rf_netbsdkintf.c revision 1.193 1 /* $NetBSD: rf_netbsdkintf.c,v 1.193 2006/01/04 04:56:41 oster Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.193 2006/01/04 04:56:41 oster Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/bufq.h>
169 #include <sys/user.h>
170 #include <sys/reboot.h>
171
172 #include <dev/raidframe/raidframevar.h>
173 #include <dev/raidframe/raidframeio.h>
174 #include "raid.h"
175 #include "opt_raid_autoconfig.h"
176 #include "rf_raid.h"
177 #include "rf_copyback.h"
178 #include "rf_dag.h"
179 #include "rf_dagflags.h"
180 #include "rf_desc.h"
181 #include "rf_diskqueue.h"
182 #include "rf_etimer.h"
183 #include "rf_general.h"
184 #include "rf_kintf.h"
185 #include "rf_options.h"
186 #include "rf_driver.h"
187 #include "rf_parityscan.h"
188 #include "rf_threadstuff.h"
189
190 #ifdef DEBUG
191 int rf_kdebug_level = 0;
192 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
193 #else /* DEBUG */
194 #define db1_printf(a) { }
195 #endif /* DEBUG */
196
197 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
198
199 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
200
201 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
202 * spare table */
203 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
204 * installation process */
205
206 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
207
208 /* prototypes */
209 static void KernelWakeupFunc(struct buf *);
210 static void InitBP(struct buf *, struct vnode *, unsigned,
211 dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*) (struct buf *),
212 void *, int, struct proc *);
213 static void raidinit(RF_Raid_t *);
214
215 void raidattach(int);
216
217 dev_type_open(raidopen);
218 dev_type_close(raidclose);
219 dev_type_read(raidread);
220 dev_type_write(raidwrite);
221 dev_type_ioctl(raidioctl);
222 dev_type_strategy(raidstrategy);
223 dev_type_dump(raiddump);
224 dev_type_size(raidsize);
225
226 const struct bdevsw raid_bdevsw = {
227 raidopen, raidclose, raidstrategy, raidioctl,
228 raiddump, raidsize, D_DISK
229 };
230
231 const struct cdevsw raid_cdevsw = {
232 raidopen, raidclose, raidread, raidwrite, raidioctl,
233 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
234 };
235
236 /*
237 * Pilfered from ccd.c
238 */
239
240 struct raidbuf {
241 struct buf rf_buf; /* new I/O buf. MUST BE FIRST!!! */
242 struct buf *rf_obp; /* ptr. to original I/O buf */
243 RF_DiskQueueData_t *req;/* the request that this was part of.. */
244 };
245
246 /* XXX Not sure if the following should be replacing the raidPtrs above,
247 or if it should be used in conjunction with that...
248 */
249
250 struct raid_softc {
251 int sc_flags; /* flags */
252 int sc_cflags; /* configuration flags */
253 size_t sc_size; /* size of the raid device */
254 char sc_xname[20]; /* XXX external name */
255 struct disk sc_dkdev; /* generic disk device info */
256 struct bufq_state *buf_queue; /* used for the device queue */
257 };
258 /* sc_flags */
259 #define RAIDF_INITED 0x01 /* unit has been initialized */
260 #define RAIDF_WLABEL 0x02 /* label area is writable */
261 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
262 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
263 #define RAIDF_LOCKED 0x80 /* unit is locked */
264
265 #define raidunit(x) DISKUNIT(x)
266 int numraid = 0;
267
268 /*
269 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
270 * Be aware that large numbers can allow the driver to consume a lot of
271 * kernel memory, especially on writes, and in degraded mode reads.
272 *
273 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
274 * a single 64K write will typically require 64K for the old data,
275 * 64K for the old parity, and 64K for the new parity, for a total
276 * of 192K (if the parity buffer is not re-used immediately).
277 * Even it if is used immediately, that's still 128K, which when multiplied
278 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
279 *
280 * Now in degraded mode, for example, a 64K read on the above setup may
281 * require data reconstruction, which will require *all* of the 4 remaining
282 * disks to participate -- 4 * 32K/disk == 128K again.
283 */
284
285 #ifndef RAIDOUTSTANDING
286 #define RAIDOUTSTANDING 6
287 #endif
288
289 #define RAIDLABELDEV(dev) \
290 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
291
292 /* declared here, and made public, for the benefit of KVM stuff.. */
293 struct raid_softc *raid_softc;
294
295 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
296 struct disklabel *);
297 static void raidgetdisklabel(dev_t);
298 static void raidmakedisklabel(struct raid_softc *);
299
300 static int raidlock(struct raid_softc *);
301 static void raidunlock(struct raid_softc *);
302
303 static void rf_markalldirty(RF_Raid_t *);
304
305 struct device *raidrootdev;
306
307 void rf_ReconThread(struct rf_recon_req *);
308 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
309 void rf_CopybackThread(RF_Raid_t *raidPtr);
310 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
311 int rf_autoconfig(struct device *self);
312 void rf_buildroothack(RF_ConfigSet_t *);
313
314 RF_AutoConfig_t *rf_find_raid_components(void);
315 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
316 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
317 static int rf_reasonable_label(RF_ComponentLabel_t *);
318 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
319 int rf_set_autoconfig(RF_Raid_t *, int);
320 int rf_set_rootpartition(RF_Raid_t *, int);
321 void rf_release_all_vps(RF_ConfigSet_t *);
322 void rf_cleanup_config_set(RF_ConfigSet_t *);
323 int rf_have_enough_components(RF_ConfigSet_t *);
324 int rf_auto_config_set(RF_ConfigSet_t *, int *);
325
326 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
327 allow autoconfig to take place.
328 Note that this is overridden by having
329 RAID_AUTOCONFIG as an option in the
330 kernel config file. */
331
332 struct RF_Pools_s rf_pools;
333
334 void
335 raidattach(int num)
336 {
337 int raidID;
338 int i, rc;
339
340 #ifdef DEBUG
341 printf("raidattach: Asked for %d units\n", num);
342 #endif
343
344 if (num <= 0) {
345 #ifdef DIAGNOSTIC
346 panic("raidattach: count <= 0");
347 #endif
348 return;
349 }
350 /* This is where all the initialization stuff gets done. */
351
352 numraid = num;
353
354 /* Make some space for requested number of units... */
355
356 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
357 if (raidPtrs == NULL) {
358 panic("raidPtrs is NULL!!");
359 }
360
361 /* Initialize the component buffer pool. */
362 rf_pool_init(&rf_pools.cbuf, sizeof(struct raidbuf),
363 "raidpl", num * RAIDOUTSTANDING,
364 2 * num * RAIDOUTSTANDING);
365
366 rf_mutex_init(&rf_sparet_wait_mutex);
367
368 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
369
370 for (i = 0; i < num; i++)
371 raidPtrs[i] = NULL;
372 rc = rf_BootRaidframe();
373 if (rc == 0)
374 printf("Kernelized RAIDframe activated\n");
375 else
376 panic("Serious error booting RAID!!");
377
378 /* put together some datastructures like the CCD device does.. This
379 * lets us lock the device and what-not when it gets opened. */
380
381 raid_softc = (struct raid_softc *)
382 malloc(num * sizeof(struct raid_softc),
383 M_RAIDFRAME, M_NOWAIT);
384 if (raid_softc == NULL) {
385 printf("WARNING: no memory for RAIDframe driver\n");
386 return;
387 }
388
389 memset(raid_softc, 0, num * sizeof(struct raid_softc));
390
391 raidrootdev = (struct device *)malloc(num * sizeof(struct device),
392 M_RAIDFRAME, M_NOWAIT);
393 if (raidrootdev == NULL) {
394 panic("No memory for RAIDframe driver!!?!?!");
395 }
396
397 for (raidID = 0; raidID < num; raidID++) {
398 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
399 pseudo_disk_init(&raid_softc[raidID].sc_dkdev);
400
401 raidrootdev[raidID].dv_class = DV_DISK;
402 raidrootdev[raidID].dv_cfdata = NULL;
403 raidrootdev[raidID].dv_unit = raidID;
404 raidrootdev[raidID].dv_parent = NULL;
405 raidrootdev[raidID].dv_flags = 0;
406 snprintf(raidrootdev[raidID].dv_xname,
407 sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
408
409 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
410 (RF_Raid_t *));
411 if (raidPtrs[raidID] == NULL) {
412 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
413 numraid = raidID;
414 return;
415 }
416 }
417
418 #ifdef RAID_AUTOCONFIG
419 raidautoconfig = 1;
420 #endif
421
422 /*
423 * Register a finalizer which will be used to auto-config RAID
424 * sets once all real hardware devices have been found.
425 */
426 if (config_finalize_register(NULL, rf_autoconfig) != 0)
427 printf("WARNING: unable to register RAIDframe finalizer\n");
428 }
429
430 int
431 rf_autoconfig(struct device *self)
432 {
433 RF_AutoConfig_t *ac_list;
434 RF_ConfigSet_t *config_sets;
435
436 if (raidautoconfig == 0)
437 return (0);
438
439 /* XXX This code can only be run once. */
440 raidautoconfig = 0;
441
442 /* 1. locate all RAID components on the system */
443 #ifdef DEBUG
444 printf("Searching for RAID components...\n");
445 #endif
446 ac_list = rf_find_raid_components();
447
448 /* 2. Sort them into their respective sets. */
449 config_sets = rf_create_auto_sets(ac_list);
450
451 /*
452 * 3. Evaluate each set andconfigure the valid ones.
453 * This gets done in rf_buildroothack().
454 */
455 rf_buildroothack(config_sets);
456
457 return (1);
458 }
459
460 void
461 rf_buildroothack(RF_ConfigSet_t *config_sets)
462 {
463 RF_ConfigSet_t *cset;
464 RF_ConfigSet_t *next_cset;
465 int retcode;
466 int raidID;
467 int rootID;
468 int num_root;
469
470 rootID = 0;
471 num_root = 0;
472 cset = config_sets;
473 while(cset != NULL ) {
474 next_cset = cset->next;
475 if (rf_have_enough_components(cset) &&
476 cset->ac->clabel->autoconfigure==1) {
477 retcode = rf_auto_config_set(cset,&raidID);
478 if (!retcode) {
479 if (cset->rootable) {
480 rootID = raidID;
481 num_root++;
482 }
483 } else {
484 /* The autoconfig didn't work :( */
485 #if DEBUG
486 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
487 #endif
488 rf_release_all_vps(cset);
489 }
490 } else {
491 /* we're not autoconfiguring this set...
492 release the associated resources */
493 rf_release_all_vps(cset);
494 }
495 /* cleanup */
496 rf_cleanup_config_set(cset);
497 cset = next_cset;
498 }
499
500 /* we found something bootable... */
501
502 if (num_root == 1) {
503 booted_device = &raidrootdev[rootID];
504 } else if (num_root > 1) {
505 /* we can't guess.. require the user to answer... */
506 boothowto |= RB_ASKNAME;
507 }
508 }
509
510
511 int
512 raidsize(dev_t dev)
513 {
514 struct raid_softc *rs;
515 struct disklabel *lp;
516 int part, unit, omask, size;
517
518 unit = raidunit(dev);
519 if (unit >= numraid)
520 return (-1);
521 rs = &raid_softc[unit];
522
523 if ((rs->sc_flags & RAIDF_INITED) == 0)
524 return (-1);
525
526 part = DISKPART(dev);
527 omask = rs->sc_dkdev.dk_openmask & (1 << part);
528 lp = rs->sc_dkdev.dk_label;
529
530 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
531 return (-1);
532
533 if (lp->d_partitions[part].p_fstype != FS_SWAP)
534 size = -1;
535 else
536 size = lp->d_partitions[part].p_size *
537 (lp->d_secsize / DEV_BSIZE);
538
539 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
540 return (-1);
541
542 return (size);
543
544 }
545
546 int
547 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
548 {
549 /* Not implemented. */
550 return ENXIO;
551 }
552 /* ARGSUSED */
553 int
554 raidopen(dev_t dev, int flags, int fmt, struct lwp *l)
555 {
556 int unit = raidunit(dev);
557 struct raid_softc *rs;
558 struct disklabel *lp;
559 int part, pmask;
560 int error = 0;
561
562 if (unit >= numraid)
563 return (ENXIO);
564 rs = &raid_softc[unit];
565
566 if ((error = raidlock(rs)) != 0)
567 return (error);
568 lp = rs->sc_dkdev.dk_label;
569
570 part = DISKPART(dev);
571 pmask = (1 << part);
572
573 if ((rs->sc_flags & RAIDF_INITED) &&
574 (rs->sc_dkdev.dk_openmask == 0))
575 raidgetdisklabel(dev);
576
577 /* make sure that this partition exists */
578
579 if (part != RAW_PART) {
580 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
581 ((part >= lp->d_npartitions) ||
582 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
583 error = ENXIO;
584 raidunlock(rs);
585 return (error);
586 }
587 }
588 /* Prevent this unit from being unconfigured while open. */
589 switch (fmt) {
590 case S_IFCHR:
591 rs->sc_dkdev.dk_copenmask |= pmask;
592 break;
593
594 case S_IFBLK:
595 rs->sc_dkdev.dk_bopenmask |= pmask;
596 break;
597 }
598
599 if ((rs->sc_dkdev.dk_openmask == 0) &&
600 ((rs->sc_flags & RAIDF_INITED) != 0)) {
601 /* First one... mark things as dirty... Note that we *MUST*
602 have done a configure before this. I DO NOT WANT TO BE
603 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
604 THAT THEY BELONG TOGETHER!!!!! */
605 /* XXX should check to see if we're only open for reading
606 here... If so, we needn't do this, but then need some
607 other way of keeping track of what's happened.. */
608
609 rf_markalldirty( raidPtrs[unit] );
610 }
611
612
613 rs->sc_dkdev.dk_openmask =
614 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
615
616 raidunlock(rs);
617
618 return (error);
619
620
621 }
622 /* ARGSUSED */
623 int
624 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
625 {
626 int unit = raidunit(dev);
627 struct raid_softc *rs;
628 int error = 0;
629 int part;
630
631 if (unit >= numraid)
632 return (ENXIO);
633 rs = &raid_softc[unit];
634
635 if ((error = raidlock(rs)) != 0)
636 return (error);
637
638 part = DISKPART(dev);
639
640 /* ...that much closer to allowing unconfiguration... */
641 switch (fmt) {
642 case S_IFCHR:
643 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
644 break;
645
646 case S_IFBLK:
647 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
648 break;
649 }
650 rs->sc_dkdev.dk_openmask =
651 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
652
653 if ((rs->sc_dkdev.dk_openmask == 0) &&
654 ((rs->sc_flags & RAIDF_INITED) != 0)) {
655 /* Last one... device is not unconfigured yet.
656 Device shutdown has taken care of setting the
657 clean bits if RAIDF_INITED is not set
658 mark things as clean... */
659
660 rf_update_component_labels(raidPtrs[unit],
661 RF_FINAL_COMPONENT_UPDATE);
662 if (doing_shutdown) {
663 /* last one, and we're going down, so
664 lights out for this RAID set too. */
665 error = rf_Shutdown(raidPtrs[unit]);
666
667 /* It's no longer initialized... */
668 rs->sc_flags &= ~RAIDF_INITED;
669
670 /* Detach the disk. */
671 pseudo_disk_detach(&rs->sc_dkdev);
672 }
673 }
674
675 raidunlock(rs);
676 return (0);
677
678 }
679
680 void
681 raidstrategy(struct buf *bp)
682 {
683 int s;
684
685 unsigned int raidID = raidunit(bp->b_dev);
686 RF_Raid_t *raidPtr;
687 struct raid_softc *rs = &raid_softc[raidID];
688 int wlabel;
689
690 if ((rs->sc_flags & RAIDF_INITED) ==0) {
691 bp->b_error = ENXIO;
692 bp->b_flags |= B_ERROR;
693 bp->b_resid = bp->b_bcount;
694 biodone(bp);
695 return;
696 }
697 if (raidID >= numraid || !raidPtrs[raidID]) {
698 bp->b_error = ENODEV;
699 bp->b_flags |= B_ERROR;
700 bp->b_resid = bp->b_bcount;
701 biodone(bp);
702 return;
703 }
704 raidPtr = raidPtrs[raidID];
705 if (!raidPtr->valid) {
706 bp->b_error = ENODEV;
707 bp->b_flags |= B_ERROR;
708 bp->b_resid = bp->b_bcount;
709 biodone(bp);
710 return;
711 }
712 if (bp->b_bcount == 0) {
713 db1_printf(("b_bcount is zero..\n"));
714 biodone(bp);
715 return;
716 }
717
718 /*
719 * Do bounds checking and adjust transfer. If there's an
720 * error, the bounds check will flag that for us.
721 */
722
723 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
724 if (DISKPART(bp->b_dev) != RAW_PART)
725 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
726 db1_printf(("Bounds check failed!!:%d %d\n",
727 (int) bp->b_blkno, (int) wlabel));
728 biodone(bp);
729 return;
730 }
731 s = splbio();
732
733 bp->b_resid = 0;
734
735 /* stuff it onto our queue */
736 BUFQ_PUT(rs->buf_queue, bp);
737
738 /* scheduled the IO to happen at the next convenient time */
739 wakeup(&(raidPtrs[raidID]->iodone));
740
741 splx(s);
742 }
743 /* ARGSUSED */
744 int
745 raidread(dev_t dev, struct uio *uio, int flags)
746 {
747 int unit = raidunit(dev);
748 struct raid_softc *rs;
749
750 if (unit >= numraid)
751 return (ENXIO);
752 rs = &raid_softc[unit];
753
754 if ((rs->sc_flags & RAIDF_INITED) == 0)
755 return (ENXIO);
756
757 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
758
759 }
760 /* ARGSUSED */
761 int
762 raidwrite(dev_t dev, struct uio *uio, int flags)
763 {
764 int unit = raidunit(dev);
765 struct raid_softc *rs;
766
767 if (unit >= numraid)
768 return (ENXIO);
769 rs = &raid_softc[unit];
770
771 if ((rs->sc_flags & RAIDF_INITED) == 0)
772 return (ENXIO);
773
774 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
775
776 }
777
778 int
779 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
780 {
781 int unit = raidunit(dev);
782 int error = 0;
783 int part, pmask;
784 struct raid_softc *rs;
785 RF_Config_t *k_cfg, *u_cfg;
786 RF_Raid_t *raidPtr;
787 RF_RaidDisk_t *diskPtr;
788 RF_AccTotals_t *totals;
789 RF_DeviceConfig_t *d_cfg, **ucfgp;
790 u_char *specific_buf;
791 int retcode = 0;
792 int column;
793 int raidid;
794 struct rf_recon_req *rrcopy, *rr;
795 RF_ComponentLabel_t *clabel;
796 RF_ComponentLabel_t ci_label;
797 RF_ComponentLabel_t **clabel_ptr;
798 RF_SingleComponent_t *sparePtr,*componentPtr;
799 RF_SingleComponent_t hot_spare;
800 RF_SingleComponent_t component;
801 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
802 int i, j, d;
803 #ifdef __HAVE_OLD_DISKLABEL
804 struct disklabel newlabel;
805 #endif
806
807 if (unit >= numraid)
808 return (ENXIO);
809 rs = &raid_softc[unit];
810 raidPtr = raidPtrs[unit];
811
812 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
813 (int) DISKPART(dev), (int) unit, (int) cmd));
814
815 /* Must be open for writes for these commands... */
816 switch (cmd) {
817 case DIOCSDINFO:
818 case DIOCWDINFO:
819 #ifdef __HAVE_OLD_DISKLABEL
820 case ODIOCWDINFO:
821 case ODIOCSDINFO:
822 #endif
823 case DIOCWLABEL:
824 if ((flag & FWRITE) == 0)
825 return (EBADF);
826 }
827
828 /* Must be initialized for these... */
829 switch (cmd) {
830 case DIOCGDINFO:
831 case DIOCSDINFO:
832 case DIOCWDINFO:
833 #ifdef __HAVE_OLD_DISKLABEL
834 case ODIOCGDINFO:
835 case ODIOCWDINFO:
836 case ODIOCSDINFO:
837 case ODIOCGDEFLABEL:
838 #endif
839 case DIOCGPART:
840 case DIOCWLABEL:
841 case DIOCGDEFLABEL:
842 case RAIDFRAME_SHUTDOWN:
843 case RAIDFRAME_REWRITEPARITY:
844 case RAIDFRAME_GET_INFO:
845 case RAIDFRAME_RESET_ACCTOTALS:
846 case RAIDFRAME_GET_ACCTOTALS:
847 case RAIDFRAME_KEEP_ACCTOTALS:
848 case RAIDFRAME_GET_SIZE:
849 case RAIDFRAME_FAIL_DISK:
850 case RAIDFRAME_COPYBACK:
851 case RAIDFRAME_CHECK_RECON_STATUS:
852 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
853 case RAIDFRAME_GET_COMPONENT_LABEL:
854 case RAIDFRAME_SET_COMPONENT_LABEL:
855 case RAIDFRAME_ADD_HOT_SPARE:
856 case RAIDFRAME_REMOVE_HOT_SPARE:
857 case RAIDFRAME_INIT_LABELS:
858 case RAIDFRAME_REBUILD_IN_PLACE:
859 case RAIDFRAME_CHECK_PARITY:
860 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
861 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
862 case RAIDFRAME_CHECK_COPYBACK_STATUS:
863 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
864 case RAIDFRAME_SET_AUTOCONFIG:
865 case RAIDFRAME_SET_ROOT:
866 case RAIDFRAME_DELETE_COMPONENT:
867 case RAIDFRAME_INCORPORATE_HOT_SPARE:
868 if ((rs->sc_flags & RAIDF_INITED) == 0)
869 return (ENXIO);
870 }
871
872 switch (cmd) {
873
874 /* configure the system */
875 case RAIDFRAME_CONFIGURE:
876
877 if (raidPtr->valid) {
878 /* There is a valid RAID set running on this unit! */
879 printf("raid%d: Device already configured!\n",unit);
880 return(EINVAL);
881 }
882
883 /* copy-in the configuration information */
884 /* data points to a pointer to the configuration structure */
885
886 u_cfg = *((RF_Config_t **) data);
887 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
888 if (k_cfg == NULL) {
889 return (ENOMEM);
890 }
891 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
892 if (retcode) {
893 RF_Free(k_cfg, sizeof(RF_Config_t));
894 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
895 retcode));
896 return (retcode);
897 }
898 /* allocate a buffer for the layout-specific data, and copy it
899 * in */
900 if (k_cfg->layoutSpecificSize) {
901 if (k_cfg->layoutSpecificSize > 10000) {
902 /* sanity check */
903 RF_Free(k_cfg, sizeof(RF_Config_t));
904 return (EINVAL);
905 }
906 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
907 (u_char *));
908 if (specific_buf == NULL) {
909 RF_Free(k_cfg, sizeof(RF_Config_t));
910 return (ENOMEM);
911 }
912 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
913 k_cfg->layoutSpecificSize);
914 if (retcode) {
915 RF_Free(k_cfg, sizeof(RF_Config_t));
916 RF_Free(specific_buf,
917 k_cfg->layoutSpecificSize);
918 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
919 retcode));
920 return (retcode);
921 }
922 } else
923 specific_buf = NULL;
924 k_cfg->layoutSpecific = specific_buf;
925
926 /* should do some kind of sanity check on the configuration.
927 * Store the sum of all the bytes in the last byte? */
928
929 /* configure the system */
930
931 /*
932 * Clear the entire RAID descriptor, just to make sure
933 * there is no stale data left in the case of a
934 * reconfiguration
935 */
936 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
937 raidPtr->raidid = unit;
938
939 retcode = rf_Configure(raidPtr, k_cfg, NULL);
940
941 if (retcode == 0) {
942
943 /* allow this many simultaneous IO's to
944 this RAID device */
945 raidPtr->openings = RAIDOUTSTANDING;
946
947 raidinit(raidPtr);
948 rf_markalldirty(raidPtr);
949 }
950 /* free the buffers. No return code here. */
951 if (k_cfg->layoutSpecificSize) {
952 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
953 }
954 RF_Free(k_cfg, sizeof(RF_Config_t));
955
956 return (retcode);
957
958 /* shutdown the system */
959 case RAIDFRAME_SHUTDOWN:
960
961 if ((error = raidlock(rs)) != 0)
962 return (error);
963
964 /*
965 * If somebody has a partition mounted, we shouldn't
966 * shutdown.
967 */
968
969 part = DISKPART(dev);
970 pmask = (1 << part);
971 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
972 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
973 (rs->sc_dkdev.dk_copenmask & pmask))) {
974 raidunlock(rs);
975 return (EBUSY);
976 }
977
978 retcode = rf_Shutdown(raidPtr);
979
980 /* It's no longer initialized... */
981 rs->sc_flags &= ~RAIDF_INITED;
982
983 /* Detach the disk. */
984 pseudo_disk_detach(&rs->sc_dkdev);
985
986 raidunlock(rs);
987
988 return (retcode);
989 case RAIDFRAME_GET_COMPONENT_LABEL:
990 clabel_ptr = (RF_ComponentLabel_t **) data;
991 /* need to read the component label for the disk indicated
992 by row,column in clabel */
993
994 /* For practice, let's get it directly fromdisk, rather
995 than from the in-core copy */
996 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
997 (RF_ComponentLabel_t *));
998 if (clabel == NULL)
999 return (ENOMEM);
1000
1001 memset((char *) clabel, 0, sizeof(RF_ComponentLabel_t));
1002
1003 retcode = copyin( *clabel_ptr, clabel,
1004 sizeof(RF_ComponentLabel_t));
1005
1006 if (retcode) {
1007 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1008 return(retcode);
1009 }
1010
1011 clabel->row = 0; /* Don't allow looking at anything else.*/
1012
1013 column = clabel->column;
1014
1015 if ((column < 0) || (column >= raidPtr->numCol +
1016 raidPtr->numSpare)) {
1017 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1018 return(EINVAL);
1019 }
1020
1021 raidread_component_label(raidPtr->Disks[column].dev,
1022 raidPtr->raid_cinfo[column].ci_vp,
1023 clabel );
1024
1025 retcode = copyout(clabel, *clabel_ptr,
1026 sizeof(RF_ComponentLabel_t));
1027 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1028 return (retcode);
1029
1030 case RAIDFRAME_SET_COMPONENT_LABEL:
1031 clabel = (RF_ComponentLabel_t *) data;
1032
1033 /* XXX check the label for valid stuff... */
1034 /* Note that some things *should not* get modified --
1035 the user should be re-initing the labels instead of
1036 trying to patch things.
1037 */
1038
1039 raidid = raidPtr->raidid;
1040 #if DEBUG
1041 printf("raid%d: Got component label:\n", raidid);
1042 printf("raid%d: Version: %d\n", raidid, clabel->version);
1043 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1044 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1045 printf("raid%d: Column: %d\n", raidid, clabel->column);
1046 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1047 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1048 printf("raid%d: Status: %d\n", raidid, clabel->status);
1049 #endif
1050 clabel->row = 0;
1051 column = clabel->column;
1052
1053 if ((column < 0) || (column >= raidPtr->numCol)) {
1054 return(EINVAL);
1055 }
1056
1057 /* XXX this isn't allowed to do anything for now :-) */
1058
1059 /* XXX and before it is, we need to fill in the rest
1060 of the fields!?!?!?! */
1061 #if 0
1062 raidwrite_component_label(
1063 raidPtr->Disks[column].dev,
1064 raidPtr->raid_cinfo[column].ci_vp,
1065 clabel );
1066 #endif
1067 return (0);
1068
1069 case RAIDFRAME_INIT_LABELS:
1070 clabel = (RF_ComponentLabel_t *) data;
1071 /*
1072 we only want the serial number from
1073 the above. We get all the rest of the information
1074 from the config that was used to create this RAID
1075 set.
1076 */
1077
1078 raidPtr->serial_number = clabel->serial_number;
1079
1080 raid_init_component_label(raidPtr, &ci_label);
1081 ci_label.serial_number = clabel->serial_number;
1082 ci_label.row = 0; /* we dont' pretend to support more */
1083
1084 for(column=0;column<raidPtr->numCol;column++) {
1085 diskPtr = &raidPtr->Disks[column];
1086 if (!RF_DEAD_DISK(diskPtr->status)) {
1087 ci_label.partitionSize = diskPtr->partitionSize;
1088 ci_label.column = column;
1089 raidwrite_component_label(
1090 raidPtr->Disks[column].dev,
1091 raidPtr->raid_cinfo[column].ci_vp,
1092 &ci_label );
1093 }
1094 }
1095
1096 return (retcode);
1097 case RAIDFRAME_SET_AUTOCONFIG:
1098 d = rf_set_autoconfig(raidPtr, *(int *) data);
1099 printf("raid%d: New autoconfig value is: %d\n",
1100 raidPtr->raidid, d);
1101 *(int *) data = d;
1102 return (retcode);
1103
1104 case RAIDFRAME_SET_ROOT:
1105 d = rf_set_rootpartition(raidPtr, *(int *) data);
1106 printf("raid%d: New rootpartition value is: %d\n",
1107 raidPtr->raidid, d);
1108 *(int *) data = d;
1109 return (retcode);
1110
1111 /* initialize all parity */
1112 case RAIDFRAME_REWRITEPARITY:
1113
1114 if (raidPtr->Layout.map->faultsTolerated == 0) {
1115 /* Parity for RAID 0 is trivially correct */
1116 raidPtr->parity_good = RF_RAID_CLEAN;
1117 return(0);
1118 }
1119
1120 if (raidPtr->parity_rewrite_in_progress == 1) {
1121 /* Re-write is already in progress! */
1122 return(EINVAL);
1123 }
1124
1125 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1126 rf_RewriteParityThread,
1127 raidPtr,"raid_parity");
1128 return (retcode);
1129
1130
1131 case RAIDFRAME_ADD_HOT_SPARE:
1132 sparePtr = (RF_SingleComponent_t *) data;
1133 memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
1134 retcode = rf_add_hot_spare(raidPtr, &hot_spare);
1135 return(retcode);
1136
1137 case RAIDFRAME_REMOVE_HOT_SPARE:
1138 return(retcode);
1139
1140 case RAIDFRAME_DELETE_COMPONENT:
1141 componentPtr = (RF_SingleComponent_t *)data;
1142 memcpy( &component, componentPtr,
1143 sizeof(RF_SingleComponent_t));
1144 retcode = rf_delete_component(raidPtr, &component);
1145 return(retcode);
1146
1147 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1148 componentPtr = (RF_SingleComponent_t *)data;
1149 memcpy( &component, componentPtr,
1150 sizeof(RF_SingleComponent_t));
1151 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1152 return(retcode);
1153
1154 case RAIDFRAME_REBUILD_IN_PLACE:
1155
1156 if (raidPtr->Layout.map->faultsTolerated == 0) {
1157 /* Can't do this on a RAID 0!! */
1158 return(EINVAL);
1159 }
1160
1161 if (raidPtr->recon_in_progress == 1) {
1162 /* a reconstruct is already in progress! */
1163 return(EINVAL);
1164 }
1165
1166 componentPtr = (RF_SingleComponent_t *) data;
1167 memcpy( &component, componentPtr,
1168 sizeof(RF_SingleComponent_t));
1169 component.row = 0; /* we don't support any more */
1170 column = component.column;
1171
1172 if ((column < 0) || (column >= raidPtr->numCol)) {
1173 return(EINVAL);
1174 }
1175
1176 RF_LOCK_MUTEX(raidPtr->mutex);
1177 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1178 (raidPtr->numFailures > 0)) {
1179 /* XXX 0 above shouldn't be constant!!! */
1180 /* some component other than this has failed.
1181 Let's not make things worse than they already
1182 are... */
1183 printf("raid%d: Unable to reconstruct to disk at:\n",
1184 raidPtr->raidid);
1185 printf("raid%d: Col: %d Too many failures.\n",
1186 raidPtr->raidid, column);
1187 RF_UNLOCK_MUTEX(raidPtr->mutex);
1188 return (EINVAL);
1189 }
1190 if (raidPtr->Disks[column].status ==
1191 rf_ds_reconstructing) {
1192 printf("raid%d: Unable to reconstruct to disk at:\n",
1193 raidPtr->raidid);
1194 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1195
1196 RF_UNLOCK_MUTEX(raidPtr->mutex);
1197 return (EINVAL);
1198 }
1199 if (raidPtr->Disks[column].status == rf_ds_spared) {
1200 RF_UNLOCK_MUTEX(raidPtr->mutex);
1201 return (EINVAL);
1202 }
1203 RF_UNLOCK_MUTEX(raidPtr->mutex);
1204
1205 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1206 if (rrcopy == NULL)
1207 return(ENOMEM);
1208
1209 rrcopy->raidPtr = (void *) raidPtr;
1210 rrcopy->col = column;
1211
1212 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1213 rf_ReconstructInPlaceThread,
1214 rrcopy,"raid_reconip");
1215 return(retcode);
1216
1217 case RAIDFRAME_GET_INFO:
1218 if (!raidPtr->valid)
1219 return (ENODEV);
1220 ucfgp = (RF_DeviceConfig_t **) data;
1221 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1222 (RF_DeviceConfig_t *));
1223 if (d_cfg == NULL)
1224 return (ENOMEM);
1225 memset((char *) d_cfg, 0, sizeof(RF_DeviceConfig_t));
1226 d_cfg->rows = 1; /* there is only 1 row now */
1227 d_cfg->cols = raidPtr->numCol;
1228 d_cfg->ndevs = raidPtr->numCol;
1229 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1230 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1231 return (ENOMEM);
1232 }
1233 d_cfg->nspares = raidPtr->numSpare;
1234 if (d_cfg->nspares >= RF_MAX_DISKS) {
1235 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1236 return (ENOMEM);
1237 }
1238 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1239 d = 0;
1240 for (j = 0; j < d_cfg->cols; j++) {
1241 d_cfg->devs[d] = raidPtr->Disks[j];
1242 d++;
1243 }
1244 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1245 d_cfg->spares[i] = raidPtr->Disks[j];
1246 }
1247 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1248 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1249
1250 return (retcode);
1251
1252 case RAIDFRAME_CHECK_PARITY:
1253 *(int *) data = raidPtr->parity_good;
1254 return (0);
1255
1256 case RAIDFRAME_RESET_ACCTOTALS:
1257 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1258 return (0);
1259
1260 case RAIDFRAME_GET_ACCTOTALS:
1261 totals = (RF_AccTotals_t *) data;
1262 *totals = raidPtr->acc_totals;
1263 return (0);
1264
1265 case RAIDFRAME_KEEP_ACCTOTALS:
1266 raidPtr->keep_acc_totals = *(int *)data;
1267 return (0);
1268
1269 case RAIDFRAME_GET_SIZE:
1270 *(int *) data = raidPtr->totalSectors;
1271 return (0);
1272
1273 /* fail a disk & optionally start reconstruction */
1274 case RAIDFRAME_FAIL_DISK:
1275
1276 if (raidPtr->Layout.map->faultsTolerated == 0) {
1277 /* Can't do this on a RAID 0!! */
1278 return(EINVAL);
1279 }
1280
1281 rr = (struct rf_recon_req *) data;
1282 rr->row = 0;
1283 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1284 return (EINVAL);
1285
1286
1287 RF_LOCK_MUTEX(raidPtr->mutex);
1288 if (raidPtr->status == rf_rs_reconstructing) {
1289 /* you can't fail a disk while we're reconstructing! */
1290 /* XXX wrong for RAID6 */
1291 RF_UNLOCK_MUTEX(raidPtr->mutex);
1292 return (EINVAL);
1293 }
1294 if ((raidPtr->Disks[rr->col].status ==
1295 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1296 /* some other component has failed. Let's not make
1297 things worse. XXX wrong for RAID6 */
1298 RF_UNLOCK_MUTEX(raidPtr->mutex);
1299 return (EINVAL);
1300 }
1301 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1302 /* Can't fail a spared disk! */
1303 RF_UNLOCK_MUTEX(raidPtr->mutex);
1304 return (EINVAL);
1305 }
1306 RF_UNLOCK_MUTEX(raidPtr->mutex);
1307
1308 /* make a copy of the recon request so that we don't rely on
1309 * the user's buffer */
1310 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1311 if (rrcopy == NULL)
1312 return(ENOMEM);
1313 memcpy(rrcopy, rr, sizeof(*rr));
1314 rrcopy->raidPtr = (void *) raidPtr;
1315
1316 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1317 rf_ReconThread,
1318 rrcopy,"raid_recon");
1319 return (0);
1320
1321 /* invoke a copyback operation after recon on whatever disk
1322 * needs it, if any */
1323 case RAIDFRAME_COPYBACK:
1324
1325 if (raidPtr->Layout.map->faultsTolerated == 0) {
1326 /* This makes no sense on a RAID 0!! */
1327 return(EINVAL);
1328 }
1329
1330 if (raidPtr->copyback_in_progress == 1) {
1331 /* Copyback is already in progress! */
1332 return(EINVAL);
1333 }
1334
1335 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1336 rf_CopybackThread,
1337 raidPtr,"raid_copyback");
1338 return (retcode);
1339
1340 /* return the percentage completion of reconstruction */
1341 case RAIDFRAME_CHECK_RECON_STATUS:
1342 if (raidPtr->Layout.map->faultsTolerated == 0) {
1343 /* This makes no sense on a RAID 0, so tell the
1344 user it's done. */
1345 *(int *) data = 100;
1346 return(0);
1347 }
1348 if (raidPtr->status != rf_rs_reconstructing)
1349 *(int *) data = 100;
1350 else {
1351 if (raidPtr->reconControl->numRUsTotal > 0) {
1352 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1353 } else {
1354 *(int *) data = 0;
1355 }
1356 }
1357 return (0);
1358 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1359 progressInfoPtr = (RF_ProgressInfo_t **) data;
1360 if (raidPtr->status != rf_rs_reconstructing) {
1361 progressInfo.remaining = 0;
1362 progressInfo.completed = 100;
1363 progressInfo.total = 100;
1364 } else {
1365 progressInfo.total =
1366 raidPtr->reconControl->numRUsTotal;
1367 progressInfo.completed =
1368 raidPtr->reconControl->numRUsComplete;
1369 progressInfo.remaining = progressInfo.total -
1370 progressInfo.completed;
1371 }
1372 retcode = copyout(&progressInfo, *progressInfoPtr,
1373 sizeof(RF_ProgressInfo_t));
1374 return (retcode);
1375
1376 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1377 if (raidPtr->Layout.map->faultsTolerated == 0) {
1378 /* This makes no sense on a RAID 0, so tell the
1379 user it's done. */
1380 *(int *) data = 100;
1381 return(0);
1382 }
1383 if (raidPtr->parity_rewrite_in_progress == 1) {
1384 *(int *) data = 100 *
1385 raidPtr->parity_rewrite_stripes_done /
1386 raidPtr->Layout.numStripe;
1387 } else {
1388 *(int *) data = 100;
1389 }
1390 return (0);
1391
1392 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1393 progressInfoPtr = (RF_ProgressInfo_t **) data;
1394 if (raidPtr->parity_rewrite_in_progress == 1) {
1395 progressInfo.total = raidPtr->Layout.numStripe;
1396 progressInfo.completed =
1397 raidPtr->parity_rewrite_stripes_done;
1398 progressInfo.remaining = progressInfo.total -
1399 progressInfo.completed;
1400 } else {
1401 progressInfo.remaining = 0;
1402 progressInfo.completed = 100;
1403 progressInfo.total = 100;
1404 }
1405 retcode = copyout(&progressInfo, *progressInfoPtr,
1406 sizeof(RF_ProgressInfo_t));
1407 return (retcode);
1408
1409 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1410 if (raidPtr->Layout.map->faultsTolerated == 0) {
1411 /* This makes no sense on a RAID 0 */
1412 *(int *) data = 100;
1413 return(0);
1414 }
1415 if (raidPtr->copyback_in_progress == 1) {
1416 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1417 raidPtr->Layout.numStripe;
1418 } else {
1419 *(int *) data = 100;
1420 }
1421 return (0);
1422
1423 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1424 progressInfoPtr = (RF_ProgressInfo_t **) data;
1425 if (raidPtr->copyback_in_progress == 1) {
1426 progressInfo.total = raidPtr->Layout.numStripe;
1427 progressInfo.completed =
1428 raidPtr->copyback_stripes_done;
1429 progressInfo.remaining = progressInfo.total -
1430 progressInfo.completed;
1431 } else {
1432 progressInfo.remaining = 0;
1433 progressInfo.completed = 100;
1434 progressInfo.total = 100;
1435 }
1436 retcode = copyout(&progressInfo, *progressInfoPtr,
1437 sizeof(RF_ProgressInfo_t));
1438 return (retcode);
1439
1440 /* the sparetable daemon calls this to wait for the kernel to
1441 * need a spare table. this ioctl does not return until a
1442 * spare table is needed. XXX -- calling mpsleep here in the
1443 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1444 * -- I should either compute the spare table in the kernel,
1445 * or have a different -- XXX XXX -- interface (a different
1446 * character device) for delivering the table -- XXX */
1447 #if 0
1448 case RAIDFRAME_SPARET_WAIT:
1449 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1450 while (!rf_sparet_wait_queue)
1451 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1452 waitreq = rf_sparet_wait_queue;
1453 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1454 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1455
1456 /* structure assignment */
1457 *((RF_SparetWait_t *) data) = *waitreq;
1458
1459 RF_Free(waitreq, sizeof(*waitreq));
1460 return (0);
1461
1462 /* wakes up a process waiting on SPARET_WAIT and puts an error
1463 * code in it that will cause the dameon to exit */
1464 case RAIDFRAME_ABORT_SPARET_WAIT:
1465 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1466 waitreq->fcol = -1;
1467 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1468 waitreq->next = rf_sparet_wait_queue;
1469 rf_sparet_wait_queue = waitreq;
1470 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1471 wakeup(&rf_sparet_wait_queue);
1472 return (0);
1473
1474 /* used by the spare table daemon to deliver a spare table
1475 * into the kernel */
1476 case RAIDFRAME_SEND_SPARET:
1477
1478 /* install the spare table */
1479 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1480
1481 /* respond to the requestor. the return status of the spare
1482 * table installation is passed in the "fcol" field */
1483 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1484 waitreq->fcol = retcode;
1485 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1486 waitreq->next = rf_sparet_resp_queue;
1487 rf_sparet_resp_queue = waitreq;
1488 wakeup(&rf_sparet_resp_queue);
1489 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1490
1491 return (retcode);
1492 #endif
1493
1494 default:
1495 break; /* fall through to the os-specific code below */
1496
1497 }
1498
1499 if (!raidPtr->valid)
1500 return (EINVAL);
1501
1502 /*
1503 * Add support for "regular" device ioctls here.
1504 */
1505
1506 switch (cmd) {
1507 case DIOCGDINFO:
1508 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1509 break;
1510 #ifdef __HAVE_OLD_DISKLABEL
1511 case ODIOCGDINFO:
1512 newlabel = *(rs->sc_dkdev.dk_label);
1513 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1514 return ENOTTY;
1515 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1516 break;
1517 #endif
1518
1519 case DIOCGPART:
1520 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1521 ((struct partinfo *) data)->part =
1522 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1523 break;
1524
1525 case DIOCWDINFO:
1526 case DIOCSDINFO:
1527 #ifdef __HAVE_OLD_DISKLABEL
1528 case ODIOCWDINFO:
1529 case ODIOCSDINFO:
1530 #endif
1531 {
1532 struct disklabel *lp;
1533 #ifdef __HAVE_OLD_DISKLABEL
1534 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1535 memset(&newlabel, 0, sizeof newlabel);
1536 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1537 lp = &newlabel;
1538 } else
1539 #endif
1540 lp = (struct disklabel *)data;
1541
1542 if ((error = raidlock(rs)) != 0)
1543 return (error);
1544
1545 rs->sc_flags |= RAIDF_LABELLING;
1546
1547 error = setdisklabel(rs->sc_dkdev.dk_label,
1548 lp, 0, rs->sc_dkdev.dk_cpulabel);
1549 if (error == 0) {
1550 if (cmd == DIOCWDINFO
1551 #ifdef __HAVE_OLD_DISKLABEL
1552 || cmd == ODIOCWDINFO
1553 #endif
1554 )
1555 error = writedisklabel(RAIDLABELDEV(dev),
1556 raidstrategy, rs->sc_dkdev.dk_label,
1557 rs->sc_dkdev.dk_cpulabel);
1558 }
1559 rs->sc_flags &= ~RAIDF_LABELLING;
1560
1561 raidunlock(rs);
1562
1563 if (error)
1564 return (error);
1565 break;
1566 }
1567
1568 case DIOCWLABEL:
1569 if (*(int *) data != 0)
1570 rs->sc_flags |= RAIDF_WLABEL;
1571 else
1572 rs->sc_flags &= ~RAIDF_WLABEL;
1573 break;
1574
1575 case DIOCGDEFLABEL:
1576 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1577 break;
1578
1579 #ifdef __HAVE_OLD_DISKLABEL
1580 case ODIOCGDEFLABEL:
1581 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1582 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1583 return ENOTTY;
1584 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1585 break;
1586 #endif
1587
1588 default:
1589 retcode = ENOTTY;
1590 }
1591 return (retcode);
1592
1593 }
1594
1595
1596 /* raidinit -- complete the rest of the initialization for the
1597 RAIDframe device. */
1598
1599
1600 static void
1601 raidinit(RF_Raid_t *raidPtr)
1602 {
1603 struct raid_softc *rs;
1604 int unit;
1605
1606 unit = raidPtr->raidid;
1607
1608 rs = &raid_softc[unit];
1609
1610 /* XXX should check return code first... */
1611 rs->sc_flags |= RAIDF_INITED;
1612
1613 /* XXX doesn't check bounds. */
1614 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1615
1616 rs->sc_dkdev.dk_name = rs->sc_xname;
1617
1618 /* disk_attach actually creates space for the CPU disklabel, among
1619 * other things, so it's critical to call this *BEFORE* we try putzing
1620 * with disklabels. */
1621
1622 pseudo_disk_attach(&rs->sc_dkdev);
1623
1624 /* XXX There may be a weird interaction here between this, and
1625 * protectedSectors, as used in RAIDframe. */
1626
1627 rs->sc_size = raidPtr->totalSectors;
1628 }
1629 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1630 /* wake up the daemon & tell it to get us a spare table
1631 * XXX
1632 * the entries in the queues should be tagged with the raidPtr
1633 * so that in the extremely rare case that two recons happen at once,
1634 * we know for which device were requesting a spare table
1635 * XXX
1636 *
1637 * XXX This code is not currently used. GO
1638 */
1639 int
1640 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1641 {
1642 int retcode;
1643
1644 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1645 req->next = rf_sparet_wait_queue;
1646 rf_sparet_wait_queue = req;
1647 wakeup(&rf_sparet_wait_queue);
1648
1649 /* mpsleep unlocks the mutex */
1650 while (!rf_sparet_resp_queue) {
1651 tsleep(&rf_sparet_resp_queue, PRIBIO,
1652 "raidframe getsparetable", 0);
1653 }
1654 req = rf_sparet_resp_queue;
1655 rf_sparet_resp_queue = req->next;
1656 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1657
1658 retcode = req->fcol;
1659 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1660 * alloc'd */
1661 return (retcode);
1662 }
1663 #endif
1664
1665 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1666 * bp & passes it down.
1667 * any calls originating in the kernel must use non-blocking I/O
1668 * do some extra sanity checking to return "appropriate" error values for
1669 * certain conditions (to make some standard utilities work)
1670 *
1671 * Formerly known as: rf_DoAccessKernel
1672 */
1673 void
1674 raidstart(RF_Raid_t *raidPtr)
1675 {
1676 RF_SectorCount_t num_blocks, pb, sum;
1677 RF_RaidAddr_t raid_addr;
1678 struct partition *pp;
1679 daddr_t blocknum;
1680 int unit;
1681 struct raid_softc *rs;
1682 int do_async;
1683 struct buf *bp;
1684 int rc;
1685
1686 unit = raidPtr->raidid;
1687 rs = &raid_softc[unit];
1688
1689 /* quick check to see if anything has died recently */
1690 RF_LOCK_MUTEX(raidPtr->mutex);
1691 if (raidPtr->numNewFailures > 0) {
1692 RF_UNLOCK_MUTEX(raidPtr->mutex);
1693 rf_update_component_labels(raidPtr,
1694 RF_NORMAL_COMPONENT_UPDATE);
1695 RF_LOCK_MUTEX(raidPtr->mutex);
1696 raidPtr->numNewFailures--;
1697 }
1698
1699 /* Check to see if we're at the limit... */
1700 while (raidPtr->openings > 0) {
1701 RF_UNLOCK_MUTEX(raidPtr->mutex);
1702
1703 /* get the next item, if any, from the queue */
1704 if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1705 /* nothing more to do */
1706 return;
1707 }
1708
1709 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1710 * partition.. Need to make it absolute to the underlying
1711 * device.. */
1712
1713 blocknum = bp->b_blkno;
1714 if (DISKPART(bp->b_dev) != RAW_PART) {
1715 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1716 blocknum += pp->p_offset;
1717 }
1718
1719 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1720 (int) blocknum));
1721
1722 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1723 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1724
1725 /* *THIS* is where we adjust what block we're going to...
1726 * but DO NOT TOUCH bp->b_blkno!!! */
1727 raid_addr = blocknum;
1728
1729 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1730 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1731 sum = raid_addr + num_blocks + pb;
1732 if (1 || rf_debugKernelAccess) {
1733 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1734 (int) raid_addr, (int) sum, (int) num_blocks,
1735 (int) pb, (int) bp->b_resid));
1736 }
1737 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1738 || (sum < num_blocks) || (sum < pb)) {
1739 bp->b_error = ENOSPC;
1740 bp->b_flags |= B_ERROR;
1741 bp->b_resid = bp->b_bcount;
1742 biodone(bp);
1743 RF_LOCK_MUTEX(raidPtr->mutex);
1744 continue;
1745 }
1746 /*
1747 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1748 */
1749
1750 if (bp->b_bcount & raidPtr->sectorMask) {
1751 bp->b_error = EINVAL;
1752 bp->b_flags |= B_ERROR;
1753 bp->b_resid = bp->b_bcount;
1754 biodone(bp);
1755 RF_LOCK_MUTEX(raidPtr->mutex);
1756 continue;
1757
1758 }
1759 db1_printf(("Calling DoAccess..\n"));
1760
1761
1762 RF_LOCK_MUTEX(raidPtr->mutex);
1763 raidPtr->openings--;
1764 RF_UNLOCK_MUTEX(raidPtr->mutex);
1765
1766 /*
1767 * Everything is async.
1768 */
1769 do_async = 1;
1770
1771 disk_busy(&rs->sc_dkdev);
1772
1773 /* XXX we're still at splbio() here... do we *really*
1774 need to be? */
1775
1776 /* don't ever condition on bp->b_flags & B_WRITE.
1777 * always condition on B_READ instead */
1778
1779 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1780 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1781 do_async, raid_addr, num_blocks,
1782 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1783
1784 if (rc) {
1785 bp->b_error = rc;
1786 bp->b_flags |= B_ERROR;
1787 bp->b_resid = bp->b_bcount;
1788 biodone(bp);
1789 /* continue loop */
1790 }
1791
1792 RF_LOCK_MUTEX(raidPtr->mutex);
1793 }
1794 RF_UNLOCK_MUTEX(raidPtr->mutex);
1795 }
1796
1797
1798
1799
1800 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1801
1802 int
1803 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1804 {
1805 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1806 struct buf *bp;
1807 struct raidbuf *raidbp = NULL;
1808
1809 req->queue = queue;
1810
1811 #if DIAGNOSTIC
1812 if (queue->raidPtr->raidid >= numraid) {
1813 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1814 numraid);
1815 panic("Invalid Unit number in rf_DispatchKernelIO");
1816 }
1817 #endif
1818
1819 bp = req->bp;
1820 #if 1
1821 /* XXX when there is a physical disk failure, someone is passing us a
1822 * buffer that contains old stuff!! Attempt to deal with this problem
1823 * without taking a performance hit... (not sure where the real bug
1824 * is. It's buried in RAIDframe somewhere) :-( GO ) */
1825
1826 if (bp->b_flags & B_ERROR) {
1827 bp->b_flags &= ~B_ERROR;
1828 }
1829 if (bp->b_error != 0) {
1830 bp->b_error = 0;
1831 }
1832 #endif
1833 raidbp = pool_get(&rf_pools.cbuf, PR_NOWAIT);
1834 if (raidbp == NULL) {
1835 bp->b_flags |= B_ERROR;
1836 bp->b_error = ENOMEM;
1837 return (ENOMEM);
1838 }
1839 BUF_INIT(&raidbp->rf_buf);
1840
1841 /*
1842 * context for raidiodone
1843 */
1844 raidbp->rf_obp = bp;
1845 raidbp->req = req;
1846
1847 BIO_COPYPRIO(&raidbp->rf_buf, bp);
1848
1849 switch (req->type) {
1850 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1851 /* XXX need to do something extra here.. */
1852 /* I'm leaving this in, as I've never actually seen it used,
1853 * and I'd like folks to report it... GO */
1854 printf(("WAKEUP CALLED\n"));
1855 queue->numOutstanding++;
1856
1857 /* XXX need to glue the original buffer into this?? */
1858
1859 KernelWakeupFunc(&raidbp->rf_buf);
1860 break;
1861
1862 case RF_IO_TYPE_READ:
1863 case RF_IO_TYPE_WRITE:
1864 #if RF_ACC_TRACE > 0
1865 if (req->tracerec) {
1866 RF_ETIMER_START(req->tracerec->timer);
1867 }
1868 #endif
1869 InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
1870 op | bp->b_flags, queue->rf_cinfo->ci_dev,
1871 req->sectorOffset, req->numSector,
1872 req->buf, KernelWakeupFunc, (void *) req,
1873 queue->raidPtr->logBytesPerSector, req->b_proc);
1874
1875 if (rf_debugKernelAccess) {
1876 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1877 (long) bp->b_blkno));
1878 }
1879 queue->numOutstanding++;
1880 queue->last_deq_sector = req->sectorOffset;
1881 /* acc wouldn't have been let in if there were any pending
1882 * reqs at any other priority */
1883 queue->curPriority = req->priority;
1884
1885 db1_printf(("Going for %c to unit %d col %d\n",
1886 req->type, queue->raidPtr->raidid,
1887 queue->col));
1888 db1_printf(("sector %d count %d (%d bytes) %d\n",
1889 (int) req->sectorOffset, (int) req->numSector,
1890 (int) (req->numSector <<
1891 queue->raidPtr->logBytesPerSector),
1892 (int) queue->raidPtr->logBytesPerSector));
1893 if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
1894 raidbp->rf_buf.b_vp->v_numoutput++;
1895 }
1896 VOP_STRATEGY(raidbp->rf_buf.b_vp, &raidbp->rf_buf);
1897
1898 break;
1899
1900 default:
1901 panic("bad req->type in rf_DispatchKernelIO");
1902 }
1903 db1_printf(("Exiting from DispatchKernelIO\n"));
1904
1905 return (0);
1906 }
1907 /* this is the callback function associated with a I/O invoked from
1908 kernel code.
1909 */
1910 static void
1911 KernelWakeupFunc(struct buf *vbp)
1912 {
1913 RF_DiskQueueData_t *req = NULL;
1914 RF_DiskQueue_t *queue;
1915 struct raidbuf *raidbp = (struct raidbuf *) vbp;
1916 struct buf *bp;
1917 int s;
1918
1919 s = splbio();
1920 db1_printf(("recovering the request queue:\n"));
1921 req = raidbp->req;
1922
1923 bp = raidbp->rf_obp;
1924
1925 queue = (RF_DiskQueue_t *) req->queue;
1926
1927 if (raidbp->rf_buf.b_flags & B_ERROR) {
1928 bp->b_flags |= B_ERROR;
1929 bp->b_error = raidbp->rf_buf.b_error ?
1930 raidbp->rf_buf.b_error : EIO;
1931 }
1932
1933 /* XXX methinks this could be wrong... */
1934 #if 1
1935 bp->b_resid = raidbp->rf_buf.b_resid;
1936 #endif
1937 #if RF_ACC_TRACE > 0
1938 if (req->tracerec) {
1939 RF_ETIMER_STOP(req->tracerec->timer);
1940 RF_ETIMER_EVAL(req->tracerec->timer);
1941 RF_LOCK_MUTEX(rf_tracing_mutex);
1942 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1943 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1944 req->tracerec->num_phys_ios++;
1945 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1946 }
1947 #endif
1948 bp->b_bcount = raidbp->rf_buf.b_bcount; /* XXXX ?? */
1949
1950 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1951 * ballistic, and mark the component as hosed... */
1952
1953 if (bp->b_flags & B_ERROR) {
1954 /* Mark the disk as dead */
1955 /* but only mark it once... */
1956 /* and only if it wouldn't leave this RAID set
1957 completely broken */
1958 if (((queue->raidPtr->Disks[queue->col].status ==
1959 rf_ds_optimal) ||
1960 (queue->raidPtr->Disks[queue->col].status ==
1961 rf_ds_used_spare)) &&
1962 (queue->raidPtr->numFailures <
1963 queue->raidPtr->Layout.map->faultsTolerated)) {
1964 printf("raid%d: IO Error. Marking %s as failed.\n",
1965 queue->raidPtr->raidid,
1966 queue->raidPtr->Disks[queue->col].devname);
1967 queue->raidPtr->Disks[queue->col].status =
1968 rf_ds_failed;
1969 queue->raidPtr->status = rf_rs_degraded;
1970 queue->raidPtr->numFailures++;
1971 queue->raidPtr->numNewFailures++;
1972 } else { /* Disk is already dead... */
1973 /* printf("Disk already marked as dead!\n"); */
1974 }
1975
1976 }
1977
1978 pool_put(&rf_pools.cbuf, raidbp);
1979
1980 /* Fill in the error value */
1981
1982 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
1983
1984 simple_lock(&queue->raidPtr->iodone_lock);
1985
1986 /* Drop this one on the "finished" queue... */
1987 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
1988
1989 /* Let the raidio thread know there is work to be done. */
1990 wakeup(&(queue->raidPtr->iodone));
1991
1992 simple_unlock(&queue->raidPtr->iodone_lock);
1993
1994 splx(s);
1995 }
1996
1997
1998
1999 /*
2000 * initialize a buf structure for doing an I/O in the kernel.
2001 */
2002 static void
2003 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2004 RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t bf,
2005 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2006 struct proc *b_proc)
2007 {
2008 /* bp->b_flags = B_PHYS | rw_flag; */
2009 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2010 bp->b_bcount = numSect << logBytesPerSector;
2011 bp->b_bufsize = bp->b_bcount;
2012 bp->b_error = 0;
2013 bp->b_dev = dev;
2014 bp->b_data = bf;
2015 bp->b_blkno = startSect;
2016 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2017 if (bp->b_bcount == 0) {
2018 panic("bp->b_bcount is zero in InitBP!!");
2019 }
2020 bp->b_proc = b_proc;
2021 bp->b_iodone = cbFunc;
2022 bp->b_vp = b_vp;
2023
2024 }
2025
2026 static void
2027 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2028 struct disklabel *lp)
2029 {
2030 memset(lp, 0, sizeof(*lp));
2031
2032 /* fabricate a label... */
2033 lp->d_secperunit = raidPtr->totalSectors;
2034 lp->d_secsize = raidPtr->bytesPerSector;
2035 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2036 lp->d_ntracks = 4 * raidPtr->numCol;
2037 lp->d_ncylinders = raidPtr->totalSectors /
2038 (lp->d_nsectors * lp->d_ntracks);
2039 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2040
2041 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2042 lp->d_type = DTYPE_RAID;
2043 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2044 lp->d_rpm = 3600;
2045 lp->d_interleave = 1;
2046 lp->d_flags = 0;
2047
2048 lp->d_partitions[RAW_PART].p_offset = 0;
2049 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2050 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2051 lp->d_npartitions = RAW_PART + 1;
2052
2053 lp->d_magic = DISKMAGIC;
2054 lp->d_magic2 = DISKMAGIC;
2055 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2056
2057 }
2058 /*
2059 * Read the disklabel from the raid device. If one is not present, fake one
2060 * up.
2061 */
2062 static void
2063 raidgetdisklabel(dev_t dev)
2064 {
2065 int unit = raidunit(dev);
2066 struct raid_softc *rs = &raid_softc[unit];
2067 const char *errstring;
2068 struct disklabel *lp = rs->sc_dkdev.dk_label;
2069 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2070 RF_Raid_t *raidPtr;
2071
2072 db1_printf(("Getting the disklabel...\n"));
2073
2074 memset(clp, 0, sizeof(*clp));
2075
2076 raidPtr = raidPtrs[unit];
2077
2078 raidgetdefaultlabel(raidPtr, rs, lp);
2079
2080 /*
2081 * Call the generic disklabel extraction routine.
2082 */
2083 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2084 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2085 if (errstring)
2086 raidmakedisklabel(rs);
2087 else {
2088 int i;
2089 struct partition *pp;
2090
2091 /*
2092 * Sanity check whether the found disklabel is valid.
2093 *
2094 * This is necessary since total size of the raid device
2095 * may vary when an interleave is changed even though exactly
2096 * same componets are used, and old disklabel may used
2097 * if that is found.
2098 */
2099 if (lp->d_secperunit != rs->sc_size)
2100 printf("raid%d: WARNING: %s: "
2101 "total sector size in disklabel (%d) != "
2102 "the size of raid (%ld)\n", unit, rs->sc_xname,
2103 lp->d_secperunit, (long) rs->sc_size);
2104 for (i = 0; i < lp->d_npartitions; i++) {
2105 pp = &lp->d_partitions[i];
2106 if (pp->p_offset + pp->p_size > rs->sc_size)
2107 printf("raid%d: WARNING: %s: end of partition `%c' "
2108 "exceeds the size of raid (%ld)\n",
2109 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2110 }
2111 }
2112
2113 }
2114 /*
2115 * Take care of things one might want to take care of in the event
2116 * that a disklabel isn't present.
2117 */
2118 static void
2119 raidmakedisklabel(struct raid_softc *rs)
2120 {
2121 struct disklabel *lp = rs->sc_dkdev.dk_label;
2122 db1_printf(("Making a label..\n"));
2123
2124 /*
2125 * For historical reasons, if there's no disklabel present
2126 * the raw partition must be marked FS_BSDFFS.
2127 */
2128
2129 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2130
2131 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2132
2133 lp->d_checksum = dkcksum(lp);
2134 }
2135 /*
2136 * Lookup the provided name in the filesystem. If the file exists,
2137 * is a valid block device, and isn't being used by anyone else,
2138 * set *vpp to the file's vnode.
2139 * You'll find the original of this in ccd.c
2140 */
2141 int
2142 raidlookup(char *path, struct lwp *l, struct vnode **vpp)
2143 {
2144 struct nameidata nd;
2145 struct vnode *vp;
2146 struct proc *p;
2147 struct vattr va;
2148 int error;
2149
2150 p = l ? l->l_proc : NULL;
2151 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, l);
2152 if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
2153 return (error);
2154 }
2155 vp = nd.ni_vp;
2156 if (vp->v_usecount > 1) {
2157 VOP_UNLOCK(vp, 0);
2158 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2159 return (EBUSY);
2160 }
2161 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)) != 0) {
2162 VOP_UNLOCK(vp, 0);
2163 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2164 return (error);
2165 }
2166 /* XXX: eventually we should handle VREG, too. */
2167 if (va.va_type != VBLK) {
2168 VOP_UNLOCK(vp, 0);
2169 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2170 return (ENOTBLK);
2171 }
2172 VOP_UNLOCK(vp, 0);
2173 *vpp = vp;
2174 return (0);
2175 }
2176 /*
2177 * Wait interruptibly for an exclusive lock.
2178 *
2179 * XXX
2180 * Several drivers do this; it should be abstracted and made MP-safe.
2181 * (Hmm... where have we seen this warning before :-> GO )
2182 */
2183 static int
2184 raidlock(struct raid_softc *rs)
2185 {
2186 int error;
2187
2188 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2189 rs->sc_flags |= RAIDF_WANTED;
2190 if ((error =
2191 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2192 return (error);
2193 }
2194 rs->sc_flags |= RAIDF_LOCKED;
2195 return (0);
2196 }
2197 /*
2198 * Unlock and wake up any waiters.
2199 */
2200 static void
2201 raidunlock(struct raid_softc *rs)
2202 {
2203
2204 rs->sc_flags &= ~RAIDF_LOCKED;
2205 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2206 rs->sc_flags &= ~RAIDF_WANTED;
2207 wakeup(rs);
2208 }
2209 }
2210
2211
2212 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2213 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2214
2215 int
2216 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2217 {
2218 RF_ComponentLabel_t clabel;
2219 raidread_component_label(dev, b_vp, &clabel);
2220 clabel.mod_counter = mod_counter;
2221 clabel.clean = RF_RAID_CLEAN;
2222 raidwrite_component_label(dev, b_vp, &clabel);
2223 return(0);
2224 }
2225
2226
2227 int
2228 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2229 {
2230 RF_ComponentLabel_t clabel;
2231 raidread_component_label(dev, b_vp, &clabel);
2232 clabel.mod_counter = mod_counter;
2233 clabel.clean = RF_RAID_DIRTY;
2234 raidwrite_component_label(dev, b_vp, &clabel);
2235 return(0);
2236 }
2237
2238 /* ARGSUSED */
2239 int
2240 raidread_component_label(dev_t dev, struct vnode *b_vp,
2241 RF_ComponentLabel_t *clabel)
2242 {
2243 struct buf *bp;
2244 const struct bdevsw *bdev;
2245 int error;
2246
2247 /* XXX should probably ensure that we don't try to do this if
2248 someone has changed rf_protected_sectors. */
2249
2250 if (b_vp == NULL) {
2251 /* For whatever reason, this component is not valid.
2252 Don't try to read a component label from it. */
2253 return(EINVAL);
2254 }
2255
2256 /* get a block of the appropriate size... */
2257 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2258 bp->b_dev = dev;
2259
2260 /* get our ducks in a row for the read */
2261 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2262 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2263 bp->b_flags |= B_READ;
2264 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2265
2266 bdev = bdevsw_lookup(bp->b_dev);
2267 if (bdev == NULL)
2268 return (ENXIO);
2269 (*bdev->d_strategy)(bp);
2270
2271 error = biowait(bp);
2272
2273 if (!error) {
2274 memcpy(clabel, bp->b_data,
2275 sizeof(RF_ComponentLabel_t));
2276 }
2277
2278 brelse(bp);
2279 return(error);
2280 }
2281 /* ARGSUSED */
2282 int
2283 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2284 RF_ComponentLabel_t *clabel)
2285 {
2286 struct buf *bp;
2287 const struct bdevsw *bdev;
2288 int error;
2289
2290 /* get a block of the appropriate size... */
2291 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2292 bp->b_dev = dev;
2293
2294 /* get our ducks in a row for the write */
2295 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2296 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2297 bp->b_flags |= B_WRITE;
2298 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2299
2300 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2301
2302 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2303
2304 bdev = bdevsw_lookup(bp->b_dev);
2305 if (bdev == NULL)
2306 return (ENXIO);
2307 (*bdev->d_strategy)(bp);
2308 error = biowait(bp);
2309 brelse(bp);
2310 if (error) {
2311 #if 1
2312 printf("Failed to write RAID component info!\n");
2313 #endif
2314 }
2315
2316 return(error);
2317 }
2318
2319 void
2320 rf_markalldirty(RF_Raid_t *raidPtr)
2321 {
2322 RF_ComponentLabel_t clabel;
2323 int sparecol;
2324 int c;
2325 int j;
2326 int scol = -1;
2327
2328 raidPtr->mod_counter++;
2329 for (c = 0; c < raidPtr->numCol; c++) {
2330 /* we don't want to touch (at all) a disk that has
2331 failed */
2332 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2333 raidread_component_label(
2334 raidPtr->Disks[c].dev,
2335 raidPtr->raid_cinfo[c].ci_vp,
2336 &clabel);
2337 if (clabel.status == rf_ds_spared) {
2338 /* XXX do something special...
2339 but whatever you do, don't
2340 try to access it!! */
2341 } else {
2342 raidmarkdirty(
2343 raidPtr->Disks[c].dev,
2344 raidPtr->raid_cinfo[c].ci_vp,
2345 raidPtr->mod_counter);
2346 }
2347 }
2348 }
2349
2350 for( c = 0; c < raidPtr->numSpare ; c++) {
2351 sparecol = raidPtr->numCol + c;
2352 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2353 /*
2354
2355 we claim this disk is "optimal" if it's
2356 rf_ds_used_spare, as that means it should be
2357 directly substitutable for the disk it replaced.
2358 We note that too...
2359
2360 */
2361
2362 for(j=0;j<raidPtr->numCol;j++) {
2363 if (raidPtr->Disks[j].spareCol == sparecol) {
2364 scol = j;
2365 break;
2366 }
2367 }
2368
2369 raidread_component_label(
2370 raidPtr->Disks[sparecol].dev,
2371 raidPtr->raid_cinfo[sparecol].ci_vp,
2372 &clabel);
2373 /* make sure status is noted */
2374
2375 raid_init_component_label(raidPtr, &clabel);
2376
2377 clabel.row = 0;
2378 clabel.column = scol;
2379 /* Note: we *don't* change status from rf_ds_used_spare
2380 to rf_ds_optimal */
2381 /* clabel.status = rf_ds_optimal; */
2382
2383 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2384 raidPtr->raid_cinfo[sparecol].ci_vp,
2385 raidPtr->mod_counter);
2386 }
2387 }
2388 }
2389
2390
2391 void
2392 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2393 {
2394 RF_ComponentLabel_t clabel;
2395 int sparecol;
2396 int c;
2397 int j;
2398 int scol;
2399
2400 scol = -1;
2401
2402 /* XXX should do extra checks to make sure things really are clean,
2403 rather than blindly setting the clean bit... */
2404
2405 raidPtr->mod_counter++;
2406
2407 for (c = 0; c < raidPtr->numCol; c++) {
2408 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2409 raidread_component_label(
2410 raidPtr->Disks[c].dev,
2411 raidPtr->raid_cinfo[c].ci_vp,
2412 &clabel);
2413 /* make sure status is noted */
2414 clabel.status = rf_ds_optimal;
2415 /* bump the counter */
2416 clabel.mod_counter = raidPtr->mod_counter;
2417
2418 raidwrite_component_label(
2419 raidPtr->Disks[c].dev,
2420 raidPtr->raid_cinfo[c].ci_vp,
2421 &clabel);
2422 if (final == RF_FINAL_COMPONENT_UPDATE) {
2423 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2424 raidmarkclean(
2425 raidPtr->Disks[c].dev,
2426 raidPtr->raid_cinfo[c].ci_vp,
2427 raidPtr->mod_counter);
2428 }
2429 }
2430 }
2431 /* else we don't touch it.. */
2432 }
2433
2434 for( c = 0; c < raidPtr->numSpare ; c++) {
2435 sparecol = raidPtr->numCol + c;
2436 /* Need to ensure that the reconstruct actually completed! */
2437 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2438 /*
2439
2440 we claim this disk is "optimal" if it's
2441 rf_ds_used_spare, as that means it should be
2442 directly substitutable for the disk it replaced.
2443 We note that too...
2444
2445 */
2446
2447 for(j=0;j<raidPtr->numCol;j++) {
2448 if (raidPtr->Disks[j].spareCol == sparecol) {
2449 scol = j;
2450 break;
2451 }
2452 }
2453
2454 /* XXX shouldn't *really* need this... */
2455 raidread_component_label(
2456 raidPtr->Disks[sparecol].dev,
2457 raidPtr->raid_cinfo[sparecol].ci_vp,
2458 &clabel);
2459 /* make sure status is noted */
2460
2461 raid_init_component_label(raidPtr, &clabel);
2462
2463 clabel.mod_counter = raidPtr->mod_counter;
2464 clabel.column = scol;
2465 clabel.status = rf_ds_optimal;
2466
2467 raidwrite_component_label(
2468 raidPtr->Disks[sparecol].dev,
2469 raidPtr->raid_cinfo[sparecol].ci_vp,
2470 &clabel);
2471 if (final == RF_FINAL_COMPONENT_UPDATE) {
2472 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2473 raidmarkclean( raidPtr->Disks[sparecol].dev,
2474 raidPtr->raid_cinfo[sparecol].ci_vp,
2475 raidPtr->mod_counter);
2476 }
2477 }
2478 }
2479 }
2480 }
2481
2482 void
2483 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2484 {
2485 struct proc *p;
2486 struct lwp *l;
2487
2488 p = raidPtr->engine_thread;
2489 l = LIST_FIRST(&p->p_lwps);
2490
2491 if (vp != NULL) {
2492 if (auto_configured == 1) {
2493 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2494 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2495 vput(vp);
2496
2497 } else {
2498 (void) vn_close(vp, FREAD | FWRITE, p->p_ucred, l);
2499 }
2500 }
2501 }
2502
2503
2504 void
2505 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2506 {
2507 int r,c;
2508 struct vnode *vp;
2509 int acd;
2510
2511
2512 /* We take this opportunity to close the vnodes like we should.. */
2513
2514 for (c = 0; c < raidPtr->numCol; c++) {
2515 vp = raidPtr->raid_cinfo[c].ci_vp;
2516 acd = raidPtr->Disks[c].auto_configured;
2517 rf_close_component(raidPtr, vp, acd);
2518 raidPtr->raid_cinfo[c].ci_vp = NULL;
2519 raidPtr->Disks[c].auto_configured = 0;
2520 }
2521
2522 for (r = 0; r < raidPtr->numSpare; r++) {
2523 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2524 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2525 rf_close_component(raidPtr, vp, acd);
2526 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2527 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2528 }
2529 }
2530
2531
2532 void
2533 rf_ReconThread(struct rf_recon_req *req)
2534 {
2535 int s;
2536 RF_Raid_t *raidPtr;
2537
2538 s = splbio();
2539 raidPtr = (RF_Raid_t *) req->raidPtr;
2540 raidPtr->recon_in_progress = 1;
2541
2542 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2543 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2544
2545 RF_Free(req, sizeof(*req));
2546
2547 raidPtr->recon_in_progress = 0;
2548 splx(s);
2549
2550 /* That's all... */
2551 kthread_exit(0); /* does not return */
2552 }
2553
2554 void
2555 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2556 {
2557 int retcode;
2558 int s;
2559
2560 raidPtr->parity_rewrite_stripes_done = 0;
2561 raidPtr->parity_rewrite_in_progress = 1;
2562 s = splbio();
2563 retcode = rf_RewriteParity(raidPtr);
2564 splx(s);
2565 if (retcode) {
2566 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2567 } else {
2568 /* set the clean bit! If we shutdown correctly,
2569 the clean bit on each component label will get
2570 set */
2571 raidPtr->parity_good = RF_RAID_CLEAN;
2572 }
2573 raidPtr->parity_rewrite_in_progress = 0;
2574
2575 /* Anyone waiting for us to stop? If so, inform them... */
2576 if (raidPtr->waitShutdown) {
2577 wakeup(&raidPtr->parity_rewrite_in_progress);
2578 }
2579
2580 /* That's all... */
2581 kthread_exit(0); /* does not return */
2582 }
2583
2584
2585 void
2586 rf_CopybackThread(RF_Raid_t *raidPtr)
2587 {
2588 int s;
2589
2590 raidPtr->copyback_in_progress = 1;
2591 s = splbio();
2592 rf_CopybackReconstructedData(raidPtr);
2593 splx(s);
2594 raidPtr->copyback_in_progress = 0;
2595
2596 /* That's all... */
2597 kthread_exit(0); /* does not return */
2598 }
2599
2600
2601 void
2602 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2603 {
2604 int s;
2605 RF_Raid_t *raidPtr;
2606
2607 s = splbio();
2608 raidPtr = req->raidPtr;
2609 raidPtr->recon_in_progress = 1;
2610 rf_ReconstructInPlace(raidPtr, req->col);
2611 RF_Free(req, sizeof(*req));
2612 raidPtr->recon_in_progress = 0;
2613 splx(s);
2614
2615 /* That's all... */
2616 kthread_exit(0); /* does not return */
2617 }
2618
2619 RF_AutoConfig_t *
2620 rf_find_raid_components()
2621 {
2622 struct vnode *vp;
2623 struct disklabel label;
2624 struct device *dv;
2625 dev_t dev;
2626 int bmajor;
2627 int error;
2628 int i;
2629 int good_one;
2630 RF_ComponentLabel_t *clabel;
2631 RF_AutoConfig_t *ac_list;
2632 RF_AutoConfig_t *ac;
2633
2634
2635 /* initialize the AutoConfig list */
2636 ac_list = NULL;
2637
2638 /* we begin by trolling through *all* the devices on the system */
2639
2640 for (dv = alldevs.tqh_first; dv != NULL;
2641 dv = dv->dv_list.tqe_next) {
2642
2643 /* we are only interested in disks... */
2644 if (dv->dv_class != DV_DISK)
2645 continue;
2646
2647 /* we don't care about floppies... */
2648 if (!strcmp(dv->dv_cfdata->cf_name,"fd")) {
2649 continue;
2650 }
2651
2652 /* we don't care about CD's... */
2653 if (!strcmp(dv->dv_cfdata->cf_name,"cd")) {
2654 continue;
2655 }
2656
2657 /* hdfd is the Atari/Hades floppy driver */
2658 if (!strcmp(dv->dv_cfdata->cf_name,"hdfd")) {
2659 continue;
2660 }
2661 /* fdisa is the Atari/Milan floppy driver */
2662 if (!strcmp(dv->dv_cfdata->cf_name,"fdisa")) {
2663 continue;
2664 }
2665
2666 /* need to find the device_name_to_block_device_major stuff */
2667 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2668
2669 /* get a vnode for the raw partition of this disk */
2670
2671 dev = MAKEDISKDEV(bmajor, dv->dv_unit, RAW_PART);
2672 if (bdevvp(dev, &vp))
2673 panic("RAID can't alloc vnode");
2674
2675 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2676
2677 if (error) {
2678 /* "Who cares." Continue looking
2679 for something that exists*/
2680 vput(vp);
2681 continue;
2682 }
2683
2684 /* Ok, the disk exists. Go get the disklabel. */
2685 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2686 if (error) {
2687 /*
2688 * XXX can't happen - open() would
2689 * have errored out (or faked up one)
2690 */
2691 if (error != ENOTTY)
2692 printf("RAIDframe: can't get label for dev "
2693 "%s (%d)\n", dv->dv_xname, error);
2694 }
2695
2696 /* don't need this any more. We'll allocate it again
2697 a little later if we really do... */
2698 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2699 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2700 vput(vp);
2701
2702 if (error)
2703 continue;
2704
2705 for (i=0; i < label.d_npartitions; i++) {
2706 /* We only support partitions marked as RAID */
2707 if (label.d_partitions[i].p_fstype != FS_RAID)
2708 continue;
2709
2710 dev = MAKEDISKDEV(bmajor, dv->dv_unit, i);
2711 if (bdevvp(dev, &vp))
2712 panic("RAID can't alloc vnode");
2713
2714 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2715 if (error) {
2716 /* Whatever... */
2717 vput(vp);
2718 continue;
2719 }
2720
2721 good_one = 0;
2722
2723 clabel = (RF_ComponentLabel_t *)
2724 malloc(sizeof(RF_ComponentLabel_t),
2725 M_RAIDFRAME, M_NOWAIT);
2726 if (clabel == NULL) {
2727 /* XXX CLEANUP HERE */
2728 printf("RAID auto config: out of memory!\n");
2729 return(NULL); /* XXX probably should panic? */
2730 }
2731
2732 if (!raidread_component_label(dev, vp, clabel)) {
2733 /* Got the label. Does it look reasonable? */
2734 if (rf_reasonable_label(clabel) &&
2735 (clabel->partitionSize <=
2736 label.d_partitions[i].p_size)) {
2737 #if DEBUG
2738 printf("Component on: %s%c: %d\n",
2739 dv->dv_xname, 'a'+i,
2740 label.d_partitions[i].p_size);
2741 rf_print_component_label(clabel);
2742 #endif
2743 /* if it's reasonable, add it,
2744 else ignore it. */
2745 ac = (RF_AutoConfig_t *)
2746 malloc(sizeof(RF_AutoConfig_t),
2747 M_RAIDFRAME,
2748 M_NOWAIT);
2749 if (ac == NULL) {
2750 /* XXX should panic?? */
2751 return(NULL);
2752 }
2753
2754 snprintf(ac->devname,
2755 sizeof(ac->devname), "%s%c",
2756 dv->dv_xname, 'a'+i);
2757 ac->dev = dev;
2758 ac->vp = vp;
2759 ac->clabel = clabel;
2760 ac->next = ac_list;
2761 ac_list = ac;
2762 good_one = 1;
2763 }
2764 }
2765 if (!good_one) {
2766 /* cleanup */
2767 free(clabel, M_RAIDFRAME);
2768 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2769 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2770 vput(vp);
2771 }
2772 }
2773 }
2774 return(ac_list);
2775 }
2776
2777 static int
2778 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2779 {
2780
2781 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2782 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2783 ((clabel->clean == RF_RAID_CLEAN) ||
2784 (clabel->clean == RF_RAID_DIRTY)) &&
2785 clabel->row >=0 &&
2786 clabel->column >= 0 &&
2787 clabel->num_rows > 0 &&
2788 clabel->num_columns > 0 &&
2789 clabel->row < clabel->num_rows &&
2790 clabel->column < clabel->num_columns &&
2791 clabel->blockSize > 0 &&
2792 clabel->numBlocks > 0) {
2793 /* label looks reasonable enough... */
2794 return(1);
2795 }
2796 return(0);
2797 }
2798
2799
2800 #if DEBUG
2801 void
2802 rf_print_component_label(RF_ComponentLabel_t *clabel)
2803 {
2804 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2805 clabel->row, clabel->column,
2806 clabel->num_rows, clabel->num_columns);
2807 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2808 clabel->version, clabel->serial_number,
2809 clabel->mod_counter);
2810 printf(" Clean: %s Status: %d\n",
2811 clabel->clean ? "Yes" : "No", clabel->status );
2812 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2813 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2814 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2815 (char) clabel->parityConfig, clabel->blockSize,
2816 clabel->numBlocks);
2817 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2818 printf(" Contains root partition: %s\n",
2819 clabel->root_partition ? "Yes" : "No" );
2820 printf(" Last configured as: raid%d\n", clabel->last_unit );
2821 #if 0
2822 printf(" Config order: %d\n", clabel->config_order);
2823 #endif
2824
2825 }
2826 #endif
2827
2828 RF_ConfigSet_t *
2829 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2830 {
2831 RF_AutoConfig_t *ac;
2832 RF_ConfigSet_t *config_sets;
2833 RF_ConfigSet_t *cset;
2834 RF_AutoConfig_t *ac_next;
2835
2836
2837 config_sets = NULL;
2838
2839 /* Go through the AutoConfig list, and figure out which components
2840 belong to what sets. */
2841 ac = ac_list;
2842 while(ac!=NULL) {
2843 /* we're going to putz with ac->next, so save it here
2844 for use at the end of the loop */
2845 ac_next = ac->next;
2846
2847 if (config_sets == NULL) {
2848 /* will need at least this one... */
2849 config_sets = (RF_ConfigSet_t *)
2850 malloc(sizeof(RF_ConfigSet_t),
2851 M_RAIDFRAME, M_NOWAIT);
2852 if (config_sets == NULL) {
2853 panic("rf_create_auto_sets: No memory!");
2854 }
2855 /* this one is easy :) */
2856 config_sets->ac = ac;
2857 config_sets->next = NULL;
2858 config_sets->rootable = 0;
2859 ac->next = NULL;
2860 } else {
2861 /* which set does this component fit into? */
2862 cset = config_sets;
2863 while(cset!=NULL) {
2864 if (rf_does_it_fit(cset, ac)) {
2865 /* looks like it matches... */
2866 ac->next = cset->ac;
2867 cset->ac = ac;
2868 break;
2869 }
2870 cset = cset->next;
2871 }
2872 if (cset==NULL) {
2873 /* didn't find a match above... new set..*/
2874 cset = (RF_ConfigSet_t *)
2875 malloc(sizeof(RF_ConfigSet_t),
2876 M_RAIDFRAME, M_NOWAIT);
2877 if (cset == NULL) {
2878 panic("rf_create_auto_sets: No memory!");
2879 }
2880 cset->ac = ac;
2881 ac->next = NULL;
2882 cset->next = config_sets;
2883 cset->rootable = 0;
2884 config_sets = cset;
2885 }
2886 }
2887 ac = ac_next;
2888 }
2889
2890
2891 return(config_sets);
2892 }
2893
2894 static int
2895 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2896 {
2897 RF_ComponentLabel_t *clabel1, *clabel2;
2898
2899 /* If this one matches the *first* one in the set, that's good
2900 enough, since the other members of the set would have been
2901 through here too... */
2902 /* note that we are not checking partitionSize here..
2903
2904 Note that we are also not checking the mod_counters here.
2905 If everything else matches execpt the mod_counter, that's
2906 good enough for this test. We will deal with the mod_counters
2907 a little later in the autoconfiguration process.
2908
2909 (clabel1->mod_counter == clabel2->mod_counter) &&
2910
2911 The reason we don't check for this is that failed disks
2912 will have lower modification counts. If those disks are
2913 not added to the set they used to belong to, then they will
2914 form their own set, which may result in 2 different sets,
2915 for example, competing to be configured at raid0, and
2916 perhaps competing to be the root filesystem set. If the
2917 wrong ones get configured, or both attempt to become /,
2918 weird behaviour and or serious lossage will occur. Thus we
2919 need to bring them into the fold here, and kick them out at
2920 a later point.
2921
2922 */
2923
2924 clabel1 = cset->ac->clabel;
2925 clabel2 = ac->clabel;
2926 if ((clabel1->version == clabel2->version) &&
2927 (clabel1->serial_number == clabel2->serial_number) &&
2928 (clabel1->num_rows == clabel2->num_rows) &&
2929 (clabel1->num_columns == clabel2->num_columns) &&
2930 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2931 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2932 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2933 (clabel1->parityConfig == clabel2->parityConfig) &&
2934 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2935 (clabel1->blockSize == clabel2->blockSize) &&
2936 (clabel1->numBlocks == clabel2->numBlocks) &&
2937 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2938 (clabel1->root_partition == clabel2->root_partition) &&
2939 (clabel1->last_unit == clabel2->last_unit) &&
2940 (clabel1->config_order == clabel2->config_order)) {
2941 /* if it get's here, it almost *has* to be a match */
2942 } else {
2943 /* it's not consistent with somebody in the set..
2944 punt */
2945 return(0);
2946 }
2947 /* all was fine.. it must fit... */
2948 return(1);
2949 }
2950
2951 int
2952 rf_have_enough_components(RF_ConfigSet_t *cset)
2953 {
2954 RF_AutoConfig_t *ac;
2955 RF_AutoConfig_t *auto_config;
2956 RF_ComponentLabel_t *clabel;
2957 int c;
2958 int num_cols;
2959 int num_missing;
2960 int mod_counter;
2961 int mod_counter_found;
2962 int even_pair_failed;
2963 char parity_type;
2964
2965
2966 /* check to see that we have enough 'live' components
2967 of this set. If so, we can configure it if necessary */
2968
2969 num_cols = cset->ac->clabel->num_columns;
2970 parity_type = cset->ac->clabel->parityConfig;
2971
2972 /* XXX Check for duplicate components!?!?!? */
2973
2974 /* Determine what the mod_counter is supposed to be for this set. */
2975
2976 mod_counter_found = 0;
2977 mod_counter = 0;
2978 ac = cset->ac;
2979 while(ac!=NULL) {
2980 if (mod_counter_found==0) {
2981 mod_counter = ac->clabel->mod_counter;
2982 mod_counter_found = 1;
2983 } else {
2984 if (ac->clabel->mod_counter > mod_counter) {
2985 mod_counter = ac->clabel->mod_counter;
2986 }
2987 }
2988 ac = ac->next;
2989 }
2990
2991 num_missing = 0;
2992 auto_config = cset->ac;
2993
2994 even_pair_failed = 0;
2995 for(c=0; c<num_cols; c++) {
2996 ac = auto_config;
2997 while(ac!=NULL) {
2998 if ((ac->clabel->column == c) &&
2999 (ac->clabel->mod_counter == mod_counter)) {
3000 /* it's this one... */
3001 #if DEBUG
3002 printf("Found: %s at %d\n",
3003 ac->devname,c);
3004 #endif
3005 break;
3006 }
3007 ac=ac->next;
3008 }
3009 if (ac==NULL) {
3010 /* Didn't find one here! */
3011 /* special case for RAID 1, especially
3012 where there are more than 2
3013 components (where RAIDframe treats
3014 things a little differently :( ) */
3015 if (parity_type == '1') {
3016 if (c%2 == 0) { /* even component */
3017 even_pair_failed = 1;
3018 } else { /* odd component. If
3019 we're failed, and
3020 so is the even
3021 component, it's
3022 "Good Night, Charlie" */
3023 if (even_pair_failed == 1) {
3024 return(0);
3025 }
3026 }
3027 } else {
3028 /* normal accounting */
3029 num_missing++;
3030 }
3031 }
3032 if ((parity_type == '1') && (c%2 == 1)) {
3033 /* Just did an even component, and we didn't
3034 bail.. reset the even_pair_failed flag,
3035 and go on to the next component.... */
3036 even_pair_failed = 0;
3037 }
3038 }
3039
3040 clabel = cset->ac->clabel;
3041
3042 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3043 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3044 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3045 /* XXX this needs to be made *much* more general */
3046 /* Too many failures */
3047 return(0);
3048 }
3049 /* otherwise, all is well, and we've got enough to take a kick
3050 at autoconfiguring this set */
3051 return(1);
3052 }
3053
3054 void
3055 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3056 RF_Raid_t *raidPtr)
3057 {
3058 RF_ComponentLabel_t *clabel;
3059 int i;
3060
3061 clabel = ac->clabel;
3062
3063 /* 1. Fill in the common stuff */
3064 config->numRow = clabel->num_rows = 1;
3065 config->numCol = clabel->num_columns;
3066 config->numSpare = 0; /* XXX should this be set here? */
3067 config->sectPerSU = clabel->sectPerSU;
3068 config->SUsPerPU = clabel->SUsPerPU;
3069 config->SUsPerRU = clabel->SUsPerRU;
3070 config->parityConfig = clabel->parityConfig;
3071 /* XXX... */
3072 strcpy(config->diskQueueType,"fifo");
3073 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3074 config->layoutSpecificSize = 0; /* XXX ?? */
3075
3076 while(ac!=NULL) {
3077 /* row/col values will be in range due to the checks
3078 in reasonable_label() */
3079 strcpy(config->devnames[0][ac->clabel->column],
3080 ac->devname);
3081 ac = ac->next;
3082 }
3083
3084 for(i=0;i<RF_MAXDBGV;i++) {
3085 config->debugVars[i][0] = 0;
3086 }
3087 }
3088
3089 int
3090 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3091 {
3092 RF_ComponentLabel_t clabel;
3093 struct vnode *vp;
3094 dev_t dev;
3095 int column;
3096 int sparecol;
3097
3098 raidPtr->autoconfigure = new_value;
3099
3100 for(column=0; column<raidPtr->numCol; column++) {
3101 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3102 dev = raidPtr->Disks[column].dev;
3103 vp = raidPtr->raid_cinfo[column].ci_vp;
3104 raidread_component_label(dev, vp, &clabel);
3105 clabel.autoconfigure = new_value;
3106 raidwrite_component_label(dev, vp, &clabel);
3107 }
3108 }
3109 for(column = 0; column < raidPtr->numSpare ; column++) {
3110 sparecol = raidPtr->numCol + column;
3111 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3112 dev = raidPtr->Disks[sparecol].dev;
3113 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3114 raidread_component_label(dev, vp, &clabel);
3115 clabel.autoconfigure = new_value;
3116 raidwrite_component_label(dev, vp, &clabel);
3117 }
3118 }
3119 return(new_value);
3120 }
3121
3122 int
3123 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3124 {
3125 RF_ComponentLabel_t clabel;
3126 struct vnode *vp;
3127 dev_t dev;
3128 int column;
3129 int sparecol;
3130
3131 raidPtr->root_partition = new_value;
3132 for(column=0; column<raidPtr->numCol; column++) {
3133 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3134 dev = raidPtr->Disks[column].dev;
3135 vp = raidPtr->raid_cinfo[column].ci_vp;
3136 raidread_component_label(dev, vp, &clabel);
3137 clabel.root_partition = new_value;
3138 raidwrite_component_label(dev, vp, &clabel);
3139 }
3140 }
3141 for(column = 0; column < raidPtr->numSpare ; column++) {
3142 sparecol = raidPtr->numCol + column;
3143 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3144 dev = raidPtr->Disks[sparecol].dev;
3145 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3146 raidread_component_label(dev, vp, &clabel);
3147 clabel.root_partition = new_value;
3148 raidwrite_component_label(dev, vp, &clabel);
3149 }
3150 }
3151 return(new_value);
3152 }
3153
3154 void
3155 rf_release_all_vps(RF_ConfigSet_t *cset)
3156 {
3157 RF_AutoConfig_t *ac;
3158
3159 ac = cset->ac;
3160 while(ac!=NULL) {
3161 /* Close the vp, and give it back */
3162 if (ac->vp) {
3163 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3164 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3165 vput(ac->vp);
3166 ac->vp = NULL;
3167 }
3168 ac = ac->next;
3169 }
3170 }
3171
3172
3173 void
3174 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3175 {
3176 RF_AutoConfig_t *ac;
3177 RF_AutoConfig_t *next_ac;
3178
3179 ac = cset->ac;
3180 while(ac!=NULL) {
3181 next_ac = ac->next;
3182 /* nuke the label */
3183 free(ac->clabel, M_RAIDFRAME);
3184 /* cleanup the config structure */
3185 free(ac, M_RAIDFRAME);
3186 /* "next.." */
3187 ac = next_ac;
3188 }
3189 /* and, finally, nuke the config set */
3190 free(cset, M_RAIDFRAME);
3191 }
3192
3193
3194 void
3195 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3196 {
3197 /* current version number */
3198 clabel->version = RF_COMPONENT_LABEL_VERSION;
3199 clabel->serial_number = raidPtr->serial_number;
3200 clabel->mod_counter = raidPtr->mod_counter;
3201 clabel->num_rows = 1;
3202 clabel->num_columns = raidPtr->numCol;
3203 clabel->clean = RF_RAID_DIRTY; /* not clean */
3204 clabel->status = rf_ds_optimal; /* "It's good!" */
3205
3206 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3207 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3208 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3209
3210 clabel->blockSize = raidPtr->bytesPerSector;
3211 clabel->numBlocks = raidPtr->sectorsPerDisk;
3212
3213 /* XXX not portable */
3214 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3215 clabel->maxOutstanding = raidPtr->maxOutstanding;
3216 clabel->autoconfigure = raidPtr->autoconfigure;
3217 clabel->root_partition = raidPtr->root_partition;
3218 clabel->last_unit = raidPtr->raidid;
3219 clabel->config_order = raidPtr->config_order;
3220 }
3221
3222 int
3223 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3224 {
3225 RF_Raid_t *raidPtr;
3226 RF_Config_t *config;
3227 int raidID;
3228 int retcode;
3229
3230 #if DEBUG
3231 printf("RAID autoconfigure\n");
3232 #endif
3233
3234 retcode = 0;
3235 *unit = -1;
3236
3237 /* 1. Create a config structure */
3238
3239 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3240 M_RAIDFRAME,
3241 M_NOWAIT);
3242 if (config==NULL) {
3243 printf("Out of mem!?!?\n");
3244 /* XXX do something more intelligent here. */
3245 return(1);
3246 }
3247
3248 memset(config, 0, sizeof(RF_Config_t));
3249
3250 /*
3251 2. Figure out what RAID ID this one is supposed to live at
3252 See if we can get the same RAID dev that it was configured
3253 on last time..
3254 */
3255
3256 raidID = cset->ac->clabel->last_unit;
3257 if ((raidID < 0) || (raidID >= numraid)) {
3258 /* let's not wander off into lala land. */
3259 raidID = numraid - 1;
3260 }
3261 if (raidPtrs[raidID]->valid != 0) {
3262
3263 /*
3264 Nope... Go looking for an alternative...
3265 Start high so we don't immediately use raid0 if that's
3266 not taken.
3267 */
3268
3269 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3270 if (raidPtrs[raidID]->valid == 0) {
3271 /* can use this one! */
3272 break;
3273 }
3274 }
3275 }
3276
3277 if (raidID < 0) {
3278 /* punt... */
3279 printf("Unable to auto configure this set!\n");
3280 printf("(Out of RAID devs!)\n");
3281 return(1);
3282 }
3283
3284 #if DEBUG
3285 printf("Configuring raid%d:\n",raidID);
3286 #endif
3287
3288 raidPtr = raidPtrs[raidID];
3289
3290 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3291 raidPtr->raidid = raidID;
3292 raidPtr->openings = RAIDOUTSTANDING;
3293
3294 /* 3. Build the configuration structure */
3295 rf_create_configuration(cset->ac, config, raidPtr);
3296
3297 /* 4. Do the configuration */
3298 retcode = rf_Configure(raidPtr, config, cset->ac);
3299
3300 if (retcode == 0) {
3301
3302 raidinit(raidPtrs[raidID]);
3303
3304 rf_markalldirty(raidPtrs[raidID]);
3305 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3306 if (cset->ac->clabel->root_partition==1) {
3307 /* everything configured just fine. Make a note
3308 that this set is eligible to be root. */
3309 cset->rootable = 1;
3310 /* XXX do this here? */
3311 raidPtrs[raidID]->root_partition = 1;
3312 }
3313 }
3314
3315 /* 5. Cleanup */
3316 free(config, M_RAIDFRAME);
3317
3318 *unit = raidID;
3319 return(retcode);
3320 }
3321
3322 void
3323 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3324 {
3325 struct buf *bp;
3326
3327 bp = (struct buf *)desc->bp;
3328 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3329 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3330 }
3331
3332 void
3333 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3334 size_t xmin, size_t xmax)
3335 {
3336 pool_init(p, size, 0, 0, 0, w_chan, NULL);
3337 pool_sethiwat(p, xmax);
3338 pool_prime(p, xmin);
3339 pool_setlowat(p, xmin);
3340 }
3341
3342 /*
3343 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3344 * if there is IO pending and if that IO could possibly be done for a
3345 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3346 * otherwise.
3347 *
3348 */
3349
3350 int
3351 rf_buf_queue_check(int raidid)
3352 {
3353 if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3354 raidPtrs[raidid]->openings > 0) {
3355 /* there is work to do */
3356 return 0;
3357 }
3358 /* default is nothing to do */
3359 return 1;
3360 }
3361