Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.19
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.19 1999/06/13 20:36:17 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 
    137 #include "raid.h"
    138 #include "rf_raid.h"
    139 #include "rf_raidframe.h"
    140 #include "rf_dag.h"
    141 #include "rf_dagflags.h"
    142 #include "rf_diskqueue.h"
    143 #include "rf_acctrace.h"
    144 #include "rf_etimer.h"
    145 #include "rf_general.h"
    146 #include "rf_debugMem.h"
    147 #include "rf_kintf.h"
    148 #include "rf_options.h"
    149 #include "rf_driver.h"
    150 #include "rf_parityscan.h"
    151 #include "rf_debugprint.h"
    152 #include "rf_threadstuff.h"
    153 
    154 int     rf_kdebug_level = 0;
    155 
    156 #define RFK_BOOT_NONE 0
    157 #define RFK_BOOT_GOOD 1
    158 #define RFK_BOOT_BAD  2
    159 static int rf_kbooted = RFK_BOOT_NONE;
    160 
    161 #ifdef DEBUG
    162 #define db0_printf(a) printf a
    163 #define db_printf(a) if (rf_kdebug_level > 0) printf a
    164 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    165 #define db2_printf(a) if (rf_kdebug_level > 1) printf a
    166 #define db3_printf(a) if (rf_kdebug_level > 2) printf a
    167 #define db4_printf(a) if (rf_kdebug_level > 3) printf a
    168 #define db5_printf(a) if (rf_kdebug_level > 4) printf a
    169 #else				/* DEBUG */
    170 #define db0_printf(a) printf a
    171 #define db1_printf(a) { }
    172 #define db2_printf(a) { }
    173 #define db3_printf(a) { }
    174 #define db4_printf(a) { }
    175 #define db5_printf(a) { }
    176 #endif				/* DEBUG */
    177 
    178 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    179 
    180 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    181 
    182 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    183 						 * spare table */
    184 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    185 						 * installation process */
    186 
    187 static struct rf_recon_req *recon_queue = NULL;	/* used to communicate
    188 						 * reconstruction
    189 						 * requests */
    190 
    191 
    192 decl_simple_lock_data(, recon_queue_mutex)
    193 #define LOCK_RECON_Q_MUTEX() simple_lock(&recon_queue_mutex)
    194 #define UNLOCK_RECON_Q_MUTEX() simple_unlock(&recon_queue_mutex)
    195 
    196 /* prototypes */
    197 static void KernelWakeupFunc(struct buf * bp);
    198 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    199 		   dev_t dev, RF_SectorNum_t startSect,
    200 		   RF_SectorCount_t numSect, caddr_t buf,
    201 		   void (*cbFunc) (struct buf *), void *cbArg,
    202 		   int logBytesPerSector, struct proc * b_proc);
    203 
    204 #define Dprintf0(s)       if (rf_queueDebug) \
    205      rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
    206 #define Dprintf1(s,a)     if (rf_queueDebug) \
    207      rf_debug_printf(s,a,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
    208 #define Dprintf2(s,a,b)   if (rf_queueDebug) \
    209      rf_debug_printf(s,a,b,NULL,NULL,NULL,NULL,NULL,NULL)
    210 #define Dprintf3(s,a,b,c) if (rf_queueDebug) \
    211      rf_debug_printf(s,a,b,c,NULL,NULL,NULL,NULL,NULL)
    212 
    213 int raidmarkclean(dev_t dev, struct vnode *b_vp, int);
    214 int raidmarkdirty(dev_t dev, struct vnode *b_vp, int);
    215 
    216 void raidattach __P((int));
    217 int raidsize __P((dev_t));
    218 
    219 void    rf_DiskIOComplete(RF_DiskQueue_t *, RF_DiskQueueData_t *, int);
    220 void    rf_CopybackReconstructedData(RF_Raid_t * raidPtr);
    221 static int raidinit __P((dev_t, RF_Raid_t *, int));
    222 
    223 int raidopen __P((dev_t, int, int, struct proc *));
    224 int raidclose __P((dev_t, int, int, struct proc *));
    225 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    226 int raidwrite __P((dev_t, struct uio *, int));
    227 int raidread __P((dev_t, struct uio *, int));
    228 void raidstrategy __P((struct buf *));
    229 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    230 
    231 int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
    232 int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
    233 void rf_update_component_labels( RF_Raid_t *);
    234 /*
    235  * Pilfered from ccd.c
    236  */
    237 
    238 struct raidbuf {
    239 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    240 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    241 	int     rf_flags;	/* misc. flags */
    242 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    243 };
    244 
    245 
    246 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    247 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    248 
    249 /* XXX Not sure if the following should be replacing the raidPtrs above,
    250    or if it should be used in conjunction with that... */
    251 
    252 struct raid_softc {
    253 	int     sc_flags;	/* flags */
    254 	int     sc_cflags;	/* configuration flags */
    255 	size_t  sc_size;        /* size of the raid device */
    256 	dev_t   sc_dev;	        /* our device.. */
    257 	char    sc_xname[20];	/* XXX external name */
    258 	struct disk sc_dkdev;	/* generic disk device info */
    259 	struct pool sc_cbufpool;	/* component buffer pool */
    260 };
    261 /* sc_flags */
    262 #define RAIDF_INITED	0x01	/* unit has been initialized */
    263 #define RAIDF_WLABEL	0x02	/* label area is writable */
    264 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    265 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    266 #define RAIDF_LOCKED	0x80	/* unit is locked */
    267 
    268 #define	raidunit(x)	DISKUNIT(x)
    269 static int numraid = 0;
    270 
    271 #define RAIDLABELDEV(dev)	\
    272 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    273 
    274 /* declared here, and made public, for the benefit of KVM stuff.. */
    275 struct raid_softc *raid_softc;
    276 
    277 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    278 				     struct disklabel *));
    279 static void raidgetdisklabel __P((dev_t));
    280 static void raidmakedisklabel __P((struct raid_softc *));
    281 
    282 static int raidlock __P((struct raid_softc *));
    283 static void raidunlock __P((struct raid_softc *));
    284 int raidlookup __P((char *, struct proc * p, struct vnode **));
    285 
    286 static void rf_markalldirty __P((RF_Raid_t *));
    287 
    288 void
    289 raidattach(num)
    290 	int     num;
    291 {
    292 	int raidID;
    293 	int i, rc;
    294 
    295 #ifdef DEBUG
    296 	printf("raidattach: Asked for %d units\n", num);
    297 #endif
    298 
    299 	if (num <= 0) {
    300 #ifdef DIAGNOSTIC
    301 		panic("raidattach: count <= 0");
    302 #endif
    303 		return;
    304 	}
    305 	/* This is where all the initialization stuff gets done. */
    306 
    307 	/* Make some space for requested number of units... */
    308 
    309 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    310 	if (raidPtrs == NULL) {
    311 		panic("raidPtrs is NULL!!\n");
    312 	}
    313 
    314 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    315 	if (rc) {
    316 		RF_PANIC();
    317 	}
    318 
    319 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    320 	recon_queue = NULL;
    321 
    322 	for (i = 0; i < numraid; i++)
    323 		raidPtrs[i] = NULL;
    324 	rc = rf_BootRaidframe();
    325 	if (rc == 0)
    326 		printf("Kernelized RAIDframe activated\n");
    327 	else
    328 		panic("Serious error booting RAID!!\n");
    329 
    330 	rf_kbooted = RFK_BOOT_GOOD;
    331 
    332 	/* put together some datastructures like the CCD device does.. This
    333 	 * lets us lock the device and what-not when it gets opened. */
    334 
    335 	raid_softc = (struct raid_softc *)
    336 	    malloc(num * sizeof(struct raid_softc),
    337 	    M_RAIDFRAME, M_NOWAIT);
    338 	if (raid_softc == NULL) {
    339 		printf("WARNING: no memory for RAIDframe driver\n");
    340 		return;
    341 	}
    342 	numraid = num;
    343 	bzero(raid_softc, num * sizeof(struct raid_softc));
    344 
    345 	for (raidID = 0; raidID < num; raidID++) {
    346 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    347 			  (RF_Raid_t *));
    348 		if (raidPtrs[raidID] == NULL) {
    349 			printf("raidPtrs[%d] is NULL\n", raidID);
    350 		}
    351 	}
    352 }
    353 
    354 
    355 int
    356 raidsize(dev)
    357 	dev_t   dev;
    358 {
    359 	struct raid_softc *rs;
    360 	struct disklabel *lp;
    361 	int     part, unit, omask, size;
    362 
    363 	unit = raidunit(dev);
    364 	if (unit >= numraid)
    365 		return (-1);
    366 	rs = &raid_softc[unit];
    367 
    368 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    369 		return (-1);
    370 
    371 	part = DISKPART(dev);
    372 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    373 	lp = rs->sc_dkdev.dk_label;
    374 
    375 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    376 		return (-1);
    377 
    378 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    379 		size = -1;
    380 	else
    381 		size = lp->d_partitions[part].p_size *
    382 		    (lp->d_secsize / DEV_BSIZE);
    383 
    384 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    385 		return (-1);
    386 
    387 	return (size);
    388 
    389 }
    390 
    391 int
    392 raiddump(dev, blkno, va, size)
    393 	dev_t   dev;
    394 	daddr_t blkno;
    395 	caddr_t va;
    396 	size_t  size;
    397 {
    398 	/* Not implemented. */
    399 	return ENXIO;
    400 }
    401 /* ARGSUSED */
    402 int
    403 raidopen(dev, flags, fmt, p)
    404 	dev_t   dev;
    405 	int     flags, fmt;
    406 	struct proc *p;
    407 {
    408 	int     unit = raidunit(dev);
    409 	struct raid_softc *rs;
    410 	struct disklabel *lp;
    411 	int     part, pmask;
    412 	int     error = 0;
    413 
    414 	if (unit >= numraid)
    415 		return (ENXIO);
    416 	rs = &raid_softc[unit];
    417 
    418 	if ((error = raidlock(rs)) != 0)
    419 		return (error);
    420 	lp = rs->sc_dkdev.dk_label;
    421 
    422 	part = DISKPART(dev);
    423 	pmask = (1 << part);
    424 
    425 	db1_printf(("Opening raid device number: %d partition: %d\n",
    426 		unit, part));
    427 
    428 
    429 	if ((rs->sc_flags & RAIDF_INITED) &&
    430 	    (rs->sc_dkdev.dk_openmask == 0))
    431 		raidgetdisklabel(dev);
    432 
    433 	/* make sure that this partition exists */
    434 
    435 	if (part != RAW_PART) {
    436 		db1_printf(("Not a raw partition..\n"));
    437 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    438 		    ((part >= lp->d_npartitions) ||
    439 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    440 			error = ENXIO;
    441 			raidunlock(rs);
    442 			db1_printf(("Bailing out...\n"));
    443 			return (error);
    444 		}
    445 	}
    446 	/* Prevent this unit from being unconfigured while open. */
    447 	switch (fmt) {
    448 	case S_IFCHR:
    449 		rs->sc_dkdev.dk_copenmask |= pmask;
    450 		break;
    451 
    452 	case S_IFBLK:
    453 		rs->sc_dkdev.dk_bopenmask |= pmask;
    454 		break;
    455 	}
    456 
    457 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    458 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    459 		/* First one... mark things as dirty... Note that we *MUST*
    460 		 have done a configure before this.  I DO NOT WANT TO BE
    461 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    462 		 THAT THEY BELONG TOGETHER!!!!! */
    463 		/* XXX should check to see if we're only open for reading
    464 		   here... If so, we needn't do this, but then need some
    465 		   other way of keeping track of what's happened.. */
    466 
    467 		rf_markalldirty( raidPtrs[unit] );
    468 	}
    469 
    470 
    471 	rs->sc_dkdev.dk_openmask =
    472 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    473 
    474 	raidunlock(rs);
    475 
    476 	return (error);
    477 
    478 
    479 }
    480 /* ARGSUSED */
    481 int
    482 raidclose(dev, flags, fmt, p)
    483 	dev_t   dev;
    484 	int     flags, fmt;
    485 	struct proc *p;
    486 {
    487 	int     unit = raidunit(dev);
    488 	struct raid_softc *rs;
    489 	int     error = 0;
    490 	int     part;
    491 
    492 	if (unit >= numraid)
    493 		return (ENXIO);
    494 	rs = &raid_softc[unit];
    495 
    496 	if ((error = raidlock(rs)) != 0)
    497 		return (error);
    498 
    499 	part = DISKPART(dev);
    500 
    501 	/* ...that much closer to allowing unconfiguration... */
    502 	switch (fmt) {
    503 	case S_IFCHR:
    504 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    505 		break;
    506 
    507 	case S_IFBLK:
    508 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    509 		break;
    510 	}
    511 	rs->sc_dkdev.dk_openmask =
    512 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    513 
    514 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    515 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    516 		/* Last one... device is not unconfigured yet.
    517 		   Device shutdown has taken care of setting the
    518 		   clean bits if RAIDF_INITED is not set
    519 		   mark things as clean... */
    520 		rf_update_component_labels( raidPtrs[unit] );
    521 	}
    522 
    523 	raidunlock(rs);
    524 	return (0);
    525 
    526 }
    527 
    528 void
    529 raidstrategy(bp)
    530 	register struct buf *bp;
    531 {
    532 	register int s;
    533 
    534 	unsigned int raidID = raidunit(bp->b_dev);
    535 	RF_Raid_t *raidPtr;
    536 	struct raid_softc *rs = &raid_softc[raidID];
    537 	struct disklabel *lp;
    538 	int     wlabel;
    539 
    540 #if 0
    541 	db1_printf(("Strategy: 0x%x 0x%x\n", bp, bp->b_data));
    542 	db1_printf(("Strategy(2): bp->b_bufsize%d\n", (int) bp->b_bufsize));
    543 	db1_printf(("bp->b_count=%d\n", (int) bp->b_bcount));
    544 	db1_printf(("bp->b_resid=%d\n", (int) bp->b_resid));
    545 	db1_printf(("bp->b_blkno=%d\n", (int) bp->b_blkno));
    546 
    547 	if (bp->b_flags & B_READ)
    548 		db1_printf(("READ\n"));
    549 	else
    550 		db1_printf(("WRITE\n"));
    551 #endif
    552 	if (rf_kbooted != RFK_BOOT_GOOD)
    553 		return;
    554 	if (raidID >= numraid || !raidPtrs[raidID]) {
    555 		bp->b_error = ENODEV;
    556 		bp->b_flags |= B_ERROR;
    557 		bp->b_resid = bp->b_bcount;
    558 		biodone(bp);
    559 		return;
    560 	}
    561 	raidPtr = raidPtrs[raidID];
    562 	if (!raidPtr->valid) {
    563 		bp->b_error = ENODEV;
    564 		bp->b_flags |= B_ERROR;
    565 		bp->b_resid = bp->b_bcount;
    566 		biodone(bp);
    567 		return;
    568 	}
    569 	if (bp->b_bcount == 0) {
    570 		db1_printf(("b_bcount is zero..\n"));
    571 		biodone(bp);
    572 		return;
    573 	}
    574 	lp = rs->sc_dkdev.dk_label;
    575 
    576 	/*
    577 	 * Do bounds checking and adjust transfer.  If there's an
    578 	 * error, the bounds check will flag that for us.
    579 	 */
    580 
    581 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    582 	if (DISKPART(bp->b_dev) != RAW_PART)
    583 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    584 			db1_printf(("Bounds check failed!!:%d %d\n",
    585 				(int) bp->b_blkno, (int) wlabel));
    586 			biodone(bp);
    587 			return;
    588 		}
    589 	s = splbio();		/* XXX Needed? */
    590 	db1_printf(("Beginning strategy...\n"));
    591 
    592 	bp->b_resid = 0;
    593 	bp->b_error = rf_DoAccessKernel(raidPtrs[raidID], bp,
    594 	    NULL, NULL, NULL);
    595 	if (bp->b_error) {
    596 		bp->b_flags |= B_ERROR;
    597 		db1_printf(("bp->b_flags HAS B_ERROR SET!!!: %d\n",
    598 			bp->b_error));
    599 	}
    600 	splx(s);
    601 #if 0
    602 	db1_printf(("Strategy exiting: 0x%x 0x%x %d %d\n",
    603 		bp, bp->b_data,
    604 		(int) bp->b_bcount, (int) bp->b_resid));
    605 #endif
    606 }
    607 /* ARGSUSED */
    608 int
    609 raidread(dev, uio, flags)
    610 	dev_t   dev;
    611 	struct uio *uio;
    612 	int     flags;
    613 {
    614 	int     unit = raidunit(dev);
    615 	struct raid_softc *rs;
    616 	int     part;
    617 
    618 	if (unit >= numraid)
    619 		return (ENXIO);
    620 	rs = &raid_softc[unit];
    621 
    622 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    623 		return (ENXIO);
    624 	part = DISKPART(dev);
    625 
    626 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    627 
    628 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    629 
    630 }
    631 /* ARGSUSED */
    632 int
    633 raidwrite(dev, uio, flags)
    634 	dev_t   dev;
    635 	struct uio *uio;
    636 	int     flags;
    637 {
    638 	int     unit = raidunit(dev);
    639 	struct raid_softc *rs;
    640 
    641 	if (unit >= numraid)
    642 		return (ENXIO);
    643 	rs = &raid_softc[unit];
    644 
    645 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    646 		return (ENXIO);
    647 	db1_printf(("raidwrite\n"));
    648 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    649 
    650 }
    651 
    652 int
    653 raidioctl(dev, cmd, data, flag, p)
    654 	dev_t   dev;
    655 	u_long  cmd;
    656 	caddr_t data;
    657 	int     flag;
    658 	struct proc *p;
    659 {
    660 	int     unit = raidunit(dev);
    661 	int     error = 0;
    662 	int     part, pmask;
    663 	struct raid_softc *rs;
    664 #if 0
    665 	int     r, c;
    666 #endif
    667 	/* struct raid_ioctl *ccio = (struct ccd_ioctl *)data; */
    668 
    669 	/* struct ccdbuf *cbp; */
    670 	/* struct raidbuf *raidbp; */
    671 	RF_Config_t *k_cfg, *u_cfg;
    672 	u_char *specific_buf;
    673 	int retcode = 0;
    674 	int row;
    675 	int column;
    676 	struct rf_recon_req *rrcopy, *rr;
    677 	RF_ComponentLabel_t *component_label;
    678 	RF_ComponentLabel_t ci_label;
    679 	RF_ComponentLabel_t **c_label_ptr;
    680 	RF_SingleComponent_t *sparePtr,*componentPtr;
    681 	RF_SingleComponent_t hot_spare;
    682 	RF_SingleComponent_t component;
    683 
    684 	if (unit >= numraid)
    685 		return (ENXIO);
    686 	rs = &raid_softc[unit];
    687 
    688 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    689 		(int) DISKPART(dev), (int) unit, (int) cmd));
    690 
    691 	/* Must be open for writes for these commands... */
    692 	switch (cmd) {
    693 	case DIOCSDINFO:
    694 	case DIOCWDINFO:
    695 	case DIOCWLABEL:
    696 		if ((flag & FWRITE) == 0)
    697 			return (EBADF);
    698 	}
    699 
    700 	/* Must be initialized for these... */
    701 	switch (cmd) {
    702 	case DIOCGDINFO:
    703 	case DIOCSDINFO:
    704 	case DIOCWDINFO:
    705 	case DIOCGPART:
    706 	case DIOCWLABEL:
    707 	case DIOCGDEFLABEL:
    708 	case RAIDFRAME_SHUTDOWN:
    709 	case RAIDFRAME_REWRITEPARITY:
    710 	case RAIDFRAME_GET_INFO:
    711 	case RAIDFRAME_RESET_ACCTOTALS:
    712 	case RAIDFRAME_GET_ACCTOTALS:
    713 	case RAIDFRAME_KEEP_ACCTOTALS:
    714 	case RAIDFRAME_GET_SIZE:
    715 	case RAIDFRAME_FAIL_DISK:
    716 	case RAIDFRAME_COPYBACK:
    717 	case RAIDFRAME_CHECKRECON:
    718 	case RAIDFRAME_GET_COMPONENT_LABEL:
    719 	case RAIDFRAME_SET_COMPONENT_LABEL:
    720 	case RAIDFRAME_ADD_HOT_SPARE:
    721 	case RAIDFRAME_REMOVE_HOT_SPARE:
    722 	case RAIDFRAME_INIT_LABELS:
    723 	case RAIDFRAME_REBUILD_IN_PLACE:
    724 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    725 			return (ENXIO);
    726 	}
    727 
    728 	switch (cmd) {
    729 
    730 
    731 		/* configure the system */
    732 	case RAIDFRAME_CONFIGURE:
    733 
    734 		db3_printf(("rf_ioctl: RAIDFRAME_CONFIGURE\n"));
    735 		/* copy-in the configuration information */
    736 		/* data points to a pointer to the configuration structure */
    737 		u_cfg = *((RF_Config_t **) data);
    738 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    739 		if (k_cfg == NULL) {
    740 			db3_printf(("rf_ioctl: ENOMEM for config. Code is %d\n", retcode));
    741 			return (ENOMEM);
    742 		}
    743 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    744 		    sizeof(RF_Config_t));
    745 		if (retcode) {
    746 			db3_printf(("rf_ioctl: retcode=%d copyin.1\n",
    747 				retcode));
    748 			return (retcode);
    749 		}
    750 		/* allocate a buffer for the layout-specific data, and copy it
    751 		 * in */
    752 		if (k_cfg->layoutSpecificSize) {
    753 			if (k_cfg->layoutSpecificSize > 10000) {
    754 				/* sanity check */
    755 				db3_printf(("rf_ioctl: EINVAL %d\n", retcode));
    756 				return (EINVAL);
    757 			}
    758 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    759 			    (u_char *));
    760 			if (specific_buf == NULL) {
    761 				RF_Free(k_cfg, sizeof(RF_Config_t));
    762 				db3_printf(("rf_ioctl: ENOMEM %d\n", retcode));
    763 				return (ENOMEM);
    764 			}
    765 			retcode = copyin(k_cfg->layoutSpecific,
    766 			    (caddr_t) specific_buf,
    767 			    k_cfg->layoutSpecificSize);
    768 			if (retcode) {
    769 				db3_printf(("rf_ioctl: retcode=%d copyin.2\n",
    770 					retcode));
    771 				return (retcode);
    772 			}
    773 		} else
    774 			specific_buf = NULL;
    775 		k_cfg->layoutSpecific = specific_buf;
    776 
    777 		/* should do some kind of sanity check on the configuration.
    778 		 * Store the sum of all the bytes in the last byte? */
    779 
    780 #if 0
    781 		db1_printf(("Considering configuring the system.:%d 0x%x\n",
    782 			unit, p));
    783 #endif
    784 
    785 		/* We need the pointer to this a little deeper, so stash it
    786 		 * here... */
    787 
    788 		raidPtrs[unit]->proc = p;
    789 
    790 		/* configure the system */
    791 
    792 		raidPtrs[unit]->raidid = unit;
    793 		retcode = rf_Configure(raidPtrs[unit], k_cfg);
    794 
    795 
    796 		if (retcode == 0) {
    797 			retcode = raidinit(dev, raidPtrs[unit], unit);
    798 			rf_markalldirty( raidPtrs[unit] );
    799 		}
    800 		/* free the buffers.  No return code here. */
    801 		if (k_cfg->layoutSpecificSize) {
    802 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    803 		}
    804 		RF_Free(k_cfg, sizeof(RF_Config_t));
    805 
    806 		db3_printf(("rf_ioctl: retcode=%d RAIDFRAME_CONFIGURE\n",
    807 			retcode));
    808 
    809 		return (retcode);
    810 
    811 		/* shutdown the system */
    812 	case RAIDFRAME_SHUTDOWN:
    813 
    814 		if ((error = raidlock(rs)) != 0)
    815 			return (error);
    816 
    817 		/*
    818 		 * If somebody has a partition mounted, we shouldn't
    819 		 * shutdown.
    820 		 */
    821 
    822 		part = DISKPART(dev);
    823 		pmask = (1 << part);
    824 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    825 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    826 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    827 			raidunlock(rs);
    828 			return (EBUSY);
    829 		}
    830 
    831 		if (rf_debugKernelAccess) {
    832 			printf("call shutdown\n");
    833 		}
    834 		raidPtrs[unit]->proc = p;	/* XXX  necessary evil */
    835 
    836 		retcode = rf_Shutdown(raidPtrs[unit]);
    837 
    838 		db1_printf(("Done main shutdown\n"));
    839 
    840 		pool_destroy(&rs->sc_cbufpool);
    841 		db1_printf(("Done freeing component buffer freelist\n"));
    842 
    843 		/* It's no longer initialized... */
    844 		rs->sc_flags &= ~RAIDF_INITED;
    845 
    846 		/* Detach the disk. */
    847 		disk_detach(&rs->sc_dkdev);
    848 
    849 		raidunlock(rs);
    850 
    851 		return (retcode);
    852 	case RAIDFRAME_GET_COMPONENT_LABEL:
    853 		c_label_ptr = (RF_ComponentLabel_t **) data;
    854 		/* need to read the component label for the disk indicated
    855 		   by row,column in component_label
    856 		   XXX need to sanity check these values!!!
    857 		   */
    858 
    859 		/* For practice, let's get it directly fromdisk, rather
    860 		   than from the in-core copy */
    861 		RF_Malloc( component_label, sizeof( RF_ComponentLabel_t ),
    862 			   (RF_ComponentLabel_t *));
    863 		if (component_label == NULL)
    864 			return (ENOMEM);
    865 
    866 		bzero((char *) component_label, sizeof(RF_ComponentLabel_t));
    867 
    868 		retcode = copyin( *c_label_ptr, component_label,
    869 				  sizeof(RF_ComponentLabel_t));
    870 
    871 		if (retcode) {
    872 			return(retcode);
    873 		}
    874 
    875 		row = component_label->row;
    876 		printf("Row: %d\n",row);
    877 		if (row > raidPtrs[unit]->numRow) {
    878 			row = 0; /* XXX */
    879 		}
    880 		column = component_label->column;
    881 		printf("Column: %d\n",column);
    882 		if (column > raidPtrs[unit]->numCol) {
    883 			column = 0; /* XXX */
    884 		}
    885 
    886 		raidread_component_label(
    887                               raidPtrs[unit]->Disks[row][column].dev,
    888 			      raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    889 			      component_label );
    890 
    891 		retcode = copyout((caddr_t) component_label,
    892 				  (caddr_t) *c_label_ptr,
    893 				  sizeof(RF_ComponentLabel_t));
    894 		RF_Free( component_label, sizeof(RF_ComponentLabel_t));
    895 		return (retcode);
    896 
    897 	case RAIDFRAME_SET_COMPONENT_LABEL:
    898 		component_label = (RF_ComponentLabel_t *) data;
    899 
    900 		/* XXX check the label for valid stuff... */
    901 		/* Note that some things *should not* get modified --
    902 		   the user should be re-initing the labels instead of
    903 		   trying to patch things.
    904 		   */
    905 
    906 		printf("Got component label:\n");
    907 		printf("Version: %d\n",component_label->version);
    908 		printf("Serial Number: %d\n",component_label->serial_number);
    909 		printf("Mod counter: %d\n",component_label->mod_counter);
    910 		printf("Row: %d\n", component_label->row);
    911 		printf("Column: %d\n", component_label->column);
    912 		printf("Num Rows: %d\n", component_label->num_rows);
    913 		printf("Num Columns: %d\n", component_label->num_columns);
    914 		printf("Clean: %d\n", component_label->clean);
    915 		printf("Status: %d\n", component_label->status);
    916 
    917 		row = component_label->row;
    918 		column = component_label->column;
    919 
    920 		if ((row < 0) || (row > raidPtrs[unit]->numRow) ||
    921 		    (column < 0) || (column > raidPtrs[unit]->numCol)) {
    922 			return(EINVAL);
    923 		}
    924 
    925 		/* XXX this isn't allowed to do anything for now :-) */
    926 #if 0
    927 		raidwrite_component_label(
    928                             raidPtrs[unit]->Disks[row][column].dev,
    929 			    raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    930 			    component_label );
    931 #endif
    932 		return (0);
    933 
    934 	case RAIDFRAME_INIT_LABELS:
    935 		component_label = (RF_ComponentLabel_t *) data;
    936 		/*
    937 		   we only want the serial number from
    938 		   the above.  We get all the rest of the information
    939 		   from the config that was used to create this RAID
    940 		   set.
    941 		   */
    942 
    943 		raidPtrs[unit]->serial_number = component_label->serial_number;
    944 		/* current version number */
    945 		ci_label.version = RF_COMPONENT_LABEL_VERSION;
    946 		ci_label.serial_number = component_label->serial_number;
    947 		ci_label.mod_counter = raidPtrs[unit]->mod_counter;
    948 		ci_label.num_rows = raidPtrs[unit]->numRow;
    949 		ci_label.num_columns = raidPtrs[unit]->numCol;
    950 		ci_label.clean = RF_RAID_DIRTY; /* not clean */
    951 		ci_label.status = rf_ds_optimal; /* "It's good!" */
    952 
    953 		for(row=0;row<raidPtrs[unit]->numRow;row++) {
    954 			ci_label.row = row;
    955 			for(column=0;column<raidPtrs[unit]->numCol;column++) {
    956 				ci_label.column = column;
    957 				raidwrite_component_label(
    958 				  raidPtrs[unit]->Disks[row][column].dev,
    959 				  raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    960 				  &ci_label );
    961 			}
    962 		}
    963 
    964 		return (retcode);
    965 
    966 		/* initialize all parity */
    967 	case RAIDFRAME_REWRITEPARITY:
    968 
    969 		if (raidPtrs[unit]->Layout.map->faultsTolerated == 0) {
    970 			/* Parity for RAID 0 is trivially correct */
    971 			raidPtrs[unit]->parity_good = RF_RAID_CLEAN;
    972 			return(0);
    973 		}
    974 
    975 		/* borrow the thread of the requesting process */
    976 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
    977 		retcode = rf_RewriteParity(raidPtrs[unit]);
    978 		/* return I/O Error if the parity rewrite fails */
    979 
    980 		if (retcode) {
    981 			retcode = EIO;
    982 		} else {
    983 			/* set the clean bit!  If we shutdown correctly,
    984 			 the clean bit on each component label will get
    985 			 set */
    986 			raidPtrs[unit]->parity_good = RF_RAID_CLEAN;
    987 		}
    988 		return (retcode);
    989 
    990 
    991 	case RAIDFRAME_ADD_HOT_SPARE:
    992 		sparePtr = (RF_SingleComponent_t *) data;
    993 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
    994 		printf("Adding spare\n");
    995 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
    996 		retcode = rf_add_hot_spare(raidPtrs[unit], &hot_spare);
    997 		return(retcode);
    998 
    999 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1000 		return(retcode);
   1001 
   1002 	case RAIDFRAME_REBUILD_IN_PLACE:
   1003 		componentPtr = (RF_SingleComponent_t *) data;
   1004 		memcpy( &component, componentPtr,
   1005 			sizeof(RF_SingleComponent_t));
   1006 		row = component.row;
   1007 		column = component.column;
   1008 		printf("Rebuild: %d %d\n",row, column);
   1009 		if ((row < 0) || (row > raidPtrs[unit]->numRow) ||
   1010 		    (column < 0) || (column > raidPtrs[unit]->numCol)) {
   1011 			return(EINVAL);
   1012 		}
   1013 		printf("Attempting a rebuild in place\n");
   1014 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
   1015 		retcode = rf_ReconstructInPlace(raidPtrs[unit], row, column);
   1016 		return(retcode);
   1017 
   1018 		/* issue a test-unit-ready through raidframe to the indicated
   1019 		 * device */
   1020 #if 0				/* XXX not supported yet (ever?) */
   1021 	case RAIDFRAME_TUR:
   1022 		/* debug only */
   1023 		retcode = rf_SCSI_DoTUR(0, 0, 0, 0, *(dev_t *) data);
   1024 		return (retcode);
   1025 #endif
   1026 	case RAIDFRAME_GET_INFO:
   1027 		{
   1028 			RF_Raid_t *raid = raidPtrs[unit];
   1029 			RF_DeviceConfig_t *cfg, **ucfgp;
   1030 			int     i, j, d;
   1031 
   1032 			if (!raid->valid)
   1033 				return (ENODEV);
   1034 			ucfgp = (RF_DeviceConfig_t **) data;
   1035 			RF_Malloc(cfg, sizeof(RF_DeviceConfig_t),
   1036 				  (RF_DeviceConfig_t *));
   1037 			if (cfg == NULL)
   1038 				return (ENOMEM);
   1039 			bzero((char *) cfg, sizeof(RF_DeviceConfig_t));
   1040 			cfg->rows = raid->numRow;
   1041 			cfg->cols = raid->numCol;
   1042 			cfg->ndevs = raid->numRow * raid->numCol;
   1043 			if (cfg->ndevs >= RF_MAX_DISKS) {
   1044 				cfg->ndevs = 0;
   1045 				return (ENOMEM);
   1046 			}
   1047 			cfg->nspares = raid->numSpare;
   1048 			if (cfg->nspares >= RF_MAX_DISKS) {
   1049 				cfg->nspares = 0;
   1050 				return (ENOMEM);
   1051 			}
   1052 			cfg->maxqdepth = raid->maxQueueDepth;
   1053 			d = 0;
   1054 			for (i = 0; i < cfg->rows; i++) {
   1055 				for (j = 0; j < cfg->cols; j++) {
   1056 					cfg->devs[d] = raid->Disks[i][j];
   1057 					d++;
   1058 				}
   1059 			}
   1060 			for (j = cfg->cols, i = 0; i < cfg->nspares; i++, j++) {
   1061 				cfg->spares[i] = raid->Disks[0][j];
   1062 			}
   1063 			retcode = copyout((caddr_t) cfg, (caddr_t) * ucfgp,
   1064 					  sizeof(RF_DeviceConfig_t));
   1065 			RF_Free(cfg, sizeof(RF_DeviceConfig_t));
   1066 
   1067 			return (retcode);
   1068 		}
   1069 		break;
   1070 
   1071 	case RAIDFRAME_RESET_ACCTOTALS:
   1072 		{
   1073 			RF_Raid_t *raid = raidPtrs[unit];
   1074 
   1075 			bzero(&raid->acc_totals, sizeof(raid->acc_totals));
   1076 			return (0);
   1077 		}
   1078 		break;
   1079 
   1080 	case RAIDFRAME_GET_ACCTOTALS:
   1081 		{
   1082 			RF_AccTotals_t *totals = (RF_AccTotals_t *) data;
   1083 			RF_Raid_t *raid = raidPtrs[unit];
   1084 
   1085 			*totals = raid->acc_totals;
   1086 			return (0);
   1087 		}
   1088 		break;
   1089 
   1090 	case RAIDFRAME_KEEP_ACCTOTALS:
   1091 		{
   1092 			RF_Raid_t *raid = raidPtrs[unit];
   1093 			int    *keep = (int *) data;
   1094 
   1095 			raid->keep_acc_totals = *keep;
   1096 			return (0);
   1097 		}
   1098 		break;
   1099 
   1100 	case RAIDFRAME_GET_SIZE:
   1101 		*(int *) data = raidPtrs[unit]->totalSectors;
   1102 		return (0);
   1103 
   1104 #define RAIDFRAME_RECON 1
   1105 		/* XXX The above should probably be set somewhere else!! GO */
   1106 #if RAIDFRAME_RECON > 0
   1107 
   1108 		/* fail a disk & optionally start reconstruction */
   1109 	case RAIDFRAME_FAIL_DISK:
   1110 		rr = (struct rf_recon_req *) data;
   1111 
   1112 		if (rr->row < 0 || rr->row >= raidPtrs[unit]->numRow
   1113 		    || rr->col < 0 || rr->col >= raidPtrs[unit]->numCol)
   1114 			return (EINVAL);
   1115 
   1116 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1117 		       unit, rr->row, rr->col);
   1118 
   1119 		/* make a copy of the recon request so that we don't rely on
   1120 		 * the user's buffer */
   1121 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1122 		bcopy(rr, rrcopy, sizeof(*rr));
   1123 		rrcopy->raidPtr = (void *) raidPtrs[unit];
   1124 
   1125 		LOCK_RECON_Q_MUTEX();
   1126 		rrcopy->next = recon_queue;
   1127 		recon_queue = rrcopy;
   1128 		wakeup(&recon_queue);
   1129 		UNLOCK_RECON_Q_MUTEX();
   1130 
   1131 		return (0);
   1132 
   1133 		/* invoke a copyback operation after recon on whatever disk
   1134 		 * needs it, if any */
   1135 	case RAIDFRAME_COPYBACK:
   1136 		/* borrow the current thread to get this done */
   1137 		raidPtrs[unit]->proc = p;	/* ICK.. but needed :-p  GO */
   1138 		rf_CopybackReconstructedData(raidPtrs[unit]);
   1139 		return (0);
   1140 
   1141 		/* return the percentage completion of reconstruction */
   1142 	case RAIDFRAME_CHECKRECON:
   1143 		row = *(int *) data;
   1144 		if (row < 0 || row >= raidPtrs[unit]->numRow)
   1145 			return (EINVAL);
   1146 		if (raidPtrs[unit]->status[row] != rf_rs_reconstructing)
   1147 			*(int *) data = 100;
   1148 		else
   1149 			*(int *) data = raidPtrs[unit]->reconControl[row]->percentComplete;
   1150 		return (0);
   1151 
   1152 		/* the sparetable daemon calls this to wait for the kernel to
   1153 		 * need a spare table. this ioctl does not return until a
   1154 		 * spare table is needed. XXX -- calling mpsleep here in the
   1155 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1156 		 * -- I should either compute the spare table in the kernel,
   1157 		 * or have a different -- XXX XXX -- interface (a different
   1158 		 * character device) for delivering the table          -- XXX */
   1159 #if 0
   1160 	case RAIDFRAME_SPARET_WAIT:
   1161 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1162 		while (!rf_sparet_wait_queue)
   1163 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1164 		waitreq = rf_sparet_wait_queue;
   1165 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1166 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1167 
   1168 		*((RF_SparetWait_t *) data) = *waitreq;	/* structure assignment */
   1169 
   1170 		RF_Free(waitreq, sizeof(*waitreq));
   1171 		return (0);
   1172 
   1173 
   1174 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1175 		 * code in it that will cause the dameon to exit */
   1176 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1177 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1178 		waitreq->fcol = -1;
   1179 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1180 		waitreq->next = rf_sparet_wait_queue;
   1181 		rf_sparet_wait_queue = waitreq;
   1182 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1183 		wakeup(&rf_sparet_wait_queue);
   1184 		return (0);
   1185 
   1186 		/* used by the spare table daemon to deliver a spare table
   1187 		 * into the kernel */
   1188 	case RAIDFRAME_SEND_SPARET:
   1189 
   1190 		/* install the spare table */
   1191 		retcode = rf_SetSpareTable(raidPtrs[unit], *(void **) data);
   1192 
   1193 		/* respond to the requestor.  the return status of the spare
   1194 		 * table installation is passed in the "fcol" field */
   1195 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1196 		waitreq->fcol = retcode;
   1197 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1198 		waitreq->next = rf_sparet_resp_queue;
   1199 		rf_sparet_resp_queue = waitreq;
   1200 		wakeup(&rf_sparet_resp_queue);
   1201 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1202 
   1203 		return (retcode);
   1204 #endif
   1205 
   1206 
   1207 #endif				/* RAIDFRAME_RECON > 0 */
   1208 
   1209 	default:
   1210 		break;		/* fall through to the os-specific code below */
   1211 
   1212 	}
   1213 
   1214 	if (!raidPtrs[unit]->valid)
   1215 		return (EINVAL);
   1216 
   1217 	/*
   1218 	 * Add support for "regular" device ioctls here.
   1219 	 */
   1220 
   1221 	switch (cmd) {
   1222 	case DIOCGDINFO:
   1223 		db1_printf(("DIOCGDINFO %d %d\n", (int) dev, (int) DISKPART(dev)));
   1224 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1225 		break;
   1226 
   1227 	case DIOCGPART:
   1228 		db1_printf(("DIOCGPART: %d %d\n", (int) dev, (int) DISKPART(dev)));
   1229 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1230 		((struct partinfo *) data)->part =
   1231 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1232 		break;
   1233 
   1234 	case DIOCWDINFO:
   1235 		db1_printf(("DIOCWDINFO\n"));
   1236 	case DIOCSDINFO:
   1237 		db1_printf(("DIOCSDINFO\n"));
   1238 		if ((error = raidlock(rs)) != 0)
   1239 			return (error);
   1240 
   1241 		rs->sc_flags |= RAIDF_LABELLING;
   1242 
   1243 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1244 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1245 		if (error == 0) {
   1246 			if (cmd == DIOCWDINFO)
   1247 				error = writedisklabel(RAIDLABELDEV(dev),
   1248 				    raidstrategy, rs->sc_dkdev.dk_label,
   1249 				    rs->sc_dkdev.dk_cpulabel);
   1250 		}
   1251 		rs->sc_flags &= ~RAIDF_LABELLING;
   1252 
   1253 		raidunlock(rs);
   1254 
   1255 		if (error)
   1256 			return (error);
   1257 		break;
   1258 
   1259 	case DIOCWLABEL:
   1260 		db1_printf(("DIOCWLABEL\n"));
   1261 		if (*(int *) data != 0)
   1262 			rs->sc_flags |= RAIDF_WLABEL;
   1263 		else
   1264 			rs->sc_flags &= ~RAIDF_WLABEL;
   1265 		break;
   1266 
   1267 	case DIOCGDEFLABEL:
   1268 		db1_printf(("DIOCGDEFLABEL\n"));
   1269 		raidgetdefaultlabel(raidPtrs[unit], rs,
   1270 		    (struct disklabel *) data);
   1271 		break;
   1272 
   1273 	default:
   1274 		retcode = ENOTTY;	/* XXXX ?? OR EINVAL ? */
   1275 	}
   1276 	return (retcode);
   1277 
   1278 }
   1279 
   1280 
   1281 /* raidinit -- complete the rest of the initialization for the
   1282    RAIDframe device.  */
   1283 
   1284 
   1285 static int
   1286 raidinit(dev, raidPtr, unit)
   1287 	dev_t   dev;
   1288 	RF_Raid_t *raidPtr;
   1289 	int     unit;
   1290 {
   1291 	int     retcode;
   1292 	/* int ix; */
   1293 	/* struct raidbuf *raidbp; */
   1294 	struct raid_softc *rs;
   1295 
   1296 	retcode = 0;
   1297 
   1298 	rs = &raid_softc[unit];
   1299 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1300 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1301 
   1302 
   1303 	/* XXX should check return code first... */
   1304 	rs->sc_flags |= RAIDF_INITED;
   1305 
   1306 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1307 
   1308 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1309 
   1310 	/* disk_attach actually creates space for the CPU disklabel, among
   1311 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1312 	 * with disklabels. */
   1313 
   1314 	disk_attach(&rs->sc_dkdev);
   1315 
   1316 	/* XXX There may be a weird interaction here between this, and
   1317 	 * protectedSectors, as used in RAIDframe.  */
   1318 
   1319 	rs->sc_size = raidPtr->totalSectors;
   1320 	rs->sc_dev = dev;
   1321 
   1322 	return (retcode);
   1323 }
   1324 
   1325 /*
   1326  * This kernel thread never exits.  It is created once, and persists
   1327  * until the system reboots.
   1328  */
   1329 
   1330 void
   1331 rf_ReconKernelThread()
   1332 {
   1333 	struct rf_recon_req *req;
   1334 	int     s;
   1335 
   1336 	/* XXX not sure what spl() level we should be at here... probably
   1337 	 * splbio() */
   1338 	s = splbio();
   1339 
   1340 	while (1) {
   1341 		/* grab the next reconstruction request from the queue */
   1342 		LOCK_RECON_Q_MUTEX();
   1343 		while (!recon_queue) {
   1344 			UNLOCK_RECON_Q_MUTEX();
   1345 			tsleep(&recon_queue, PRIBIO,
   1346 			       "raidframe recon", 0);
   1347 			LOCK_RECON_Q_MUTEX();
   1348 		}
   1349 		req = recon_queue;
   1350 		recon_queue = recon_queue->next;
   1351 		UNLOCK_RECON_Q_MUTEX();
   1352 
   1353 		/*
   1354 	         * If flags specifies that we should start recon, this call
   1355 	         * will not return until reconstruction completes, fails,
   1356 		 * or is aborted.
   1357 	         */
   1358 		rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   1359 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   1360 
   1361 		RF_Free(req, sizeof(*req));
   1362 	}
   1363 }
   1364 /* wake up the daemon & tell it to get us a spare table
   1365  * XXX
   1366  * the entries in the queues should be tagged with the raidPtr
   1367  * so that in the extremely rare case that two recons happen at once,
   1368  * we know for which device were requesting a spare table
   1369  * XXX
   1370  */
   1371 int
   1372 rf_GetSpareTableFromDaemon(req)
   1373 	RF_SparetWait_t *req;
   1374 {
   1375 	int     retcode;
   1376 
   1377 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1378 	req->next = rf_sparet_wait_queue;
   1379 	rf_sparet_wait_queue = req;
   1380 	wakeup(&rf_sparet_wait_queue);
   1381 
   1382 	/* mpsleep unlocks the mutex */
   1383 	while (!rf_sparet_resp_queue) {
   1384 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1385 		    "raidframe getsparetable", 0);
   1386 #if 0
   1387 		mpsleep(&rf_sparet_resp_queue, PZERO, "sparet resp", 0,
   1388 			(void *) simple_lock_addr(rf_sparet_wait_mutex),
   1389 			MS_LOCK_SIMPLE);
   1390 #endif
   1391 	}
   1392 	req = rf_sparet_resp_queue;
   1393 	rf_sparet_resp_queue = req->next;
   1394 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1395 
   1396 	retcode = req->fcol;
   1397 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1398 					 * alloc'd */
   1399 	return (retcode);
   1400 }
   1401 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1402  * bp & passes it down.
   1403  * any calls originating in the kernel must use non-blocking I/O
   1404  * do some extra sanity checking to return "appropriate" error values for
   1405  * certain conditions (to make some standard utilities work)
   1406  */
   1407 int
   1408 rf_DoAccessKernel(raidPtr, bp, flags, cbFunc, cbArg)
   1409 	RF_Raid_t *raidPtr;
   1410 	struct buf *bp;
   1411 	RF_RaidAccessFlags_t flags;
   1412 	void    (*cbFunc) (struct buf *);
   1413 	void   *cbArg;
   1414 {
   1415 	RF_SectorCount_t num_blocks, pb, sum;
   1416 	RF_RaidAddr_t raid_addr;
   1417 	int     retcode;
   1418 	struct partition *pp;
   1419 	daddr_t blocknum;
   1420 	int     unit;
   1421 	struct raid_softc *rs;
   1422 	int     do_async;
   1423 
   1424 	/* XXX The dev_t used here should be for /dev/[r]raid* !!! */
   1425 
   1426 	unit = raidPtr->raidid;
   1427 	rs = &raid_softc[unit];
   1428 
   1429 	/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1430 	 * partition.. Need to make it absolute to the underlying device.. */
   1431 
   1432 	blocknum = bp->b_blkno;
   1433 	if (DISKPART(bp->b_dev) != RAW_PART) {
   1434 		pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1435 		blocknum += pp->p_offset;
   1436 		db1_printf(("updated: %d %d\n", DISKPART(bp->b_dev),
   1437 			pp->p_offset));
   1438 	} else {
   1439 		db1_printf(("Is raw..\n"));
   1440 	}
   1441 	db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, (int) blocknum));
   1442 
   1443 	db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1444 	db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1445 
   1446 	/* *THIS* is where we adjust what block we're going to... but DO NOT
   1447 	 * TOUCH bp->b_blkno!!! */
   1448 	raid_addr = blocknum;
   1449 
   1450 	num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1451 	pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1452 	sum = raid_addr + num_blocks + pb;
   1453 	if (1 || rf_debugKernelAccess) {
   1454 		db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1455 			(int) raid_addr, (int) sum, (int) num_blocks,
   1456 			(int) pb, (int) bp->b_resid));
   1457 	}
   1458 	if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1459 	    || (sum < num_blocks) || (sum < pb)) {
   1460 		bp->b_error = ENOSPC;
   1461 		bp->b_flags |= B_ERROR;
   1462 		bp->b_resid = bp->b_bcount;
   1463 		biodone(bp);
   1464 		return (bp->b_error);
   1465 	}
   1466 	/*
   1467 	 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1468 	 */
   1469 
   1470 	if (bp->b_bcount & raidPtr->sectorMask) {
   1471 		bp->b_error = EINVAL;
   1472 		bp->b_flags |= B_ERROR;
   1473 		bp->b_resid = bp->b_bcount;
   1474 		biodone(bp);
   1475 		return (bp->b_error);
   1476 	}
   1477 	db1_printf(("Calling DoAccess..\n"));
   1478 
   1479 	/*
   1480 	 * XXX For now, all writes are sync
   1481 	 */
   1482 	do_async = 1;
   1483 	if ((bp->b_flags & B_READ) == 0)
   1484 		do_async = 0;
   1485 
   1486 	/* don't ever condition on bp->b_flags & B_WRITE.  always condition on
   1487 	 * B_READ instead */
   1488 	retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1489 	    RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1490 	    do_async, raid_addr, num_blocks,
   1491 	    bp->b_un.b_addr,
   1492 	    bp, NULL, NULL, RF_DAG_NONBLOCKING_IO | flags,
   1493 	    NULL, cbFunc, cbArg);
   1494 #if 0
   1495 	db1_printf(("After call to DoAccess: 0x%x 0x%x %d\n", bp,
   1496 		bp->b_data, (int) bp->b_resid));
   1497 #endif
   1498 
   1499 	/*
   1500 	 * If we requested sync I/O, sleep here.
   1501 	 */
   1502 	if ((retcode == 0) && (do_async == 0))
   1503 		tsleep(bp, PRIBIO, "raidsyncio", 0);
   1504 
   1505 	return (retcode);
   1506 }
   1507 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1508 
   1509 int
   1510 rf_DispatchKernelIO(queue, req)
   1511 	RF_DiskQueue_t *queue;
   1512 	RF_DiskQueueData_t *req;
   1513 {
   1514 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1515 	struct buf *bp;
   1516 	struct raidbuf *raidbp = NULL;
   1517 	struct raid_softc *rs;
   1518 	int     unit;
   1519 
   1520 	/* XXX along with the vnode, we also need the softc associated with
   1521 	 * this device.. */
   1522 
   1523 	req->queue = queue;
   1524 
   1525 	unit = queue->raidPtr->raidid;
   1526 
   1527 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1528 
   1529 	if (unit >= numraid) {
   1530 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1531 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1532 	}
   1533 	rs = &raid_softc[unit];
   1534 
   1535 	/* XXX is this the right place? */
   1536 	disk_busy(&rs->sc_dkdev);
   1537 
   1538 	bp = req->bp;
   1539 #if 1
   1540 	/* XXX when there is a physical disk failure, someone is passing us a
   1541 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1542 	 * without taking a performance hit... (not sure where the real bug
   1543 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1544 
   1545 	if (bp->b_flags & B_ERROR) {
   1546 		bp->b_flags &= ~B_ERROR;
   1547 	}
   1548 	if (bp->b_error != 0) {
   1549 		bp->b_error = 0;
   1550 	}
   1551 #endif
   1552 	raidbp = RAIDGETBUF(rs);
   1553 
   1554 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1555 
   1556 	/*
   1557 	 * context for raidiodone
   1558 	 */
   1559 	raidbp->rf_obp = bp;
   1560 	raidbp->req = req;
   1561 
   1562 	switch (req->type) {
   1563 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1564 		/* Dprintf2("rf_DispatchKernelIO: NOP to r %d c %d\n",
   1565 		 * queue->row, queue->col); */
   1566 		/* XXX need to do something extra here.. */
   1567 		/* I'm leaving this in, as I've never actually seen it used,
   1568 		 * and I'd like folks to report it... GO */
   1569 		printf(("WAKEUP CALLED\n"));
   1570 		queue->numOutstanding++;
   1571 
   1572 		/* XXX need to glue the original buffer into this??  */
   1573 
   1574 		KernelWakeupFunc(&raidbp->rf_buf);
   1575 		break;
   1576 
   1577 	case RF_IO_TYPE_READ:
   1578 	case RF_IO_TYPE_WRITE:
   1579 
   1580 		if (req->tracerec) {
   1581 			RF_ETIMER_START(req->tracerec->timer);
   1582 		}
   1583 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1584 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1585 		    req->sectorOffset, req->numSector,
   1586 		    req->buf, KernelWakeupFunc, (void *) req,
   1587 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1588 
   1589 		if (rf_debugKernelAccess) {
   1590 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1591 				(long) bp->b_blkno));
   1592 		}
   1593 		queue->numOutstanding++;
   1594 		queue->last_deq_sector = req->sectorOffset;
   1595 		/* acc wouldn't have been let in if there were any pending
   1596 		 * reqs at any other priority */
   1597 		queue->curPriority = req->priority;
   1598 		/* Dprintf3("rf_DispatchKernelIO: %c to row %d col %d\n",
   1599 		 * req->type, queue->row, queue->col); */
   1600 
   1601 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1602 			req->type, unit, queue->row, queue->col));
   1603 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1604 			(int) req->sectorOffset, (int) req->numSector,
   1605 			(int) (req->numSector <<
   1606 			    queue->raidPtr->logBytesPerSector),
   1607 			(int) queue->raidPtr->logBytesPerSector));
   1608 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1609 			raidbp->rf_buf.b_vp->v_numoutput++;
   1610 		}
   1611 		VOP_STRATEGY(&raidbp->rf_buf);
   1612 
   1613 		break;
   1614 
   1615 	default:
   1616 		panic("bad req->type in rf_DispatchKernelIO");
   1617 	}
   1618 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1619 	return (0);
   1620 }
   1621 /* this is the callback function associated with a I/O invoked from
   1622    kernel code.
   1623  */
   1624 static void
   1625 KernelWakeupFunc(vbp)
   1626 	struct buf *vbp;
   1627 {
   1628 	RF_DiskQueueData_t *req = NULL;
   1629 	RF_DiskQueue_t *queue;
   1630 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1631 	struct buf *bp;
   1632 	struct raid_softc *rs;
   1633 	int     unit;
   1634 	register int s;
   1635 
   1636 	s = splbio();		/* XXX */
   1637 	db1_printf(("recovering the request queue:\n"));
   1638 	req = raidbp->req;
   1639 
   1640 	bp = raidbp->rf_obp;
   1641 #if 0
   1642 	db1_printf(("bp=0x%x\n", bp));
   1643 #endif
   1644 
   1645 	queue = (RF_DiskQueue_t *) req->queue;
   1646 
   1647 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1648 #if 0
   1649 		printf("Setting bp->b_flags!!! %d\n", raidbp->rf_buf.b_error);
   1650 #endif
   1651 		bp->b_flags |= B_ERROR;
   1652 		bp->b_error = raidbp->rf_buf.b_error ?
   1653 		    raidbp->rf_buf.b_error : EIO;
   1654 	}
   1655 #if 0
   1656 	db1_printf(("raidbp->rf_buf.b_bcount=%d\n", (int) raidbp->rf_buf.b_bcount));
   1657 	db1_printf(("raidbp->rf_buf.b_bufsize=%d\n", (int) raidbp->rf_buf.b_bufsize));
   1658 	db1_printf(("raidbp->rf_buf.b_resid=%d\n", (int) raidbp->rf_buf.b_resid));
   1659 	db1_printf(("raidbp->rf_buf.b_data=0x%x\n", raidbp->rf_buf.b_data));
   1660 #endif
   1661 
   1662 	/* XXX methinks this could be wrong... */
   1663 #if 1
   1664 	bp->b_resid = raidbp->rf_buf.b_resid;
   1665 #endif
   1666 
   1667 	if (req->tracerec) {
   1668 		RF_ETIMER_STOP(req->tracerec->timer);
   1669 		RF_ETIMER_EVAL(req->tracerec->timer);
   1670 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1671 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1672 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1673 		req->tracerec->num_phys_ios++;
   1674 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1675 	}
   1676 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1677 
   1678 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1679 
   1680 
   1681 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1682 	 * ballistic, and mark the component as hosed... */
   1683 #if 1
   1684 	if (bp->b_flags & B_ERROR) {
   1685 		/* Mark the disk as dead */
   1686 		/* but only mark it once... */
   1687 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1688 		    rf_ds_optimal) {
   1689 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1690 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1691 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1692 			    rf_ds_failed;
   1693 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1694 			queue->raidPtr->numFailures++;
   1695 			/* XXX here we should bump the version number for each component, and write that data out */
   1696 		} else {	/* Disk is already dead... */
   1697 			/* printf("Disk already marked as dead!\n"); */
   1698 		}
   1699 
   1700 	}
   1701 #endif
   1702 
   1703 	rs = &raid_softc[unit];
   1704 	RAIDPUTBUF(rs, raidbp);
   1705 
   1706 
   1707 	if (bp->b_resid == 0) {
   1708 		db1_printf(("Disk is no longer busy for this buffer... %d %ld %ld\n",
   1709 			unit, bp->b_resid, bp->b_bcount));
   1710 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1711 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1712 	} else {
   1713 		db1_printf(("b_resid is still %ld\n", bp->b_resid));
   1714 	}
   1715 
   1716 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1717 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1718 	/* printf("Exiting KernelWakeupFunc\n"); */
   1719 
   1720 	splx(s);		/* XXX */
   1721 }
   1722 
   1723 
   1724 
   1725 /*
   1726  * initialize a buf structure for doing an I/O in the kernel.
   1727  */
   1728 static void
   1729 InitBP(
   1730     struct buf * bp,
   1731     struct vnode * b_vp,
   1732     unsigned rw_flag,
   1733     dev_t dev,
   1734     RF_SectorNum_t startSect,
   1735     RF_SectorCount_t numSect,
   1736     caddr_t buf,
   1737     void (*cbFunc) (struct buf *),
   1738     void *cbArg,
   1739     int logBytesPerSector,
   1740     struct proc * b_proc)
   1741 {
   1742 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1743 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1744 	bp->b_bcount = numSect << logBytesPerSector;
   1745 	bp->b_bufsize = bp->b_bcount;
   1746 	bp->b_error = 0;
   1747 	bp->b_dev = dev;
   1748 	db1_printf(("bp->b_dev is %d\n", dev));
   1749 	bp->b_un.b_addr = buf;
   1750 #if 0
   1751 	db1_printf(("bp->b_data=0x%x\n", bp->b_data));
   1752 #endif
   1753 
   1754 	bp->b_blkno = startSect;
   1755 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1756 	db1_printf(("b_bcount is: %d\n", (int) bp->b_bcount));
   1757 	if (bp->b_bcount == 0) {
   1758 		panic("bp->b_bcount is zero in InitBP!!\n");
   1759 	}
   1760 	bp->b_proc = b_proc;
   1761 	bp->b_iodone = cbFunc;
   1762 	bp->b_vp = b_vp;
   1763 
   1764 }
   1765 /* Extras... */
   1766 
   1767 unsigned int
   1768 rpcc()
   1769 {
   1770 	/* XXX no clue what this is supposed to do.. my guess is that it's
   1771 	 * supposed to read the CPU cycle counter... */
   1772 	/* db1_printf("this is supposed to do something useful too!??\n"); */
   1773 	return (0);
   1774 }
   1775 #if 0
   1776 int
   1777 rf_GetSpareTableFromDaemon(req)
   1778 	RF_SparetWait_t *req;
   1779 {
   1780 	int     retcode = 1;
   1781 	printf("This is supposed to do something useful!!\n");	/* XXX */
   1782 
   1783 	return (retcode);
   1784 
   1785 }
   1786 #endif
   1787 
   1788 static void
   1789 raidgetdefaultlabel(raidPtr, rs, lp)
   1790 	RF_Raid_t *raidPtr;
   1791 	struct raid_softc *rs;
   1792 	struct disklabel *lp;
   1793 {
   1794 	db1_printf(("Building a default label...\n"));
   1795 	bzero(lp, sizeof(*lp));
   1796 
   1797 	/* fabricate a label... */
   1798 	lp->d_secperunit = raidPtr->totalSectors;
   1799 	lp->d_secsize = raidPtr->bytesPerSector;
   1800 	lp->d_nsectors = 1024 * (1024 / raidPtr->bytesPerSector);
   1801 	lp->d_ntracks = 1;
   1802 	lp->d_ncylinders = raidPtr->totalSectors / lp->d_nsectors;
   1803 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1804 
   1805 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1806 	lp->d_type = DTYPE_RAID;
   1807 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1808 	lp->d_rpm = 3600;
   1809 	lp->d_interleave = 1;
   1810 	lp->d_flags = 0;
   1811 
   1812 	lp->d_partitions[RAW_PART].p_offset = 0;
   1813 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1814 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1815 	lp->d_npartitions = RAW_PART + 1;
   1816 
   1817 	lp->d_magic = DISKMAGIC;
   1818 	lp->d_magic2 = DISKMAGIC;
   1819 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1820 
   1821 }
   1822 /*
   1823  * Read the disklabel from the raid device.  If one is not present, fake one
   1824  * up.
   1825  */
   1826 static void
   1827 raidgetdisklabel(dev)
   1828 	dev_t   dev;
   1829 {
   1830 	int     unit = raidunit(dev);
   1831 	struct raid_softc *rs = &raid_softc[unit];
   1832 	char   *errstring;
   1833 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1834 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1835 	RF_Raid_t *raidPtr;
   1836 
   1837 	db1_printf(("Getting the disklabel...\n"));
   1838 
   1839 	bzero(clp, sizeof(*clp));
   1840 
   1841 	raidPtr = raidPtrs[unit];
   1842 
   1843 	raidgetdefaultlabel(raidPtr, rs, lp);
   1844 
   1845 	/*
   1846 	 * Call the generic disklabel extraction routine.
   1847 	 */
   1848 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1849 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1850 	if (errstring)
   1851 		raidmakedisklabel(rs);
   1852 	else {
   1853 		int     i;
   1854 		struct partition *pp;
   1855 
   1856 		/*
   1857 		 * Sanity check whether the found disklabel is valid.
   1858 		 *
   1859 		 * This is necessary since total size of the raid device
   1860 		 * may vary when an interleave is changed even though exactly
   1861 		 * same componets are used, and old disklabel may used
   1862 		 * if that is found.
   1863 		 */
   1864 		if (lp->d_secperunit != rs->sc_size)
   1865 			printf("WARNING: %s: "
   1866 			    "total sector size in disklabel (%d) != "
   1867 			    "the size of raid (%ld)\n", rs->sc_xname,
   1868 			    lp->d_secperunit, (long) rs->sc_size);
   1869 		for (i = 0; i < lp->d_npartitions; i++) {
   1870 			pp = &lp->d_partitions[i];
   1871 			if (pp->p_offset + pp->p_size > rs->sc_size)
   1872 				printf("WARNING: %s: end of partition `%c' "
   1873 				    "exceeds the size of raid (%ld)\n",
   1874 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   1875 		}
   1876 	}
   1877 
   1878 }
   1879 /*
   1880  * Take care of things one might want to take care of in the event
   1881  * that a disklabel isn't present.
   1882  */
   1883 static void
   1884 raidmakedisklabel(rs)
   1885 	struct raid_softc *rs;
   1886 {
   1887 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1888 	db1_printf(("Making a label..\n"));
   1889 
   1890 	/*
   1891 	 * For historical reasons, if there's no disklabel present
   1892 	 * the raw partition must be marked FS_BSDFFS.
   1893 	 */
   1894 
   1895 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   1896 
   1897 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   1898 
   1899 	lp->d_checksum = dkcksum(lp);
   1900 }
   1901 /*
   1902  * Lookup the provided name in the filesystem.  If the file exists,
   1903  * is a valid block device, and isn't being used by anyone else,
   1904  * set *vpp to the file's vnode.
   1905  * You'll find the original of this in ccd.c
   1906  */
   1907 int
   1908 raidlookup(path, p, vpp)
   1909 	char   *path;
   1910 	struct proc *p;
   1911 	struct vnode **vpp;	/* result */
   1912 {
   1913 	struct nameidata nd;
   1914 	struct vnode *vp;
   1915 	struct vattr va;
   1916 	int     error;
   1917 
   1918 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   1919 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   1920 #ifdef DEBUG
   1921 		printf("RAIDframe: vn_open returned %d\n", error);
   1922 #endif
   1923 		return (error);
   1924 	}
   1925 	vp = nd.ni_vp;
   1926 	if (vp->v_usecount > 1) {
   1927 		VOP_UNLOCK(vp, 0);
   1928 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1929 		return (EBUSY);
   1930 	}
   1931 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   1932 		VOP_UNLOCK(vp, 0);
   1933 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1934 		return (error);
   1935 	}
   1936 	/* XXX: eventually we should handle VREG, too. */
   1937 	if (va.va_type != VBLK) {
   1938 		VOP_UNLOCK(vp, 0);
   1939 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1940 		return (ENOTBLK);
   1941 	}
   1942 	VOP_UNLOCK(vp, 0);
   1943 	*vpp = vp;
   1944 	return (0);
   1945 }
   1946 /*
   1947  * Wait interruptibly for an exclusive lock.
   1948  *
   1949  * XXX
   1950  * Several drivers do this; it should be abstracted and made MP-safe.
   1951  * (Hmm... where have we seen this warning before :->  GO )
   1952  */
   1953 static int
   1954 raidlock(rs)
   1955 	struct raid_softc *rs;
   1956 {
   1957 	int     error;
   1958 
   1959 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   1960 		rs->sc_flags |= RAIDF_WANTED;
   1961 		if ((error =
   1962 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   1963 			return (error);
   1964 	}
   1965 	rs->sc_flags |= RAIDF_LOCKED;
   1966 	return (0);
   1967 }
   1968 /*
   1969  * Unlock and wake up any waiters.
   1970  */
   1971 static void
   1972 raidunlock(rs)
   1973 	struct raid_softc *rs;
   1974 {
   1975 
   1976 	rs->sc_flags &= ~RAIDF_LOCKED;
   1977 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   1978 		rs->sc_flags &= ~RAIDF_WANTED;
   1979 		wakeup(rs);
   1980 	}
   1981 }
   1982 
   1983 
   1984 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   1985 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   1986 
   1987 int
   1988 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   1989 {
   1990 	RF_ComponentLabel_t component_label;
   1991 	raidread_component_label(dev, b_vp, &component_label);
   1992 	component_label.mod_counter = mod_counter;
   1993 	component_label.clean = RF_RAID_CLEAN;
   1994 	raidwrite_component_label(dev, b_vp, &component_label);
   1995 	return(0);
   1996 }
   1997 
   1998 
   1999 int
   2000 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2001 {
   2002 	RF_ComponentLabel_t component_label;
   2003 	raidread_component_label(dev, b_vp, &component_label);
   2004 	component_label.mod_counter = mod_counter;
   2005 	component_label.clean = RF_RAID_DIRTY;
   2006 	raidwrite_component_label(dev, b_vp, &component_label);
   2007 	return(0);
   2008 }
   2009 
   2010 /* ARGSUSED */
   2011 int
   2012 raidread_component_label(dev, b_vp, component_label)
   2013 	dev_t dev;
   2014 	struct vnode *b_vp;
   2015 	RF_ComponentLabel_t *component_label;
   2016 {
   2017 	struct buf *bp;
   2018 	int error;
   2019 
   2020 	/* XXX should probably ensure that we don't try to do this if
   2021 	   someone has changed rf_protected_sectors. */
   2022 
   2023 	/* get a block of the appropriate size... */
   2024 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2025 	bp->b_dev = dev;
   2026 
   2027 	/* get our ducks in a row for the read */
   2028 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2029 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2030 	bp->b_flags = B_BUSY | B_READ;
   2031  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2032 
   2033 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2034 
   2035 	error = biowait(bp);
   2036 
   2037 	if (!error) {
   2038 		memcpy(component_label, bp->b_un.b_addr,
   2039 		       sizeof(RF_ComponentLabel_t));
   2040 #if 0
   2041 		printf("raidread_component_label: got component label:\n");
   2042 		printf("Version: %d\n",component_label->version);
   2043 		printf("Serial Number: %d\n",component_label->serial_number);
   2044 		printf("Mod counter: %d\n",component_label->mod_counter);
   2045 		printf("Row: %d\n", component_label->row);
   2046 		printf("Column: %d\n", component_label->column);
   2047 		printf("Num Rows: %d\n", component_label->num_rows);
   2048 		printf("Num Columns: %d\n", component_label->num_columns);
   2049 		printf("Clean: %d\n", component_label->clean);
   2050 		printf("Status: %d\n", component_label->status);
   2051 #endif
   2052         } else {
   2053 		printf("Failed to read RAID component label!\n");
   2054 	}
   2055 
   2056         bp->b_flags = B_INVAL | B_AGE;
   2057 	brelse(bp);
   2058 	return(error);
   2059 }
   2060 /* ARGSUSED */
   2061 int
   2062 raidwrite_component_label(dev, b_vp, component_label)
   2063 	dev_t dev;
   2064 	struct vnode *b_vp;
   2065 	RF_ComponentLabel_t *component_label;
   2066 {
   2067 	struct buf *bp;
   2068 	int error;
   2069 
   2070 	/* get a block of the appropriate size... */
   2071 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2072 	bp->b_dev = dev;
   2073 
   2074 	/* get our ducks in a row for the write */
   2075 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2076 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2077 	bp->b_flags = B_BUSY | B_WRITE;
   2078  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2079 
   2080 	memset( bp->b_un.b_addr, 0, RF_COMPONENT_INFO_SIZE );
   2081 
   2082 	memcpy( bp->b_un.b_addr, component_label, sizeof(RF_ComponentLabel_t));
   2083 
   2084 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2085 	error = biowait(bp);
   2086         bp->b_flags = B_INVAL | B_AGE;
   2087 	brelse(bp);
   2088 	if (error) {
   2089 		printf("Failed to write RAID component info!\n");
   2090 	}
   2091 
   2092 	return(error);
   2093 }
   2094 
   2095 void
   2096 rf_markalldirty( raidPtr )
   2097 	RF_Raid_t *raidPtr;
   2098 {
   2099 	RF_ComponentLabel_t c_label;
   2100 	int r,c;
   2101 
   2102 	raidPtr->mod_counter++;
   2103 	for (r = 0; r < raidPtr->numRow; r++) {
   2104 		for (c = 0; c < raidPtr->numCol; c++) {
   2105 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2106 				raidread_component_label(
   2107 					raidPtr->Disks[r][c].dev,
   2108 					raidPtr->raid_cinfo[r][c].ci_vp,
   2109 					&c_label);
   2110 				if (c_label.status == rf_ds_spared) {
   2111 					/* XXX do something special...
   2112 					 but whatever you do, don't
   2113 					 try to access it!! */
   2114 				} else {
   2115 #if 0
   2116 				c_label.status =
   2117 					raidPtr->Disks[r][c].status;
   2118 				raidwrite_component_label(
   2119 					raidPtr->Disks[r][c].dev,
   2120 					raidPtr->raid_cinfo[r][c].ci_vp,
   2121 					&c_label);
   2122 #endif
   2123 				raidmarkdirty(
   2124 				       raidPtr->Disks[r][c].dev,
   2125 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2126 				       raidPtr->mod_counter);
   2127 				}
   2128 			}
   2129 		}
   2130 	}
   2131 	/* printf("Component labels marked dirty.\n"); */
   2132 #if 0
   2133 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2134 		sparecol = raidPtr->numCol + c;
   2135 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2136 			/*
   2137 
   2138 			   XXX this is where we get fancy and map this spare
   2139 			   into it's correct spot in the array.
   2140 
   2141 			 */
   2142 			/*
   2143 
   2144 			   we claim this disk is "optimal" if it's
   2145 			   rf_ds_used_spare, as that means it should be
   2146 			   directly substitutable for the disk it replaced.
   2147 			   We note that too...
   2148 
   2149 			 */
   2150 
   2151 			for(i=0;i<raidPtr->numRow;i++) {
   2152 				for(j=0;j<raidPtr->numCol;j++) {
   2153 					if ((raidPtr->Disks[i][j].spareRow ==
   2154 					     r) &&
   2155 					    (raidPtr->Disks[i][j].spareCol ==
   2156 					     sparecol)) {
   2157 						srow = r;
   2158 						scol = sparecol;
   2159 						break;
   2160 					}
   2161 				}
   2162 			}
   2163 
   2164 			raidread_component_label(
   2165 				      raidPtr->Disks[r][sparecol].dev,
   2166 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2167 				      &c_label);
   2168 			/* make sure status is noted */
   2169 			c_label.version = RF_COMPONENT_LABEL_VERSION;
   2170 			c_label.mod_counter = raidPtr->mod_counter;
   2171 			c_label.serial_number = raidPtr->serial_number;
   2172 			c_label.row = srow;
   2173 			c_label.column = scol;
   2174 			c_label.num_rows = raidPtr->numRow;
   2175 			c_label.num_columns = raidPtr->numCol;
   2176 			c_label.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2177 			c_label.status = rf_ds_optimal;
   2178 			raidwrite_component_label(
   2179 				      raidPtr->Disks[r][sparecol].dev,
   2180 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2181 				      &c_label);
   2182 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2183 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2184 		}
   2185 	}
   2186 
   2187 #endif
   2188 }
   2189 
   2190 
   2191 void
   2192 rf_update_component_labels( raidPtr )
   2193 	RF_Raid_t *raidPtr;
   2194 {
   2195 	RF_ComponentLabel_t c_label;
   2196 	int sparecol;
   2197 	int r,c;
   2198 	int i,j;
   2199 	int srow, scol;
   2200 
   2201 	srow = -1;
   2202 	scol = -1;
   2203 
   2204 	/* XXX should do extra checks to make sure things really are clean,
   2205 	   rather than blindly setting the clean bit... */
   2206 
   2207 	raidPtr->mod_counter++;
   2208 
   2209 	for (r = 0; r < raidPtr->numRow; r++) {
   2210 		for (c = 0; c < raidPtr->numCol; c++) {
   2211 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2212 				raidread_component_label(
   2213 					raidPtr->Disks[r][c].dev,
   2214 					raidPtr->raid_cinfo[r][c].ci_vp,
   2215 					&c_label);
   2216 				/* make sure status is noted */
   2217 				c_label.status = rf_ds_optimal;
   2218 				raidwrite_component_label(
   2219 					raidPtr->Disks[r][c].dev,
   2220 					raidPtr->raid_cinfo[r][c].ci_vp,
   2221 					&c_label);
   2222 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2223 					raidmarkclean(
   2224 					      raidPtr->Disks[r][c].dev,
   2225 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2226 					      raidPtr->mod_counter);
   2227 				}
   2228 			}
   2229 			/* else we don't touch it.. */
   2230 #if 0
   2231 			else if (raidPtr->Disks[r][c].status !=
   2232 				   rf_ds_failed) {
   2233 				raidread_component_label(
   2234 					raidPtr->Disks[r][c].dev,
   2235 					raidPtr->raid_cinfo[r][c].ci_vp,
   2236 					&c_label);
   2237 				/* make sure status is noted */
   2238 				c_label.status =
   2239 					raidPtr->Disks[r][c].status;
   2240 				raidwrite_component_label(
   2241 					raidPtr->Disks[r][c].dev,
   2242 					raidPtr->raid_cinfo[r][c].ci_vp,
   2243 					&c_label);
   2244 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2245 					raidmarkclean(
   2246 					      raidPtr->Disks[r][c].dev,
   2247 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2248 					      raidPtr->mod_counter);
   2249 				}
   2250 			}
   2251 #endif
   2252 		}
   2253 	}
   2254 
   2255 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2256 		sparecol = raidPtr->numCol + c;
   2257 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2258 			/*
   2259 
   2260 			   we claim this disk is "optimal" if it's
   2261 			   rf_ds_used_spare, as that means it should be
   2262 			   directly substitutable for the disk it replaced.
   2263 			   We note that too...
   2264 
   2265 			 */
   2266 
   2267 			for(i=0;i<raidPtr->numRow;i++) {
   2268 				for(j=0;j<raidPtr->numCol;j++) {
   2269 					if ((raidPtr->Disks[i][j].spareRow ==
   2270 					     0) &&
   2271 					    (raidPtr->Disks[i][j].spareCol ==
   2272 					     sparecol)) {
   2273 						srow = i;
   2274 						scol = j;
   2275 						break;
   2276 					}
   2277 				}
   2278 			}
   2279 
   2280 			raidread_component_label(
   2281 				      raidPtr->Disks[0][sparecol].dev,
   2282 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2283 				      &c_label);
   2284 			/* make sure status is noted */
   2285 			c_label.version = RF_COMPONENT_LABEL_VERSION;
   2286 			c_label.mod_counter = raidPtr->mod_counter;
   2287 			c_label.serial_number = raidPtr->serial_number;
   2288 			c_label.row = srow;
   2289 			c_label.column = scol;
   2290 			c_label.num_rows = raidPtr->numRow;
   2291 			c_label.num_columns = raidPtr->numCol;
   2292 			c_label.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2293 			c_label.status = rf_ds_optimal;
   2294 			raidwrite_component_label(
   2295 				      raidPtr->Disks[0][sparecol].dev,
   2296 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2297 				      &c_label);
   2298 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2299 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2300 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2301 					       raidPtr->mod_counter);
   2302 			}
   2303 		}
   2304 	}
   2305 	/* 	printf("Component labels updated\n"); */
   2306 }
   2307