rf_netbsdkintf.c revision 1.192 1 /* $NetBSD: rf_netbsdkintf.c,v 1.192 2005/12/11 12:23:37 christos Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.192 2005/12/11 12:23:37 christos Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/bufq.h>
169 #include <sys/user.h>
170 #include <sys/reboot.h>
171
172 #include <dev/raidframe/raidframevar.h>
173 #include <dev/raidframe/raidframeio.h>
174 #include "raid.h"
175 #include "opt_raid_autoconfig.h"
176 #include "rf_raid.h"
177 #include "rf_copyback.h"
178 #include "rf_dag.h"
179 #include "rf_dagflags.h"
180 #include "rf_desc.h"
181 #include "rf_diskqueue.h"
182 #include "rf_etimer.h"
183 #include "rf_general.h"
184 #include "rf_kintf.h"
185 #include "rf_options.h"
186 #include "rf_driver.h"
187 #include "rf_parityscan.h"
188 #include "rf_threadstuff.h"
189
190 #ifdef DEBUG
191 int rf_kdebug_level = 0;
192 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
193 #else /* DEBUG */
194 #define db1_printf(a) { }
195 #endif /* DEBUG */
196
197 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
198
199 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
200
201 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
202 * spare table */
203 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
204 * installation process */
205
206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
207
208 /* prototypes */
209 static void KernelWakeupFunc(struct buf *);
210 static void InitBP(struct buf *, struct vnode *, unsigned,
211 dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*) (struct buf *),
212 void *, int, struct proc *);
213 static void raidinit(RF_Raid_t *);
214
215 void raidattach(int);
216
217 dev_type_open(raidopen);
218 dev_type_close(raidclose);
219 dev_type_read(raidread);
220 dev_type_write(raidwrite);
221 dev_type_ioctl(raidioctl);
222 dev_type_strategy(raidstrategy);
223 dev_type_dump(raiddump);
224 dev_type_size(raidsize);
225
226 const struct bdevsw raid_bdevsw = {
227 raidopen, raidclose, raidstrategy, raidioctl,
228 raiddump, raidsize, D_DISK
229 };
230
231 const struct cdevsw raid_cdevsw = {
232 raidopen, raidclose, raidread, raidwrite, raidioctl,
233 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
234 };
235
236 /*
237 * Pilfered from ccd.c
238 */
239
240 struct raidbuf {
241 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
242 struct buf *rf_obp; /* ptr. to original I/O buf */
243 RF_DiskQueueData_t *req;/* the request that this was part of.. */
244 };
245
246 /* XXX Not sure if the following should be replacing the raidPtrs above,
247 or if it should be used in conjunction with that...
248 */
249
250 struct raid_softc {
251 int sc_flags; /* flags */
252 int sc_cflags; /* configuration flags */
253 size_t sc_size; /* size of the raid device */
254 char sc_xname[20]; /* XXX external name */
255 struct disk sc_dkdev; /* generic disk device info */
256 struct bufq_state *buf_queue; /* used for the device queue */
257 };
258 /* sc_flags */
259 #define RAIDF_INITED 0x01 /* unit has been initialized */
260 #define RAIDF_WLABEL 0x02 /* label area is writable */
261 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
262 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
263 #define RAIDF_LOCKED 0x80 /* unit is locked */
264
265 #define raidunit(x) DISKUNIT(x)
266 int numraid = 0;
267
268 /*
269 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
270 * Be aware that large numbers can allow the driver to consume a lot of
271 * kernel memory, especially on writes, and in degraded mode reads.
272 *
273 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
274 * a single 64K write will typically require 64K for the old data,
275 * 64K for the old parity, and 64K for the new parity, for a total
276 * of 192K (if the parity buffer is not re-used immediately).
277 * Even it if is used immediately, that's still 128K, which when multiplied
278 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
279 *
280 * Now in degraded mode, for example, a 64K read on the above setup may
281 * require data reconstruction, which will require *all* of the 4 remaining
282 * disks to participate -- 4 * 32K/disk == 128K again.
283 */
284
285 #ifndef RAIDOUTSTANDING
286 #define RAIDOUTSTANDING 6
287 #endif
288
289 #define RAIDLABELDEV(dev) \
290 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
291
292 /* declared here, and made public, for the benefit of KVM stuff.. */
293 struct raid_softc *raid_softc;
294
295 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
296 struct disklabel *);
297 static void raidgetdisklabel(dev_t);
298 static void raidmakedisklabel(struct raid_softc *);
299
300 static int raidlock(struct raid_softc *);
301 static void raidunlock(struct raid_softc *);
302
303 static void rf_markalldirty(RF_Raid_t *);
304
305 struct device *raidrootdev;
306
307 void rf_ReconThread(struct rf_recon_req *);
308 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
309 void rf_CopybackThread(RF_Raid_t *raidPtr);
310 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
311 int rf_autoconfig(struct device *self);
312 void rf_buildroothack(RF_ConfigSet_t *);
313
314 RF_AutoConfig_t *rf_find_raid_components(void);
315 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
316 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
317 static int rf_reasonable_label(RF_ComponentLabel_t *);
318 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
319 int rf_set_autoconfig(RF_Raid_t *, int);
320 int rf_set_rootpartition(RF_Raid_t *, int);
321 void rf_release_all_vps(RF_ConfigSet_t *);
322 void rf_cleanup_config_set(RF_ConfigSet_t *);
323 int rf_have_enough_components(RF_ConfigSet_t *);
324 int rf_auto_config_set(RF_ConfigSet_t *, int *);
325
326 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
327 allow autoconfig to take place.
328 Note that this is overridden by having
329 RAID_AUTOCONFIG as an option in the
330 kernel config file. */
331
332 struct RF_Pools_s rf_pools;
333
334 void
335 raidattach(int num)
336 {
337 int raidID;
338 int i, rc;
339
340 #ifdef DEBUG
341 printf("raidattach: Asked for %d units\n", num);
342 #endif
343
344 if (num <= 0) {
345 #ifdef DIAGNOSTIC
346 panic("raidattach: count <= 0");
347 #endif
348 return;
349 }
350 /* This is where all the initialization stuff gets done. */
351
352 numraid = num;
353
354 /* Make some space for requested number of units... */
355
356 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
357 if (raidPtrs == NULL) {
358 panic("raidPtrs is NULL!!");
359 }
360
361 /* Initialize the component buffer pool. */
362 rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
363 "raidpl", num * RAIDOUTSTANDING,
364 2 * num * RAIDOUTSTANDING);
365
366 rf_mutex_init(&rf_sparet_wait_mutex);
367
368 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
369
370 for (i = 0; i < num; i++)
371 raidPtrs[i] = NULL;
372 rc = rf_BootRaidframe();
373 if (rc == 0)
374 printf("Kernelized RAIDframe activated\n");
375 else
376 panic("Serious error booting RAID!!");
377
378 /* put together some datastructures like the CCD device does.. This
379 * lets us lock the device and what-not when it gets opened. */
380
381 raid_softc = (struct raid_softc *)
382 malloc(num * sizeof(struct raid_softc),
383 M_RAIDFRAME, M_NOWAIT);
384 if (raid_softc == NULL) {
385 printf("WARNING: no memory for RAIDframe driver\n");
386 return;
387 }
388
389 memset(raid_softc, 0, num * sizeof(struct raid_softc));
390
391 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
392 M_RAIDFRAME, M_NOWAIT);
393 if (raidrootdev == NULL) {
394 panic("No memory for RAIDframe driver!!?!?!");
395 }
396
397 for (raidID = 0; raidID < num; raidID++) {
398 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
399 pseudo_disk_init(&raid_softc[raidID].sc_dkdev);
400
401 raidrootdev[raidID].dv_class = DV_DISK;
402 raidrootdev[raidID].dv_cfdata = NULL;
403 raidrootdev[raidID].dv_unit = raidID;
404 raidrootdev[raidID].dv_parent = NULL;
405 raidrootdev[raidID].dv_flags = 0;
406 snprintf(raidrootdev[raidID].dv_xname,
407 sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
408
409 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
410 (RF_Raid_t *));
411 if (raidPtrs[raidID] == NULL) {
412 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
413 numraid = raidID;
414 return;
415 }
416 }
417
418 #ifdef RAID_AUTOCONFIG
419 raidautoconfig = 1;
420 #endif
421
422 /*
423 * Register a finalizer which will be used to auto-config RAID
424 * sets once all real hardware devices have been found.
425 */
426 if (config_finalize_register(NULL, rf_autoconfig) != 0)
427 printf("WARNING: unable to register RAIDframe finalizer\n");
428 }
429
430 int
431 rf_autoconfig(struct device *self)
432 {
433 RF_AutoConfig_t *ac_list;
434 RF_ConfigSet_t *config_sets;
435
436 if (raidautoconfig == 0)
437 return (0);
438
439 /* XXX This code can only be run once. */
440 raidautoconfig = 0;
441
442 /* 1. locate all RAID components on the system */
443 #ifdef DEBUG
444 printf("Searching for RAID components...\n");
445 #endif
446 ac_list = rf_find_raid_components();
447
448 /* 2. Sort them into their respective sets. */
449 config_sets = rf_create_auto_sets(ac_list);
450
451 /*
452 * 3. Evaluate each set andconfigure the valid ones.
453 * This gets done in rf_buildroothack().
454 */
455 rf_buildroothack(config_sets);
456
457 return (1);
458 }
459
460 void
461 rf_buildroothack(RF_ConfigSet_t *config_sets)
462 {
463 RF_ConfigSet_t *cset;
464 RF_ConfigSet_t *next_cset;
465 int retcode;
466 int raidID;
467 int rootID;
468 int num_root;
469
470 rootID = 0;
471 num_root = 0;
472 cset = config_sets;
473 while(cset != NULL ) {
474 next_cset = cset->next;
475 if (rf_have_enough_components(cset) &&
476 cset->ac->clabel->autoconfigure==1) {
477 retcode = rf_auto_config_set(cset,&raidID);
478 if (!retcode) {
479 if (cset->rootable) {
480 rootID = raidID;
481 num_root++;
482 }
483 } else {
484 /* The autoconfig didn't work :( */
485 #if DEBUG
486 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
487 #endif
488 rf_release_all_vps(cset);
489 }
490 } else {
491 /* we're not autoconfiguring this set...
492 release the associated resources */
493 rf_release_all_vps(cset);
494 }
495 /* cleanup */
496 rf_cleanup_config_set(cset);
497 cset = next_cset;
498 }
499
500 /* we found something bootable... */
501
502 if (num_root == 1) {
503 booted_device = &raidrootdev[rootID];
504 } else if (num_root > 1) {
505 /* we can't guess.. require the user to answer... */
506 boothowto |= RB_ASKNAME;
507 }
508 }
509
510
511 int
512 raidsize(dev_t dev)
513 {
514 struct raid_softc *rs;
515 struct disklabel *lp;
516 int part, unit, omask, size;
517
518 unit = raidunit(dev);
519 if (unit >= numraid)
520 return (-1);
521 rs = &raid_softc[unit];
522
523 if ((rs->sc_flags & RAIDF_INITED) == 0)
524 return (-1);
525
526 part = DISKPART(dev);
527 omask = rs->sc_dkdev.dk_openmask & (1 << part);
528 lp = rs->sc_dkdev.dk_label;
529
530 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
531 return (-1);
532
533 if (lp->d_partitions[part].p_fstype != FS_SWAP)
534 size = -1;
535 else
536 size = lp->d_partitions[part].p_size *
537 (lp->d_secsize / DEV_BSIZE);
538
539 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
540 return (-1);
541
542 return (size);
543
544 }
545
546 int
547 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
548 {
549 /* Not implemented. */
550 return ENXIO;
551 }
552 /* ARGSUSED */
553 int
554 raidopen(dev_t dev, int flags, int fmt, struct lwp *l)
555 {
556 int unit = raidunit(dev);
557 struct raid_softc *rs;
558 struct disklabel *lp;
559 int part, pmask;
560 int error = 0;
561
562 if (unit >= numraid)
563 return (ENXIO);
564 rs = &raid_softc[unit];
565
566 if ((error = raidlock(rs)) != 0)
567 return (error);
568 lp = rs->sc_dkdev.dk_label;
569
570 part = DISKPART(dev);
571 pmask = (1 << part);
572
573 if ((rs->sc_flags & RAIDF_INITED) &&
574 (rs->sc_dkdev.dk_openmask == 0))
575 raidgetdisklabel(dev);
576
577 /* make sure that this partition exists */
578
579 if (part != RAW_PART) {
580 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
581 ((part >= lp->d_npartitions) ||
582 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
583 error = ENXIO;
584 raidunlock(rs);
585 return (error);
586 }
587 }
588 /* Prevent this unit from being unconfigured while open. */
589 switch (fmt) {
590 case S_IFCHR:
591 rs->sc_dkdev.dk_copenmask |= pmask;
592 break;
593
594 case S_IFBLK:
595 rs->sc_dkdev.dk_bopenmask |= pmask;
596 break;
597 }
598
599 if ((rs->sc_dkdev.dk_openmask == 0) &&
600 ((rs->sc_flags & RAIDF_INITED) != 0)) {
601 /* First one... mark things as dirty... Note that we *MUST*
602 have done a configure before this. I DO NOT WANT TO BE
603 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
604 THAT THEY BELONG TOGETHER!!!!! */
605 /* XXX should check to see if we're only open for reading
606 here... If so, we needn't do this, but then need some
607 other way of keeping track of what's happened.. */
608
609 rf_markalldirty( raidPtrs[unit] );
610 }
611
612
613 rs->sc_dkdev.dk_openmask =
614 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
615
616 raidunlock(rs);
617
618 return (error);
619
620
621 }
622 /* ARGSUSED */
623 int
624 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
625 {
626 int unit = raidunit(dev);
627 struct raid_softc *rs;
628 int error = 0;
629 int part;
630
631 if (unit >= numraid)
632 return (ENXIO);
633 rs = &raid_softc[unit];
634
635 if ((error = raidlock(rs)) != 0)
636 return (error);
637
638 part = DISKPART(dev);
639
640 /* ...that much closer to allowing unconfiguration... */
641 switch (fmt) {
642 case S_IFCHR:
643 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
644 break;
645
646 case S_IFBLK:
647 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
648 break;
649 }
650 rs->sc_dkdev.dk_openmask =
651 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
652
653 if ((rs->sc_dkdev.dk_openmask == 0) &&
654 ((rs->sc_flags & RAIDF_INITED) != 0)) {
655 /* Last one... device is not unconfigured yet.
656 Device shutdown has taken care of setting the
657 clean bits if RAIDF_INITED is not set
658 mark things as clean... */
659
660 rf_update_component_labels(raidPtrs[unit],
661 RF_FINAL_COMPONENT_UPDATE);
662 if (doing_shutdown) {
663 /* last one, and we're going down, so
664 lights out for this RAID set too. */
665 error = rf_Shutdown(raidPtrs[unit]);
666
667 /* It's no longer initialized... */
668 rs->sc_flags &= ~RAIDF_INITED;
669
670 /* Detach the disk. */
671 pseudo_disk_detach(&rs->sc_dkdev);
672 }
673 }
674
675 raidunlock(rs);
676 return (0);
677
678 }
679
680 void
681 raidstrategy(struct buf *bp)
682 {
683 int s;
684
685 unsigned int raidID = raidunit(bp->b_dev);
686 RF_Raid_t *raidPtr;
687 struct raid_softc *rs = &raid_softc[raidID];
688 int wlabel;
689
690 if ((rs->sc_flags & RAIDF_INITED) ==0) {
691 bp->b_error = ENXIO;
692 bp->b_flags |= B_ERROR;
693 bp->b_resid = bp->b_bcount;
694 biodone(bp);
695 return;
696 }
697 if (raidID >= numraid || !raidPtrs[raidID]) {
698 bp->b_error = ENODEV;
699 bp->b_flags |= B_ERROR;
700 bp->b_resid = bp->b_bcount;
701 biodone(bp);
702 return;
703 }
704 raidPtr = raidPtrs[raidID];
705 if (!raidPtr->valid) {
706 bp->b_error = ENODEV;
707 bp->b_flags |= B_ERROR;
708 bp->b_resid = bp->b_bcount;
709 biodone(bp);
710 return;
711 }
712 if (bp->b_bcount == 0) {
713 db1_printf(("b_bcount is zero..\n"));
714 biodone(bp);
715 return;
716 }
717
718 /*
719 * Do bounds checking and adjust transfer. If there's an
720 * error, the bounds check will flag that for us.
721 */
722
723 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
724 if (DISKPART(bp->b_dev) != RAW_PART)
725 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
726 db1_printf(("Bounds check failed!!:%d %d\n",
727 (int) bp->b_blkno, (int) wlabel));
728 biodone(bp);
729 return;
730 }
731 s = splbio();
732
733 bp->b_resid = 0;
734
735 /* stuff it onto our queue */
736 BUFQ_PUT(rs->buf_queue, bp);
737
738 /* scheduled the IO to happen at the next convenient time */
739 wakeup(&(raidPtrs[raidID]->iodone));
740
741 splx(s);
742 }
743 /* ARGSUSED */
744 int
745 raidread(dev_t dev, struct uio *uio, int flags)
746 {
747 int unit = raidunit(dev);
748 struct raid_softc *rs;
749
750 if (unit >= numraid)
751 return (ENXIO);
752 rs = &raid_softc[unit];
753
754 if ((rs->sc_flags & RAIDF_INITED) == 0)
755 return (ENXIO);
756
757 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
758
759 }
760 /* ARGSUSED */
761 int
762 raidwrite(dev_t dev, struct uio *uio, int flags)
763 {
764 int unit = raidunit(dev);
765 struct raid_softc *rs;
766
767 if (unit >= numraid)
768 return (ENXIO);
769 rs = &raid_softc[unit];
770
771 if ((rs->sc_flags & RAIDF_INITED) == 0)
772 return (ENXIO);
773
774 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
775
776 }
777
778 int
779 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
780 {
781 int unit = raidunit(dev);
782 int error = 0;
783 int part, pmask;
784 struct raid_softc *rs;
785 RF_Config_t *k_cfg, *u_cfg;
786 RF_Raid_t *raidPtr;
787 RF_RaidDisk_t *diskPtr;
788 RF_AccTotals_t *totals;
789 RF_DeviceConfig_t *d_cfg, **ucfgp;
790 u_char *specific_buf;
791 int retcode = 0;
792 int column;
793 int raidid;
794 struct rf_recon_req *rrcopy, *rr;
795 RF_ComponentLabel_t *clabel;
796 RF_ComponentLabel_t ci_label;
797 RF_ComponentLabel_t **clabel_ptr;
798 RF_SingleComponent_t *sparePtr,*componentPtr;
799 RF_SingleComponent_t hot_spare;
800 RF_SingleComponent_t component;
801 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
802 int i, j, d;
803 #ifdef __HAVE_OLD_DISKLABEL
804 struct disklabel newlabel;
805 #endif
806
807 if (unit >= numraid)
808 return (ENXIO);
809 rs = &raid_softc[unit];
810 raidPtr = raidPtrs[unit];
811
812 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
813 (int) DISKPART(dev), (int) unit, (int) cmd));
814
815 /* Must be open for writes for these commands... */
816 switch (cmd) {
817 case DIOCSDINFO:
818 case DIOCWDINFO:
819 #ifdef __HAVE_OLD_DISKLABEL
820 case ODIOCWDINFO:
821 case ODIOCSDINFO:
822 #endif
823 case DIOCWLABEL:
824 if ((flag & FWRITE) == 0)
825 return (EBADF);
826 }
827
828 /* Must be initialized for these... */
829 switch (cmd) {
830 case DIOCGDINFO:
831 case DIOCSDINFO:
832 case DIOCWDINFO:
833 #ifdef __HAVE_OLD_DISKLABEL
834 case ODIOCGDINFO:
835 case ODIOCWDINFO:
836 case ODIOCSDINFO:
837 case ODIOCGDEFLABEL:
838 #endif
839 case DIOCGPART:
840 case DIOCWLABEL:
841 case DIOCGDEFLABEL:
842 case RAIDFRAME_SHUTDOWN:
843 case RAIDFRAME_REWRITEPARITY:
844 case RAIDFRAME_GET_INFO:
845 case RAIDFRAME_RESET_ACCTOTALS:
846 case RAIDFRAME_GET_ACCTOTALS:
847 case RAIDFRAME_KEEP_ACCTOTALS:
848 case RAIDFRAME_GET_SIZE:
849 case RAIDFRAME_FAIL_DISK:
850 case RAIDFRAME_COPYBACK:
851 case RAIDFRAME_CHECK_RECON_STATUS:
852 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
853 case RAIDFRAME_GET_COMPONENT_LABEL:
854 case RAIDFRAME_SET_COMPONENT_LABEL:
855 case RAIDFRAME_ADD_HOT_SPARE:
856 case RAIDFRAME_REMOVE_HOT_SPARE:
857 case RAIDFRAME_INIT_LABELS:
858 case RAIDFRAME_REBUILD_IN_PLACE:
859 case RAIDFRAME_CHECK_PARITY:
860 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
861 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
862 case RAIDFRAME_CHECK_COPYBACK_STATUS:
863 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
864 case RAIDFRAME_SET_AUTOCONFIG:
865 case RAIDFRAME_SET_ROOT:
866 case RAIDFRAME_DELETE_COMPONENT:
867 case RAIDFRAME_INCORPORATE_HOT_SPARE:
868 if ((rs->sc_flags & RAIDF_INITED) == 0)
869 return (ENXIO);
870 }
871
872 switch (cmd) {
873
874 /* configure the system */
875 case RAIDFRAME_CONFIGURE:
876
877 if (raidPtr->valid) {
878 /* There is a valid RAID set running on this unit! */
879 printf("raid%d: Device already configured!\n",unit);
880 return(EINVAL);
881 }
882
883 /* copy-in the configuration information */
884 /* data points to a pointer to the configuration structure */
885
886 u_cfg = *((RF_Config_t **) data);
887 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
888 if (k_cfg == NULL) {
889 return (ENOMEM);
890 }
891 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
892 if (retcode) {
893 RF_Free(k_cfg, sizeof(RF_Config_t));
894 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
895 retcode));
896 return (retcode);
897 }
898 /* allocate a buffer for the layout-specific data, and copy it
899 * in */
900 if (k_cfg->layoutSpecificSize) {
901 if (k_cfg->layoutSpecificSize > 10000) {
902 /* sanity check */
903 RF_Free(k_cfg, sizeof(RF_Config_t));
904 return (EINVAL);
905 }
906 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
907 (u_char *));
908 if (specific_buf == NULL) {
909 RF_Free(k_cfg, sizeof(RF_Config_t));
910 return (ENOMEM);
911 }
912 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
913 k_cfg->layoutSpecificSize);
914 if (retcode) {
915 RF_Free(k_cfg, sizeof(RF_Config_t));
916 RF_Free(specific_buf,
917 k_cfg->layoutSpecificSize);
918 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
919 retcode));
920 return (retcode);
921 }
922 } else
923 specific_buf = NULL;
924 k_cfg->layoutSpecific = specific_buf;
925
926 /* should do some kind of sanity check on the configuration.
927 * Store the sum of all the bytes in the last byte? */
928
929 /* configure the system */
930
931 /*
932 * Clear the entire RAID descriptor, just to make sure
933 * there is no stale data left in the case of a
934 * reconfiguration
935 */
936 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
937 raidPtr->raidid = unit;
938
939 retcode = rf_Configure(raidPtr, k_cfg, NULL);
940
941 if (retcode == 0) {
942
943 /* allow this many simultaneous IO's to
944 this RAID device */
945 raidPtr->openings = RAIDOUTSTANDING;
946
947 raidinit(raidPtr);
948 rf_markalldirty(raidPtr);
949 }
950 /* free the buffers. No return code here. */
951 if (k_cfg->layoutSpecificSize) {
952 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
953 }
954 RF_Free(k_cfg, sizeof(RF_Config_t));
955
956 return (retcode);
957
958 /* shutdown the system */
959 case RAIDFRAME_SHUTDOWN:
960
961 if ((error = raidlock(rs)) != 0)
962 return (error);
963
964 /*
965 * If somebody has a partition mounted, we shouldn't
966 * shutdown.
967 */
968
969 part = DISKPART(dev);
970 pmask = (1 << part);
971 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
972 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
973 (rs->sc_dkdev.dk_copenmask & pmask))) {
974 raidunlock(rs);
975 return (EBUSY);
976 }
977
978 retcode = rf_Shutdown(raidPtr);
979
980 /* It's no longer initialized... */
981 rs->sc_flags &= ~RAIDF_INITED;
982
983 /* Detach the disk. */
984 pseudo_disk_detach(&rs->sc_dkdev);
985
986 raidunlock(rs);
987
988 return (retcode);
989 case RAIDFRAME_GET_COMPONENT_LABEL:
990 clabel_ptr = (RF_ComponentLabel_t **) data;
991 /* need to read the component label for the disk indicated
992 by row,column in clabel */
993
994 /* For practice, let's get it directly fromdisk, rather
995 than from the in-core copy */
996 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
997 (RF_ComponentLabel_t *));
998 if (clabel == NULL)
999 return (ENOMEM);
1000
1001 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1002
1003 retcode = copyin( *clabel_ptr, clabel,
1004 sizeof(RF_ComponentLabel_t));
1005
1006 if (retcode) {
1007 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1008 return(retcode);
1009 }
1010
1011 clabel->row = 0; /* Don't allow looking at anything else.*/
1012
1013 column = clabel->column;
1014
1015 if ((column < 0) || (column >= raidPtr->numCol +
1016 raidPtr->numSpare)) {
1017 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1018 return(EINVAL);
1019 }
1020
1021 raidread_component_label(raidPtr->Disks[column].dev,
1022 raidPtr->raid_cinfo[column].ci_vp,
1023 clabel );
1024
1025 retcode = copyout(clabel, *clabel_ptr,
1026 sizeof(RF_ComponentLabel_t));
1027 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1028 return (retcode);
1029
1030 case RAIDFRAME_SET_COMPONENT_LABEL:
1031 clabel = (RF_ComponentLabel_t *) data;
1032
1033 /* XXX check the label for valid stuff... */
1034 /* Note that some things *should not* get modified --
1035 the user should be re-initing the labels instead of
1036 trying to patch things.
1037 */
1038
1039 raidid = raidPtr->raidid;
1040 #if DEBUG
1041 printf("raid%d: Got component label:\n", raidid);
1042 printf("raid%d: Version: %d\n", raidid, clabel->version);
1043 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1044 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1045 printf("raid%d: Column: %d\n", raidid, clabel->column);
1046 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1047 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1048 printf("raid%d: Status: %d\n", raidid, clabel->status);
1049 #endif
1050 clabel->row = 0;
1051 column = clabel->column;
1052
1053 if ((column < 0) || (column >= raidPtr->numCol)) {
1054 return(EINVAL);
1055 }
1056
1057 /* XXX this isn't allowed to do anything for now :-) */
1058
1059 /* XXX and before it is, we need to fill in the rest
1060 of the fields!?!?!?! */
1061 #if 0
1062 raidwrite_component_label(
1063 raidPtr->Disks[column].dev,
1064 raidPtr->raid_cinfo[column].ci_vp,
1065 clabel );
1066 #endif
1067 return (0);
1068
1069 case RAIDFRAME_INIT_LABELS:
1070 clabel = (RF_ComponentLabel_t *) data;
1071 /*
1072 we only want the serial number from
1073 the above. We get all the rest of the information
1074 from the config that was used to create this RAID
1075 set.
1076 */
1077
1078 raidPtr->serial_number = clabel->serial_number;
1079
1080 raid_init_component_label(raidPtr, &ci_label);
1081 ci_label.serial_number = clabel->serial_number;
1082 ci_label.row = 0; /* we dont' pretend to support more */
1083
1084 for(column=0;column<raidPtr->numCol;column++) {
1085 diskPtr = &raidPtr->Disks[column];
1086 if (!RF_DEAD_DISK(diskPtr->status)) {
1087 ci_label.partitionSize = diskPtr->partitionSize;
1088 ci_label.column = column;
1089 raidwrite_component_label(
1090 raidPtr->Disks[column].dev,
1091 raidPtr->raid_cinfo[column].ci_vp,
1092 &ci_label );
1093 }
1094 }
1095
1096 return (retcode);
1097 case RAIDFRAME_SET_AUTOCONFIG:
1098 d = rf_set_autoconfig(raidPtr, *(int *) data);
1099 printf("raid%d: New autoconfig value is: %d\n",
1100 raidPtr->raidid, d);
1101 *(int *) data = d;
1102 return (retcode);
1103
1104 case RAIDFRAME_SET_ROOT:
1105 d = rf_set_rootpartition(raidPtr, *(int *) data);
1106 printf("raid%d: New rootpartition value is: %d\n",
1107 raidPtr->raidid, d);
1108 *(int *) data = d;
1109 return (retcode);
1110
1111 /* initialize all parity */
1112 case RAIDFRAME_REWRITEPARITY:
1113
1114 if (raidPtr->Layout.map->faultsTolerated == 0) {
1115 /* Parity for RAID 0 is trivially correct */
1116 raidPtr->parity_good = RF_RAID_CLEAN;
1117 return(0);
1118 }
1119
1120 if (raidPtr->parity_rewrite_in_progress == 1) {
1121 /* Re-write is already in progress! */
1122 return(EINVAL);
1123 }
1124
1125 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1126 rf_RewriteParityThread,
1127 raidPtr,"raid_parity");
1128 return (retcode);
1129
1130
1131 case RAIDFRAME_ADD_HOT_SPARE:
1132 sparePtr = (RF_SingleComponent_t *) data;
1133 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1134 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1135 return(retcode);
1136
1137 case RAIDFRAME_REMOVE_HOT_SPARE:
1138 return(retcode);
1139
1140 case RAIDFRAME_DELETE_COMPONENT:
1141 componentPtr = (RF_SingleComponent_t *)data;
1142 memcpy( &component, componentPtr,
1143 sizeof(RF_SingleComponent_t));
1144 retcode = rf_delete_component(raidPtr, &component);
1145 return(retcode);
1146
1147 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1148 componentPtr = (RF_SingleComponent_t *)data;
1149 memcpy( &component, componentPtr,
1150 sizeof(RF_SingleComponent_t));
1151 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1152 return(retcode);
1153
1154 case RAIDFRAME_REBUILD_IN_PLACE:
1155
1156 if (raidPtr->Layout.map->faultsTolerated == 0) {
1157 /* Can't do this on a RAID 0!! */
1158 return(EINVAL);
1159 }
1160
1161 if (raidPtr->recon_in_progress == 1) {
1162 /* a reconstruct is already in progress! */
1163 return(EINVAL);
1164 }
1165
1166 componentPtr = (RF_SingleComponent_t *) data;
1167 memcpy( &component, componentPtr,
1168 sizeof(RF_SingleComponent_t));
1169 component.row = 0; /* we don't support any more */
1170 column = component.column;
1171
1172 if ((column < 0) || (column >= raidPtr->numCol)) {
1173 return(EINVAL);
1174 }
1175
1176 RF_LOCK_MUTEX(raidPtr->mutex);
1177 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1178 (raidPtr->numFailures > 0)) {
1179 /* XXX 0 above shouldn't be constant!!! */
1180 /* some component other than this has failed.
1181 Let's not make things worse than they already
1182 are... */
1183 printf("raid%d: Unable to reconstruct to disk at:\n",
1184 raidPtr->raidid);
1185 printf("raid%d: Col: %d Too many failures.\n",
1186 raidPtr->raidid, column);
1187 RF_UNLOCK_MUTEX(raidPtr->mutex);
1188 return (EINVAL);
1189 }
1190 if (raidPtr->Disks[column].status ==
1191 rf_ds_reconstructing) {
1192 printf("raid%d: Unable to reconstruct to disk at:\n",
1193 raidPtr->raidid);
1194 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1195
1196 RF_UNLOCK_MUTEX(raidPtr->mutex);
1197 return (EINVAL);
1198 }
1199 if (raidPtr->Disks[column].status == rf_ds_spared) {
1200 RF_UNLOCK_MUTEX(raidPtr->mutex);
1201 return (EINVAL);
1202 }
1203 RF_UNLOCK_MUTEX(raidPtr->mutex);
1204
1205 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1206 if (rrcopy == NULL)
1207 return(ENOMEM);
1208
1209 rrcopy->raidPtr = (void *) raidPtr;
1210 rrcopy->col = column;
1211
1212 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1213 rf_ReconstructInPlaceThread,
1214 rrcopy,"raid_reconip");
1215 return(retcode);
1216
1217 case RAIDFRAME_GET_INFO:
1218 if (!raidPtr->valid)
1219 return (ENODEV);
1220 ucfgp = (RF_DeviceConfig_t **) data;
1221 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1222 (RF_DeviceConfig_t *));
1223 if (d_cfg == NULL)
1224 return (ENOMEM);
1225 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1226 d_cfg->rows = 1; /* there is only 1 row now */
1227 d_cfg->cols = raidPtr->numCol;
1228 d_cfg->ndevs = raidPtr->numCol;
1229 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1230 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1231 return (ENOMEM);
1232 }
1233 d_cfg->nspares = raidPtr->numSpare;
1234 if (d_cfg->nspares >= RF_MAX_DISKS) {
1235 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1236 return (ENOMEM);
1237 }
1238 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1239 d = 0;
1240 for (j = 0; j < d_cfg->cols; j++) {
1241 d_cfg->devs[d] = raidPtr->Disks[j];
1242 d++;
1243 }
1244 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1245 d_cfg->spares[i] = raidPtr->Disks[j];
1246 }
1247 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1248 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1249
1250 return (retcode);
1251
1252 case RAIDFRAME_CHECK_PARITY:
1253 *(int *) data = raidPtr->parity_good;
1254 return (0);
1255
1256 case RAIDFRAME_RESET_ACCTOTALS:
1257 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1258 return (0);
1259
1260 case RAIDFRAME_GET_ACCTOTALS:
1261 totals = (RF_AccTotals_t *) data;
1262 *totals = raidPtr->acc_totals;
1263 return (0);
1264
1265 case RAIDFRAME_KEEP_ACCTOTALS:
1266 raidPtr->keep_acc_totals = *(int *)data;
1267 return (0);
1268
1269 case RAIDFRAME_GET_SIZE:
1270 *(int *) data = raidPtr->totalSectors;
1271 return (0);
1272
1273 /* fail a disk & optionally start reconstruction */
1274 case RAIDFRAME_FAIL_DISK:
1275
1276 if (raidPtr->Layout.map->faultsTolerated == 0) {
1277 /* Can't do this on a RAID 0!! */
1278 return(EINVAL);
1279 }
1280
1281 rr = (struct rf_recon_req *) data;
1282 rr->row = 0;
1283 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1284 return (EINVAL);
1285
1286
1287 RF_LOCK_MUTEX(raidPtr->mutex);
1288 if (raidPtr->status == rf_rs_reconstructing) {
1289 /* you can't fail a disk while we're reconstructing! */
1290 /* XXX wrong for RAID6 */
1291 RF_UNLOCK_MUTEX(raidPtr->mutex);
1292 return (EINVAL);
1293 }
1294 if ((raidPtr->Disks[rr->col].status ==
1295 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1296 /* some other component has failed. Let's not make
1297 things worse. XXX wrong for RAID6 */
1298 RF_UNLOCK_MUTEX(raidPtr->mutex);
1299 return (EINVAL);
1300 }
1301 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1302 /* Can't fail a spared disk! */
1303 RF_UNLOCK_MUTEX(raidPtr->mutex);
1304 return (EINVAL);
1305 }
1306 RF_UNLOCK_MUTEX(raidPtr->mutex);
1307
1308 /* make a copy of the recon request so that we don't rely on
1309 * the user's buffer */
1310 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1311 if (rrcopy == NULL)
1312 return(ENOMEM);
1313 memcpy(rrcopy, rr, sizeof(*rr));
1314 rrcopy->raidPtr = (void *) raidPtr;
1315
1316 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1317 rf_ReconThread,
1318 rrcopy,"raid_recon");
1319 return (0);
1320
1321 /* invoke a copyback operation after recon on whatever disk
1322 * needs it, if any */
1323 case RAIDFRAME_COPYBACK:
1324
1325 if (raidPtr->Layout.map->faultsTolerated == 0) {
1326 /* This makes no sense on a RAID 0!! */
1327 return(EINVAL);
1328 }
1329
1330 if (raidPtr->copyback_in_progress == 1) {
1331 /* Copyback is already in progress! */
1332 return(EINVAL);
1333 }
1334
1335 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1336 rf_CopybackThread,
1337 raidPtr,"raid_copyback");
1338 return (retcode);
1339
1340 /* return the percentage completion of reconstruction */
1341 case RAIDFRAME_CHECK_RECON_STATUS:
1342 if (raidPtr->Layout.map->faultsTolerated == 0) {
1343 /* This makes no sense on a RAID 0, so tell the
1344 user it's done. */
1345 *(int *) data = 100;
1346 return(0);
1347 }
1348 if (raidPtr->status != rf_rs_reconstructing)
1349 *(int *) data = 100;
1350 else {
1351 if (raidPtr->reconControl->numRUsTotal > 0) {
1352 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1353 } else {
1354 *(int *) data = 0;
1355 }
1356 }
1357 return (0);
1358 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1359 progressInfoPtr = (RF_ProgressInfo_t **) data;
1360 if (raidPtr->status != rf_rs_reconstructing) {
1361 progressInfo.remaining = 0;
1362 progressInfo.completed = 100;
1363 progressInfo.total = 100;
1364 } else {
1365 progressInfo.total =
1366 raidPtr->reconControl->numRUsTotal;
1367 progressInfo.completed =
1368 raidPtr->reconControl->numRUsComplete;
1369 progressInfo.remaining = progressInfo.total -
1370 progressInfo.completed;
1371 }
1372 retcode = copyout(&progressInfo, *progressInfoPtr,
1373 sizeof(RF_ProgressInfo_t));
1374 return (retcode);
1375
1376 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1377 if (raidPtr->Layout.map->faultsTolerated == 0) {
1378 /* This makes no sense on a RAID 0, so tell the
1379 user it's done. */
1380 *(int *) data = 100;
1381 return(0);
1382 }
1383 if (raidPtr->parity_rewrite_in_progress == 1) {
1384 *(int *) data = 100 *
1385 raidPtr->parity_rewrite_stripes_done /
1386 raidPtr->Layout.numStripe;
1387 } else {
1388 *(int *) data = 100;
1389 }
1390 return (0);
1391
1392 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1393 progressInfoPtr = (RF_ProgressInfo_t **) data;
1394 if (raidPtr->parity_rewrite_in_progress == 1) {
1395 progressInfo.total = raidPtr->Layout.numStripe;
1396 progressInfo.completed =
1397 raidPtr->parity_rewrite_stripes_done;
1398 progressInfo.remaining = progressInfo.total -
1399 progressInfo.completed;
1400 } else {
1401 progressInfo.remaining = 0;
1402 progressInfo.completed = 100;
1403 progressInfo.total = 100;
1404 }
1405 retcode = copyout(&progressInfo, *progressInfoPtr,
1406 sizeof(RF_ProgressInfo_t));
1407 return (retcode);
1408
1409 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1410 if (raidPtr->Layout.map->faultsTolerated == 0) {
1411 /* This makes no sense on a RAID 0 */
1412 *(int *) data = 100;
1413 return(0);
1414 }
1415 if (raidPtr->copyback_in_progress == 1) {
1416 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1417 raidPtr->Layout.numStripe;
1418 } else {
1419 *(int *) data = 100;
1420 }
1421 return (0);
1422
1423 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1424 progressInfoPtr = (RF_ProgressInfo_t **) data;
1425 if (raidPtr->copyback_in_progress == 1) {
1426 progressInfo.total = raidPtr->Layout.numStripe;
1427 progressInfo.completed =
1428 raidPtr->copyback_stripes_done;
1429 progressInfo.remaining = progressInfo.total -
1430 progressInfo.completed;
1431 } else {
1432 progressInfo.remaining = 0;
1433 progressInfo.completed = 100;
1434 progressInfo.total = 100;
1435 }
1436 retcode = copyout(&progressInfo, *progressInfoPtr,
1437 sizeof(RF_ProgressInfo_t));
1438 return (retcode);
1439
1440 /* the sparetable daemon calls this to wait for the kernel to
1441 * need a spare table. this ioctl does not return until a
1442 * spare table is needed. XXX -- calling mpsleep here in the
1443 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1444 * -- I should either compute the spare table in the kernel,
1445 * or have a different -- XXX XXX -- interface (a different
1446 * character device) for delivering the table -- XXX */
1447 #if 0
1448 case RAIDFRAME_SPARET_WAIT:
1449 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1450 while (!rf_sparet_wait_queue)
1451 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1452 waitreq = rf_sparet_wait_queue;
1453 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1454 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1455
1456 /* structure assignment */
1457 *((RF_SparetWait_t *) data) = *waitreq;
1458
1459 RF_Free(waitreq, sizeof(*waitreq));
1460 return (0);
1461
1462 /* wakes up a process waiting on SPARET_WAIT and puts an error
1463 * code in it that will cause the dameon to exit */
1464 case RAIDFRAME_ABORT_SPARET_WAIT:
1465 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1466 waitreq->fcol = -1;
1467 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1468 waitreq->next = rf_sparet_wait_queue;
1469 rf_sparet_wait_queue = waitreq;
1470 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1471 wakeup(&rf_sparet_wait_queue);
1472 return (0);
1473
1474 /* used by the spare table daemon to deliver a spare table
1475 * into the kernel */
1476 case RAIDFRAME_SEND_SPARET:
1477
1478 /* install the spare table */
1479 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1480
1481 /* respond to the requestor. the return status of the spare
1482 * table installation is passed in the "fcol" field */
1483 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1484 waitreq->fcol = retcode;
1485 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1486 waitreq->next = rf_sparet_resp_queue;
1487 rf_sparet_resp_queue = waitreq;
1488 wakeup(&rf_sparet_resp_queue);
1489 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1490
1491 return (retcode);
1492 #endif
1493
1494 default:
1495 break; /* fall through to the os-specific code below */
1496
1497 }
1498
1499 if (!raidPtr->valid)
1500 return (EINVAL);
1501
1502 /*
1503 * Add support for "regular" device ioctls here.
1504 */
1505
1506 switch (cmd) {
1507 case DIOCGDINFO:
1508 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1509 break;
1510 #ifdef __HAVE_OLD_DISKLABEL
1511 case ODIOCGDINFO:
1512 newlabel = *(rs->sc_dkdev.dk_label);
1513 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1514 return ENOTTY;
1515 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1516 break;
1517 #endif
1518
1519 case DIOCGPART:
1520 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1521 ((struct partinfo *) data)->part =
1522 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1523 break;
1524
1525 case DIOCWDINFO:
1526 case DIOCSDINFO:
1527 #ifdef __HAVE_OLD_DISKLABEL
1528 case ODIOCWDINFO:
1529 case ODIOCSDINFO:
1530 #endif
1531 {
1532 struct disklabel *lp;
1533 #ifdef __HAVE_OLD_DISKLABEL
1534 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1535 memset(&newlabel, 0, sizeof newlabel);
1536 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1537 lp = &newlabel;
1538 } else
1539 #endif
1540 lp = (struct disklabel *)data;
1541
1542 if ((error = raidlock(rs)) != 0)
1543 return (error);
1544
1545 rs->sc_flags |= RAIDF_LABELLING;
1546
1547 error = setdisklabel(rs->sc_dkdev.dk_label,
1548 lp, 0, rs->sc_dkdev.dk_cpulabel);
1549 if (error == 0) {
1550 if (cmd == DIOCWDINFO
1551 #ifdef __HAVE_OLD_DISKLABEL
1552 || cmd == ODIOCWDINFO
1553 #endif
1554 )
1555 error = writedisklabel(RAIDLABELDEV(dev),
1556 raidstrategy, rs->sc_dkdev.dk_label,
1557 rs->sc_dkdev.dk_cpulabel);
1558 }
1559 rs->sc_flags &= ~RAIDF_LABELLING;
1560
1561 raidunlock(rs);
1562
1563 if (error)
1564 return (error);
1565 break;
1566 }
1567
1568 case DIOCWLABEL:
1569 if (*(int *) data != 0)
1570 rs->sc_flags |= RAIDF_WLABEL;
1571 else
1572 rs->sc_flags &= ~RAIDF_WLABEL;
1573 break;
1574
1575 case DIOCGDEFLABEL:
1576 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1577 break;
1578
1579 #ifdef __HAVE_OLD_DISKLABEL
1580 case ODIOCGDEFLABEL:
1581 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1582 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1583 return ENOTTY;
1584 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1585 break;
1586 #endif
1587
1588 default:
1589 retcode = ENOTTY;
1590 }
1591 return (retcode);
1592
1593 }
1594
1595
1596 /* raidinit -- complete the rest of the initialization for the
1597 RAIDframe device. */
1598
1599
1600 static void
1601 raidinit(RF_Raid_t *raidPtr)
1602 {
1603 struct raid_softc *rs;
1604 int unit;
1605
1606 unit = raidPtr->raidid;
1607
1608 rs = &raid_softc[unit];
1609
1610 /* XXX should check return code first... */
1611 rs->sc_flags |= RAIDF_INITED;
1612
1613 /* XXX doesn't check bounds. */
1614 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1615
1616 rs->sc_dkdev.dk_name = rs->sc_xname;
1617
1618 /* disk_attach actually creates space for the CPU disklabel, among
1619 * other things, so it's critical to call this *BEFORE* we try putzing
1620 * with disklabels. */
1621
1622 pseudo_disk_attach(&rs->sc_dkdev);
1623
1624 /* XXX There may be a weird interaction here between this, and
1625 * protectedSectors, as used in RAIDframe. */
1626
1627 rs->sc_size = raidPtr->totalSectors;
1628 }
1629 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1630 /* wake up the daemon & tell it to get us a spare table
1631 * XXX
1632 * the entries in the queues should be tagged with the raidPtr
1633 * so that in the extremely rare case that two recons happen at once,
1634 * we know for which device were requesting a spare table
1635 * XXX
1636 *
1637 * XXX This code is not currently used. GO
1638 */
1639 int
1640 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1641 {
1642 int retcode;
1643
1644 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1645 req->next = rf_sparet_wait_queue;
1646 rf_sparet_wait_queue = req;
1647 wakeup(&rf_sparet_wait_queue);
1648
1649 /* mpsleep unlocks the mutex */
1650 while (!rf_sparet_resp_queue) {
1651 tsleep(&rf_sparet_resp_queue, PRIBIO,
1652 "raidframe getsparetable", 0);
1653 }
1654 req = rf_sparet_resp_queue;
1655 rf_sparet_resp_queue = req->next;
1656 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1657
1658 retcode = req->fcol;
1659 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1660 * alloc'd */
1661 return (retcode);
1662 }
1663 #endif
1664
1665 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1666 * bp & passes it down.
1667 * any calls originating in the kernel must use non-blocking I/O
1668 * do some extra sanity checking to return "appropriate" error values for
1669 * certain conditions (to make some standard utilities work)
1670 *
1671 * Formerly known as: rf_DoAccessKernel
1672 */
1673 void
1674 raidstart(RF_Raid_t *raidPtr)
1675 {
1676 RF_SectorCount_t num_blocks, pb, sum;
1677 RF_RaidAddr_t raid_addr;
1678 struct partition *pp;
1679 daddr_t blocknum;
1680 int unit;
1681 struct raid_softc *rs;
1682 int do_async;
1683 struct buf *bp;
1684 int rc;
1685
1686 unit = raidPtr->raidid;
1687 rs = &raid_softc[unit];
1688
1689 /* quick check to see if anything has died recently */
1690 RF_LOCK_MUTEX(raidPtr->mutex);
1691 if (raidPtr->numNewFailures > 0) {
1692 RF_UNLOCK_MUTEX(raidPtr->mutex);
1693 rf_update_component_labels(raidPtr,
1694 RF_NORMAL_COMPONENT_UPDATE);
1695 RF_LOCK_MUTEX(raidPtr->mutex);
1696 raidPtr->numNewFailures--;
1697 }
1698
1699 /* Check to see if we're at the limit... */
1700 while (raidPtr->openings > 0) {
1701 RF_UNLOCK_MUTEX(raidPtr->mutex);
1702
1703 /* get the next item, if any, from the queue */
1704 if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1705 /* nothing more to do */
1706 return;
1707 }
1708
1709 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1710 * partition.. Need to make it absolute to the underlying
1711 * device.. */
1712
1713 blocknum = bp->b_blkno;
1714 if (DISKPART(bp->b_dev) != RAW_PART) {
1715 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1716 blocknum += pp->p_offset;
1717 }
1718
1719 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1720 (int) blocknum));
1721
1722 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1723 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1724
1725 /* *THIS* is where we adjust what block we're going to...
1726 * but DO NOT TOUCH bp->b_blkno!!! */
1727 raid_addr = blocknum;
1728
1729 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1730 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1731 sum = raid_addr + num_blocks + pb;
1732 if (1 || rf_debugKernelAccess) {
1733 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1734 (int) raid_addr, (int) sum, (int) num_blocks,
1735 (int) pb, (int) bp->b_resid));
1736 }
1737 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1738 || (sum < num_blocks) || (sum < pb)) {
1739 bp->b_error = ENOSPC;
1740 bp->b_flags |= B_ERROR;
1741 bp->b_resid = bp->b_bcount;
1742 biodone(bp);
1743 RF_LOCK_MUTEX(raidPtr->mutex);
1744 continue;
1745 }
1746 /*
1747 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1748 */
1749
1750 if (bp->b_bcount & raidPtr->sectorMask) {
1751 bp->b_error = EINVAL;
1752 bp->b_flags |= B_ERROR;
1753 bp->b_resid = bp->b_bcount;
1754 biodone(bp);
1755 RF_LOCK_MUTEX(raidPtr->mutex);
1756 continue;
1757
1758 }
1759 db1_printf(("Calling DoAccess..\n"));
1760
1761
1762 RF_LOCK_MUTEX(raidPtr->mutex);
1763 raidPtr->openings--;
1764 RF_UNLOCK_MUTEX(raidPtr->mutex);
1765
1766 /*
1767 * Everything is async.
1768 */
1769 do_async = 1;
1770
1771 disk_busy(&rs->sc_dkdev);
1772
1773 /* XXX we're still at splbio() here... do we *really*
1774 need to be? */
1775
1776 /* don't ever condition on bp->b_flags & B_WRITE.
1777 * always condition on B_READ instead */
1778
1779 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1780 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1781 do_async, raid_addr, num_blocks,
1782 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1783
1784 if (rc) {
1785 bp->b_error = rc;
1786 bp->b_flags |= B_ERROR;
1787 bp->b_resid = bp->b_bcount;
1788 biodone(bp);
1789 /* continue loop */
1790 }
1791
1792 RF_LOCK_MUTEX(raidPtr->mutex);
1793 }
1794 RF_UNLOCK_MUTEX(raidPtr->mutex);
1795 }
1796
1797
1798
1799
1800 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1801
1802 int
1803 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1804 {
1805 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1806 struct buf *bp;
1807 struct raidbuf *raidbp = NULL;
1808
1809 req->queue = queue;
1810
1811 #if DIAGNOSTIC
1812 if (queue->raidPtr->raidid >= numraid) {
1813 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1814 numraid);
1815 panic("Invalid Unit number in rf_DispatchKernelIO");
1816 }
1817 #endif
1818
1819 bp = req->bp;
1820 #if 1
1821 /* XXX when there is a physical disk failure, someone is passing us a
1822 * buffer that contains old stuff!! Attempt to deal with this problem
1823 * without taking a performance hit... (not sure where the real bug
1824 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1825
1826 if (bp->b_flags & B_ERROR) {
1827 bp->b_flags &= ~B_ERROR;
1828 }
1829 if (bp->b_error != 0) {
1830 bp->b_error = 0;
1831 }
1832 #endif
1833 raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
1834 if (raidbp == NULL) {
1835 bp->b_flags |= B_ERROR;
1836 bp->b_error = ENOMEM;
1837 return (ENOMEM);
1838 }
1839 BUF_INIT(&raidbp->rf_buf);
1840
1841 /*
1842 * context for raidiodone
1843 */
1844 raidbp->rf_obp = bp;
1845 raidbp->req = req;
1846
1847 BIO_COPYPRIO(&raidbp->rf_buf, bp);
1848
1849 switch (req->type) {
1850 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1851 /* XXX need to do something extra here.. */
1852 /* I'm leaving this in, as I've never actually seen it used,
1853 * and I'd like folks to report it... GO */
1854 printf(("WAKEUP CALLED\n"));
1855 queue->numOutstanding++;
1856
1857 /* XXX need to glue the original buffer into this?? */
1858
1859 KernelWakeupFunc(&raidbp->rf_buf);
1860 break;
1861
1862 case RF_IO_TYPE_READ:
1863 case RF_IO_TYPE_WRITE:
1864 #if RF_ACC_TRACE > 0
1865 if (req->tracerec) {
1866 RF_ETIMER_START(req->tracerec->timer);
1867 }
1868 #endif
1869 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1870 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1871 req->sectorOffset, req->numSector,
1872 req->buf, KernelWakeupFunc, (void *) req,
1873 queue->raidPtr->logBytesPerSector, req->b_proc);
1874
1875 if (rf_debugKernelAccess) {
1876 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1877 (long) bp->b_blkno));
1878 }
1879 queue->numOutstanding++;
1880 queue->last_deq_sector = req->sectorOffset;
1881 /* acc wouldn't have been let in if there were any pending
1882 * reqs at any other priority */
1883 queue->curPriority = req->priority;
1884
1885 db1_printf(("Going for %c to unit %d col %d\n",
1886 req->type, queue->raidPtr->raidid,
1887 queue->col));
1888 db1_printf(("sector %d count %d (%d bytes) %d\n",
1889 (int) req->sectorOffset, (int) req->numSector,
1890 (int) (req->numSector <<
1891 queue->raidPtr->logBytesPerSector),
1892 (int) queue->raidPtr->logBytesPerSector));
1893 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1894 raidbp->rf_buf.b_vp->v_numoutput++;
1895 }
1896 VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
1897
1898 break;
1899
1900 default:
1901 panic("bad req->type in rf_DispatchKernelIO");
1902 }
1903 db1_printf(("Exiting from DispatchKernelIO\n"));
1904
1905 return (0);
1906 }
1907 /* this is the callback function associated with a I/O invoked from
1908 kernel code.
1909 */
1910 static void
1911 KernelWakeupFunc(struct buf *vbp)
1912 {
1913 RF_DiskQueueData_t *req = NULL;
1914 RF_DiskQueue_t *queue;
1915 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1916 struct buf *bp;
1917 int s;
1918
1919 s = splbio();
1920 db1_printf(("recovering the request queue:\n"));
1921 req = raidbp->req;
1922
1923 bp = raidbp->rf_obp;
1924
1925 queue = (RF_DiskQueue_t *) req->queue;
1926
1927 if (raidbp->rf_buf.b_flags & B_ERROR) {
1928 bp->b_flags |= B_ERROR;
1929 bp->b_error = raidbp->rf_buf.b_error ?
1930 raidbp->rf_buf.b_error : EIO;
1931 }
1932
1933 /* XXX methinks this could be wrong... */
1934 #if 1
1935 bp->b_resid = raidbp->rf_buf.b_resid;
1936 #endif
1937 #if RF_ACC_TRACE > 0
1938 if (req->tracerec) {
1939 RF_ETIMER_STOP(req->tracerec->timer);
1940 RF_ETIMER_EVAL(req->tracerec->timer);
1941 RF_LOCK_MUTEX(rf_tracing_mutex);
1942 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1943 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1944 req->tracerec->num_phys_ios++;
1945 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1946 }
1947 #endif
1948 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1949
1950 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1951 * ballistic, and mark the component as hosed... */
1952
1953 if (bp->b_flags & B_ERROR) {
1954 /* Mark the disk as dead */
1955 /* but only mark it once... */
1956 /* and only if it wouldn't leave this RAID set
1957 completely broken */
1958 if ((queue->raidPtr->Disks[queue->col].status ==
1959 rf_ds_optimal) && (queue->raidPtr->numFailures <
1960 queue->raidPtr->Layout.map->faultsTolerated)) {
1961 printf("raid%d: IO Error. Marking %s as failed.\n",
1962 queue->raidPtr->raidid,
1963 queue->raidPtr->Disks[queue->col].devname);
1964 queue->raidPtr->Disks[queue->col].status =
1965 rf_ds_failed;
1966 queue->raidPtr->status = rf_rs_degraded;
1967 queue->raidPtr->numFailures++;
1968 queue->raidPtr->numNewFailures++;
1969 } else { /* Disk is already dead... */
1970 /* printf("Disk already marked as dead!\n"); */
1971 }
1972
1973 }
1974
1975 pool_put(&rf_pools.cbuf, raidbp);
1976
1977 /* Fill in the error value */
1978
1979 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1980
1981 simple_lock(&queue->raidPtr->iodone_lock);
1982
1983 /* Drop this one on the "finished" queue... */
1984 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1985
1986 /* Let the raidio thread know there is work to be done. */
1987 wakeup(&(queue->raidPtr->iodone));
1988
1989 simple_unlock(&queue->raidPtr->iodone_lock);
1990
1991 splx(s);
1992 }
1993
1994
1995
1996 /*
1997 * initialize a buf structure for doing an I/O in the kernel.
1998 */
1999 static void
2000 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2001 RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t bf,
2002 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2003 struct proc *b_proc)
2004 {
2005 /* bp->b_flags = B_PHYS | rw_flag; */
2006 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2007 bp->b_bcount = numSect << logBytesPerSector;
2008 bp->b_bufsize = bp->b_bcount;
2009 bp->b_error = 0;
2010 bp->b_dev = dev;
2011 bp->b_data = bf;
2012 bp->b_blkno = startSect;
2013 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2014 if (bp->b_bcount == 0) {
2015 panic("bp->b_bcount is zero in InitBP!!");
2016 }
2017 bp->b_proc = b_proc;
2018 bp->b_iodone = cbFunc;
2019 bp->b_vp = b_vp;
2020
2021 }
2022
2023 static void
2024 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2025 struct disklabel *lp)
2026 {
2027 memset(lp, 0, sizeof(*lp));
2028
2029 /* fabricate a label... */
2030 lp->d_secperunit = raidPtr->totalSectors;
2031 lp->d_secsize = raidPtr->bytesPerSector;
2032 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2033 lp->d_ntracks = 4 * raidPtr->numCol;
2034 lp->d_ncylinders = raidPtr->totalSectors /
2035 (lp->d_nsectors * lp->d_ntracks);
2036 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2037
2038 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2039 lp->d_type = DTYPE_RAID;
2040 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2041 lp->d_rpm = 3600;
2042 lp->d_interleave = 1;
2043 lp->d_flags = 0;
2044
2045 lp->d_partitions[RAW_PART].p_offset = 0;
2046 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2047 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2048 lp->d_npartitions = RAW_PART + 1;
2049
2050 lp->d_magic = DISKMAGIC;
2051 lp->d_magic2 = DISKMAGIC;
2052 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2053
2054 }
2055 /*
2056 * Read the disklabel from the raid device. If one is not present, fake one
2057 * up.
2058 */
2059 static void
2060 raidgetdisklabel(dev_t dev)
2061 {
2062 int unit = raidunit(dev);
2063 struct raid_softc *rs = &raid_softc[unit];
2064 const char *errstring;
2065 struct disklabel *lp = rs->sc_dkdev.dk_label;
2066 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2067 RF_Raid_t *raidPtr;
2068
2069 db1_printf(("Getting the disklabel...\n"));
2070
2071 memset(clp, 0, sizeof(*clp));
2072
2073 raidPtr = raidPtrs[unit];
2074
2075 raidgetdefaultlabel(raidPtr, rs, lp);
2076
2077 /*
2078 * Call the generic disklabel extraction routine.
2079 */
2080 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2081 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2082 if (errstring)
2083 raidmakedisklabel(rs);
2084 else {
2085 int i;
2086 struct partition *pp;
2087
2088 /*
2089 * Sanity check whether the found disklabel is valid.
2090 *
2091 * This is necessary since total size of the raid device
2092 * may vary when an interleave is changed even though exactly
2093 * same componets are used, and old disklabel may used
2094 * if that is found.
2095 */
2096 if (lp->d_secperunit != rs->sc_size)
2097 printf("raid%d: WARNING: %s: "
2098 "total sector size in disklabel (%d) != "
2099 "the size of raid (%ld)\n", unit, rs->sc_xname,
2100 lp->d_secperunit, (long) rs->sc_size);
2101 for (i = 0; i < lp->d_npartitions; i++) {
2102 pp = &lp->d_partitions[i];
2103 if (pp->p_offset + pp->p_size > rs->sc_size)
2104 printf("raid%d: WARNING: %s: end of partition `%c' "
2105 "exceeds the size of raid (%ld)\n",
2106 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2107 }
2108 }
2109
2110 }
2111 /*
2112 * Take care of things one might want to take care of in the event
2113 * that a disklabel isn't present.
2114 */
2115 static void
2116 raidmakedisklabel(struct raid_softc *rs)
2117 {
2118 struct disklabel *lp = rs->sc_dkdev.dk_label;
2119 db1_printf(("Making a label..\n"));
2120
2121 /*
2122 * For historical reasons, if there's no disklabel present
2123 * the raw partition must be marked FS_BSDFFS.
2124 */
2125
2126 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2127
2128 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2129
2130 lp->d_checksum = dkcksum(lp);
2131 }
2132 /*
2133 * Lookup the provided name in the filesystem. If the file exists,
2134 * is a valid block device, and isn't being used by anyone else,
2135 * set *vpp to the file's vnode.
2136 * You'll find the original of this in ccd.c
2137 */
2138 int
2139 raidlookup(char *path, struct lwp *l, struct vnode **vpp)
2140 {
2141 struct nameidata nd;
2142 struct vnode *vp;
2143 struct proc *p;
2144 struct vattr va;
2145 int error;
2146
2147 p = l ? l->l_proc : NULL;
2148 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, l);
2149 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2150 return (error);
2151 }
2152 vp = nd.ni_vp;
2153 if (vp->v_usecount > 1) {
2154 VOP_UNLOCK(vp, 0);
2155 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2156 return (EBUSY);
2157 }
2158 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)) != 0) {
2159 VOP_UNLOCK(vp, 0);
2160 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2161 return (error);
2162 }
2163 /* XXX: eventually we should handle VREG, too. */
2164 if (va.va_type != VBLK) {
2165 VOP_UNLOCK(vp, 0);
2166 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2167 return (ENOTBLK);
2168 }
2169 VOP_UNLOCK(vp, 0);
2170 *vpp = vp;
2171 return (0);
2172 }
2173 /*
2174 * Wait interruptibly for an exclusive lock.
2175 *
2176 * XXX
2177 * Several drivers do this; it should be abstracted and made MP-safe.
2178 * (Hmm... where have we seen this warning before :-> GO )
2179 */
2180 static int
2181 raidlock(struct raid_softc *rs)
2182 {
2183 int error;
2184
2185 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2186 rs->sc_flags |= RAIDF_WANTED;
2187 if ((error =
2188 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2189 return (error);
2190 }
2191 rs->sc_flags |= RAIDF_LOCKED;
2192 return (0);
2193 }
2194 /*
2195 * Unlock and wake up any waiters.
2196 */
2197 static void
2198 raidunlock(struct raid_softc *rs)
2199 {
2200
2201 rs->sc_flags &= ~RAIDF_LOCKED;
2202 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2203 rs->sc_flags &= ~RAIDF_WANTED;
2204 wakeup(rs);
2205 }
2206 }
2207
2208
2209 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2210 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2211
2212 int
2213 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2214 {
2215 RF_ComponentLabel_t clabel;
2216 raidread_component_label(dev, b_vp, &clabel);
2217 clabel.mod_counter = mod_counter;
2218 clabel.clean = RF_RAID_CLEAN;
2219 raidwrite_component_label(dev, b_vp, &clabel);
2220 return(0);
2221 }
2222
2223
2224 int
2225 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2226 {
2227 RF_ComponentLabel_t clabel;
2228 raidread_component_label(dev, b_vp, &clabel);
2229 clabel.mod_counter = mod_counter;
2230 clabel.clean = RF_RAID_DIRTY;
2231 raidwrite_component_label(dev, b_vp, &clabel);
2232 return(0);
2233 }
2234
2235 /* ARGSUSED */
2236 int
2237 raidread_component_label(dev_t dev, struct vnode *b_vp,
2238 RF_ComponentLabel_t *clabel)
2239 {
2240 struct buf *bp;
2241 const struct bdevsw *bdev;
2242 int error;
2243
2244 /* XXX should probably ensure that we don't try to do this if
2245 someone has changed rf_protected_sectors. */
2246
2247 if (b_vp == NULL) {
2248 /* For whatever reason, this component is not valid.
2249 Don't try to read a component label from it. */
2250 return(EINVAL);
2251 }
2252
2253 /* get a block of the appropriate size... */
2254 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2255 bp->b_dev = dev;
2256
2257 /* get our ducks in a row for the read */
2258 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2259 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2260 bp->b_flags |= B_READ;
2261 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2262
2263 bdev = bdevsw_lookup(bp->b_dev);
2264 if (bdev == NULL)
2265 return (ENXIO);
2266 (*bdev->d_strategy)(bp);
2267
2268 error = biowait(bp);
2269
2270 if (!error) {
2271 memcpy(clabel, bp->b_data,
2272 sizeof(RF_ComponentLabel_t));
2273 }
2274
2275 brelse(bp);
2276 return(error);
2277 }
2278 /* ARGSUSED */
2279 int
2280 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2281 RF_ComponentLabel_t *clabel)
2282 {
2283 struct buf *bp;
2284 const struct bdevsw *bdev;
2285 int error;
2286
2287 /* get a block of the appropriate size... */
2288 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2289 bp->b_dev = dev;
2290
2291 /* get our ducks in a row for the write */
2292 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2293 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2294 bp->b_flags |= B_WRITE;
2295 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2296
2297 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2298
2299 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2300
2301 bdev = bdevsw_lookup(bp->b_dev);
2302 if (bdev == NULL)
2303 return (ENXIO);
2304 (*bdev->d_strategy)(bp);
2305 error = biowait(bp);
2306 brelse(bp);
2307 if (error) {
2308 #if 1
2309 printf("Failed to write RAID component info!\n");
2310 #endif
2311 }
2312
2313 return(error);
2314 }
2315
2316 void
2317 rf_markalldirty(RF_Raid_t *raidPtr)
2318 {
2319 RF_ComponentLabel_t clabel;
2320 int sparecol;
2321 int c;
2322 int j;
2323 int scol = -1;
2324
2325 raidPtr->mod_counter++;
2326 for (c = 0; c < raidPtr->numCol; c++) {
2327 /* we don't want to touch (at all) a disk that has
2328 failed */
2329 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2330 raidread_component_label(
2331 raidPtr->Disks[c].dev,
2332 raidPtr->raid_cinfo[c].ci_vp,
2333 &clabel);
2334 if (clabel.status == rf_ds_spared) {
2335 /* XXX do something special...
2336 but whatever you do, don't
2337 try to access it!! */
2338 } else {
2339 raidmarkdirty(
2340 raidPtr->Disks[c].dev,
2341 raidPtr->raid_cinfo[c].ci_vp,
2342 raidPtr->mod_counter);
2343 }
2344 }
2345 }
2346
2347 for( c = 0; c < raidPtr->numSpare ; c++) {
2348 sparecol = raidPtr->numCol + c;
2349 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2350 /*
2351
2352 we claim this disk is "optimal" if it's
2353 rf_ds_used_spare, as that means it should be
2354 directly substitutable for the disk it replaced.
2355 We note that too...
2356
2357 */
2358
2359 for(j=0;j<raidPtr->numCol;j++) {
2360 if (raidPtr->Disks[j].spareCol == sparecol) {
2361 scol = j;
2362 break;
2363 }
2364 }
2365
2366 raidread_component_label(
2367 raidPtr->Disks[sparecol].dev,
2368 raidPtr->raid_cinfo[sparecol].ci_vp,
2369 &clabel);
2370 /* make sure status is noted */
2371
2372 raid_init_component_label(raidPtr, &clabel);
2373
2374 clabel.row = 0;
2375 clabel.column = scol;
2376 /* Note: we *don't* change status from rf_ds_used_spare
2377 to rf_ds_optimal */
2378 /* clabel.status = rf_ds_optimal; */
2379
2380 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2381 raidPtr->raid_cinfo[sparecol].ci_vp,
2382 raidPtr->mod_counter);
2383 }
2384 }
2385 }
2386
2387
2388 void
2389 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2390 {
2391 RF_ComponentLabel_t clabel;
2392 int sparecol;
2393 int c;
2394 int j;
2395 int scol;
2396
2397 scol = -1;
2398
2399 /* XXX should do extra checks to make sure things really are clean,
2400 rather than blindly setting the clean bit... */
2401
2402 raidPtr->mod_counter++;
2403
2404 for (c = 0; c < raidPtr->numCol; c++) {
2405 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2406 raidread_component_label(
2407 raidPtr->Disks[c].dev,
2408 raidPtr->raid_cinfo[c].ci_vp,
2409 &clabel);
2410 /* make sure status is noted */
2411 clabel.status = rf_ds_optimal;
2412 /* bump the counter */
2413 clabel.mod_counter = raidPtr->mod_counter;
2414
2415 raidwrite_component_label(
2416 raidPtr->Disks[c].dev,
2417 raidPtr->raid_cinfo[c].ci_vp,
2418 &clabel);
2419 if (final == RF_FINAL_COMPONENT_UPDATE) {
2420 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2421 raidmarkclean(
2422 raidPtr->Disks[c].dev,
2423 raidPtr->raid_cinfo[c].ci_vp,
2424 raidPtr->mod_counter);
2425 }
2426 }
2427 }
2428 /* else we don't touch it.. */
2429 }
2430
2431 for( c = 0; c < raidPtr->numSpare ; c++) {
2432 sparecol = raidPtr->numCol + c;
2433 /* Need to ensure that the reconstruct actually completed! */
2434 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2435 /*
2436
2437 we claim this disk is "optimal" if it's
2438 rf_ds_used_spare, as that means it should be
2439 directly substitutable for the disk it replaced.
2440 We note that too...
2441
2442 */
2443
2444 for(j=0;j<raidPtr->numCol;j++) {
2445 if (raidPtr->Disks[j].spareCol == sparecol) {
2446 scol = j;
2447 break;
2448 }
2449 }
2450
2451 /* XXX shouldn't *really* need this... */
2452 raidread_component_label(
2453 raidPtr->Disks[sparecol].dev,
2454 raidPtr->raid_cinfo[sparecol].ci_vp,
2455 &clabel);
2456 /* make sure status is noted */
2457
2458 raid_init_component_label(raidPtr, &clabel);
2459
2460 clabel.mod_counter = raidPtr->mod_counter;
2461 clabel.column = scol;
2462 clabel.status = rf_ds_optimal;
2463
2464 raidwrite_component_label(
2465 raidPtr->Disks[sparecol].dev,
2466 raidPtr->raid_cinfo[sparecol].ci_vp,
2467 &clabel);
2468 if (final == RF_FINAL_COMPONENT_UPDATE) {
2469 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2470 raidmarkclean( raidPtr->Disks[sparecol].dev,
2471 raidPtr->raid_cinfo[sparecol].ci_vp,
2472 raidPtr->mod_counter);
2473 }
2474 }
2475 }
2476 }
2477 }
2478
2479 void
2480 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2481 {
2482 struct proc *p;
2483 struct lwp *l;
2484
2485 p = raidPtr->engine_thread;
2486 l = LIST_FIRST(&p->p_lwps);
2487
2488 if (vp != NULL) {
2489 if (auto_configured == 1) {
2490 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2491 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2492 vput(vp);
2493
2494 } else {
2495 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2496 }
2497 }
2498 }
2499
2500
2501 void
2502 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2503 {
2504 int r,c;
2505 struct vnode *vp;
2506 int acd;
2507
2508
2509 /* We take this opportunity to close the vnodes like we should.. */
2510
2511 for (c = 0; c < raidPtr->numCol; c++) {
2512 vp = raidPtr->raid_cinfo[c].ci_vp;
2513 acd = raidPtr->Disks[c].auto_configured;
2514 rf_close_component(raidPtr, vp, acd);
2515 raidPtr->raid_cinfo[c].ci_vp = NULL;
2516 raidPtr->Disks[c].auto_configured = 0;
2517 }
2518
2519 for (r = 0; r < raidPtr->numSpare; r++) {
2520 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2521 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2522 rf_close_component(raidPtr, vp, acd);
2523 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2524 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2525 }
2526 }
2527
2528
2529 void
2530 rf_ReconThread(struct rf_recon_req *req)
2531 {
2532 int s;
2533 RF_Raid_t *raidPtr;
2534
2535 s = splbio();
2536 raidPtr = (RF_Raid_t *) req->raidPtr;
2537 raidPtr->recon_in_progress = 1;
2538
2539 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2540 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2541
2542 RF_Free(req, sizeof(*req));
2543
2544 raidPtr->recon_in_progress = 0;
2545 splx(s);
2546
2547 /* That's all... */
2548 kthread_exit(0); /* does not return */
2549 }
2550
2551 void
2552 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2553 {
2554 int retcode;
2555 int s;
2556
2557 raidPtr->parity_rewrite_stripes_done = 0;
2558 raidPtr->parity_rewrite_in_progress = 1;
2559 s = splbio();
2560 retcode = rf_RewriteParity(raidPtr);
2561 splx(s);
2562 if (retcode) {
2563 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2564 } else {
2565 /* set the clean bit! If we shutdown correctly,
2566 the clean bit on each component label will get
2567 set */
2568 raidPtr->parity_good = RF_RAID_CLEAN;
2569 }
2570 raidPtr->parity_rewrite_in_progress = 0;
2571
2572 /* Anyone waiting for us to stop? If so, inform them... */
2573 if (raidPtr->waitShutdown) {
2574 wakeup(&raidPtr->parity_rewrite_in_progress);
2575 }
2576
2577 /* That's all... */
2578 kthread_exit(0); /* does not return */
2579 }
2580
2581
2582 void
2583 rf_CopybackThread(RF_Raid_t *raidPtr)
2584 {
2585 int s;
2586
2587 raidPtr->copyback_in_progress = 1;
2588 s = splbio();
2589 rf_CopybackReconstructedData(raidPtr);
2590 splx(s);
2591 raidPtr->copyback_in_progress = 0;
2592
2593 /* That's all... */
2594 kthread_exit(0); /* does not return */
2595 }
2596
2597
2598 void
2599 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2600 {
2601 int s;
2602 RF_Raid_t *raidPtr;
2603
2604 s = splbio();
2605 raidPtr = req->raidPtr;
2606 raidPtr->recon_in_progress = 1;
2607 rf_ReconstructInPlace(raidPtr, req->col);
2608 RF_Free(req, sizeof(*req));
2609 raidPtr->recon_in_progress = 0;
2610 splx(s);
2611
2612 /* That's all... */
2613 kthread_exit(0); /* does not return */
2614 }
2615
2616 RF_AutoConfig_t *
2617 rf_find_raid_components()
2618 {
2619 struct vnode *vp;
2620 struct disklabel label;
2621 struct device *dv;
2622 dev_t dev;
2623 int bmajor;
2624 int error;
2625 int i;
2626 int good_one;
2627 RF_ComponentLabel_t *clabel;
2628 RF_AutoConfig_t *ac_list;
2629 RF_AutoConfig_t *ac;
2630
2631
2632 /* initialize the AutoConfig list */
2633 ac_list = NULL;
2634
2635 /* we begin by trolling through *all* the devices on the system */
2636
2637 for (dv = alldevs.tqh_first; dv != NULL;
2638 dv = dv->dv_list.tqe_next) {
2639
2640 /* we are only interested in disks... */
2641 if (dv->dv_class != DV_DISK)
2642 continue;
2643
2644 /* we don't care about floppies... */
2645 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2646 continue;
2647 }
2648
2649 /* we don't care about CD's... */
2650 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2651 continue;
2652 }
2653
2654 /* hdfd is the Atari/Hades floppy driver */
2655 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2656 continue;
2657 }
2658 /* fdisa is the Atari/Milan floppy driver */
2659 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2660 continue;
2661 }
2662
2663 /* need to find the device_name_to_block_device_major stuff */
2664 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2665
2666 /* get a vnode for the raw partition of this disk */
2667
2668 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2669 if (bdevvp(dev, &vp))
2670 panic("RAID can't alloc vnode");
2671
2672 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2673
2674 if (error) {
2675 /* "Who cares." Continue looking
2676 for something that exists*/
2677 vput(vp);
2678 continue;
2679 }
2680
2681 /* Ok, the disk exists. Go get the disklabel. */
2682 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2683 if (error) {
2684 /*
2685 * XXX can't happen - open() would
2686 * have errored out (or faked up one)
2687 */
2688 if (error != ENOTTY)
2689 printf("RAIDframe: can't get label for dev "
2690 "%s (%d)\n", dv->dv_xname, error);
2691 }
2692
2693 /* don't need this any more. We'll allocate it again
2694 a little later if we really do... */
2695 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2696 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2697 vput(vp);
2698
2699 if (error)
2700 continue;
2701
2702 for (i=0; i < label.d_npartitions; i++) {
2703 /* We only support partitions marked as RAID */
2704 if (label.d_partitions[i].p_fstype != FS_RAID)
2705 continue;
2706
2707 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2708 if (bdevvp(dev, &vp))
2709 panic("RAID can't alloc vnode");
2710
2711 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2712 if (error) {
2713 /* Whatever... */
2714 vput(vp);
2715 continue;
2716 }
2717
2718 good_one = 0;
2719
2720 clabel = (RF_ComponentLabel_t *)
2721 malloc(sizeof(RF_ComponentLabel_t),
2722 M_RAIDFRAME, M_NOWAIT);
2723 if (clabel == NULL) {
2724 /* XXX CLEANUP HERE */
2725 printf("RAID auto config: out of memory!\n");
2726 return(NULL); /* XXX probably should panic? */
2727 }
2728
2729 if (!raidread_component_label(dev, vp, clabel)) {
2730 /* Got the label. Does it look reasonable? */
2731 if (rf_reasonable_label(clabel) &&
2732 (clabel->partitionSize <=
2733 label.d_partitions[i].p_size)) {
2734 #if DEBUG
2735 printf("Component on: %s%c: %d\n",
2736 dv->dv_xname, 'a'+i,
2737 label.d_partitions[i].p_size);
2738 rf_print_component_label(clabel);
2739 #endif
2740 /* if it's reasonable, add it,
2741 else ignore it. */
2742 ac = (RF_AutoConfig_t *)
2743 malloc(sizeof(RF_AutoConfig_t),
2744 M_RAIDFRAME,
2745 M_NOWAIT);
2746 if (ac == NULL) {
2747 /* XXX should panic?? */
2748 return(NULL);
2749 }
2750
2751 snprintf(ac->devname,
2752 sizeof(ac->devname), "%s%c",
2753 dv->dv_xname, 'a'+i);
2754 ac->dev = dev;
2755 ac->vp = vp;
2756 ac->clabel = clabel;
2757 ac->next = ac_list;
2758 ac_list = ac;
2759 good_one = 1;
2760 }
2761 }
2762 if (!good_one) {
2763 /* cleanup */
2764 free(clabel, M_RAIDFRAME);
2765 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2766 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2767 vput(vp);
2768 }
2769 }
2770 }
2771 return(ac_list);
2772 }
2773
2774 static int
2775 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2776 {
2777
2778 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2779 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2780 ((clabel->clean == RF_RAID_CLEAN) ||
2781 (clabel->clean == RF_RAID_DIRTY)) &&
2782 clabel->row >=0 &&
2783 clabel->column >= 0 &&
2784 clabel->num_rows > 0 &&
2785 clabel->num_columns > 0 &&
2786 clabel->row < clabel->num_rows &&
2787 clabel->column < clabel->num_columns &&
2788 clabel->blockSize > 0 &&
2789 clabel->numBlocks > 0) {
2790 /* label looks reasonable enough... */
2791 return(1);
2792 }
2793 return(0);
2794 }
2795
2796
2797 #if DEBUG
2798 void
2799 rf_print_component_label(RF_ComponentLabel_t *clabel)
2800 {
2801 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2802 clabel->row, clabel->column,
2803 clabel->num_rows, clabel->num_columns);
2804 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2805 clabel->version, clabel->serial_number,
2806 clabel->mod_counter);
2807 printf(" Clean: %s Status: %d\n",
2808 clabel->clean ? "Yes" : "No", clabel->status );
2809 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2810 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2811 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2812 (char) clabel->parityConfig, clabel->blockSize,
2813 clabel->numBlocks);
2814 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2815 printf(" Contains root partition: %s\n",
2816 clabel->root_partition ? "Yes" : "No" );
2817 printf(" Last configured as: raid%d\n", clabel->last_unit );
2818 #if 0
2819 printf(" Config order: %d\n", clabel->config_order);
2820 #endif
2821
2822 }
2823 #endif
2824
2825 RF_ConfigSet_t *
2826 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2827 {
2828 RF_AutoConfig_t *ac;
2829 RF_ConfigSet_t *config_sets;
2830 RF_ConfigSet_t *cset;
2831 RF_AutoConfig_t *ac_next;
2832
2833
2834 config_sets = NULL;
2835
2836 /* Go through the AutoConfig list, and figure out which components
2837 belong to what sets. */
2838 ac = ac_list;
2839 while(ac!=NULL) {
2840 /* we're going to putz with ac->next, so save it here
2841 for use at the end of the loop */
2842 ac_next = ac->next;
2843
2844 if (config_sets == NULL) {
2845 /* will need at least this one... */
2846 config_sets = (RF_ConfigSet_t *)
2847 malloc(sizeof(RF_ConfigSet_t),
2848 M_RAIDFRAME, M_NOWAIT);
2849 if (config_sets == NULL) {
2850 panic("rf_create_auto_sets: No memory!");
2851 }
2852 /* this one is easy :) */
2853 config_sets->ac = ac;
2854 config_sets->next = NULL;
2855 config_sets->rootable = 0;
2856 ac->next = NULL;
2857 } else {
2858 /* which set does this component fit into? */
2859 cset = config_sets;
2860 while(cset!=NULL) {
2861 if (rf_does_it_fit(cset, ac)) {
2862 /* looks like it matches... */
2863 ac->next = cset->ac;
2864 cset->ac = ac;
2865 break;
2866 }
2867 cset = cset->next;
2868 }
2869 if (cset==NULL) {
2870 /* didn't find a match above... new set..*/
2871 cset = (RF_ConfigSet_t *)
2872 malloc(sizeof(RF_ConfigSet_t),
2873 M_RAIDFRAME, M_NOWAIT);
2874 if (cset == NULL) {
2875 panic("rf_create_auto_sets: No memory!");
2876 }
2877 cset->ac = ac;
2878 ac->next = NULL;
2879 cset->next = config_sets;
2880 cset->rootable = 0;
2881 config_sets = cset;
2882 }
2883 }
2884 ac = ac_next;
2885 }
2886
2887
2888 return(config_sets);
2889 }
2890
2891 static int
2892 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2893 {
2894 RF_ComponentLabel_t *clabel1, *clabel2;
2895
2896 /* If this one matches the *first* one in the set, that's good
2897 enough, since the other members of the set would have been
2898 through here too... */
2899 /* note that we are not checking partitionSize here..
2900
2901 Note that we are also not checking the mod_counters here.
2902 If everything else matches execpt the mod_counter, that's
2903 good enough for this test. We will deal with the mod_counters
2904 a little later in the autoconfiguration process.
2905
2906 (clabel1->mod_counter == clabel2->mod_counter) &&
2907
2908 The reason we don't check for this is that failed disks
2909 will have lower modification counts. If those disks are
2910 not added to the set they used to belong to, then they will
2911 form their own set, which may result in 2 different sets,
2912 for example, competing to be configured at raid0, and
2913 perhaps competing to be the root filesystem set. If the
2914 wrong ones get configured, or both attempt to become /,
2915 weird behaviour and or serious lossage will occur. Thus we
2916 need to bring them into the fold here, and kick them out at
2917 a later point.
2918
2919 */
2920
2921 clabel1 = cset->ac->clabel;
2922 clabel2 = ac->clabel;
2923 if ((clabel1->version == clabel2->version) &&
2924 (clabel1->serial_number == clabel2->serial_number) &&
2925 (clabel1->num_rows == clabel2->num_rows) &&
2926 (clabel1->num_columns == clabel2->num_columns) &&
2927 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2928 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2929 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2930 (clabel1->parityConfig == clabel2->parityConfig) &&
2931 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2932 (clabel1->blockSize == clabel2->blockSize) &&
2933 (clabel1->numBlocks == clabel2->numBlocks) &&
2934 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2935 (clabel1->root_partition == clabel2->root_partition) &&
2936 (clabel1->last_unit == clabel2->last_unit) &&
2937 (clabel1->config_order == clabel2->config_order)) {
2938 /* if it get's here, it almost *has* to be a match */
2939 } else {
2940 /* it's not consistent with somebody in the set..
2941 punt */
2942 return(0);
2943 }
2944 /* all was fine.. it must fit... */
2945 return(1);
2946 }
2947
2948 int
2949 rf_have_enough_components(RF_ConfigSet_t *cset)
2950 {
2951 RF_AutoConfig_t *ac;
2952 RF_AutoConfig_t *auto_config;
2953 RF_ComponentLabel_t *clabel;
2954 int c;
2955 int num_cols;
2956 int num_missing;
2957 int mod_counter;
2958 int mod_counter_found;
2959 int even_pair_failed;
2960 char parity_type;
2961
2962
2963 /* check to see that we have enough 'live' components
2964 of this set. If so, we can configure it if necessary */
2965
2966 num_cols = cset->ac->clabel->num_columns;
2967 parity_type = cset->ac->clabel->parityConfig;
2968
2969 /* XXX Check for duplicate components!?!?!? */
2970
2971 /* Determine what the mod_counter is supposed to be for this set. */
2972
2973 mod_counter_found = 0;
2974 mod_counter = 0;
2975 ac = cset->ac;
2976 while(ac!=NULL) {
2977 if (mod_counter_found==0) {
2978 mod_counter = ac->clabel->mod_counter;
2979 mod_counter_found = 1;
2980 } else {
2981 if (ac->clabel->mod_counter > mod_counter) {
2982 mod_counter = ac->clabel->mod_counter;
2983 }
2984 }
2985 ac = ac->next;
2986 }
2987
2988 num_missing = 0;
2989 auto_config = cset->ac;
2990
2991 even_pair_failed = 0;
2992 for(c=0; c<num_cols; c++) {
2993 ac = auto_config;
2994 while(ac!=NULL) {
2995 if ((ac->clabel->column == c) &&
2996 (ac->clabel->mod_counter == mod_counter)) {
2997 /* it's this one... */
2998 #if DEBUG
2999 printf("Found: %s at %d\n",
3000 ac->devname,c);
3001 #endif
3002 break;
3003 }
3004 ac=ac->next;
3005 }
3006 if (ac==NULL) {
3007 /* Didn't find one here! */
3008 /* special case for RAID 1, especially
3009 where there are more than 2
3010 components (where RAIDframe treats
3011 things a little differently :( ) */
3012 if (parity_type == '1') {
3013 if (c%2 == 0) { /* even component */
3014 even_pair_failed = 1;
3015 } else { /* odd component. If
3016 we're failed, and
3017 so is the even
3018 component, it's
3019 "Good Night, Charlie" */
3020 if (even_pair_failed == 1) {
3021 return(0);
3022 }
3023 }
3024 } else {
3025 /* normal accounting */
3026 num_missing++;
3027 }
3028 }
3029 if ((parity_type == '1') && (c%2 == 1)) {
3030 /* Just did an even component, and we didn't
3031 bail.. reset the even_pair_failed flag,
3032 and go on to the next component.... */
3033 even_pair_failed = 0;
3034 }
3035 }
3036
3037 clabel = cset->ac->clabel;
3038
3039 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3040 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3041 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3042 /* XXX this needs to be made *much* more general */
3043 /* Too many failures */
3044 return(0);
3045 }
3046 /* otherwise, all is well, and we've got enough to take a kick
3047 at autoconfiguring this set */
3048 return(1);
3049 }
3050
3051 void
3052 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3053 RF_Raid_t *raidPtr)
3054 {
3055 RF_ComponentLabel_t *clabel;
3056 int i;
3057
3058 clabel = ac->clabel;
3059
3060 /* 1. Fill in the common stuff */
3061 config->numRow = clabel->num_rows = 1;
3062 config->numCol = clabel->num_columns;
3063 config->numSpare = 0; /* XXX should this be set here? */
3064 config->sectPerSU = clabel->sectPerSU;
3065 config->SUsPerPU = clabel->SUsPerPU;
3066 config->SUsPerRU = clabel->SUsPerRU;
3067 config->parityConfig = clabel->parityConfig;
3068 /* XXX... */
3069 strcpy(config->diskQueueType,"fifo");
3070 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3071 config->layoutSpecificSize = 0; /* XXX ?? */
3072
3073 while(ac!=NULL) {
3074 /* row/col values will be in range due to the checks
3075 in reasonable_label() */
3076 strcpy(config->devnames[0][ac->clabel->column],
3077 ac->devname);
3078 ac = ac->next;
3079 }
3080
3081 for(i=0;i<RF_MAXDBGV;i++) {
3082 config->debugVars[i][0] = 0;
3083 }
3084 }
3085
3086 int
3087 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3088 {
3089 RF_ComponentLabel_t clabel;
3090 struct vnode *vp;
3091 dev_t dev;
3092 int column;
3093 int sparecol;
3094
3095 raidPtr->autoconfigure = new_value;
3096
3097 for(column=0; column<raidPtr->numCol; column++) {
3098 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3099 dev = raidPtr->Disks[column].dev;
3100 vp = raidPtr->raid_cinfo[column].ci_vp;
3101 raidread_component_label(dev, vp, &clabel);
3102 clabel.autoconfigure = new_value;
3103 raidwrite_component_label(dev, vp, &clabel);
3104 }
3105 }
3106 for(column = 0; column < raidPtr->numSpare ; column++) {
3107 sparecol = raidPtr->numCol + column;
3108 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3109 dev = raidPtr->Disks[sparecol].dev;
3110 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3111 raidread_component_label(dev, vp, &clabel);
3112 clabel.autoconfigure = new_value;
3113 raidwrite_component_label(dev, vp, &clabel);
3114 }
3115 }
3116 return(new_value);
3117 }
3118
3119 int
3120 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3121 {
3122 RF_ComponentLabel_t clabel;
3123 struct vnode *vp;
3124 dev_t dev;
3125 int column;
3126 int sparecol;
3127
3128 raidPtr->root_partition = new_value;
3129 for(column=0; column<raidPtr->numCol; column++) {
3130 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3131 dev = raidPtr->Disks[column].dev;
3132 vp = raidPtr->raid_cinfo[column].ci_vp;
3133 raidread_component_label(dev, vp, &clabel);
3134 clabel.root_partition = new_value;
3135 raidwrite_component_label(dev, vp, &clabel);
3136 }
3137 }
3138 for(column = 0; column < raidPtr->numSpare ; column++) {
3139 sparecol = raidPtr->numCol + column;
3140 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3141 dev = raidPtr->Disks[sparecol].dev;
3142 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3143 raidread_component_label(dev, vp, &clabel);
3144 clabel.root_partition = new_value;
3145 raidwrite_component_label(dev, vp, &clabel);
3146 }
3147 }
3148 return(new_value);
3149 }
3150
3151 void
3152 rf_release_all_vps(RF_ConfigSet_t *cset)
3153 {
3154 RF_AutoConfig_t *ac;
3155
3156 ac = cset->ac;
3157 while(ac!=NULL) {
3158 /* Close the vp, and give it back */
3159 if (ac->vp) {
3160 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3161 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3162 vput(ac->vp);
3163 ac->vp = NULL;
3164 }
3165 ac = ac->next;
3166 }
3167 }
3168
3169
3170 void
3171 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3172 {
3173 RF_AutoConfig_t *ac;
3174 RF_AutoConfig_t *next_ac;
3175
3176 ac = cset->ac;
3177 while(ac!=NULL) {
3178 next_ac = ac->next;
3179 /* nuke the label */
3180 free(ac->clabel, M_RAIDFRAME);
3181 /* cleanup the config structure */
3182 free(ac, M_RAIDFRAME);
3183 /* "next.." */
3184 ac = next_ac;
3185 }
3186 /* and, finally, nuke the config set */
3187 free(cset, M_RAIDFRAME);
3188 }
3189
3190
3191 void
3192 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3193 {
3194 /* current version number */
3195 clabel->version = RF_COMPONENT_LABEL_VERSION;
3196 clabel->serial_number = raidPtr->serial_number;
3197 clabel->mod_counter = raidPtr->mod_counter;
3198 clabel->num_rows = 1;
3199 clabel->num_columns = raidPtr->numCol;
3200 clabel->clean = RF_RAID_DIRTY; /* not clean */
3201 clabel->status = rf_ds_optimal; /* "It's good!" */
3202
3203 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3204 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3205 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3206
3207 clabel->blockSize = raidPtr->bytesPerSector;
3208 clabel->numBlocks = raidPtr->sectorsPerDisk;
3209
3210 /* XXX not portable */
3211 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3212 clabel->maxOutstanding = raidPtr->maxOutstanding;
3213 clabel->autoconfigure = raidPtr->autoconfigure;
3214 clabel->root_partition = raidPtr->root_partition;
3215 clabel->last_unit = raidPtr->raidid;
3216 clabel->config_order = raidPtr->config_order;
3217 }
3218
3219 int
3220 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3221 {
3222 RF_Raid_t *raidPtr;
3223 RF_Config_t *config;
3224 int raidID;
3225 int retcode;
3226
3227 #if DEBUG
3228 printf("RAID autoconfigure\n");
3229 #endif
3230
3231 retcode = 0;
3232 *unit = -1;
3233
3234 /* 1. Create a config structure */
3235
3236 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3237 M_RAIDFRAME,
3238 M_NOWAIT);
3239 if (config==NULL) {
3240 printf("Out of mem!?!?\n");
3241 /* XXX do something more intelligent here. */
3242 return(1);
3243 }
3244
3245 memset(config, 0, sizeof(RF_Config_t));
3246
3247 /*
3248 2. Figure out what RAID ID this one is supposed to live at
3249 See if we can get the same RAID dev that it was configured
3250 on last time..
3251 */
3252
3253 raidID = cset->ac->clabel->last_unit;
3254 if ((raidID < 0) || (raidID >= numraid)) {
3255 /* let's not wander off into lala land. */
3256 raidID = numraid - 1;
3257 }
3258 if (raidPtrs[raidID]->valid != 0) {
3259
3260 /*
3261 Nope... Go looking for an alternative...
3262 Start high so we don't immediately use raid0 if that's
3263 not taken.
3264 */
3265
3266 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3267 if (raidPtrs[raidID]->valid == 0) {
3268 /* can use this one! */
3269 break;
3270 }
3271 }
3272 }
3273
3274 if (raidID < 0) {
3275 /* punt... */
3276 printf("Unable to auto configure this set!\n");
3277 printf("(Out of RAID devs!)\n");
3278 return(1);
3279 }
3280
3281 #if DEBUG
3282 printf("Configuring raid%d:\n",raidID);
3283 #endif
3284
3285 raidPtr = raidPtrs[raidID];
3286
3287 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3288 raidPtr->raidid = raidID;
3289 raidPtr->openings = RAIDOUTSTANDING;
3290
3291 /* 3. Build the configuration structure */
3292 rf_create_configuration(cset->ac, config, raidPtr);
3293
3294 /* 4. Do the configuration */
3295 retcode = rf_Configure(raidPtr, config, cset->ac);
3296
3297 if (retcode == 0) {
3298
3299 raidinit(raidPtrs[raidID]);
3300
3301 rf_markalldirty(raidPtrs[raidID]);
3302 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3303 if (cset->ac->clabel->root_partition==1) {
3304 /* everything configured just fine. Make a note
3305 that this set is eligible to be root. */
3306 cset->rootable = 1;
3307 /* XXX do this here? */
3308 raidPtrs[raidID]->root_partition = 1;
3309 }
3310 }
3311
3312 /* 5. Cleanup */
3313 free(config, M_RAIDFRAME);
3314
3315 *unit = raidID;
3316 return(retcode);
3317 }
3318
3319 void
3320 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3321 {
3322 struct buf *bp;
3323
3324 bp = (struct buf *)desc->bp;
3325 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3326 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3327 }
3328
3329 void
3330 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3331 size_t xmin, size_t xmax)
3332 {
3333 pool_init(p, size, 0, 0, 0, w_chan, NULL);
3334 pool_sethiwat(p, xmax);
3335 pool_prime(p, xmin);
3336 pool_setlowat(p, xmin);
3337 }
3338
3339 /*
3340 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3341 * if there is IO pending and if that IO could possibly be done for a
3342 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3343 * otherwise.
3344 *
3345 */
3346
3347 int
3348 rf_buf_queue_check(int raidid)
3349 {
3350 if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3351 raidPtrs[raidid]->openings > 0) {
3352 /* there is work to do */
3353 return 0;
3354 }
3355 /* default is nothing to do */
3356 return 1;
3357 }
3358