe driver\n");
    386 		return;
    387 	}
    388 
    389 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    390 
    391 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    392 					      M_RAIDFRAME, M_NOWAIT);
    393 	if (raidrootdev == NULL) {
    394 		panic("No memory for RAIDframe driver!!?!?!");
    395 	}
    396 
    397 	for (raidID = 0; raidID < num; raidID++) {
    398 		bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
    399 
    400 		raidrootdev[raidID].dv_class  = DV_DISK;
    401 		raidrootdev[raidID].dv_cfdata = NULL;
    402 		raidrootdev[raidID].dv_unit   = raidID;
    403 		raidrootdev[raidID].dv_parent = NULL;
    404 		raidrootdev[raidID].dv_flags  = 0;
    405 		snprintf(raidrootdev[raidID].dv_xname,
    406 		    sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
    407 
    408 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    409 			  (RF_Raid_t *));
    410 		if (raidPtrs[raidID] == NULL) {
    411 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    412 			numraid = raidID;
    413 			return;
    414 		}
    415 	}
    416 
    417 #ifdef RAID_AUTOCONFIG
    418 	raidautoconfig = 1;
    419 #endif
    420 
    421 	/*
    422 	 * Register a finalizer which will be used to auto-config RAID
    423 	 * sets once all real hardware devices have been found.
    424 	 */
    425 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    426 		printf("WARNING: unable to register RAIDframe finalizer\n");
    427 }
    428 
    429 int
    430 rf_autoconfig(struct device *self)
    431 {
    432 	RF_AutoConfig_t *ac_list;
    433 	RF_ConfigSet_t *config_sets;
    434 
    435 	if (raidautoconfig == 0)
    436 		return (0);
    437 
    438 	/* XXX This code can only be run once. */
    439 	raidautoconfig = 0;
    440 
    441 	/* 1. locate all RAID components on the system */
    442 #ifdef DEBUG
    443 	printf("Searching for RAID components...\n");
    444 #endif
    445 	ac_list = rf_find_raid_components();
    446 
    447 	/* 2. Sort them into their respective sets. */
    448 	config_sets = rf_create_auto_sets(ac_list);
    449 
    450 	/*
    451 	 * 3. Evaluate each set andconfigure the valid ones.
    452 	 * This gets done in rf_buildroothack().
    453 	 */
    454 	rf_buildroothack(config_sets);
    455 
    456 	return (1);
    457 }
    458 
    459 void
    460 rf_buildroothack(RF_ConfigSet_t *config_sets)
    461 {
    462 	RF_ConfigSet_t *cset;
    463 	RF_ConfigSet_t *next_cset;
    464 	int retcode;
    465 	int raidID;
    466 	int rootID;
    467 	int num_root;
    468 
    469 	rootID = 0;
    470 	num_root = 0;
    471 	cset = config_sets;
    472 	while(cset != NULL ) {
    473 		next_cset = cset->next;
    474 		if (rf_have_enough_components(cset) &&
    475 		    cset->ac->clabel->autoconfigure==1) {
    476 			retcode = rf_auto_config_set(cset,&raidID);
    477 			if (!retcode) {
    478 				if (cset->rootable) {
    479 					rootID = raidID;
    480 					num_root++;
    481 				}
    482 			} else {
    483 				/* The autoconfig didn't work :( */
    484 #if DEBUG
    485 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    486 #endif
    487 				rf_release_all_vps(cset);
    488 			}
    489 		} else {
    490 			/* we're not autoconfiguring this set...
    491 			   release the associated resources */
    492 			rf_release_all_vps(cset);
    493 		}
    494 		/* cleanup */
    495 		rf_cleanup_config_set(cset);
    496 		cset = next_cset;
    497 	}
    498 
    499 	/* we found something bootable... */
    500 
    501 	if (num_root == 1) {
    502 		booted_device = &raidrootdev[rootID];
    503 	} else if (num_root > 1) {
    504 		/* we can't guess.. require the user to answer... */
    505 		boothowto |= RB_ASKNAME;
    506 	}
    507 }
    508 
    509 
    510 int
    511 raidsize(dev_t dev)
    512 {
    513 	struct raid_softc *rs;
    514 	struct disklabel *lp;
    515 	int     part, unit, omask, size;
    516 
    517 	unit = raidunit(dev);
    518 	if (unit >= numraid)
    519 		return (-1);
    520 	rs = &raid_softc[unit];
    521 
    522 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    523 		return (-1);
    524 
    525 	part = DISKPART(dev);
    526 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    527 	lp = rs->sc_dkdev.dk_label;
    528 
    529 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    530 		return (-1);
    531 
    532 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    533 		size = -1;
    534 	else
    535 		size = lp->d_partitions[part].p_size *
    536 		    (lp->d_secsize / DEV_BSIZE);
    537 
    538 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    539 		return (-1);
    540 
    541 	return (size);
    542 
    543 }
    544 
    545 int
    546 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
    547 {
    548 	int     unit = raidunit(dev);
    549 	struct raid_softc *rs;
    550 	const struct bdevsw *bdev;
    551 	struct disklabel *lp;
    552 	RF_Raid_t *raidPtr;
    553 	daddr_t offset;
    554 	int     part, c, sparecol, j, scol, dumpto;
    555 	int     error = 0;
    556 
    557 	if (unit >= numraid)
    558 		return (ENXIO);
    559 
    560 	rs = &raid_softc[unit];
    561 	raidPtr = raidPtrs[unit];
    562 
    563 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    564 		return ENXIO;
    565 
    566 	/* we only support dumping to RAID 1 sets */
    567 	if (raidPtr->Layout.numDataCol != 1 ||
    568 	    raidPtr->Layout.numParityCol != 1)
    569 		return EINVAL;
    570 
    571 
    572 	if ((error = raidlock(rs)) != 0)
    573 		return error;
    574 
    575 	if (size % DEV_BSIZE != 0) {
    576 		error = EINVAL;
    577 		goto out;
    578 	}
    579 
    580 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    581 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    582 		    "sc->sc_size (%zu)\n", __func__, blkno,
    583 		    size / DEV_BSIZE, rs->sc_size);
    584 		error = EINVAL;
    585 		goto out;
    586 	}
    587 
    588 	part = DISKPART(dev);
    589 	lp = rs->sc_dkdev.dk_label;
    590 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    591 
    592 	/* figure out what device is alive.. */
    593 
    594 	/*
    595 	   Look for a component to dump to.  The preference for the
    596 	   component to dump to is as follows:
    597 	   1) the master
    598 	   2) a used_spare of the master
    599 	   3) the slave
    600 	   4) a used_spare of the slave
    601 	*/
    602 
    603 	dumpto = -1;
    604 	for (c = 0; c < raidPtr->numCol; c++) {
    605 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    606 			/* this might be the one */
    607 			dumpto = c;
    608 			break;
    609 		}
    610 	}
    611 
    612 	/*
    613 	   At this point we have possibly selected a live master or a
    614 	   live slave.  We now check to see if there is a spared
    615 	   master (or a spared slave), if we didn't find a live master
    616 	   or a live slave.
    617 	*/
    618 
    619 	for (c = 0; c < raidPtr->numSpare; c++) {
    620 		sparecol = raidPtr->numCol + c;
    621 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    622 			/* How about this one? */
    623 			scol = -1;
    624 			for(j=0;j<raidPtr->numCol;j++) {
    625 				if (raidPtr->Disks[j].spareCol == sparecol) {
    626 					scol = j;
    627 					break;
    628 				}
    629 			}
    630 			if (scol == 0) {
    631 				/*
    632 				   We must have found a spared master!
    633 				   We'll take that over anything else
    634 				   found so far.  (We couldn't have
    635 				   found a real master before, since
    636 				   this is a used spare, and it's
    637 				   saying that it's replacing the
    638 				   master.)  On reboot (with
    639 				   autoconfiguration turned on)
    640 				   sparecol will become the 1st
    641 				   component (component0) of this set.
    642 				*/
    643 				dumpto = sparecol;
    644 				break;
    645 			} else if (scol != -1) {
    646 				/*
    647 				   Must be a spared slave.  We'll dump
    648 				   to that if we havn't found anything
    649 				   else so far.
    650 				*/
    651 				if (dumpto == -1)
    652 					dumpto = sparecol;
    653 			}
    654 		}
    655 	}
    656 
    657 	if (dumpto == -1) {
    658 		/* we couldn't find any live components to dump to!?!?
    659 		 */
    660 		error = EINVAL;
    661 		goto out;
    662 	}
    663 
    664 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    665 
    666 	/*
    667 	   Note that blkno is relative to this particular partition.
    668 	   By adding the offset of this partition in the RAID
    669 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    670 	   value that is relative to the partition used for the
    671 	   underlying component.
    672 	*/
    673 
    674 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    675 				blkno + offset, va, size);
    676 
    677 out:
    678 	raidunlock(rs);
    679 
    680 	return error;
    681 }
    682 /* ARGSUSED */
    683 int
    684 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
    685 {
    686 	int     unit = raidunit(dev);
    687 	struct raid_softc *rs;
    688 	struct disklabel *lp;
    689 	int     part, pmask;
    690 	int     error = 0;
    691 
    692 	if (unit >= numraid)
    693 		return (ENXIO);
    694 	rs = &raid_softc[unit];
    695 
    696 	if ((error = raidlock(rs)) != 0)
    697 		return (error);
    698 	lp = rs->sc_dkdev.dk_label;
    699 
    700 	part = DISKPART(dev);
    701 	pmask = (1 << part);
    702 
    703 	if ((rs->sc_flags & RAIDF_INITED) &&
    704 	    (rs->sc_dkdev.dk_openmask == 0))
    705 		raidgetdisklabel(dev);
    706 
    707 	/* make sure that this partition exists */
    708 
    709 	if (part != RAW_PART) {
    710 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    711 		    ((part >= lp->d_npartitions) ||
    712 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    713 			error = ENXIO;
    714 			raidunlock(rs);
    715 			return (error);
    716 		}
    717 	}
    718 	/* Prevent this unit from being unconfigured while open. */
    719 	switch (fmt) {
    720 	case S_IFCHR:
    721 		rs->sc_dkdev.dk_copenmask |= pmask;
    722 		break;
    723 
    724 	case S_IFBLK:
    725 		rs->sc_dkdev.dk_bopenmask |= pmask;
    726 		break;
    727 	}
    728 
    729 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    730 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    731 		/* First one... mark things as dirty... Note that we *MUST*
    732 		 have done a configure before this.  I DO NOT WANT TO BE
    733 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    734 		 THAT THEY BELONG TOGETHER!!!!! */
    735 		/* XXX should check to see if we're only open for reading
    736 		   here... If so, we needn't do this, but then need some
    737 		   other way of keeping track of what's happened.. */
    738 
    739 		rf_markalldirty( raidPtrs[unit] );
    740 	}
    741 
    742 
    743 	rs->sc_dkdev.dk_openmask =
    744 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    745 
    746 	raidunlock(rs);
    747 
    748 	return (error);
    749 
    750 
    751 }
    752 /* ARGSUSED */
    753 int
    754 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
    755 {
    756 	int     unit = raidunit(dev);
    757 	struct raid_softc *rs;
    758 	int     error = 0;
    759 	int     part;
    760 
    761 	if (unit >= numraid)
    762 		return (ENXIO);
    763 	rs = &raid_softc[unit];
    764 
    765 	if ((error = raidlock(rs)) != 0)
    766 		return (error);
    767 
    768 	part = DISKPART(dev);
    769 
    770 	/* ...that much closer to allowing unconfiguration... */
    771 	switch (fmt) {
    772 	case S_IFCHR:
    773 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    774 		break;
    775 
    776 	case S_IFBLK:
    777 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    778 		break;
    779 	}
    780 	rs->sc_dkdev.dk_openmask =
    781 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    782 
    783 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    784 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    785 		/* Last one... device is not unconfigured yet.
    786 		   Device shutdown has taken care of setting the
    787 		   clean bits if RAIDF_INITED is not set
    788 		   mark things as clean... */
    789 
    790 		rf_update_component_labels(raidPtrs[unit],
    791 						 RF_FINAL_COMPONENT_UPDATE);
    792 		if (doing_shutdown) {
    793 			/* last one, and we're going down, so
    794 			   lights out for this RAID set too. */
    795 			error = rf_Shutdown(raidPtrs[unit]);
    796 
    797 			/* It's no longer initialized... */
    798 			rs->sc_flags &= ~RAIDF_INITED;
    799 
    800 			/* Detach the disk. */
    801 			disk_detach(&rs->sc_dkdev);
    802 		}
    803 	}
    804 
    805 	raidunlock(rs);
    806 	return (0);
    807 
    808 }
    809 
    810 void
    811 raidstrategy(struct buf *bp)
    812 {
    813 	int s;
    814 
    815 	unsigned int raidID = raidunit(bp->b_dev);
    816 	RF_Raid_t *raidPtr;
    817 	struct raid_softc *rs = &raid_softc[raidID];
    818 	int     wlabel;
    819 
    820 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    821 		bp->b_error = ENXIO;
    822 		bp->b_flags |= B_ERROR;
    823 		bp->b_resid = bp->b_bcount;
    824 		biodone(bp);
    825 		return;
    826 	}
    827 	if (raidID >= numraid || !raidPtrs[raidID]) {
    828 		bp->b_error = ENODEV;
    829 		bp->b_flags |= B_ERROR;
    830 		bp->b_resid = bp->b_bcount;
    831 		biodone(bp);
    832 		return;
    833 	}
    834 	raidPtr = raidPtrs[raidID];
    835 	if (!raidPtr->valid) {
    836 		bp->b_error = ENODEV;
    837 		bp->b_flags |= B_ERROR;
    838 		bp->b_resid = bp->b_bcount;
    839 		biodone(bp);
    840 		return;
    841 	}
    842 	if (bp->b_bcount == 0) {
    843 		db1_printf(("b_bcount is zero..\n"));
    844 		biodone(bp);
    845 		return;
    846 	}
    847 
    848 	/*
    849 	 * Do bounds checking and adjust transfer.  If there's an
    850 	 * error, the bounds check will flag that for us.
    851 	 */
    852 
    853 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    854 	if (DISKPART(bp->b_dev) != RAW_PART)
    855 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    856 			db1_printf(("Bounds check failed!!:%d %d\n",
    857 				(int) bp->b_blkno, (int) wlabel));
    858 			biodone(bp);
    859 			return;
    860 		}
    861 	s = splbio();
    862 
    863 	bp->b_resid = 0;
    864 
    865 	/* stuff it onto our queue */
    866 	BUFQ_PUT(&rs->buf_queue, bp);
    867 
    868 	/* scheduled the IO to happen at the next convenient time */
    869 	wakeup(&(raidPtrs[raidID]->iodone));
    870 
    871 	splx(s);
    872 }
    873 /* ARGSUSED */
    874 int
    875 raidread(dev_t dev, struct uio *uio, int flags)
    876 {
    877 	int     unit = raidunit(dev);
    878 	struct raid_softc *rs;
    879 
    880 	if (unit >= numraid)
    881 		return (ENXIO);
    882 	rs = &raid_softc[unit];
    883 
    884 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    885 		return (ENXIO);
    886 
    887 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    888 
    889 }
    890 /* ARGSUSED */
    891 int
    892 raidwrite(dev_t dev, struct uio *uio, int flags)
    893 {
    894 	int     unit = raidunit(dev);
    895 	struct raid_softc *rs;
    896 
    897 	if (unit >= numraid)
    898 		return (ENXIO);
    899 	rs = &raid_softc[unit];
    900 
    901 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    902 		return (ENXIO);
    903 
    904 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    905 
    906 }
    907 
    908 int
    909 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
    910 {
    911 	int     unit = raidunit(dev);
    912 	int     error = 0;
    913 	int     part, pmask;
    914 	struct raid_softc *rs;
    915 	RF_Config_t *k_cfg, *u_cfg;
    916 	RF_Raid_t *raidPtr;
    917 	RF_RaidDisk_t *diskPtr;
    918 	RF_AccTotals_t *totals;
    919 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    920 	u_char *specific_buf;
    921 	int retcode = 0;
    922 	int column;
    923 	int raidid;
    924 	struct rf_recon_req *rrcopy, *rr;
    925 	RF_ComponentLabel_t *clabel;
    926 	RF_ComponentLabel_t ci_label;
    927 	RF_ComponentLabel_t **clabel_ptr;
    928 	RF_SingleComponent_t *sparePtr,*componentPtr;
    929 	RF_SingleComponent_t hot_spare;
    930 	RF_SingleComponent_t component;
    931 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    932 	int i, j, d;
    933 #ifdef __HAVE_OLD_DISKLABEL
    934 	struct disklabel newlabel;
    935 #endif
    936 
    937 	if (unit >= numraid)
    938 		return (ENXIO);
    939 	rs = &raid_softc[unit];
    940 	raidPtr = raidPtrs[unit];
    941 
    942 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    943 		(int) DISKPART(dev), (int) unit, (int) cmd));
    944 
    945 	/* Must be open for writes for these commands... */
    946 	switch (cmd) {
    947 	case DIOCSDINFO:
    948 	case DIOCWDINFO:
    949 #ifdef __HAVE_OLD_DISKLABEL
    950 	case ODIOCWDINFO:
    951 	case ODIOCSDINFO:
    952 #endif
    953 	case DIOCWLABEL:
    954 		if ((flag & FWRITE) == 0)
    955 			return (EBADF);
    956 	}
    957 
    958 	/* Must be initialized for these... */
    959 	switch (cmd) {
    960 	case DIOCGDINFO:
    961 	case DIOCSDINFO:
    962 	case DIOCWDINFO:
    963 #ifdef __HAVE_OLD_DISKLABEL
    964 	case ODIOCGDINFO:
    965 	case ODIOCWDINFO:
    966 	case ODIOCSDINFO:
    967 	case ODIOCGDEFLABEL:
    968 #endif
    969 	case DIOCGPART:
    970 	case DIOCWLABEL:
    971 	case DIOCGDEFLABEL:
    972 	case RAIDFRAME_SHUTDOWN:
    973 	case RAIDFRAME_REWRITEPARITY:
    974 	case RAIDFRAME_GET_INFO:
    975 	case RAIDFRAME_RESET_ACCTOTALS:
    976 	case RAIDFRAME_GET_ACCTOTALS:
    977 	case RAIDFRAME_KEEP_ACCTOTALS:
    978 	case RAIDFRAME_GET_SIZE:
    979 	case RAIDFRAME_FAIL_DISK:
    980 	case RAIDFRAME_COPYBACK:
    981 	case RAIDFRAME_CHECK_RECON_STATUS:
    982 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    983 	case RAIDFRAME_GET_COMPONENT_LABEL:
    984 	case RAIDFRAME_SET_COMPONENT_LABEL:
    985 	case RAIDFRAME_ADD_HOT_SPARE:
    986 	case RAIDFRAME_REMOVE_HOT_SPARE:
    987 	case RAIDFRAME_INIT_LABELS:
    988 	case RAIDFRAME_REBUILD_IN_PLACE:
    989 	case RAIDFRAME_CHECK_PARITY:
    990 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    991 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    992 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    993 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    994 	case RAIDFRAME_SET_AUTOCONFIG:
    995 	case RAIDFRAME_SET_ROOT:
    996 	case RAIDFRAME_DELETE_COMPONENT:
    997 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    998 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    999 			return (ENXIO);
   1000 	}
   1001 
   1002 	switch (cmd) {
   1003 
   1004 		/* configure the system */
   1005 	case RAIDFRAME_CONFIGURE:
   1006 
   1007 		if (raidPtr->valid) {
   1008 			/* There is a valid RAID set running on this unit! */
   1009 			printf("raid%d: Device already configured!\n",unit);
   1010 			return(EINVAL);
   1011 		}
   1012 
   1013 		/* copy-in the configuration information */
   1014 		/* data points to a pointer to the configuration structure */
   1015 
   1016 		u_cfg = *((RF_Config_t **) data);
   1017 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1018 		if (k_cfg == NULL) {
   1019 			return (ENOMEM);
   1020 		}
   1021 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1022 		if (retcode) {
   1023 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1024 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1025 				retcode));
   1026 			return (retcode);
   1027 		}
   1028 		/* allocate a buffer for the layout-specific data, and copy it
   1029 		 * in */
   1030 		if (k_cfg->layoutSpecificSize) {
   1031 			if (k_cfg->layoutSpecificSize > 10000) {
   1032 				/* sanity check */
   1033 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1034 				return (EINVAL);
   1035 			}
   1036 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1037 			    (u_char *));
   1038 			if (specific_buf == NULL) {
   1039 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1040 				return (ENOMEM);
   1041 			}
   1042 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1043 			    k_cfg->layoutSpecificSize);
   1044 			if (retcode) {
   1045 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1046 				RF_Free(specific_buf,
   1047 					k_cfg->layoutSpecificSize);
   1048 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1049 					retcode));
   1050 				return (retcode);
   1051 			}
   1052 		} else
   1053 			specific_buf = NULL;
   1054 		k_cfg->layoutSpecific = specific_buf;
   1055 
   1056 		/* should do some kind of sanity check on the configuration.
   1057 		 * Store the sum of all the bytes in the last byte? */
   1058 
   1059 		/* configure the system */
   1060 
   1061 		/*
   1062 		 * Clear the entire RAID descriptor, just to make sure
   1063 		 *  there is no stale data left in the case of a
   1064 		 *  reconfiguration
   1065 		 */
   1066 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1067 		raidPtr->raidid = unit;
   1068 
   1069 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1070 
   1071 		if (retcode == 0) {
   1072 
   1073 			/* allow this many simultaneous IO's to
   1074 			   this RAID device */
   1075 			raidPtr->openings = RAIDOUTSTANDING;
   1076 
   1077 			raidinit(raidPtr);
   1078 			rf_markalldirty(raidPtr);
   1079 		}
   1080 		/* free the buffers.  No return code here. */
   1081 		if (k_cfg->layoutSpecificSize) {
   1082 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1083 		}
   1084 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1085 
   1086 		return (retcode);
   1087 
   1088 		/* shutdown the system */
   1089 	case RAIDFRAME_SHUTDOWN:
   1090 
   1091 		if ((error = raidlock(rs)) != 0)
   1092 			return (error);
   1093 
   1094 		/*
   1095 		 * If somebody has a partition mounted, we shouldn't
   1096 		 * shutdown.
   1097 		 */
   1098 
   1099 		part = DISKPART(dev);
   1100 		pmask = (1 << part);
   1101 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1102 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1103 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1104 			raidunlock(rs);
   1105 			return (EBUSY);
   1106 		}
   1107 
   1108 		retcode = rf_Shutdown(raidPtr);
   1109 
   1110 		/* It's no longer initialized... */
   1111 		rs->sc_flags &= ~RAIDF_INITED;
   1112 
   1113 		/* Detach the disk. */
   1114 		disk_detach(&rs->sc_dkdev);
   1115 
   1116 		raidunlock(rs);
   1117 
   1118 		return (retcode);
   1119 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1120 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1121 		/* need to read the component label for the disk indicated
   1122 		   by row,column in clabel */
   1123 
   1124 		/* For practice, let's get it directly fromdisk, rather
   1125 		   than from the in-core copy */
   1126 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1127 			   (RF_ComponentLabel_t *));
   1128 		if (clabel == NULL)
   1129 			return (ENOMEM);
   1130 
   1131 		memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
   1132 
   1133 		retcode = copyin( *clabel_ptr, clabel,
   1134 				  sizeof(RF_ComponentLabel_t));
   1135 
   1136 		if (retcode) {
   1137 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1138 			return(retcode);
   1139 		}
   1140 
   1141 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1142 
   1143 		column = clabel->column;
   1144 
   1145 		if ((column < 0) || (column >= raidPtr->numCol +
   1146 				     raidPtr->numSpare)) {
   1147 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1148 			return(EINVAL);
   1149 		}
   1150 
   1151 		raidread_component_label(raidPtr->Disks[column].dev,
   1152 				raidPtr->raid_cinfo[column].ci_vp,
   1153 				clabel );
   1154 
   1155 		retcode = copyout(clabel, *clabel_ptr,
   1156 				  sizeof(RF_ComponentLabel_t));
   1157 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1158 		return (retcode);
   1159 
   1160 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1161 		clabel = (RF_ComponentLabel_t *) data;
   1162 
   1163 		/* XXX check the label for valid stuff... */
   1164 		/* Note that some things *should not* get modified --
   1165 		   the user should be re-initing the labels instead of
   1166 		   trying to patch things.
   1167 		   */
   1168 
   1169 		raidid = raidPtr->raidid;
   1170 #if DEBUG
   1171 		printf("raid%d: Got component label:\n", raidid);
   1172 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1173 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1174 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1175 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1176 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1177 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1178 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1179 #endif
   1180 		clabel->row = 0;
   1181 		column = clabel->column;
   1182 
   1183 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1184 			return(EINVAL);
   1185 		}
   1186 
   1187 		/* XXX this isn't allowed to do anything for now :-) */
   1188 
   1189 		/* XXX and before it is, we need to fill in the rest
   1190 		   of the fields!?!?!?! */
   1191 #if 0
   1192 		raidwrite_component_label(
   1193                             raidPtr->Disks[column].dev,
   1194 			    raidPtr->raid_cinfo[column].ci_vp,
   1195 			    clabel );
   1196 #endif
   1197 		return (0);
   1198 
   1199 	case RAIDFRAME_INIT_LABELS:
   1200 		clabel = (RF_ComponentLabel_t *) data;
   1201 		/*
   1202 		   we only want the serial number from
   1203 		   the above.  We get all the rest of the information
   1204 		   from the config that was used to create this RAID
   1205 		   set.
   1206 		   */
   1207 
   1208 		raidPtr->serial_number = clabel->serial_number;
   1209 
   1210 		raid_init_component_label(raidPtr, &ci_label);
   1211 		ci_label.serial_number = clabel->serial_number;
   1212 		ci_label.row = 0; /* we dont' pretend to support more */
   1213 
   1214 		for(column=0;column<raidPtr->numCol;column++) {
   1215 			diskPtr = &raidPtr->Disks[column];
   1216 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1217 				ci_label.partitionSize = diskPtr->partitionSize;
   1218 				ci_label.column = column;
   1219 				raidwrite_component_label(
   1220 							  raidPtr->Disks[column].dev,
   1221 							  raidPtr->raid_cinfo[column].ci_vp,
   1222 							  &ci_label );
   1223 			}
   1224 		}
   1225 
   1226 		return (retcode);
   1227 	case RAIDFRAME_SET_AUTOCONFIG:
   1228 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1229 		printf("raid%d: New autoconfig value is: %d\n",
   1230 		       raidPtr->raidid, d);
   1231 		*(int *) data = d;
   1232 		return (retcode);
   1233 
   1234 	case RAIDFRAME_SET_ROOT:
   1235 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1236 		printf("raid%d: New rootpartition value is: %d\n",
   1237 		       raidPtr->raidid, d);
   1238 		*(int *) data = d;
   1239 		return (retcode);
   1240 
   1241 		/* initialize all parity */
   1242 	case RAIDFRAME_REWRITEPARITY:
   1243 
   1244 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1245 			/* Parity for RAID 0 is trivially correct */
   1246 			raidPtr->parity_good = RF_RAID_CLEAN;
   1247 			return(0);
   1248 		}
   1249 
   1250 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1251 			/* Re-write is already in progress! */
   1252 			return(EINVAL);
   1253 		}
   1254 
   1255 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1256 					   rf_RewriteParityThread,
   1257 					   raidPtr,"raid_parity");
   1258 		return (retcode);
   1259 
   1260 
   1261 	case RAIDFRAME_ADD_HOT_SPARE:
   1262 		sparePtr = (RF_SingleComponent_t *) data;
   1263 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1264 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1265 		return(retcode);
   1266 
   1267 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1268 		return(retcode);
   1269 
   1270 	case RAIDFRAME_DELETE_COMPONENT:
   1271 		componentPtr = (RF_SingleComponent_t *)data;
   1272 		memcpy( &component, componentPtr,
   1273 			sizeof(RF_SingleComponent_t));
   1274 		retcode = rf_delete_component(raidPtr, &component);
   1275 		return(retcode);
   1276 
   1277 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1278 		componentPtr = (RF_SingleComponent_t *)data;
   1279 		memcpy( &component, componentPtr,
   1280 			sizeof(RF_SingleComponent_t));
   1281 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1282 		return(retcode);
   1283 
   1284 	case RAIDFRAME_REBUILD_IN_PLACE:
   1285 
   1286 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1287 			/* Can't do this on a RAID 0!! */
   1288 			return(EINVAL);
   1289 		}
   1290 
   1291 		if (raidPtr->recon_in_progress == 1) {
   1292 			/* a reconstruct is already in progress! */
   1293 			return(EINVAL);
   1294 		}
   1295 
   1296 		componentPtr = (RF_SingleComponent_t *) data;
   1297 		memcpy( &component, componentPtr,
   1298 			sizeof(RF_SingleComponent_t));
   1299 		component.row = 0; /* we don't support any more */
   1300 		column = component.column;
   1301 
   1302 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1303 			return(EINVAL);
   1304 		}
   1305 
   1306 		RF_LOCK_MUTEX(raidPtr->mutex);
   1307 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1308 		    (raidPtr->numFailures > 0)) {
   1309 			/* XXX 0 above shouldn't be constant!!! */
   1310 			/* some component other than this has failed.
   1311 			   Let's not make things worse than they already
   1312 			   are... */
   1313 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1314 			       raidPtr->raidid);
   1315 			printf("raid%d:     Col: %d   Too many failures.\n",
   1316 			       raidPtr->raidid, column);
   1317 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1318 			return (EINVAL);
   1319 		}
   1320 		if (raidPtr->Disks[column].status ==
   1321 		    rf_ds_reconstructing) {
   1322 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1323 			       raidPtr->raidid);
   1324 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1325 
   1326 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1327 			return (EINVAL);
   1328 		}
   1329 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1330 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1331 			return (EINVAL);
   1332 		}
   1333 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1334 
   1335 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1336 		if (rrcopy == NULL)
   1337 			return(ENOMEM);
   1338 
   1339 		rrcopy->raidPtr = (void *) raidPtr;
   1340 		rrcopy->col = column;
   1341 
   1342 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1343 					   rf_ReconstructInPlaceThread,
   1344 					   rrcopy,"raid_reconip");
   1345 		return(retcode);
   1346 
   1347 	case RAIDFRAME_GET_INFO:
   1348 		if (!raidPtr->valid)
   1349 			return (ENODEV);
   1350 		ucfgp = (RF_DeviceConfig_t **) data;
   1351 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1352 			  (RF_DeviceConfig_t *));
   1353 		if (d_cfg == NULL)
   1354 			return (ENOMEM);
   1355 		memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
   1356 		d_cfg->rows = 1; /* there is only 1 row now */
   1357 		d_cfg->cols = raidPtr->numCol;
   1358 		d_cfg->ndevs = raidPtr->numCol;
   1359 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1360 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1361 			return (ENOMEM);
   1362 		}
   1363 		d_cfg->nspares = raidPtr->numSpare;
   1364 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1365 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1366 			return (ENOMEM);
   1367 		}
   1368 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1369 		d = 0;
   1370 		for (j = 0; j < d_cfg->cols; j++) {
   1371 			d_cfg->devs[d] = raidPtr->Disks[j];
   1372 			d++;
   1373 		}
   1374 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1375 			d_cfg->spares[i] = raidPtr->Disks[j];
   1376 		}
   1377 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1378 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1379 
   1380 		return (retcode);
   1381 
   1382 	case RAIDFRAME_CHECK_PARITY:
   1383 		*(int *) data = raidPtr->parity_good;
   1384 		return (0);
   1385 
   1386 	case RAIDFRAME_RESET_ACCTOTALS:
   1387 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1388 		return (0);
   1389 
   1390 	case RAIDFRAME_GET_ACCTOTALS:
   1391 		totals = (RF_AccTotals_t *) data;
   1392 		*totals = raidPtr->acc_totals;
   1393 		return (0);
   1394 
   1395 	case RAIDFRAME_KEEP_ACCTOTALS:
   1396 		raidPtr->keep_acc_totals = *(int *)data;
   1397 		return (0);
   1398 
   1399 	case RAIDFRAME_GET_SIZE:
   1400 		*(int *) data = raidPtr->totalSectors;
   1401 		return (0);
   1402 
   1403 		/* fail a disk & optionally start reconstruction */
   1404 	case RAIDFRAME_FAIL_DISK:
   1405 
   1406 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1407 			/* Can't do this on a RAID 0!! */
   1408 			return(EINVAL);
   1409 		}
   1410 
   1411 		rr = (struct rf_recon_req *) data;
   1412 		rr->row = 0;
   1413 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1414 			return (EINVAL);
   1415 
   1416 
   1417 		RF_LOCK_MUTEX(raidPtr->mutex);
   1418 		if (raidPtr->status == rf_rs_reconstructing) {
   1419 			/* you can't fail a disk while we're reconstructing! */
   1420 			/* XXX wrong for RAID6 */
   1421 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1422 			return (EINVAL);
   1423 		}
   1424 		if ((raidPtr->Disks[rr->col].status ==
   1425 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1426 			/* some other component has failed.  Let's not make
   1427 			   things worse. XXX wrong for RAID6 */
   1428 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1429 			return (EINVAL);
   1430 		}
   1431 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1432 			/* Can't fail a spared disk! */
   1433 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1434 			return (EINVAL);
   1435 		}
   1436 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1437 
   1438 		/* make a copy of the recon request so that we don't rely on
   1439 		 * the user's buffer */
   1440 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1441 		if (rrcopy == NULL)
   1442 			return(ENOMEM);
   1443 		memcpy(rrcopy, rr, sizeof(*rr));
   1444 		rrcopy->raidPtr = (void *) raidPtr;
   1445 
   1446 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1447 					   rf_ReconThread,
   1448 					   rrcopy,"raid_recon");
   1449 		return (0);
   1450 
   1451 		/* invoke a copyback operation after recon on whatever disk
   1452 		 * needs it, if any */
   1453 	case RAIDFRAME_COPYBACK:
   1454 
   1455 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1456 			/* This makes no sense on a RAID 0!! */
   1457 			return(EINVAL);
   1458 		}
   1459 
   1460 		if (raidPtr->copyback_in_progress == 1) {
   1461 			/* Copyback is already in progress! */
   1462 			return(EINVAL);
   1463 		}
   1464 
   1465 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1466 					   rf_CopybackThread,
   1467 					   raidPtr,"raid_copyback");
   1468 		return (retcode);
   1469 
   1470 		/* return the percentage completion of reconstruction */
   1471 	case RAIDFRAME_CHECK_RECON_STATUS:
   1472 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1473 			/* This makes no sense on a RAID 0, so tell the
   1474 			   user it's done. */
   1475 			*(int *) data = 100;
   1476 			return(0);
   1477 		}
   1478 		if (raidPtr->status != rf_rs_reconstructing)
   1479 			*(int *) data = 100;
   1480 		else {
   1481 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1482 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1483 			} else {
   1484 				*(int *) data = 0;
   1485 			}
   1486 		}
   1487 		return (0);
   1488 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1489 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1490 		if (raidPtr->status != rf_rs_reconstructing) {
   1491 			progressInfo.remaining = 0;
   1492 			progressInfo.completed = 100;
   1493 			progressInfo.total = 100;
   1494 		} else {
   1495 			progressInfo.total =
   1496 				raidPtr->reconControl->numRUsTotal;
   1497 			progressInfo.completed =
   1498 				raidPtr->reconControl->numRUsComplete;
   1499 			progressInfo.remaining = progressInfo.total -
   1500 				progressInfo.completed;
   1501 		}
   1502 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1503 				  sizeof(RF_ProgressInfo_t));
   1504 		return (retcode);
   1505 
   1506 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1507 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1508 			/* This makes no sense on a RAID 0, so tell the
   1509 			   user it's done. */
   1510 			*(int *) data = 100;
   1511 			return(0);
   1512 		}
   1513 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1514 			*(int *) data = 100 *
   1515 				raidPtr->parity_rewrite_stripes_done /
   1516 				raidPtr->Layout.numStripe;
   1517 		} else {
   1518 			*(int *) data = 100;
   1519 		}
   1520 		return (0);
   1521 
   1522 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1523 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1524 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1525 			progressInfo.total = raidPtr->Layout.numStripe;
   1526 			progressInfo.completed =
   1527 				raidPtr->parity_rewrite_stripes_done;
   1528 			progressInfo.remaining = progressInfo.total -
   1529 				progressInfo.completed;
   1530 		} else {
   1531 			progressInfo.remaining = 0;
   1532 			progressInfo.completed = 100;
   1533 			progressInfo.total = 100;
   1534 		}
   1535 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1536 				  sizeof(RF_ProgressInfo_t));
   1537 		return (retcode);
   1538 
   1539 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1540 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1541 			/* This makes no sense on a RAID 0 */
   1542 			*(int *) data = 100;
   1543 			return(0);
   1544 		}
   1545 		if (raidPtr->copyback_in_progress == 1) {
   1546 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1547 				raidPtr->Layout.numStripe;
   1548 		} else {
   1549 			*(int *) data = 100;
   1550 		}
   1551 		return (0);
   1552 
   1553 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1554 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1555 		if (raidPtr->copyback_in_progress == 1) {
   1556 			progressInfo.total = raidPtr->Layout.numStripe;
   1557 			progressInfo.completed =
   1558 				raidPtr->copyback_stripes_done;
   1559 			progressInfo.remaining = progressInfo.total -
   1560 				progressInfo.completed;
   1561 		} else {
   1562 			progressInfo.remaining = 0;
   1563 			progressInfo.completed = 100;
   1564 			progressInfo.total = 100;
   1565 		}
   1566 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1567 				  sizeof(RF_ProgressInfo_t));
   1568 		return (retcode);
   1569 
   1570 		/* the sparetable daemon calls this to wait for the kernel to
   1571 		 * need a spare table. this ioctl does not return until a
   1572 		 * spare table is needed. XXX -- calling mpsleep here in the
   1573 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1574 		 * -- I should either compute the spare table in the kernel,
   1575 		 * or have a different -- XXX XXX -- interface (a different
   1576 		 * character device) for delivering the table     -- XXX */
   1577 #if 0
   1578 	case RAIDFRAME_SPARET_WAIT:
   1579 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1580 		while (!rf_sparet_wait_queue)
   1581 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1582 		waitreq = rf_sparet_wait_queue;
   1583 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1584 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1585 
   1586 		/* structure assignment */
   1587 		*((RF_SparetWait_t *) data) = *waitreq;
   1588 
   1589 		RF_Free(waitreq, sizeof(*waitreq));
   1590 		return (0);
   1591 
   1592 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1593 		 * code in it that will cause the dameon to exit */
   1594 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1595 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1596 		waitreq->fcol = -1;
   1597 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1598 		waitreq->next = rf_sparet_wait_queue;
   1599 		rf_sparet_wait_queue = waitreq;
   1600 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1601 		wakeup(&rf_sparet_wait_queue);
   1602 		return (0);
   1603 
   1604 		/* used by the spare table daemon to deliver a spare table
   1605 		 * into the kernel */
   1606 	case RAIDFRAME_SEND_SPARET:
   1607 
   1608 		/* install the spare table */
   1609 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1610 
   1611 		/* respond to the requestor.  the return status of the spare
   1612 		 * table installation is passed in the "fcol" field */
   1613 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1614 		waitreq->fcol = retcode;
   1615 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1616 		waitreq->next = rf_sparet_resp_queue;
   1617 		rf_sparet_resp_queue = waitreq;
   1618 		wakeup(&rf_sparet_resp_queue);
   1619 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1620 
   1621 		return (retcode);
   1622 #endif
   1623 
   1624 	default:
   1625 		break; /* fall through to the os-specific code below */
   1626 
   1627 	}
   1628 
   1629 	if (!raidPtr->valid)
   1630 		return (EINVAL);
   1631 
   1632 	/*
   1633 	 * Add support for "regular" device ioctls here.
   1634 	 */
   1635 
   1636 	switch (cmd) {
   1637 	case DIOCGDINFO:
   1638 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1639 		break;
   1640 #ifdef __HAVE_OLD_DISKLABEL
   1641 	case ODIOCGDINFO:
   1642 		newlabel = *(rs->sc_dkdev.dk_label);
   1643 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1644 			return ENOTTY;
   1645 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1646 		break;
   1647 #endif
   1648 
   1649 	case DIOCGPART:
   1650 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1651 		((struct partinfo *) data)->part =
   1652 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1653 		break;
   1654 
   1655 	case DIOCWDINFO:
   1656 	case DIOCSDINFO:
   1657 #ifdef __HAVE_OLD_DISKLABEL
   1658 	case ODIOCWDINFO:
   1659 	case ODIOCSDINFO:
   1660 #endif
   1661 	{
   1662 		struct disklabel *lp;
   1663 #ifdef __HAVE_OLD_DISKLABEL
   1664 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1665 			memset(&newlabel, 0, sizeof newlabel);
   1666 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1667 			lp = &newlabel;
   1668 		} else
   1669 #endif
   1670 		lp = (struct disklabel *)data;
   1671 
   1672 		if ((error = raidlock(rs)) != 0)
   1673 			return (error);
   1674 
   1675 		rs->sc_flags |= RAIDF_LABELLING;
   1676 
   1677 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1678 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1679 		if (error == 0) {
   1680 			if (cmd == DIOCWDINFO
   1681 #ifdef __HAVE_OLD_DISKLABEL
   1682 			    || cmd == ODIOCWDINFO
   1683 #endif
   1684 			   )
   1685 				error = writedisklabel(RAIDLABELDEV(dev),
   1686 				    raidstrategy, rs->sc_dkdev.dk_label,
   1687 				    rs->sc_dkdev.dk_cpulabel);
   1688 		}
   1689 		rs->sc_flags &= ~RAIDF_LABELLING;
   1690 
   1691 		raidunlock(rs);
   1692 
   1693 		if (error)
   1694 			return (error);
   1695 		break;
   1696 	}
   1697 
   1698 	case DIOCWLABEL:
   1699 		if (*(int *) data != 0)
   1700 			rs->sc_flags |= RAIDF_WLABEL;
   1701 		else
   1702 			rs->sc_flags &= ~RAIDF_WLABEL;
   1703 		break;
   1704 
   1705 	case DIOCGDEFLABEL:
   1706 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1707 		break;
   1708 
   1709 #ifdef __HAVE_OLD_DISKLABEL
   1710 	case ODIOCGDEFLABEL:
   1711 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1712 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1713 			return ENOTTY;
   1714 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1715 		break;
   1716 #endif
   1717 
   1718 	default:
   1719 		retcode = ENOTTY;
   1720 	}
   1721 	return (retcode);
   1722 
   1723 }
   1724 
   1725 
   1726 /* raidinit -- complete the rest of the initialization for the
   1727    RAIDframe device.  */
   1728 
   1729 
   1730 static void
   1731 raidinit(RF_Raid_t *raidPtr)
   1732 {
   1733 	struct raid_softc *rs;
   1734 	int     unit;
   1735 
   1736 	unit = raidPtr->raidid;
   1737 
   1738 	rs = &raid_softc[unit];
   1739 
   1740 	/* XXX should check return code first... */
   1741 	rs->sc_flags |= RAIDF_INITED;
   1742 
   1743 	/* XXX doesn't check bounds. */
   1744 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1745 
   1746 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1747 
   1748 	/* disk_attach actually creates space for the CPU disklabel, among
   1749 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1750 	 * with disklabels. */
   1751 
   1752 	disk_attach(&rs->sc_dkdev);
   1753 
   1754 	/* XXX There may be a weird interaction here between this, and
   1755 	 * protectedSectors, as used in RAIDframe.  */
   1756 
   1757 	rs->sc_size = raidPtr->totalSectors;
   1758 }
   1759 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1760 /* wake up the daemon & tell it to get us a spare table
   1761  * XXX
   1762  * the entries in the queues should be tagged with the raidPtr
   1763  * so that in the extremely rare case that two recons happen at once,
   1764  * we know for which device were requesting a spare table
   1765  * XXX
   1766  *
   1767  * XXX This code is not currently used. GO
   1768  */
   1769 int
   1770 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1771 {
   1772 	int     retcode;
   1773 
   1774 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1775 	req->next = rf_sparet_wait_queue;
   1776 	rf_sparet_wait_queue = req;
   1777 	wakeup(&rf_sparet_wait_queue);
   1778 
   1779 	/* mpsleep unlocks the mutex */
   1780 	while (!rf_sparet_resp_queue) {
   1781 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1782 		    "raidframe getsparetable", 0);
   1783 	}
   1784 	req = rf_sparet_resp_queue;
   1785 	rf_sparet_resp_queue = req->next;
   1786 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1787 
   1788 	retcode = req->fcol;
   1789 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1790 					 * alloc'd */
   1791 	return (retcode);
   1792 }
   1793 #endif
   1794 
   1795 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1796  * bp & passes it down.
   1797  * any calls originating in the kernel must use non-blocking I/O
   1798  * do some extra sanity checking to return "appropriate" error values for
   1799  * certain conditions (to make some standard utilities work)
   1800  *
   1801  * Formerly known as: rf_DoAccessKernel
   1802  */
   1803 void
   1804 raidstart(RF_Raid_t *raidPtr)
   1805 {
   1806 	RF_SectorCount_t num_blocks, pb, sum;
   1807 	RF_RaidAddr_t raid_addr;
   1808 	struct partition *pp;
   1809 	daddr_t blocknum;
   1810 	int     unit;
   1811 	struct raid_softc *rs;
   1812 	int     do_async;
   1813 	struct buf *bp;
   1814 	int rc;
   1815 
   1816 	unit = raidPtr->raidid;
   1817 	rs = &raid_softc[unit];
   1818 
   1819 	/* quick check to see if anything has died recently */
   1820 	RF_LOCK_MUTEX(raidPtr->mutex);
   1821 	if (raidPtr->numNewFailures > 0) {
   1822 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1823 		rf_update_component_labels(raidPtr,
   1824 					   RF_NORMAL_COMPONENT_UPDATE);
   1825 		RF_LOCK_MUTEX(raidPtr->mutex);
   1826 		raidPtr->numNewFailures--;
   1827 	}
   1828 
   1829 	/* Check to see if we're at the limit... */
   1830 	while (raidPtr->openings > 0) {
   1831 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1832 
   1833 		/* get the next item, if any, from the queue */
   1834 		if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
   1835 			/* nothing more to do */
   1836 			return;
   1837 		}
   1838 
   1839 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1840 		 * partition.. Need to make it absolute to the underlying
   1841 		 * device.. */
   1842 
   1843 		blocknum = bp->b_blkno;
   1844 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1845 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1846 			blocknum += pp->p_offset;
   1847 		}
   1848 
   1849 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1850 			    (int) blocknum));
   1851 
   1852 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1853 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1854 
   1855 		/* *THIS* is where we adjust what block we're going to...
   1856 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1857 		raid_addr = blocknum;
   1858 
   1859 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1860 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1861 		sum = raid_addr + num_blocks + pb;
   1862 		if (1 || rf_debugKernelAccess) {
   1863 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1864 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1865 				    (int) pb, (int) bp->b_resid));
   1866 		}
   1867 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1868 		    || (sum < num_blocks) || (sum < pb)) {
   1869 			bp->b_error = ENOSPC;
   1870 			bp->b_flags |= B_ERROR;
   1871 			bp->b_resid = bp->b_bcount;
   1872 			biodone(bp);
   1873 			RF_LOCK_MUTEX(raidPtr->mutex);
   1874 			continue;
   1875 		}
   1876 		/*
   1877 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1878 		 */
   1879 
   1880 		if (bp->b_bcount & raidPtr->sectorMask) {
   1881 			bp->b_error = EINVAL;
   1882 			bp->b_flags |= B_ERROR;
   1883 			bp->b_resid = bp->b_bcount;
   1884 			biodone(bp);
   1885 			RF_LOCK_MUTEX(raidPtr->mutex);
   1886 			continue;
   1887 
   1888 		}
   1889 		db1_printf(("Calling DoAccess..\n"));
   1890 
   1891 
   1892 		RF_LOCK_MUTEX(raidPtr->mutex);
   1893 		raidPtr->openings--;
   1894 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1895 
   1896 		/*
   1897 		 * Everything is async.
   1898 		 */
   1899 		do_async = 1;
   1900 
   1901 		disk_busy(&rs->sc_dkdev);
   1902 
   1903 		/* XXX we're still at splbio() here... do we *really*
   1904 		   need to be? */
   1905 
   1906 		/* don't ever condition on bp->b_flags & B_WRITE.
   1907 		 * always condition on B_READ instead */
   1908 
   1909 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1910 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1911 				 do_async, raid_addr, num_blocks,
   1912 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1913 
   1914 		if (rc) {
   1915 			bp->b_error = rc;
   1916 			bp->b_flags |= B_ERROR;
   1917 			bp->b_resid = bp->b_bcount;
   1918 			biodone(bp);
   1919 			/* continue loop */
   1920 		}
   1921 
   1922 		RF_LOCK_MUTEX(raidPtr->mutex);
   1923 	}
   1924 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1925 }
   1926 
   1927 
   1928 
   1929 
   1930 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1931 
   1932 int
   1933 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1934 {
   1935 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1936 	struct buf *bp;
   1937 	struct raidbuf *raidbp = NULL;
   1938 
   1939 	req->queue = queue;
   1940 
   1941 #if DIAGNOSTIC
   1942 	if (queue->raidPtr->raidid >= numraid) {
   1943 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1944 		    numraid);
   1945 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1946 	}
   1947 #endif
   1948 
   1949 	bp = req->bp;
   1950 #if 1
   1951 	/* XXX when there is a physical disk failure, someone is passing us a
   1952 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1953 	 * without taking a performance hit... (not sure where the real bug
   1954 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1955 
   1956 	if (bp->b_flags & B_ERROR) {
   1957 		bp->b_flags &= ~B_ERROR;
   1958 	}
   1959 	if (bp->b_error != 0) {
   1960 		bp->b_error = 0;
   1961 	}
   1962 #endif
   1963 	raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
   1964 	if (raidbp == NULL) {
   1965 		bp->b_flags |= B_ERROR;
   1966 		bp->b_error = ENOMEM;
   1967 		return (ENOMEM);
   1968 	}
   1969 	BUF_INIT(&raidbp->rf_buf);
   1970 
   1971 	/*
   1972 	 * context for raidiodone
   1973 	 */
   1974 	raidbp->rf_obp = bp;
   1975 	raidbp->req = req;
   1976 
   1977 	BIO_COPYPRIO(&raidbp->rf_buf, bp);
   1978 
   1979 	switch (req->type) {
   1980 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1981 		/* XXX need to do something extra here.. */
   1982 		/* I'm leaving this in, as I've never actually seen it used,
   1983 		 * and I'd like folks to report it... GO */
   1984 		printf(("WAKEUP CALLED\n"));
   1985 		queue->numOutstanding++;
   1986 
   1987 		/* XXX need to glue the original buffer into this??  */
   1988 
   1989 		KernelWakeupFunc(&raidbp->rf_buf);
   1990 		break;
   1991 
   1992 	case RF_IO_TYPE_READ:
   1993 	case RF_IO_TYPE_WRITE:
   1994 #if RF_ACC_TRACE > 0
   1995 		if (req->tracerec) {
   1996 			RF_ETIMER_START(req->tracerec->timer);
   1997 		}
   1998 #endif
   1999 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   2000 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   2001 		    req->sectorOffset, req->numSector,
   2002 		    req->buf, KernelWakeupFunc, (void *) req,
   2003 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2004 
   2005 		if (rf_debugKernelAccess) {
   2006 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2007 				(long) bp->b_blkno));
   2008 		}
   2009 		queue->numOutstanding++;
   2010 		queue->last_deq_sector = req->sectorOffset;
   2011 		/* acc wouldn't have been let in if there were any pending
   2012 		 * reqs at any other priority */
   2013 		queue->curPriority = req->priority;
   2014 
   2015 		db1_printf(("Going for %c to unit %d col %d\n",
   2016 			    req->type, queue->raidPtr->raidid,
   2017 			    queue->col));
   2018 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2019 			(int) req->sectorOffset, (int) req->numSector,
   2020 			(int) (req->numSector <<
   2021 			    queue->raidPtr->logBytesPerSector),
   2022 			(int) queue->raidPtr->logBytesPerSector));
   2023 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   2024 			raidbp->rf_buf.b_vp->v_numoutput++;
   2025 		}
   2026 		VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
   2027 
   2028 		break;
   2029 
   2030 	default:
   2031 		panic("bad req->type in rf_DispatchKernelIO");
   2032 	}
   2033 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2034 
   2035 	return (0);
   2036 }
   2037 /* this is the callback function associated with a I/O invoked from
   2038    kernel code.
   2039  */
   2040 static void
   2041 KernelWakeupFunc(struct buf *vbp)
   2042 {
   2043 	RF_DiskQueueData_t *req = NULL;
   2044 	RF_DiskQueue_t *queue;
   2045 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   2046 	struct buf *bp;
   2047 	int s;
   2048 
   2049 	s = splbio();
   2050 	db1_printf(("recovering the request queue:\n"));
   2051 	req = raidbp->req;
   2052 
   2053 	bp = raidbp->rf_obp;
   2054 
   2055 	queue = (RF_DiskQueue_t *) req->queue;
   2056 
   2057 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   2058 		bp->b_flags |= B_ERROR;
   2059 		bp->b_error = raidbp->rf_buf.b_error ?
   2060 		    raidbp->rf_buf.b_error : EIO;
   2061 	}
   2062 
   2063 	/* XXX methinks this could be wrong... */
   2064 #if 1
   2065 	bp->b_resid = raidbp->rf_buf.b_resid;
   2066 #endif
   2067 #if RF_ACC_TRACE > 0
   2068 	if (req->tracerec) {
   2069 		RF_ETIMER_STOP(req->tracerec->timer);
   2070 		RF_ETIMER_EVAL(req->tracerec->timer);
   2071 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2072 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2073 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2074 		req->tracerec->num_phys_ios++;
   2075 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2076 	}
   2077 #endif
   2078 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   2079 
   2080 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   2081 	 * ballistic, and mark the component as hosed... */
   2082 
   2083 	if (bp->b_flags & B_ERROR) {
   2084 		/* Mark the disk as dead */
   2085 		/* but only mark it once... */
   2086 		/* and only if it wouldn't leave this RAID set
   2087 		   completely broken */
   2088 		if (((queue->raidPtr->Disks[queue->col].status ==
   2089 		      rf_ds_optimal) ||
   2090 		     (queue->raidPtr->Disks[queue->col].status ==
   2091 		      rf_ds_used_spare)) &&
   2092 		     (queue->raidPtr->numFailures <
   2093 		         queue->raidPtr->Layout.map->faultsTolerated)) {
   2094 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2095 			       queue->raidPtr->raidid,
   2096 			       queue->raidPtr->Disks[queue->col].devname);
   2097 			queue->raidPtr->Disks[queue->col].status =
   2098 			    rf_ds_failed;
   2099 			queue->raidPtr->status = rf_rs_degraded;
   2100 			queue->raidPtr->numFailures++;
   2101 			queue->raidPtr->numNewFailures++;
   2102 		} else {	/* Disk is already dead... */
   2103 			/* printf("Disk already marked as dead!\n"); */
   2104 		}
   2105 
   2106 	}
   2107 
   2108 	pool_put(&rf_pools.cbuf, raidbp);
   2109 
   2110 	/* Fill in the error value */
   2111 
   2112 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   2113 
   2114 	simple_lock(&queue->raidPtr->iodone_lock);
   2115 
   2116 	/* Drop this one on the "finished" queue... */
   2117 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2118 
   2119 	/* Let the raidio thread know there is work to be done. */
   2120 	wakeup(&(queue->raidPtr->iodone));
   2121 
   2122 	simple_unlock(&queue->raidPtr->iodone_lock);
   2123 
   2124 	splx(s);
   2125 }
   2126 
   2127 
   2128 
   2129 /*
   2130  * initialize a buf structure for doing an I/O in the kernel.
   2131  */
   2132 static void
   2133 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2134        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t bf,
   2135        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2136        struct proc *b_proc)
   2137 {
   2138 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2139 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2140 	bp->b_bcount = numSect << logBytesPerSector;
   2141 	bp->b_bufsize = bp->b_bcount;
   2142 	bp->b_error = 0;
   2143 	bp->b_dev = dev;
   2144 	bp->b_data = bf;
   2145 	bp->b_blkno = startSect;
   2146 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2147 	if (bp->b_bcount == 0) {
   2148 		panic("bp->b_bcount is zero in InitBP!!");
   2149 	}
   2150 	bp->b_proc = b_proc;
   2151 	bp->b_iodone = cbFunc;
   2152 	bp->b_vp = b_vp;
   2153 
   2154 }
   2155 
   2156 static void
   2157 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2158 		    struct disklabel *lp)
   2159 {
   2160 	memset(lp, 0, sizeof(*lp));
   2161 
   2162 	/* fabricate a label... */
   2163 	lp->d_secperunit = raidPtr->totalSectors;
   2164 	lp->d_secsize = raidPtr->bytesPerSector;
   2165 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2166 	lp->d_ntracks = 4 * raidPtr->numCol;
   2167 	lp->d_ncylinders = raidPtr->totalSectors /
   2168 		(lp->d_nsectors * lp->d_ntracks);
   2169 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2170 
   2171 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2172 	lp->d_type = DTYPE_RAID;
   2173 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2174 	lp->d_rpm = 3600;
   2175 	lp->d_interleave = 1;
   2176 	lp->d_flags = 0;
   2177 
   2178 	lp->d_partitions[RAW_PART].p_offset = 0;
   2179 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2180 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2181 	lp->d_npartitions = RAW_PART + 1;
   2182 
   2183 	lp->d_magic = DISKMAGIC;
   2184 	lp->d_magic2 = DISKMAGIC;
   2185 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2186 
   2187 }
   2188 /*
   2189  * Read the disklabel from the raid device.  If one is not present, fake one
   2190  * up.
   2191  */
   2192 static void
   2193 raidgetdisklabel(dev_t dev)
   2194 {
   2195 	int     unit = raidunit(dev);
   2196 	struct raid_softc *rs = &raid_softc[unit];
   2197 	const char   *errstring;
   2198 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2199 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2200 	RF_Raid_t *raidPtr;
   2201 
   2202 	db1_printf(("Getting the disklabel...\n"));
   2203 
   2204 	memset(clp, 0, sizeof(*clp));
   2205 
   2206 	raidPtr = raidPtrs[unit];
   2207 
   2208 	raidgetdefaultlabel(raidPtr, rs, lp);
   2209 
   2210 	/*
   2211 	 * Call the generic disklabel extraction routine.
   2212 	 */
   2213 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2214 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2215 	if (errstring)
   2216 		raidmakedisklabel(rs);
   2217 	else {
   2218 		int     i;
   2219 		struct partition *pp;
   2220 
   2221 		/*
   2222 		 * Sanity check whether the found disklabel is valid.
   2223 		 *
   2224 		 * This is necessary since total size of the raid device
   2225 		 * may vary when an interleave is changed even though exactly
   2226 		 * same componets are used, and old disklabel may used
   2227 		 * if that is found.
   2228 		 */
   2229 		if (lp->d_secperunit != rs->sc_size)
   2230 			printf("raid%d: WARNING: %s: "
   2231 			    "total sector size in disklabel (%d) != "
   2232 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2233 			    lp->d_secperunit, (long) rs->sc_size);
   2234 		for (i = 0; i < lp->d_npartitions; i++) {
   2235 			pp = &lp->d_partitions[i];
   2236 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2237 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2238 				       "exceeds the size of raid (%ld)\n",
   2239 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2240 		}
   2241 	}
   2242 
   2243 }
   2244 /*
   2245  * Take care of things one might want to take care of in the event
   2246  * that a disklabel isn't present.
   2247  */
   2248 static void
   2249 raidmakedisklabel(struct raid_softc *rs)
   2250 {
   2251 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2252 	db1_printf(("Making a label..\n"));
   2253 
   2254 	/*
   2255 	 * For historical reasons, if there's no disklabel present
   2256 	 * the raw partition must be marked FS_BSDFFS.
   2257 	 */
   2258 
   2259 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2260 
   2261 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2262 
   2263 	lp->d_checksum = dkcksum(lp);
   2264 }
   2265 /*
   2266  * Lookup the provided name in the filesystem.  If the file exists,
   2267  * is a valid block device, and isn't being used by anyone else,
   2268  * set *vpp to the file's vnode.
   2269  * You'll find the original of this in ccd.c
   2270  */
   2271 int
   2272 raidlookup(char *path, struct proc *p, struct vnode **vpp)
   2273 {
   2274 	struct nameidata nd;
   2275 	struct vnode *vp;
   2276 	struct vattr va;
   2277 	int     error;
   2278 
   2279 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   2280 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2281 		return (error);
   2282 	}
   2283 	vp = nd.ni_vp;
   2284 	if (vp->v_usecount > 1) {
   2285 		VOP_UNLOCK(vp, 0);
   2286 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2287 		return (EBUSY);
   2288 	}
   2289 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   2290 		VOP_UNLOCK(vp, 0);
   2291 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2292 		return (error);
   2293 	}
   2294 	/* XXX: eventually we should handle VREG, too. */
   2295 	if (va.va_type != VBLK) {
   2296 		VOP_UNLOCK(vp, 0);
   2297 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2298 		return (ENOTBLK);
   2299 	}
   2300 	VOP_UNLOCK(vp, 0);
   2301 	*vpp = vp;
   2302 	return (0);
   2303 }
   2304 /*
   2305  * Wait interruptibly for an exclusive lock.
   2306  *
   2307  * XXX
   2308  * Several drivers do this; it should be abstracted and made MP-safe.
   2309  * (Hmm... where have we seen this warning before :->  GO )
   2310  */
   2311 static int
   2312 raidlock(struct raid_softc *rs)
   2313 {
   2314 	int     error;
   2315 
   2316 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2317 		rs->sc_flags |= RAIDF_WANTED;
   2318 		if ((error =
   2319 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2320 			return (error);
   2321 	}
   2322 	rs->sc_flags |= RAIDF_LOCKED;
   2323 	return (0);
   2324 }
   2325 /*
   2326  * Unlock and wake up any waiters.
   2327  */
   2328 static void
   2329 raidunlock(struct raid_softc *rs)
   2330 {
   2331 
   2332 	rs->sc_flags &= ~RAIDF_LOCKED;
   2333 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2334 		rs->sc_flags &= ~RAIDF_WANTED;
   2335 		wakeup(rs);
   2336 	}
   2337 }
   2338 
   2339 
   2340 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2341 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2342 
   2343 int
   2344 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2345 {
   2346 	RF_ComponentLabel_t clabel;
   2347 	raidread_component_label(dev, b_vp, &clabel);
   2348 	clabel.mod_counter = mod_counter;
   2349 	clabel.clean = RF_RAID_CLEAN;
   2350 	raidwrite_component_label(dev, b_vp, &clabel);
   2351 	return(0);
   2352 }
   2353 
   2354 
   2355 int
   2356 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2357 {
   2358 	RF_ComponentLabel_t clabel;
   2359 	raidread_component_label(dev, b_vp, &clabel);
   2360 	clabel.mod_counter = mod_counter;
   2361 	clabel.clean = RF_RAID_DIRTY;
   2362 	raidwrite_component_label(dev, b_vp, &clabel);
   2363 	return(0);
   2364 }
   2365 
   2366 /* ARGSUSED */
   2367 int
   2368 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2369 			 RF_ComponentLabel_t *clabel)
   2370 {
   2371 	struct buf *bp;
   2372 	const struct bdevsw *bdev;
   2373 	int error;
   2374 
   2375 	/* XXX should probably ensure that we don't try to do this if
   2376 	   someone has changed rf_protected_sectors. */
   2377 
   2378 	if (b_vp == NULL) {
   2379 		/* For whatever reason, this component is not valid.
   2380 		   Don't try to read a component label from it. */
   2381 		return(EINVAL);
   2382 	}
   2383 
   2384 	/* get a block of the appropriate size... */
   2385 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2386 	bp->b_dev = dev;
   2387 
   2388 	/* get our ducks in a row for the read */
   2389 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2390 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2391 	bp->b_flags |= B_READ;
   2392  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2393 
   2394 	bdev = bdevsw_lookup(bp->b_dev);
   2395 	if (bdev == NULL)
   2396 		return (ENXIO);
   2397 	(*bdev->d_strategy)(bp);
   2398 
   2399 	error = biowait(bp);
   2400 
   2401 	if (!error) {
   2402 		memcpy(clabel, bp->b_data,
   2403 		       sizeof(RF_ComponentLabel_t));
   2404         }
   2405 
   2406 	brelse(bp);
   2407 	return(error);
   2408 }
   2409 /* ARGSUSED */
   2410 int
   2411 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2412 			  RF_ComponentLabel_t *clabel)
   2413 {
   2414 	struct buf *bp;
   2415 	const struct bdevsw *bdev;
   2416 	int error;
   2417 
   2418 	/* get a block of the appropriate size... */
   2419 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2420 	bp->b_dev = dev;
   2421 
   2422 	/* get our ducks in a row for the write */
   2423 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2424 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2425 	bp->b_flags |= B_WRITE;
   2426  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2427 
   2428 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2429 
   2430 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2431 
   2432 	bdev = bdevsw_lookup(bp->b_dev);
   2433 	if (bdev == NULL)
   2434 		return (ENXIO);
   2435 	(*bdev->d_strategy)(bp);
   2436 	error = biowait(bp);
   2437 	brelse(bp);
   2438 	if (error) {
   2439 #if 1
   2440 		printf("Failed to write RAID component info!\n");
   2441 #endif
   2442 	}
   2443 
   2444 	return(error);
   2445 }
   2446 
   2447 void
   2448 rf_markalldirty(RF_Raid_t *raidPtr)
   2449 {
   2450 	RF_ComponentLabel_t clabel;
   2451 	int sparecol;
   2452 	int c;
   2453 	int j;
   2454 	int scol = -1;
   2455 
   2456 	raidPtr->mod_counter++;
   2457 	for (c = 0; c < raidPtr->numCol; c++) {
   2458 		/* we don't want to touch (at all) a disk that has
   2459 		   failed */
   2460 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2461 			raidread_component_label(
   2462 						 raidPtr->Disks[c].dev,
   2463 						 raidPtr->raid_cinfo[c].ci_vp,
   2464 						 &clabel);
   2465 			if (clabel.status == rf_ds_spared) {
   2466 				/* XXX do something special...
   2467 				   but whatever you do, don't
   2468 				   try to access it!! */
   2469 			} else {
   2470 				raidmarkdirty(
   2471 					      raidPtr->Disks[c].dev,
   2472 					      raidPtr->raid_cinfo[c].ci_vp,
   2473 					      raidPtr->mod_counter);
   2474 			}
   2475 		}
   2476 	}
   2477 
   2478 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2479 		sparecol = raidPtr->numCol + c;
   2480 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2481 			/*
   2482 
   2483 			   we claim this disk is "optimal" if it's
   2484 			   rf_ds_used_spare, as that means it should be
   2485 			   directly substitutable for the disk it replaced.
   2486 			   We note that too...
   2487 
   2488 			 */
   2489 
   2490 			for(j=0;j<raidPtr->numCol;j++) {
   2491 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2492 					scol = j;
   2493 					break;
   2494 				}
   2495 			}
   2496 
   2497 			raidread_component_label(
   2498 				 raidPtr->Disks[sparecol].dev,
   2499 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2500 				 &clabel);
   2501 			/* make sure status is noted */
   2502 
   2503 			raid_init_component_label(raidPtr, &clabel);
   2504 
   2505 			clabel.row = 0;
   2506 			clabel.column = scol;
   2507 			/* Note: we *don't* change status from rf_ds_used_spare
   2508 			   to rf_ds_optimal */
   2509 			/* clabel.status = rf_ds_optimal; */
   2510 
   2511 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2512 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2513 				      raidPtr->mod_counter);
   2514 		}
   2515 	}
   2516 }
   2517 
   2518 
   2519 void
   2520 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2521 {
   2522 	RF_ComponentLabel_t clabel;
   2523 	int sparecol;
   2524 	int c;
   2525 	int j;
   2526 	int scol;
   2527 
   2528 	scol = -1;
   2529 
   2530 	/* XXX should do extra checks to make sure things really are clean,
   2531 	   rather than blindly setting the clean bit... */
   2532 
   2533 	raidPtr->mod_counter++;
   2534 
   2535 	for (c = 0; c < raidPtr->numCol; c++) {
   2536 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2537 			raidread_component_label(
   2538 						 raidPtr->Disks[c].dev,
   2539 						 raidPtr->raid_cinfo[c].ci_vp,
   2540 						 &clabel);
   2541 				/* make sure status is noted */
   2542 			clabel.status = rf_ds_optimal;
   2543 				/* bump the counter */
   2544 			clabel.mod_counter = raidPtr->mod_counter;
   2545 
   2546 			raidwrite_component_label(
   2547 						  raidPtr->Disks[c].dev,
   2548 						  raidPtr->raid_cinfo[c].ci_vp,
   2549 						  &clabel);
   2550 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2551 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2552 					raidmarkclean(
   2553 						      raidPtr->Disks[c].dev,
   2554 						      raidPtr->raid_cinfo[c].ci_vp,
   2555 						      raidPtr->mod_counter);
   2556 				}
   2557 			}
   2558 		}
   2559 		/* else we don't touch it.. */
   2560 	}
   2561 
   2562 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2563 		sparecol = raidPtr->numCol + c;
   2564 		/* Need to ensure that the reconstruct actually completed! */
   2565 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2566 			/*
   2567 
   2568 			   we claim this disk is "optimal" if it's
   2569 			   rf_ds_used_spare, as that means it should be
   2570 			   directly substitutable for the disk it replaced.
   2571 			   We note that too...
   2572 
   2573 			 */
   2574 
   2575 			for(j=0;j<raidPtr->numCol;j++) {
   2576 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2577 					scol = j;
   2578 					break;
   2579 				}
   2580 			}
   2581 
   2582 			/* XXX shouldn't *really* need this... */
   2583 			raidread_component_label(
   2584 				      raidPtr->Disks[sparecol].dev,
   2585 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2586 				      &clabel);
   2587 			/* make sure status is noted */
   2588 
   2589 			raid_init_component_label(raidPtr, &clabel);
   2590 
   2591 			clabel.mod_counter = raidPtr->mod_counter;
   2592 			clabel.column = scol;
   2593 			clabel.status = rf_ds_optimal;
   2594 
   2595 			raidwrite_component_label(
   2596 				      raidPtr->Disks[sparecol].dev,
   2597 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2598 				      &clabel);
   2599 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2600 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2601 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2602 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2603 						       raidPtr->mod_counter);
   2604 				}
   2605 			}
   2606 		}
   2607 	}
   2608 }
   2609 
   2610 void
   2611 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2612 {
   2613 	struct proc *p;
   2614 
   2615 	p = raidPtr->engine_thread;
   2616 
   2617 	if (vp != NULL) {
   2618 		if (auto_configured == 1) {
   2619 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2620 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2621 			vput(vp);
   2622 
   2623 		} else {
   2624 			(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   2625 		}
   2626 	}
   2627 }
   2628 
   2629 
   2630 void
   2631 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2632 {
   2633 	int r,c;
   2634 	struct vnode *vp;
   2635 	int acd;
   2636 
   2637 
   2638 	/* We take this opportunity to close the vnodes like we should.. */
   2639 
   2640 	for (c = 0; c < raidPtr->numCol; c++) {
   2641 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2642 		acd = raidPtr->Disks[c].auto_configured;
   2643 		rf_close_component(raidPtr, vp, acd);
   2644 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2645 		raidPtr->Disks[c].auto_configured = 0;
   2646 	}
   2647 
   2648 	for (r = 0; r < raidPtr->numSpare; r++) {
   2649 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2650 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2651 		rf_close_component(raidPtr, vp, acd);
   2652 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2653 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2654 	}
   2655 }
   2656 
   2657 
   2658 void
   2659 rf_ReconThread(struct rf_recon_req *req)
   2660 {
   2661 	int     s;
   2662 	RF_Raid_t *raidPtr;
   2663 
   2664 	s = splbio();
   2665 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2666 	raidPtr->recon_in_progress = 1;
   2667 
   2668 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2669 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2670 
   2671 	RF_Free(req, sizeof(*req));
   2672 
   2673 	raidPtr->recon_in_progress = 0;
   2674 	splx(s);
   2675 
   2676 	/* That's all... */
   2677 	kthread_exit(0);        /* does not return */
   2678 }
   2679 
   2680 void
   2681 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2682 {
   2683 	int retcode;
   2684 	int s;
   2685 
   2686 	raidPtr->parity_rewrite_stripes_done = 0;
   2687 	raidPtr->parity_rewrite_in_progress = 1;
   2688 	s = splbio();
   2689 	retcode = rf_RewriteParity(raidPtr);
   2690 	splx(s);
   2691 	if (retcode) {
   2692 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2693 	} else {
   2694 		/* set the clean bit!  If we shutdown correctly,
   2695 		   the clean bit on each component label will get
   2696 		   set */
   2697 		raidPtr->parity_good = RF_RAID_CLEAN;
   2698 	}
   2699 	raidPtr->parity_rewrite_in_progress = 0;
   2700 
   2701 	/* Anyone waiting for us to stop?  If so, inform them... */
   2702 	if (raidPtr->waitShutdown) {
   2703 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2704 	}
   2705 
   2706 	/* That's all... */
   2707 	kthread_exit(0);        /* does not return */
   2708 }
   2709 
   2710 
   2711 void
   2712 rf_CopybackThread(RF_Raid_t *raidPtr)
   2713 {
   2714 	int s;
   2715 
   2716 	raidPtr->copyback_in_progress = 1;
   2717 	s = splbio();
   2718 	rf_CopybackReconstructedData(raidPtr);
   2719 	splx(s);
   2720 	raidPtr->copyback_in_progress = 0;
   2721 
   2722 	/* That's all... */
   2723 	kthread_exit(0);        /* does not return */
   2724 }
   2725 
   2726 
   2727 void
   2728 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2729 {
   2730 	int s;
   2731 	RF_Raid_t *raidPtr;
   2732 
   2733 	s = splbio();
   2734 	raidPtr = req->raidPtr;
   2735 	raidPtr->recon_in_progress = 1;
   2736 	rf_ReconstructInPlace(raidPtr, req->col);
   2737 	RF_Free(req, sizeof(*req));
   2738 	raidPtr->recon_in_progress = 0;
   2739 	splx(s);
   2740 
   2741 	/* That's all... */
   2742 	kthread_exit(0);        /* does not return */
   2743 }
   2744 
   2745 RF_AutoConfig_t *
   2746 rf_find_raid_components()
   2747 {
   2748 	struct vnode *vp;
   2749 	struct disklabel label;
   2750 	struct device *dv;
   2751 	dev_t dev;
   2752 	int bmajor;
   2753 	int error;
   2754 	int i;
   2755 	int good_one;
   2756 	RF_ComponentLabel_t *clabel;
   2757 	RF_AutoConfig_t *ac_list;
   2758 	RF_AutoConfig_t *ac;
   2759 
   2760 
   2761 	/* initialize the AutoConfig list */
   2762 	ac_list = NULL;
   2763 
   2764 	/* we begin by trolling through *all* the devices on the system */
   2765 
   2766 	for (dv = alldevs.tqh_first; dv != NULL;
   2767 	     dv = dv->dv_list.tqe_next) {
   2768 
   2769 		/* we are only interested in disks... */
   2770 		if (dv->dv_class != DV_DISK)
   2771 			continue;
   2772 
   2773 		/* we don't care about floppies... */
   2774 		if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
   2775 			continue;
   2776 		}
   2777 
   2778 		/* we don't care about CD's... */
   2779 		if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
   2780 			continue;
   2781 		}
   2782 
   2783 		/* hdfd is the Atari/Hades floppy driver */
   2784 		if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
   2785 			continue;
   2786 		}
   2787 		/* fdisa is the Atari/Milan floppy driver */
   2788 		if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
   2789 			continue;
   2790 		}
   2791 
   2792 		/* need to find the device_name_to_block_device_major stuff */
   2793 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2794 
   2795 		/* get a vnode for the raw partition of this disk */
   2796 
   2797 		dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
   2798 		if (bdevvp(dev, &vp))
   2799 			panic("RAID can't alloc vnode");
   2800 
   2801 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2802 
   2803 		if (error) {
   2804 			/* "Who cares."  Continue looking
   2805 			   for something that exists*/
   2806 			vput(vp);
   2807 			continue;
   2808 		}
   2809 
   2810 		/* Ok, the disk exists.  Go get the disklabel. */
   2811 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2812 		if (error) {
   2813 			/*
   2814 			 * XXX can't happen - open() would
   2815 			 * have errored out (or faked up one)
   2816 			 */
   2817 			if (error != ENOTTY)
   2818 				printf("RAIDframe: can't get label for dev "
   2819 				    "%s (%d)\n", dv->dv_xname, error);
   2820 		}
   2821 
   2822 		/* don't need this any more.  We'll allocate it again
   2823 		   a little later if we really do... */
   2824 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2825 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2826 		vput(vp);
   2827 
   2828 		if (error)
   2829 			continue;
   2830 
   2831 		for (i=0; i < label.d_npartitions; i++) {
   2832 			/* We only support partitions marked as RAID */
   2833 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2834 				continue;
   2835 
   2836 			dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
   2837 			if (bdevvp(dev, &vp))
   2838 				panic("RAID can't alloc vnode");
   2839 
   2840 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2841 			if (error) {
   2842 				/* Whatever... */
   2843 				vput(vp);
   2844 				continue;
   2845 			}
   2846 
   2847 			good_one = 0;
   2848 
   2849 			clabel = (RF_ComponentLabel_t *)
   2850 				malloc(sizeof(RF_ComponentLabel_t),
   2851 				       M_RAIDFRAME, M_NOWAIT);
   2852 			if (clabel == NULL) {
   2853 				/* XXX CLEANUP HERE */
   2854 				printf("RAID auto config: out of memory!\n");
   2855 				return(NULL); /* XXX probably should panic? */
   2856 			}
   2857 
   2858 			if (!raidread_component_label(dev, vp, clabel)) {
   2859 				/* Got the label.  Does it look reasonable? */
   2860 				if (rf_reasonable_label(clabel) &&
   2861 				    (clabel->partitionSize <=
   2862 				     label.d_partitions[i].p_size)) {
   2863 #if DEBUG
   2864 					printf("Component on: %s%c: %d\n",
   2865 					       dv->dv_xname, 'a'+i,
   2866 					       label.d_partitions[i].p_size);
   2867 					rf_print_component_label(clabel);
   2868 #endif
   2869 					/* if it's reasonable, add it,
   2870 					   else ignore it. */
   2871 					ac = (RF_AutoConfig_t *)
   2872 						malloc(sizeof(RF_AutoConfig_t),
   2873 						       M_RAIDFRAME,
   2874 						       M_NOWAIT);
   2875 					if (ac == NULL) {
   2876 						/* XXX should panic?? */
   2877 						return(NULL);
   2878 					}
   2879 
   2880 					snprintf(ac->devname,
   2881 					    sizeof(ac->devname), "%s%c",
   2882 					    dv->dv_xname, 'a'+i);
   2883 					ac->dev = dev;
   2884 					ac->vp = vp;
   2885 					ac->clabel = clabel;
   2886 					ac->next = ac_list;
   2887 					ac_list = ac;
   2888 					good_one = 1;
   2889 				}
   2890 			}
   2891 			if (!good_one) {
   2892 				/* cleanup */
   2893 				free(clabel, M_RAIDFRAME);
   2894 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2895 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2896 				vput(vp);
   2897 			}
   2898 		}
   2899 	}
   2900 	return(ac_list);
   2901 }
   2902 
   2903 static int
   2904 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2905 {
   2906 
   2907 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2908 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2909 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2910 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2911 	    clabel->row >=0 &&
   2912 	    clabel->column >= 0 &&
   2913 	    clabel->num_rows > 0 &&
   2914 	    clabel->num_columns > 0 &&
   2915 	    clabel->row < clabel->num_rows &&
   2916 	    clabel->column < clabel->num_columns &&
   2917 	    clabel->blockSize > 0 &&
   2918 	    clabel->numBlocks > 0) {
   2919 		/* label looks reasonable enough... */
   2920 		return(1);
   2921 	}
   2922 	return(0);
   2923 }
   2924 
   2925 
   2926 #if DEBUG
   2927 void
   2928 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2929 {
   2930 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2931 	       clabel->row, clabel->column,
   2932 	       clabel->num_rows, clabel->num_columns);
   2933 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2934 	       clabel->version, clabel->serial_number,
   2935 	       clabel->mod_counter);
   2936 	printf("   Clean: %s Status: %d\n",
   2937 	       clabel->clean ? "Yes" : "No", clabel->status );
   2938 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2939 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2940 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2941 	       (char) clabel->parityConfig, clabel->blockSize,
   2942 	       clabel->numBlocks);
   2943 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2944 	printf("   Contains root partition: %s\n",
   2945 	       clabel->root_partition ? "Yes" : "No" );
   2946 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2947 #if 0
   2948 	   printf("   Config order: %d\n", clabel->config_order);
   2949 #endif
   2950 
   2951 }
   2952 #endif
   2953 
   2954 RF_ConfigSet_t *
   2955 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2956 {
   2957 	RF_AutoConfig_t *ac;
   2958 	RF_ConfigSet_t *config_sets;
   2959 	RF_ConfigSet_t *cset;
   2960 	RF_AutoConfig_t *ac_next;
   2961 
   2962 
   2963 	config_sets = NULL;
   2964 
   2965 	/* Go through the AutoConfig list, and figure out which components
   2966 	   belong to what sets.  */
   2967 	ac = ac_list;
   2968 	while(ac!=NULL) {
   2969 		/* we're going to putz with ac->next, so save it here
   2970 		   for use at the end of the loop */
   2971 		ac_next = ac->next;
   2972 
   2973 		if (config_sets == NULL) {
   2974 			/* will need at least this one... */
   2975 			config_sets = (RF_ConfigSet_t *)
   2976 				malloc(sizeof(RF_ConfigSet_t),
   2977 				       M_RAIDFRAME, M_NOWAIT);
   2978 			if (config_sets == NULL) {
   2979 				panic("rf_create_auto_sets: No memory!");
   2980 			}
   2981 			/* this one is easy :) */
   2982 			config_sets->ac = ac;
   2983 			config_sets->next = NULL;
   2984 			config_sets->rootable = 0;
   2985 			ac->next = NULL;
   2986 		} else {
   2987 			/* which set does this component fit into? */
   2988 			cset = config_sets;
   2989 			while(cset!=NULL) {
   2990 				if (rf_does_it_fit(cset, ac)) {
   2991 					/* looks like it matches... */
   2992 					ac->next = cset->ac;
   2993 					cset->ac = ac;
   2994 					break;
   2995 				}
   2996 				cset = cset->next;
   2997 			}
   2998 			if (cset==NULL) {
   2999 				/* didn't find a match above... new set..*/
   3000 				cset = (RF_ConfigSet_t *)
   3001 					malloc(sizeof(RF_ConfigSet_t),
   3002 					       M_RAIDFRAME, M_NOWAIT);
   3003 				if (cset == NULL) {
   3004 					panic("rf_create_auto_sets: No memory!");
   3005 				}
   3006 				cset->ac = ac;
   3007 				ac->next = NULL;
   3008 				cset->next = config_sets;
   3009 				cset->rootable = 0;
   3010 				config_sets = cset;
   3011 			}
   3012 		}
   3013 		ac = ac_next;
   3014 	}
   3015 
   3016 
   3017 	return(config_sets);
   3018 }
   3019 
   3020 static int
   3021 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3022 {
   3023 	RF_ComponentLabel_t *clabel1, *clabel2;
   3024 
   3025 	/* If this one matches the *first* one in the set, that's good
   3026 	   enough, since the other members of the set would have been
   3027 	   through here too... */
   3028 	/* note that we are not checking partitionSize here..
   3029 
   3030 	   Note that we are also not checking the mod_counters here.
   3031 	   If everything else matches execpt the mod_counter, that's
   3032 	   good enough for this test.  We will deal with the mod_counters
   3033 	   a little later in the autoconfiguration process.
   3034 
   3035 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3036 
   3037 	   The reason we don't check for this is that failed disks
   3038 	   will have lower modification counts.  If those disks are
   3039 	   not added to the set they used to belong to, then they will
   3040 	   form their own set, which may result in 2 different sets,
   3041 	   for example, competing to be configured at raid0, and
   3042 	   perhaps competing to be the root filesystem set.  If the
   3043 	   wrong ones get configured, or both attempt to become /,
   3044 	   weird behaviour and or serious lossage will occur.  Thus we
   3045 	   need to bring them into the fold here, and kick them out at
   3046 	   a later point.
   3047 
   3048 	*/
   3049 
   3050 	clabel1 = cset->ac->clabel;
   3051 	clabel2 = ac->clabel;
   3052 	if ((clabel1->version == clabel2->version) &&
   3053 	    (clabel1->serial_number == clabel2->serial_number) &&
   3054 	    (clabel1->num_rows == clabel2->num_rows) &&
   3055 	    (clabel1->num_columns == clabel2->num_columns) &&
   3056 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3057 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3058 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3059 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3060 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3061 	    (clabel1->blockSize == clabel2->blockSize) &&
   3062 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3063 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3064 	    (clabel1->root_partition == clabel2->root_partition) &&
   3065 	    (clabel1->last_unit == clabel2->last_unit) &&
   3066 	    (clabel1->config_order == clabel2->config_order)) {
   3067 		/* if it get's here, it almost *has* to be a match */
   3068 	} else {
   3069 		/* it's not consistent with somebody in the set..
   3070 		   punt */
   3071 		return(0);
   3072 	}
   3073 	/* all was fine.. it must fit... */
   3074 	return(1);
   3075 }
   3076 
   3077 int
   3078 rf_have_enough_components(RF_ConfigSet_t *cset)
   3079 {
   3080 	RF_AutoConfig_t *ac;
   3081 	RF_AutoConfig_t *auto_config;
   3082 	RF_ComponentLabel_t *clabel;
   3083 	int c;
   3084 	int num_cols;
   3085 	int num_missing;
   3086 	int mod_counter;
   3087 	int mod_counter_found;
   3088 	int even_pair_failed;
   3089 	char parity_type;
   3090 
   3091 
   3092 	/* check to see that we have enough 'live' components
   3093 	   of this set.  If so, we can configure it if necessary */
   3094 
   3095 	num_cols = cset->ac->clabel->num_columns;
   3096 	parity_type = cset->ac->clabel->parityConfig;
   3097 
   3098 	/* XXX Check for duplicate components!?!?!? */
   3099 
   3100 	/* Determine what the mod_counter is supposed to be for this set. */
   3101 
   3102 	mod_counter_found = 0;
   3103 	mod_counter = 0;
   3104 	ac = cset->ac;
   3105 	while(ac!=NULL) {
   3106 		if (mod_counter_found==0) {
   3107 			mod_counter = ac->clabel->mod_counter;
   3108 			mod_counter_found = 1;
   3109 		} else {
   3110 			if (ac->clabel->mod_counter > mod_counter) {
   3111 				mod_counter = ac->clabel->mod_counter;
   3112 			}
   3113 		}
   3114 		ac = ac->next;
   3115 	}
   3116 
   3117 	num_missing = 0;
   3118 	auto_config = cset->ac;
   3119 
   3120 	even_pair_failed = 0;
   3121 	for(c=0; c<num_cols; c++) {
   3122 		ac = auto_config;
   3123 		while(ac!=NULL) {
   3124 			if ((ac->clabel->column == c) &&
   3125 			    (ac->clabel->mod_counter == mod_counter)) {
   3126 				/* it's this one... */
   3127 #if DEBUG
   3128 				printf("Found: %s at %d\n",
   3129 				       ac->devname,c);
   3130 #endif
   3131 				break;
   3132 			}
   3133 			ac=ac->next;
   3134 		}
   3135 		if (ac==NULL) {
   3136 				/* Didn't find one here! */
   3137 				/* special case for RAID 1, especially
   3138 				   where there are more than 2
   3139 				   components (where RAIDframe treats
   3140 				   things a little differently :( ) */
   3141 			if (parity_type == '1') {
   3142 				if (c%2 == 0) { /* even component */
   3143 					even_pair_failed = 1;
   3144 				} else { /* odd component.  If
   3145 					    we're failed, and
   3146 					    so is the even
   3147 					    component, it's
   3148 					    "Good Night, Charlie" */
   3149 					if (even_pair_failed == 1) {
   3150 						return(0);
   3151 					}
   3152 				}
   3153 			} else {
   3154 				/* normal accounting */
   3155 				num_missing++;
   3156 			}
   3157 		}
   3158 		if ((parity_type == '1') && (c%2 == 1)) {
   3159 				/* Just did an even component, and we didn't
   3160 				   bail.. reset the even_pair_failed flag,
   3161 				   and go on to the next component.... */
   3162 			even_pair_failed = 0;
   3163 		}
   3164 	}
   3165 
   3166 	clabel = cset->ac->clabel;
   3167 
   3168 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3169 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3170 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3171 		/* XXX this needs to be made *much* more general */
   3172 		/* Too many failures */
   3173 		return(0);
   3174 	}
   3175 	/* otherwise, all is well, and we've got enough to take a kick
   3176 	   at autoconfiguring this set */
   3177 	return(1);
   3178 }
   3179 
   3180 void
   3181 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3182 			RF_Raid_t *raidPtr)
   3183 {
   3184 	RF_ComponentLabel_t *clabel;
   3185 	int i;
   3186 
   3187 	clabel = ac->clabel;
   3188 
   3189 	/* 1. Fill in the common stuff */
   3190 	config->numRow = clabel->num_rows = 1;
   3191 	config->numCol = clabel->num_columns;
   3192 	config->numSpare = 0; /* XXX should this be set here? */
   3193 	config->sectPerSU = clabel->sectPerSU;
   3194 	config->SUsPerPU = clabel->SUsPerPU;
   3195 	config->SUsPerRU = clabel->SUsPerRU;
   3196 	config->parityConfig = clabel->parityConfig;
   3197 	/* XXX... */
   3198 	strcpy(config->diskQueueType,"fifo");
   3199 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3200 	config->layoutSpecificSize = 0; /* XXX ?? */
   3201 
   3202 	while(ac!=NULL) {
   3203 		/* row/col values will be in range due to the checks
   3204 		   in reasonable_label() */
   3205 		strcpy(config->devnames[0][ac->clabel->column],
   3206 		       ac->devname);
   3207 		ac = ac->next;
   3208 	}
   3209 
   3210 	for(i=0;i<RF_MAXDBGV;i++) {
   3211 		config->debugVars[i][0] = 0;
   3212 	}
   3213 }
   3214 
   3215 int
   3216 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3217 {
   3218 	RF_ComponentLabel_t clabel;
   3219 	struct vnode *vp;
   3220 	dev_t dev;
   3221 	int column;
   3222 	int sparecol;
   3223 
   3224 	raidPtr->autoconfigure = new_value;
   3225 
   3226 	for(column=0; column<raidPtr->numCol; column++) {
   3227 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3228 			dev = raidPtr->Disks[column].dev;
   3229 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3230 			raidread_component_label(dev, vp, &clabel);
   3231 			clabel.autoconfigure = new_value;
   3232 			raidwrite_component_label(dev, vp, &clabel);
   3233 		}
   3234 	}
   3235 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3236 		sparecol = raidPtr->numCol + column;
   3237 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3238 			dev = raidPtr->Disks[sparecol].dev;
   3239 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3240 			raidread_component_label(dev, vp, &clabel);
   3241 			clabel.autoconfigure = new_value;
   3242 			raidwrite_component_label(dev, vp, &clabel);
   3243 		}
   3244 	}
   3245 	return(new_value);
   3246 }
   3247 
   3248 int
   3249 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3250 {
   3251 	RF_ComponentLabel_t clabel;
   3252 	struct vnode *vp;
   3253 	dev_t dev;
   3254 	int column;
   3255 	int sparecol;
   3256 
   3257 	raidPtr->root_partition = new_value;
   3258 	for(column=0; column<raidPtr->numCol; column++) {
   3259 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3260 			dev = raidPtr->Disks[column].dev;
   3261 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3262 			raidread_component_label(dev, vp, &clabel);
   3263 			clabel.root_partition = new_value;
   3264 			raidwrite_component_label(dev, vp, &clabel);
   3265 		}
   3266 	}
   3267 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3268 		sparecol = raidPtr->numCol + column;
   3269 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3270 			dev = raidPtr->Disks[sparecol].dev;
   3271 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3272 			raidread_component_label(dev, vp, &clabel);
   3273 			clabel.root_partition = new_value;
   3274 			raidwrite_component_label(dev, vp, &clabel);
   3275 		}
   3276 	}
   3277 	return(new_value);
   3278 }
   3279 
   3280 void
   3281 rf_release_all_vps(RF_ConfigSet_t *cset)
   3282 {
   3283 	RF_AutoConfig_t *ac;
   3284 
   3285 	ac = cset->ac;
   3286 	while(ac!=NULL) {
   3287 		/* Close the vp, and give it back */
   3288 		if (ac->vp) {
   3289 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3290 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3291 			vput(ac->vp);
   3292 			ac->vp = NULL;
   3293 		}
   3294 		ac = ac->next;
   3295 	}
   3296 }
   3297 
   3298 
   3299 void
   3300 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3301 {
   3302 	RF_AutoConfig_t *ac;
   3303 	RF_AutoConfig_t *next_ac;
   3304 
   3305 	ac = cset->ac;
   3306 	while(ac!=NULL) {
   3307 		next_ac = ac->next;
   3308 		/* nuke the label */
   3309 		free(ac->clabel, M_RAIDFRAME);
   3310 		/* cleanup the config structure */
   3311 		free(ac, M_RAIDFRAME);
   3312 		/* "next.." */
   3313 		ac = next_ac;
   3314 	}
   3315 	/* and, finally, nuke the config set */
   3316 	free(cset, M_RAIDFRAME);
   3317 }
   3318 
   3319 
   3320 void
   3321 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3322 {
   3323 	/* current version number */
   3324 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3325 	clabel->serial_number = raidPtr->serial_number;
   3326 	clabel->mod_counter = raidPtr->mod_counter;
   3327 	clabel->num_rows = 1;
   3328 	clabel->num_columns = raidPtr->numCol;
   3329 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3330 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3331 
   3332 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3333 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3334 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3335 
   3336 	clabel->blockSize = raidPtr->bytesPerSector;
   3337 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3338 
   3339 	/* XXX not portable */
   3340 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3341 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3342 	clabel->autoconfigure = raidPtr->autoconfigure;
   3343 	clabel->root_partition = raidPtr->root_partition;
   3344 	clabel->last_unit = raidPtr->raidid;
   3345 	clabel->config_order = raidPtr->config_order;
   3346 }
   3347 
   3348 int
   3349 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3350 {
   3351 	RF_Raid_t *raidPtr;
   3352 	RF_Config_t *config;
   3353 	int raidID;
   3354 	int retcode;
   3355 
   3356 #if DEBUG
   3357 	printf("RAID autoconfigure\n");
   3358 #endif
   3359 
   3360 	retcode = 0;
   3361 	*unit = -1;
   3362 
   3363 	/* 1. Create a config structure */
   3364 
   3365 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3366 				       M_RAIDFRAME,
   3367 				       M_NOWAIT);
   3368 	if (config==NULL) {
   3369 		printf("Out of mem!?!?\n");
   3370 				/* XXX do something more intelligent here. */
   3371 		return(1);
   3372 	}
   3373 
   3374 	memset(config, 0, sizeof(RF_Config_t));
   3375 
   3376 	/*
   3377 	   2. Figure out what RAID ID this one is supposed to live at
   3378 	   See if we can get the same RAID dev that it was configured
   3379 	   on last time..
   3380 	*/
   3381 
   3382 	raidID = cset->ac->clabel->last_unit;
   3383 	if ((raidID < 0) || (raidID >= numraid)) {
   3384 		/* let's not wander off into lala land. */
   3385 		raidID = numraid - 1;
   3386 	}
   3387 	if (raidPtrs[raidID]->valid != 0) {
   3388 
   3389 		/*
   3390 		   Nope... Go looking for an alternative...
   3391 		   Start high so we don't immediately use raid0 if that's
   3392 		   not taken.
   3393 		*/
   3394 
   3395 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3396 			if (raidPtrs[raidID]->valid == 0) {
   3397 				/* can use this one! */
   3398 				break;
   3399 			}
   3400 		}
   3401 	}
   3402 
   3403 	if (raidID < 0) {
   3404 		/* punt... */
   3405 		printf("Unable to auto configure this set!\n");
   3406 		printf("(Out of RAID devs!)\n");
   3407 		return(1);
   3408 	}
   3409 
   3410 #if DEBUG
   3411 	printf("Configuring raid%d:\n",raidID);
   3412 #endif
   3413 
   3414 	raidPtr = raidPtrs[raidID];
   3415 
   3416 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3417 	raidPtr->raidid = raidID;
   3418 	raidPtr->openings = RAIDOUTSTANDING;
   3419 
   3420 	/* 3. Build the configuration structure */
   3421 	rf_create_configuration(cset->ac, config, raidPtr);
   3422 
   3423 	/* 4. Do the configuration */
   3424 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3425 
   3426 	if (retcode == 0) {
   3427 
   3428 		raidinit(raidPtrs[raidID]);
   3429 
   3430 		rf_markalldirty(raidPtrs[raidID]);
   3431 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3432 		if (cset->ac->clabel->root_partition==1) {
   3433 			/* everything configured just fine.  Make a note
   3434 			   that this set is eligible to be root. */
   3435 			cset->rootable = 1;
   3436 			/* XXX do this here? */
   3437 			raidPtrs[raidID]->root_partition = 1;
   3438 		}
   3439 	}
   3440 
   3441 	/* 5. Cleanup */
   3442 	free(config, M_RAIDFRAME);
   3443 
   3444 	*unit = raidID;
   3445 	return(retcode);
   3446 }
   3447 
   3448 void
   3449 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3450 {
   3451 	struct buf *bp;
   3452 
   3453 	bp = (struct buf *)desc->bp;
   3454 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3455 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3456 }
   3457 
   3458 void
   3459 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3460 	     size_t xmin, size_t xmax)
   3461 {
   3462 	pool_init(p, size, 0, 0, 0, w_chan, NULL);
   3463 	pool_sethiwat(p, xmax);
   3464 	pool_prime(p, xmin);
   3465 	pool_setlowat(p, xmin);
   3466 }
   3467 
   3468 /*
   3469  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3470  * if there is IO pending and if that IO could possibly be done for a
   3471  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3472  * otherwise.
   3473  *
   3474  */
   3475 
   3476 int
   3477 rf_buf_queue_check(int raidid)
   3478 {
   3479 	if ((BUFQ_PEEK(&(raid_softc[raidid].buf_queue)) != NULL) &&
   3480 	    raidPtrs[raidid]->openings > 0) {
   3481 		/* there is work to do */
   3482 		return 0;
   3483 	}
   3484 	/* default is nothing to do */
   3485 	return 1;
   3486 }
   3487