rf_netbsdkintf.c revision 1.189 1 /* $NetBSD: rf_netbsdkintf.c,v 1.189 2005/09/24 22:51:55 oster Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.189 2005/09/24 22:51:55 oster Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/bufq.h>
169 #include <sys/user.h>
170 #include <sys/reboot.h>
171
172 #include <dev/raidframe/raidframevar.h>
173 #include <dev/raidframe/raidframeio.h>
174 #include "raid.h"
175 #include "opt_raid_autoconfig.h"
176 #include "rf_raid.h"
177 #include "rf_copyback.h"
178 #include "rf_dag.h"
179 #include "rf_dagflags.h"
180 #include "rf_desc.h"
181 #include "rf_diskqueue.h"
182 #include "rf_etimer.h"
183 #include "rf_general.h"
184 #include "rf_kintf.h"
185 #include "rf_options.h"
186 #include "rf_driver.h"
187 #include "rf_parityscan.h"
188 #include "rf_threadstuff.h"
189
190 #ifdef DEBUG
191 int rf_kdebug_level = 0;
192 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
193 #else /* DEBUG */
194 #define db1_printf(a) { }
195 #endif /* DEBUG */
196
197 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
198
199 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
200
201 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
202 * spare table */
203 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
204 * installation process */
205
206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
207
208 /* prototypes */
209 static void KernelWakeupFunc(struct buf *);
210 static void InitBP(struct buf *, struct vnode *, unsigned,
211 dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*) (struct buf *),
212 void *, int, struct proc *);
213 static void raidinit(RF_Raid_t *);
214
215 void raidattach(int);
216
217 dev_type_open(raidopen);
218 dev_type_close(raidclose);
219 dev_type_read(raidread);
220 dev_type_write(raidwrite);
221 dev_type_ioctl(raidioctl);
222 dev_type_strategy(raidstrategy);
223 dev_type_dump(raiddump);
224 dev_type_size(raidsize);
225
226 const struct bdevsw raid_bdevsw = {
227 raidopen, raidclose, raidstrategy, raidioctl,
228 raiddump, raidsize, D_DISK
229 };
230
231 const struct cdevsw raid_cdevsw = {
232 raidopen, raidclose, raidread, raidwrite, raidioctl,
233 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
234 };
235
236 /*
237 * Pilfered from ccd.c
238 */
239
240 struct raidbuf {
241 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
242 struct buf *rf_obp; /* ptr. to original I/O buf */
243 RF_DiskQueueData_t *req;/* the request that this was part of.. */
244 };
245
246 /* XXX Not sure if the following should be replacing the raidPtrs above,
247 or if it should be used in conjunction with that...
248 */
249
250 struct raid_softc {
251 int sc_flags; /* flags */
252 int sc_cflags; /* configuration flags */
253 size_t sc_size; /* size of the raid device */
254 char sc_xname[20]; /* XXX external name */
255 struct disk sc_dkdev; /* generic disk device info */
256 struct bufq_state buf_queue; /* used for the device queue */
257 };
258 /* sc_flags */
259 #define RAIDF_INITED 0x01 /* unit has been initialized */
260 #define RAIDF_WLABEL 0x02 /* label area is writable */
261 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
262 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
263 #define RAIDF_LOCKED 0x80 /* unit is locked */
264
265 #define raidunit(x) DISKUNIT(x)
266 int numraid = 0;
267
268 /*
269 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
270 * Be aware that large numbers can allow the driver to consume a lot of
271 * kernel memory, especially on writes, and in degraded mode reads.
272 *
273 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
274 * a single 64K write will typically require 64K for the old data,
275 * 64K for the old parity, and 64K for the new parity, for a total
276 * of 192K (if the parity buffer is not re-used immediately).
277 * Even it if is used immediately, that's still 128K, which when multiplied
278 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
279 *
280 * Now in degraded mode, for example, a 64K read on the above setup may
281 * require data reconstruction, which will require *all* of the 4 remaining
282 * disks to participate -- 4 * 32K/disk == 128K again.
283 */
284
285 #ifndef RAIDOUTSTANDING
286 #define RAIDOUTSTANDING 6
287 #endif
288
289 #define RAIDLABELDEV(dev) \
290 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
291
292 /* declared here, and made public, for the benefit of KVM stuff.. */
293 struct raid_softc *raid_softc;
294
295 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
296 struct disklabel *);
297 static void raidgetdisklabel(dev_t);
298 static void raidmakedisklabel(struct raid_softc *);
299
300 static int raidlock(struct raid_softc *);
301 static void raidunlock(struct raid_softc *);
302
303 static void rf_markalldirty(RF_Raid_t *);
304
305 struct device *raidrootdev;
306
307 void rf_ReconThread(struct rf_recon_req *);
308 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
309 void rf_CopybackThread(RF_Raid_t *raidPtr);
310 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
311 int rf_autoconfig(struct device *self);
312 void rf_buildroothack(RF_ConfigSet_t *);
313
314 RF_AutoConfig_t *rf_find_raid_components(void);
315 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
316 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
317 static int rf_reasonable_label(RF_ComponentLabel_t *);
318 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
319 int rf_set_autoconfig(RF_Raid_t *, int);
320 int rf_set_rootpartition(RF_Raid_t *, int);
321 void rf_release_all_vps(RF_ConfigSet_t *);
322 void rf_cleanup_config_set(RF_ConfigSet_t *);
323 int rf_have_enough_components(RF_ConfigSet_t *);
324 int rf_auto_config_set(RF_ConfigSet_t *, int *);
325
326 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
327 allow autoconfig to take place.
328 Note that this is overridden by having
329 RAID_AUTOCONFIG as an option in the
330 kernel config file. */
331
332 struct RF_Pools_s rf_pools;
333
334 void
335 raidattach(int num)
336 {
337 int raidID;
338 int i, rc;
339
340 #ifdef DEBUG
341 printf("raidattach: Asked for %d units\n", num);
342 #endif
343
344 if (num <= 0) {
345 #ifdef DIAGNOSTIC
346 panic("raidattach: count <= 0");
347 #endif
348 return;
349 }
350 /* This is where all the initialization stuff gets done. */
351
352 numraid = num;
353
354 /* Make some space for requested number of units... */
355
356 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
357 if (raidPtrs == NULL) {
358 panic("raidPtrs is NULL!!");
359 }
360
361 /* Initialize the component buffer pool. */
362 rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
363 "raidpl", num * RAIDOUTSTANDING,
364 2 * num * RAIDOUTSTANDING);
365
366 rf_mutex_init(&rf_sparet_wait_mutex);
367
368 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
369
370 for (i = 0; i < num; i++)
371 raidPtrs[i] = NULL;
372 rc = rf_BootRaidframe();
373 if (rc == 0)
374 printf("Kernelized RAIDframe activated\n");
375 else
376 panic("Serious error booting RAID!!");
377
378 /* put together some datastructures like the CCD device does.. This
379 * lets us lock the device and what-not when it gets opened. */
380
381 raid_softc = (struct raid_softc *)
382 malloc(num * sizeof(struct raid_softc),
383 M_RAIDFRAME, M_NOWAIT);
384 if (raid_softc == NULL) {
385 printf("WARNING: no memory for RAIDframe driver\n");
386 return;
387 }
388
389 memset(raid_softc, 0, num * sizeof(struct raid_softc));
390
391 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
392 M_RAIDFRAME, M_NOWAIT);
393 if (raidrootdev == NULL) {
394 panic("No memory for RAIDframe driver!!?!?!");
395 }
396
397 for (raidID = 0; raidID < num; raidID++) {
398 bufq_alloc(&raid_softc[raidID].buf_queue, BUFQ_FCFS);
399 pseudo_disk_init(&raid_softc[raidID].sc_dkdev);
400
401 raidrootdev[raidID].dv_class = DV_DISK;
402 raidrootdev[raidID].dv_cfdata = NULL;
403 raidrootdev[raidID].dv_unit = raidID;
404 raidrootdev[raidID].dv_parent = NULL;
405 raidrootdev[raidID].dv_flags = 0;
406 snprintf(raidrootdev[raidID].dv_xname,
407 sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
408
409 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
410 (RF_Raid_t *));
411 if (raidPtrs[raidID] == NULL) {
412 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
413 numraid = raidID;
414 return;
415 }
416 }
417
418 #ifdef RAID_AUTOCONFIG
419 raidautoconfig = 1;
420 #endif
421
422 /*
423 * Register a finalizer which will be used to auto-config RAID
424 * sets once all real hardware devices have been found.
425 */
426 if (config_finalize_register(NULL, rf_autoconfig) != 0)
427 printf("WARNING: unable to register RAIDframe finalizer\n");
428 }
429
430 int
431 rf_autoconfig(struct device *self)
432 {
433 RF_AutoConfig_t *ac_list;
434 RF_ConfigSet_t *config_sets;
435
436 if (raidautoconfig == 0)
437 return (0);
438
439 /* XXX This code can only be run once. */
440 raidautoconfig = 0;
441
442 /* 1. locate all RAID components on the system */
443 #ifdef DEBUG
444 printf("Searching for RAID components...\n");
445 #endif
446 ac_list = rf_find_raid_components();
447
448 /* 2. Sort them into their respective sets. */
449 config_sets = rf_create_auto_sets(ac_list);
450
451 /*
452 * 3. Evaluate each set andconfigure the valid ones.
453 * This gets done in rf_buildroothack().
454 */
455 rf_buildroothack(config_sets);
456
457 return (1);
458 }
459
460 void
461 rf_buildroothack(RF_ConfigSet_t *config_sets)
462 {
463 RF_ConfigSet_t *cset;
464 RF_ConfigSet_t *next_cset;
465 int retcode;
466 int raidID;
467 int rootID;
468 int num_root;
469
470 rootID = 0;
471 num_root = 0;
472 cset = config_sets;
473 while(cset != NULL ) {
474 next_cset = cset->next;
475 if (rf_have_enough_components(cset) &&
476 cset->ac->clabel->autoconfigure==1) {
477 retcode = rf_auto_config_set(cset,&raidID);
478 if (!retcode) {
479 if (cset->rootable) {
480 rootID = raidID;
481 num_root++;
482 }
483 } else {
484 /* The autoconfig didn't work :( */
485 #if DEBUG
486 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
487 #endif
488 rf_release_all_vps(cset);
489 }
490 } else {
491 /* we're not autoconfiguring this set...
492 release the associated resources */
493 rf_release_all_vps(cset);
494 }
495 /* cleanup */
496 rf_cleanup_config_set(cset);
497 cset = next_cset;
498 }
499
500 /* we found something bootable... */
501
502 if (num_root == 1) {
503 booted_device = &raidrootdev[rootID];
504 } else if (num_root > 1) {
505 /* we can't guess.. require the user to answer... */
506 boothowto |= RB_ASKNAME;
507 }
508 }
509
510
511 int
512 raidsize(dev_t dev)
513 {
514 struct raid_softc *rs;
515 struct disklabel *lp;
516 int part, unit, omask, size;
517
518 unit = raidunit(dev);
519 if (unit >= numraid)
520 return (-1);
521 rs = &raid_softc[unit];
522
523 if ((rs->sc_flags & RAIDF_INITED) == 0)
524 return (-1);
525
526 part = DISKPART(dev);
527 omask = rs->sc_dkdev.dk_openmask & (1 << part);
528 lp = rs->sc_dkdev.dk_label;
529
530 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
531 return (-1);
532
533 if (lp->d_partitions[part].p_fstype != FS_SWAP)
534 size = -1;
535 else
536 size = lp->d_partitions[part].p_size *
537 (lp->d_secsize / DEV_BSIZE);
538
539 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
540 return (-1);
541
542 return (size);
543
544 }
545
546 int
547 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
548 {
549 /* Not implemented. */
550 return ENXIO;
551 }
552 /* ARGSUSED */
553 int
554 raidopen(dev_t dev, int flags, int fmt, struct proc *p)
555 {
556 int unit = raidunit(dev);
557 struct raid_softc *rs;
558 struct disklabel *lp;
559 int part, pmask;
560 int error = 0;
561
562 if (unit >= numraid)
563 return (ENXIO);
564 rs = &raid_softc[unit];
565
566 if ((error = raidlock(rs)) != 0)
567 return (error);
568 lp = rs->sc_dkdev.dk_label;
569
570 part = DISKPART(dev);
571 pmask = (1 << part);
572
573 if ((rs->sc_flags & RAIDF_INITED) &&
574 (rs->sc_dkdev.dk_openmask == 0))
575 raidgetdisklabel(dev);
576
577 /* make sure that this partition exists */
578
579 if (part != RAW_PART) {
580 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
581 ((part >= lp->d_npartitions) ||
582 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
583 error = ENXIO;
584 raidunlock(rs);
585 return (error);
586 }
587 }
588 /* Prevent this unit from being unconfigured while open. */
589 switch (fmt) {
590 case S_IFCHR:
591 rs->sc_dkdev.dk_copenmask |= pmask;
592 break;
593
594 case S_IFBLK:
595 rs->sc_dkdev.dk_bopenmask |= pmask;
596 break;
597 }
598
599 if ((rs->sc_dkdev.dk_openmask == 0) &&
600 ((rs->sc_flags & RAIDF_INITED) != 0)) {
601 /* First one... mark things as dirty... Note that we *MUST*
602 have done a configure before this. I DO NOT WANT TO BE
603 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
604 THAT THEY BELONG TOGETHER!!!!! */
605 /* XXX should check to see if we're only open for reading
606 here... If so, we needn't do this, but then need some
607 other way of keeping track of what's happened.. */
608
609 rf_markalldirty( raidPtrs[unit] );
610 }
611
612
613 rs->sc_dkdev.dk_openmask =
614 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
615
616 raidunlock(rs);
617
618 return (error);
619
620
621 }
622 /* ARGSUSED */
623 int
624 raidclose(dev_t dev, int flags, int fmt, struct proc *p)
625 {
626 int unit = raidunit(dev);
627 struct raid_softc *rs;
628 int error = 0;
629 int part;
630
631 if (unit >= numraid)
632 return (ENXIO);
633 rs = &raid_softc[unit];
634
635 if ((error = raidlock(rs)) != 0)
636 return (error);
637
638 part = DISKPART(dev);
639
640 /* ...that much closer to allowing unconfiguration... */
641 switch (fmt) {
642 case S_IFCHR:
643 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
644 break;
645
646 case S_IFBLK:
647 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
648 break;
649 }
650 rs->sc_dkdev.dk_openmask =
651 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
652
653 if ((rs->sc_dkdev.dk_openmask == 0) &&
654 ((rs->sc_flags & RAIDF_INITED) != 0)) {
655 /* Last one... device is not unconfigured yet.
656 Device shutdown has taken care of setting the
657 clean bits if RAIDF_INITED is not set
658 mark things as clean... */
659
660 rf_update_component_labels(raidPtrs[unit],
661 RF_FINAL_COMPONENT_UPDATE);
662 if (doing_shutdown) {
663 /* last one, and we're going down, so
664 lights out for this RAID set too. */
665 error = rf_Shutdown(raidPtrs[unit]);
666
667 /* It's no longer initialized... */
668 rs->sc_flags &= ~RAIDF_INITED;
669
670 /* Detach the disk. */
671 pseudo_disk_detach(&rs->sc_dkdev);
672 }
673 }
674
675 raidunlock(rs);
676 return (0);
677
678 }
679
680 void
681 raidstrategy(struct buf *bp)
682 {
683 int s;
684
685 unsigned int raidID = raidunit(bp->b_dev);
686 RF_Raid_t *raidPtr;
687 struct raid_softc *rs = &raid_softc[raidID];
688 int wlabel;
689
690 if ((rs->sc_flags & RAIDF_INITED) ==0) {
691 bp->b_error = ENXIO;
692 bp->b_flags |= B_ERROR;
693 bp->b_resid = bp->b_bcount;
694 biodone(bp);
695 return;
696 }
697 if (raidID >= numraid || !raidPtrs[raidID]) {
698 bp->b_error = ENODEV;
699 bp->b_flags |= B_ERROR;
700 bp->b_resid = bp->b_bcount;
701 biodone(bp);
702 return;
703 }
704 raidPtr = raidPtrs[raidID];
705 if (!raidPtr->valid) {
706 bp->b_error = ENODEV;
707 bp->b_flags |= B_ERROR;
708 bp->b_resid = bp->b_bcount;
709 biodone(bp);
710 return;
711 }
712 if (bp->b_bcount == 0) {
713 db1_printf(("b_bcount is zero..\n"));
714 biodone(bp);
715 return;
716 }
717
718 /*
719 * Do bounds checking and adjust transfer. If there's an
720 * error, the bounds check will flag that for us.
721 */
722
723 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
724 if (DISKPART(bp->b_dev) != RAW_PART)
725 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
726 db1_printf(("Bounds check failed!!:%d %d\n",
727 (int) bp->b_blkno, (int) wlabel));
728 biodone(bp);
729 return;
730 }
731 s = splbio();
732
733 bp->b_resid = 0;
734
735 /* stuff it onto our queue */
736 BUFQ_PUT(&rs->buf_queue, bp);
737
738 raidstart(raidPtrs[raidID]);
739
740 splx(s);
741 }
742 /* ARGSUSED */
743 int
744 raidread(dev_t dev, struct uio *uio, int flags)
745 {
746 int unit = raidunit(dev);
747 struct raid_softc *rs;
748
749 if (unit >= numraid)
750 return (ENXIO);
751 rs = &raid_softc[unit];
752
753 if ((rs->sc_flags & RAIDF_INITED) == 0)
754 return (ENXIO);
755
756 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
757
758 }
759 /* ARGSUSED */
760 int
761 raidwrite(dev_t dev, struct uio *uio, int flags)
762 {
763 int unit = raidunit(dev);
764 struct raid_softc *rs;
765
766 if (unit >= numraid)
767 return (ENXIO);
768 rs = &raid_softc[unit];
769
770 if ((rs->sc_flags & RAIDF_INITED) == 0)
771 return (ENXIO);
772
773 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
774
775 }
776
777 int
778 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
779 {
780 int unit = raidunit(dev);
781 int error = 0;
782 int part, pmask;
783 struct raid_softc *rs;
784 RF_Config_t *k_cfg, *u_cfg;
785 RF_Raid_t *raidPtr;
786 RF_RaidDisk_t *diskPtr;
787 RF_AccTotals_t *totals;
788 RF_DeviceConfig_t *d_cfg, **ucfgp;
789 u_char *specific_buf;
790 int retcode = 0;
791 int column;
792 int raidid;
793 struct rf_recon_req *rrcopy, *rr;
794 RF_ComponentLabel_t *clabel;
795 RF_ComponentLabel_t ci_label;
796 RF_ComponentLabel_t **clabel_ptr;
797 RF_SingleComponent_t *sparePtr,*componentPtr;
798 RF_SingleComponent_t hot_spare;
799 RF_SingleComponent_t component;
800 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
801 int i, j, d;
802 #ifdef __HAVE_OLD_DISKLABEL
803 struct disklabel newlabel;
804 #endif
805
806 if (unit >= numraid)
807 return (ENXIO);
808 rs = &raid_softc[unit];
809 raidPtr = raidPtrs[unit];
810
811 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
812 (int) DISKPART(dev), (int) unit, (int) cmd));
813
814 /* Must be open for writes for these commands... */
815 switch (cmd) {
816 case DIOCSDINFO:
817 case DIOCWDINFO:
818 #ifdef __HAVE_OLD_DISKLABEL
819 case ODIOCWDINFO:
820 case ODIOCSDINFO:
821 #endif
822 case DIOCWLABEL:
823 if ((flag & FWRITE) == 0)
824 return (EBADF);
825 }
826
827 /* Must be initialized for these... */
828 switch (cmd) {
829 case DIOCGDINFO:
830 case DIOCSDINFO:
831 case DIOCWDINFO:
832 #ifdef __HAVE_OLD_DISKLABEL
833 case ODIOCGDINFO:
834 case ODIOCWDINFO:
835 case ODIOCSDINFO:
836 case ODIOCGDEFLABEL:
837 #endif
838 case DIOCGPART:
839 case DIOCWLABEL:
840 case DIOCGDEFLABEL:
841 case RAIDFRAME_SHUTDOWN:
842 case RAIDFRAME_REWRITEPARITY:
843 case RAIDFRAME_GET_INFO:
844 case RAIDFRAME_RESET_ACCTOTALS:
845 case RAIDFRAME_GET_ACCTOTALS:
846 case RAIDFRAME_KEEP_ACCTOTALS:
847 case RAIDFRAME_GET_SIZE:
848 case RAIDFRAME_FAIL_DISK:
849 case RAIDFRAME_COPYBACK:
850 case RAIDFRAME_CHECK_RECON_STATUS:
851 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
852 case RAIDFRAME_GET_COMPONENT_LABEL:
853 case RAIDFRAME_SET_COMPONENT_LABEL:
854 case RAIDFRAME_ADD_HOT_SPARE:
855 case RAIDFRAME_REMOVE_HOT_SPARE:
856 case RAIDFRAME_INIT_LABELS:
857 case RAIDFRAME_REBUILD_IN_PLACE:
858 case RAIDFRAME_CHECK_PARITY:
859 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
860 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
861 case RAIDFRAME_CHECK_COPYBACK_STATUS:
862 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
863 case RAIDFRAME_SET_AUTOCONFIG:
864 case RAIDFRAME_SET_ROOT:
865 case RAIDFRAME_DELETE_COMPONENT:
866 case RAIDFRAME_INCORPORATE_HOT_SPARE:
867 if ((rs->sc_flags & RAIDF_INITED) == 0)
868 return (ENXIO);
869 }
870
871 switch (cmd) {
872
873 /* configure the system */
874 case RAIDFRAME_CONFIGURE:
875
876 if (raidPtr->valid) {
877 /* There is a valid RAID set running on this unit! */
878 printf("raid%d: Device already configured!\n",unit);
879 return(EINVAL);
880 }
881
882 /* copy-in the configuration information */
883 /* data points to a pointer to the configuration structure */
884
885 u_cfg = *((RF_Config_t **) data);
886 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
887 if (k_cfg == NULL) {
888 return (ENOMEM);
889 }
890 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
891 if (retcode) {
892 RF_Free(k_cfg, sizeof(RF_Config_t));
893 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
894 retcode));
895 return (retcode);
896 }
897 /* allocate a buffer for the layout-specific data, and copy it
898 * in */
899 if (k_cfg->layoutSpecificSize) {
900 if (k_cfg->layoutSpecificSize > 10000) {
901 /* sanity check */
902 RF_Free(k_cfg, sizeof(RF_Config_t));
903 return (EINVAL);
904 }
905 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
906 (u_char *));
907 if (specific_buf == NULL) {
908 RF_Free(k_cfg, sizeof(RF_Config_t));
909 return (ENOMEM);
910 }
911 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
912 k_cfg->layoutSpecificSize);
913 if (retcode) {
914 RF_Free(k_cfg, sizeof(RF_Config_t));
915 RF_Free(specific_buf,
916 k_cfg->layoutSpecificSize);
917 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
918 retcode));
919 return (retcode);
920 }
921 } else
922 specific_buf = NULL;
923 k_cfg->layoutSpecific = specific_buf;
924
925 /* should do some kind of sanity check on the configuration.
926 * Store the sum of all the bytes in the last byte? */
927
928 /* configure the system */
929
930 /*
931 * Clear the entire RAID descriptor, just to make sure
932 * there is no stale data left in the case of a
933 * reconfiguration
934 */
935 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
936 raidPtr->raidid = unit;
937
938 retcode = rf_Configure(raidPtr, k_cfg, NULL);
939
940 if (retcode == 0) {
941
942 /* allow this many simultaneous IO's to
943 this RAID device */
944 raidPtr->openings = RAIDOUTSTANDING;
945
946 raidinit(raidPtr);
947 rf_markalldirty(raidPtr);
948 }
949 /* free the buffers. No return code here. */
950 if (k_cfg->layoutSpecificSize) {
951 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
952 }
953 RF_Free(k_cfg, sizeof(RF_Config_t));
954
955 return (retcode);
956
957 /* shutdown the system */
958 case RAIDFRAME_SHUTDOWN:
959
960 if ((error = raidlock(rs)) != 0)
961 return (error);
962
963 /*
964 * If somebody has a partition mounted, we shouldn't
965 * shutdown.
966 */
967
968 part = DISKPART(dev);
969 pmask = (1 << part);
970 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
971 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
972 (rs->sc_dkdev.dk_copenmask & pmask))) {
973 raidunlock(rs);
974 return (EBUSY);
975 }
976
977 retcode = rf_Shutdown(raidPtr);
978
979 /* It's no longer initialized... */
980 rs->sc_flags &= ~RAIDF_INITED;
981
982 /* Detach the disk. */
983 pseudo_disk_detach(&rs->sc_dkdev);
984
985 raidunlock(rs);
986
987 return (retcode);
988 case RAIDFRAME_GET_COMPONENT_LABEL:
989 clabel_ptr = (RF_ComponentLabel_t **) data;
990 /* need to read the component label for the disk indicated
991 by row,column in clabel */
992
993 /* For practice, let's get it directly fromdisk, rather
994 than from the in-core copy */
995 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
996 (RF_ComponentLabel_t *));
997 if (clabel == NULL)
998 return (ENOMEM);
999
1000 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1001
1002 retcode = copyin( *clabel_ptr, clabel,
1003 sizeof(RF_ComponentLabel_t));
1004
1005 if (retcode) {
1006 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1007 return(retcode);
1008 }
1009
1010 clabel->row = 0; /* Don't allow looking at anything else.*/
1011
1012 column = clabel->column;
1013
1014 if ((column < 0) || (column >= raidPtr->numCol +
1015 raidPtr->numSpare)) {
1016 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1017 return(EINVAL);
1018 }
1019
1020 raidread_component_label(raidPtr->Disks[column].dev,
1021 raidPtr->raid_cinfo[column].ci_vp,
1022 clabel );
1023
1024 retcode = copyout(clabel, *clabel_ptr,
1025 sizeof(RF_ComponentLabel_t));
1026 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1027 return (retcode);
1028
1029 case RAIDFRAME_SET_COMPONENT_LABEL:
1030 clabel = (RF_ComponentLabel_t *) data;
1031
1032 /* XXX check the label for valid stuff... */
1033 /* Note that some things *should not* get modified --
1034 the user should be re-initing the labels instead of
1035 trying to patch things.
1036 */
1037
1038 raidid = raidPtr->raidid;
1039 #if DEBUG
1040 printf("raid%d: Got component label:\n", raidid);
1041 printf("raid%d: Version: %d\n", raidid, clabel->version);
1042 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1043 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1044 printf("raid%d: Column: %d\n", raidid, clabel->column);
1045 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1046 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1047 printf("raid%d: Status: %d\n", raidid, clabel->status);
1048 #endif
1049 clabel->row = 0;
1050 column = clabel->column;
1051
1052 if ((column < 0) || (column >= raidPtr->numCol)) {
1053 return(EINVAL);
1054 }
1055
1056 /* XXX this isn't allowed to do anything for now :-) */
1057
1058 /* XXX and before it is, we need to fill in the rest
1059 of the fields!?!?!?! */
1060 #if 0
1061 raidwrite_component_label(
1062 raidPtr->Disks[column].dev,
1063 raidPtr->raid_cinfo[column].ci_vp,
1064 clabel );
1065 #endif
1066 return (0);
1067
1068 case RAIDFRAME_INIT_LABELS:
1069 clabel = (RF_ComponentLabel_t *) data;
1070 /*
1071 we only want the serial number from
1072 the above. We get all the rest of the information
1073 from the config that was used to create this RAID
1074 set.
1075 */
1076
1077 raidPtr->serial_number = clabel->serial_number;
1078
1079 raid_init_component_label(raidPtr, &ci_label);
1080 ci_label.serial_number = clabel->serial_number;
1081 ci_label.row = 0; /* we dont' pretend to support more */
1082
1083 for(column=0;column<raidPtr->numCol;column++) {
1084 diskPtr = &raidPtr->Disks[column];
1085 if (!RF_DEAD_DISK(diskPtr->status)) {
1086 ci_label.partitionSize = diskPtr->partitionSize;
1087 ci_label.column = column;
1088 raidwrite_component_label(
1089 raidPtr->Disks[column].dev,
1090 raidPtr->raid_cinfo[column].ci_vp,
1091 &ci_label );
1092 }
1093 }
1094
1095 return (retcode);
1096 case RAIDFRAME_SET_AUTOCONFIG:
1097 d = rf_set_autoconfig(raidPtr, *(int *) data);
1098 printf("raid%d: New autoconfig value is: %d\n",
1099 raidPtr->raidid, d);
1100 *(int *) data = d;
1101 return (retcode);
1102
1103 case RAIDFRAME_SET_ROOT:
1104 d = rf_set_rootpartition(raidPtr, *(int *) data);
1105 printf("raid%d: New rootpartition value is: %d\n",
1106 raidPtr->raidid, d);
1107 *(int *) data = d;
1108 return (retcode);
1109
1110 /* initialize all parity */
1111 case RAIDFRAME_REWRITEPARITY:
1112
1113 if (raidPtr->Layout.map->faultsTolerated == 0) {
1114 /* Parity for RAID 0 is trivially correct */
1115 raidPtr->parity_good = RF_RAID_CLEAN;
1116 return(0);
1117 }
1118
1119 if (raidPtr->parity_rewrite_in_progress == 1) {
1120 /* Re-write is already in progress! */
1121 return(EINVAL);
1122 }
1123
1124 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1125 rf_RewriteParityThread,
1126 raidPtr,"raid_parity");
1127 return (retcode);
1128
1129
1130 case RAIDFRAME_ADD_HOT_SPARE:
1131 sparePtr = (RF_SingleComponent_t *) data;
1132 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1133 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1134 return(retcode);
1135
1136 case RAIDFRAME_REMOVE_HOT_SPARE:
1137 return(retcode);
1138
1139 case RAIDFRAME_DELETE_COMPONENT:
1140 componentPtr = (RF_SingleComponent_t *)data;
1141 memcpy( &component, componentPtr,
1142 sizeof(RF_SingleComponent_t));
1143 retcode = rf_delete_component(raidPtr, &component);
1144 return(retcode);
1145
1146 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1147 componentPtr = (RF_SingleComponent_t *)data;
1148 memcpy( &component, componentPtr,
1149 sizeof(RF_SingleComponent_t));
1150 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1151 return(retcode);
1152
1153 case RAIDFRAME_REBUILD_IN_PLACE:
1154
1155 if (raidPtr->Layout.map->faultsTolerated == 0) {
1156 /* Can't do this on a RAID 0!! */
1157 return(EINVAL);
1158 }
1159
1160 if (raidPtr->recon_in_progress == 1) {
1161 /* a reconstruct is already in progress! */
1162 return(EINVAL);
1163 }
1164
1165 componentPtr = (RF_SingleComponent_t *) data;
1166 memcpy( &component, componentPtr,
1167 sizeof(RF_SingleComponent_t));
1168 component.row = 0; /* we don't support any more */
1169 column = component.column;
1170
1171 if ((column < 0) || (column >= raidPtr->numCol)) {
1172 return(EINVAL);
1173 }
1174
1175 RF_LOCK_MUTEX(raidPtr->mutex);
1176 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1177 (raidPtr->numFailures > 0)) {
1178 /* XXX 0 above shouldn't be constant!!! */
1179 /* some component other than this has failed.
1180 Let's not make things worse than they already
1181 are... */
1182 printf("raid%d: Unable to reconstruct to disk at:\n",
1183 raidPtr->raidid);
1184 printf("raid%d: Col: %d Too many failures.\n",
1185 raidPtr->raidid, column);
1186 RF_UNLOCK_MUTEX(raidPtr->mutex);
1187 return (EINVAL);
1188 }
1189 if (raidPtr->Disks[column].status ==
1190 rf_ds_reconstructing) {
1191 printf("raid%d: Unable to reconstruct to disk at:\n",
1192 raidPtr->raidid);
1193 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1194
1195 RF_UNLOCK_MUTEX(raidPtr->mutex);
1196 return (EINVAL);
1197 }
1198 if (raidPtr->Disks[column].status == rf_ds_spared) {
1199 RF_UNLOCK_MUTEX(raidPtr->mutex);
1200 return (EINVAL);
1201 }
1202 RF_UNLOCK_MUTEX(raidPtr->mutex);
1203
1204 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1205 if (rrcopy == NULL)
1206 return(ENOMEM);
1207
1208 rrcopy->raidPtr = (void *) raidPtr;
1209 rrcopy->col = column;
1210
1211 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1212 rf_ReconstructInPlaceThread,
1213 rrcopy,"raid_reconip");
1214 return(retcode);
1215
1216 case RAIDFRAME_GET_INFO:
1217 if (!raidPtr->valid)
1218 return (ENODEV);
1219 ucfgp = (RF_DeviceConfig_t **) data;
1220 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1221 (RF_DeviceConfig_t *));
1222 if (d_cfg == NULL)
1223 return (ENOMEM);
1224 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1225 d_cfg->rows = 1; /* there is only 1 row now */
1226 d_cfg->cols = raidPtr->numCol;
1227 d_cfg->ndevs = raidPtr->numCol;
1228 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1229 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1230 return (ENOMEM);
1231 }
1232 d_cfg->nspares = raidPtr->numSpare;
1233 if (d_cfg->nspares >= RF_MAX_DISKS) {
1234 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1235 return (ENOMEM);
1236 }
1237 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1238 d = 0;
1239 for (j = 0; j < d_cfg->cols; j++) {
1240 d_cfg->devs[d] = raidPtr->Disks[j];
1241 d++;
1242 }
1243 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1244 d_cfg->spares[i] = raidPtr->Disks[j];
1245 }
1246 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1247 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1248
1249 return (retcode);
1250
1251 case RAIDFRAME_CHECK_PARITY:
1252 *(int *) data = raidPtr->parity_good;
1253 return (0);
1254
1255 case RAIDFRAME_RESET_ACCTOTALS:
1256 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1257 return (0);
1258
1259 case RAIDFRAME_GET_ACCTOTALS:
1260 totals = (RF_AccTotals_t *) data;
1261 *totals = raidPtr->acc_totals;
1262 return (0);
1263
1264 case RAIDFRAME_KEEP_ACCTOTALS:
1265 raidPtr->keep_acc_totals = *(int *)data;
1266 return (0);
1267
1268 case RAIDFRAME_GET_SIZE:
1269 *(int *) data = raidPtr->totalSectors;
1270 return (0);
1271
1272 /* fail a disk & optionally start reconstruction */
1273 case RAIDFRAME_FAIL_DISK:
1274
1275 if (raidPtr->Layout.map->faultsTolerated == 0) {
1276 /* Can't do this on a RAID 0!! */
1277 return(EINVAL);
1278 }
1279
1280 rr = (struct rf_recon_req *) data;
1281 rr->row = 0;
1282 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1283 return (EINVAL);
1284
1285
1286 RF_LOCK_MUTEX(raidPtr->mutex);
1287 if (raidPtr->status == rf_rs_reconstructing) {
1288 /* you can't fail a disk while we're reconstructing! */
1289 /* XXX wrong for RAID6 */
1290 RF_UNLOCK_MUTEX(raidPtr->mutex);
1291 return (EINVAL);
1292 }
1293 if ((raidPtr->Disks[rr->col].status ==
1294 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1295 /* some other component has failed. Let's not make
1296 things worse. XXX wrong for RAID6 */
1297 RF_UNLOCK_MUTEX(raidPtr->mutex);
1298 return (EINVAL);
1299 }
1300 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1301 /* Can't fail a spared disk! */
1302 RF_UNLOCK_MUTEX(raidPtr->mutex);
1303 return (EINVAL);
1304 }
1305 RF_UNLOCK_MUTEX(raidPtr->mutex);
1306
1307 /* make a copy of the recon request so that we don't rely on
1308 * the user's buffer */
1309 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1310 if (rrcopy == NULL)
1311 return(ENOMEM);
1312 memcpy(rrcopy, rr, sizeof(*rr));
1313 rrcopy->raidPtr = (void *) raidPtr;
1314
1315 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1316 rf_ReconThread,
1317 rrcopy,"raid_recon");
1318 return (0);
1319
1320 /* invoke a copyback operation after recon on whatever disk
1321 * needs it, if any */
1322 case RAIDFRAME_COPYBACK:
1323
1324 if (raidPtr->Layout.map->faultsTolerated == 0) {
1325 /* This makes no sense on a RAID 0!! */
1326 return(EINVAL);
1327 }
1328
1329 if (raidPtr->copyback_in_progress == 1) {
1330 /* Copyback is already in progress! */
1331 return(EINVAL);
1332 }
1333
1334 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1335 rf_CopybackThread,
1336 raidPtr,"raid_copyback");
1337 return (retcode);
1338
1339 /* return the percentage completion of reconstruction */
1340 case RAIDFRAME_CHECK_RECON_STATUS:
1341 if (raidPtr->Layout.map->faultsTolerated == 0) {
1342 /* This makes no sense on a RAID 0, so tell the
1343 user it's done. */
1344 *(int *) data = 100;
1345 return(0);
1346 }
1347 if (raidPtr->status != rf_rs_reconstructing)
1348 *(int *) data = 100;
1349 else {
1350 if (raidPtr->reconControl->numRUsTotal > 0) {
1351 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1352 } else {
1353 *(int *) data = 0;
1354 }
1355 }
1356 return (0);
1357 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1358 progressInfoPtr = (RF_ProgressInfo_t **) data;
1359 if (raidPtr->status != rf_rs_reconstructing) {
1360 progressInfo.remaining = 0;
1361 progressInfo.completed = 100;
1362 progressInfo.total = 100;
1363 } else {
1364 progressInfo.total =
1365 raidPtr->reconControl->numRUsTotal;
1366 progressInfo.completed =
1367 raidPtr->reconControl->numRUsComplete;
1368 progressInfo.remaining = progressInfo.total -
1369 progressInfo.completed;
1370 }
1371 retcode = copyout(&progressInfo, *progressInfoPtr,
1372 sizeof(RF_ProgressInfo_t));
1373 return (retcode);
1374
1375 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1376 if (raidPtr->Layout.map->faultsTolerated == 0) {
1377 /* This makes no sense on a RAID 0, so tell the
1378 user it's done. */
1379 *(int *) data = 100;
1380 return(0);
1381 }
1382 if (raidPtr->parity_rewrite_in_progress == 1) {
1383 *(int *) data = 100 *
1384 raidPtr->parity_rewrite_stripes_done /
1385 raidPtr->Layout.numStripe;
1386 } else {
1387 *(int *) data = 100;
1388 }
1389 return (0);
1390
1391 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1392 progressInfoPtr = (RF_ProgressInfo_t **) data;
1393 if (raidPtr->parity_rewrite_in_progress == 1) {
1394 progressInfo.total = raidPtr->Layout.numStripe;
1395 progressInfo.completed =
1396 raidPtr->parity_rewrite_stripes_done;
1397 progressInfo.remaining = progressInfo.total -
1398 progressInfo.completed;
1399 } else {
1400 progressInfo.remaining = 0;
1401 progressInfo.completed = 100;
1402 progressInfo.total = 100;
1403 }
1404 retcode = copyout(&progressInfo, *progressInfoPtr,
1405 sizeof(RF_ProgressInfo_t));
1406 return (retcode);
1407
1408 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1409 if (raidPtr->Layout.map->faultsTolerated == 0) {
1410 /* This makes no sense on a RAID 0 */
1411 *(int *) data = 100;
1412 return(0);
1413 }
1414 if (raidPtr->copyback_in_progress == 1) {
1415 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1416 raidPtr->Layout.numStripe;
1417 } else {
1418 *(int *) data = 100;
1419 }
1420 return (0);
1421
1422 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1423 progressInfoPtr = (RF_ProgressInfo_t **) data;
1424 if (raidPtr->copyback_in_progress == 1) {
1425 progressInfo.total = raidPtr->Layout.numStripe;
1426 progressInfo.completed =
1427 raidPtr->copyback_stripes_done;
1428 progressInfo.remaining = progressInfo.total -
1429 progressInfo.completed;
1430 } else {
1431 progressInfo.remaining = 0;
1432 progressInfo.completed = 100;
1433 progressInfo.total = 100;
1434 }
1435 retcode = copyout(&progressInfo, *progressInfoPtr,
1436 sizeof(RF_ProgressInfo_t));
1437 return (retcode);
1438
1439 /* the sparetable daemon calls this to wait for the kernel to
1440 * need a spare table. this ioctl does not return until a
1441 * spare table is needed. XXX -- calling mpsleep here in the
1442 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1443 * -- I should either compute the spare table in the kernel,
1444 * or have a different -- XXX XXX -- interface (a different
1445 * character device) for delivering the table -- XXX */
1446 #if 0
1447 case RAIDFRAME_SPARET_WAIT:
1448 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1449 while (!rf_sparet_wait_queue)
1450 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1451 waitreq = rf_sparet_wait_queue;
1452 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1453 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1454
1455 /* structure assignment */
1456 *((RF_SparetWait_t *) data) = *waitreq;
1457
1458 RF_Free(waitreq, sizeof(*waitreq));
1459 return (0);
1460
1461 /* wakes up a process waiting on SPARET_WAIT and puts an error
1462 * code in it that will cause the dameon to exit */
1463 case RAIDFRAME_ABORT_SPARET_WAIT:
1464 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1465 waitreq->fcol = -1;
1466 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1467 waitreq->next = rf_sparet_wait_queue;
1468 rf_sparet_wait_queue = waitreq;
1469 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1470 wakeup(&rf_sparet_wait_queue);
1471 return (0);
1472
1473 /* used by the spare table daemon to deliver a spare table
1474 * into the kernel */
1475 case RAIDFRAME_SEND_SPARET:
1476
1477 /* install the spare table */
1478 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1479
1480 /* respond to the requestor. the return status of the spare
1481 * table installation is passed in the "fcol" field */
1482 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1483 waitreq->fcol = retcode;
1484 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1485 waitreq->next = rf_sparet_resp_queue;
1486 rf_sparet_resp_queue = waitreq;
1487 wakeup(&rf_sparet_resp_queue);
1488 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1489
1490 return (retcode);
1491 #endif
1492
1493 default:
1494 break; /* fall through to the os-specific code below */
1495
1496 }
1497
1498 if (!raidPtr->valid)
1499 return (EINVAL);
1500
1501 /*
1502 * Add support for "regular" device ioctls here.
1503 */
1504
1505 switch (cmd) {
1506 case DIOCGDINFO:
1507 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1508 break;
1509 #ifdef __HAVE_OLD_DISKLABEL
1510 case ODIOCGDINFO:
1511 newlabel = *(rs->sc_dkdev.dk_label);
1512 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1513 return ENOTTY;
1514 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1515 break;
1516 #endif
1517
1518 case DIOCGPART:
1519 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1520 ((struct partinfo *) data)->part =
1521 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1522 break;
1523
1524 case DIOCWDINFO:
1525 case DIOCSDINFO:
1526 #ifdef __HAVE_OLD_DISKLABEL
1527 case ODIOCWDINFO:
1528 case ODIOCSDINFO:
1529 #endif
1530 {
1531 struct disklabel *lp;
1532 #ifdef __HAVE_OLD_DISKLABEL
1533 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1534 memset(&newlabel, 0, sizeof newlabel);
1535 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1536 lp = &newlabel;
1537 } else
1538 #endif
1539 lp = (struct disklabel *)data;
1540
1541 if ((error = raidlock(rs)) != 0)
1542 return (error);
1543
1544 rs->sc_flags |= RAIDF_LABELLING;
1545
1546 error = setdisklabel(rs->sc_dkdev.dk_label,
1547 lp, 0, rs->sc_dkdev.dk_cpulabel);
1548 if (error == 0) {
1549 if (cmd == DIOCWDINFO
1550 #ifdef __HAVE_OLD_DISKLABEL
1551 || cmd == ODIOCWDINFO
1552 #endif
1553 )
1554 error = writedisklabel(RAIDLABELDEV(dev),
1555 raidstrategy, rs->sc_dkdev.dk_label,
1556 rs->sc_dkdev.dk_cpulabel);
1557 }
1558 rs->sc_flags &= ~RAIDF_LABELLING;
1559
1560 raidunlock(rs);
1561
1562 if (error)
1563 return (error);
1564 break;
1565 }
1566
1567 case DIOCWLABEL:
1568 if (*(int *) data != 0)
1569 rs->sc_flags |= RAIDF_WLABEL;
1570 else
1571 rs->sc_flags &= ~RAIDF_WLABEL;
1572 break;
1573
1574 case DIOCGDEFLABEL:
1575 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1576 break;
1577
1578 #ifdef __HAVE_OLD_DISKLABEL
1579 case ODIOCGDEFLABEL:
1580 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1581 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1582 return ENOTTY;
1583 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1584 break;
1585 #endif
1586
1587 default:
1588 retcode = ENOTTY;
1589 }
1590 return (retcode);
1591
1592 }
1593
1594
1595 /* raidinit -- complete the rest of the initialization for the
1596 RAIDframe device. */
1597
1598
1599 static void
1600 raidinit(RF_Raid_t *raidPtr)
1601 {
1602 struct raid_softc *rs;
1603 int unit;
1604
1605 unit = raidPtr->raidid;
1606
1607 rs = &raid_softc[unit];
1608
1609 /* XXX should check return code first... */
1610 rs->sc_flags |= RAIDF_INITED;
1611
1612 /* XXX doesn't check bounds. */
1613 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1614
1615 rs->sc_dkdev.dk_name = rs->sc_xname;
1616
1617 /* disk_attach actually creates space for the CPU disklabel, among
1618 * other things, so it's critical to call this *BEFORE* we try putzing
1619 * with disklabels. */
1620
1621 pseudo_disk_attach(&rs->sc_dkdev);
1622
1623 /* XXX There may be a weird interaction here between this, and
1624 * protectedSectors, as used in RAIDframe. */
1625
1626 rs->sc_size = raidPtr->totalSectors;
1627 }
1628 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1629 /* wake up the daemon & tell it to get us a spare table
1630 * XXX
1631 * the entries in the queues should be tagged with the raidPtr
1632 * so that in the extremely rare case that two recons happen at once,
1633 * we know for which device were requesting a spare table
1634 * XXX
1635 *
1636 * XXX This code is not currently used. GO
1637 */
1638 int
1639 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1640 {
1641 int retcode;
1642
1643 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1644 req->next = rf_sparet_wait_queue;
1645 rf_sparet_wait_queue = req;
1646 wakeup(&rf_sparet_wait_queue);
1647
1648 /* mpsleep unlocks the mutex */
1649 while (!rf_sparet_resp_queue) {
1650 tsleep(&rf_sparet_resp_queue, PRIBIO,
1651 "raidframe getsparetable", 0);
1652 }
1653 req = rf_sparet_resp_queue;
1654 rf_sparet_resp_queue = req->next;
1655 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1656
1657 retcode = req->fcol;
1658 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1659 * alloc'd */
1660 return (retcode);
1661 }
1662 #endif
1663
1664 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1665 * bp & passes it down.
1666 * any calls originating in the kernel must use non-blocking I/O
1667 * do some extra sanity checking to return "appropriate" error values for
1668 * certain conditions (to make some standard utilities work)
1669 *
1670 * Formerly known as: rf_DoAccessKernel
1671 */
1672 void
1673 raidstart(RF_Raid_t *raidPtr)
1674 {
1675 RF_SectorCount_t num_blocks, pb, sum;
1676 RF_RaidAddr_t raid_addr;
1677 struct partition *pp;
1678 daddr_t blocknum;
1679 int unit;
1680 struct raid_softc *rs;
1681 int do_async;
1682 struct buf *bp;
1683 int rc;
1684
1685 unit = raidPtr->raidid;
1686 rs = &raid_softc[unit];
1687
1688 /* quick check to see if anything has died recently */
1689 RF_LOCK_MUTEX(raidPtr->mutex);
1690 if (raidPtr->numNewFailures > 0) {
1691 RF_UNLOCK_MUTEX(raidPtr->mutex);
1692 rf_update_component_labels(raidPtr,
1693 RF_NORMAL_COMPONENT_UPDATE);
1694 RF_LOCK_MUTEX(raidPtr->mutex);
1695 raidPtr->numNewFailures--;
1696 }
1697
1698 /* Check to see if we're at the limit... */
1699 while (raidPtr->openings > 0) {
1700 RF_UNLOCK_MUTEX(raidPtr->mutex);
1701
1702 /* get the next item, if any, from the queue */
1703 if ((bp = BUFQ_GET(&rs->buf_queue)) == NULL) {
1704 /* nothing more to do */
1705 return;
1706 }
1707
1708 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1709 * partition.. Need to make it absolute to the underlying
1710 * device.. */
1711
1712 blocknum = bp->b_blkno;
1713 if (DISKPART(bp->b_dev) != RAW_PART) {
1714 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1715 blocknum += pp->p_offset;
1716 }
1717
1718 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1719 (int) blocknum));
1720
1721 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1722 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1723
1724 /* *THIS* is where we adjust what block we're going to...
1725 * but DO NOT TOUCH bp->b_blkno!!! */
1726 raid_addr = blocknum;
1727
1728 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1729 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1730 sum = raid_addr + num_blocks + pb;
1731 if (1 || rf_debugKernelAccess) {
1732 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1733 (int) raid_addr, (int) sum, (int) num_blocks,
1734 (int) pb, (int) bp->b_resid));
1735 }
1736 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1737 || (sum < num_blocks) || (sum < pb)) {
1738 bp->b_error = ENOSPC;
1739 bp->b_flags |= B_ERROR;
1740 bp->b_resid = bp->b_bcount;
1741 biodone(bp);
1742 RF_LOCK_MUTEX(raidPtr->mutex);
1743 continue;
1744 }
1745 /*
1746 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1747 */
1748
1749 if (bp->b_bcount & raidPtr->sectorMask) {
1750 bp->b_error = EINVAL;
1751 bp->b_flags |= B_ERROR;
1752 bp->b_resid = bp->b_bcount;
1753 biodone(bp);
1754 RF_LOCK_MUTEX(raidPtr->mutex);
1755 continue;
1756
1757 }
1758 db1_printf(("Calling DoAccess..\n"));
1759
1760
1761 RF_LOCK_MUTEX(raidPtr->mutex);
1762 raidPtr->openings--;
1763 RF_UNLOCK_MUTEX(raidPtr->mutex);
1764
1765 /*
1766 * Everything is async.
1767 */
1768 do_async = 1;
1769
1770 disk_busy(&rs->sc_dkdev);
1771
1772 /* XXX we're still at splbio() here... do we *really*
1773 need to be? */
1774
1775 /* don't ever condition on bp->b_flags & B_WRITE.
1776 * always condition on B_READ instead */
1777
1778 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1779 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1780 do_async, raid_addr, num_blocks,
1781 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1782
1783 if (rc) {
1784 bp->b_error = rc;
1785 bp->b_flags |= B_ERROR;
1786 bp->b_resid = bp->b_bcount;
1787 biodone(bp);
1788 /* continue loop */
1789 }
1790
1791 RF_LOCK_MUTEX(raidPtr->mutex);
1792 }
1793 RF_UNLOCK_MUTEX(raidPtr->mutex);
1794 }
1795
1796
1797
1798
1799 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1800
1801 int
1802 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1803 {
1804 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1805 struct buf *bp;
1806 struct raidbuf *raidbp = NULL;
1807
1808 req->queue = queue;
1809
1810 #if DIAGNOSTIC
1811 if (queue->raidPtr->raidid >= numraid) {
1812 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1813 numraid);
1814 panic("Invalid Unit number in rf_DispatchKernelIO");
1815 }
1816 #endif
1817
1818 bp = req->bp;
1819 #if 1
1820 /* XXX when there is a physical disk failure, someone is passing us a
1821 * buffer that contains old stuff!! Attempt to deal with this problem
1822 * without taking a performance hit... (not sure where the real bug
1823 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1824
1825 if (bp->b_flags & B_ERROR) {
1826 bp->b_flags &= ~B_ERROR;
1827 }
1828 if (bp->b_error != 0) {
1829 bp->b_error = 0;
1830 }
1831 #endif
1832 raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
1833 if (raidbp == NULL) {
1834 bp->b_flags |= B_ERROR;
1835 bp->b_error = ENOMEM;
1836 return (ENOMEM);
1837 }
1838 BUF_INIT(&raidbp->rf_buf);
1839
1840 /*
1841 * context for raidiodone
1842 */
1843 raidbp->rf_obp = bp;
1844 raidbp->req = req;
1845
1846 BIO_COPYPRIO(&raidbp->rf_buf, bp);
1847
1848 switch (req->type) {
1849 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1850 /* XXX need to do something extra here.. */
1851 /* I'm leaving this in, as I've never actually seen it used,
1852 * and I'd like folks to report it... GO */
1853 printf(("WAKEUP CALLED\n"));
1854 queue->numOutstanding++;
1855
1856 /* XXX need to glue the original buffer into this?? */
1857
1858 KernelWakeupFunc(&raidbp->rf_buf);
1859 break;
1860
1861 case RF_IO_TYPE_READ:
1862 case RF_IO_TYPE_WRITE:
1863 #if RF_ACC_TRACE > 0
1864 if (req->tracerec) {
1865 RF_ETIMER_START(req->tracerec->timer);
1866 }
1867 #endif
1868 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1869 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1870 req->sectorOffset, req->numSector,
1871 req->buf, KernelWakeupFunc, (void *) req,
1872 queue->raidPtr->logBytesPerSector, req->b_proc);
1873
1874 if (rf_debugKernelAccess) {
1875 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1876 (long) bp->b_blkno));
1877 }
1878 queue->numOutstanding++;
1879 queue->last_deq_sector = req->sectorOffset;
1880 /* acc wouldn't have been let in if there were any pending
1881 * reqs at any other priority */
1882 queue->curPriority = req->priority;
1883
1884 db1_printf(("Going for %c to unit %d col %d\n",
1885 req->type, queue->raidPtr->raidid,
1886 queue->col));
1887 db1_printf(("sector %d count %d (%d bytes) %d\n",
1888 (int) req->sectorOffset, (int) req->numSector,
1889 (int) (req->numSector <<
1890 queue->raidPtr->logBytesPerSector),
1891 (int) queue->raidPtr->logBytesPerSector));
1892 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1893 raidbp->rf_buf.b_vp->v_numoutput++;
1894 }
1895 VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
1896
1897 break;
1898
1899 default:
1900 panic("bad req->type in rf_DispatchKernelIO");
1901 }
1902 db1_printf(("Exiting from DispatchKernelIO\n"));
1903
1904 return (0);
1905 }
1906 /* this is the callback function associated with a I/O invoked from
1907 kernel code.
1908 */
1909 static void
1910 KernelWakeupFunc(struct buf *vbp)
1911 {
1912 RF_DiskQueueData_t *req = NULL;
1913 RF_DiskQueue_t *queue;
1914 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1915 struct buf *bp;
1916 int s;
1917
1918 s = splbio();
1919 db1_printf(("recovering the request queue:\n"));
1920 req = raidbp->req;
1921
1922 bp = raidbp->rf_obp;
1923
1924 queue = (RF_DiskQueue_t *) req->queue;
1925
1926 if (raidbp->rf_buf.b_flags & B_ERROR) {
1927 bp->b_flags |= B_ERROR;
1928 bp->b_error = raidbp->rf_buf.b_error ?
1929 raidbp->rf_buf.b_error : EIO;
1930 }
1931
1932 /* XXX methinks this could be wrong... */
1933 #if 1
1934 bp->b_resid = raidbp->rf_buf.b_resid;
1935 #endif
1936 #if RF_ACC_TRACE > 0
1937 if (req->tracerec) {
1938 RF_ETIMER_STOP(req->tracerec->timer);
1939 RF_ETIMER_EVAL(req->tracerec->timer);
1940 RF_LOCK_MUTEX(rf_tracing_mutex);
1941 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1942 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1943 req->tracerec->num_phys_ios++;
1944 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1945 }
1946 #endif
1947 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1948
1949 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1950 * ballistic, and mark the component as hosed... */
1951
1952 if (bp->b_flags & B_ERROR) {
1953 /* Mark the disk as dead */
1954 /* but only mark it once... */
1955 /* and only if it wouldn't leave this RAID set
1956 completely broken */
1957 if ((queue->raidPtr->Disks[queue->col].status ==
1958 rf_ds_optimal) && (queue->raidPtr->numFailures <
1959 queue->raidPtr->Layout.map->faultsTolerated)) {
1960 printf("raid%d: IO Error. Marking %s as failed.\n",
1961 queue->raidPtr->raidid,
1962 queue->raidPtr->Disks[queue->col].devname);
1963 queue->raidPtr->Disks[queue->col].status =
1964 rf_ds_failed;
1965 queue->raidPtr->status = rf_rs_degraded;
1966 queue->raidPtr->numFailures++;
1967 queue->raidPtr->numNewFailures++;
1968 } else { /* Disk is already dead... */
1969 /* printf("Disk already marked as dead!\n"); */
1970 }
1971
1972 }
1973
1974 pool_put(&rf_pools.cbuf, raidbp);
1975
1976 /* Fill in the error value */
1977
1978 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1979
1980 simple_lock(&queue->raidPtr->iodone_lock);
1981
1982 /* Drop this one on the "finished" queue... */
1983 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1984
1985 /* Let the raidio thread know there is work to be done. */
1986 wakeup(&(queue->raidPtr->iodone));
1987
1988 simple_unlock(&queue->raidPtr->iodone_lock);
1989
1990 splx(s);
1991 }
1992
1993
1994
1995 /*
1996 * initialize a buf structure for doing an I/O in the kernel.
1997 */
1998 static void
1999 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2000 RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t bf,
2001 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2002 struct proc *b_proc)
2003 {
2004 /* bp->b_flags = B_PHYS | rw_flag; */
2005 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2006 bp->b_bcount = numSect << logBytesPerSector;
2007 bp->b_bufsize = bp->b_bcount;
2008 bp->b_error = 0;
2009 bp->b_dev = dev;
2010 bp->b_data = bf;
2011 bp->b_blkno = startSect;
2012 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2013 if (bp->b_bcount == 0) {
2014 panic("bp->b_bcount is zero in InitBP!!");
2015 }
2016 bp->b_proc = b_proc;
2017 bp->b_iodone = cbFunc;
2018 bp->b_vp = b_vp;
2019
2020 }
2021
2022 static void
2023 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2024 struct disklabel *lp)
2025 {
2026 memset(lp, 0, sizeof(*lp));
2027
2028 /* fabricate a label... */
2029 lp->d_secperunit = raidPtr->totalSectors;
2030 lp->d_secsize = raidPtr->bytesPerSector;
2031 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2032 lp->d_ntracks = 4 * raidPtr->numCol;
2033 lp->d_ncylinders = raidPtr->totalSectors /
2034 (lp->d_nsectors * lp->d_ntracks);
2035 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2036
2037 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2038 lp->d_type = DTYPE_RAID;
2039 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2040 lp->d_rpm = 3600;
2041 lp->d_interleave = 1;
2042 lp->d_flags = 0;
2043
2044 lp->d_partitions[RAW_PART].p_offset = 0;
2045 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2046 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2047 lp->d_npartitions = RAW_PART + 1;
2048
2049 lp->d_magic = DISKMAGIC;
2050 lp->d_magic2 = DISKMAGIC;
2051 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2052
2053 }
2054 /*
2055 * Read the disklabel from the raid device. If one is not present, fake one
2056 * up.
2057 */
2058 static void
2059 raidgetdisklabel(dev_t dev)
2060 {
2061 int unit = raidunit(dev);
2062 struct raid_softc *rs = &raid_softc[unit];
2063 const char *errstring;
2064 struct disklabel *lp = rs->sc_dkdev.dk_label;
2065 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2066 RF_Raid_t *raidPtr;
2067
2068 db1_printf(("Getting the disklabel...\n"));
2069
2070 memset(clp, 0, sizeof(*clp));
2071
2072 raidPtr = raidPtrs[unit];
2073
2074 raidgetdefaultlabel(raidPtr, rs, lp);
2075
2076 /*
2077 * Call the generic disklabel extraction routine.
2078 */
2079 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2080 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2081 if (errstring)
2082 raidmakedisklabel(rs);
2083 else {
2084 int i;
2085 struct partition *pp;
2086
2087 /*
2088 * Sanity check whether the found disklabel is valid.
2089 *
2090 * This is necessary since total size of the raid device
2091 * may vary when an interleave is changed even though exactly
2092 * same componets are used, and old disklabel may used
2093 * if that is found.
2094 */
2095 if (lp->d_secperunit != rs->sc_size)
2096 printf("raid%d: WARNING: %s: "
2097 "total sector size in disklabel (%d) != "
2098 "the size of raid (%ld)\n", unit, rs->sc_xname,
2099 lp->d_secperunit, (long) rs->sc_size);
2100 for (i = 0; i < lp->d_npartitions; i++) {
2101 pp = &lp->d_partitions[i];
2102 if (pp->p_offset + pp->p_size > rs->sc_size)
2103 printf("raid%d: WARNING: %s: end of partition `%c' "
2104 "exceeds the size of raid (%ld)\n",
2105 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2106 }
2107 }
2108
2109 }
2110 /*
2111 * Take care of things one might want to take care of in the event
2112 * that a disklabel isn't present.
2113 */
2114 static void
2115 raidmakedisklabel(struct raid_softc *rs)
2116 {
2117 struct disklabel *lp = rs->sc_dkdev.dk_label;
2118 db1_printf(("Making a label..\n"));
2119
2120 /*
2121 * For historical reasons, if there's no disklabel present
2122 * the raw partition must be marked FS_BSDFFS.
2123 */
2124
2125 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2126
2127 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2128
2129 lp->d_checksum = dkcksum(lp);
2130 }
2131 /*
2132 * Lookup the provided name in the filesystem. If the file exists,
2133 * is a valid block device, and isn't being used by anyone else,
2134 * set *vpp to the file's vnode.
2135 * You'll find the original of this in ccd.c
2136 */
2137 int
2138 raidlookup(char *path, struct proc *p, struct vnode **vpp)
2139 {
2140 struct nameidata nd;
2141 struct vnode *vp;
2142 struct vattr va;
2143 int error;
2144
2145 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
2146 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2147 return (error);
2148 }
2149 vp = nd.ni_vp;
2150 if (vp->v_usecount > 1) {
2151 VOP_UNLOCK(vp, 0);
2152 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2153 return (EBUSY);
2154 }
2155 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
2156 VOP_UNLOCK(vp, 0);
2157 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2158 return (error);
2159 }
2160 /* XXX: eventually we should handle VREG, too. */
2161 if (va.va_type != VBLK) {
2162 VOP_UNLOCK(vp, 0);
2163 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2164 return (ENOTBLK);
2165 }
2166 VOP_UNLOCK(vp, 0);
2167 *vpp = vp;
2168 return (0);
2169 }
2170 /*
2171 * Wait interruptibly for an exclusive lock.
2172 *
2173 * XXX
2174 * Several drivers do this; it should be abstracted and made MP-safe.
2175 * (Hmm... where have we seen this warning before :-> GO )
2176 */
2177 static int
2178 raidlock(struct raid_softc *rs)
2179 {
2180 int error;
2181
2182 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2183 rs->sc_flags |= RAIDF_WANTED;
2184 if ((error =
2185 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2186 return (error);
2187 }
2188 rs->sc_flags |= RAIDF_LOCKED;
2189 return (0);
2190 }
2191 /*
2192 * Unlock and wake up any waiters.
2193 */
2194 static void
2195 raidunlock(struct raid_softc *rs)
2196 {
2197
2198 rs->sc_flags &= ~RAIDF_LOCKED;
2199 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2200 rs->sc_flags &= ~RAIDF_WANTED;
2201 wakeup(rs);
2202 }
2203 }
2204
2205
2206 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2207 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2208
2209 int
2210 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2211 {
2212 RF_ComponentLabel_t clabel;
2213 raidread_component_label(dev, b_vp, &clabel);
2214 clabel.mod_counter = mod_counter;
2215 clabel.clean = RF_RAID_CLEAN;
2216 raidwrite_component_label(dev, b_vp, &clabel);
2217 return(0);
2218 }
2219
2220
2221 int
2222 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2223 {
2224 RF_ComponentLabel_t clabel;
2225 raidread_component_label(dev, b_vp, &clabel);
2226 clabel.mod_counter = mod_counter;
2227 clabel.clean = RF_RAID_DIRTY;
2228 raidwrite_component_label(dev, b_vp, &clabel);
2229 return(0);
2230 }
2231
2232 /* ARGSUSED */
2233 int
2234 raidread_component_label(dev_t dev, struct vnode *b_vp,
2235 RF_ComponentLabel_t *clabel)
2236 {
2237 struct buf *bp;
2238 const struct bdevsw *bdev;
2239 int error;
2240
2241 /* XXX should probably ensure that we don't try to do this if
2242 someone has changed rf_protected_sectors. */
2243
2244 if (b_vp == NULL) {
2245 /* For whatever reason, this component is not valid.
2246 Don't try to read a component label from it. */
2247 return(EINVAL);
2248 }
2249
2250 /* get a block of the appropriate size... */
2251 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2252 bp->b_dev = dev;
2253
2254 /* get our ducks in a row for the read */
2255 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2256 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2257 bp->b_flags |= B_READ;
2258 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2259
2260 bdev = bdevsw_lookup(bp->b_dev);
2261 if (bdev == NULL)
2262 return (ENXIO);
2263 (*bdev->d_strategy)(bp);
2264
2265 error = biowait(bp);
2266
2267 if (!error) {
2268 memcpy(clabel, bp->b_data,
2269 sizeof(RF_ComponentLabel_t));
2270 }
2271
2272 brelse(bp);
2273 return(error);
2274 }
2275 /* ARGSUSED */
2276 int
2277 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2278 RF_ComponentLabel_t *clabel)
2279 {
2280 struct buf *bp;
2281 const struct bdevsw *bdev;
2282 int error;
2283
2284 /* get a block of the appropriate size... */
2285 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2286 bp->b_dev = dev;
2287
2288 /* get our ducks in a row for the write */
2289 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2290 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2291 bp->b_flags |= B_WRITE;
2292 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2293
2294 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2295
2296 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2297
2298 bdev = bdevsw_lookup(bp->b_dev);
2299 if (bdev == NULL)
2300 return (ENXIO);
2301 (*bdev->d_strategy)(bp);
2302 error = biowait(bp);
2303 brelse(bp);
2304 if (error) {
2305 #if 1
2306 printf("Failed to write RAID component info!\n");
2307 #endif
2308 }
2309
2310 return(error);
2311 }
2312
2313 void
2314 rf_markalldirty(RF_Raid_t *raidPtr)
2315 {
2316 RF_ComponentLabel_t clabel;
2317 int sparecol;
2318 int c;
2319 int j;
2320 int scol = -1;
2321
2322 raidPtr->mod_counter++;
2323 for (c = 0; c < raidPtr->numCol; c++) {
2324 /* we don't want to touch (at all) a disk that has
2325 failed */
2326 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2327 raidread_component_label(
2328 raidPtr->Disks[c].dev,
2329 raidPtr->raid_cinfo[c].ci_vp,
2330 &clabel);
2331 if (clabel.status == rf_ds_spared) {
2332 /* XXX do something special...
2333 but whatever you do, don't
2334 try to access it!! */
2335 } else {
2336 raidmarkdirty(
2337 raidPtr->Disks[c].dev,
2338 raidPtr->raid_cinfo[c].ci_vp,
2339 raidPtr->mod_counter);
2340 }
2341 }
2342 }
2343
2344 for( c = 0; c < raidPtr->numSpare ; c++) {
2345 sparecol = raidPtr->numCol + c;
2346 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2347 /*
2348
2349 we claim this disk is "optimal" if it's
2350 rf_ds_used_spare, as that means it should be
2351 directly substitutable for the disk it replaced.
2352 We note that too...
2353
2354 */
2355
2356 for(j=0;j<raidPtr->numCol;j++) {
2357 if (raidPtr->Disks[j].spareCol == sparecol) {
2358 scol = j;
2359 break;
2360 }
2361 }
2362
2363 raidread_component_label(
2364 raidPtr->Disks[sparecol].dev,
2365 raidPtr->raid_cinfo[sparecol].ci_vp,
2366 &clabel);
2367 /* make sure status is noted */
2368
2369 raid_init_component_label(raidPtr, &clabel);
2370
2371 clabel.row = 0;
2372 clabel.column = scol;
2373 /* Note: we *don't* change status from rf_ds_used_spare
2374 to rf_ds_optimal */
2375 /* clabel.status = rf_ds_optimal; */
2376
2377 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2378 raidPtr->raid_cinfo[sparecol].ci_vp,
2379 raidPtr->mod_counter);
2380 }
2381 }
2382 }
2383
2384
2385 void
2386 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2387 {
2388 RF_ComponentLabel_t clabel;
2389 int sparecol;
2390 int c;
2391 int j;
2392 int scol;
2393
2394 scol = -1;
2395
2396 /* XXX should do extra checks to make sure things really are clean,
2397 rather than blindly setting the clean bit... */
2398
2399 raidPtr->mod_counter++;
2400
2401 for (c = 0; c < raidPtr->numCol; c++) {
2402 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2403 raidread_component_label(
2404 raidPtr->Disks[c].dev,
2405 raidPtr->raid_cinfo[c].ci_vp,
2406 &clabel);
2407 /* make sure status is noted */
2408 clabel.status = rf_ds_optimal;
2409 /* bump the counter */
2410 clabel.mod_counter = raidPtr->mod_counter;
2411
2412 raidwrite_component_label(
2413 raidPtr->Disks[c].dev,
2414 raidPtr->raid_cinfo[c].ci_vp,
2415 &clabel);
2416 if (final == RF_FINAL_COMPONENT_UPDATE) {
2417 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2418 raidmarkclean(
2419 raidPtr->Disks[c].dev,
2420 raidPtr->raid_cinfo[c].ci_vp,
2421 raidPtr->mod_counter);
2422 }
2423 }
2424 }
2425 /* else we don't touch it.. */
2426 }
2427
2428 for( c = 0; c < raidPtr->numSpare ; c++) {
2429 sparecol = raidPtr->numCol + c;
2430 /* Need to ensure that the reconstruct actually completed! */
2431 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2432 /*
2433
2434 we claim this disk is "optimal" if it's
2435 rf_ds_used_spare, as that means it should be
2436 directly substitutable for the disk it replaced.
2437 We note that too...
2438
2439 */
2440
2441 for(j=0;j<raidPtr->numCol;j++) {
2442 if (raidPtr->Disks[j].spareCol == sparecol) {
2443 scol = j;
2444 break;
2445 }
2446 }
2447
2448 /* XXX shouldn't *really* need this... */
2449 raidread_component_label(
2450 raidPtr->Disks[sparecol].dev,
2451 raidPtr->raid_cinfo[sparecol].ci_vp,
2452 &clabel);
2453 /* make sure status is noted */
2454
2455 raid_init_component_label(raidPtr, &clabel);
2456
2457 clabel.mod_counter = raidPtr->mod_counter;
2458 clabel.column = scol;
2459 clabel.status = rf_ds_optimal;
2460
2461 raidwrite_component_label(
2462 raidPtr->Disks[sparecol].dev,
2463 raidPtr->raid_cinfo[sparecol].ci_vp,
2464 &clabel);
2465 if (final == RF_FINAL_COMPONENT_UPDATE) {
2466 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2467 raidmarkclean( raidPtr->Disks[sparecol].dev,
2468 raidPtr->raid_cinfo[sparecol].ci_vp,
2469 raidPtr->mod_counter);
2470 }
2471 }
2472 }
2473 }
2474 }
2475
2476 void
2477 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2478 {
2479 struct proc *p;
2480
2481 p = raidPtr->engine_thread;
2482
2483 if (vp != NULL) {
2484 if (auto_configured == 1) {
2485 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2486 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2487 vput(vp);
2488
2489 } else {
2490 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
2491 }
2492 }
2493 }
2494
2495
2496 void
2497 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2498 {
2499 int r,c;
2500 struct vnode *vp;
2501 int acd;
2502
2503
2504 /* We take this opportunity to close the vnodes like we should.. */
2505
2506 for (c = 0; c < raidPtr->numCol; c++) {
2507 vp = raidPtr->raid_cinfo[c].ci_vp;
2508 acd = raidPtr->Disks[c].auto_configured;
2509 rf_close_component(raidPtr, vp, acd);
2510 raidPtr->raid_cinfo[c].ci_vp = NULL;
2511 raidPtr->Disks[c].auto_configured = 0;
2512 }
2513
2514 for (r = 0; r < raidPtr->numSpare; r++) {
2515 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2516 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2517 rf_close_component(raidPtr, vp, acd);
2518 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2519 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2520 }
2521 }
2522
2523
2524 void
2525 rf_ReconThread(struct rf_recon_req *req)
2526 {
2527 int s;
2528 RF_Raid_t *raidPtr;
2529
2530 s = splbio();
2531 raidPtr = (RF_Raid_t *) req->raidPtr;
2532 raidPtr->recon_in_progress = 1;
2533
2534 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2535 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2536
2537 RF_Free(req, sizeof(*req));
2538
2539 raidPtr->recon_in_progress = 0;
2540 splx(s);
2541
2542 /* That's all... */
2543 kthread_exit(0); /* does not return */
2544 }
2545
2546 void
2547 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2548 {
2549 int retcode;
2550 int s;
2551
2552 raidPtr->parity_rewrite_stripes_done = 0;
2553 raidPtr->parity_rewrite_in_progress = 1;
2554 s = splbio();
2555 retcode = rf_RewriteParity(raidPtr);
2556 splx(s);
2557 if (retcode) {
2558 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2559 } else {
2560 /* set the clean bit! If we shutdown correctly,
2561 the clean bit on each component label will get
2562 set */
2563 raidPtr->parity_good = RF_RAID_CLEAN;
2564 }
2565 raidPtr->parity_rewrite_in_progress = 0;
2566
2567 /* Anyone waiting for us to stop? If so, inform them... */
2568 if (raidPtr->waitShutdown) {
2569 wakeup(&raidPtr->parity_rewrite_in_progress);
2570 }
2571
2572 /* That's all... */
2573 kthread_exit(0); /* does not return */
2574 }
2575
2576
2577 void
2578 rf_CopybackThread(RF_Raid_t *raidPtr)
2579 {
2580 int s;
2581
2582 raidPtr->copyback_in_progress = 1;
2583 s = splbio();
2584 rf_CopybackReconstructedData(raidPtr);
2585 splx(s);
2586 raidPtr->copyback_in_progress = 0;
2587
2588 /* That's all... */
2589 kthread_exit(0); /* does not return */
2590 }
2591
2592
2593 void
2594 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2595 {
2596 int s;
2597 RF_Raid_t *raidPtr;
2598
2599 s = splbio();
2600 raidPtr = req->raidPtr;
2601 raidPtr->recon_in_progress = 1;
2602 rf_ReconstructInPlace(raidPtr, req->col);
2603 RF_Free(req, sizeof(*req));
2604 raidPtr->recon_in_progress = 0;
2605 splx(s);
2606
2607 /* That's all... */
2608 kthread_exit(0); /* does not return */
2609 }
2610
2611 RF_AutoConfig_t *
2612 rf_find_raid_components()
2613 {
2614 struct vnode *vp;
2615 struct disklabel label;
2616 struct device *dv;
2617 dev_t dev;
2618 int bmajor;
2619 int error;
2620 int i;
2621 int good_one;
2622 RF_ComponentLabel_t *clabel;
2623 RF_AutoConfig_t *ac_list;
2624 RF_AutoConfig_t *ac;
2625
2626
2627 /* initialize the AutoConfig list */
2628 ac_list = NULL;
2629
2630 /* we begin by trolling through *all* the devices on the system */
2631
2632 for (dv = alldevs.tqh_first; dv != NULL;
2633 dv = dv->dv_list.tqe_next) {
2634
2635 /* we are only interested in disks... */
2636 if (dv->dv_class != DV_DISK)
2637 continue;
2638
2639 /* we don't care about floppies... */
2640 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2641 continue;
2642 }
2643
2644 /* we don't care about CD's... */
2645 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2646 continue;
2647 }
2648
2649 /* hdfd is the Atari/Hades floppy driver */
2650 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2651 continue;
2652 }
2653 /* fdisa is the Atari/Milan floppy driver */
2654 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2655 continue;
2656 }
2657
2658 /* need to find the device_name_to_block_device_major stuff */
2659 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2660
2661 /* get a vnode for the raw partition of this disk */
2662
2663 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2664 if (bdevvp(dev, &vp))
2665 panic("RAID can't alloc vnode");
2666
2667 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2668
2669 if (error) {
2670 /* "Who cares." Continue looking
2671 for something that exists*/
2672 vput(vp);
2673 continue;
2674 }
2675
2676 /* Ok, the disk exists. Go get the disklabel. */
2677 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2678 if (error) {
2679 /*
2680 * XXX can't happen - open() would
2681 * have errored out (or faked up one)
2682 */
2683 if (error != ENOTTY)
2684 printf("RAIDframe: can't get label for dev "
2685 "%s (%d)\n", dv->dv_xname, error);
2686 }
2687
2688 /* don't need this any more. We'll allocate it again
2689 a little later if we really do... */
2690 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2691 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2692 vput(vp);
2693
2694 if (error)
2695 continue;
2696
2697 for (i=0; i < label.d_npartitions; i++) {
2698 /* We only support partitions marked as RAID */
2699 if (label.d_partitions[i].p_fstype != FS_RAID)
2700 continue;
2701
2702 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2703 if (bdevvp(dev, &vp))
2704 panic("RAID can't alloc vnode");
2705
2706 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2707 if (error) {
2708 /* Whatever... */
2709 vput(vp);
2710 continue;
2711 }
2712
2713 good_one = 0;
2714
2715 clabel = (RF_ComponentLabel_t *)
2716 malloc(sizeof(RF_ComponentLabel_t),
2717 M_RAIDFRAME, M_NOWAIT);
2718 if (clabel == NULL) {
2719 /* XXX CLEANUP HERE */
2720 printf("RAID auto config: out of memory!\n");
2721 return(NULL); /* XXX probably should panic? */
2722 }
2723
2724 if (!raidread_component_label(dev, vp, clabel)) {
2725 /* Got the label. Does it look reasonable? */
2726 if (rf_reasonable_label(clabel) &&
2727 (clabel->partitionSize <=
2728 label.d_partitions[i].p_size)) {
2729 #if DEBUG
2730 printf("Component on: %s%c: %d\n",
2731 dv->dv_xname, 'a'+i,
2732 label.d_partitions[i].p_size);
2733 rf_print_component_label(clabel);
2734 #endif
2735 /* if it's reasonable, add it,
2736 else ignore it. */
2737 ac = (RF_AutoConfig_t *)
2738 malloc(sizeof(RF_AutoConfig_t),
2739 M_RAIDFRAME,
2740 M_NOWAIT);
2741 if (ac == NULL) {
2742 /* XXX should panic?? */
2743 return(NULL);
2744 }
2745
2746 snprintf(ac->devname,
2747 sizeof(ac->devname), "%s%c",
2748 dv->dv_xname, 'a'+i);
2749 ac->dev = dev;
2750 ac->vp = vp;
2751 ac->clabel = clabel;
2752 ac->next = ac_list;
2753 ac_list = ac;
2754 good_one = 1;
2755 }
2756 }
2757 if (!good_one) {
2758 /* cleanup */
2759 free(clabel, M_RAIDFRAME);
2760 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2761 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2762 vput(vp);
2763 }
2764 }
2765 }
2766 return(ac_list);
2767 }
2768
2769 static int
2770 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2771 {
2772
2773 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2774 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2775 ((clabel->clean == RF_RAID_CLEAN) ||
2776 (clabel->clean == RF_RAID_DIRTY)) &&
2777 clabel->row >=0 &&
2778 clabel->column >= 0 &&
2779 clabel->num_rows > 0 &&
2780 clabel->num_columns > 0 &&
2781 clabel->row < clabel->num_rows &&
2782 clabel->column < clabel->num_columns &&
2783 clabel->blockSize > 0 &&
2784 clabel->numBlocks > 0) {
2785 /* label looks reasonable enough... */
2786 return(1);
2787 }
2788 return(0);
2789 }
2790
2791
2792 #if DEBUG
2793 void
2794 rf_print_component_label(RF_ComponentLabel_t *clabel)
2795 {
2796 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2797 clabel->row, clabel->column,
2798 clabel->num_rows, clabel->num_columns);
2799 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2800 clabel->version, clabel->serial_number,
2801 clabel->mod_counter);
2802 printf(" Clean: %s Status: %d\n",
2803 clabel->clean ? "Yes" : "No", clabel->status );
2804 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2805 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2806 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2807 (char) clabel->parityConfig, clabel->blockSize,
2808 clabel->numBlocks);
2809 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2810 printf(" Contains root partition: %s\n",
2811 clabel->root_partition ? "Yes" : "No" );
2812 printf(" Last configured as: raid%d\n", clabel->last_unit );
2813 #if 0
2814 printf(" Config order: %d\n", clabel->config_order);
2815 #endif
2816
2817 }
2818 #endif
2819
2820 RF_ConfigSet_t *
2821 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2822 {
2823 RF_AutoConfig_t *ac;
2824 RF_ConfigSet_t *config_sets;
2825 RF_ConfigSet_t *cset;
2826 RF_AutoConfig_t *ac_next;
2827
2828
2829 config_sets = NULL;
2830
2831 /* Go through the AutoConfig list, and figure out which components
2832 belong to what sets. */
2833 ac = ac_list;
2834 while(ac!=NULL) {
2835 /* we're going to putz with ac->next, so save it here
2836 for use at the end of the loop */
2837 ac_next = ac->next;
2838
2839 if (config_sets == NULL) {
2840 /* will need at least this one... */
2841 config_sets = (RF_ConfigSet_t *)
2842 malloc(sizeof(RF_ConfigSet_t),
2843 M_RAIDFRAME, M_NOWAIT);
2844 if (config_sets == NULL) {
2845 panic("rf_create_auto_sets: No memory!");
2846 }
2847 /* this one is easy :) */
2848 config_sets->ac = ac;
2849 config_sets->next = NULL;
2850 config_sets->rootable = 0;
2851 ac->next = NULL;
2852 } else {
2853 /* which set does this component fit into? */
2854 cset = config_sets;
2855 while(cset!=NULL) {
2856 if (rf_does_it_fit(cset, ac)) {
2857 /* looks like it matches... */
2858 ac->next = cset->ac;
2859 cset->ac = ac;
2860 break;
2861 }
2862 cset = cset->next;
2863 }
2864 if (cset==NULL) {
2865 /* didn't find a match above... new set..*/
2866 cset = (RF_ConfigSet_t *)
2867 malloc(sizeof(RF_ConfigSet_t),
2868 M_RAIDFRAME, M_NOWAIT);
2869 if (cset == NULL) {
2870 panic("rf_create_auto_sets: No memory!");
2871 }
2872 cset->ac = ac;
2873 ac->next = NULL;
2874 cset->next = config_sets;
2875 cset->rootable = 0;
2876 config_sets = cset;
2877 }
2878 }
2879 ac = ac_next;
2880 }
2881
2882
2883 return(config_sets);
2884 }
2885
2886 static int
2887 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2888 {
2889 RF_ComponentLabel_t *clabel1, *clabel2;
2890
2891 /* If this one matches the *first* one in the set, that's good
2892 enough, since the other members of the set would have been
2893 through here too... */
2894 /* note that we are not checking partitionSize here..
2895
2896 Note that we are also not checking the mod_counters here.
2897 If everything else matches execpt the mod_counter, that's
2898 good enough for this test. We will deal with the mod_counters
2899 a little later in the autoconfiguration process.
2900
2901 (clabel1->mod_counter == clabel2->mod_counter) &&
2902
2903 The reason we don't check for this is that failed disks
2904 will have lower modification counts. If those disks are
2905 not added to the set they used to belong to, then they will
2906 form their own set, which may result in 2 different sets,
2907 for example, competing to be configured at raid0, and
2908 perhaps competing to be the root filesystem set. If the
2909 wrong ones get configured, or both attempt to become /,
2910 weird behaviour and or serious lossage will occur. Thus we
2911 need to bring them into the fold here, and kick them out at
2912 a later point.
2913
2914 */
2915
2916 clabel1 = cset->ac->clabel;
2917 clabel2 = ac->clabel;
2918 if ((clabel1->version == clabel2->version) &&
2919 (clabel1->serial_number == clabel2->serial_number) &&
2920 (clabel1->num_rows == clabel2->num_rows) &&
2921 (clabel1->num_columns == clabel2->num_columns) &&
2922 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2923 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2924 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2925 (clabel1->parityConfig == clabel2->parityConfig) &&
2926 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2927 (clabel1->blockSize == clabel2->blockSize) &&
2928 (clabel1->numBlocks == clabel2->numBlocks) &&
2929 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2930 (clabel1->root_partition == clabel2->root_partition) &&
2931 (clabel1->last_unit == clabel2->last_unit) &&
2932 (clabel1->config_order == clabel2->config_order)) {
2933 /* if it get's here, it almost *has* to be a match */
2934 } else {
2935 /* it's not consistent with somebody in the set..
2936 punt */
2937 return(0);
2938 }
2939 /* all was fine.. it must fit... */
2940 return(1);
2941 }
2942
2943 int
2944 rf_have_enough_components(RF_ConfigSet_t *cset)
2945 {
2946 RF_AutoConfig_t *ac;
2947 RF_AutoConfig_t *auto_config;
2948 RF_ComponentLabel_t *clabel;
2949 int c;
2950 int num_cols;
2951 int num_missing;
2952 int mod_counter;
2953 int mod_counter_found;
2954 int even_pair_failed;
2955 char parity_type;
2956
2957
2958 /* check to see that we have enough 'live' components
2959 of this set. If so, we can configure it if necessary */
2960
2961 num_cols = cset->ac->clabel->num_columns;
2962 parity_type = cset->ac->clabel->parityConfig;
2963
2964 /* XXX Check for duplicate components!?!?!? */
2965
2966 /* Determine what the mod_counter is supposed to be for this set. */
2967
2968 mod_counter_found = 0;
2969 mod_counter = 0;
2970 ac = cset->ac;
2971 while(ac!=NULL) {
2972 if (mod_counter_found==0) {
2973 mod_counter = ac->clabel->mod_counter;
2974 mod_counter_found = 1;
2975 } else {
2976 if (ac->clabel->mod_counter > mod_counter) {
2977 mod_counter = ac->clabel->mod_counter;
2978 }
2979 }
2980 ac = ac->next;
2981 }
2982
2983 num_missing = 0;
2984 auto_config = cset->ac;
2985
2986 even_pair_failed = 0;
2987 for(c=0; c<num_cols; c++) {
2988 ac = auto_config;
2989 while(ac!=NULL) {
2990 if ((ac->clabel->column == c) &&
2991 (ac->clabel->mod_counter == mod_counter)) {
2992 /* it's this one... */
2993 #if DEBUG
2994 printf("Found: %s at %d\n",
2995 ac->devname,c);
2996 #endif
2997 break;
2998 }
2999 ac=ac->next;
3000 }
3001 if (ac==NULL) {
3002 /* Didn't find one here! */
3003 /* special case for RAID 1, especially
3004 where there are more than 2
3005 components (where RAIDframe treats
3006 things a little differently :( ) */
3007 if (parity_type == '1') {
3008 if (c%2 == 0) { /* even component */
3009 even_pair_failed = 1;
3010 } else { /* odd component. If
3011 we're failed, and
3012 so is the even
3013 component, it's
3014 "Good Night, Charlie" */
3015 if (even_pair_failed == 1) {
3016 return(0);
3017 }
3018 }
3019 } else {
3020 /* normal accounting */
3021 num_missing++;
3022 }
3023 }
3024 if ((parity_type == '1') && (c%2 == 1)) {
3025 /* Just did an even component, and we didn't
3026 bail.. reset the even_pair_failed flag,
3027 and go on to the next component.... */
3028 even_pair_failed = 0;
3029 }
3030 }
3031
3032 clabel = cset->ac->clabel;
3033
3034 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3035 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3036 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3037 /* XXX this needs to be made *much* more general */
3038 /* Too many failures */
3039 return(0);
3040 }
3041 /* otherwise, all is well, and we've got enough to take a kick
3042 at autoconfiguring this set */
3043 return(1);
3044 }
3045
3046 void
3047 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3048 RF_Raid_t *raidPtr)
3049 {
3050 RF_ComponentLabel_t *clabel;
3051 int i;
3052
3053 clabel = ac->clabel;
3054
3055 /* 1. Fill in the common stuff */
3056 config->numRow = clabel->num_rows = 1;
3057 config->numCol = clabel->num_columns;
3058 config->numSpare = 0; /* XXX should this be set here? */
3059 config->sectPerSU = clabel->sectPerSU;
3060 config->SUsPerPU = clabel->SUsPerPU;
3061 config->SUsPerRU = clabel->SUsPerRU;
3062 config->parityConfig = clabel->parityConfig;
3063 /* XXX... */
3064 strcpy(config->diskQueueType,"fifo");
3065 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3066 config->layoutSpecificSize = 0; /* XXX ?? */
3067
3068 while(ac!=NULL) {
3069 /* row/col values will be in range due to the checks
3070 in reasonable_label() */
3071 strcpy(config->devnames[0][ac->clabel->column],
3072 ac->devname);
3073 ac = ac->next;
3074 }
3075
3076 for(i=0;i<RF_MAXDBGV;i++) {
3077 config->debugVars[i][0] = 0;
3078 }
3079 }
3080
3081 int
3082 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3083 {
3084 RF_ComponentLabel_t clabel;
3085 struct vnode *vp;
3086 dev_t dev;
3087 int column;
3088 int sparecol;
3089
3090 raidPtr->autoconfigure = new_value;
3091
3092 for(column=0; column<raidPtr->numCol; column++) {
3093 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3094 dev = raidPtr->Disks[column].dev;
3095 vp = raidPtr->raid_cinfo[column].ci_vp;
3096 raidread_component_label(dev, vp, &clabel);
3097 clabel.autoconfigure = new_value;
3098 raidwrite_component_label(dev, vp, &clabel);
3099 }
3100 }
3101 for(column = 0; column < raidPtr->numSpare ; column++) {
3102 sparecol = raidPtr->numCol + column;
3103 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3104 dev = raidPtr->Disks[sparecol].dev;
3105 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3106 raidread_component_label(dev, vp, &clabel);
3107 clabel.autoconfigure = new_value;
3108 raidwrite_component_label(dev, vp, &clabel);
3109 }
3110 }
3111 return(new_value);
3112 }
3113
3114 int
3115 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3116 {
3117 RF_ComponentLabel_t clabel;
3118 struct vnode *vp;
3119 dev_t dev;
3120 int column;
3121 int sparecol;
3122
3123 raidPtr->root_partition = new_value;
3124 for(column=0; column<raidPtr->numCol; column++) {
3125 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3126 dev = raidPtr->Disks[column].dev;
3127 vp = raidPtr->raid_cinfo[column].ci_vp;
3128 raidread_component_label(dev, vp, &clabel);
3129 clabel.root_partition = new_value;
3130 raidwrite_component_label(dev, vp, &clabel);
3131 }
3132 }
3133 for(column = 0; column < raidPtr->numSpare ; column++) {
3134 sparecol = raidPtr->numCol + column;
3135 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3136 dev = raidPtr->Disks[sparecol].dev;
3137 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3138 raidread_component_label(dev, vp, &clabel);
3139 clabel.root_partition = new_value;
3140 raidwrite_component_label(dev, vp, &clabel);
3141 }
3142 }
3143 return(new_value);
3144 }
3145
3146 void
3147 rf_release_all_vps(RF_ConfigSet_t *cset)
3148 {
3149 RF_AutoConfig_t *ac;
3150
3151 ac = cset->ac;
3152 while(ac!=NULL) {
3153 /* Close the vp, and give it back */
3154 if (ac->vp) {
3155 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3156 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3157 vput(ac->vp);
3158 ac->vp = NULL;
3159 }
3160 ac = ac->next;
3161 }
3162 }
3163
3164
3165 void
3166 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3167 {
3168 RF_AutoConfig_t *ac;
3169 RF_AutoConfig_t *next_ac;
3170
3171 ac = cset->ac;
3172 while(ac!=NULL) {
3173 next_ac = ac->next;
3174 /* nuke the label */
3175 free(ac->clabel, M_RAIDFRAME);
3176 /* cleanup the config structure */
3177 free(ac, M_RAIDFRAME);
3178 /* "next.." */
3179 ac = next_ac;
3180 }
3181 /* and, finally, nuke the config set */
3182 free(cset, M_RAIDFRAME);
3183 }
3184
3185
3186 void
3187 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3188 {
3189 /* current version number */
3190 clabel->version = RF_COMPONENT_LABEL_VERSION;
3191 clabel->serial_number = raidPtr->serial_number;
3192 clabel->mod_counter = raidPtr->mod_counter;
3193 clabel->num_rows = 1;
3194 clabel->num_columns = raidPtr->numCol;
3195 clabel->clean = RF_RAID_DIRTY; /* not clean */
3196 clabel->status = rf_ds_optimal; /* "It's good!" */
3197
3198 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3199 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3200 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3201
3202 clabel->blockSize = raidPtr->bytesPerSector;
3203 clabel->numBlocks = raidPtr->sectorsPerDisk;
3204
3205 /* XXX not portable */
3206 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3207 clabel->maxOutstanding = raidPtr->maxOutstanding;
3208 clabel->autoconfigure = raidPtr->autoconfigure;
3209 clabel->root_partition = raidPtr->root_partition;
3210 clabel->last_unit = raidPtr->raidid;
3211 clabel->config_order = raidPtr->config_order;
3212 }
3213
3214 int
3215 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3216 {
3217 RF_Raid_t *raidPtr;
3218 RF_Config_t *config;
3219 int raidID;
3220 int retcode;
3221
3222 #if DEBUG
3223 printf("RAID autoconfigure\n");
3224 #endif
3225
3226 retcode = 0;
3227 *unit = -1;
3228
3229 /* 1. Create a config structure */
3230
3231 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3232 M_RAIDFRAME,
3233 M_NOWAIT);
3234 if (config==NULL) {
3235 printf("Out of mem!?!?\n");
3236 /* XXX do something more intelligent here. */
3237 return(1);
3238 }
3239
3240 memset(config, 0, sizeof(RF_Config_t));
3241
3242 /*
3243 2. Figure out what RAID ID this one is supposed to live at
3244 See if we can get the same RAID dev that it was configured
3245 on last time..
3246 */
3247
3248 raidID = cset->ac->clabel->last_unit;
3249 if ((raidID < 0) || (raidID >= numraid)) {
3250 /* let's not wander off into lala land. */
3251 raidID = numraid - 1;
3252 }
3253 if (raidPtrs[raidID]->valid != 0) {
3254
3255 /*
3256 Nope... Go looking for an alternative...
3257 Start high so we don't immediately use raid0 if that's
3258 not taken.
3259 */
3260
3261 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3262 if (raidPtrs[raidID]->valid == 0) {
3263 /* can use this one! */
3264 break;
3265 }
3266 }
3267 }
3268
3269 if (raidID < 0) {
3270 /* punt... */
3271 printf("Unable to auto configure this set!\n");
3272 printf("(Out of RAID devs!)\n");
3273 return(1);
3274 }
3275
3276 #if DEBUG
3277 printf("Configuring raid%d:\n",raidID);
3278 #endif
3279
3280 raidPtr = raidPtrs[raidID];
3281
3282 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3283 raidPtr->raidid = raidID;
3284 raidPtr->openings = RAIDOUTSTANDING;
3285
3286 /* 3. Build the configuration structure */
3287 rf_create_configuration(cset->ac, config, raidPtr);
3288
3289 /* 4. Do the configuration */
3290 retcode = rf_Configure(raidPtr, config, cset->ac);
3291
3292 if (retcode == 0) {
3293
3294 raidinit(raidPtrs[raidID]);
3295
3296 rf_markalldirty(raidPtrs[raidID]);
3297 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3298 if (cset->ac->clabel->root_partition==1) {
3299 /* everything configured just fine. Make a note
3300 that this set is eligible to be root. */
3301 cset->rootable = 1;
3302 /* XXX do this here? */
3303 raidPtrs[raidID]->root_partition = 1;
3304 }
3305 }
3306
3307 /* 5. Cleanup */
3308 free(config, M_RAIDFRAME);
3309
3310 *unit = raidID;
3311 return(retcode);
3312 }
3313
3314 void
3315 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3316 {
3317 struct buf *bp;
3318
3319 bp = (struct buf *)desc->bp;
3320 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3321 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3322 }
3323
3324 void
3325 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3326 size_t xmin, size_t xmax)
3327 {
3328 pool_init(p, size, 0, 0, 0, w_chan, NULL);
3329 pool_sethiwat(p, xmax);
3330 pool_prime(p, xmin);
3331 pool_setlowat(p, xmin);
3332 }
3333