Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.21
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.21 1999/07/21 03:15:26 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 
    137 #include "raid.h"
    138 #include "rf_raid.h"
    139 #include "rf_raidframe.h"
    140 #include "rf_dag.h"
    141 #include "rf_dagflags.h"
    142 #include "rf_diskqueue.h"
    143 #include "rf_acctrace.h"
    144 #include "rf_etimer.h"
    145 #include "rf_general.h"
    146 #include "rf_debugMem.h"
    147 #include "rf_kintf.h"
    148 #include "rf_options.h"
    149 #include "rf_driver.h"
    150 #include "rf_parityscan.h"
    151 #include "rf_debugprint.h"
    152 #include "rf_threadstuff.h"
    153 
    154 int     rf_kdebug_level = 0;
    155 
    156 #define RFK_BOOT_NONE 0
    157 #define RFK_BOOT_GOOD 1
    158 #define RFK_BOOT_BAD  2
    159 static int rf_kbooted = RFK_BOOT_NONE;
    160 
    161 #ifdef DEBUG
    162 #define db0_printf(a) printf a
    163 #define db_printf(a) if (rf_kdebug_level > 0) printf a
    164 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    165 #define db2_printf(a) if (rf_kdebug_level > 1) printf a
    166 #define db3_printf(a) if (rf_kdebug_level > 2) printf a
    167 #define db4_printf(a) if (rf_kdebug_level > 3) printf a
    168 #define db5_printf(a) if (rf_kdebug_level > 4) printf a
    169 #else				/* DEBUG */
    170 #define db0_printf(a) printf a
    171 #define db1_printf(a) { }
    172 #define db2_printf(a) { }
    173 #define db3_printf(a) { }
    174 #define db4_printf(a) { }
    175 #define db5_printf(a) { }
    176 #endif				/* DEBUG */
    177 
    178 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    179 
    180 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    181 
    182 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    183 						 * spare table */
    184 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    185 						 * installation process */
    186 
    187 static struct rf_recon_req *recon_queue = NULL;	/* used to communicate
    188 						 * reconstruction
    189 						 * requests */
    190 
    191 
    192 decl_simple_lock_data(, recon_queue_mutex)
    193 #define LOCK_RECON_Q_MUTEX() simple_lock(&recon_queue_mutex)
    194 #define UNLOCK_RECON_Q_MUTEX() simple_unlock(&recon_queue_mutex)
    195 
    196 /* prototypes */
    197 static void KernelWakeupFunc(struct buf * bp);
    198 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    199 		   dev_t dev, RF_SectorNum_t startSect,
    200 		   RF_SectorCount_t numSect, caddr_t buf,
    201 		   void (*cbFunc) (struct buf *), void *cbArg,
    202 		   int logBytesPerSector, struct proc * b_proc);
    203 
    204 #define Dprintf0(s)       if (rf_queueDebug) \
    205      rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
    206 #define Dprintf1(s,a)     if (rf_queueDebug) \
    207      rf_debug_printf(s,a,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
    208 #define Dprintf2(s,a,b)   if (rf_queueDebug) \
    209      rf_debug_printf(s,a,b,NULL,NULL,NULL,NULL,NULL,NULL)
    210 #define Dprintf3(s,a,b,c) if (rf_queueDebug) \
    211      rf_debug_printf(s,a,b,c,NULL,NULL,NULL,NULL,NULL)
    212 
    213 int raidmarkclean(dev_t dev, struct vnode *b_vp, int);
    214 int raidmarkdirty(dev_t dev, struct vnode *b_vp, int);
    215 
    216 void raidattach __P((int));
    217 int raidsize __P((dev_t));
    218 
    219 void    rf_DiskIOComplete(RF_DiskQueue_t *, RF_DiskQueueData_t *, int);
    220 void    rf_CopybackReconstructedData(RF_Raid_t * raidPtr);
    221 static int raidinit __P((dev_t, RF_Raid_t *, int));
    222 
    223 int raidopen __P((dev_t, int, int, struct proc *));
    224 int raidclose __P((dev_t, int, int, struct proc *));
    225 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    226 int raidwrite __P((dev_t, struct uio *, int));
    227 int raidread __P((dev_t, struct uio *, int));
    228 void raidstrategy __P((struct buf *));
    229 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    230 
    231 int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
    232 int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
    233 void rf_update_component_labels( RF_Raid_t *);
    234 /*
    235  * Pilfered from ccd.c
    236  */
    237 
    238 struct raidbuf {
    239 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    240 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    241 	int     rf_flags;	/* misc. flags */
    242 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    243 };
    244 
    245 
    246 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    247 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    248 
    249 /* XXX Not sure if the following should be replacing the raidPtrs above,
    250    or if it should be used in conjunction with that... */
    251 
    252 struct raid_softc {
    253 	int     sc_flags;	/* flags */
    254 	int     sc_cflags;	/* configuration flags */
    255 	size_t  sc_size;        /* size of the raid device */
    256 	dev_t   sc_dev;	        /* our device.. */
    257 	char    sc_xname[20];	/* XXX external name */
    258 	struct disk sc_dkdev;	/* generic disk device info */
    259 	struct pool sc_cbufpool;	/* component buffer pool */
    260 };
    261 /* sc_flags */
    262 #define RAIDF_INITED	0x01	/* unit has been initialized */
    263 #define RAIDF_WLABEL	0x02	/* label area is writable */
    264 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    265 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    266 #define RAIDF_LOCKED	0x80	/* unit is locked */
    267 
    268 #define	raidunit(x)	DISKUNIT(x)
    269 static int numraid = 0;
    270 
    271 /*
    272  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    273  * Be aware that large numbers can allow the driver to consume a lot of
    274  * kernel memory, especially on writes...
    275  */
    276 
    277 #ifndef RAIDOUTSTANDING
    278 #define RAIDOUTSTANDING   10
    279 #endif
    280 
    281 #define RAIDLABELDEV(dev)	\
    282 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    283 
    284 /* declared here, and made public, for the benefit of KVM stuff.. */
    285 struct raid_softc *raid_softc;
    286 
    287 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    288 				     struct disklabel *));
    289 static void raidgetdisklabel __P((dev_t));
    290 static void raidmakedisklabel __P((struct raid_softc *));
    291 
    292 static int raidlock __P((struct raid_softc *));
    293 static void raidunlock __P((struct raid_softc *));
    294 int raidlookup __P((char *, struct proc * p, struct vnode **));
    295 
    296 static void rf_markalldirty __P((RF_Raid_t *));
    297 
    298 void
    299 raidattach(num)
    300 	int     num;
    301 {
    302 	int raidID;
    303 	int i, rc;
    304 
    305 #ifdef DEBUG
    306 	printf("raidattach: Asked for %d units\n", num);
    307 #endif
    308 
    309 	if (num <= 0) {
    310 #ifdef DIAGNOSTIC
    311 		panic("raidattach: count <= 0");
    312 #endif
    313 		return;
    314 	}
    315 	/* This is where all the initialization stuff gets done. */
    316 
    317 	/* Make some space for requested number of units... */
    318 
    319 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    320 	if (raidPtrs == NULL) {
    321 		panic("raidPtrs is NULL!!\n");
    322 	}
    323 
    324 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    325 	if (rc) {
    326 		RF_PANIC();
    327 	}
    328 
    329 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    330 	recon_queue = NULL;
    331 
    332 	for (i = 0; i < numraid; i++)
    333 		raidPtrs[i] = NULL;
    334 	rc = rf_BootRaidframe();
    335 	if (rc == 0)
    336 		printf("Kernelized RAIDframe activated\n");
    337 	else
    338 		panic("Serious error booting RAID!!\n");
    339 
    340 	rf_kbooted = RFK_BOOT_GOOD;
    341 
    342 	/* put together some datastructures like the CCD device does.. This
    343 	 * lets us lock the device and what-not when it gets opened. */
    344 
    345 	raid_softc = (struct raid_softc *)
    346 	    malloc(num * sizeof(struct raid_softc),
    347 	    M_RAIDFRAME, M_NOWAIT);
    348 	if (raid_softc == NULL) {
    349 		printf("WARNING: no memory for RAIDframe driver\n");
    350 		return;
    351 	}
    352 	numraid = num;
    353 	bzero(raid_softc, num * sizeof(struct raid_softc));
    354 
    355 	for (raidID = 0; raidID < num; raidID++) {
    356 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    357 			  (RF_Raid_t *));
    358 		if (raidPtrs[raidID] == NULL) {
    359 			printf("raidPtrs[%d] is NULL\n", raidID);
    360 		}
    361 	}
    362 }
    363 
    364 
    365 int
    366 raidsize(dev)
    367 	dev_t   dev;
    368 {
    369 	struct raid_softc *rs;
    370 	struct disklabel *lp;
    371 	int     part, unit, omask, size;
    372 
    373 	unit = raidunit(dev);
    374 	if (unit >= numraid)
    375 		return (-1);
    376 	rs = &raid_softc[unit];
    377 
    378 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    379 		return (-1);
    380 
    381 	part = DISKPART(dev);
    382 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    383 	lp = rs->sc_dkdev.dk_label;
    384 
    385 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    386 		return (-1);
    387 
    388 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    389 		size = -1;
    390 	else
    391 		size = lp->d_partitions[part].p_size *
    392 		    (lp->d_secsize / DEV_BSIZE);
    393 
    394 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    395 		return (-1);
    396 
    397 	return (size);
    398 
    399 }
    400 
    401 int
    402 raiddump(dev, blkno, va, size)
    403 	dev_t   dev;
    404 	daddr_t blkno;
    405 	caddr_t va;
    406 	size_t  size;
    407 {
    408 	/* Not implemented. */
    409 	return ENXIO;
    410 }
    411 /* ARGSUSED */
    412 int
    413 raidopen(dev, flags, fmt, p)
    414 	dev_t   dev;
    415 	int     flags, fmt;
    416 	struct proc *p;
    417 {
    418 	int     unit = raidunit(dev);
    419 	struct raid_softc *rs;
    420 	struct disklabel *lp;
    421 	int     part, pmask;
    422 	int     error = 0;
    423 
    424 	if (unit >= numraid)
    425 		return (ENXIO);
    426 	rs = &raid_softc[unit];
    427 
    428 	if ((error = raidlock(rs)) != 0)
    429 		return (error);
    430 	lp = rs->sc_dkdev.dk_label;
    431 
    432 	part = DISKPART(dev);
    433 	pmask = (1 << part);
    434 
    435 	db1_printf(("Opening raid device number: %d partition: %d\n",
    436 		unit, part));
    437 
    438 
    439 	if ((rs->sc_flags & RAIDF_INITED) &&
    440 	    (rs->sc_dkdev.dk_openmask == 0))
    441 		raidgetdisklabel(dev);
    442 
    443 	/* make sure that this partition exists */
    444 
    445 	if (part != RAW_PART) {
    446 		db1_printf(("Not a raw partition..\n"));
    447 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    448 		    ((part >= lp->d_npartitions) ||
    449 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    450 			error = ENXIO;
    451 			raidunlock(rs);
    452 			db1_printf(("Bailing out...\n"));
    453 			return (error);
    454 		}
    455 	}
    456 	/* Prevent this unit from being unconfigured while open. */
    457 	switch (fmt) {
    458 	case S_IFCHR:
    459 		rs->sc_dkdev.dk_copenmask |= pmask;
    460 		break;
    461 
    462 	case S_IFBLK:
    463 		rs->sc_dkdev.dk_bopenmask |= pmask;
    464 		break;
    465 	}
    466 
    467 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    468 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    469 		/* First one... mark things as dirty... Note that we *MUST*
    470 		 have done a configure before this.  I DO NOT WANT TO BE
    471 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    472 		 THAT THEY BELONG TOGETHER!!!!! */
    473 		/* XXX should check to see if we're only open for reading
    474 		   here... If so, we needn't do this, but then need some
    475 		   other way of keeping track of what's happened.. */
    476 
    477 		rf_markalldirty( raidPtrs[unit] );
    478 	}
    479 
    480 
    481 	rs->sc_dkdev.dk_openmask =
    482 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    483 
    484 	raidunlock(rs);
    485 
    486 	return (error);
    487 
    488 
    489 }
    490 /* ARGSUSED */
    491 int
    492 raidclose(dev, flags, fmt, p)
    493 	dev_t   dev;
    494 	int     flags, fmt;
    495 	struct proc *p;
    496 {
    497 	int     unit = raidunit(dev);
    498 	struct raid_softc *rs;
    499 	int     error = 0;
    500 	int     part;
    501 
    502 	if (unit >= numraid)
    503 		return (ENXIO);
    504 	rs = &raid_softc[unit];
    505 
    506 	if ((error = raidlock(rs)) != 0)
    507 		return (error);
    508 
    509 	part = DISKPART(dev);
    510 
    511 	/* ...that much closer to allowing unconfiguration... */
    512 	switch (fmt) {
    513 	case S_IFCHR:
    514 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    515 		break;
    516 
    517 	case S_IFBLK:
    518 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    519 		break;
    520 	}
    521 	rs->sc_dkdev.dk_openmask =
    522 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    523 
    524 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    525 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    526 		/* Last one... device is not unconfigured yet.
    527 		   Device shutdown has taken care of setting the
    528 		   clean bits if RAIDF_INITED is not set
    529 		   mark things as clean... */
    530 		rf_update_component_labels( raidPtrs[unit] );
    531 	}
    532 
    533 	raidunlock(rs);
    534 	return (0);
    535 
    536 }
    537 
    538 void
    539 raidstrategy(bp)
    540 	register struct buf *bp;
    541 {
    542 	register int s;
    543 
    544 	unsigned int raidID = raidunit(bp->b_dev);
    545 	RF_Raid_t *raidPtr;
    546 	struct raid_softc *rs = &raid_softc[raidID];
    547 	struct disklabel *lp;
    548 	int     wlabel;
    549 
    550 #if 0
    551 	db1_printf(("Strategy: 0x%x 0x%x\n", bp, bp->b_data));
    552 	db1_printf(("Strategy(2): bp->b_bufsize%d\n", (int) bp->b_bufsize));
    553 	db1_printf(("bp->b_count=%d\n", (int) bp->b_bcount));
    554 	db1_printf(("bp->b_resid=%d\n", (int) bp->b_resid));
    555 	db1_printf(("bp->b_blkno=%d\n", (int) bp->b_blkno));
    556 
    557 	if (bp->b_flags & B_READ)
    558 		db1_printf(("READ\n"));
    559 	else
    560 		db1_printf(("WRITE\n"));
    561 #endif
    562 	if (rf_kbooted != RFK_BOOT_GOOD)
    563 		return;
    564 	if (raidID >= numraid || !raidPtrs[raidID]) {
    565 		bp->b_error = ENODEV;
    566 		bp->b_flags |= B_ERROR;
    567 		bp->b_resid = bp->b_bcount;
    568 		biodone(bp);
    569 		return;
    570 	}
    571 	raidPtr = raidPtrs[raidID];
    572 	if (!raidPtr->valid) {
    573 		bp->b_error = ENODEV;
    574 		bp->b_flags |= B_ERROR;
    575 		bp->b_resid = bp->b_bcount;
    576 		biodone(bp);
    577 		return;
    578 	}
    579 	if (bp->b_bcount == 0) {
    580 		db1_printf(("b_bcount is zero..\n"));
    581 		biodone(bp);
    582 		return;
    583 	}
    584 	lp = rs->sc_dkdev.dk_label;
    585 
    586 	/*
    587 	 * Do bounds checking and adjust transfer.  If there's an
    588 	 * error, the bounds check will flag that for us.
    589 	 */
    590 
    591 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    592 	if (DISKPART(bp->b_dev) != RAW_PART)
    593 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    594 			db1_printf(("Bounds check failed!!:%d %d\n",
    595 				(int) bp->b_blkno, (int) wlabel));
    596 			biodone(bp);
    597 			return;
    598 		}
    599 	s = splbio();		/* XXX Needed? */
    600 	db1_printf(("Beginning strategy...\n"));
    601 
    602 	bp->b_resid = 0;
    603 	bp->b_error = rf_DoAccessKernel(raidPtrs[raidID], bp,
    604 	    NULL, NULL, NULL);
    605 	if (bp->b_error) {
    606 		bp->b_flags |= B_ERROR;
    607 		db1_printf(("bp->b_flags HAS B_ERROR SET!!!: %d\n",
    608 			bp->b_error));
    609 	}
    610 	splx(s);
    611 #if 0
    612 	db1_printf(("Strategy exiting: 0x%x 0x%x %d %d\n",
    613 		bp, bp->b_data,
    614 		(int) bp->b_bcount, (int) bp->b_resid));
    615 #endif
    616 }
    617 /* ARGSUSED */
    618 int
    619 raidread(dev, uio, flags)
    620 	dev_t   dev;
    621 	struct uio *uio;
    622 	int     flags;
    623 {
    624 	int     unit = raidunit(dev);
    625 	struct raid_softc *rs;
    626 	int     part;
    627 
    628 	if (unit >= numraid)
    629 		return (ENXIO);
    630 	rs = &raid_softc[unit];
    631 
    632 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    633 		return (ENXIO);
    634 	part = DISKPART(dev);
    635 
    636 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    637 
    638 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    639 
    640 }
    641 /* ARGSUSED */
    642 int
    643 raidwrite(dev, uio, flags)
    644 	dev_t   dev;
    645 	struct uio *uio;
    646 	int     flags;
    647 {
    648 	int     unit = raidunit(dev);
    649 	struct raid_softc *rs;
    650 
    651 	if (unit >= numraid)
    652 		return (ENXIO);
    653 	rs = &raid_softc[unit];
    654 
    655 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    656 		return (ENXIO);
    657 	db1_printf(("raidwrite\n"));
    658 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    659 
    660 }
    661 
    662 int
    663 raidioctl(dev, cmd, data, flag, p)
    664 	dev_t   dev;
    665 	u_long  cmd;
    666 	caddr_t data;
    667 	int     flag;
    668 	struct proc *p;
    669 {
    670 	int     unit = raidunit(dev);
    671 	int     error = 0;
    672 	int     part, pmask;
    673 	struct raid_softc *rs;
    674 #if 0
    675 	int     r, c;
    676 #endif
    677 	/* struct raid_ioctl *ccio = (struct ccd_ioctl *)data; */
    678 
    679 	/* struct ccdbuf *cbp; */
    680 	/* struct raidbuf *raidbp; */
    681 	RF_Config_t *k_cfg, *u_cfg;
    682 	u_char *specific_buf;
    683 	int retcode = 0;
    684 	int row;
    685 	int column;
    686 	int s;
    687 	struct rf_recon_req *rrcopy, *rr;
    688 	RF_ComponentLabel_t *component_label;
    689 	RF_ComponentLabel_t ci_label;
    690 	RF_ComponentLabel_t **c_label_ptr;
    691 	RF_SingleComponent_t *sparePtr,*componentPtr;
    692 	RF_SingleComponent_t hot_spare;
    693 	RF_SingleComponent_t component;
    694 
    695 	if (unit >= numraid)
    696 		return (ENXIO);
    697 	rs = &raid_softc[unit];
    698 
    699 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    700 		(int) DISKPART(dev), (int) unit, (int) cmd));
    701 
    702 	/* Must be open for writes for these commands... */
    703 	switch (cmd) {
    704 	case DIOCSDINFO:
    705 	case DIOCWDINFO:
    706 	case DIOCWLABEL:
    707 		if ((flag & FWRITE) == 0)
    708 			return (EBADF);
    709 	}
    710 
    711 	/* Must be initialized for these... */
    712 	switch (cmd) {
    713 	case DIOCGDINFO:
    714 	case DIOCSDINFO:
    715 	case DIOCWDINFO:
    716 	case DIOCGPART:
    717 	case DIOCWLABEL:
    718 	case DIOCGDEFLABEL:
    719 	case RAIDFRAME_SHUTDOWN:
    720 	case RAIDFRAME_REWRITEPARITY:
    721 	case RAIDFRAME_GET_INFO:
    722 	case RAIDFRAME_RESET_ACCTOTALS:
    723 	case RAIDFRAME_GET_ACCTOTALS:
    724 	case RAIDFRAME_KEEP_ACCTOTALS:
    725 	case RAIDFRAME_GET_SIZE:
    726 	case RAIDFRAME_FAIL_DISK:
    727 	case RAIDFRAME_COPYBACK:
    728 	case RAIDFRAME_CHECKRECON:
    729 	case RAIDFRAME_GET_COMPONENT_LABEL:
    730 	case RAIDFRAME_SET_COMPONENT_LABEL:
    731 	case RAIDFRAME_ADD_HOT_SPARE:
    732 	case RAIDFRAME_REMOVE_HOT_SPARE:
    733 	case RAIDFRAME_INIT_LABELS:
    734 	case RAIDFRAME_REBUILD_IN_PLACE:
    735 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    736 			return (ENXIO);
    737 	}
    738 
    739 	switch (cmd) {
    740 
    741 
    742 		/* configure the system */
    743 	case RAIDFRAME_CONFIGURE:
    744 
    745 		db3_printf(("rf_ioctl: RAIDFRAME_CONFIGURE\n"));
    746 		/* copy-in the configuration information */
    747 		/* data points to a pointer to the configuration structure */
    748 		u_cfg = *((RF_Config_t **) data);
    749 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    750 		if (k_cfg == NULL) {
    751 			db3_printf(("rf_ioctl: ENOMEM for config. Code is %d\n", retcode));
    752 			return (ENOMEM);
    753 		}
    754 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    755 		    sizeof(RF_Config_t));
    756 		if (retcode) {
    757 			db3_printf(("rf_ioctl: retcode=%d copyin.1\n",
    758 				retcode));
    759 			return (retcode);
    760 		}
    761 		/* allocate a buffer for the layout-specific data, and copy it
    762 		 * in */
    763 		if (k_cfg->layoutSpecificSize) {
    764 			if (k_cfg->layoutSpecificSize > 10000) {
    765 				/* sanity check */
    766 				db3_printf(("rf_ioctl: EINVAL %d\n", retcode));
    767 				return (EINVAL);
    768 			}
    769 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    770 			    (u_char *));
    771 			if (specific_buf == NULL) {
    772 				RF_Free(k_cfg, sizeof(RF_Config_t));
    773 				db3_printf(("rf_ioctl: ENOMEM %d\n", retcode));
    774 				return (ENOMEM);
    775 			}
    776 			retcode = copyin(k_cfg->layoutSpecific,
    777 			    (caddr_t) specific_buf,
    778 			    k_cfg->layoutSpecificSize);
    779 			if (retcode) {
    780 				db3_printf(("rf_ioctl: retcode=%d copyin.2\n",
    781 					retcode));
    782 				return (retcode);
    783 			}
    784 		} else
    785 			specific_buf = NULL;
    786 		k_cfg->layoutSpecific = specific_buf;
    787 
    788 		/* should do some kind of sanity check on the configuration.
    789 		 * Store the sum of all the bytes in the last byte? */
    790 
    791 #if 0
    792 		db1_printf(("Considering configuring the system.:%d 0x%x\n",
    793 			unit, p));
    794 #endif
    795 
    796 		/* We need the pointer to this a little deeper, so stash it
    797 		 * here... */
    798 
    799 		raidPtrs[unit]->proc = p;
    800 
    801 		/* configure the system */
    802 
    803 		raidPtrs[unit]->raidid = unit;
    804 
    805 		retcode = rf_Configure(raidPtrs[unit], k_cfg);
    806 
    807 		/* allow this many simultaneous IO's to this RAID device */
    808 		raidPtrs[unit]->openings = RAIDOUTSTANDING;
    809 
    810 		if (retcode == 0) {
    811 			retcode = raidinit(dev, raidPtrs[unit], unit);
    812 			rf_markalldirty( raidPtrs[unit] );
    813 		}
    814 		/* free the buffers.  No return code here. */
    815 		if (k_cfg->layoutSpecificSize) {
    816 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    817 		}
    818 		RF_Free(k_cfg, sizeof(RF_Config_t));
    819 
    820 		db3_printf(("rf_ioctl: retcode=%d RAIDFRAME_CONFIGURE\n",
    821 			retcode));
    822 
    823 		return (retcode);
    824 
    825 		/* shutdown the system */
    826 	case RAIDFRAME_SHUTDOWN:
    827 
    828 		if ((error = raidlock(rs)) != 0)
    829 			return (error);
    830 
    831 		/*
    832 		 * If somebody has a partition mounted, we shouldn't
    833 		 * shutdown.
    834 		 */
    835 
    836 		part = DISKPART(dev);
    837 		pmask = (1 << part);
    838 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    839 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    840 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    841 			raidunlock(rs);
    842 			return (EBUSY);
    843 		}
    844 
    845 		if (rf_debugKernelAccess) {
    846 			printf("call shutdown\n");
    847 		}
    848 		raidPtrs[unit]->proc = p;	/* XXX  necessary evil */
    849 
    850 		retcode = rf_Shutdown(raidPtrs[unit]);
    851 
    852 		db1_printf(("Done main shutdown\n"));
    853 
    854 		pool_destroy(&rs->sc_cbufpool);
    855 		db1_printf(("Done freeing component buffer freelist\n"));
    856 
    857 		/* It's no longer initialized... */
    858 		rs->sc_flags &= ~RAIDF_INITED;
    859 
    860 		/* Detach the disk. */
    861 		disk_detach(&rs->sc_dkdev);
    862 
    863 		raidunlock(rs);
    864 
    865 		return (retcode);
    866 	case RAIDFRAME_GET_COMPONENT_LABEL:
    867 		c_label_ptr = (RF_ComponentLabel_t **) data;
    868 		/* need to read the component label for the disk indicated
    869 		   by row,column in component_label
    870 		   XXX need to sanity check these values!!!
    871 		   */
    872 
    873 		/* For practice, let's get it directly fromdisk, rather
    874 		   than from the in-core copy */
    875 		RF_Malloc( component_label, sizeof( RF_ComponentLabel_t ),
    876 			   (RF_ComponentLabel_t *));
    877 		if (component_label == NULL)
    878 			return (ENOMEM);
    879 
    880 		bzero((char *) component_label, sizeof(RF_ComponentLabel_t));
    881 
    882 		retcode = copyin( *c_label_ptr, component_label,
    883 				  sizeof(RF_ComponentLabel_t));
    884 
    885 		if (retcode) {
    886 			return(retcode);
    887 		}
    888 
    889 		row = component_label->row;
    890 		printf("Row: %d\n",row);
    891 		if (row > raidPtrs[unit]->numRow) {
    892 			row = 0; /* XXX */
    893 		}
    894 		column = component_label->column;
    895 		printf("Column: %d\n",column);
    896 		if (column > raidPtrs[unit]->numCol) {
    897 			column = 0; /* XXX */
    898 		}
    899 
    900 		raidread_component_label(
    901                               raidPtrs[unit]->Disks[row][column].dev,
    902 			      raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    903 			      component_label );
    904 
    905 		retcode = copyout((caddr_t) component_label,
    906 				  (caddr_t) *c_label_ptr,
    907 				  sizeof(RF_ComponentLabel_t));
    908 		RF_Free( component_label, sizeof(RF_ComponentLabel_t));
    909 		return (retcode);
    910 
    911 	case RAIDFRAME_SET_COMPONENT_LABEL:
    912 		component_label = (RF_ComponentLabel_t *) data;
    913 
    914 		/* XXX check the label for valid stuff... */
    915 		/* Note that some things *should not* get modified --
    916 		   the user should be re-initing the labels instead of
    917 		   trying to patch things.
    918 		   */
    919 
    920 		printf("Got component label:\n");
    921 		printf("Version: %d\n",component_label->version);
    922 		printf("Serial Number: %d\n",component_label->serial_number);
    923 		printf("Mod counter: %d\n",component_label->mod_counter);
    924 		printf("Row: %d\n", component_label->row);
    925 		printf("Column: %d\n", component_label->column);
    926 		printf("Num Rows: %d\n", component_label->num_rows);
    927 		printf("Num Columns: %d\n", component_label->num_columns);
    928 		printf("Clean: %d\n", component_label->clean);
    929 		printf("Status: %d\n", component_label->status);
    930 
    931 		row = component_label->row;
    932 		column = component_label->column;
    933 
    934 		if ((row < 0) || (row > raidPtrs[unit]->numRow) ||
    935 		    (column < 0) || (column > raidPtrs[unit]->numCol)) {
    936 			return(EINVAL);
    937 		}
    938 
    939 		/* XXX this isn't allowed to do anything for now :-) */
    940 #if 0
    941 		raidwrite_component_label(
    942                             raidPtrs[unit]->Disks[row][column].dev,
    943 			    raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    944 			    component_label );
    945 #endif
    946 		return (0);
    947 
    948 	case RAIDFRAME_INIT_LABELS:
    949 		component_label = (RF_ComponentLabel_t *) data;
    950 		/*
    951 		   we only want the serial number from
    952 		   the above.  We get all the rest of the information
    953 		   from the config that was used to create this RAID
    954 		   set.
    955 		   */
    956 
    957 		raidPtrs[unit]->serial_number = component_label->serial_number;
    958 		/* current version number */
    959 		ci_label.version = RF_COMPONENT_LABEL_VERSION;
    960 		ci_label.serial_number = component_label->serial_number;
    961 		ci_label.mod_counter = raidPtrs[unit]->mod_counter;
    962 		ci_label.num_rows = raidPtrs[unit]->numRow;
    963 		ci_label.num_columns = raidPtrs[unit]->numCol;
    964 		ci_label.clean = RF_RAID_DIRTY; /* not clean */
    965 		ci_label.status = rf_ds_optimal; /* "It's good!" */
    966 
    967 		for(row=0;row<raidPtrs[unit]->numRow;row++) {
    968 			ci_label.row = row;
    969 			for(column=0;column<raidPtrs[unit]->numCol;column++) {
    970 				ci_label.column = column;
    971 				raidwrite_component_label(
    972 				  raidPtrs[unit]->Disks[row][column].dev,
    973 				  raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    974 				  &ci_label );
    975 			}
    976 		}
    977 
    978 		return (retcode);
    979 
    980 		/* initialize all parity */
    981 	case RAIDFRAME_REWRITEPARITY:
    982 
    983 		if (raidPtrs[unit]->Layout.map->faultsTolerated == 0) {
    984 			/* Parity for RAID 0 is trivially correct */
    985 			raidPtrs[unit]->parity_good = RF_RAID_CLEAN;
    986 			return(0);
    987 		}
    988 
    989 		/* borrow the thread of the requesting process */
    990 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
    991 		retcode = rf_RewriteParity(raidPtrs[unit]);
    992 		/* return I/O Error if the parity rewrite fails */
    993 
    994 		if (retcode) {
    995 			retcode = EIO;
    996 		} else {
    997 			/* set the clean bit!  If we shutdown correctly,
    998 			 the clean bit on each component label will get
    999 			 set */
   1000 			raidPtrs[unit]->parity_good = RF_RAID_CLEAN;
   1001 		}
   1002 		return (retcode);
   1003 
   1004 
   1005 	case RAIDFRAME_ADD_HOT_SPARE:
   1006 		sparePtr = (RF_SingleComponent_t *) data;
   1007 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1008 		printf("Adding spare\n");
   1009 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
   1010 		retcode = rf_add_hot_spare(raidPtrs[unit], &hot_spare);
   1011 		return(retcode);
   1012 
   1013 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1014 		return(retcode);
   1015 
   1016 	case RAIDFRAME_REBUILD_IN_PLACE:
   1017 		componentPtr = (RF_SingleComponent_t *) data;
   1018 		memcpy( &component, componentPtr,
   1019 			sizeof(RF_SingleComponent_t));
   1020 		row = component.row;
   1021 		column = component.column;
   1022 		printf("Rebuild: %d %d\n",row, column);
   1023 		if ((row < 0) || (row > raidPtrs[unit]->numRow) ||
   1024 		    (column < 0) || (column > raidPtrs[unit]->numCol)) {
   1025 			return(EINVAL);
   1026 		}
   1027 		printf("Attempting a rebuild in place\n");
   1028 		s = splbio();
   1029 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
   1030 		retcode = rf_ReconstructInPlace(raidPtrs[unit], row, column);
   1031 		splx(s);
   1032 		return(retcode);
   1033 
   1034 		/* issue a test-unit-ready through raidframe to the indicated
   1035 		 * device */
   1036 #if 0				/* XXX not supported yet (ever?) */
   1037 	case RAIDFRAME_TUR:
   1038 		/* debug only */
   1039 		retcode = rf_SCSI_DoTUR(0, 0, 0, 0, *(dev_t *) data);
   1040 		return (retcode);
   1041 #endif
   1042 	case RAIDFRAME_GET_INFO:
   1043 		{
   1044 			RF_Raid_t *raid = raidPtrs[unit];
   1045 			RF_DeviceConfig_t *cfg, **ucfgp;
   1046 			int     i, j, d;
   1047 
   1048 			if (!raid->valid)
   1049 				return (ENODEV);
   1050 			ucfgp = (RF_DeviceConfig_t **) data;
   1051 			RF_Malloc(cfg, sizeof(RF_DeviceConfig_t),
   1052 				  (RF_DeviceConfig_t *));
   1053 			if (cfg == NULL)
   1054 				return (ENOMEM);
   1055 			bzero((char *) cfg, sizeof(RF_DeviceConfig_t));
   1056 			cfg->rows = raid->numRow;
   1057 			cfg->cols = raid->numCol;
   1058 			cfg->ndevs = raid->numRow * raid->numCol;
   1059 			if (cfg->ndevs >= RF_MAX_DISKS) {
   1060 				cfg->ndevs = 0;
   1061 				return (ENOMEM);
   1062 			}
   1063 			cfg->nspares = raid->numSpare;
   1064 			if (cfg->nspares >= RF_MAX_DISKS) {
   1065 				cfg->nspares = 0;
   1066 				return (ENOMEM);
   1067 			}
   1068 			cfg->maxqdepth = raid->maxQueueDepth;
   1069 			d = 0;
   1070 			for (i = 0; i < cfg->rows; i++) {
   1071 				for (j = 0; j < cfg->cols; j++) {
   1072 					cfg->devs[d] = raid->Disks[i][j];
   1073 					d++;
   1074 				}
   1075 			}
   1076 			for (j = cfg->cols, i = 0; i < cfg->nspares; i++, j++) {
   1077 				cfg->spares[i] = raid->Disks[0][j];
   1078 			}
   1079 			retcode = copyout((caddr_t) cfg, (caddr_t) * ucfgp,
   1080 					  sizeof(RF_DeviceConfig_t));
   1081 			RF_Free(cfg, sizeof(RF_DeviceConfig_t));
   1082 
   1083 			return (retcode);
   1084 		}
   1085 		break;
   1086 
   1087 	case RAIDFRAME_RESET_ACCTOTALS:
   1088 		{
   1089 			RF_Raid_t *raid = raidPtrs[unit];
   1090 
   1091 			bzero(&raid->acc_totals, sizeof(raid->acc_totals));
   1092 			return (0);
   1093 		}
   1094 		break;
   1095 
   1096 	case RAIDFRAME_GET_ACCTOTALS:
   1097 		{
   1098 			RF_AccTotals_t *totals = (RF_AccTotals_t *) data;
   1099 			RF_Raid_t *raid = raidPtrs[unit];
   1100 
   1101 			*totals = raid->acc_totals;
   1102 			return (0);
   1103 		}
   1104 		break;
   1105 
   1106 	case RAIDFRAME_KEEP_ACCTOTALS:
   1107 		{
   1108 			RF_Raid_t *raid = raidPtrs[unit];
   1109 			int    *keep = (int *) data;
   1110 
   1111 			raid->keep_acc_totals = *keep;
   1112 			return (0);
   1113 		}
   1114 		break;
   1115 
   1116 	case RAIDFRAME_GET_SIZE:
   1117 		*(int *) data = raidPtrs[unit]->totalSectors;
   1118 		return (0);
   1119 
   1120 #define RAIDFRAME_RECON 1
   1121 		/* XXX The above should probably be set somewhere else!! GO */
   1122 #if RAIDFRAME_RECON > 0
   1123 
   1124 		/* fail a disk & optionally start reconstruction */
   1125 	case RAIDFRAME_FAIL_DISK:
   1126 		rr = (struct rf_recon_req *) data;
   1127 
   1128 		if (rr->row < 0 || rr->row >= raidPtrs[unit]->numRow
   1129 		    || rr->col < 0 || rr->col >= raidPtrs[unit]->numCol)
   1130 			return (EINVAL);
   1131 
   1132 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1133 		       unit, rr->row, rr->col);
   1134 
   1135 		/* make a copy of the recon request so that we don't rely on
   1136 		 * the user's buffer */
   1137 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1138 		bcopy(rr, rrcopy, sizeof(*rr));
   1139 		rrcopy->raidPtr = (void *) raidPtrs[unit];
   1140 
   1141 		LOCK_RECON_Q_MUTEX();
   1142 		rrcopy->next = recon_queue;
   1143 		recon_queue = rrcopy;
   1144 		wakeup(&recon_queue);
   1145 		UNLOCK_RECON_Q_MUTEX();
   1146 
   1147 		return (0);
   1148 
   1149 		/* invoke a copyback operation after recon on whatever disk
   1150 		 * needs it, if any */
   1151 	case RAIDFRAME_COPYBACK:
   1152 		/* borrow the current thread to get this done */
   1153 		raidPtrs[unit]->proc = p;	/* ICK.. but needed :-p  GO */
   1154 		s = splbio();
   1155 		rf_CopybackReconstructedData(raidPtrs[unit]);
   1156 		splx(s);
   1157 		return (0);
   1158 
   1159 		/* return the percentage completion of reconstruction */
   1160 	case RAIDFRAME_CHECKRECON:
   1161 		row = *(int *) data;
   1162 		if (row < 0 || row >= raidPtrs[unit]->numRow)
   1163 			return (EINVAL);
   1164 		if (raidPtrs[unit]->status[row] != rf_rs_reconstructing)
   1165 			*(int *) data = 100;
   1166 		else
   1167 			*(int *) data = raidPtrs[unit]->reconControl[row]->percentComplete;
   1168 		return (0);
   1169 
   1170 		/* the sparetable daemon calls this to wait for the kernel to
   1171 		 * need a spare table. this ioctl does not return until a
   1172 		 * spare table is needed. XXX -- calling mpsleep here in the
   1173 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1174 		 * -- I should either compute the spare table in the kernel,
   1175 		 * or have a different -- XXX XXX -- interface (a different
   1176 		 * character device) for delivering the table          -- XXX */
   1177 #if 0
   1178 	case RAIDFRAME_SPARET_WAIT:
   1179 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1180 		while (!rf_sparet_wait_queue)
   1181 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1182 		waitreq = rf_sparet_wait_queue;
   1183 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1184 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1185 
   1186 		*((RF_SparetWait_t *) data) = *waitreq;	/* structure assignment */
   1187 
   1188 		RF_Free(waitreq, sizeof(*waitreq));
   1189 		return (0);
   1190 
   1191 
   1192 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1193 		 * code in it that will cause the dameon to exit */
   1194 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1195 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1196 		waitreq->fcol = -1;
   1197 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1198 		waitreq->next = rf_sparet_wait_queue;
   1199 		rf_sparet_wait_queue = waitreq;
   1200 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1201 		wakeup(&rf_sparet_wait_queue);
   1202 		return (0);
   1203 
   1204 		/* used by the spare table daemon to deliver a spare table
   1205 		 * into the kernel */
   1206 	case RAIDFRAME_SEND_SPARET:
   1207 
   1208 		/* install the spare table */
   1209 		retcode = rf_SetSpareTable(raidPtrs[unit], *(void **) data);
   1210 
   1211 		/* respond to the requestor.  the return status of the spare
   1212 		 * table installation is passed in the "fcol" field */
   1213 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1214 		waitreq->fcol = retcode;
   1215 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1216 		waitreq->next = rf_sparet_resp_queue;
   1217 		rf_sparet_resp_queue = waitreq;
   1218 		wakeup(&rf_sparet_resp_queue);
   1219 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1220 
   1221 		return (retcode);
   1222 #endif
   1223 
   1224 
   1225 #endif				/* RAIDFRAME_RECON > 0 */
   1226 
   1227 	default:
   1228 		break;		/* fall through to the os-specific code below */
   1229 
   1230 	}
   1231 
   1232 	if (!raidPtrs[unit]->valid)
   1233 		return (EINVAL);
   1234 
   1235 	/*
   1236 	 * Add support for "regular" device ioctls here.
   1237 	 */
   1238 
   1239 	switch (cmd) {
   1240 	case DIOCGDINFO:
   1241 		db1_printf(("DIOCGDINFO %d %d\n", (int) dev, (int) DISKPART(dev)));
   1242 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1243 		break;
   1244 
   1245 	case DIOCGPART:
   1246 		db1_printf(("DIOCGPART: %d %d\n", (int) dev, (int) DISKPART(dev)));
   1247 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1248 		((struct partinfo *) data)->part =
   1249 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1250 		break;
   1251 
   1252 	case DIOCWDINFO:
   1253 		db1_printf(("DIOCWDINFO\n"));
   1254 	case DIOCSDINFO:
   1255 		db1_printf(("DIOCSDINFO\n"));
   1256 		if ((error = raidlock(rs)) != 0)
   1257 			return (error);
   1258 
   1259 		rs->sc_flags |= RAIDF_LABELLING;
   1260 
   1261 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1262 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1263 		if (error == 0) {
   1264 			if (cmd == DIOCWDINFO)
   1265 				error = writedisklabel(RAIDLABELDEV(dev),
   1266 				    raidstrategy, rs->sc_dkdev.dk_label,
   1267 				    rs->sc_dkdev.dk_cpulabel);
   1268 		}
   1269 		rs->sc_flags &= ~RAIDF_LABELLING;
   1270 
   1271 		raidunlock(rs);
   1272 
   1273 		if (error)
   1274 			return (error);
   1275 		break;
   1276 
   1277 	case DIOCWLABEL:
   1278 		db1_printf(("DIOCWLABEL\n"));
   1279 		if (*(int *) data != 0)
   1280 			rs->sc_flags |= RAIDF_WLABEL;
   1281 		else
   1282 			rs->sc_flags &= ~RAIDF_WLABEL;
   1283 		break;
   1284 
   1285 	case DIOCGDEFLABEL:
   1286 		db1_printf(("DIOCGDEFLABEL\n"));
   1287 		raidgetdefaultlabel(raidPtrs[unit], rs,
   1288 		    (struct disklabel *) data);
   1289 		break;
   1290 
   1291 	default:
   1292 		retcode = ENOTTY;	/* XXXX ?? OR EINVAL ? */
   1293 	}
   1294 	return (retcode);
   1295 
   1296 }
   1297 
   1298 
   1299 /* raidinit -- complete the rest of the initialization for the
   1300    RAIDframe device.  */
   1301 
   1302 
   1303 static int
   1304 raidinit(dev, raidPtr, unit)
   1305 	dev_t   dev;
   1306 	RF_Raid_t *raidPtr;
   1307 	int     unit;
   1308 {
   1309 	int     retcode;
   1310 	/* int ix; */
   1311 	/* struct raidbuf *raidbp; */
   1312 	struct raid_softc *rs;
   1313 
   1314 	retcode = 0;
   1315 
   1316 	rs = &raid_softc[unit];
   1317 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1318 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1319 
   1320 
   1321 	/* XXX should check return code first... */
   1322 	rs->sc_flags |= RAIDF_INITED;
   1323 
   1324 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1325 
   1326 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1327 
   1328 	/* disk_attach actually creates space for the CPU disklabel, among
   1329 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1330 	 * with disklabels. */
   1331 
   1332 	disk_attach(&rs->sc_dkdev);
   1333 
   1334 	/* XXX There may be a weird interaction here between this, and
   1335 	 * protectedSectors, as used in RAIDframe.  */
   1336 
   1337 	rs->sc_size = raidPtr->totalSectors;
   1338 	rs->sc_dev = dev;
   1339 
   1340 	return (retcode);
   1341 }
   1342 
   1343 /*
   1344  * This kernel thread never exits.  It is created once, and persists
   1345  * until the system reboots.
   1346  */
   1347 
   1348 void
   1349 rf_ReconKernelThread()
   1350 {
   1351 	struct rf_recon_req *req;
   1352 	int     s;
   1353 
   1354 	/* XXX not sure what spl() level we should be at here... probably
   1355 	 * splbio() */
   1356 	s = splbio();
   1357 
   1358 	while (1) {
   1359 		/* grab the next reconstruction request from the queue */
   1360 		LOCK_RECON_Q_MUTEX();
   1361 		while (!recon_queue) {
   1362 			UNLOCK_RECON_Q_MUTEX();
   1363 			tsleep(&recon_queue, PRIBIO,
   1364 			       "raidframe recon", 0);
   1365 			LOCK_RECON_Q_MUTEX();
   1366 		}
   1367 		req = recon_queue;
   1368 		recon_queue = recon_queue->next;
   1369 		UNLOCK_RECON_Q_MUTEX();
   1370 
   1371 		/*
   1372 	         * If flags specifies that we should start recon, this call
   1373 	         * will not return until reconstruction completes, fails,
   1374 		 * or is aborted.
   1375 	         */
   1376 		rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   1377 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   1378 
   1379 		RF_Free(req, sizeof(*req));
   1380 	}
   1381 }
   1382 /* wake up the daemon & tell it to get us a spare table
   1383  * XXX
   1384  * the entries in the queues should be tagged with the raidPtr
   1385  * so that in the extremely rare case that two recons happen at once,
   1386  * we know for which device were requesting a spare table
   1387  * XXX
   1388  */
   1389 int
   1390 rf_GetSpareTableFromDaemon(req)
   1391 	RF_SparetWait_t *req;
   1392 {
   1393 	int     retcode;
   1394 
   1395 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1396 	req->next = rf_sparet_wait_queue;
   1397 	rf_sparet_wait_queue = req;
   1398 	wakeup(&rf_sparet_wait_queue);
   1399 
   1400 	/* mpsleep unlocks the mutex */
   1401 	while (!rf_sparet_resp_queue) {
   1402 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1403 		    "raidframe getsparetable", 0);
   1404 #if 0
   1405 		mpsleep(&rf_sparet_resp_queue, PZERO, "sparet resp", 0,
   1406 			(void *) simple_lock_addr(rf_sparet_wait_mutex),
   1407 			MS_LOCK_SIMPLE);
   1408 #endif
   1409 	}
   1410 	req = rf_sparet_resp_queue;
   1411 	rf_sparet_resp_queue = req->next;
   1412 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1413 
   1414 	retcode = req->fcol;
   1415 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1416 					 * alloc'd */
   1417 	return (retcode);
   1418 }
   1419 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1420  * bp & passes it down.
   1421  * any calls originating in the kernel must use non-blocking I/O
   1422  * do some extra sanity checking to return "appropriate" error values for
   1423  * certain conditions (to make some standard utilities work)
   1424  */
   1425 int
   1426 rf_DoAccessKernel(raidPtr, bp, flags, cbFunc, cbArg)
   1427 	RF_Raid_t *raidPtr;
   1428 	struct buf *bp;
   1429 	RF_RaidAccessFlags_t flags;
   1430 	void    (*cbFunc) (struct buf *);
   1431 	void   *cbArg;
   1432 {
   1433 	RF_SectorCount_t num_blocks, pb, sum;
   1434 	RF_RaidAddr_t raid_addr;
   1435 	int     retcode;
   1436 	struct partition *pp;
   1437 	daddr_t blocknum;
   1438 	int     unit;
   1439 	struct raid_softc *rs;
   1440 	int     do_async;
   1441 
   1442 	/* XXX The dev_t used here should be for /dev/[r]raid* !!! */
   1443 
   1444 	unit = raidPtr->raidid;
   1445 	rs = &raid_softc[unit];
   1446 
   1447 	/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1448 	 * partition.. Need to make it absolute to the underlying device.. */
   1449 
   1450 	blocknum = bp->b_blkno;
   1451 	if (DISKPART(bp->b_dev) != RAW_PART) {
   1452 		pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1453 		blocknum += pp->p_offset;
   1454 		db1_printf(("updated: %d %d\n", DISKPART(bp->b_dev),
   1455 			pp->p_offset));
   1456 	} else {
   1457 		db1_printf(("Is raw..\n"));
   1458 	}
   1459 	db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, (int) blocknum));
   1460 
   1461 	db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1462 	db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1463 
   1464 	/* *THIS* is where we adjust what block we're going to... but DO NOT
   1465 	 * TOUCH bp->b_blkno!!! */
   1466 	raid_addr = blocknum;
   1467 
   1468 	num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1469 	pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1470 	sum = raid_addr + num_blocks + pb;
   1471 	if (1 || rf_debugKernelAccess) {
   1472 		db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1473 			(int) raid_addr, (int) sum, (int) num_blocks,
   1474 			(int) pb, (int) bp->b_resid));
   1475 	}
   1476 	if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1477 	    || (sum < num_blocks) || (sum < pb)) {
   1478 		bp->b_error = ENOSPC;
   1479 		bp->b_flags |= B_ERROR;
   1480 		bp->b_resid = bp->b_bcount;
   1481 		biodone(bp);
   1482 		return (bp->b_error);
   1483 	}
   1484 	/*
   1485 	 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1486 	 */
   1487 
   1488 	if (bp->b_bcount & raidPtr->sectorMask) {
   1489 		bp->b_error = EINVAL;
   1490 		bp->b_flags |= B_ERROR;
   1491 		bp->b_resid = bp->b_bcount;
   1492 		biodone(bp);
   1493 		return (bp->b_error);
   1494 	}
   1495 	db1_printf(("Calling DoAccess..\n"));
   1496 
   1497 
   1498 	/* Put a throttle on the number of requests we handle simultanously */
   1499 
   1500 	RF_LOCK_MUTEX(raidPtr->mutex);
   1501 
   1502 	while(raidPtr->openings <= 0) {
   1503 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1504 		(void)tsleep(&raidPtr->openings, PRIBIO, "rfdwait", 0);
   1505 		RF_LOCK_MUTEX(raidPtr->mutex);
   1506 	}
   1507 	raidPtr->openings--;
   1508 
   1509 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1510 
   1511 	/*
   1512 	 * Everything is async.
   1513 	 */
   1514 	do_async = 1;
   1515 
   1516 	/* don't ever condition on bp->b_flags & B_WRITE.  always condition on
   1517 	 * B_READ instead */
   1518 	retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1519 	    RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1520 	    do_async, raid_addr, num_blocks,
   1521 	    bp->b_un.b_addr,
   1522 	    bp, NULL, NULL, RF_DAG_NONBLOCKING_IO | flags,
   1523 	    NULL, cbFunc, cbArg);
   1524 #if 0
   1525 	db1_printf(("After call to DoAccess: 0x%x 0x%x %d\n", bp,
   1526 		bp->b_data, (int) bp->b_resid));
   1527 #endif
   1528 
   1529 	return (retcode);
   1530 }
   1531 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1532 
   1533 int
   1534 rf_DispatchKernelIO(queue, req)
   1535 	RF_DiskQueue_t *queue;
   1536 	RF_DiskQueueData_t *req;
   1537 {
   1538 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1539 	struct buf *bp;
   1540 	struct raidbuf *raidbp = NULL;
   1541 	struct raid_softc *rs;
   1542 	int     unit;
   1543 
   1544 	/* XXX along with the vnode, we also need the softc associated with
   1545 	 * this device.. */
   1546 
   1547 	req->queue = queue;
   1548 
   1549 	unit = queue->raidPtr->raidid;
   1550 
   1551 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1552 
   1553 	if (unit >= numraid) {
   1554 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1555 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1556 	}
   1557 	rs = &raid_softc[unit];
   1558 
   1559 	/* XXX is this the right place? */
   1560 	disk_busy(&rs->sc_dkdev);
   1561 
   1562 	bp = req->bp;
   1563 #if 1
   1564 	/* XXX when there is a physical disk failure, someone is passing us a
   1565 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1566 	 * without taking a performance hit... (not sure where the real bug
   1567 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1568 
   1569 	if (bp->b_flags & B_ERROR) {
   1570 		bp->b_flags &= ~B_ERROR;
   1571 	}
   1572 	if (bp->b_error != 0) {
   1573 		bp->b_error = 0;
   1574 	}
   1575 #endif
   1576 	raidbp = RAIDGETBUF(rs);
   1577 
   1578 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1579 
   1580 	/*
   1581 	 * context for raidiodone
   1582 	 */
   1583 	raidbp->rf_obp = bp;
   1584 	raidbp->req = req;
   1585 
   1586 	switch (req->type) {
   1587 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1588 		/* Dprintf2("rf_DispatchKernelIO: NOP to r %d c %d\n",
   1589 		 * queue->row, queue->col); */
   1590 		/* XXX need to do something extra here.. */
   1591 		/* I'm leaving this in, as I've never actually seen it used,
   1592 		 * and I'd like folks to report it... GO */
   1593 		printf(("WAKEUP CALLED\n"));
   1594 		queue->numOutstanding++;
   1595 
   1596 		/* XXX need to glue the original buffer into this??  */
   1597 
   1598 		KernelWakeupFunc(&raidbp->rf_buf);
   1599 		break;
   1600 
   1601 	case RF_IO_TYPE_READ:
   1602 	case RF_IO_TYPE_WRITE:
   1603 
   1604 		if (req->tracerec) {
   1605 			RF_ETIMER_START(req->tracerec->timer);
   1606 		}
   1607 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1608 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1609 		    req->sectorOffset, req->numSector,
   1610 		    req->buf, KernelWakeupFunc, (void *) req,
   1611 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1612 
   1613 		if (rf_debugKernelAccess) {
   1614 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1615 				(long) bp->b_blkno));
   1616 		}
   1617 		queue->numOutstanding++;
   1618 		queue->last_deq_sector = req->sectorOffset;
   1619 		/* acc wouldn't have been let in if there were any pending
   1620 		 * reqs at any other priority */
   1621 		queue->curPriority = req->priority;
   1622 		/* Dprintf3("rf_DispatchKernelIO: %c to row %d col %d\n",
   1623 		 * req->type, queue->row, queue->col); */
   1624 
   1625 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1626 			req->type, unit, queue->row, queue->col));
   1627 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1628 			(int) req->sectorOffset, (int) req->numSector,
   1629 			(int) (req->numSector <<
   1630 			    queue->raidPtr->logBytesPerSector),
   1631 			(int) queue->raidPtr->logBytesPerSector));
   1632 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1633 			raidbp->rf_buf.b_vp->v_numoutput++;
   1634 		}
   1635 		VOP_STRATEGY(&raidbp->rf_buf);
   1636 
   1637 		break;
   1638 
   1639 	default:
   1640 		panic("bad req->type in rf_DispatchKernelIO");
   1641 	}
   1642 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1643 	return (0);
   1644 }
   1645 /* this is the callback function associated with a I/O invoked from
   1646    kernel code.
   1647  */
   1648 static void
   1649 KernelWakeupFunc(vbp)
   1650 	struct buf *vbp;
   1651 {
   1652 	RF_DiskQueueData_t *req = NULL;
   1653 	RF_DiskQueue_t *queue;
   1654 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1655 	struct buf *bp;
   1656 	struct raid_softc *rs;
   1657 	int     unit;
   1658 	register int s;
   1659 
   1660 	s = splbio();		/* XXX */
   1661 	db1_printf(("recovering the request queue:\n"));
   1662 	req = raidbp->req;
   1663 
   1664 	bp = raidbp->rf_obp;
   1665 #if 0
   1666 	db1_printf(("bp=0x%x\n", bp));
   1667 #endif
   1668 
   1669 	queue = (RF_DiskQueue_t *) req->queue;
   1670 
   1671 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1672 #if 0
   1673 		printf("Setting bp->b_flags!!! %d\n", raidbp->rf_buf.b_error);
   1674 #endif
   1675 		bp->b_flags |= B_ERROR;
   1676 		bp->b_error = raidbp->rf_buf.b_error ?
   1677 		    raidbp->rf_buf.b_error : EIO;
   1678 	}
   1679 #if 0
   1680 	db1_printf(("raidbp->rf_buf.b_bcount=%d\n", (int) raidbp->rf_buf.b_bcount));
   1681 	db1_printf(("raidbp->rf_buf.b_bufsize=%d\n", (int) raidbp->rf_buf.b_bufsize));
   1682 	db1_printf(("raidbp->rf_buf.b_resid=%d\n", (int) raidbp->rf_buf.b_resid));
   1683 	db1_printf(("raidbp->rf_buf.b_data=0x%x\n", raidbp->rf_buf.b_data));
   1684 #endif
   1685 
   1686 	/* XXX methinks this could be wrong... */
   1687 #if 1
   1688 	bp->b_resid = raidbp->rf_buf.b_resid;
   1689 #endif
   1690 
   1691 	if (req->tracerec) {
   1692 		RF_ETIMER_STOP(req->tracerec->timer);
   1693 		RF_ETIMER_EVAL(req->tracerec->timer);
   1694 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1695 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1696 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1697 		req->tracerec->num_phys_ios++;
   1698 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1699 	}
   1700 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1701 
   1702 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1703 
   1704 
   1705 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1706 	 * ballistic, and mark the component as hosed... */
   1707 #if 1
   1708 	if (bp->b_flags & B_ERROR) {
   1709 		/* Mark the disk as dead */
   1710 		/* but only mark it once... */
   1711 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1712 		    rf_ds_optimal) {
   1713 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1714 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1715 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1716 			    rf_ds_failed;
   1717 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1718 			queue->raidPtr->numFailures++;
   1719 			/* XXX here we should bump the version number for each component, and write that data out */
   1720 		} else {	/* Disk is already dead... */
   1721 			/* printf("Disk already marked as dead!\n"); */
   1722 		}
   1723 
   1724 	}
   1725 #endif
   1726 
   1727 	rs = &raid_softc[unit];
   1728 	RAIDPUTBUF(rs, raidbp);
   1729 
   1730 
   1731 	if (bp->b_resid == 0) {
   1732 		db1_printf(("Disk is no longer busy for this buffer... %d %ld %ld\n",
   1733 			unit, bp->b_resid, bp->b_bcount));
   1734 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1735 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1736 	} else {
   1737 		db1_printf(("b_resid is still %ld\n", bp->b_resid));
   1738 	}
   1739 
   1740 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1741 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1742 	/* printf("Exiting KernelWakeupFunc\n"); */
   1743 
   1744 	splx(s);		/* XXX */
   1745 }
   1746 
   1747 
   1748 
   1749 /*
   1750  * initialize a buf structure for doing an I/O in the kernel.
   1751  */
   1752 static void
   1753 InitBP(
   1754     struct buf * bp,
   1755     struct vnode * b_vp,
   1756     unsigned rw_flag,
   1757     dev_t dev,
   1758     RF_SectorNum_t startSect,
   1759     RF_SectorCount_t numSect,
   1760     caddr_t buf,
   1761     void (*cbFunc) (struct buf *),
   1762     void *cbArg,
   1763     int logBytesPerSector,
   1764     struct proc * b_proc)
   1765 {
   1766 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1767 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1768 	bp->b_bcount = numSect << logBytesPerSector;
   1769 	bp->b_bufsize = bp->b_bcount;
   1770 	bp->b_error = 0;
   1771 	bp->b_dev = dev;
   1772 	db1_printf(("bp->b_dev is %d\n", dev));
   1773 	bp->b_un.b_addr = buf;
   1774 #if 0
   1775 	db1_printf(("bp->b_data=0x%x\n", bp->b_data));
   1776 #endif
   1777 
   1778 	bp->b_blkno = startSect;
   1779 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1780 	db1_printf(("b_bcount is: %d\n", (int) bp->b_bcount));
   1781 	if (bp->b_bcount == 0) {
   1782 		panic("bp->b_bcount is zero in InitBP!!\n");
   1783 	}
   1784 	bp->b_proc = b_proc;
   1785 	bp->b_iodone = cbFunc;
   1786 	bp->b_vp = b_vp;
   1787 
   1788 }
   1789 /* Extras... */
   1790 
   1791 unsigned int
   1792 rpcc()
   1793 {
   1794 	/* XXX no clue what this is supposed to do.. my guess is that it's
   1795 	 * supposed to read the CPU cycle counter... */
   1796 	/* db1_printf("this is supposed to do something useful too!??\n"); */
   1797 	return (0);
   1798 }
   1799 #if 0
   1800 int
   1801 rf_GetSpareTableFromDaemon(req)
   1802 	RF_SparetWait_t *req;
   1803 {
   1804 	int     retcode = 1;
   1805 	printf("This is supposed to do something useful!!\n");	/* XXX */
   1806 
   1807 	return (retcode);
   1808 
   1809 }
   1810 #endif
   1811 
   1812 static void
   1813 raidgetdefaultlabel(raidPtr, rs, lp)
   1814 	RF_Raid_t *raidPtr;
   1815 	struct raid_softc *rs;
   1816 	struct disklabel *lp;
   1817 {
   1818 	db1_printf(("Building a default label...\n"));
   1819 	bzero(lp, sizeof(*lp));
   1820 
   1821 	/* fabricate a label... */
   1822 	lp->d_secperunit = raidPtr->totalSectors;
   1823 	lp->d_secsize = raidPtr->bytesPerSector;
   1824 	lp->d_nsectors = 1024 * (1024 / raidPtr->bytesPerSector);
   1825 	lp->d_ntracks = 1;
   1826 	lp->d_ncylinders = raidPtr->totalSectors / lp->d_nsectors;
   1827 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1828 
   1829 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1830 	lp->d_type = DTYPE_RAID;
   1831 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1832 	lp->d_rpm = 3600;
   1833 	lp->d_interleave = 1;
   1834 	lp->d_flags = 0;
   1835 
   1836 	lp->d_partitions[RAW_PART].p_offset = 0;
   1837 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1838 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1839 	lp->d_npartitions = RAW_PART + 1;
   1840 
   1841 	lp->d_magic = DISKMAGIC;
   1842 	lp->d_magic2 = DISKMAGIC;
   1843 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1844 
   1845 }
   1846 /*
   1847  * Read the disklabel from the raid device.  If one is not present, fake one
   1848  * up.
   1849  */
   1850 static void
   1851 raidgetdisklabel(dev)
   1852 	dev_t   dev;
   1853 {
   1854 	int     unit = raidunit(dev);
   1855 	struct raid_softc *rs = &raid_softc[unit];
   1856 	char   *errstring;
   1857 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1858 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1859 	RF_Raid_t *raidPtr;
   1860 
   1861 	db1_printf(("Getting the disklabel...\n"));
   1862 
   1863 	bzero(clp, sizeof(*clp));
   1864 
   1865 	raidPtr = raidPtrs[unit];
   1866 
   1867 	raidgetdefaultlabel(raidPtr, rs, lp);
   1868 
   1869 	/*
   1870 	 * Call the generic disklabel extraction routine.
   1871 	 */
   1872 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1873 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1874 	if (errstring)
   1875 		raidmakedisklabel(rs);
   1876 	else {
   1877 		int     i;
   1878 		struct partition *pp;
   1879 
   1880 		/*
   1881 		 * Sanity check whether the found disklabel is valid.
   1882 		 *
   1883 		 * This is necessary since total size of the raid device
   1884 		 * may vary when an interleave is changed even though exactly
   1885 		 * same componets are used, and old disklabel may used
   1886 		 * if that is found.
   1887 		 */
   1888 		if (lp->d_secperunit != rs->sc_size)
   1889 			printf("WARNING: %s: "
   1890 			    "total sector size in disklabel (%d) != "
   1891 			    "the size of raid (%ld)\n", rs->sc_xname,
   1892 			    lp->d_secperunit, (long) rs->sc_size);
   1893 		for (i = 0; i < lp->d_npartitions; i++) {
   1894 			pp = &lp->d_partitions[i];
   1895 			if (pp->p_offset + pp->p_size > rs->sc_size)
   1896 				printf("WARNING: %s: end of partition `%c' "
   1897 				    "exceeds the size of raid (%ld)\n",
   1898 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   1899 		}
   1900 	}
   1901 
   1902 }
   1903 /*
   1904  * Take care of things one might want to take care of in the event
   1905  * that a disklabel isn't present.
   1906  */
   1907 static void
   1908 raidmakedisklabel(rs)
   1909 	struct raid_softc *rs;
   1910 {
   1911 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1912 	db1_printf(("Making a label..\n"));
   1913 
   1914 	/*
   1915 	 * For historical reasons, if there's no disklabel present
   1916 	 * the raw partition must be marked FS_BSDFFS.
   1917 	 */
   1918 
   1919 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   1920 
   1921 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   1922 
   1923 	lp->d_checksum = dkcksum(lp);
   1924 }
   1925 /*
   1926  * Lookup the provided name in the filesystem.  If the file exists,
   1927  * is a valid block device, and isn't being used by anyone else,
   1928  * set *vpp to the file's vnode.
   1929  * You'll find the original of this in ccd.c
   1930  */
   1931 int
   1932 raidlookup(path, p, vpp)
   1933 	char   *path;
   1934 	struct proc *p;
   1935 	struct vnode **vpp;	/* result */
   1936 {
   1937 	struct nameidata nd;
   1938 	struct vnode *vp;
   1939 	struct vattr va;
   1940 	int     error;
   1941 
   1942 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   1943 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   1944 #ifdef DEBUG
   1945 		printf("RAIDframe: vn_open returned %d\n", error);
   1946 #endif
   1947 		return (error);
   1948 	}
   1949 	vp = nd.ni_vp;
   1950 	if (vp->v_usecount > 1) {
   1951 		VOP_UNLOCK(vp, 0);
   1952 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1953 		return (EBUSY);
   1954 	}
   1955 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   1956 		VOP_UNLOCK(vp, 0);
   1957 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1958 		return (error);
   1959 	}
   1960 	/* XXX: eventually we should handle VREG, too. */
   1961 	if (va.va_type != VBLK) {
   1962 		VOP_UNLOCK(vp, 0);
   1963 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1964 		return (ENOTBLK);
   1965 	}
   1966 	VOP_UNLOCK(vp, 0);
   1967 	*vpp = vp;
   1968 	return (0);
   1969 }
   1970 /*
   1971  * Wait interruptibly for an exclusive lock.
   1972  *
   1973  * XXX
   1974  * Several drivers do this; it should be abstracted and made MP-safe.
   1975  * (Hmm... where have we seen this warning before :->  GO )
   1976  */
   1977 static int
   1978 raidlock(rs)
   1979 	struct raid_softc *rs;
   1980 {
   1981 	int     error;
   1982 
   1983 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   1984 		rs->sc_flags |= RAIDF_WANTED;
   1985 		if ((error =
   1986 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   1987 			return (error);
   1988 	}
   1989 	rs->sc_flags |= RAIDF_LOCKED;
   1990 	return (0);
   1991 }
   1992 /*
   1993  * Unlock and wake up any waiters.
   1994  */
   1995 static void
   1996 raidunlock(rs)
   1997 	struct raid_softc *rs;
   1998 {
   1999 
   2000 	rs->sc_flags &= ~RAIDF_LOCKED;
   2001 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2002 		rs->sc_flags &= ~RAIDF_WANTED;
   2003 		wakeup(rs);
   2004 	}
   2005 }
   2006 
   2007 
   2008 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2009 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2010 
   2011 int
   2012 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2013 {
   2014 	RF_ComponentLabel_t component_label;
   2015 	raidread_component_label(dev, b_vp, &component_label);
   2016 	component_label.mod_counter = mod_counter;
   2017 	component_label.clean = RF_RAID_CLEAN;
   2018 	raidwrite_component_label(dev, b_vp, &component_label);
   2019 	return(0);
   2020 }
   2021 
   2022 
   2023 int
   2024 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2025 {
   2026 	RF_ComponentLabel_t component_label;
   2027 	raidread_component_label(dev, b_vp, &component_label);
   2028 	component_label.mod_counter = mod_counter;
   2029 	component_label.clean = RF_RAID_DIRTY;
   2030 	raidwrite_component_label(dev, b_vp, &component_label);
   2031 	return(0);
   2032 }
   2033 
   2034 /* ARGSUSED */
   2035 int
   2036 raidread_component_label(dev, b_vp, component_label)
   2037 	dev_t dev;
   2038 	struct vnode *b_vp;
   2039 	RF_ComponentLabel_t *component_label;
   2040 {
   2041 	struct buf *bp;
   2042 	int error;
   2043 
   2044 	/* XXX should probably ensure that we don't try to do this if
   2045 	   someone has changed rf_protected_sectors. */
   2046 
   2047 	/* get a block of the appropriate size... */
   2048 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2049 	bp->b_dev = dev;
   2050 
   2051 	/* get our ducks in a row for the read */
   2052 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2053 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2054 	bp->b_flags = B_BUSY | B_READ;
   2055  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2056 
   2057 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2058 
   2059 	error = biowait(bp);
   2060 
   2061 	if (!error) {
   2062 		memcpy(component_label, bp->b_un.b_addr,
   2063 		       sizeof(RF_ComponentLabel_t));
   2064 #if 0
   2065 		printf("raidread_component_label: got component label:\n");
   2066 		printf("Version: %d\n",component_label->version);
   2067 		printf("Serial Number: %d\n",component_label->serial_number);
   2068 		printf("Mod counter: %d\n",component_label->mod_counter);
   2069 		printf("Row: %d\n", component_label->row);
   2070 		printf("Column: %d\n", component_label->column);
   2071 		printf("Num Rows: %d\n", component_label->num_rows);
   2072 		printf("Num Columns: %d\n", component_label->num_columns);
   2073 		printf("Clean: %d\n", component_label->clean);
   2074 		printf("Status: %d\n", component_label->status);
   2075 #endif
   2076         } else {
   2077 		printf("Failed to read RAID component label!\n");
   2078 	}
   2079 
   2080         bp->b_flags = B_INVAL | B_AGE;
   2081 	brelse(bp);
   2082 	return(error);
   2083 }
   2084 /* ARGSUSED */
   2085 int
   2086 raidwrite_component_label(dev, b_vp, component_label)
   2087 	dev_t dev;
   2088 	struct vnode *b_vp;
   2089 	RF_ComponentLabel_t *component_label;
   2090 {
   2091 	struct buf *bp;
   2092 	int error;
   2093 
   2094 	/* get a block of the appropriate size... */
   2095 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2096 	bp->b_dev = dev;
   2097 
   2098 	/* get our ducks in a row for the write */
   2099 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2100 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2101 	bp->b_flags = B_BUSY | B_WRITE;
   2102  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2103 
   2104 	memset( bp->b_un.b_addr, 0, RF_COMPONENT_INFO_SIZE );
   2105 
   2106 	memcpy( bp->b_un.b_addr, component_label, sizeof(RF_ComponentLabel_t));
   2107 
   2108 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2109 	error = biowait(bp);
   2110         bp->b_flags = B_INVAL | B_AGE;
   2111 	brelse(bp);
   2112 	if (error) {
   2113 		printf("Failed to write RAID component info!\n");
   2114 	}
   2115 
   2116 	return(error);
   2117 }
   2118 
   2119 void
   2120 rf_markalldirty( raidPtr )
   2121 	RF_Raid_t *raidPtr;
   2122 {
   2123 	RF_ComponentLabel_t c_label;
   2124 	int r,c;
   2125 
   2126 	raidPtr->mod_counter++;
   2127 	for (r = 0; r < raidPtr->numRow; r++) {
   2128 		for (c = 0; c < raidPtr->numCol; c++) {
   2129 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2130 				raidread_component_label(
   2131 					raidPtr->Disks[r][c].dev,
   2132 					raidPtr->raid_cinfo[r][c].ci_vp,
   2133 					&c_label);
   2134 				if (c_label.status == rf_ds_spared) {
   2135 					/* XXX do something special...
   2136 					 but whatever you do, don't
   2137 					 try to access it!! */
   2138 				} else {
   2139 #if 0
   2140 				c_label.status =
   2141 					raidPtr->Disks[r][c].status;
   2142 				raidwrite_component_label(
   2143 					raidPtr->Disks[r][c].dev,
   2144 					raidPtr->raid_cinfo[r][c].ci_vp,
   2145 					&c_label);
   2146 #endif
   2147 				raidmarkdirty(
   2148 				       raidPtr->Disks[r][c].dev,
   2149 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2150 				       raidPtr->mod_counter);
   2151 				}
   2152 			}
   2153 		}
   2154 	}
   2155 	/* printf("Component labels marked dirty.\n"); */
   2156 #if 0
   2157 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2158 		sparecol = raidPtr->numCol + c;
   2159 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2160 			/*
   2161 
   2162 			   XXX this is where we get fancy and map this spare
   2163 			   into it's correct spot in the array.
   2164 
   2165 			 */
   2166 			/*
   2167 
   2168 			   we claim this disk is "optimal" if it's
   2169 			   rf_ds_used_spare, as that means it should be
   2170 			   directly substitutable for the disk it replaced.
   2171 			   We note that too...
   2172 
   2173 			 */
   2174 
   2175 			for(i=0;i<raidPtr->numRow;i++) {
   2176 				for(j=0;j<raidPtr->numCol;j++) {
   2177 					if ((raidPtr->Disks[i][j].spareRow ==
   2178 					     r) &&
   2179 					    (raidPtr->Disks[i][j].spareCol ==
   2180 					     sparecol)) {
   2181 						srow = r;
   2182 						scol = sparecol;
   2183 						break;
   2184 					}
   2185 				}
   2186 			}
   2187 
   2188 			raidread_component_label(
   2189 				      raidPtr->Disks[r][sparecol].dev,
   2190 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2191 				      &c_label);
   2192 			/* make sure status is noted */
   2193 			c_label.version = RF_COMPONENT_LABEL_VERSION;
   2194 			c_label.mod_counter = raidPtr->mod_counter;
   2195 			c_label.serial_number = raidPtr->serial_number;
   2196 			c_label.row = srow;
   2197 			c_label.column = scol;
   2198 			c_label.num_rows = raidPtr->numRow;
   2199 			c_label.num_columns = raidPtr->numCol;
   2200 			c_label.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2201 			c_label.status = rf_ds_optimal;
   2202 			raidwrite_component_label(
   2203 				      raidPtr->Disks[r][sparecol].dev,
   2204 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2205 				      &c_label);
   2206 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2207 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2208 		}
   2209 	}
   2210 
   2211 #endif
   2212 }
   2213 
   2214 
   2215 void
   2216 rf_update_component_labels( raidPtr )
   2217 	RF_Raid_t *raidPtr;
   2218 {
   2219 	RF_ComponentLabel_t c_label;
   2220 	int sparecol;
   2221 	int r,c;
   2222 	int i,j;
   2223 	int srow, scol;
   2224 
   2225 	srow = -1;
   2226 	scol = -1;
   2227 
   2228 	/* XXX should do extra checks to make sure things really are clean,
   2229 	   rather than blindly setting the clean bit... */
   2230 
   2231 	raidPtr->mod_counter++;
   2232 
   2233 	for (r = 0; r < raidPtr->numRow; r++) {
   2234 		for (c = 0; c < raidPtr->numCol; c++) {
   2235 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2236 				raidread_component_label(
   2237 					raidPtr->Disks[r][c].dev,
   2238 					raidPtr->raid_cinfo[r][c].ci_vp,
   2239 					&c_label);
   2240 				/* make sure status is noted */
   2241 				c_label.status = rf_ds_optimal;
   2242 				raidwrite_component_label(
   2243 					raidPtr->Disks[r][c].dev,
   2244 					raidPtr->raid_cinfo[r][c].ci_vp,
   2245 					&c_label);
   2246 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2247 					raidmarkclean(
   2248 					      raidPtr->Disks[r][c].dev,
   2249 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2250 					      raidPtr->mod_counter);
   2251 				}
   2252 			}
   2253 			/* else we don't touch it.. */
   2254 #if 0
   2255 			else if (raidPtr->Disks[r][c].status !=
   2256 				   rf_ds_failed) {
   2257 				raidread_component_label(
   2258 					raidPtr->Disks[r][c].dev,
   2259 					raidPtr->raid_cinfo[r][c].ci_vp,
   2260 					&c_label);
   2261 				/* make sure status is noted */
   2262 				c_label.status =
   2263 					raidPtr->Disks[r][c].status;
   2264 				raidwrite_component_label(
   2265 					raidPtr->Disks[r][c].dev,
   2266 					raidPtr->raid_cinfo[r][c].ci_vp,
   2267 					&c_label);
   2268 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2269 					raidmarkclean(
   2270 					      raidPtr->Disks[r][c].dev,
   2271 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2272 					      raidPtr->mod_counter);
   2273 				}
   2274 			}
   2275 #endif
   2276 		}
   2277 	}
   2278 
   2279 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2280 		sparecol = raidPtr->numCol + c;
   2281 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2282 			/*
   2283 
   2284 			   we claim this disk is "optimal" if it's
   2285 			   rf_ds_used_spare, as that means it should be
   2286 			   directly substitutable for the disk it replaced.
   2287 			   We note that too...
   2288 
   2289 			 */
   2290 
   2291 			for(i=0;i<raidPtr->numRow;i++) {
   2292 				for(j=0;j<raidPtr->numCol;j++) {
   2293 					if ((raidPtr->Disks[i][j].spareRow ==
   2294 					     0) &&
   2295 					    (raidPtr->Disks[i][j].spareCol ==
   2296 					     sparecol)) {
   2297 						srow = i;
   2298 						scol = j;
   2299 						break;
   2300 					}
   2301 				}
   2302 			}
   2303 
   2304 			raidread_component_label(
   2305 				      raidPtr->Disks[0][sparecol].dev,
   2306 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2307 				      &c_label);
   2308 			/* make sure status is noted */
   2309 			c_label.version = RF_COMPONENT_LABEL_VERSION;
   2310 			c_label.mod_counter = raidPtr->mod_counter;
   2311 			c_label.serial_number = raidPtr->serial_number;
   2312 			c_label.row = srow;
   2313 			c_label.column = scol;
   2314 			c_label.num_rows = raidPtr->numRow;
   2315 			c_label.num_columns = raidPtr->numCol;
   2316 			c_label.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2317 			c_label.status = rf_ds_optimal;
   2318 			raidwrite_component_label(
   2319 				      raidPtr->Disks[0][sparecol].dev,
   2320 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2321 				      &c_label);
   2322 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2323 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2324 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2325 					       raidPtr->mod_counter);
   2326 			}
   2327 		}
   2328 	}
   2329 	/* 	printf("Component labels updated\n"); */
   2330 }
   2331