Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.202.2.2
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.202.2.2 2006/05/24 10:58:14 yamt Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.202.2.2 2006/05/24 10:58:14 yamt Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 
    218 dev_type_open(raidopen);
    219 dev_type_close(raidclose);
    220 dev_type_read(raidread);
    221 dev_type_write(raidwrite);
    222 dev_type_ioctl(raidioctl);
    223 dev_type_strategy(raidstrategy);
    224 dev_type_dump(raiddump);
    225 dev_type_size(raidsize);
    226 
    227 const struct bdevsw raid_bdevsw = {
    228 	raidopen, raidclose, raidstrategy, raidioctl,
    229 	raiddump, raidsize, D_DISK
    230 };
    231 
    232 const struct cdevsw raid_cdevsw = {
    233 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    234 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    235 };
    236 
    237 /* XXX Not sure if the following should be replacing the raidPtrs above,
    238    or if it should be used in conjunction with that...
    239 */
    240 
    241 struct raid_softc {
    242 	int     sc_flags;	/* flags */
    243 	int     sc_cflags;	/* configuration flags */
    244 	size_t  sc_size;	/* size of the raid device */
    245 	char    sc_xname[20];	/* XXX external name */
    246 	struct disk sc_dkdev;	/* generic disk device info */
    247 	struct bufq_state *buf_queue;	/* used for the device queue */
    248 };
    249 /* sc_flags */
    250 #define RAIDF_INITED	0x01	/* unit has been initialized */
    251 #define RAIDF_WLABEL	0x02	/* label area is writable */
    252 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    253 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    254 #define RAIDF_LOCKED	0x80	/* unit is locked */
    255 
    256 #define	raidunit(x)	DISKUNIT(x)
    257 int numraid = 0;
    258 
    259 extern struct cfdriver raid_cd;
    260 
    261 /*
    262  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    263  * Be aware that large numbers can allow the driver to consume a lot of
    264  * kernel memory, especially on writes, and in degraded mode reads.
    265  *
    266  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    267  * a single 64K write will typically require 64K for the old data,
    268  * 64K for the old parity, and 64K for the new parity, for a total
    269  * of 192K (if the parity buffer is not re-used immediately).
    270  * Even it if is used immediately, that's still 128K, which when multiplied
    271  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    272  *
    273  * Now in degraded mode, for example, a 64K read on the above setup may
    274  * require data reconstruction, which will require *all* of the 4 remaining
    275  * disks to participate -- 4 * 32K/disk == 128K again.
    276  */
    277 
    278 #ifndef RAIDOUTSTANDING
    279 #define RAIDOUTSTANDING   6
    280 #endif
    281 
    282 #define RAIDLABELDEV(dev)	\
    283 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    284 
    285 /* declared here, and made public, for the benefit of KVM stuff.. */
    286 struct raid_softc *raid_softc;
    287 
    288 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    289 				     struct disklabel *);
    290 static void raidgetdisklabel(dev_t);
    291 static void raidmakedisklabel(struct raid_softc *);
    292 
    293 static int raidlock(struct raid_softc *);
    294 static void raidunlock(struct raid_softc *);
    295 
    296 static void rf_markalldirty(RF_Raid_t *);
    297 
    298 struct device *raidrootdev;
    299 
    300 void rf_ReconThread(struct rf_recon_req *);
    301 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    302 void rf_CopybackThread(RF_Raid_t *raidPtr);
    303 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    304 int rf_autoconfig(struct device *self);
    305 void rf_buildroothack(RF_ConfigSet_t *);
    306 
    307 RF_AutoConfig_t *rf_find_raid_components(void);
    308 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    309 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    310 static int rf_reasonable_label(RF_ComponentLabel_t *);
    311 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    312 int rf_set_autoconfig(RF_Raid_t *, int);
    313 int rf_set_rootpartition(RF_Raid_t *, int);
    314 void rf_release_all_vps(RF_ConfigSet_t *);
    315 void rf_cleanup_config_set(RF_ConfigSet_t *);
    316 int rf_have_enough_components(RF_ConfigSet_t *);
    317 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    318 
    319 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    320 				  allow autoconfig to take place.
    321 				  Note that this is overridden by having
    322 				  RAID_AUTOCONFIG as an option in the
    323 				  kernel config file.  */
    324 
    325 struct RF_Pools_s rf_pools;
    326 
    327 void
    328 raidattach(int num)
    329 {
    330 	int raidID;
    331 	int i, rc;
    332 
    333 #ifdef DEBUG
    334 	printf("raidattach: Asked for %d units\n", num);
    335 #endif
    336 
    337 	if (num <= 0) {
    338 #ifdef DIAGNOSTIC
    339 		panic("raidattach: count <= 0");
    340 #endif
    341 		return;
    342 	}
    343 	/* This is where all the initialization stuff gets done. */
    344 
    345 	numraid = num;
    346 
    347 	/* Make some space for requested number of units... */
    348 
    349 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    350 	if (raidPtrs == NULL) {
    351 		panic("raidPtrs is NULL!!");
    352 	}
    353 
    354 	rf_mutex_init(&rf_sparet_wait_mutex);
    355 
    356 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    357 
    358 	for (i = 0; i < num; i++)
    359 		raidPtrs[i] = NULL;
    360 	rc = rf_BootRaidframe();
    361 	if (rc == 0)
    362 		printf("Kernelized RAIDframe activated\n");
    363 	else
    364 		panic("Serious error booting RAID!!");
    365 
    366 	/* put together some datastructures like the CCD device does.. This
    367 	 * lets us lock the device and what-not when it gets opened. */
    368 
    369 	raid_softc = (struct raid_softc *)
    370 		malloc(num * sizeof(struct raid_softc),
    371 		       M_RAIDFRAME, M_NOWAIT);
    372 	if (raid_softc == NULL) {
    373 		printf("WARNING: no memory for RAIDframe driver\n");
    374 		return;
    375 	}
    376 
    377 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    378 
    379 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    380 					      M_RAIDFRAME, M_NOWAIT);
    381 	if (raidrootdev == NULL) {
    382 		panic("No memory for RAIDframe driver!!?!?!");
    383 	}
    384 
    385 	for (raidID = 0; raidID < num; raidID++) {
    386 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    387 		pseudo_disk_init(&raid_softc[raidID].sc_dkdev);
    388 
    389 		/* XXXJRT Should use config_attach_pseudo() */
    390 
    391 		raidrootdev[raidID].dv_class  = DV_DISK;
    392 		raidrootdev[raidID].dv_cfdata = NULL;
    393 		raidrootdev[raidID].dv_unit   = raidID;
    394 		raidrootdev[raidID].dv_parent = NULL;
    395 		raidrootdev[raidID].dv_flags  = 0;
    396 		raidrootdev[raidID].dv_cfdriver = &raid_cd;
    397 		snprintf(raidrootdev[raidID].dv_xname,
    398 		    sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
    399 
    400 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    401 			  (RF_Raid_t *));
    402 		if (raidPtrs[raidID] == NULL) {
    403 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    404 			numraid = raidID;
    405 			return;
    406 		}
    407 	}
    408 
    409 #ifdef RAID_AUTOCONFIG
    410 	raidautoconfig = 1;
    411 #endif
    412 
    413 	/*
    414 	 * Register a finalizer which will be used to auto-config RAID
    415 	 * sets once all real hardware devices have been found.
    416 	 */
    417 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    418 		printf("WARNING: unable to register RAIDframe finalizer\n");
    419 }
    420 
    421 int
    422 rf_autoconfig(struct device *self)
    423 {
    424 	RF_AutoConfig_t *ac_list;
    425 	RF_ConfigSet_t *config_sets;
    426 
    427 	if (raidautoconfig == 0)
    428 		return (0);
    429 
    430 	/* XXX This code can only be run once. */
    431 	raidautoconfig = 0;
    432 
    433 	/* 1. locate all RAID components on the system */
    434 #ifdef DEBUG
    435 	printf("Searching for RAID components...\n");
    436 #endif
    437 	ac_list = rf_find_raid_components();
    438 
    439 	/* 2. Sort them into their respective sets. */
    440 	config_sets = rf_create_auto_sets(ac_list);
    441 
    442 	/*
    443 	 * 3. Evaluate each set andconfigure the valid ones.
    444 	 * This gets done in rf_buildroothack().
    445 	 */
    446 	rf_buildroothack(config_sets);
    447 
    448 	return (1);
    449 }
    450 
    451 void
    452 rf_buildroothack(RF_ConfigSet_t *config_sets)
    453 {
    454 	RF_ConfigSet_t *cset;
    455 	RF_ConfigSet_t *next_cset;
    456 	int retcode;
    457 	int raidID;
    458 	int rootID;
    459 	int num_root;
    460 
    461 	rootID = 0;
    462 	num_root = 0;
    463 	cset = config_sets;
    464 	while(cset != NULL ) {
    465 		next_cset = cset->next;
    466 		if (rf_have_enough_components(cset) &&
    467 		    cset->ac->clabel->autoconfigure==1) {
    468 			retcode = rf_auto_config_set(cset,&raidID);
    469 			if (!retcode) {
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #if DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 			/* we're not autoconfiguring this set...
    483 			   release the associated resources */
    484 			rf_release_all_vps(cset);
    485 		}
    486 		/* cleanup */
    487 		rf_cleanup_config_set(cset);
    488 		cset = next_cset;
    489 	}
    490 
    491 	/* we found something bootable... */
    492 
    493 	if (num_root == 1) {
    494 		booted_device = &raidrootdev[rootID];
    495 	} else if (num_root > 1) {
    496 		/* we can't guess.. require the user to answer... */
    497 		boothowto |= RB_ASKNAME;
    498 	}
    499 }
    500 
    501 
    502 int
    503 raidsize(dev_t dev)
    504 {
    505 	struct raid_softc *rs;
    506 	struct disklabel *lp;
    507 	int     part, unit, omask, size;
    508 
    509 	unit = raidunit(dev);
    510 	if (unit >= numraid)
    511 		return (-1);
    512 	rs = &raid_softc[unit];
    513 
    514 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    515 		return (-1);
    516 
    517 	part = DISKPART(dev);
    518 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    519 	lp = rs->sc_dkdev.dk_label;
    520 
    521 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    522 		return (-1);
    523 
    524 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    525 		size = -1;
    526 	else
    527 		size = lp->d_partitions[part].p_size *
    528 		    (lp->d_secsize / DEV_BSIZE);
    529 
    530 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    531 		return (-1);
    532 
    533 	return (size);
    534 
    535 }
    536 
    537 int
    538 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    539 {
    540 	/* Not implemented. */
    541 	return ENXIO;
    542 }
    543 /* ARGSUSED */
    544 int
    545 raidopen(dev_t dev, int flags, int fmt, struct lwp *l)
    546 {
    547 	int     unit = raidunit(dev);
    548 	struct raid_softc *rs;
    549 	struct disklabel *lp;
    550 	int     part, pmask;
    551 	int     error = 0;
    552 
    553 	if (unit >= numraid)
    554 		return (ENXIO);
    555 	rs = &raid_softc[unit];
    556 
    557 	if ((error = raidlock(rs)) != 0)
    558 		return (error);
    559 	lp = rs->sc_dkdev.dk_label;
    560 
    561 	part = DISKPART(dev);
    562 	pmask = (1 << part);
    563 
    564 	if ((rs->sc_flags & RAIDF_INITED) &&
    565 	    (rs->sc_dkdev.dk_openmask == 0))
    566 		raidgetdisklabel(dev);
    567 
    568 	/* make sure that this partition exists */
    569 
    570 	if (part != RAW_PART) {
    571 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    572 		    ((part >= lp->d_npartitions) ||
    573 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    574 			error = ENXIO;
    575 			raidunlock(rs);
    576 			return (error);
    577 		}
    578 	}
    579 	/* Prevent this unit from being unconfigured while open. */
    580 	switch (fmt) {
    581 	case S_IFCHR:
    582 		rs->sc_dkdev.dk_copenmask |= pmask;
    583 		break;
    584 
    585 	case S_IFBLK:
    586 		rs->sc_dkdev.dk_bopenmask |= pmask;
    587 		break;
    588 	}
    589 
    590 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    591 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    592 		/* First one... mark things as dirty... Note that we *MUST*
    593 		 have done a configure before this.  I DO NOT WANT TO BE
    594 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    595 		 THAT THEY BELONG TOGETHER!!!!! */
    596 		/* XXX should check to see if we're only open for reading
    597 		   here... If so, we needn't do this, but then need some
    598 		   other way of keeping track of what's happened.. */
    599 
    600 		rf_markalldirty( raidPtrs[unit] );
    601 	}
    602 
    603 
    604 	rs->sc_dkdev.dk_openmask =
    605 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    606 
    607 	raidunlock(rs);
    608 
    609 	return (error);
    610 
    611 
    612 }
    613 /* ARGSUSED */
    614 int
    615 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    616 {
    617 	int     unit = raidunit(dev);
    618 	struct raid_softc *rs;
    619 	int     error = 0;
    620 	int     part;
    621 
    622 	if (unit >= numraid)
    623 		return (ENXIO);
    624 	rs = &raid_softc[unit];
    625 
    626 	if ((error = raidlock(rs)) != 0)
    627 		return (error);
    628 
    629 	part = DISKPART(dev);
    630 
    631 	/* ...that much closer to allowing unconfiguration... */
    632 	switch (fmt) {
    633 	case S_IFCHR:
    634 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    635 		break;
    636 
    637 	case S_IFBLK:
    638 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    639 		break;
    640 	}
    641 	rs->sc_dkdev.dk_openmask =
    642 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    643 
    644 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    645 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    646 		/* Last one... device is not unconfigured yet.
    647 		   Device shutdown has taken care of setting the
    648 		   clean bits if RAIDF_INITED is not set
    649 		   mark things as clean... */
    650 
    651 		rf_update_component_labels(raidPtrs[unit],
    652 						 RF_FINAL_COMPONENT_UPDATE);
    653 		if (doing_shutdown) {
    654 			/* last one, and we're going down, so
    655 			   lights out for this RAID set too. */
    656 			error = rf_Shutdown(raidPtrs[unit]);
    657 
    658 			/* It's no longer initialized... */
    659 			rs->sc_flags &= ~RAIDF_INITED;
    660 
    661 			/* Detach the disk. */
    662 			pseudo_disk_detach(&rs->sc_dkdev);
    663 		}
    664 	}
    665 
    666 	raidunlock(rs);
    667 	return (0);
    668 
    669 }
    670 
    671 void
    672 raidstrategy(struct buf *bp)
    673 {
    674 	int s;
    675 
    676 	unsigned int raidID = raidunit(bp->b_dev);
    677 	RF_Raid_t *raidPtr;
    678 	struct raid_softc *rs = &raid_softc[raidID];
    679 	int     wlabel;
    680 
    681 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    682 		bp->b_error = ENXIO;
    683 		bp->b_flags |= B_ERROR;
    684 		goto done;
    685 	}
    686 	if (raidID >= numraid || !raidPtrs[raidID]) {
    687 		bp->b_error = ENODEV;
    688 		bp->b_flags |= B_ERROR;
    689 		goto done;
    690 	}
    691 	raidPtr = raidPtrs[raidID];
    692 	if (!raidPtr->valid) {
    693 		bp->b_error = ENODEV;
    694 		bp->b_flags |= B_ERROR;
    695 		goto done;
    696 	}
    697 	if (bp->b_bcount == 0) {
    698 		db1_printf(("b_bcount is zero..\n"));
    699 		goto done;
    700 	}
    701 
    702 	/*
    703 	 * Do bounds checking and adjust transfer.  If there's an
    704 	 * error, the bounds check will flag that for us.
    705 	 */
    706 
    707 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    708 	if (DISKPART(bp->b_dev) == RAW_PART) {
    709 		uint64_t size; /* device size in DEV_BSIZE unit */
    710 
    711 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    712 			size = raidPtr->totalSectors <<
    713 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    714 		} else {
    715 			size = raidPtr->totalSectors >>
    716 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    717 		}
    718 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    719 			goto done;
    720 		}
    721 	} else {
    722 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    723 			db1_printf(("Bounds check failed!!:%d %d\n",
    724 				(int) bp->b_blkno, (int) wlabel));
    725 			goto done;
    726 		}
    727 	}
    728 	s = splbio();
    729 
    730 	bp->b_resid = 0;
    731 
    732 	/* stuff it onto our queue */
    733 	BUFQ_PUT(rs->buf_queue, bp);
    734 
    735 	/* scheduled the IO to happen at the next convenient time */
    736 	wakeup(&(raidPtrs[raidID]->iodone));
    737 
    738 	splx(s);
    739 	return;
    740 
    741 done:
    742 	bp->b_resid = bp->b_bcount;
    743 	biodone(bp);
    744 }
    745 /* ARGSUSED */
    746 int
    747 raidread(dev_t dev, struct uio *uio, int flags)
    748 {
    749 	int     unit = raidunit(dev);
    750 	struct raid_softc *rs;
    751 
    752 	if (unit >= numraid)
    753 		return (ENXIO);
    754 	rs = &raid_softc[unit];
    755 
    756 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    757 		return (ENXIO);
    758 
    759 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    760 
    761 }
    762 /* ARGSUSED */
    763 int
    764 raidwrite(dev_t dev, struct uio *uio, int flags)
    765 {
    766 	int     unit = raidunit(dev);
    767 	struct raid_softc *rs;
    768 
    769 	if (unit >= numraid)
    770 		return (ENXIO);
    771 	rs = &raid_softc[unit];
    772 
    773 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    774 		return (ENXIO);
    775 
    776 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    777 
    778 }
    779 
    780 int
    781 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
    782 {
    783 	int     unit = raidunit(dev);
    784 	int     error = 0;
    785 	int     part, pmask;
    786 	struct raid_softc *rs;
    787 	RF_Config_t *k_cfg, *u_cfg;
    788 	RF_Raid_t *raidPtr;
    789 	RF_RaidDisk_t *diskPtr;
    790 	RF_AccTotals_t *totals;
    791 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    792 	u_char *specific_buf;
    793 	int retcode = 0;
    794 	int column;
    795 	int raidid;
    796 	struct rf_recon_req *rrcopy, *rr;
    797 	RF_ComponentLabel_t *clabel;
    798 	RF_ComponentLabel_t ci_label;
    799 	RF_ComponentLabel_t **clabel_ptr;
    800 	RF_SingleComponent_t *sparePtr,*componentPtr;
    801 	RF_SingleComponent_t hot_spare;
    802 	RF_SingleComponent_t component;
    803 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    804 	int i, j, d;
    805 #ifdef __HAVE_OLD_DISKLABEL
    806 	struct disklabel newlabel;
    807 #endif
    808 
    809 	if (unit >= numraid)
    810 		return (ENXIO);
    811 	rs = &raid_softc[unit];
    812 	raidPtr = raidPtrs[unit];
    813 
    814 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    815 		(int) DISKPART(dev), (int) unit, (int) cmd));
    816 
    817 	/* Must be open for writes for these commands... */
    818 	switch (cmd) {
    819 	case DIOCSDINFO:
    820 	case DIOCWDINFO:
    821 #ifdef __HAVE_OLD_DISKLABEL
    822 	case ODIOCWDINFO:
    823 	case ODIOCSDINFO:
    824 #endif
    825 	case DIOCWLABEL:
    826 		if ((flag & FWRITE) == 0)
    827 			return (EBADF);
    828 	}
    829 
    830 	/* Must be initialized for these... */
    831 	switch (cmd) {
    832 	case DIOCGDINFO:
    833 	case DIOCSDINFO:
    834 	case DIOCWDINFO:
    835 #ifdef __HAVE_OLD_DISKLABEL
    836 	case ODIOCGDINFO:
    837 	case ODIOCWDINFO:
    838 	case ODIOCSDINFO:
    839 	case ODIOCGDEFLABEL:
    840 #endif
    841 	case DIOCGPART:
    842 	case DIOCWLABEL:
    843 	case DIOCGDEFLABEL:
    844 	case RAIDFRAME_SHUTDOWN:
    845 	case RAIDFRAME_REWRITEPARITY:
    846 	case RAIDFRAME_GET_INFO:
    847 	case RAIDFRAME_RESET_ACCTOTALS:
    848 	case RAIDFRAME_GET_ACCTOTALS:
    849 	case RAIDFRAME_KEEP_ACCTOTALS:
    850 	case RAIDFRAME_GET_SIZE:
    851 	case RAIDFRAME_FAIL_DISK:
    852 	case RAIDFRAME_COPYBACK:
    853 	case RAIDFRAME_CHECK_RECON_STATUS:
    854 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    855 	case RAIDFRAME_GET_COMPONENT_LABEL:
    856 	case RAIDFRAME_SET_COMPONENT_LABEL:
    857 	case RAIDFRAME_ADD_HOT_SPARE:
    858 	case RAIDFRAME_REMOVE_HOT_SPARE:
    859 	case RAIDFRAME_INIT_LABELS:
    860 	case RAIDFRAME_REBUILD_IN_PLACE:
    861 	case RAIDFRAME_CHECK_PARITY:
    862 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    863 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    864 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    865 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    866 	case RAIDFRAME_SET_AUTOCONFIG:
    867 	case RAIDFRAME_SET_ROOT:
    868 	case RAIDFRAME_DELETE_COMPONENT:
    869 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    870 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    871 			return (ENXIO);
    872 	}
    873 
    874 	switch (cmd) {
    875 
    876 		/* configure the system */
    877 	case RAIDFRAME_CONFIGURE:
    878 
    879 		if (raidPtr->valid) {
    880 			/* There is a valid RAID set running on this unit! */
    881 			printf("raid%d: Device already configured!\n",unit);
    882 			return(EINVAL);
    883 		}
    884 
    885 		/* copy-in the configuration information */
    886 		/* data points to a pointer to the configuration structure */
    887 
    888 		u_cfg = *((RF_Config_t **) data);
    889 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    890 		if (k_cfg == NULL) {
    891 			return (ENOMEM);
    892 		}
    893 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    894 		if (retcode) {
    895 			RF_Free(k_cfg, sizeof(RF_Config_t));
    896 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    897 				retcode));
    898 			return (retcode);
    899 		}
    900 		/* allocate a buffer for the layout-specific data, and copy it
    901 		 * in */
    902 		if (k_cfg->layoutSpecificSize) {
    903 			if (k_cfg->layoutSpecificSize > 10000) {
    904 				/* sanity check */
    905 				RF_Free(k_cfg, sizeof(RF_Config_t));
    906 				return (EINVAL);
    907 			}
    908 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    909 			    (u_char *));
    910 			if (specific_buf == NULL) {
    911 				RF_Free(k_cfg, sizeof(RF_Config_t));
    912 				return (ENOMEM);
    913 			}
    914 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    915 			    k_cfg->layoutSpecificSize);
    916 			if (retcode) {
    917 				RF_Free(k_cfg, sizeof(RF_Config_t));
    918 				RF_Free(specific_buf,
    919 					k_cfg->layoutSpecificSize);
    920 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    921 					retcode));
    922 				return (retcode);
    923 			}
    924 		} else
    925 			specific_buf = NULL;
    926 		k_cfg->layoutSpecific = specific_buf;
    927 
    928 		/* should do some kind of sanity check on the configuration.
    929 		 * Store the sum of all the bytes in the last byte? */
    930 
    931 		/* configure the system */
    932 
    933 		/*
    934 		 * Clear the entire RAID descriptor, just to make sure
    935 		 *  there is no stale data left in the case of a
    936 		 *  reconfiguration
    937 		 */
    938 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    939 		raidPtr->raidid = unit;
    940 
    941 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    942 
    943 		if (retcode == 0) {
    944 
    945 			/* allow this many simultaneous IO's to
    946 			   this RAID device */
    947 			raidPtr->openings = RAIDOUTSTANDING;
    948 
    949 			raidinit(raidPtr);
    950 			rf_markalldirty(raidPtr);
    951 		}
    952 		/* free the buffers.  No return code here. */
    953 		if (k_cfg->layoutSpecificSize) {
    954 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    955 		}
    956 		RF_Free(k_cfg, sizeof(RF_Config_t));
    957 
    958 		return (retcode);
    959 
    960 		/* shutdown the system */
    961 	case RAIDFRAME_SHUTDOWN:
    962 
    963 		if ((error = raidlock(rs)) != 0)
    964 			return (error);
    965 
    966 		/*
    967 		 * If somebody has a partition mounted, we shouldn't
    968 		 * shutdown.
    969 		 */
    970 
    971 		part = DISKPART(dev);
    972 		pmask = (1 << part);
    973 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    974 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    975 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    976 			raidunlock(rs);
    977 			return (EBUSY);
    978 		}
    979 
    980 		retcode = rf_Shutdown(raidPtr);
    981 
    982 		/* It's no longer initialized... */
    983 		rs->sc_flags &= ~RAIDF_INITED;
    984 
    985 		/* Detach the disk. */
    986 		pseudo_disk_detach(&rs->sc_dkdev);
    987 
    988 		raidunlock(rs);
    989 
    990 		return (retcode);
    991 	case RAIDFRAME_GET_COMPONENT_LABEL:
    992 		clabel_ptr = (RF_ComponentLabel_t **) data;
    993 		/* need to read the component label for the disk indicated
    994 		   by row,column in clabel */
    995 
    996 		/* For practice, let's get it directly fromdisk, rather
    997 		   than from the in-core copy */
    998 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    999 			   (RF_ComponentLabel_t *));
   1000 		if (clabel == NULL)
   1001 			return (ENOMEM);
   1002 
   1003 		retcode = copyin( *clabel_ptr, clabel,
   1004 				  sizeof(RF_ComponentLabel_t));
   1005 
   1006 		if (retcode) {
   1007 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1008 			return(retcode);
   1009 		}
   1010 
   1011 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1012 
   1013 		column = clabel->column;
   1014 
   1015 		if ((column < 0) || (column >= raidPtr->numCol +
   1016 				     raidPtr->numSpare)) {
   1017 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1018 			return(EINVAL);
   1019 		}
   1020 
   1021 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1022 				raidPtr->raid_cinfo[column].ci_vp,
   1023 				clabel );
   1024 
   1025 		if (retcode == 0) {
   1026 			retcode = copyout(clabel, *clabel_ptr,
   1027 					  sizeof(RF_ComponentLabel_t));
   1028 		}
   1029 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1030 		return (retcode);
   1031 
   1032 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1033 		clabel = (RF_ComponentLabel_t *) data;
   1034 
   1035 		/* XXX check the label for valid stuff... */
   1036 		/* Note that some things *should not* get modified --
   1037 		   the user should be re-initing the labels instead of
   1038 		   trying to patch things.
   1039 		   */
   1040 
   1041 		raidid = raidPtr->raidid;
   1042 #if DEBUG
   1043 		printf("raid%d: Got component label:\n", raidid);
   1044 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1045 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1046 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1047 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1048 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1049 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1050 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1051 #endif
   1052 		clabel->row = 0;
   1053 		column = clabel->column;
   1054 
   1055 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1056 			return(EINVAL);
   1057 		}
   1058 
   1059 		/* XXX this isn't allowed to do anything for now :-) */
   1060 
   1061 		/* XXX and before it is, we need to fill in the rest
   1062 		   of the fields!?!?!?! */
   1063 #if 0
   1064 		raidwrite_component_label(
   1065 		     raidPtr->Disks[column].dev,
   1066 			    raidPtr->raid_cinfo[column].ci_vp,
   1067 			    clabel );
   1068 #endif
   1069 		return (0);
   1070 
   1071 	case RAIDFRAME_INIT_LABELS:
   1072 		clabel = (RF_ComponentLabel_t *) data;
   1073 		/*
   1074 		   we only want the serial number from
   1075 		   the above.  We get all the rest of the information
   1076 		   from the config that was used to create this RAID
   1077 		   set.
   1078 		   */
   1079 
   1080 		raidPtr->serial_number = clabel->serial_number;
   1081 
   1082 		raid_init_component_label(raidPtr, &ci_label);
   1083 		ci_label.serial_number = clabel->serial_number;
   1084 		ci_label.row = 0; /* we dont' pretend to support more */
   1085 
   1086 		for(column=0;column<raidPtr->numCol;column++) {
   1087 			diskPtr = &raidPtr->Disks[column];
   1088 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1089 				ci_label.partitionSize = diskPtr->partitionSize;
   1090 				ci_label.column = column;
   1091 				raidwrite_component_label(
   1092 							  raidPtr->Disks[column].dev,
   1093 							  raidPtr->raid_cinfo[column].ci_vp,
   1094 							  &ci_label );
   1095 			}
   1096 		}
   1097 
   1098 		return (retcode);
   1099 	case RAIDFRAME_SET_AUTOCONFIG:
   1100 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1101 		printf("raid%d: New autoconfig value is: %d\n",
   1102 		       raidPtr->raidid, d);
   1103 		*(int *) data = d;
   1104 		return (retcode);
   1105 
   1106 	case RAIDFRAME_SET_ROOT:
   1107 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1108 		printf("raid%d: New rootpartition value is: %d\n",
   1109 		       raidPtr->raidid, d);
   1110 		*(int *) data = d;
   1111 		return (retcode);
   1112 
   1113 		/* initialize all parity */
   1114 	case RAIDFRAME_REWRITEPARITY:
   1115 
   1116 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1117 			/* Parity for RAID 0 is trivially correct */
   1118 			raidPtr->parity_good = RF_RAID_CLEAN;
   1119 			return(0);
   1120 		}
   1121 
   1122 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1123 			/* Re-write is already in progress! */
   1124 			return(EINVAL);
   1125 		}
   1126 
   1127 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1128 					   rf_RewriteParityThread,
   1129 					   raidPtr,"raid_parity");
   1130 		return (retcode);
   1131 
   1132 
   1133 	case RAIDFRAME_ADD_HOT_SPARE:
   1134 		sparePtr = (RF_SingleComponent_t *) data;
   1135 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1136 		retcode = rf_add_hot_spare(raidPtr, &hot_spare);
   1137 		return(retcode);
   1138 
   1139 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1140 		return(retcode);
   1141 
   1142 	case RAIDFRAME_DELETE_COMPONENT:
   1143 		componentPtr = (RF_SingleComponent_t *)data;
   1144 		memcpy( &component, componentPtr,
   1145 			sizeof(RF_SingleComponent_t));
   1146 		retcode = rf_delete_component(raidPtr, &component);
   1147 		return(retcode);
   1148 
   1149 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1150 		componentPtr = (RF_SingleComponent_t *)data;
   1151 		memcpy( &component, componentPtr,
   1152 			sizeof(RF_SingleComponent_t));
   1153 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1154 		return(retcode);
   1155 
   1156 	case RAIDFRAME_REBUILD_IN_PLACE:
   1157 
   1158 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1159 			/* Can't do this on a RAID 0!! */
   1160 			return(EINVAL);
   1161 		}
   1162 
   1163 		if (raidPtr->recon_in_progress == 1) {
   1164 			/* a reconstruct is already in progress! */
   1165 			return(EINVAL);
   1166 		}
   1167 
   1168 		componentPtr = (RF_SingleComponent_t *) data;
   1169 		memcpy( &component, componentPtr,
   1170 			sizeof(RF_SingleComponent_t));
   1171 		component.row = 0; /* we don't support any more */
   1172 		column = component.column;
   1173 
   1174 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1175 			return(EINVAL);
   1176 		}
   1177 
   1178 		RF_LOCK_MUTEX(raidPtr->mutex);
   1179 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1180 		    (raidPtr->numFailures > 0)) {
   1181 			/* XXX 0 above shouldn't be constant!!! */
   1182 			/* some component other than this has failed.
   1183 			   Let's not make things worse than they already
   1184 			   are... */
   1185 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1186 			       raidPtr->raidid);
   1187 			printf("raid%d:     Col: %d   Too many failures.\n",
   1188 			       raidPtr->raidid, column);
   1189 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1190 			return (EINVAL);
   1191 		}
   1192 		if (raidPtr->Disks[column].status ==
   1193 		    rf_ds_reconstructing) {
   1194 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1195 			       raidPtr->raidid);
   1196 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1197 
   1198 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1199 			return (EINVAL);
   1200 		}
   1201 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1202 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1203 			return (EINVAL);
   1204 		}
   1205 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1206 
   1207 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1208 		if (rrcopy == NULL)
   1209 			return(ENOMEM);
   1210 
   1211 		rrcopy->raidPtr = (void *) raidPtr;
   1212 		rrcopy->col = column;
   1213 
   1214 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1215 					   rf_ReconstructInPlaceThread,
   1216 					   rrcopy,"raid_reconip");
   1217 		return(retcode);
   1218 
   1219 	case RAIDFRAME_GET_INFO:
   1220 		if (!raidPtr->valid)
   1221 			return (ENODEV);
   1222 		ucfgp = (RF_DeviceConfig_t **) data;
   1223 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1224 			  (RF_DeviceConfig_t *));
   1225 		if (d_cfg == NULL)
   1226 			return (ENOMEM);
   1227 		d_cfg->rows = 1; /* there is only 1 row now */
   1228 		d_cfg->cols = raidPtr->numCol;
   1229 		d_cfg->ndevs = raidPtr->numCol;
   1230 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1231 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1232 			return (ENOMEM);
   1233 		}
   1234 		d_cfg->nspares = raidPtr->numSpare;
   1235 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1236 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1237 			return (ENOMEM);
   1238 		}
   1239 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1240 		d = 0;
   1241 		for (j = 0; j < d_cfg->cols; j++) {
   1242 			d_cfg->devs[d] = raidPtr->Disks[j];
   1243 			d++;
   1244 		}
   1245 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1246 			d_cfg->spares[i] = raidPtr->Disks[j];
   1247 		}
   1248 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1249 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1250 
   1251 		return (retcode);
   1252 
   1253 	case RAIDFRAME_CHECK_PARITY:
   1254 		*(int *) data = raidPtr->parity_good;
   1255 		return (0);
   1256 
   1257 	case RAIDFRAME_RESET_ACCTOTALS:
   1258 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1259 		return (0);
   1260 
   1261 	case RAIDFRAME_GET_ACCTOTALS:
   1262 		totals = (RF_AccTotals_t *) data;
   1263 		*totals = raidPtr->acc_totals;
   1264 		return (0);
   1265 
   1266 	case RAIDFRAME_KEEP_ACCTOTALS:
   1267 		raidPtr->keep_acc_totals = *(int *)data;
   1268 		return (0);
   1269 
   1270 	case RAIDFRAME_GET_SIZE:
   1271 		*(int *) data = raidPtr->totalSectors;
   1272 		return (0);
   1273 
   1274 		/* fail a disk & optionally start reconstruction */
   1275 	case RAIDFRAME_FAIL_DISK:
   1276 
   1277 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1278 			/* Can't do this on a RAID 0!! */
   1279 			return(EINVAL);
   1280 		}
   1281 
   1282 		rr = (struct rf_recon_req *) data;
   1283 		rr->row = 0;
   1284 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1285 			return (EINVAL);
   1286 
   1287 
   1288 		RF_LOCK_MUTEX(raidPtr->mutex);
   1289 		if (raidPtr->status == rf_rs_reconstructing) {
   1290 			/* you can't fail a disk while we're reconstructing! */
   1291 			/* XXX wrong for RAID6 */
   1292 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1293 			return (EINVAL);
   1294 		}
   1295 		if ((raidPtr->Disks[rr->col].status ==
   1296 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1297 			/* some other component has failed.  Let's not make
   1298 			   things worse. XXX wrong for RAID6 */
   1299 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1300 			return (EINVAL);
   1301 		}
   1302 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1303 			/* Can't fail a spared disk! */
   1304 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1305 			return (EINVAL);
   1306 		}
   1307 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1308 
   1309 		/* make a copy of the recon request so that we don't rely on
   1310 		 * the user's buffer */
   1311 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1312 		if (rrcopy == NULL)
   1313 			return(ENOMEM);
   1314 		memcpy(rrcopy, rr, sizeof(*rr));
   1315 		rrcopy->raidPtr = (void *) raidPtr;
   1316 
   1317 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1318 					   rf_ReconThread,
   1319 					   rrcopy,"raid_recon");
   1320 		return (0);
   1321 
   1322 		/* invoke a copyback operation after recon on whatever disk
   1323 		 * needs it, if any */
   1324 	case RAIDFRAME_COPYBACK:
   1325 
   1326 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1327 			/* This makes no sense on a RAID 0!! */
   1328 			return(EINVAL);
   1329 		}
   1330 
   1331 		if (raidPtr->copyback_in_progress == 1) {
   1332 			/* Copyback is already in progress! */
   1333 			return(EINVAL);
   1334 		}
   1335 
   1336 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1337 					   rf_CopybackThread,
   1338 					   raidPtr,"raid_copyback");
   1339 		return (retcode);
   1340 
   1341 		/* return the percentage completion of reconstruction */
   1342 	case RAIDFRAME_CHECK_RECON_STATUS:
   1343 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1344 			/* This makes no sense on a RAID 0, so tell the
   1345 			   user it's done. */
   1346 			*(int *) data = 100;
   1347 			return(0);
   1348 		}
   1349 		if (raidPtr->status != rf_rs_reconstructing)
   1350 			*(int *) data = 100;
   1351 		else {
   1352 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1353 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1354 			} else {
   1355 				*(int *) data = 0;
   1356 			}
   1357 		}
   1358 		return (0);
   1359 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1360 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1361 		if (raidPtr->status != rf_rs_reconstructing) {
   1362 			progressInfo.remaining = 0;
   1363 			progressInfo.completed = 100;
   1364 			progressInfo.total = 100;
   1365 		} else {
   1366 			progressInfo.total =
   1367 				raidPtr->reconControl->numRUsTotal;
   1368 			progressInfo.completed =
   1369 				raidPtr->reconControl->numRUsComplete;
   1370 			progressInfo.remaining = progressInfo.total -
   1371 				progressInfo.completed;
   1372 		}
   1373 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1374 				  sizeof(RF_ProgressInfo_t));
   1375 		return (retcode);
   1376 
   1377 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1378 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1379 			/* This makes no sense on a RAID 0, so tell the
   1380 			   user it's done. */
   1381 			*(int *) data = 100;
   1382 			return(0);
   1383 		}
   1384 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1385 			*(int *) data = 100 *
   1386 				raidPtr->parity_rewrite_stripes_done /
   1387 				raidPtr->Layout.numStripe;
   1388 		} else {
   1389 			*(int *) data = 100;
   1390 		}
   1391 		return (0);
   1392 
   1393 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1394 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1395 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1396 			progressInfo.total = raidPtr->Layout.numStripe;
   1397 			progressInfo.completed =
   1398 				raidPtr->parity_rewrite_stripes_done;
   1399 			progressInfo.remaining = progressInfo.total -
   1400 				progressInfo.completed;
   1401 		} else {
   1402 			progressInfo.remaining = 0;
   1403 			progressInfo.completed = 100;
   1404 			progressInfo.total = 100;
   1405 		}
   1406 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1407 				  sizeof(RF_ProgressInfo_t));
   1408 		return (retcode);
   1409 
   1410 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1411 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1412 			/* This makes no sense on a RAID 0 */
   1413 			*(int *) data = 100;
   1414 			return(0);
   1415 		}
   1416 		if (raidPtr->copyback_in_progress == 1) {
   1417 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1418 				raidPtr->Layout.numStripe;
   1419 		} else {
   1420 			*(int *) data = 100;
   1421 		}
   1422 		return (0);
   1423 
   1424 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1425 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1426 		if (raidPtr->copyback_in_progress == 1) {
   1427 			progressInfo.total = raidPtr->Layout.numStripe;
   1428 			progressInfo.completed =
   1429 				raidPtr->copyback_stripes_done;
   1430 			progressInfo.remaining = progressInfo.total -
   1431 				progressInfo.completed;
   1432 		} else {
   1433 			progressInfo.remaining = 0;
   1434 			progressInfo.completed = 100;
   1435 			progressInfo.total = 100;
   1436 		}
   1437 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1438 				  sizeof(RF_ProgressInfo_t));
   1439 		return (retcode);
   1440 
   1441 		/* the sparetable daemon calls this to wait for the kernel to
   1442 		 * need a spare table. this ioctl does not return until a
   1443 		 * spare table is needed. XXX -- calling mpsleep here in the
   1444 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1445 		 * -- I should either compute the spare table in the kernel,
   1446 		 * or have a different -- XXX XXX -- interface (a different
   1447 		 * character device) for delivering the table     -- XXX */
   1448 #if 0
   1449 	case RAIDFRAME_SPARET_WAIT:
   1450 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1451 		while (!rf_sparet_wait_queue)
   1452 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1453 		waitreq = rf_sparet_wait_queue;
   1454 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1455 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1456 
   1457 		/* structure assignment */
   1458 		*((RF_SparetWait_t *) data) = *waitreq;
   1459 
   1460 		RF_Free(waitreq, sizeof(*waitreq));
   1461 		return (0);
   1462 
   1463 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1464 		 * code in it that will cause the dameon to exit */
   1465 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1466 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1467 		waitreq->fcol = -1;
   1468 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1469 		waitreq->next = rf_sparet_wait_queue;
   1470 		rf_sparet_wait_queue = waitreq;
   1471 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1472 		wakeup(&rf_sparet_wait_queue);
   1473 		return (0);
   1474 
   1475 		/* used by the spare table daemon to deliver a spare table
   1476 		 * into the kernel */
   1477 	case RAIDFRAME_SEND_SPARET:
   1478 
   1479 		/* install the spare table */
   1480 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1481 
   1482 		/* respond to the requestor.  the return status of the spare
   1483 		 * table installation is passed in the "fcol" field */
   1484 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1485 		waitreq->fcol = retcode;
   1486 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1487 		waitreq->next = rf_sparet_resp_queue;
   1488 		rf_sparet_resp_queue = waitreq;
   1489 		wakeup(&rf_sparet_resp_queue);
   1490 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1491 
   1492 		return (retcode);
   1493 #endif
   1494 
   1495 	default:
   1496 		break; /* fall through to the os-specific code below */
   1497 
   1498 	}
   1499 
   1500 	if (!raidPtr->valid)
   1501 		return (EINVAL);
   1502 
   1503 	/*
   1504 	 * Add support for "regular" device ioctls here.
   1505 	 */
   1506 
   1507 	switch (cmd) {
   1508 	case DIOCGDINFO:
   1509 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1510 		break;
   1511 #ifdef __HAVE_OLD_DISKLABEL
   1512 	case ODIOCGDINFO:
   1513 		newlabel = *(rs->sc_dkdev.dk_label);
   1514 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1515 			return ENOTTY;
   1516 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1517 		break;
   1518 #endif
   1519 
   1520 	case DIOCGPART:
   1521 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1522 		((struct partinfo *) data)->part =
   1523 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1524 		break;
   1525 
   1526 	case DIOCWDINFO:
   1527 	case DIOCSDINFO:
   1528 #ifdef __HAVE_OLD_DISKLABEL
   1529 	case ODIOCWDINFO:
   1530 	case ODIOCSDINFO:
   1531 #endif
   1532 	{
   1533 		struct disklabel *lp;
   1534 #ifdef __HAVE_OLD_DISKLABEL
   1535 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1536 			memset(&newlabel, 0, sizeof newlabel);
   1537 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1538 			lp = &newlabel;
   1539 		} else
   1540 #endif
   1541 		lp = (struct disklabel *)data;
   1542 
   1543 		if ((error = raidlock(rs)) != 0)
   1544 			return (error);
   1545 
   1546 		rs->sc_flags |= RAIDF_LABELLING;
   1547 
   1548 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1549 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1550 		if (error == 0) {
   1551 			if (cmd == DIOCWDINFO
   1552 #ifdef __HAVE_OLD_DISKLABEL
   1553 			    || cmd == ODIOCWDINFO
   1554 #endif
   1555 			   )
   1556 				error = writedisklabel(RAIDLABELDEV(dev),
   1557 				    raidstrategy, rs->sc_dkdev.dk_label,
   1558 				    rs->sc_dkdev.dk_cpulabel);
   1559 		}
   1560 		rs->sc_flags &= ~RAIDF_LABELLING;
   1561 
   1562 		raidunlock(rs);
   1563 
   1564 		if (error)
   1565 			return (error);
   1566 		break;
   1567 	}
   1568 
   1569 	case DIOCWLABEL:
   1570 		if (*(int *) data != 0)
   1571 			rs->sc_flags |= RAIDF_WLABEL;
   1572 		else
   1573 			rs->sc_flags &= ~RAIDF_WLABEL;
   1574 		break;
   1575 
   1576 	case DIOCGDEFLABEL:
   1577 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1578 		break;
   1579 
   1580 #ifdef __HAVE_OLD_DISKLABEL
   1581 	case ODIOCGDEFLABEL:
   1582 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1583 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1584 			return ENOTTY;
   1585 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1586 		break;
   1587 #endif
   1588 
   1589 	default:
   1590 		retcode = ENOTTY;
   1591 	}
   1592 	return (retcode);
   1593 
   1594 }
   1595 
   1596 
   1597 /* raidinit -- complete the rest of the initialization for the
   1598    RAIDframe device.  */
   1599 
   1600 
   1601 static void
   1602 raidinit(RF_Raid_t *raidPtr)
   1603 {
   1604 	struct raid_softc *rs;
   1605 	int     unit;
   1606 
   1607 	unit = raidPtr->raidid;
   1608 
   1609 	rs = &raid_softc[unit];
   1610 
   1611 	/* XXX should check return code first... */
   1612 	rs->sc_flags |= RAIDF_INITED;
   1613 
   1614 	/* XXX doesn't check bounds. */
   1615 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1616 
   1617 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1618 
   1619 	/* disk_attach actually creates space for the CPU disklabel, among
   1620 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1621 	 * with disklabels. */
   1622 
   1623 	pseudo_disk_attach(&rs->sc_dkdev);
   1624 
   1625 	/* XXX There may be a weird interaction here between this, and
   1626 	 * protectedSectors, as used in RAIDframe.  */
   1627 
   1628 	rs->sc_size = raidPtr->totalSectors;
   1629 }
   1630 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1631 /* wake up the daemon & tell it to get us a spare table
   1632  * XXX
   1633  * the entries in the queues should be tagged with the raidPtr
   1634  * so that in the extremely rare case that two recons happen at once,
   1635  * we know for which device were requesting a spare table
   1636  * XXX
   1637  *
   1638  * XXX This code is not currently used. GO
   1639  */
   1640 int
   1641 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1642 {
   1643 	int     retcode;
   1644 
   1645 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1646 	req->next = rf_sparet_wait_queue;
   1647 	rf_sparet_wait_queue = req;
   1648 	wakeup(&rf_sparet_wait_queue);
   1649 
   1650 	/* mpsleep unlocks the mutex */
   1651 	while (!rf_sparet_resp_queue) {
   1652 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1653 		    "raidframe getsparetable", 0);
   1654 	}
   1655 	req = rf_sparet_resp_queue;
   1656 	rf_sparet_resp_queue = req->next;
   1657 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1658 
   1659 	retcode = req->fcol;
   1660 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1661 					 * alloc'd */
   1662 	return (retcode);
   1663 }
   1664 #endif
   1665 
   1666 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1667  * bp & passes it down.
   1668  * any calls originating in the kernel must use non-blocking I/O
   1669  * do some extra sanity checking to return "appropriate" error values for
   1670  * certain conditions (to make some standard utilities work)
   1671  *
   1672  * Formerly known as: rf_DoAccessKernel
   1673  */
   1674 void
   1675 raidstart(RF_Raid_t *raidPtr)
   1676 {
   1677 	RF_SectorCount_t num_blocks, pb, sum;
   1678 	RF_RaidAddr_t raid_addr;
   1679 	struct partition *pp;
   1680 	daddr_t blocknum;
   1681 	int     unit;
   1682 	struct raid_softc *rs;
   1683 	int     do_async;
   1684 	struct buf *bp;
   1685 	int rc;
   1686 
   1687 	unit = raidPtr->raidid;
   1688 	rs = &raid_softc[unit];
   1689 
   1690 	/* quick check to see if anything has died recently */
   1691 	RF_LOCK_MUTEX(raidPtr->mutex);
   1692 	if (raidPtr->numNewFailures > 0) {
   1693 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1694 		rf_update_component_labels(raidPtr,
   1695 					   RF_NORMAL_COMPONENT_UPDATE);
   1696 		RF_LOCK_MUTEX(raidPtr->mutex);
   1697 		raidPtr->numNewFailures--;
   1698 	}
   1699 
   1700 	/* Check to see if we're at the limit... */
   1701 	while (raidPtr->openings > 0) {
   1702 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1703 
   1704 		/* get the next item, if any, from the queue */
   1705 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1706 			/* nothing more to do */
   1707 			return;
   1708 		}
   1709 
   1710 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1711 		 * partition.. Need to make it absolute to the underlying
   1712 		 * device.. */
   1713 
   1714 		blocknum = bp->b_blkno;
   1715 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1716 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1717 			blocknum += pp->p_offset;
   1718 		}
   1719 
   1720 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1721 			    (int) blocknum));
   1722 
   1723 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1724 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1725 
   1726 		/* *THIS* is where we adjust what block we're going to...
   1727 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1728 		raid_addr = blocknum;
   1729 
   1730 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1731 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1732 		sum = raid_addr + num_blocks + pb;
   1733 		if (1 || rf_debugKernelAccess) {
   1734 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1735 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1736 				    (int) pb, (int) bp->b_resid));
   1737 		}
   1738 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1739 		    || (sum < num_blocks) || (sum < pb)) {
   1740 			bp->b_error = ENOSPC;
   1741 			bp->b_flags |= B_ERROR;
   1742 			bp->b_resid = bp->b_bcount;
   1743 			biodone(bp);
   1744 			RF_LOCK_MUTEX(raidPtr->mutex);
   1745 			continue;
   1746 		}
   1747 		/*
   1748 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1749 		 */
   1750 
   1751 		if (bp->b_bcount & raidPtr->sectorMask) {
   1752 			bp->b_error = EINVAL;
   1753 			bp->b_flags |= B_ERROR;
   1754 			bp->b_resid = bp->b_bcount;
   1755 			biodone(bp);
   1756 			RF_LOCK_MUTEX(raidPtr->mutex);
   1757 			continue;
   1758 
   1759 		}
   1760 		db1_printf(("Calling DoAccess..\n"));
   1761 
   1762 
   1763 		RF_LOCK_MUTEX(raidPtr->mutex);
   1764 		raidPtr->openings--;
   1765 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1766 
   1767 		/*
   1768 		 * Everything is async.
   1769 		 */
   1770 		do_async = 1;
   1771 
   1772 		disk_busy(&rs->sc_dkdev);
   1773 
   1774 		/* XXX we're still at splbio() here... do we *really*
   1775 		   need to be? */
   1776 
   1777 		/* don't ever condition on bp->b_flags & B_WRITE.
   1778 		 * always condition on B_READ instead */
   1779 
   1780 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1781 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1782 				 do_async, raid_addr, num_blocks,
   1783 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1784 
   1785 		if (rc) {
   1786 			bp->b_error = rc;
   1787 			bp->b_flags |= B_ERROR;
   1788 			bp->b_resid = bp->b_bcount;
   1789 			biodone(bp);
   1790 			/* continue loop */
   1791 		}
   1792 
   1793 		RF_LOCK_MUTEX(raidPtr->mutex);
   1794 	}
   1795 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1796 }
   1797 
   1798 
   1799 
   1800 
   1801 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1802 
   1803 int
   1804 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1805 {
   1806 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1807 	struct buf *bp;
   1808 
   1809 	req->queue = queue;
   1810 
   1811 #if DIAGNOSTIC
   1812 	if (queue->raidPtr->raidid >= numraid) {
   1813 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1814 		    numraid);
   1815 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1816 	}
   1817 #endif
   1818 
   1819 	bp = req->bp;
   1820 
   1821 	switch (req->type) {
   1822 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1823 		/* XXX need to do something extra here.. */
   1824 		/* I'm leaving this in, as I've never actually seen it used,
   1825 		 * and I'd like folks to report it... GO */
   1826 		printf(("WAKEUP CALLED\n"));
   1827 		queue->numOutstanding++;
   1828 
   1829 		bp->b_flags = 0;
   1830 		bp->b_private = req;
   1831 
   1832 		KernelWakeupFunc(bp);
   1833 		break;
   1834 
   1835 	case RF_IO_TYPE_READ:
   1836 	case RF_IO_TYPE_WRITE:
   1837 #if RF_ACC_TRACE > 0
   1838 		if (req->tracerec) {
   1839 			RF_ETIMER_START(req->tracerec->timer);
   1840 		}
   1841 #endif
   1842 		InitBP(bp, queue->rf_cinfo->ci_vp,
   1843 		    op, queue->rf_cinfo->ci_dev,
   1844 		    req->sectorOffset, req->numSector,
   1845 		    req->buf, KernelWakeupFunc, (void *) req,
   1846 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1847 
   1848 		if (rf_debugKernelAccess) {
   1849 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1850 				(long) bp->b_blkno));
   1851 		}
   1852 		queue->numOutstanding++;
   1853 		queue->last_deq_sector = req->sectorOffset;
   1854 		/* acc wouldn't have been let in if there were any pending
   1855 		 * reqs at any other priority */
   1856 		queue->curPriority = req->priority;
   1857 
   1858 		db1_printf(("Going for %c to unit %d col %d\n",
   1859 			    req->type, queue->raidPtr->raidid,
   1860 			    queue->col));
   1861 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1862 			(int) req->sectorOffset, (int) req->numSector,
   1863 			(int) (req->numSector <<
   1864 			    queue->raidPtr->logBytesPerSector),
   1865 			(int) queue->raidPtr->logBytesPerSector));
   1866 		VOP_STRATEGY(bp->b_vp, bp);
   1867 
   1868 		break;
   1869 
   1870 	default:
   1871 		panic("bad req->type in rf_DispatchKernelIO");
   1872 	}
   1873 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1874 
   1875 	return (0);
   1876 }
   1877 /* this is the callback function associated with a I/O invoked from
   1878    kernel code.
   1879  */
   1880 static void
   1881 KernelWakeupFunc(struct buf *bp)
   1882 {
   1883 	RF_DiskQueueData_t *req = NULL;
   1884 	RF_DiskQueue_t *queue;
   1885 	int s;
   1886 
   1887 	s = splbio();
   1888 	db1_printf(("recovering the request queue:\n"));
   1889 	req = bp->b_private;
   1890 
   1891 	queue = (RF_DiskQueue_t *) req->queue;
   1892 
   1893 #if RF_ACC_TRACE > 0
   1894 	if (req->tracerec) {
   1895 		RF_ETIMER_STOP(req->tracerec->timer);
   1896 		RF_ETIMER_EVAL(req->tracerec->timer);
   1897 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1898 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1899 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1900 		req->tracerec->num_phys_ios++;
   1901 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1902 	}
   1903 #endif
   1904 
   1905 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1906 	 * ballistic, and mark the component as hosed... */
   1907 
   1908 	if (bp->b_flags & B_ERROR) {
   1909 		/* Mark the disk as dead */
   1910 		/* but only mark it once... */
   1911 		/* and only if it wouldn't leave this RAID set
   1912 		   completely broken */
   1913 		if (((queue->raidPtr->Disks[queue->col].status ==
   1914 		      rf_ds_optimal) ||
   1915 		     (queue->raidPtr->Disks[queue->col].status ==
   1916 		      rf_ds_used_spare)) &&
   1917 		     (queue->raidPtr->numFailures <
   1918 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   1919 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1920 			       queue->raidPtr->raidid,
   1921 			       queue->raidPtr->Disks[queue->col].devname);
   1922 			queue->raidPtr->Disks[queue->col].status =
   1923 			    rf_ds_failed;
   1924 			queue->raidPtr->status = rf_rs_degraded;
   1925 			queue->raidPtr->numFailures++;
   1926 			queue->raidPtr->numNewFailures++;
   1927 		} else {	/* Disk is already dead... */
   1928 			/* printf("Disk already marked as dead!\n"); */
   1929 		}
   1930 
   1931 	}
   1932 
   1933 	/* Fill in the error value */
   1934 
   1935 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1936 
   1937 	simple_lock(&queue->raidPtr->iodone_lock);
   1938 
   1939 	/* Drop this one on the "finished" queue... */
   1940 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1941 
   1942 	/* Let the raidio thread know there is work to be done. */
   1943 	wakeup(&(queue->raidPtr->iodone));
   1944 
   1945 	simple_unlock(&queue->raidPtr->iodone_lock);
   1946 
   1947 	splx(s);
   1948 }
   1949 
   1950 
   1951 
   1952 /*
   1953  * initialize a buf structure for doing an I/O in the kernel.
   1954  */
   1955 static void
   1956 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   1957        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t bf,
   1958        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   1959        struct proc *b_proc)
   1960 {
   1961 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1962 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1963 	bp->b_bcount = numSect << logBytesPerSector;
   1964 	bp->b_bufsize = bp->b_bcount;
   1965 	bp->b_error = 0;
   1966 	bp->b_dev = dev;
   1967 	bp->b_data = bf;
   1968 	bp->b_blkno = startSect;
   1969 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1970 	if (bp->b_bcount == 0) {
   1971 		panic("bp->b_bcount is zero in InitBP!!");
   1972 	}
   1973 	bp->b_proc = b_proc;
   1974 	bp->b_iodone = cbFunc;
   1975 	bp->b_private = cbArg;
   1976 	bp->b_vp = b_vp;
   1977 	if ((bp->b_flags & B_READ) == 0) {
   1978 		bp->b_vp->v_numoutput++;
   1979 	}
   1980 
   1981 }
   1982 
   1983 static void
   1984 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   1985 		    struct disklabel *lp)
   1986 {
   1987 	memset(lp, 0, sizeof(*lp));
   1988 
   1989 	/* fabricate a label... */
   1990 	lp->d_secperunit = raidPtr->totalSectors;
   1991 	lp->d_secsize = raidPtr->bytesPerSector;
   1992 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1993 	lp->d_ntracks = 4 * raidPtr->numCol;
   1994 	lp->d_ncylinders = raidPtr->totalSectors /
   1995 		(lp->d_nsectors * lp->d_ntracks);
   1996 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1997 
   1998 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1999 	lp->d_type = DTYPE_RAID;
   2000 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2001 	lp->d_rpm = 3600;
   2002 	lp->d_interleave = 1;
   2003 	lp->d_flags = 0;
   2004 
   2005 	lp->d_partitions[RAW_PART].p_offset = 0;
   2006 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2007 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2008 	lp->d_npartitions = RAW_PART + 1;
   2009 
   2010 	lp->d_magic = DISKMAGIC;
   2011 	lp->d_magic2 = DISKMAGIC;
   2012 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2013 
   2014 }
   2015 /*
   2016  * Read the disklabel from the raid device.  If one is not present, fake one
   2017  * up.
   2018  */
   2019 static void
   2020 raidgetdisklabel(dev_t dev)
   2021 {
   2022 	int     unit = raidunit(dev);
   2023 	struct raid_softc *rs = &raid_softc[unit];
   2024 	const char   *errstring;
   2025 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2026 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2027 	RF_Raid_t *raidPtr;
   2028 
   2029 	db1_printf(("Getting the disklabel...\n"));
   2030 
   2031 	memset(clp, 0, sizeof(*clp));
   2032 
   2033 	raidPtr = raidPtrs[unit];
   2034 
   2035 	raidgetdefaultlabel(raidPtr, rs, lp);
   2036 
   2037 	/*
   2038 	 * Call the generic disklabel extraction routine.
   2039 	 */
   2040 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2041 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2042 	if (errstring)
   2043 		raidmakedisklabel(rs);
   2044 	else {
   2045 		int     i;
   2046 		struct partition *pp;
   2047 
   2048 		/*
   2049 		 * Sanity check whether the found disklabel is valid.
   2050 		 *
   2051 		 * This is necessary since total size of the raid device
   2052 		 * may vary when an interleave is changed even though exactly
   2053 		 * same componets are used, and old disklabel may used
   2054 		 * if that is found.
   2055 		 */
   2056 		if (lp->d_secperunit != rs->sc_size)
   2057 			printf("raid%d: WARNING: %s: "
   2058 			    "total sector size in disklabel (%d) != "
   2059 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2060 			    lp->d_secperunit, (long) rs->sc_size);
   2061 		for (i = 0; i < lp->d_npartitions; i++) {
   2062 			pp = &lp->d_partitions[i];
   2063 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2064 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2065 				       "exceeds the size of raid (%ld)\n",
   2066 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2067 		}
   2068 	}
   2069 
   2070 }
   2071 /*
   2072  * Take care of things one might want to take care of in the event
   2073  * that a disklabel isn't present.
   2074  */
   2075 static void
   2076 raidmakedisklabel(struct raid_softc *rs)
   2077 {
   2078 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2079 	db1_printf(("Making a label..\n"));
   2080 
   2081 	/*
   2082 	 * For historical reasons, if there's no disklabel present
   2083 	 * the raw partition must be marked FS_BSDFFS.
   2084 	 */
   2085 
   2086 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2087 
   2088 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2089 
   2090 	lp->d_checksum = dkcksum(lp);
   2091 }
   2092 /*
   2093  * Lookup the provided name in the filesystem.  If the file exists,
   2094  * is a valid block device, and isn't being used by anyone else,
   2095  * set *vpp to the file's vnode.
   2096  * You'll find the original of this in ccd.c
   2097  */
   2098 int
   2099 raidlookup(char *path, struct lwp *l, struct vnode **vpp)
   2100 {
   2101 	struct nameidata nd;
   2102 	struct vnode *vp;
   2103 	struct proc *p;
   2104 	struct vattr va;
   2105 	int     error;
   2106 
   2107 	if (l == NULL)
   2108 		return(ESRCH);	/* Is ESRCH the best choice? */
   2109 	p = l->l_proc;
   2110 
   2111 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, l);
   2112 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2113 		return (error);
   2114 	}
   2115 	vp = nd.ni_vp;
   2116 	if (vp->v_usecount > 1) {
   2117 		VOP_UNLOCK(vp, 0);
   2118 		(void) vn_close(vp, FREAD | FWRITE, p->p_cred, l);
   2119 		return (EBUSY);
   2120 	}
   2121 	if ((error = VOP_GETATTR(vp, &va, p->p_cred, l)) != 0) {
   2122 		VOP_UNLOCK(vp, 0);
   2123 		(void) vn_close(vp, FREAD | FWRITE, p->p_cred, l);
   2124 		return (error);
   2125 	}
   2126 	/* XXX: eventually we should handle VREG, too. */
   2127 	if (va.va_type != VBLK) {
   2128 		VOP_UNLOCK(vp, 0);
   2129 		(void) vn_close(vp, FREAD | FWRITE, p->p_cred, l);
   2130 		return (ENOTBLK);
   2131 	}
   2132 	VOP_UNLOCK(vp, 0);
   2133 	*vpp = vp;
   2134 	return (0);
   2135 }
   2136 /*
   2137  * Wait interruptibly for an exclusive lock.
   2138  *
   2139  * XXX
   2140  * Several drivers do this; it should be abstracted and made MP-safe.
   2141  * (Hmm... where have we seen this warning before :->  GO )
   2142  */
   2143 static int
   2144 raidlock(struct raid_softc *rs)
   2145 {
   2146 	int     error;
   2147 
   2148 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2149 		rs->sc_flags |= RAIDF_WANTED;
   2150 		if ((error =
   2151 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2152 			return (error);
   2153 	}
   2154 	rs->sc_flags |= RAIDF_LOCKED;
   2155 	return (0);
   2156 }
   2157 /*
   2158  * Unlock and wake up any waiters.
   2159  */
   2160 static void
   2161 raidunlock(struct raid_softc *rs)
   2162 {
   2163 
   2164 	rs->sc_flags &= ~RAIDF_LOCKED;
   2165 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2166 		rs->sc_flags &= ~RAIDF_WANTED;
   2167 		wakeup(rs);
   2168 	}
   2169 }
   2170 
   2171 
   2172 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2173 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2174 
   2175 int
   2176 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2177 {
   2178 	RF_ComponentLabel_t clabel;
   2179 	raidread_component_label(dev, b_vp, &clabel);
   2180 	clabel.mod_counter = mod_counter;
   2181 	clabel.clean = RF_RAID_CLEAN;
   2182 	raidwrite_component_label(dev, b_vp, &clabel);
   2183 	return(0);
   2184 }
   2185 
   2186 
   2187 int
   2188 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2189 {
   2190 	RF_ComponentLabel_t clabel;
   2191 	raidread_component_label(dev, b_vp, &clabel);
   2192 	clabel.mod_counter = mod_counter;
   2193 	clabel.clean = RF_RAID_DIRTY;
   2194 	raidwrite_component_label(dev, b_vp, &clabel);
   2195 	return(0);
   2196 }
   2197 
   2198 /* ARGSUSED */
   2199 int
   2200 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2201 			 RF_ComponentLabel_t *clabel)
   2202 {
   2203 	struct buf *bp;
   2204 	const struct bdevsw *bdev;
   2205 	int error;
   2206 
   2207 	/* XXX should probably ensure that we don't try to do this if
   2208 	   someone has changed rf_protected_sectors. */
   2209 
   2210 	if (b_vp == NULL) {
   2211 		/* For whatever reason, this component is not valid.
   2212 		   Don't try to read a component label from it. */
   2213 		return(EINVAL);
   2214 	}
   2215 
   2216 	/* get a block of the appropriate size... */
   2217 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2218 	bp->b_dev = dev;
   2219 
   2220 	/* get our ducks in a row for the read */
   2221 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2222 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2223 	bp->b_flags |= B_READ;
   2224  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2225 
   2226 	bdev = bdevsw_lookup(bp->b_dev);
   2227 	if (bdev == NULL)
   2228 		return (ENXIO);
   2229 	(*bdev->d_strategy)(bp);
   2230 
   2231 	error = biowait(bp);
   2232 
   2233 	if (!error) {
   2234 		memcpy(clabel, bp->b_data,
   2235 		       sizeof(RF_ComponentLabel_t));
   2236 	}
   2237 
   2238 	brelse(bp);
   2239 	return(error);
   2240 }
   2241 /* ARGSUSED */
   2242 int
   2243 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2244 			  RF_ComponentLabel_t *clabel)
   2245 {
   2246 	struct buf *bp;
   2247 	const struct bdevsw *bdev;
   2248 	int error;
   2249 
   2250 	/* get a block of the appropriate size... */
   2251 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2252 	bp->b_dev = dev;
   2253 
   2254 	/* get our ducks in a row for the write */
   2255 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2256 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2257 	bp->b_flags |= B_WRITE;
   2258  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2259 
   2260 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2261 
   2262 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2263 
   2264 	bdev = bdevsw_lookup(bp->b_dev);
   2265 	if (bdev == NULL)
   2266 		return (ENXIO);
   2267 	(*bdev->d_strategy)(bp);
   2268 	error = biowait(bp);
   2269 	brelse(bp);
   2270 	if (error) {
   2271 #if 1
   2272 		printf("Failed to write RAID component info!\n");
   2273 #endif
   2274 	}
   2275 
   2276 	return(error);
   2277 }
   2278 
   2279 void
   2280 rf_markalldirty(RF_Raid_t *raidPtr)
   2281 {
   2282 	RF_ComponentLabel_t clabel;
   2283 	int sparecol;
   2284 	int c;
   2285 	int j;
   2286 	int scol = -1;
   2287 
   2288 	raidPtr->mod_counter++;
   2289 	for (c = 0; c < raidPtr->numCol; c++) {
   2290 		/* we don't want to touch (at all) a disk that has
   2291 		   failed */
   2292 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2293 			raidread_component_label(
   2294 						 raidPtr->Disks[c].dev,
   2295 						 raidPtr->raid_cinfo[c].ci_vp,
   2296 						 &clabel);
   2297 			if (clabel.status == rf_ds_spared) {
   2298 				/* XXX do something special...
   2299 				   but whatever you do, don't
   2300 				   try to access it!! */
   2301 			} else {
   2302 				raidmarkdirty(
   2303 					      raidPtr->Disks[c].dev,
   2304 					      raidPtr->raid_cinfo[c].ci_vp,
   2305 					      raidPtr->mod_counter);
   2306 			}
   2307 		}
   2308 	}
   2309 
   2310 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2311 		sparecol = raidPtr->numCol + c;
   2312 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2313 			/*
   2314 
   2315 			   we claim this disk is "optimal" if it's
   2316 			   rf_ds_used_spare, as that means it should be
   2317 			   directly substitutable for the disk it replaced.
   2318 			   We note that too...
   2319 
   2320 			 */
   2321 
   2322 			for(j=0;j<raidPtr->numCol;j++) {
   2323 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2324 					scol = j;
   2325 					break;
   2326 				}
   2327 			}
   2328 
   2329 			raidread_component_label(
   2330 				 raidPtr->Disks[sparecol].dev,
   2331 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2332 				 &clabel);
   2333 			/* make sure status is noted */
   2334 
   2335 			raid_init_component_label(raidPtr, &clabel);
   2336 
   2337 			clabel.row = 0;
   2338 			clabel.column = scol;
   2339 			/* Note: we *don't* change status from rf_ds_used_spare
   2340 			   to rf_ds_optimal */
   2341 			/* clabel.status = rf_ds_optimal; */
   2342 
   2343 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2344 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2345 				      raidPtr->mod_counter);
   2346 		}
   2347 	}
   2348 }
   2349 
   2350 
   2351 void
   2352 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2353 {
   2354 	RF_ComponentLabel_t clabel;
   2355 	int sparecol;
   2356 	int c;
   2357 	int j;
   2358 	int scol;
   2359 
   2360 	scol = -1;
   2361 
   2362 	/* XXX should do extra checks to make sure things really are clean,
   2363 	   rather than blindly setting the clean bit... */
   2364 
   2365 	raidPtr->mod_counter++;
   2366 
   2367 	for (c = 0; c < raidPtr->numCol; c++) {
   2368 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2369 			raidread_component_label(
   2370 						 raidPtr->Disks[c].dev,
   2371 						 raidPtr->raid_cinfo[c].ci_vp,
   2372 						 &clabel);
   2373 			/* make sure status is noted */
   2374 			clabel.status = rf_ds_optimal;
   2375 
   2376 			/* bump the counter */
   2377 			clabel.mod_counter = raidPtr->mod_counter;
   2378 
   2379 			raidwrite_component_label(
   2380 						  raidPtr->Disks[c].dev,
   2381 						  raidPtr->raid_cinfo[c].ci_vp,
   2382 						  &clabel);
   2383 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2384 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2385 					raidmarkclean(
   2386 						      raidPtr->Disks[c].dev,
   2387 						      raidPtr->raid_cinfo[c].ci_vp,
   2388 						      raidPtr->mod_counter);
   2389 				}
   2390 			}
   2391 		}
   2392 		/* else we don't touch it.. */
   2393 	}
   2394 
   2395 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2396 		sparecol = raidPtr->numCol + c;
   2397 		/* Need to ensure that the reconstruct actually completed! */
   2398 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2399 			/*
   2400 
   2401 			   we claim this disk is "optimal" if it's
   2402 			   rf_ds_used_spare, as that means it should be
   2403 			   directly substitutable for the disk it replaced.
   2404 			   We note that too...
   2405 
   2406 			 */
   2407 
   2408 			for(j=0;j<raidPtr->numCol;j++) {
   2409 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2410 					scol = j;
   2411 					break;
   2412 				}
   2413 			}
   2414 
   2415 			/* XXX shouldn't *really* need this... */
   2416 			raidread_component_label(
   2417 				      raidPtr->Disks[sparecol].dev,
   2418 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2419 				      &clabel);
   2420 			/* make sure status is noted */
   2421 
   2422 			raid_init_component_label(raidPtr, &clabel);
   2423 
   2424 			clabel.mod_counter = raidPtr->mod_counter;
   2425 			clabel.column = scol;
   2426 			clabel.status = rf_ds_optimal;
   2427 
   2428 			raidwrite_component_label(
   2429 				      raidPtr->Disks[sparecol].dev,
   2430 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2431 				      &clabel);
   2432 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2433 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2434 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2435 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2436 						       raidPtr->mod_counter);
   2437 				}
   2438 			}
   2439 		}
   2440 	}
   2441 }
   2442 
   2443 void
   2444 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2445 {
   2446 	struct proc *p;
   2447 	struct lwp *l;
   2448 
   2449 	p = raidPtr->engine_thread;
   2450 	l = LIST_FIRST(&p->p_lwps);
   2451 
   2452 	if (vp != NULL) {
   2453 		if (auto_configured == 1) {
   2454 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2455 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2456 			vput(vp);
   2457 
   2458 		} else {
   2459 			(void) vn_close(vp, FREAD | FWRITE, p->p_cred, l);
   2460 		}
   2461 	}
   2462 }
   2463 
   2464 
   2465 void
   2466 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2467 {
   2468 	int r,c;
   2469 	struct vnode *vp;
   2470 	int acd;
   2471 
   2472 
   2473 	/* We take this opportunity to close the vnodes like we should.. */
   2474 
   2475 	for (c = 0; c < raidPtr->numCol; c++) {
   2476 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2477 		acd = raidPtr->Disks[c].auto_configured;
   2478 		rf_close_component(raidPtr, vp, acd);
   2479 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2480 		raidPtr->Disks[c].auto_configured = 0;
   2481 	}
   2482 
   2483 	for (r = 0; r < raidPtr->numSpare; r++) {
   2484 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2485 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2486 		rf_close_component(raidPtr, vp, acd);
   2487 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2488 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2489 	}
   2490 }
   2491 
   2492 
   2493 void
   2494 rf_ReconThread(struct rf_recon_req *req)
   2495 {
   2496 	int     s;
   2497 	RF_Raid_t *raidPtr;
   2498 
   2499 	s = splbio();
   2500 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2501 	raidPtr->recon_in_progress = 1;
   2502 
   2503 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2504 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2505 
   2506 	RF_Free(req, sizeof(*req));
   2507 
   2508 	raidPtr->recon_in_progress = 0;
   2509 	splx(s);
   2510 
   2511 	/* That's all... */
   2512 	kthread_exit(0);	/* does not return */
   2513 }
   2514 
   2515 void
   2516 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2517 {
   2518 	int retcode;
   2519 	int s;
   2520 
   2521 	raidPtr->parity_rewrite_stripes_done = 0;
   2522 	raidPtr->parity_rewrite_in_progress = 1;
   2523 	s = splbio();
   2524 	retcode = rf_RewriteParity(raidPtr);
   2525 	splx(s);
   2526 	if (retcode) {
   2527 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2528 	} else {
   2529 		/* set the clean bit!  If we shutdown correctly,
   2530 		   the clean bit on each component label will get
   2531 		   set */
   2532 		raidPtr->parity_good = RF_RAID_CLEAN;
   2533 	}
   2534 	raidPtr->parity_rewrite_in_progress = 0;
   2535 
   2536 	/* Anyone waiting for us to stop?  If so, inform them... */
   2537 	if (raidPtr->waitShutdown) {
   2538 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2539 	}
   2540 
   2541 	/* That's all... */
   2542 	kthread_exit(0);	/* does not return */
   2543 }
   2544 
   2545 
   2546 void
   2547 rf_CopybackThread(RF_Raid_t *raidPtr)
   2548 {
   2549 	int s;
   2550 
   2551 	raidPtr->copyback_in_progress = 1;
   2552 	s = splbio();
   2553 	rf_CopybackReconstructedData(raidPtr);
   2554 	splx(s);
   2555 	raidPtr->copyback_in_progress = 0;
   2556 
   2557 	/* That's all... */
   2558 	kthread_exit(0);	/* does not return */
   2559 }
   2560 
   2561 
   2562 void
   2563 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2564 {
   2565 	int s;
   2566 	RF_Raid_t *raidPtr;
   2567 
   2568 	s = splbio();
   2569 	raidPtr = req->raidPtr;
   2570 	raidPtr->recon_in_progress = 1;
   2571 	rf_ReconstructInPlace(raidPtr, req->col);
   2572 	RF_Free(req, sizeof(*req));
   2573 	raidPtr->recon_in_progress = 0;
   2574 	splx(s);
   2575 
   2576 	/* That's all... */
   2577 	kthread_exit(0);	/* does not return */
   2578 }
   2579 
   2580 RF_AutoConfig_t *
   2581 rf_find_raid_components()
   2582 {
   2583 	struct vnode *vp;
   2584 	struct disklabel label;
   2585 	struct device *dv;
   2586 	dev_t dev;
   2587 	int bmajor;
   2588 	int error;
   2589 	int i;
   2590 	int good_one;
   2591 	RF_ComponentLabel_t *clabel;
   2592 	RF_AutoConfig_t *ac_list;
   2593 	RF_AutoConfig_t *ac;
   2594 
   2595 
   2596 	/* initialize the AutoConfig list */
   2597 	ac_list = NULL;
   2598 
   2599 	/* we begin by trolling through *all* the devices on the system */
   2600 
   2601 	for (dv = alldevs.tqh_first; dv != NULL;
   2602 	     dv = dv->dv_list.tqe_next) {
   2603 
   2604 		/* we are only interested in disks... */
   2605 		if (device_class(dv) != DV_DISK)
   2606 			continue;
   2607 
   2608 		/* we don't care about floppies... */
   2609 		if (device_is_a(dv, "fd")) {
   2610 			continue;
   2611 		}
   2612 
   2613 		/* we don't care about CD's... */
   2614 		if (device_is_a(dv, "cd")) {
   2615 			continue;
   2616 		}
   2617 
   2618 		/* hdfd is the Atari/Hades floppy driver */
   2619 		if (device_is_a(dv, "hdfd")) {
   2620 			continue;
   2621 		}
   2622 
   2623 		/* fdisa is the Atari/Milan floppy driver */
   2624 		if (device_is_a(dv, "fdisa")) {
   2625 			continue;
   2626 		}
   2627 
   2628 		/* need to find the device_name_to_block_device_major stuff */
   2629 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2630 
   2631 		/* get a vnode for the raw partition of this disk */
   2632 
   2633 		dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
   2634 		if (bdevvp(dev, &vp))
   2635 			panic("RAID can't alloc vnode");
   2636 
   2637 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2638 
   2639 		if (error) {
   2640 			/* "Who cares."  Continue looking
   2641 			   for something that exists*/
   2642 			vput(vp);
   2643 			continue;
   2644 		}
   2645 
   2646 		/* Ok, the disk exists.  Go get the disklabel. */
   2647 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2648 		if (error) {
   2649 			/*
   2650 			 * XXX can't happen - open() would
   2651 			 * have errored out (or faked up one)
   2652 			 */
   2653 			if (error != ENOTTY)
   2654 				printf("RAIDframe: can't get label for dev "
   2655 				    "%s (%d)\n", dv->dv_xname, error);
   2656 		}
   2657 
   2658 		/* don't need this any more.  We'll allocate it again
   2659 		   a little later if we really do... */
   2660 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2661 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2662 		vput(vp);
   2663 
   2664 		if (error)
   2665 			continue;
   2666 
   2667 		for (i=0; i < label.d_npartitions; i++) {
   2668 			/* We only support partitions marked as RAID */
   2669 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2670 				continue;
   2671 
   2672 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2673 			if (bdevvp(dev, &vp))
   2674 				panic("RAID can't alloc vnode");
   2675 
   2676 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2677 			if (error) {
   2678 				/* Whatever... */
   2679 				vput(vp);
   2680 				continue;
   2681 			}
   2682 
   2683 			good_one = 0;
   2684 
   2685 			clabel = (RF_ComponentLabel_t *)
   2686 				malloc(sizeof(RF_ComponentLabel_t),
   2687 				       M_RAIDFRAME, M_NOWAIT);
   2688 			if (clabel == NULL) {
   2689 				while(ac_list) {
   2690 					ac = ac_list;
   2691 					if (ac->clabel)
   2692 						free(ac->clabel, M_RAIDFRAME);
   2693 					ac_list = ac_list->next;
   2694 					free(ac, M_RAIDFRAME);
   2695 				};
   2696 				printf("RAID auto config: out of memory!\n");
   2697 				return(NULL); /* XXX probably should panic? */
   2698 			}
   2699 
   2700 			if (!raidread_component_label(dev, vp, clabel)) {
   2701 				/* Got the label.  Does it look reasonable? */
   2702 				if (rf_reasonable_label(clabel) &&
   2703 				    (clabel->partitionSize <=
   2704 				     label.d_partitions[i].p_size)) {
   2705 #if DEBUG
   2706 					printf("Component on: %s%c: %d\n",
   2707 					       dv->dv_xname, 'a'+i,
   2708 					       label.d_partitions[i].p_size);
   2709 					rf_print_component_label(clabel);
   2710 #endif
   2711 					/* if it's reasonable, add it,
   2712 					   else ignore it. */
   2713 					ac = (RF_AutoConfig_t *)
   2714 						malloc(sizeof(RF_AutoConfig_t),
   2715 						       M_RAIDFRAME,
   2716 						       M_NOWAIT);
   2717 					if (ac == NULL) {
   2718 						/* XXX should panic?? */
   2719 						while(ac_list) {
   2720 							ac = ac_list;
   2721 							if (ac->clabel)
   2722 								free(ac->clabel,
   2723 								    M_RAIDFRAME);
   2724 							ac_list = ac_list->next;
   2725 							free(ac, M_RAIDFRAME);
   2726 						}
   2727 						free(clabel, M_RAIDFRAME);
   2728 						return(NULL);
   2729 					}
   2730 
   2731 					snprintf(ac->devname,
   2732 					    sizeof(ac->devname), "%s%c",
   2733 					    dv->dv_xname, 'a'+i);
   2734 					ac->dev = dev;
   2735 					ac->vp = vp;
   2736 					ac->clabel = clabel;
   2737 					ac->next = ac_list;
   2738 					ac_list = ac;
   2739 					good_one = 1;
   2740 				}
   2741 			}
   2742 			if (!good_one) {
   2743 				/* cleanup */
   2744 				free(clabel, M_RAIDFRAME);
   2745 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2746 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2747 				vput(vp);
   2748 			}
   2749 		}
   2750 	}
   2751 	return(ac_list);
   2752 }
   2753 
   2754 static int
   2755 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2756 {
   2757 
   2758 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2759 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2760 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2761 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2762 	    clabel->row >=0 &&
   2763 	    clabel->column >= 0 &&
   2764 	    clabel->num_rows > 0 &&
   2765 	    clabel->num_columns > 0 &&
   2766 	    clabel->row < clabel->num_rows &&
   2767 	    clabel->column < clabel->num_columns &&
   2768 	    clabel->blockSize > 0 &&
   2769 	    clabel->numBlocks > 0) {
   2770 		/* label looks reasonable enough... */
   2771 		return(1);
   2772 	}
   2773 	return(0);
   2774 }
   2775 
   2776 
   2777 #if DEBUG
   2778 void
   2779 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2780 {
   2781 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2782 	       clabel->row, clabel->column,
   2783 	       clabel->num_rows, clabel->num_columns);
   2784 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2785 	       clabel->version, clabel->serial_number,
   2786 	       clabel->mod_counter);
   2787 	printf("   Clean: %s Status: %d\n",
   2788 	       clabel->clean ? "Yes" : "No", clabel->status );
   2789 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2790 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2791 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2792 	       (char) clabel->parityConfig, clabel->blockSize,
   2793 	       clabel->numBlocks);
   2794 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2795 	printf("   Contains root partition: %s\n",
   2796 	       clabel->root_partition ? "Yes" : "No" );
   2797 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2798 #if 0
   2799 	   printf("   Config order: %d\n", clabel->config_order);
   2800 #endif
   2801 
   2802 }
   2803 #endif
   2804 
   2805 RF_ConfigSet_t *
   2806 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2807 {
   2808 	RF_AutoConfig_t *ac;
   2809 	RF_ConfigSet_t *config_sets;
   2810 	RF_ConfigSet_t *cset;
   2811 	RF_AutoConfig_t *ac_next;
   2812 
   2813 
   2814 	config_sets = NULL;
   2815 
   2816 	/* Go through the AutoConfig list, and figure out which components
   2817 	   belong to what sets.  */
   2818 	ac = ac_list;
   2819 	while(ac!=NULL) {
   2820 		/* we're going to putz with ac->next, so save it here
   2821 		   for use at the end of the loop */
   2822 		ac_next = ac->next;
   2823 
   2824 		if (config_sets == NULL) {
   2825 			/* will need at least this one... */
   2826 			config_sets = (RF_ConfigSet_t *)
   2827 				malloc(sizeof(RF_ConfigSet_t),
   2828 				       M_RAIDFRAME, M_NOWAIT);
   2829 			if (config_sets == NULL) {
   2830 				panic("rf_create_auto_sets: No memory!");
   2831 			}
   2832 			/* this one is easy :) */
   2833 			config_sets->ac = ac;
   2834 			config_sets->next = NULL;
   2835 			config_sets->rootable = 0;
   2836 			ac->next = NULL;
   2837 		} else {
   2838 			/* which set does this component fit into? */
   2839 			cset = config_sets;
   2840 			while(cset!=NULL) {
   2841 				if (rf_does_it_fit(cset, ac)) {
   2842 					/* looks like it matches... */
   2843 					ac->next = cset->ac;
   2844 					cset->ac = ac;
   2845 					break;
   2846 				}
   2847 				cset = cset->next;
   2848 			}
   2849 			if (cset==NULL) {
   2850 				/* didn't find a match above... new set..*/
   2851 				cset = (RF_ConfigSet_t *)
   2852 					malloc(sizeof(RF_ConfigSet_t),
   2853 					       M_RAIDFRAME, M_NOWAIT);
   2854 				if (cset == NULL) {
   2855 					panic("rf_create_auto_sets: No memory!");
   2856 				}
   2857 				cset->ac = ac;
   2858 				ac->next = NULL;
   2859 				cset->next = config_sets;
   2860 				cset->rootable = 0;
   2861 				config_sets = cset;
   2862 			}
   2863 		}
   2864 		ac = ac_next;
   2865 	}
   2866 
   2867 
   2868 	return(config_sets);
   2869 }
   2870 
   2871 static int
   2872 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2873 {
   2874 	RF_ComponentLabel_t *clabel1, *clabel2;
   2875 
   2876 	/* If this one matches the *first* one in the set, that's good
   2877 	   enough, since the other members of the set would have been
   2878 	   through here too... */
   2879 	/* note that we are not checking partitionSize here..
   2880 
   2881 	   Note that we are also not checking the mod_counters here.
   2882 	   If everything else matches execpt the mod_counter, that's
   2883 	   good enough for this test.  We will deal with the mod_counters
   2884 	   a little later in the autoconfiguration process.
   2885 
   2886 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2887 
   2888 	   The reason we don't check for this is that failed disks
   2889 	   will have lower modification counts.  If those disks are
   2890 	   not added to the set they used to belong to, then they will
   2891 	   form their own set, which may result in 2 different sets,
   2892 	   for example, competing to be configured at raid0, and
   2893 	   perhaps competing to be the root filesystem set.  If the
   2894 	   wrong ones get configured, or both attempt to become /,
   2895 	   weird behaviour and or serious lossage will occur.  Thus we
   2896 	   need to bring them into the fold here, and kick them out at
   2897 	   a later point.
   2898 
   2899 	*/
   2900 
   2901 	clabel1 = cset->ac->clabel;
   2902 	clabel2 = ac->clabel;
   2903 	if ((clabel1->version == clabel2->version) &&
   2904 	    (clabel1->serial_number == clabel2->serial_number) &&
   2905 	    (clabel1->num_rows == clabel2->num_rows) &&
   2906 	    (clabel1->num_columns == clabel2->num_columns) &&
   2907 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2908 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2909 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2910 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2911 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2912 	    (clabel1->blockSize == clabel2->blockSize) &&
   2913 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2914 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2915 	    (clabel1->root_partition == clabel2->root_partition) &&
   2916 	    (clabel1->last_unit == clabel2->last_unit) &&
   2917 	    (clabel1->config_order == clabel2->config_order)) {
   2918 		/* if it get's here, it almost *has* to be a match */
   2919 	} else {
   2920 		/* it's not consistent with somebody in the set..
   2921 		   punt */
   2922 		return(0);
   2923 	}
   2924 	/* all was fine.. it must fit... */
   2925 	return(1);
   2926 }
   2927 
   2928 int
   2929 rf_have_enough_components(RF_ConfigSet_t *cset)
   2930 {
   2931 	RF_AutoConfig_t *ac;
   2932 	RF_AutoConfig_t *auto_config;
   2933 	RF_ComponentLabel_t *clabel;
   2934 	int c;
   2935 	int num_cols;
   2936 	int num_missing;
   2937 	int mod_counter;
   2938 	int mod_counter_found;
   2939 	int even_pair_failed;
   2940 	char parity_type;
   2941 
   2942 
   2943 	/* check to see that we have enough 'live' components
   2944 	   of this set.  If so, we can configure it if necessary */
   2945 
   2946 	num_cols = cset->ac->clabel->num_columns;
   2947 	parity_type = cset->ac->clabel->parityConfig;
   2948 
   2949 	/* XXX Check for duplicate components!?!?!? */
   2950 
   2951 	/* Determine what the mod_counter is supposed to be for this set. */
   2952 
   2953 	mod_counter_found = 0;
   2954 	mod_counter = 0;
   2955 	ac = cset->ac;
   2956 	while(ac!=NULL) {
   2957 		if (mod_counter_found==0) {
   2958 			mod_counter = ac->clabel->mod_counter;
   2959 			mod_counter_found = 1;
   2960 		} else {
   2961 			if (ac->clabel->mod_counter > mod_counter) {
   2962 				mod_counter = ac->clabel->mod_counter;
   2963 			}
   2964 		}
   2965 		ac = ac->next;
   2966 	}
   2967 
   2968 	num_missing = 0;
   2969 	auto_config = cset->ac;
   2970 
   2971 	even_pair_failed = 0;
   2972 	for(c=0; c<num_cols; c++) {
   2973 		ac = auto_config;
   2974 		while(ac!=NULL) {
   2975 			if ((ac->clabel->column == c) &&
   2976 			    (ac->clabel->mod_counter == mod_counter)) {
   2977 				/* it's this one... */
   2978 #if DEBUG
   2979 				printf("Found: %s at %d\n",
   2980 				       ac->devname,c);
   2981 #endif
   2982 				break;
   2983 			}
   2984 			ac=ac->next;
   2985 		}
   2986 		if (ac==NULL) {
   2987 				/* Didn't find one here! */
   2988 				/* special case for RAID 1, especially
   2989 				   where there are more than 2
   2990 				   components (where RAIDframe treats
   2991 				   things a little differently :( ) */
   2992 			if (parity_type == '1') {
   2993 				if (c%2 == 0) { /* even component */
   2994 					even_pair_failed = 1;
   2995 				} else { /* odd component.  If
   2996 					    we're failed, and
   2997 					    so is the even
   2998 					    component, it's
   2999 					    "Good Night, Charlie" */
   3000 					if (even_pair_failed == 1) {
   3001 						return(0);
   3002 					}
   3003 				}
   3004 			} else {
   3005 				/* normal accounting */
   3006 				num_missing++;
   3007 			}
   3008 		}
   3009 		if ((parity_type == '1') && (c%2 == 1)) {
   3010 				/* Just did an even component, and we didn't
   3011 				   bail.. reset the even_pair_failed flag,
   3012 				   and go on to the next component.... */
   3013 			even_pair_failed = 0;
   3014 		}
   3015 	}
   3016 
   3017 	clabel = cset->ac->clabel;
   3018 
   3019 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3020 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3021 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3022 		/* XXX this needs to be made *much* more general */
   3023 		/* Too many failures */
   3024 		return(0);
   3025 	}
   3026 	/* otherwise, all is well, and we've got enough to take a kick
   3027 	   at autoconfiguring this set */
   3028 	return(1);
   3029 }
   3030 
   3031 void
   3032 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3033 			RF_Raid_t *raidPtr)
   3034 {
   3035 	RF_ComponentLabel_t *clabel;
   3036 	int i;
   3037 
   3038 	clabel = ac->clabel;
   3039 
   3040 	/* 1. Fill in the common stuff */
   3041 	config->numRow = clabel->num_rows = 1;
   3042 	config->numCol = clabel->num_columns;
   3043 	config->numSpare = 0; /* XXX should this be set here? */
   3044 	config->sectPerSU = clabel->sectPerSU;
   3045 	config->SUsPerPU = clabel->SUsPerPU;
   3046 	config->SUsPerRU = clabel->SUsPerRU;
   3047 	config->parityConfig = clabel->parityConfig;
   3048 	/* XXX... */
   3049 	strcpy(config->diskQueueType,"fifo");
   3050 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3051 	config->layoutSpecificSize = 0; /* XXX ?? */
   3052 
   3053 	while(ac!=NULL) {
   3054 		/* row/col values will be in range due to the checks
   3055 		   in reasonable_label() */
   3056 		strcpy(config->devnames[0][ac->clabel->column],
   3057 		       ac->devname);
   3058 		ac = ac->next;
   3059 	}
   3060 
   3061 	for(i=0;i<RF_MAXDBGV;i++) {
   3062 		config->debugVars[i][0] = 0;
   3063 	}
   3064 }
   3065 
   3066 int
   3067 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3068 {
   3069 	RF_ComponentLabel_t clabel;
   3070 	struct vnode *vp;
   3071 	dev_t dev;
   3072 	int column;
   3073 	int sparecol;
   3074 
   3075 	raidPtr->autoconfigure = new_value;
   3076 
   3077 	for(column=0; column<raidPtr->numCol; column++) {
   3078 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3079 			dev = raidPtr->Disks[column].dev;
   3080 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3081 			raidread_component_label(dev, vp, &clabel);
   3082 			clabel.autoconfigure = new_value;
   3083 			raidwrite_component_label(dev, vp, &clabel);
   3084 		}
   3085 	}
   3086 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3087 		sparecol = raidPtr->numCol + column;
   3088 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3089 			dev = raidPtr->Disks[sparecol].dev;
   3090 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3091 			raidread_component_label(dev, vp, &clabel);
   3092 			clabel.autoconfigure = new_value;
   3093 			raidwrite_component_label(dev, vp, &clabel);
   3094 		}
   3095 	}
   3096 	return(new_value);
   3097 }
   3098 
   3099 int
   3100 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3101 {
   3102 	RF_ComponentLabel_t clabel;
   3103 	struct vnode *vp;
   3104 	dev_t dev;
   3105 	int column;
   3106 	int sparecol;
   3107 
   3108 	raidPtr->root_partition = new_value;
   3109 	for(column=0; column<raidPtr->numCol; column++) {
   3110 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3111 			dev = raidPtr->Disks[column].dev;
   3112 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3113 			raidread_component_label(dev, vp, &clabel);
   3114 			clabel.root_partition = new_value;
   3115 			raidwrite_component_label(dev, vp, &clabel);
   3116 		}
   3117 	}
   3118 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3119 		sparecol = raidPtr->numCol + column;
   3120 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3121 			dev = raidPtr->Disks[sparecol].dev;
   3122 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3123 			raidread_component_label(dev, vp, &clabel);
   3124 			clabel.root_partition = new_value;
   3125 			raidwrite_component_label(dev, vp, &clabel);
   3126 		}
   3127 	}
   3128 	return(new_value);
   3129 }
   3130 
   3131 void
   3132 rf_release_all_vps(RF_ConfigSet_t *cset)
   3133 {
   3134 	RF_AutoConfig_t *ac;
   3135 
   3136 	ac = cset->ac;
   3137 	while(ac!=NULL) {
   3138 		/* Close the vp, and give it back */
   3139 		if (ac->vp) {
   3140 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3141 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3142 			vput(ac->vp);
   3143 			ac->vp = NULL;
   3144 		}
   3145 		ac = ac->next;
   3146 	}
   3147 }
   3148 
   3149 
   3150 void
   3151 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3152 {
   3153 	RF_AutoConfig_t *ac;
   3154 	RF_AutoConfig_t *next_ac;
   3155 
   3156 	ac = cset->ac;
   3157 	while(ac!=NULL) {
   3158 		next_ac = ac->next;
   3159 		/* nuke the label */
   3160 		free(ac->clabel, M_RAIDFRAME);
   3161 		/* cleanup the config structure */
   3162 		free(ac, M_RAIDFRAME);
   3163 		/* "next.." */
   3164 		ac = next_ac;
   3165 	}
   3166 	/* and, finally, nuke the config set */
   3167 	free(cset, M_RAIDFRAME);
   3168 }
   3169 
   3170 
   3171 void
   3172 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3173 {
   3174 	/* current version number */
   3175 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3176 	clabel->serial_number = raidPtr->serial_number;
   3177 	clabel->mod_counter = raidPtr->mod_counter;
   3178 	clabel->num_rows = 1;
   3179 	clabel->num_columns = raidPtr->numCol;
   3180 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3181 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3182 
   3183 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3184 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3185 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3186 
   3187 	clabel->blockSize = raidPtr->bytesPerSector;
   3188 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3189 
   3190 	/* XXX not portable */
   3191 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3192 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3193 	clabel->autoconfigure = raidPtr->autoconfigure;
   3194 	clabel->root_partition = raidPtr->root_partition;
   3195 	clabel->last_unit = raidPtr->raidid;
   3196 	clabel->config_order = raidPtr->config_order;
   3197 }
   3198 
   3199 int
   3200 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3201 {
   3202 	RF_Raid_t *raidPtr;
   3203 	RF_Config_t *config;
   3204 	int raidID;
   3205 	int retcode;
   3206 
   3207 #if DEBUG
   3208 	printf("RAID autoconfigure\n");
   3209 #endif
   3210 
   3211 	retcode = 0;
   3212 	*unit = -1;
   3213 
   3214 	/* 1. Create a config structure */
   3215 
   3216 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3217 				       M_RAIDFRAME,
   3218 				       M_NOWAIT);
   3219 	if (config==NULL) {
   3220 		printf("Out of mem!?!?\n");
   3221 				/* XXX do something more intelligent here. */
   3222 		return(1);
   3223 	}
   3224 
   3225 	memset(config, 0, sizeof(RF_Config_t));
   3226 
   3227 	/*
   3228 	   2. Figure out what RAID ID this one is supposed to live at
   3229 	   See if we can get the same RAID dev that it was configured
   3230 	   on last time..
   3231 	*/
   3232 
   3233 	raidID = cset->ac->clabel->last_unit;
   3234 	if ((raidID < 0) || (raidID >= numraid)) {
   3235 		/* let's not wander off into lala land. */
   3236 		raidID = numraid - 1;
   3237 	}
   3238 	if (raidPtrs[raidID]->valid != 0) {
   3239 
   3240 		/*
   3241 		   Nope... Go looking for an alternative...
   3242 		   Start high so we don't immediately use raid0 if that's
   3243 		   not taken.
   3244 		*/
   3245 
   3246 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3247 			if (raidPtrs[raidID]->valid == 0) {
   3248 				/* can use this one! */
   3249 				break;
   3250 			}
   3251 		}
   3252 	}
   3253 
   3254 	if (raidID < 0) {
   3255 		/* punt... */
   3256 		printf("Unable to auto configure this set!\n");
   3257 		printf("(Out of RAID devs!)\n");
   3258 		free(config, M_RAIDFRAME);
   3259 		return(1);
   3260 	}
   3261 
   3262 #if DEBUG
   3263 	printf("Configuring raid%d:\n",raidID);
   3264 #endif
   3265 
   3266 	raidPtr = raidPtrs[raidID];
   3267 
   3268 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3269 	raidPtr->raidid = raidID;
   3270 	raidPtr->openings = RAIDOUTSTANDING;
   3271 
   3272 	/* 3. Build the configuration structure */
   3273 	rf_create_configuration(cset->ac, config, raidPtr);
   3274 
   3275 	/* 4. Do the configuration */
   3276 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3277 
   3278 	if (retcode == 0) {
   3279 
   3280 		raidinit(raidPtrs[raidID]);
   3281 
   3282 		rf_markalldirty(raidPtrs[raidID]);
   3283 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3284 		if (cset->ac->clabel->root_partition==1) {
   3285 			/* everything configured just fine.  Make a note
   3286 			   that this set is eligible to be root. */
   3287 			cset->rootable = 1;
   3288 			/* XXX do this here? */
   3289 			raidPtrs[raidID]->root_partition = 1;
   3290 		}
   3291 	}
   3292 
   3293 	/* 5. Cleanup */
   3294 	free(config, M_RAIDFRAME);
   3295 
   3296 	*unit = raidID;
   3297 	return(retcode);
   3298 }
   3299 
   3300 void
   3301 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3302 {
   3303 	struct buf *bp;
   3304 
   3305 	bp = (struct buf *)desc->bp;
   3306 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3307 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3308 }
   3309 
   3310 void
   3311 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3312 	     size_t xmin, size_t xmax)
   3313 {
   3314 	pool_init(p, size, 0, 0, 0, w_chan, NULL);
   3315 	pool_sethiwat(p, xmax);
   3316 	pool_prime(p, xmin);
   3317 	pool_setlowat(p, xmin);
   3318 }
   3319 
   3320 /*
   3321  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3322  * if there is IO pending and if that IO could possibly be done for a
   3323  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3324  * otherwise.
   3325  *
   3326  */
   3327 
   3328 int
   3329 rf_buf_queue_check(int raidid)
   3330 {
   3331 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3332 	    raidPtrs[raidid]->openings > 0) {
   3333 		/* there is work to do */
   3334 		return 0;
   3335 	}
   3336 	/* default is nothing to do */
   3337 	return 1;
   3338 }
   3339