Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.211
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.211 2006/08/07 17:08:18 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.211 2006/08/07 17:08:18 oster Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, caddr_t, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 
    218 dev_type_open(raidopen);
    219 dev_type_close(raidclose);
    220 dev_type_read(raidread);
    221 dev_type_write(raidwrite);
    222 dev_type_ioctl(raidioctl);
    223 dev_type_strategy(raidstrategy);
    224 dev_type_dump(raiddump);
    225 dev_type_size(raidsize);
    226 
    227 const struct bdevsw raid_bdevsw = {
    228 	raidopen, raidclose, raidstrategy, raidioctl,
    229 	raiddump, raidsize, D_DISK
    230 };
    231 
    232 const struct cdevsw raid_cdevsw = {
    233 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    234 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    235 };
    236 
    237 /* XXX Not sure if the following should be replacing the raidPtrs above,
    238    or if it should be used in conjunction with that...
    239 */
    240 
    241 struct raid_softc {
    242 	int     sc_flags;	/* flags */
    243 	int     sc_cflags;	/* configuration flags */
    244 	size_t  sc_size;	/* size of the raid device */
    245 	char    sc_xname[20];	/* XXX external name */
    246 	struct disk sc_dkdev;	/* generic disk device info */
    247 	struct bufq_state *buf_queue;	/* used for the device queue */
    248 };
    249 /* sc_flags */
    250 #define RAIDF_INITED	0x01	/* unit has been initialized */
    251 #define RAIDF_WLABEL	0x02	/* label area is writable */
    252 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    253 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    254 #define RAIDF_LOCKED	0x80	/* unit is locked */
    255 
    256 #define	raidunit(x)	DISKUNIT(x)
    257 int numraid = 0;
    258 
    259 extern struct cfdriver raid_cd;
    260 
    261 /*
    262  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    263  * Be aware that large numbers can allow the driver to consume a lot of
    264  * kernel memory, especially on writes, and in degraded mode reads.
    265  *
    266  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    267  * a single 64K write will typically require 64K for the old data,
    268  * 64K for the old parity, and 64K for the new parity, for a total
    269  * of 192K (if the parity buffer is not re-used immediately).
    270  * Even it if is used immediately, that's still 128K, which when multiplied
    271  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    272  *
    273  * Now in degraded mode, for example, a 64K read on the above setup may
    274  * require data reconstruction, which will require *all* of the 4 remaining
    275  * disks to participate -- 4 * 32K/disk == 128K again.
    276  */
    277 
    278 #ifndef RAIDOUTSTANDING
    279 #define RAIDOUTSTANDING   6
    280 #endif
    281 
    282 #define RAIDLABELDEV(dev)	\
    283 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    284 
    285 /* declared here, and made public, for the benefit of KVM stuff.. */
    286 struct raid_softc *raid_softc;
    287 
    288 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    289 				     struct disklabel *);
    290 static void raidgetdisklabel(dev_t);
    291 static void raidmakedisklabel(struct raid_softc *);
    292 
    293 static int raidlock(struct raid_softc *);
    294 static void raidunlock(struct raid_softc *);
    295 
    296 static void rf_markalldirty(RF_Raid_t *);
    297 
    298 struct device *raidrootdev;
    299 
    300 void rf_ReconThread(struct rf_recon_req *);
    301 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    302 void rf_CopybackThread(RF_Raid_t *raidPtr);
    303 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    304 int rf_autoconfig(struct device *self);
    305 void rf_buildroothack(RF_ConfigSet_t *);
    306 
    307 RF_AutoConfig_t *rf_find_raid_components(void);
    308 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    309 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    310 static int rf_reasonable_label(RF_ComponentLabel_t *);
    311 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    312 int rf_set_autoconfig(RF_Raid_t *, int);
    313 int rf_set_rootpartition(RF_Raid_t *, int);
    314 void rf_release_all_vps(RF_ConfigSet_t *);
    315 void rf_cleanup_config_set(RF_ConfigSet_t *);
    316 int rf_have_enough_components(RF_ConfigSet_t *);
    317 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    318 
    319 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    320 				  allow autoconfig to take place.
    321 				  Note that this is overridden by having
    322 				  RAID_AUTOCONFIG as an option in the
    323 				  kernel config file.  */
    324 
    325 struct RF_Pools_s rf_pools;
    326 
    327 void
    328 raidattach(int num)
    329 {
    330 	int raidID;
    331 	int i, rc;
    332 
    333 #ifdef DEBUG
    334 	printf("raidattach: Asked for %d units\n", num);
    335 #endif
    336 
    337 	if (num <= 0) {
    338 #ifdef DIAGNOSTIC
    339 		panic("raidattach: count <= 0");
    340 #endif
    341 		return;
    342 	}
    343 	/* This is where all the initialization stuff gets done. */
    344 
    345 	numraid = num;
    346 
    347 	/* Make some space for requested number of units... */
    348 
    349 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    350 	if (raidPtrs == NULL) {
    351 		panic("raidPtrs is NULL!!");
    352 	}
    353 
    354 	rf_mutex_init(&rf_sparet_wait_mutex);
    355 
    356 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    357 
    358 	for (i = 0; i < num; i++)
    359 		raidPtrs[i] = NULL;
    360 	rc = rf_BootRaidframe();
    361 	if (rc == 0)
    362 		printf("Kernelized RAIDframe activated\n");
    363 	else
    364 		panic("Serious error booting RAID!!");
    365 
    366 	/* put together some datastructures like the CCD device does.. This
    367 	 * lets us lock the device and what-not when it gets opened. */
    368 
    369 	raid_softc = (struct raid_softc *)
    370 		malloc(num * sizeof(struct raid_softc),
    371 		       M_RAIDFRAME, M_NOWAIT);
    372 	if (raid_softc == NULL) {
    373 		printf("WARNING: no memory for RAIDframe driver\n");
    374 		return;
    375 	}
    376 
    377 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    378 
    379 	raidrootdev = (struct device *)malloc(num * sizeof(struct device),
    380 					      M_RAIDFRAME, M_NOWAIT);
    381 	if (raidrootdev == NULL) {
    382 		panic("No memory for RAIDframe driver!!?!?!");
    383 	}
    384 
    385 	for (raidID = 0; raidID < num; raidID++) {
    386 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    387 		pseudo_disk_init(&raid_softc[raidID].sc_dkdev);
    388 
    389 		/* XXXJRT Should use config_attach_pseudo() */
    390 
    391 		raidrootdev[raidID].dv_class  = DV_DISK;
    392 		raidrootdev[raidID].dv_cfdata = NULL;
    393 		raidrootdev[raidID].dv_unit   = raidID;
    394 		raidrootdev[raidID].dv_parent = NULL;
    395 		raidrootdev[raidID].dv_flags  = 0;
    396 		raidrootdev[raidID].dv_cfdriver = &raid_cd;
    397 		snprintf(raidrootdev[raidID].dv_xname,
    398 		    sizeof(raidrootdev[raidID].dv_xname), "raid%d", raidID);
    399 
    400 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    401 			  (RF_Raid_t *));
    402 		if (raidPtrs[raidID] == NULL) {
    403 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    404 			numraid = raidID;
    405 			return;
    406 		}
    407 	}
    408 
    409 #ifdef RAID_AUTOCONFIG
    410 	raidautoconfig = 1;
    411 #endif
    412 
    413 	/*
    414 	 * Register a finalizer which will be used to auto-config RAID
    415 	 * sets once all real hardware devices have been found.
    416 	 */
    417 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    418 		printf("WARNING: unable to register RAIDframe finalizer\n");
    419 }
    420 
    421 int
    422 rf_autoconfig(struct device *self)
    423 {
    424 	RF_AutoConfig_t *ac_list;
    425 	RF_ConfigSet_t *config_sets;
    426 
    427 	if (raidautoconfig == 0)
    428 		return (0);
    429 
    430 	/* XXX This code can only be run once. */
    431 	raidautoconfig = 0;
    432 
    433 	/* 1. locate all RAID components on the system */
    434 #ifdef DEBUG
    435 	printf("Searching for RAID components...\n");
    436 #endif
    437 	ac_list = rf_find_raid_components();
    438 
    439 	/* 2. Sort them into their respective sets. */
    440 	config_sets = rf_create_auto_sets(ac_list);
    441 
    442 	/*
    443 	 * 3. Evaluate each set andconfigure the valid ones.
    444 	 * This gets done in rf_buildroothack().
    445 	 */
    446 	rf_buildroothack(config_sets);
    447 
    448 	return (1);
    449 }
    450 
    451 void
    452 rf_buildroothack(RF_ConfigSet_t *config_sets)
    453 {
    454 	RF_ConfigSet_t *cset;
    455 	RF_ConfigSet_t *next_cset;
    456 	int retcode;
    457 	int raidID;
    458 	int rootID;
    459 	int num_root;
    460 
    461 	rootID = 0;
    462 	num_root = 0;
    463 	cset = config_sets;
    464 	while(cset != NULL ) {
    465 		next_cset = cset->next;
    466 		if (rf_have_enough_components(cset) &&
    467 		    cset->ac->clabel->autoconfigure==1) {
    468 			retcode = rf_auto_config_set(cset,&raidID);
    469 			if (!retcode) {
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #if DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 			/* we're not autoconfiguring this set...
    483 			   release the associated resources */
    484 			rf_release_all_vps(cset);
    485 		}
    486 		/* cleanup */
    487 		rf_cleanup_config_set(cset);
    488 		cset = next_cset;
    489 	}
    490 
    491 	/* we found something bootable... */
    492 
    493 	if (num_root == 1) {
    494 		booted_device = &raidrootdev[rootID];
    495 	} else if (num_root > 1) {
    496 		/* we can't guess.. require the user to answer... */
    497 		boothowto |= RB_ASKNAME;
    498 	}
    499 }
    500 
    501 
    502 int
    503 raidsize(dev_t dev)
    504 {
    505 	struct raid_softc *rs;
    506 	struct disklabel *lp;
    507 	int     part, unit, omask, size;
    508 
    509 	unit = raidunit(dev);
    510 	if (unit >= numraid)
    511 		return (-1);
    512 	rs = &raid_softc[unit];
    513 
    514 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    515 		return (-1);
    516 
    517 	part = DISKPART(dev);
    518 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    519 	lp = rs->sc_dkdev.dk_label;
    520 
    521 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    522 		return (-1);
    523 
    524 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    525 		size = -1;
    526 	else
    527 		size = lp->d_partitions[part].p_size *
    528 		    (lp->d_secsize / DEV_BSIZE);
    529 
    530 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    531 		return (-1);
    532 
    533 	return (size);
    534 
    535 }
    536 
    537 int
    538 raiddump(dev_t dev, daddr_t blkno, caddr_t va, size_t  size)
    539 {
    540 	/* Not implemented. */
    541 	return ENXIO;
    542 }
    543 /* ARGSUSED */
    544 int
    545 raidopen(dev_t dev, int flags, int fmt, struct lwp *l)
    546 {
    547 	int     unit = raidunit(dev);
    548 	struct raid_softc *rs;
    549 	struct disklabel *lp;
    550 	int     part, pmask;
    551 	int     error = 0;
    552 
    553 	if (unit >= numraid)
    554 		return (ENXIO);
    555 	rs = &raid_softc[unit];
    556 
    557 	if ((error = raidlock(rs)) != 0)
    558 		return (error);
    559 	lp = rs->sc_dkdev.dk_label;
    560 
    561 	part = DISKPART(dev);
    562 	pmask = (1 << part);
    563 
    564 	if ((rs->sc_flags & RAIDF_INITED) &&
    565 	    (rs->sc_dkdev.dk_openmask == 0))
    566 		raidgetdisklabel(dev);
    567 
    568 	/* make sure that this partition exists */
    569 
    570 	if (part != RAW_PART) {
    571 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    572 		    ((part >= lp->d_npartitions) ||
    573 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    574 			error = ENXIO;
    575 			raidunlock(rs);
    576 			return (error);
    577 		}
    578 	}
    579 	/* Prevent this unit from being unconfigured while open. */
    580 	switch (fmt) {
    581 	case S_IFCHR:
    582 		rs->sc_dkdev.dk_copenmask |= pmask;
    583 		break;
    584 
    585 	case S_IFBLK:
    586 		rs->sc_dkdev.dk_bopenmask |= pmask;
    587 		break;
    588 	}
    589 
    590 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    591 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    592 		/* First one... mark things as dirty... Note that we *MUST*
    593 		 have done a configure before this.  I DO NOT WANT TO BE
    594 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    595 		 THAT THEY BELONG TOGETHER!!!!! */
    596 		/* XXX should check to see if we're only open for reading
    597 		   here... If so, we needn't do this, but then need some
    598 		   other way of keeping track of what's happened.. */
    599 
    600 		rf_markalldirty( raidPtrs[unit] );
    601 	}
    602 
    603 
    604 	rs->sc_dkdev.dk_openmask =
    605 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    606 
    607 	raidunlock(rs);
    608 
    609 	return (error);
    610 
    611 
    612 }
    613 /* ARGSUSED */
    614 int
    615 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    616 {
    617 	int     unit = raidunit(dev);
    618 	struct raid_softc *rs;
    619 	int     error = 0;
    620 	int     part;
    621 
    622 	if (unit >= numraid)
    623 		return (ENXIO);
    624 	rs = &raid_softc[unit];
    625 
    626 	if ((error = raidlock(rs)) != 0)
    627 		return (error);
    628 
    629 	part = DISKPART(dev);
    630 
    631 	/* ...that much closer to allowing unconfiguration... */
    632 	switch (fmt) {
    633 	case S_IFCHR:
    634 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    635 		break;
    636 
    637 	case S_IFBLK:
    638 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    639 		break;
    640 	}
    641 	rs->sc_dkdev.dk_openmask =
    642 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    643 
    644 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    645 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    646 		/* Last one... device is not unconfigured yet.
    647 		   Device shutdown has taken care of setting the
    648 		   clean bits if RAIDF_INITED is not set
    649 		   mark things as clean... */
    650 
    651 		rf_update_component_labels(raidPtrs[unit],
    652 						 RF_FINAL_COMPONENT_UPDATE);
    653 		if (doing_shutdown) {
    654 			/* last one, and we're going down, so
    655 			   lights out for this RAID set too. */
    656 			error = rf_Shutdown(raidPtrs[unit]);
    657 
    658 			/* It's no longer initialized... */
    659 			rs->sc_flags &= ~RAIDF_INITED;
    660 
    661 			/* Detach the disk. */
    662 			pseudo_disk_detach(&rs->sc_dkdev);
    663 		}
    664 	}
    665 
    666 	raidunlock(rs);
    667 	return (0);
    668 
    669 }
    670 
    671 void
    672 raidstrategy(struct buf *bp)
    673 {
    674 	int s;
    675 
    676 	unsigned int raidID = raidunit(bp->b_dev);
    677 	RF_Raid_t *raidPtr;
    678 	struct raid_softc *rs = &raid_softc[raidID];
    679 	int     wlabel;
    680 
    681 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    682 		bp->b_error = ENXIO;
    683 		bp->b_flags |= B_ERROR;
    684 		goto done;
    685 	}
    686 	if (raidID >= numraid || !raidPtrs[raidID]) {
    687 		bp->b_error = ENODEV;
    688 		bp->b_flags |= B_ERROR;
    689 		goto done;
    690 	}
    691 	raidPtr = raidPtrs[raidID];
    692 	if (!raidPtr->valid) {
    693 		bp->b_error = ENODEV;
    694 		bp->b_flags |= B_ERROR;
    695 		goto done;
    696 	}
    697 	if (bp->b_bcount == 0) {
    698 		db1_printf(("b_bcount is zero..\n"));
    699 		goto done;
    700 	}
    701 
    702 	/*
    703 	 * Do bounds checking and adjust transfer.  If there's an
    704 	 * error, the bounds check will flag that for us.
    705 	 */
    706 
    707 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    708 	if (DISKPART(bp->b_dev) == RAW_PART) {
    709 		uint64_t size; /* device size in DEV_BSIZE unit */
    710 
    711 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    712 			size = raidPtr->totalSectors <<
    713 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    714 		} else {
    715 			size = raidPtr->totalSectors >>
    716 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    717 		}
    718 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    719 			goto done;
    720 		}
    721 	} else {
    722 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    723 			db1_printf(("Bounds check failed!!:%d %d\n",
    724 				(int) bp->b_blkno, (int) wlabel));
    725 			goto done;
    726 		}
    727 	}
    728 	s = splbio();
    729 
    730 	bp->b_resid = 0;
    731 
    732 	/* stuff it onto our queue */
    733 	BUFQ_PUT(rs->buf_queue, bp);
    734 
    735 	/* scheduled the IO to happen at the next convenient time */
    736 	wakeup(&(raidPtrs[raidID]->iodone));
    737 
    738 	splx(s);
    739 	return;
    740 
    741 done:
    742 	bp->b_resid = bp->b_bcount;
    743 	biodone(bp);
    744 }
    745 /* ARGSUSED */
    746 int
    747 raidread(dev_t dev, struct uio *uio, int flags)
    748 {
    749 	int     unit = raidunit(dev);
    750 	struct raid_softc *rs;
    751 
    752 	if (unit >= numraid)
    753 		return (ENXIO);
    754 	rs = &raid_softc[unit];
    755 
    756 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    757 		return (ENXIO);
    758 
    759 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    760 
    761 }
    762 /* ARGSUSED */
    763 int
    764 raidwrite(dev_t dev, struct uio *uio, int flags)
    765 {
    766 	int     unit = raidunit(dev);
    767 	struct raid_softc *rs;
    768 
    769 	if (unit >= numraid)
    770 		return (ENXIO);
    771 	rs = &raid_softc[unit];
    772 
    773 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    774 		return (ENXIO);
    775 
    776 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    777 
    778 }
    779 
    780 int
    781 raidioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l)
    782 {
    783 	int     unit = raidunit(dev);
    784 	int     error = 0;
    785 	int     part, pmask;
    786 	struct raid_softc *rs;
    787 	RF_Config_t *k_cfg, *u_cfg;
    788 	RF_Raid_t *raidPtr;
    789 	RF_RaidDisk_t *diskPtr;
    790 	RF_AccTotals_t *totals;
    791 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    792 	u_char *specific_buf;
    793 	int retcode = 0;
    794 	int column;
    795 	int raidid;
    796 	struct rf_recon_req *rrcopy, *rr;
    797 	RF_ComponentLabel_t *clabel;
    798 	RF_ComponentLabel_t *ci_label;
    799 	RF_ComponentLabel_t **clabel_ptr;
    800 	RF_SingleComponent_t *sparePtr,*componentPtr;
    801 	RF_SingleComponent_t component;
    802 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    803 	int i, j, d;
    804 #ifdef __HAVE_OLD_DISKLABEL
    805 	struct disklabel newlabel;
    806 #endif
    807 
    808 	if (unit >= numraid)
    809 		return (ENXIO);
    810 	rs = &raid_softc[unit];
    811 	raidPtr = raidPtrs[unit];
    812 
    813 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    814 		(int) DISKPART(dev), (int) unit, (int) cmd));
    815 
    816 	/* Must be open for writes for these commands... */
    817 	switch (cmd) {
    818 	case DIOCSDINFO:
    819 	case DIOCWDINFO:
    820 #ifdef __HAVE_OLD_DISKLABEL
    821 	case ODIOCWDINFO:
    822 	case ODIOCSDINFO:
    823 #endif
    824 	case DIOCWLABEL:
    825 		if ((flag & FWRITE) == 0)
    826 			return (EBADF);
    827 	}
    828 
    829 	/* Must be initialized for these... */
    830 	switch (cmd) {
    831 	case DIOCGDINFO:
    832 	case DIOCSDINFO:
    833 	case DIOCWDINFO:
    834 #ifdef __HAVE_OLD_DISKLABEL
    835 	case ODIOCGDINFO:
    836 	case ODIOCWDINFO:
    837 	case ODIOCSDINFO:
    838 	case ODIOCGDEFLABEL:
    839 #endif
    840 	case DIOCGPART:
    841 	case DIOCWLABEL:
    842 	case DIOCGDEFLABEL:
    843 	case RAIDFRAME_SHUTDOWN:
    844 	case RAIDFRAME_REWRITEPARITY:
    845 	case RAIDFRAME_GET_INFO:
    846 	case RAIDFRAME_RESET_ACCTOTALS:
    847 	case RAIDFRAME_GET_ACCTOTALS:
    848 	case RAIDFRAME_KEEP_ACCTOTALS:
    849 	case RAIDFRAME_GET_SIZE:
    850 	case RAIDFRAME_FAIL_DISK:
    851 	case RAIDFRAME_COPYBACK:
    852 	case RAIDFRAME_CHECK_RECON_STATUS:
    853 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    854 	case RAIDFRAME_GET_COMPONENT_LABEL:
    855 	case RAIDFRAME_SET_COMPONENT_LABEL:
    856 	case RAIDFRAME_ADD_HOT_SPARE:
    857 	case RAIDFRAME_REMOVE_HOT_SPARE:
    858 	case RAIDFRAME_INIT_LABELS:
    859 	case RAIDFRAME_REBUILD_IN_PLACE:
    860 	case RAIDFRAME_CHECK_PARITY:
    861 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    862 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    863 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    864 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    865 	case RAIDFRAME_SET_AUTOCONFIG:
    866 	case RAIDFRAME_SET_ROOT:
    867 	case RAIDFRAME_DELETE_COMPONENT:
    868 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    869 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    870 			return (ENXIO);
    871 	}
    872 
    873 	switch (cmd) {
    874 
    875 		/* configure the system */
    876 	case RAIDFRAME_CONFIGURE:
    877 
    878 		if (raidPtr->valid) {
    879 			/* There is a valid RAID set running on this unit! */
    880 			printf("raid%d: Device already configured!\n",unit);
    881 			return(EINVAL);
    882 		}
    883 
    884 		/* copy-in the configuration information */
    885 		/* data points to a pointer to the configuration structure */
    886 
    887 		u_cfg = *((RF_Config_t **) data);
    888 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    889 		if (k_cfg == NULL) {
    890 			return (ENOMEM);
    891 		}
    892 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    893 		if (retcode) {
    894 			RF_Free(k_cfg, sizeof(RF_Config_t));
    895 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    896 				retcode));
    897 			return (retcode);
    898 		}
    899 		/* allocate a buffer for the layout-specific data, and copy it
    900 		 * in */
    901 		if (k_cfg->layoutSpecificSize) {
    902 			if (k_cfg->layoutSpecificSize > 10000) {
    903 				/* sanity check */
    904 				RF_Free(k_cfg, sizeof(RF_Config_t));
    905 				return (EINVAL);
    906 			}
    907 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    908 			    (u_char *));
    909 			if (specific_buf == NULL) {
    910 				RF_Free(k_cfg, sizeof(RF_Config_t));
    911 				return (ENOMEM);
    912 			}
    913 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    914 			    k_cfg->layoutSpecificSize);
    915 			if (retcode) {
    916 				RF_Free(k_cfg, sizeof(RF_Config_t));
    917 				RF_Free(specific_buf,
    918 					k_cfg->layoutSpecificSize);
    919 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    920 					retcode));
    921 				return (retcode);
    922 			}
    923 		} else
    924 			specific_buf = NULL;
    925 		k_cfg->layoutSpecific = specific_buf;
    926 
    927 		/* should do some kind of sanity check on the configuration.
    928 		 * Store the sum of all the bytes in the last byte? */
    929 
    930 		/* configure the system */
    931 
    932 		/*
    933 		 * Clear the entire RAID descriptor, just to make sure
    934 		 *  there is no stale data left in the case of a
    935 		 *  reconfiguration
    936 		 */
    937 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
    938 		raidPtr->raidid = unit;
    939 
    940 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
    941 
    942 		if (retcode == 0) {
    943 
    944 			/* allow this many simultaneous IO's to
    945 			   this RAID device */
    946 			raidPtr->openings = RAIDOUTSTANDING;
    947 
    948 			raidinit(raidPtr);
    949 			rf_markalldirty(raidPtr);
    950 		}
    951 		/* free the buffers.  No return code here. */
    952 		if (k_cfg->layoutSpecificSize) {
    953 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    954 		}
    955 		RF_Free(k_cfg, sizeof(RF_Config_t));
    956 
    957 		return (retcode);
    958 
    959 		/* shutdown the system */
    960 	case RAIDFRAME_SHUTDOWN:
    961 
    962 		if ((error = raidlock(rs)) != 0)
    963 			return (error);
    964 
    965 		/*
    966 		 * If somebody has a partition mounted, we shouldn't
    967 		 * shutdown.
    968 		 */
    969 
    970 		part = DISKPART(dev);
    971 		pmask = (1 << part);
    972 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    973 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    974 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    975 			raidunlock(rs);
    976 			return (EBUSY);
    977 		}
    978 
    979 		retcode = rf_Shutdown(raidPtr);
    980 
    981 		/* It's no longer initialized... */
    982 		rs->sc_flags &= ~RAIDF_INITED;
    983 
    984 		/* Detach the disk. */
    985 		pseudo_disk_detach(&rs->sc_dkdev);
    986 
    987 		raidunlock(rs);
    988 
    989 		return (retcode);
    990 	case RAIDFRAME_GET_COMPONENT_LABEL:
    991 		clabel_ptr = (RF_ComponentLabel_t **) data;
    992 		/* need to read the component label for the disk indicated
    993 		   by row,column in clabel */
    994 
    995 		/* For practice, let's get it directly fromdisk, rather
    996 		   than from the in-core copy */
    997 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
    998 			   (RF_ComponentLabel_t *));
    999 		if (clabel == NULL)
   1000 			return (ENOMEM);
   1001 
   1002 		retcode = copyin( *clabel_ptr, clabel,
   1003 				  sizeof(RF_ComponentLabel_t));
   1004 
   1005 		if (retcode) {
   1006 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1007 			return(retcode);
   1008 		}
   1009 
   1010 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1011 
   1012 		column = clabel->column;
   1013 
   1014 		if ((column < 0) || (column >= raidPtr->numCol +
   1015 				     raidPtr->numSpare)) {
   1016 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1017 			return(EINVAL);
   1018 		}
   1019 
   1020 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1021 				raidPtr->raid_cinfo[column].ci_vp,
   1022 				clabel );
   1023 
   1024 		if (retcode == 0) {
   1025 			retcode = copyout(clabel, *clabel_ptr,
   1026 					  sizeof(RF_ComponentLabel_t));
   1027 		}
   1028 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1029 		return (retcode);
   1030 
   1031 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1032 		clabel = (RF_ComponentLabel_t *) data;
   1033 
   1034 		/* XXX check the label for valid stuff... */
   1035 		/* Note that some things *should not* get modified --
   1036 		   the user should be re-initing the labels instead of
   1037 		   trying to patch things.
   1038 		   */
   1039 
   1040 		raidid = raidPtr->raidid;
   1041 #if DEBUG
   1042 		printf("raid%d: Got component label:\n", raidid);
   1043 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1044 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1045 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1046 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1047 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1048 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1049 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1050 #endif
   1051 		clabel->row = 0;
   1052 		column = clabel->column;
   1053 
   1054 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1055 			return(EINVAL);
   1056 		}
   1057 
   1058 		/* XXX this isn't allowed to do anything for now :-) */
   1059 
   1060 		/* XXX and before it is, we need to fill in the rest
   1061 		   of the fields!?!?!?! */
   1062 #if 0
   1063 		raidwrite_component_label(
   1064 		     raidPtr->Disks[column].dev,
   1065 			    raidPtr->raid_cinfo[column].ci_vp,
   1066 			    clabel );
   1067 #endif
   1068 		return (0);
   1069 
   1070 	case RAIDFRAME_INIT_LABELS:
   1071 		clabel = (RF_ComponentLabel_t *) data;
   1072 		/*
   1073 		   we only want the serial number from
   1074 		   the above.  We get all the rest of the information
   1075 		   from the config that was used to create this RAID
   1076 		   set.
   1077 		   */
   1078 
   1079 		raidPtr->serial_number = clabel->serial_number;
   1080 
   1081 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1082 			  (RF_ComponentLabel_t *));
   1083 		if (ci_label == NULL)
   1084 			return (ENOMEM);
   1085 
   1086 		raid_init_component_label(raidPtr, ci_label);
   1087 		ci_label->serial_number = clabel->serial_number;
   1088 		ci_label->row = 0; /* we dont' pretend to support more */
   1089 
   1090 		for(column=0;column<raidPtr->numCol;column++) {
   1091 			diskPtr = &raidPtr->Disks[column];
   1092 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1093 				ci_label->partitionSize = diskPtr->partitionSize;
   1094 				ci_label->column = column;
   1095 				raidwrite_component_label(
   1096 							  raidPtr->Disks[column].dev,
   1097 							  raidPtr->raid_cinfo[column].ci_vp,
   1098 							  ci_label );
   1099 			}
   1100 		}
   1101 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1102 
   1103 		return (retcode);
   1104 	case RAIDFRAME_SET_AUTOCONFIG:
   1105 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1106 		printf("raid%d: New autoconfig value is: %d\n",
   1107 		       raidPtr->raidid, d);
   1108 		*(int *) data = d;
   1109 		return (retcode);
   1110 
   1111 	case RAIDFRAME_SET_ROOT:
   1112 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1113 		printf("raid%d: New rootpartition value is: %d\n",
   1114 		       raidPtr->raidid, d);
   1115 		*(int *) data = d;
   1116 		return (retcode);
   1117 
   1118 		/* initialize all parity */
   1119 	case RAIDFRAME_REWRITEPARITY:
   1120 
   1121 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1122 			/* Parity for RAID 0 is trivially correct */
   1123 			raidPtr->parity_good = RF_RAID_CLEAN;
   1124 			return(0);
   1125 		}
   1126 
   1127 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1128 			/* Re-write is already in progress! */
   1129 			return(EINVAL);
   1130 		}
   1131 
   1132 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1133 					   rf_RewriteParityThread,
   1134 					   raidPtr,"raid_parity");
   1135 		return (retcode);
   1136 
   1137 
   1138 	case RAIDFRAME_ADD_HOT_SPARE:
   1139 		sparePtr = (RF_SingleComponent_t *) data;
   1140 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1141 		retcode = rf_add_hot_spare(raidPtr, &component);
   1142 		return(retcode);
   1143 
   1144 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1145 		return(retcode);
   1146 
   1147 	case RAIDFRAME_DELETE_COMPONENT:
   1148 		componentPtr = (RF_SingleComponent_t *)data;
   1149 		memcpy( &component, componentPtr,
   1150 			sizeof(RF_SingleComponent_t));
   1151 		retcode = rf_delete_component(raidPtr, &component);
   1152 		return(retcode);
   1153 
   1154 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1155 		componentPtr = (RF_SingleComponent_t *)data;
   1156 		memcpy( &component, componentPtr,
   1157 			sizeof(RF_SingleComponent_t));
   1158 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1159 		return(retcode);
   1160 
   1161 	case RAIDFRAME_REBUILD_IN_PLACE:
   1162 
   1163 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1164 			/* Can't do this on a RAID 0!! */
   1165 			return(EINVAL);
   1166 		}
   1167 
   1168 		if (raidPtr->recon_in_progress == 1) {
   1169 			/* a reconstruct is already in progress! */
   1170 			return(EINVAL);
   1171 		}
   1172 
   1173 		componentPtr = (RF_SingleComponent_t *) data;
   1174 		memcpy( &component, componentPtr,
   1175 			sizeof(RF_SingleComponent_t));
   1176 		component.row = 0; /* we don't support any more */
   1177 		column = component.column;
   1178 
   1179 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1180 			return(EINVAL);
   1181 		}
   1182 
   1183 		RF_LOCK_MUTEX(raidPtr->mutex);
   1184 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1185 		    (raidPtr->numFailures > 0)) {
   1186 			/* XXX 0 above shouldn't be constant!!! */
   1187 			/* some component other than this has failed.
   1188 			   Let's not make things worse than they already
   1189 			   are... */
   1190 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1191 			       raidPtr->raidid);
   1192 			printf("raid%d:     Col: %d   Too many failures.\n",
   1193 			       raidPtr->raidid, column);
   1194 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1195 			return (EINVAL);
   1196 		}
   1197 		if (raidPtr->Disks[column].status ==
   1198 		    rf_ds_reconstructing) {
   1199 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1200 			       raidPtr->raidid);
   1201 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1202 
   1203 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1204 			return (EINVAL);
   1205 		}
   1206 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1207 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1208 			return (EINVAL);
   1209 		}
   1210 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1211 
   1212 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1213 		if (rrcopy == NULL)
   1214 			return(ENOMEM);
   1215 
   1216 		rrcopy->raidPtr = (void *) raidPtr;
   1217 		rrcopy->col = column;
   1218 
   1219 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1220 					   rf_ReconstructInPlaceThread,
   1221 					   rrcopy,"raid_reconip");
   1222 		return(retcode);
   1223 
   1224 	case RAIDFRAME_GET_INFO:
   1225 		if (!raidPtr->valid)
   1226 			return (ENODEV);
   1227 		ucfgp = (RF_DeviceConfig_t **) data;
   1228 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1229 			  (RF_DeviceConfig_t *));
   1230 		if (d_cfg == NULL)
   1231 			return (ENOMEM);
   1232 		d_cfg->rows = 1; /* there is only 1 row now */
   1233 		d_cfg->cols = raidPtr->numCol;
   1234 		d_cfg->ndevs = raidPtr->numCol;
   1235 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1236 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1237 			return (ENOMEM);
   1238 		}
   1239 		d_cfg->nspares = raidPtr->numSpare;
   1240 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1241 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1242 			return (ENOMEM);
   1243 		}
   1244 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1245 		d = 0;
   1246 		for (j = 0; j < d_cfg->cols; j++) {
   1247 			d_cfg->devs[d] = raidPtr->Disks[j];
   1248 			d++;
   1249 		}
   1250 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1251 			d_cfg->spares[i] = raidPtr->Disks[j];
   1252 		}
   1253 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1254 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1255 
   1256 		return (retcode);
   1257 
   1258 	case RAIDFRAME_CHECK_PARITY:
   1259 		*(int *) data = raidPtr->parity_good;
   1260 		return (0);
   1261 
   1262 	case RAIDFRAME_RESET_ACCTOTALS:
   1263 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1264 		return (0);
   1265 
   1266 	case RAIDFRAME_GET_ACCTOTALS:
   1267 		totals = (RF_AccTotals_t *) data;
   1268 		*totals = raidPtr->acc_totals;
   1269 		return (0);
   1270 
   1271 	case RAIDFRAME_KEEP_ACCTOTALS:
   1272 		raidPtr->keep_acc_totals = *(int *)data;
   1273 		return (0);
   1274 
   1275 	case RAIDFRAME_GET_SIZE:
   1276 		*(int *) data = raidPtr->totalSectors;
   1277 		return (0);
   1278 
   1279 		/* fail a disk & optionally start reconstruction */
   1280 	case RAIDFRAME_FAIL_DISK:
   1281 
   1282 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1283 			/* Can't do this on a RAID 0!! */
   1284 			return(EINVAL);
   1285 		}
   1286 
   1287 		rr = (struct rf_recon_req *) data;
   1288 		rr->row = 0;
   1289 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1290 			return (EINVAL);
   1291 
   1292 
   1293 		RF_LOCK_MUTEX(raidPtr->mutex);
   1294 		if (raidPtr->status == rf_rs_reconstructing) {
   1295 			/* you can't fail a disk while we're reconstructing! */
   1296 			/* XXX wrong for RAID6 */
   1297 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1298 			return (EINVAL);
   1299 		}
   1300 		if ((raidPtr->Disks[rr->col].status ==
   1301 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1302 			/* some other component has failed.  Let's not make
   1303 			   things worse. XXX wrong for RAID6 */
   1304 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1305 			return (EINVAL);
   1306 		}
   1307 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1308 			/* Can't fail a spared disk! */
   1309 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1310 			return (EINVAL);
   1311 		}
   1312 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1313 
   1314 		/* make a copy of the recon request so that we don't rely on
   1315 		 * the user's buffer */
   1316 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1317 		if (rrcopy == NULL)
   1318 			return(ENOMEM);
   1319 		memcpy(rrcopy, rr, sizeof(*rr));
   1320 		rrcopy->raidPtr = (void *) raidPtr;
   1321 
   1322 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1323 					   rf_ReconThread,
   1324 					   rrcopy,"raid_recon");
   1325 		return (0);
   1326 
   1327 		/* invoke a copyback operation after recon on whatever disk
   1328 		 * needs it, if any */
   1329 	case RAIDFRAME_COPYBACK:
   1330 
   1331 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1332 			/* This makes no sense on a RAID 0!! */
   1333 			return(EINVAL);
   1334 		}
   1335 
   1336 		if (raidPtr->copyback_in_progress == 1) {
   1337 			/* Copyback is already in progress! */
   1338 			return(EINVAL);
   1339 		}
   1340 
   1341 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1342 					   rf_CopybackThread,
   1343 					   raidPtr,"raid_copyback");
   1344 		return (retcode);
   1345 
   1346 		/* return the percentage completion of reconstruction */
   1347 	case RAIDFRAME_CHECK_RECON_STATUS:
   1348 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1349 			/* This makes no sense on a RAID 0, so tell the
   1350 			   user it's done. */
   1351 			*(int *) data = 100;
   1352 			return(0);
   1353 		}
   1354 		if (raidPtr->status != rf_rs_reconstructing)
   1355 			*(int *) data = 100;
   1356 		else {
   1357 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1358 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1359 			} else {
   1360 				*(int *) data = 0;
   1361 			}
   1362 		}
   1363 		return (0);
   1364 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1365 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1366 		if (raidPtr->status != rf_rs_reconstructing) {
   1367 			progressInfo.remaining = 0;
   1368 			progressInfo.completed = 100;
   1369 			progressInfo.total = 100;
   1370 		} else {
   1371 			progressInfo.total =
   1372 				raidPtr->reconControl->numRUsTotal;
   1373 			progressInfo.completed =
   1374 				raidPtr->reconControl->numRUsComplete;
   1375 			progressInfo.remaining = progressInfo.total -
   1376 				progressInfo.completed;
   1377 		}
   1378 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1379 				  sizeof(RF_ProgressInfo_t));
   1380 		return (retcode);
   1381 
   1382 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1383 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1384 			/* This makes no sense on a RAID 0, so tell the
   1385 			   user it's done. */
   1386 			*(int *) data = 100;
   1387 			return(0);
   1388 		}
   1389 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1390 			*(int *) data = 100 *
   1391 				raidPtr->parity_rewrite_stripes_done /
   1392 				raidPtr->Layout.numStripe;
   1393 		} else {
   1394 			*(int *) data = 100;
   1395 		}
   1396 		return (0);
   1397 
   1398 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1399 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1400 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1401 			progressInfo.total = raidPtr->Layout.numStripe;
   1402 			progressInfo.completed =
   1403 				raidPtr->parity_rewrite_stripes_done;
   1404 			progressInfo.remaining = progressInfo.total -
   1405 				progressInfo.completed;
   1406 		} else {
   1407 			progressInfo.remaining = 0;
   1408 			progressInfo.completed = 100;
   1409 			progressInfo.total = 100;
   1410 		}
   1411 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1412 				  sizeof(RF_ProgressInfo_t));
   1413 		return (retcode);
   1414 
   1415 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1416 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1417 			/* This makes no sense on a RAID 0 */
   1418 			*(int *) data = 100;
   1419 			return(0);
   1420 		}
   1421 		if (raidPtr->copyback_in_progress == 1) {
   1422 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1423 				raidPtr->Layout.numStripe;
   1424 		} else {
   1425 			*(int *) data = 100;
   1426 		}
   1427 		return (0);
   1428 
   1429 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1430 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1431 		if (raidPtr->copyback_in_progress == 1) {
   1432 			progressInfo.total = raidPtr->Layout.numStripe;
   1433 			progressInfo.completed =
   1434 				raidPtr->copyback_stripes_done;
   1435 			progressInfo.remaining = progressInfo.total -
   1436 				progressInfo.completed;
   1437 		} else {
   1438 			progressInfo.remaining = 0;
   1439 			progressInfo.completed = 100;
   1440 			progressInfo.total = 100;
   1441 		}
   1442 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1443 				  sizeof(RF_ProgressInfo_t));
   1444 		return (retcode);
   1445 
   1446 		/* the sparetable daemon calls this to wait for the kernel to
   1447 		 * need a spare table. this ioctl does not return until a
   1448 		 * spare table is needed. XXX -- calling mpsleep here in the
   1449 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1450 		 * -- I should either compute the spare table in the kernel,
   1451 		 * or have a different -- XXX XXX -- interface (a different
   1452 		 * character device) for delivering the table     -- XXX */
   1453 #if 0
   1454 	case RAIDFRAME_SPARET_WAIT:
   1455 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1456 		while (!rf_sparet_wait_queue)
   1457 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1458 		waitreq = rf_sparet_wait_queue;
   1459 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1460 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1461 
   1462 		/* structure assignment */
   1463 		*((RF_SparetWait_t *) data) = *waitreq;
   1464 
   1465 		RF_Free(waitreq, sizeof(*waitreq));
   1466 		return (0);
   1467 
   1468 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1469 		 * code in it that will cause the dameon to exit */
   1470 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1471 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1472 		waitreq->fcol = -1;
   1473 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1474 		waitreq->next = rf_sparet_wait_queue;
   1475 		rf_sparet_wait_queue = waitreq;
   1476 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1477 		wakeup(&rf_sparet_wait_queue);
   1478 		return (0);
   1479 
   1480 		/* used by the spare table daemon to deliver a spare table
   1481 		 * into the kernel */
   1482 	case RAIDFRAME_SEND_SPARET:
   1483 
   1484 		/* install the spare table */
   1485 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1486 
   1487 		/* respond to the requestor.  the return status of the spare
   1488 		 * table installation is passed in the "fcol" field */
   1489 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1490 		waitreq->fcol = retcode;
   1491 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1492 		waitreq->next = rf_sparet_resp_queue;
   1493 		rf_sparet_resp_queue = waitreq;
   1494 		wakeup(&rf_sparet_resp_queue);
   1495 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1496 
   1497 		return (retcode);
   1498 #endif
   1499 
   1500 	default:
   1501 		break; /* fall through to the os-specific code below */
   1502 
   1503 	}
   1504 
   1505 	if (!raidPtr->valid)
   1506 		return (EINVAL);
   1507 
   1508 	/*
   1509 	 * Add support for "regular" device ioctls here.
   1510 	 */
   1511 
   1512 	switch (cmd) {
   1513 	case DIOCGDINFO:
   1514 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1515 		break;
   1516 #ifdef __HAVE_OLD_DISKLABEL
   1517 	case ODIOCGDINFO:
   1518 		newlabel = *(rs->sc_dkdev.dk_label);
   1519 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1520 			return ENOTTY;
   1521 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1522 		break;
   1523 #endif
   1524 
   1525 	case DIOCGPART:
   1526 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1527 		((struct partinfo *) data)->part =
   1528 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1529 		break;
   1530 
   1531 	case DIOCWDINFO:
   1532 	case DIOCSDINFO:
   1533 #ifdef __HAVE_OLD_DISKLABEL
   1534 	case ODIOCWDINFO:
   1535 	case ODIOCSDINFO:
   1536 #endif
   1537 	{
   1538 		struct disklabel *lp;
   1539 #ifdef __HAVE_OLD_DISKLABEL
   1540 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1541 			memset(&newlabel, 0, sizeof newlabel);
   1542 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1543 			lp = &newlabel;
   1544 		} else
   1545 #endif
   1546 		lp = (struct disklabel *)data;
   1547 
   1548 		if ((error = raidlock(rs)) != 0)
   1549 			return (error);
   1550 
   1551 		rs->sc_flags |= RAIDF_LABELLING;
   1552 
   1553 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1554 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1555 		if (error == 0) {
   1556 			if (cmd == DIOCWDINFO
   1557 #ifdef __HAVE_OLD_DISKLABEL
   1558 			    || cmd == ODIOCWDINFO
   1559 #endif
   1560 			   )
   1561 				error = writedisklabel(RAIDLABELDEV(dev),
   1562 				    raidstrategy, rs->sc_dkdev.dk_label,
   1563 				    rs->sc_dkdev.dk_cpulabel);
   1564 		}
   1565 		rs->sc_flags &= ~RAIDF_LABELLING;
   1566 
   1567 		raidunlock(rs);
   1568 
   1569 		if (error)
   1570 			return (error);
   1571 		break;
   1572 	}
   1573 
   1574 	case DIOCWLABEL:
   1575 		if (*(int *) data != 0)
   1576 			rs->sc_flags |= RAIDF_WLABEL;
   1577 		else
   1578 			rs->sc_flags &= ~RAIDF_WLABEL;
   1579 		break;
   1580 
   1581 	case DIOCGDEFLABEL:
   1582 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1583 		break;
   1584 
   1585 #ifdef __HAVE_OLD_DISKLABEL
   1586 	case ODIOCGDEFLABEL:
   1587 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1588 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1589 			return ENOTTY;
   1590 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1591 		break;
   1592 #endif
   1593 
   1594 	default:
   1595 		retcode = ENOTTY;
   1596 	}
   1597 	return (retcode);
   1598 
   1599 }
   1600 
   1601 
   1602 /* raidinit -- complete the rest of the initialization for the
   1603    RAIDframe device.  */
   1604 
   1605 
   1606 static void
   1607 raidinit(RF_Raid_t *raidPtr)
   1608 {
   1609 	struct raid_softc *rs;
   1610 	int     unit;
   1611 
   1612 	unit = raidPtr->raidid;
   1613 
   1614 	rs = &raid_softc[unit];
   1615 
   1616 	/* XXX should check return code first... */
   1617 	rs->sc_flags |= RAIDF_INITED;
   1618 
   1619 	/* XXX doesn't check bounds. */
   1620 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1621 
   1622 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1623 
   1624 	/* disk_attach actually creates space for the CPU disklabel, among
   1625 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1626 	 * with disklabels. */
   1627 
   1628 	pseudo_disk_attach(&rs->sc_dkdev);
   1629 
   1630 	/* XXX There may be a weird interaction here between this, and
   1631 	 * protectedSectors, as used in RAIDframe.  */
   1632 
   1633 	rs->sc_size = raidPtr->totalSectors;
   1634 }
   1635 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1636 /* wake up the daemon & tell it to get us a spare table
   1637  * XXX
   1638  * the entries in the queues should be tagged with the raidPtr
   1639  * so that in the extremely rare case that two recons happen at once,
   1640  * we know for which device were requesting a spare table
   1641  * XXX
   1642  *
   1643  * XXX This code is not currently used. GO
   1644  */
   1645 int
   1646 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1647 {
   1648 	int     retcode;
   1649 
   1650 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1651 	req->next = rf_sparet_wait_queue;
   1652 	rf_sparet_wait_queue = req;
   1653 	wakeup(&rf_sparet_wait_queue);
   1654 
   1655 	/* mpsleep unlocks the mutex */
   1656 	while (!rf_sparet_resp_queue) {
   1657 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1658 		    "raidframe getsparetable", 0);
   1659 	}
   1660 	req = rf_sparet_resp_queue;
   1661 	rf_sparet_resp_queue = req->next;
   1662 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1663 
   1664 	retcode = req->fcol;
   1665 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1666 					 * alloc'd */
   1667 	return (retcode);
   1668 }
   1669 #endif
   1670 
   1671 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1672  * bp & passes it down.
   1673  * any calls originating in the kernel must use non-blocking I/O
   1674  * do some extra sanity checking to return "appropriate" error values for
   1675  * certain conditions (to make some standard utilities work)
   1676  *
   1677  * Formerly known as: rf_DoAccessKernel
   1678  */
   1679 void
   1680 raidstart(RF_Raid_t *raidPtr)
   1681 {
   1682 	RF_SectorCount_t num_blocks, pb, sum;
   1683 	RF_RaidAddr_t raid_addr;
   1684 	struct partition *pp;
   1685 	daddr_t blocknum;
   1686 	int     unit;
   1687 	struct raid_softc *rs;
   1688 	int     do_async;
   1689 	struct buf *bp;
   1690 	int rc;
   1691 
   1692 	unit = raidPtr->raidid;
   1693 	rs = &raid_softc[unit];
   1694 
   1695 	/* quick check to see if anything has died recently */
   1696 	RF_LOCK_MUTEX(raidPtr->mutex);
   1697 	if (raidPtr->numNewFailures > 0) {
   1698 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1699 		rf_update_component_labels(raidPtr,
   1700 					   RF_NORMAL_COMPONENT_UPDATE);
   1701 		RF_LOCK_MUTEX(raidPtr->mutex);
   1702 		raidPtr->numNewFailures--;
   1703 	}
   1704 
   1705 	/* Check to see if we're at the limit... */
   1706 	while (raidPtr->openings > 0) {
   1707 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1708 
   1709 		/* get the next item, if any, from the queue */
   1710 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1711 			/* nothing more to do */
   1712 			return;
   1713 		}
   1714 
   1715 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1716 		 * partition.. Need to make it absolute to the underlying
   1717 		 * device.. */
   1718 
   1719 		blocknum = bp->b_blkno;
   1720 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1721 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1722 			blocknum += pp->p_offset;
   1723 		}
   1724 
   1725 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1726 			    (int) blocknum));
   1727 
   1728 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1729 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1730 
   1731 		/* *THIS* is where we adjust what block we're going to...
   1732 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1733 		raid_addr = blocknum;
   1734 
   1735 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1736 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1737 		sum = raid_addr + num_blocks + pb;
   1738 		if (1 || rf_debugKernelAccess) {
   1739 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1740 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1741 				    (int) pb, (int) bp->b_resid));
   1742 		}
   1743 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1744 		    || (sum < num_blocks) || (sum < pb)) {
   1745 			bp->b_error = ENOSPC;
   1746 			bp->b_flags |= B_ERROR;
   1747 			bp->b_resid = bp->b_bcount;
   1748 			biodone(bp);
   1749 			RF_LOCK_MUTEX(raidPtr->mutex);
   1750 			continue;
   1751 		}
   1752 		/*
   1753 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1754 		 */
   1755 
   1756 		if (bp->b_bcount & raidPtr->sectorMask) {
   1757 			bp->b_error = EINVAL;
   1758 			bp->b_flags |= B_ERROR;
   1759 			bp->b_resid = bp->b_bcount;
   1760 			biodone(bp);
   1761 			RF_LOCK_MUTEX(raidPtr->mutex);
   1762 			continue;
   1763 
   1764 		}
   1765 		db1_printf(("Calling DoAccess..\n"));
   1766 
   1767 
   1768 		RF_LOCK_MUTEX(raidPtr->mutex);
   1769 		raidPtr->openings--;
   1770 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1771 
   1772 		/*
   1773 		 * Everything is async.
   1774 		 */
   1775 		do_async = 1;
   1776 
   1777 		disk_busy(&rs->sc_dkdev);
   1778 
   1779 		/* XXX we're still at splbio() here... do we *really*
   1780 		   need to be? */
   1781 
   1782 		/* don't ever condition on bp->b_flags & B_WRITE.
   1783 		 * always condition on B_READ instead */
   1784 
   1785 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1786 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1787 				 do_async, raid_addr, num_blocks,
   1788 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1789 
   1790 		if (rc) {
   1791 			bp->b_error = rc;
   1792 			bp->b_flags |= B_ERROR;
   1793 			bp->b_resid = bp->b_bcount;
   1794 			biodone(bp);
   1795 			/* continue loop */
   1796 		}
   1797 
   1798 		RF_LOCK_MUTEX(raidPtr->mutex);
   1799 	}
   1800 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1801 }
   1802 
   1803 
   1804 
   1805 
   1806 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1807 
   1808 int
   1809 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1810 {
   1811 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1812 	struct buf *bp;
   1813 
   1814 	req->queue = queue;
   1815 
   1816 #if DIAGNOSTIC
   1817 	if (queue->raidPtr->raidid >= numraid) {
   1818 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1819 		    numraid);
   1820 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1821 	}
   1822 #endif
   1823 
   1824 	bp = req->bp;
   1825 
   1826 	switch (req->type) {
   1827 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1828 		/* XXX need to do something extra here.. */
   1829 		/* I'm leaving this in, as I've never actually seen it used,
   1830 		 * and I'd like folks to report it... GO */
   1831 		printf(("WAKEUP CALLED\n"));
   1832 		queue->numOutstanding++;
   1833 
   1834 		bp->b_flags = 0;
   1835 		bp->b_private = req;
   1836 
   1837 		KernelWakeupFunc(bp);
   1838 		break;
   1839 
   1840 	case RF_IO_TYPE_READ:
   1841 	case RF_IO_TYPE_WRITE:
   1842 #if RF_ACC_TRACE > 0
   1843 		if (req->tracerec) {
   1844 			RF_ETIMER_START(req->tracerec->timer);
   1845 		}
   1846 #endif
   1847 		InitBP(bp, queue->rf_cinfo->ci_vp,
   1848 		    op, queue->rf_cinfo->ci_dev,
   1849 		    req->sectorOffset, req->numSector,
   1850 		    req->buf, KernelWakeupFunc, (void *) req,
   1851 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1852 
   1853 		if (rf_debugKernelAccess) {
   1854 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1855 				(long) bp->b_blkno));
   1856 		}
   1857 		queue->numOutstanding++;
   1858 		queue->last_deq_sector = req->sectorOffset;
   1859 		/* acc wouldn't have been let in if there were any pending
   1860 		 * reqs at any other priority */
   1861 		queue->curPriority = req->priority;
   1862 
   1863 		db1_printf(("Going for %c to unit %d col %d\n",
   1864 			    req->type, queue->raidPtr->raidid,
   1865 			    queue->col));
   1866 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1867 			(int) req->sectorOffset, (int) req->numSector,
   1868 			(int) (req->numSector <<
   1869 			    queue->raidPtr->logBytesPerSector),
   1870 			(int) queue->raidPtr->logBytesPerSector));
   1871 		VOP_STRATEGY(bp->b_vp, bp);
   1872 
   1873 		break;
   1874 
   1875 	default:
   1876 		panic("bad req->type in rf_DispatchKernelIO");
   1877 	}
   1878 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1879 
   1880 	return (0);
   1881 }
   1882 /* this is the callback function associated with a I/O invoked from
   1883    kernel code.
   1884  */
   1885 static void
   1886 KernelWakeupFunc(struct buf *bp)
   1887 {
   1888 	RF_DiskQueueData_t *req = NULL;
   1889 	RF_DiskQueue_t *queue;
   1890 	int s;
   1891 
   1892 	s = splbio();
   1893 	db1_printf(("recovering the request queue:\n"));
   1894 	req = bp->b_private;
   1895 
   1896 	queue = (RF_DiskQueue_t *) req->queue;
   1897 
   1898 #if RF_ACC_TRACE > 0
   1899 	if (req->tracerec) {
   1900 		RF_ETIMER_STOP(req->tracerec->timer);
   1901 		RF_ETIMER_EVAL(req->tracerec->timer);
   1902 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1903 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1904 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1905 		req->tracerec->num_phys_ios++;
   1906 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1907 	}
   1908 #endif
   1909 
   1910 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1911 	 * ballistic, and mark the component as hosed... */
   1912 
   1913 	if (bp->b_flags & B_ERROR) {
   1914 		/* Mark the disk as dead */
   1915 		/* but only mark it once... */
   1916 		/* and only if it wouldn't leave this RAID set
   1917 		   completely broken */
   1918 		if (((queue->raidPtr->Disks[queue->col].status ==
   1919 		      rf_ds_optimal) ||
   1920 		     (queue->raidPtr->Disks[queue->col].status ==
   1921 		      rf_ds_used_spare)) &&
   1922 		     (queue->raidPtr->numFailures <
   1923 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   1924 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1925 			       queue->raidPtr->raidid,
   1926 			       queue->raidPtr->Disks[queue->col].devname);
   1927 			queue->raidPtr->Disks[queue->col].status =
   1928 			    rf_ds_failed;
   1929 			queue->raidPtr->status = rf_rs_degraded;
   1930 			queue->raidPtr->numFailures++;
   1931 			queue->raidPtr->numNewFailures++;
   1932 		} else {	/* Disk is already dead... */
   1933 			/* printf("Disk already marked as dead!\n"); */
   1934 		}
   1935 
   1936 	}
   1937 
   1938 	/* Fill in the error value */
   1939 
   1940 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   1941 
   1942 	simple_lock(&queue->raidPtr->iodone_lock);
   1943 
   1944 	/* Drop this one on the "finished" queue... */
   1945 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   1946 
   1947 	/* Let the raidio thread know there is work to be done. */
   1948 	wakeup(&(queue->raidPtr->iodone));
   1949 
   1950 	simple_unlock(&queue->raidPtr->iodone_lock);
   1951 
   1952 	splx(s);
   1953 }
   1954 
   1955 
   1956 
   1957 /*
   1958  * initialize a buf structure for doing an I/O in the kernel.
   1959  */
   1960 static void
   1961 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   1962        RF_SectorNum_t startSect, RF_SectorCount_t numSect, caddr_t bf,
   1963        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   1964        struct proc *b_proc)
   1965 {
   1966 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1967 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1968 	bp->b_bcount = numSect << logBytesPerSector;
   1969 	bp->b_bufsize = bp->b_bcount;
   1970 	bp->b_error = 0;
   1971 	bp->b_dev = dev;
   1972 	bp->b_data = bf;
   1973 	bp->b_blkno = startSect;
   1974 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1975 	if (bp->b_bcount == 0) {
   1976 		panic("bp->b_bcount is zero in InitBP!!");
   1977 	}
   1978 	bp->b_proc = b_proc;
   1979 	bp->b_iodone = cbFunc;
   1980 	bp->b_private = cbArg;
   1981 	bp->b_vp = b_vp;
   1982 	if ((bp->b_flags & B_READ) == 0) {
   1983 		bp->b_vp->v_numoutput++;
   1984 	}
   1985 
   1986 }
   1987 
   1988 static void
   1989 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   1990 		    struct disklabel *lp)
   1991 {
   1992 	memset(lp, 0, sizeof(*lp));
   1993 
   1994 	/* fabricate a label... */
   1995 	lp->d_secperunit = raidPtr->totalSectors;
   1996 	lp->d_secsize = raidPtr->bytesPerSector;
   1997 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   1998 	lp->d_ntracks = 4 * raidPtr->numCol;
   1999 	lp->d_ncylinders = raidPtr->totalSectors /
   2000 		(lp->d_nsectors * lp->d_ntracks);
   2001 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2002 
   2003 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2004 	lp->d_type = DTYPE_RAID;
   2005 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2006 	lp->d_rpm = 3600;
   2007 	lp->d_interleave = 1;
   2008 	lp->d_flags = 0;
   2009 
   2010 	lp->d_partitions[RAW_PART].p_offset = 0;
   2011 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2012 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2013 	lp->d_npartitions = RAW_PART + 1;
   2014 
   2015 	lp->d_magic = DISKMAGIC;
   2016 	lp->d_magic2 = DISKMAGIC;
   2017 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2018 
   2019 }
   2020 /*
   2021  * Read the disklabel from the raid device.  If one is not present, fake one
   2022  * up.
   2023  */
   2024 static void
   2025 raidgetdisklabel(dev_t dev)
   2026 {
   2027 	int     unit = raidunit(dev);
   2028 	struct raid_softc *rs = &raid_softc[unit];
   2029 	const char   *errstring;
   2030 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2031 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2032 	RF_Raid_t *raidPtr;
   2033 
   2034 	db1_printf(("Getting the disklabel...\n"));
   2035 
   2036 	memset(clp, 0, sizeof(*clp));
   2037 
   2038 	raidPtr = raidPtrs[unit];
   2039 
   2040 	raidgetdefaultlabel(raidPtr, rs, lp);
   2041 
   2042 	/*
   2043 	 * Call the generic disklabel extraction routine.
   2044 	 */
   2045 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2046 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2047 	if (errstring)
   2048 		raidmakedisklabel(rs);
   2049 	else {
   2050 		int     i;
   2051 		struct partition *pp;
   2052 
   2053 		/*
   2054 		 * Sanity check whether the found disklabel is valid.
   2055 		 *
   2056 		 * This is necessary since total size of the raid device
   2057 		 * may vary when an interleave is changed even though exactly
   2058 		 * same components are used, and old disklabel may used
   2059 		 * if that is found.
   2060 		 */
   2061 		if (lp->d_secperunit != rs->sc_size)
   2062 			printf("raid%d: WARNING: %s: "
   2063 			    "total sector size in disklabel (%d) != "
   2064 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2065 			    lp->d_secperunit, (long) rs->sc_size);
   2066 		for (i = 0; i < lp->d_npartitions; i++) {
   2067 			pp = &lp->d_partitions[i];
   2068 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2069 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2070 				       "exceeds the size of raid (%ld)\n",
   2071 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2072 		}
   2073 	}
   2074 
   2075 }
   2076 /*
   2077  * Take care of things one might want to take care of in the event
   2078  * that a disklabel isn't present.
   2079  */
   2080 static void
   2081 raidmakedisklabel(struct raid_softc *rs)
   2082 {
   2083 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2084 	db1_printf(("Making a label..\n"));
   2085 
   2086 	/*
   2087 	 * For historical reasons, if there's no disklabel present
   2088 	 * the raw partition must be marked FS_BSDFFS.
   2089 	 */
   2090 
   2091 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2092 
   2093 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2094 
   2095 	lp->d_checksum = dkcksum(lp);
   2096 }
   2097 /*
   2098  * Lookup the provided name in the filesystem.  If the file exists,
   2099  * is a valid block device, and isn't being used by anyone else,
   2100  * set *vpp to the file's vnode.
   2101  * You'll find the original of this in ccd.c
   2102  */
   2103 int
   2104 raidlookup(char *path, struct lwp *l, struct vnode **vpp)
   2105 {
   2106 	struct nameidata nd;
   2107 	struct vnode *vp;
   2108 	struct vattr va;
   2109 	int     error;
   2110 
   2111 	if (l == NULL)
   2112 		return(ESRCH);	/* Is ESRCH the best choice? */
   2113 
   2114 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, l);
   2115 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   2116 		return (error);
   2117 	}
   2118 	vp = nd.ni_vp;
   2119 	if (vp->v_usecount > 1) {
   2120 		VOP_UNLOCK(vp, 0);
   2121 		(void) vn_close(vp, FREAD | FWRITE, l->l_cred, l);
   2122 		return (EBUSY);
   2123 	}
   2124 	if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)) != 0) {
   2125 		VOP_UNLOCK(vp, 0);
   2126 		(void) vn_close(vp, FREAD | FWRITE, l->l_cred, l);
   2127 		return (error);
   2128 	}
   2129 	/* XXX: eventually we should handle VREG, too. */
   2130 	if (va.va_type != VBLK) {
   2131 		VOP_UNLOCK(vp, 0);
   2132 		(void) vn_close(vp, FREAD | FWRITE, l->l_cred, l);
   2133 		return (ENOTBLK);
   2134 	}
   2135 	VOP_UNLOCK(vp, 0);
   2136 	*vpp = vp;
   2137 	return (0);
   2138 }
   2139 /*
   2140  * Wait interruptibly for an exclusive lock.
   2141  *
   2142  * XXX
   2143  * Several drivers do this; it should be abstracted and made MP-safe.
   2144  * (Hmm... where have we seen this warning before :->  GO )
   2145  */
   2146 static int
   2147 raidlock(struct raid_softc *rs)
   2148 {
   2149 	int     error;
   2150 
   2151 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2152 		rs->sc_flags |= RAIDF_WANTED;
   2153 		if ((error =
   2154 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2155 			return (error);
   2156 	}
   2157 	rs->sc_flags |= RAIDF_LOCKED;
   2158 	return (0);
   2159 }
   2160 /*
   2161  * Unlock and wake up any waiters.
   2162  */
   2163 static void
   2164 raidunlock(struct raid_softc *rs)
   2165 {
   2166 
   2167 	rs->sc_flags &= ~RAIDF_LOCKED;
   2168 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2169 		rs->sc_flags &= ~RAIDF_WANTED;
   2170 		wakeup(rs);
   2171 	}
   2172 }
   2173 
   2174 
   2175 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2176 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2177 
   2178 int
   2179 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2180 {
   2181 	RF_ComponentLabel_t clabel;
   2182 	raidread_component_label(dev, b_vp, &clabel);
   2183 	clabel.mod_counter = mod_counter;
   2184 	clabel.clean = RF_RAID_CLEAN;
   2185 	raidwrite_component_label(dev, b_vp, &clabel);
   2186 	return(0);
   2187 }
   2188 
   2189 
   2190 int
   2191 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2192 {
   2193 	RF_ComponentLabel_t clabel;
   2194 	raidread_component_label(dev, b_vp, &clabel);
   2195 	clabel.mod_counter = mod_counter;
   2196 	clabel.clean = RF_RAID_DIRTY;
   2197 	raidwrite_component_label(dev, b_vp, &clabel);
   2198 	return(0);
   2199 }
   2200 
   2201 /* ARGSUSED */
   2202 int
   2203 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2204 			 RF_ComponentLabel_t *clabel)
   2205 {
   2206 	struct buf *bp;
   2207 	const struct bdevsw *bdev;
   2208 	int error;
   2209 
   2210 	/* XXX should probably ensure that we don't try to do this if
   2211 	   someone has changed rf_protected_sectors. */
   2212 
   2213 	if (b_vp == NULL) {
   2214 		/* For whatever reason, this component is not valid.
   2215 		   Don't try to read a component label from it. */
   2216 		return(EINVAL);
   2217 	}
   2218 
   2219 	/* get a block of the appropriate size... */
   2220 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2221 	bp->b_dev = dev;
   2222 
   2223 	/* get our ducks in a row for the read */
   2224 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2225 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2226 	bp->b_flags |= B_READ;
   2227  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2228 
   2229 	bdev = bdevsw_lookup(bp->b_dev);
   2230 	if (bdev == NULL)
   2231 		return (ENXIO);
   2232 	(*bdev->d_strategy)(bp);
   2233 
   2234 	error = biowait(bp);
   2235 
   2236 	if (!error) {
   2237 		memcpy(clabel, bp->b_data,
   2238 		       sizeof(RF_ComponentLabel_t));
   2239 	}
   2240 
   2241 	brelse(bp);
   2242 	return(error);
   2243 }
   2244 /* ARGSUSED */
   2245 int
   2246 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2247 			  RF_ComponentLabel_t *clabel)
   2248 {
   2249 	struct buf *bp;
   2250 	const struct bdevsw *bdev;
   2251 	int error;
   2252 
   2253 	/* get a block of the appropriate size... */
   2254 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2255 	bp->b_dev = dev;
   2256 
   2257 	/* get our ducks in a row for the write */
   2258 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2259 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2260 	bp->b_flags |= B_WRITE;
   2261  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2262 
   2263 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2264 
   2265 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2266 
   2267 	bdev = bdevsw_lookup(bp->b_dev);
   2268 	if (bdev == NULL)
   2269 		return (ENXIO);
   2270 	(*bdev->d_strategy)(bp);
   2271 	error = biowait(bp);
   2272 	brelse(bp);
   2273 	if (error) {
   2274 #if 1
   2275 		printf("Failed to write RAID component info!\n");
   2276 #endif
   2277 	}
   2278 
   2279 	return(error);
   2280 }
   2281 
   2282 void
   2283 rf_markalldirty(RF_Raid_t *raidPtr)
   2284 {
   2285 	RF_ComponentLabel_t clabel;
   2286 	int sparecol;
   2287 	int c;
   2288 	int j;
   2289 	int scol = -1;
   2290 
   2291 	raidPtr->mod_counter++;
   2292 	for (c = 0; c < raidPtr->numCol; c++) {
   2293 		/* we don't want to touch (at all) a disk that has
   2294 		   failed */
   2295 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2296 			raidread_component_label(
   2297 						 raidPtr->Disks[c].dev,
   2298 						 raidPtr->raid_cinfo[c].ci_vp,
   2299 						 &clabel);
   2300 			if (clabel.status == rf_ds_spared) {
   2301 				/* XXX do something special...
   2302 				   but whatever you do, don't
   2303 				   try to access it!! */
   2304 			} else {
   2305 				raidmarkdirty(
   2306 					      raidPtr->Disks[c].dev,
   2307 					      raidPtr->raid_cinfo[c].ci_vp,
   2308 					      raidPtr->mod_counter);
   2309 			}
   2310 		}
   2311 	}
   2312 
   2313 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2314 		sparecol = raidPtr->numCol + c;
   2315 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2316 			/*
   2317 
   2318 			   we claim this disk is "optimal" if it's
   2319 			   rf_ds_used_spare, as that means it should be
   2320 			   directly substitutable for the disk it replaced.
   2321 			   We note that too...
   2322 
   2323 			 */
   2324 
   2325 			for(j=0;j<raidPtr->numCol;j++) {
   2326 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2327 					scol = j;
   2328 					break;
   2329 				}
   2330 			}
   2331 
   2332 			raidread_component_label(
   2333 				 raidPtr->Disks[sparecol].dev,
   2334 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2335 				 &clabel);
   2336 			/* make sure status is noted */
   2337 
   2338 			raid_init_component_label(raidPtr, &clabel);
   2339 
   2340 			clabel.row = 0;
   2341 			clabel.column = scol;
   2342 			/* Note: we *don't* change status from rf_ds_used_spare
   2343 			   to rf_ds_optimal */
   2344 			/* clabel.status = rf_ds_optimal; */
   2345 
   2346 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2347 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2348 				      raidPtr->mod_counter);
   2349 		}
   2350 	}
   2351 }
   2352 
   2353 
   2354 void
   2355 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2356 {
   2357 	RF_ComponentLabel_t clabel;
   2358 	int sparecol;
   2359 	int c;
   2360 	int j;
   2361 	int scol;
   2362 
   2363 	scol = -1;
   2364 
   2365 	/* XXX should do extra checks to make sure things really are clean,
   2366 	   rather than blindly setting the clean bit... */
   2367 
   2368 	raidPtr->mod_counter++;
   2369 
   2370 	for (c = 0; c < raidPtr->numCol; c++) {
   2371 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2372 			raidread_component_label(
   2373 						 raidPtr->Disks[c].dev,
   2374 						 raidPtr->raid_cinfo[c].ci_vp,
   2375 						 &clabel);
   2376 			/* make sure status is noted */
   2377 			clabel.status = rf_ds_optimal;
   2378 
   2379 			/* bump the counter */
   2380 			clabel.mod_counter = raidPtr->mod_counter;
   2381 
   2382 			raidwrite_component_label(
   2383 						  raidPtr->Disks[c].dev,
   2384 						  raidPtr->raid_cinfo[c].ci_vp,
   2385 						  &clabel);
   2386 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2387 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2388 					raidmarkclean(
   2389 						      raidPtr->Disks[c].dev,
   2390 						      raidPtr->raid_cinfo[c].ci_vp,
   2391 						      raidPtr->mod_counter);
   2392 				}
   2393 			}
   2394 		}
   2395 		/* else we don't touch it.. */
   2396 	}
   2397 
   2398 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2399 		sparecol = raidPtr->numCol + c;
   2400 		/* Need to ensure that the reconstruct actually completed! */
   2401 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2402 			/*
   2403 
   2404 			   we claim this disk is "optimal" if it's
   2405 			   rf_ds_used_spare, as that means it should be
   2406 			   directly substitutable for the disk it replaced.
   2407 			   We note that too...
   2408 
   2409 			 */
   2410 
   2411 			for(j=0;j<raidPtr->numCol;j++) {
   2412 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2413 					scol = j;
   2414 					break;
   2415 				}
   2416 			}
   2417 
   2418 			/* XXX shouldn't *really* need this... */
   2419 			raidread_component_label(
   2420 				      raidPtr->Disks[sparecol].dev,
   2421 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2422 				      &clabel);
   2423 			/* make sure status is noted */
   2424 
   2425 			raid_init_component_label(raidPtr, &clabel);
   2426 
   2427 			clabel.mod_counter = raidPtr->mod_counter;
   2428 			clabel.column = scol;
   2429 			clabel.status = rf_ds_optimal;
   2430 
   2431 			raidwrite_component_label(
   2432 				      raidPtr->Disks[sparecol].dev,
   2433 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2434 				      &clabel);
   2435 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2436 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2437 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2438 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2439 						       raidPtr->mod_counter);
   2440 				}
   2441 			}
   2442 		}
   2443 	}
   2444 }
   2445 
   2446 void
   2447 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2448 {
   2449 	struct proc *p;
   2450 	struct lwp *l;
   2451 
   2452 	p = raidPtr->engine_thread;
   2453 	l = LIST_FIRST(&p->p_lwps);
   2454 
   2455 	if (vp != NULL) {
   2456 		if (auto_configured == 1) {
   2457 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2458 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2459 			vput(vp);
   2460 
   2461 		} else {
   2462 			(void) vn_close(vp, FREAD | FWRITE, p->p_cred, l);
   2463 		}
   2464 	}
   2465 }
   2466 
   2467 
   2468 void
   2469 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2470 {
   2471 	int r,c;
   2472 	struct vnode *vp;
   2473 	int acd;
   2474 
   2475 
   2476 	/* We take this opportunity to close the vnodes like we should.. */
   2477 
   2478 	for (c = 0; c < raidPtr->numCol; c++) {
   2479 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2480 		acd = raidPtr->Disks[c].auto_configured;
   2481 		rf_close_component(raidPtr, vp, acd);
   2482 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2483 		raidPtr->Disks[c].auto_configured = 0;
   2484 	}
   2485 
   2486 	for (r = 0; r < raidPtr->numSpare; r++) {
   2487 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2488 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2489 		rf_close_component(raidPtr, vp, acd);
   2490 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2491 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2492 	}
   2493 }
   2494 
   2495 
   2496 void
   2497 rf_ReconThread(struct rf_recon_req *req)
   2498 {
   2499 	int     s;
   2500 	RF_Raid_t *raidPtr;
   2501 
   2502 	s = splbio();
   2503 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2504 	raidPtr->recon_in_progress = 1;
   2505 
   2506 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2507 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2508 
   2509 	RF_Free(req, sizeof(*req));
   2510 
   2511 	raidPtr->recon_in_progress = 0;
   2512 	splx(s);
   2513 
   2514 	/* That's all... */
   2515 	kthread_exit(0);	/* does not return */
   2516 }
   2517 
   2518 void
   2519 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2520 {
   2521 	int retcode;
   2522 	int s;
   2523 
   2524 	raidPtr->parity_rewrite_stripes_done = 0;
   2525 	raidPtr->parity_rewrite_in_progress = 1;
   2526 	s = splbio();
   2527 	retcode = rf_RewriteParity(raidPtr);
   2528 	splx(s);
   2529 	if (retcode) {
   2530 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2531 	} else {
   2532 		/* set the clean bit!  If we shutdown correctly,
   2533 		   the clean bit on each component label will get
   2534 		   set */
   2535 		raidPtr->parity_good = RF_RAID_CLEAN;
   2536 	}
   2537 	raidPtr->parity_rewrite_in_progress = 0;
   2538 
   2539 	/* Anyone waiting for us to stop?  If so, inform them... */
   2540 	if (raidPtr->waitShutdown) {
   2541 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2542 	}
   2543 
   2544 	/* That's all... */
   2545 	kthread_exit(0);	/* does not return */
   2546 }
   2547 
   2548 
   2549 void
   2550 rf_CopybackThread(RF_Raid_t *raidPtr)
   2551 {
   2552 	int s;
   2553 
   2554 	raidPtr->copyback_in_progress = 1;
   2555 	s = splbio();
   2556 	rf_CopybackReconstructedData(raidPtr);
   2557 	splx(s);
   2558 	raidPtr->copyback_in_progress = 0;
   2559 
   2560 	/* That's all... */
   2561 	kthread_exit(0);	/* does not return */
   2562 }
   2563 
   2564 
   2565 void
   2566 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2567 {
   2568 	int s;
   2569 	RF_Raid_t *raidPtr;
   2570 
   2571 	s = splbio();
   2572 	raidPtr = req->raidPtr;
   2573 	raidPtr->recon_in_progress = 1;
   2574 	rf_ReconstructInPlace(raidPtr, req->col);
   2575 	RF_Free(req, sizeof(*req));
   2576 	raidPtr->recon_in_progress = 0;
   2577 	splx(s);
   2578 
   2579 	/* That's all... */
   2580 	kthread_exit(0);	/* does not return */
   2581 }
   2582 
   2583 RF_AutoConfig_t *
   2584 rf_find_raid_components()
   2585 {
   2586 	struct vnode *vp;
   2587 	struct disklabel label;
   2588 	struct device *dv;
   2589 	dev_t dev;
   2590 	int bmajor;
   2591 	int error;
   2592 	int i;
   2593 	int good_one;
   2594 	RF_ComponentLabel_t *clabel;
   2595 	RF_AutoConfig_t *ac_list;
   2596 	RF_AutoConfig_t *ac;
   2597 
   2598 
   2599 	/* initialize the AutoConfig list */
   2600 	ac_list = NULL;
   2601 
   2602 	/* we begin by trolling through *all* the devices on the system */
   2603 
   2604 	for (dv = alldevs.tqh_first; dv != NULL;
   2605 	     dv = dv->dv_list.tqe_next) {
   2606 
   2607 		/* we are only interested in disks... */
   2608 		if (device_class(dv) != DV_DISK)
   2609 			continue;
   2610 
   2611 		/* we don't care about floppies... */
   2612 		if (device_is_a(dv, "fd")) {
   2613 			continue;
   2614 		}
   2615 
   2616 		/* we don't care about CD's... */
   2617 		if (device_is_a(dv, "cd")) {
   2618 			continue;
   2619 		}
   2620 
   2621 		/* hdfd is the Atari/Hades floppy driver */
   2622 		if (device_is_a(dv, "hdfd")) {
   2623 			continue;
   2624 		}
   2625 
   2626 		/* fdisa is the Atari/Milan floppy driver */
   2627 		if (device_is_a(dv, "fdisa")) {
   2628 			continue;
   2629 		}
   2630 
   2631 		/* need to find the device_name_to_block_device_major stuff */
   2632 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2633 
   2634 		/* get a vnode for the raw partition of this disk */
   2635 
   2636 		dev = MAKEDISKDEV(bmajor, device_unit(dv), RAW_PART);
   2637 		if (bdevvp(dev, &vp))
   2638 			panic("RAID can't alloc vnode");
   2639 
   2640 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2641 
   2642 		if (error) {
   2643 			/* "Who cares."  Continue looking
   2644 			   for something that exists*/
   2645 			vput(vp);
   2646 			continue;
   2647 		}
   2648 
   2649 		/* Ok, the disk exists.  Go get the disklabel. */
   2650 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2651 		if (error) {
   2652 			/*
   2653 			 * XXX can't happen - open() would
   2654 			 * have errored out (or faked up one)
   2655 			 */
   2656 			if (error != ENOTTY)
   2657 				printf("RAIDframe: can't get label for dev "
   2658 				    "%s (%d)\n", dv->dv_xname, error);
   2659 		}
   2660 
   2661 		/* don't need this any more.  We'll allocate it again
   2662 		   a little later if we really do... */
   2663 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2664 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2665 		vput(vp);
   2666 
   2667 		if (error)
   2668 			continue;
   2669 
   2670 		for (i=0; i < label.d_npartitions; i++) {
   2671 			/* We only support partitions marked as RAID */
   2672 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2673 				continue;
   2674 
   2675 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2676 			if (bdevvp(dev, &vp))
   2677 				panic("RAID can't alloc vnode");
   2678 
   2679 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2680 			if (error) {
   2681 				/* Whatever... */
   2682 				vput(vp);
   2683 				continue;
   2684 			}
   2685 
   2686 			good_one = 0;
   2687 
   2688 			clabel = (RF_ComponentLabel_t *)
   2689 				malloc(sizeof(RF_ComponentLabel_t),
   2690 				       M_RAIDFRAME, M_NOWAIT);
   2691 			if (clabel == NULL) {
   2692 				while(ac_list) {
   2693 					ac = ac_list;
   2694 					if (ac->clabel)
   2695 						free(ac->clabel, M_RAIDFRAME);
   2696 					ac_list = ac_list->next;
   2697 					free(ac, M_RAIDFRAME);
   2698 				};
   2699 				printf("RAID auto config: out of memory!\n");
   2700 				return(NULL); /* XXX probably should panic? */
   2701 			}
   2702 
   2703 			if (!raidread_component_label(dev, vp, clabel)) {
   2704 				/* Got the label.  Does it look reasonable? */
   2705 				if (rf_reasonable_label(clabel) &&
   2706 				    (clabel->partitionSize <=
   2707 				     label.d_partitions[i].p_size)) {
   2708 #if DEBUG
   2709 					printf("Component on: %s%c: %d\n",
   2710 					       dv->dv_xname, 'a'+i,
   2711 					       label.d_partitions[i].p_size);
   2712 					rf_print_component_label(clabel);
   2713 #endif
   2714 					/* if it's reasonable, add it,
   2715 					   else ignore it. */
   2716 					ac = (RF_AutoConfig_t *)
   2717 						malloc(sizeof(RF_AutoConfig_t),
   2718 						       M_RAIDFRAME,
   2719 						       M_NOWAIT);
   2720 					if (ac == NULL) {
   2721 						/* XXX should panic?? */
   2722 						while(ac_list) {
   2723 							ac = ac_list;
   2724 							if (ac->clabel)
   2725 								free(ac->clabel,
   2726 								    M_RAIDFRAME);
   2727 							ac_list = ac_list->next;
   2728 							free(ac, M_RAIDFRAME);
   2729 						}
   2730 						free(clabel, M_RAIDFRAME);
   2731 						return(NULL);
   2732 					}
   2733 
   2734 					snprintf(ac->devname,
   2735 					    sizeof(ac->devname), "%s%c",
   2736 					    dv->dv_xname, 'a'+i);
   2737 					ac->dev = dev;
   2738 					ac->vp = vp;
   2739 					ac->clabel = clabel;
   2740 					ac->next = ac_list;
   2741 					ac_list = ac;
   2742 					good_one = 1;
   2743 				}
   2744 			}
   2745 			if (!good_one) {
   2746 				/* cleanup */
   2747 				free(clabel, M_RAIDFRAME);
   2748 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2749 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2750 				vput(vp);
   2751 			}
   2752 		}
   2753 	}
   2754 	return(ac_list);
   2755 }
   2756 
   2757 static int
   2758 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2759 {
   2760 
   2761 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2762 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2763 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2764 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2765 	    clabel->row >=0 &&
   2766 	    clabel->column >= 0 &&
   2767 	    clabel->num_rows > 0 &&
   2768 	    clabel->num_columns > 0 &&
   2769 	    clabel->row < clabel->num_rows &&
   2770 	    clabel->column < clabel->num_columns &&
   2771 	    clabel->blockSize > 0 &&
   2772 	    clabel->numBlocks > 0) {
   2773 		/* label looks reasonable enough... */
   2774 		return(1);
   2775 	}
   2776 	return(0);
   2777 }
   2778 
   2779 
   2780 #if DEBUG
   2781 void
   2782 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2783 {
   2784 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2785 	       clabel->row, clabel->column,
   2786 	       clabel->num_rows, clabel->num_columns);
   2787 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2788 	       clabel->version, clabel->serial_number,
   2789 	       clabel->mod_counter);
   2790 	printf("   Clean: %s Status: %d\n",
   2791 	       clabel->clean ? "Yes" : "No", clabel->status );
   2792 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2793 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2794 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2795 	       (char) clabel->parityConfig, clabel->blockSize,
   2796 	       clabel->numBlocks);
   2797 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2798 	printf("   Contains root partition: %s\n",
   2799 	       clabel->root_partition ? "Yes" : "No" );
   2800 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2801 #if 0
   2802 	   printf("   Config order: %d\n", clabel->config_order);
   2803 #endif
   2804 
   2805 }
   2806 #endif
   2807 
   2808 RF_ConfigSet_t *
   2809 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2810 {
   2811 	RF_AutoConfig_t *ac;
   2812 	RF_ConfigSet_t *config_sets;
   2813 	RF_ConfigSet_t *cset;
   2814 	RF_AutoConfig_t *ac_next;
   2815 
   2816 
   2817 	config_sets = NULL;
   2818 
   2819 	/* Go through the AutoConfig list, and figure out which components
   2820 	   belong to what sets.  */
   2821 	ac = ac_list;
   2822 	while(ac!=NULL) {
   2823 		/* we're going to putz with ac->next, so save it here
   2824 		   for use at the end of the loop */
   2825 		ac_next = ac->next;
   2826 
   2827 		if (config_sets == NULL) {
   2828 			/* will need at least this one... */
   2829 			config_sets = (RF_ConfigSet_t *)
   2830 				malloc(sizeof(RF_ConfigSet_t),
   2831 				       M_RAIDFRAME, M_NOWAIT);
   2832 			if (config_sets == NULL) {
   2833 				panic("rf_create_auto_sets: No memory!");
   2834 			}
   2835 			/* this one is easy :) */
   2836 			config_sets->ac = ac;
   2837 			config_sets->next = NULL;
   2838 			config_sets->rootable = 0;
   2839 			ac->next = NULL;
   2840 		} else {
   2841 			/* which set does this component fit into? */
   2842 			cset = config_sets;
   2843 			while(cset!=NULL) {
   2844 				if (rf_does_it_fit(cset, ac)) {
   2845 					/* looks like it matches... */
   2846 					ac->next = cset->ac;
   2847 					cset->ac = ac;
   2848 					break;
   2849 				}
   2850 				cset = cset->next;
   2851 			}
   2852 			if (cset==NULL) {
   2853 				/* didn't find a match above... new set..*/
   2854 				cset = (RF_ConfigSet_t *)
   2855 					malloc(sizeof(RF_ConfigSet_t),
   2856 					       M_RAIDFRAME, M_NOWAIT);
   2857 				if (cset == NULL) {
   2858 					panic("rf_create_auto_sets: No memory!");
   2859 				}
   2860 				cset->ac = ac;
   2861 				ac->next = NULL;
   2862 				cset->next = config_sets;
   2863 				cset->rootable = 0;
   2864 				config_sets = cset;
   2865 			}
   2866 		}
   2867 		ac = ac_next;
   2868 	}
   2869 
   2870 
   2871 	return(config_sets);
   2872 }
   2873 
   2874 static int
   2875 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2876 {
   2877 	RF_ComponentLabel_t *clabel1, *clabel2;
   2878 
   2879 	/* If this one matches the *first* one in the set, that's good
   2880 	   enough, since the other members of the set would have been
   2881 	   through here too... */
   2882 	/* note that we are not checking partitionSize here..
   2883 
   2884 	   Note that we are also not checking the mod_counters here.
   2885 	   If everything else matches execpt the mod_counter, that's
   2886 	   good enough for this test.  We will deal with the mod_counters
   2887 	   a little later in the autoconfiguration process.
   2888 
   2889 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2890 
   2891 	   The reason we don't check for this is that failed disks
   2892 	   will have lower modification counts.  If those disks are
   2893 	   not added to the set they used to belong to, then they will
   2894 	   form their own set, which may result in 2 different sets,
   2895 	   for example, competing to be configured at raid0, and
   2896 	   perhaps competing to be the root filesystem set.  If the
   2897 	   wrong ones get configured, or both attempt to become /,
   2898 	   weird behaviour and or serious lossage will occur.  Thus we
   2899 	   need to bring them into the fold here, and kick them out at
   2900 	   a later point.
   2901 
   2902 	*/
   2903 
   2904 	clabel1 = cset->ac->clabel;
   2905 	clabel2 = ac->clabel;
   2906 	if ((clabel1->version == clabel2->version) &&
   2907 	    (clabel1->serial_number == clabel2->serial_number) &&
   2908 	    (clabel1->num_rows == clabel2->num_rows) &&
   2909 	    (clabel1->num_columns == clabel2->num_columns) &&
   2910 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2911 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2912 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2913 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   2914 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   2915 	    (clabel1->blockSize == clabel2->blockSize) &&
   2916 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   2917 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   2918 	    (clabel1->root_partition == clabel2->root_partition) &&
   2919 	    (clabel1->last_unit == clabel2->last_unit) &&
   2920 	    (clabel1->config_order == clabel2->config_order)) {
   2921 		/* if it get's here, it almost *has* to be a match */
   2922 	} else {
   2923 		/* it's not consistent with somebody in the set..
   2924 		   punt */
   2925 		return(0);
   2926 	}
   2927 	/* all was fine.. it must fit... */
   2928 	return(1);
   2929 }
   2930 
   2931 int
   2932 rf_have_enough_components(RF_ConfigSet_t *cset)
   2933 {
   2934 	RF_AutoConfig_t *ac;
   2935 	RF_AutoConfig_t *auto_config;
   2936 	RF_ComponentLabel_t *clabel;
   2937 	int c;
   2938 	int num_cols;
   2939 	int num_missing;
   2940 	int mod_counter;
   2941 	int mod_counter_found;
   2942 	int even_pair_failed;
   2943 	char parity_type;
   2944 
   2945 
   2946 	/* check to see that we have enough 'live' components
   2947 	   of this set.  If so, we can configure it if necessary */
   2948 
   2949 	num_cols = cset->ac->clabel->num_columns;
   2950 	parity_type = cset->ac->clabel->parityConfig;
   2951 
   2952 	/* XXX Check for duplicate components!?!?!? */
   2953 
   2954 	/* Determine what the mod_counter is supposed to be for this set. */
   2955 
   2956 	mod_counter_found = 0;
   2957 	mod_counter = 0;
   2958 	ac = cset->ac;
   2959 	while(ac!=NULL) {
   2960 		if (mod_counter_found==0) {
   2961 			mod_counter = ac->clabel->mod_counter;
   2962 			mod_counter_found = 1;
   2963 		} else {
   2964 			if (ac->clabel->mod_counter > mod_counter) {
   2965 				mod_counter = ac->clabel->mod_counter;
   2966 			}
   2967 		}
   2968 		ac = ac->next;
   2969 	}
   2970 
   2971 	num_missing = 0;
   2972 	auto_config = cset->ac;
   2973 
   2974 	even_pair_failed = 0;
   2975 	for(c=0; c<num_cols; c++) {
   2976 		ac = auto_config;
   2977 		while(ac!=NULL) {
   2978 			if ((ac->clabel->column == c) &&
   2979 			    (ac->clabel->mod_counter == mod_counter)) {
   2980 				/* it's this one... */
   2981 #if DEBUG
   2982 				printf("Found: %s at %d\n",
   2983 				       ac->devname,c);
   2984 #endif
   2985 				break;
   2986 			}
   2987 			ac=ac->next;
   2988 		}
   2989 		if (ac==NULL) {
   2990 				/* Didn't find one here! */
   2991 				/* special case for RAID 1, especially
   2992 				   where there are more than 2
   2993 				   components (where RAIDframe treats
   2994 				   things a little differently :( ) */
   2995 			if (parity_type == '1') {
   2996 				if (c%2 == 0) { /* even component */
   2997 					even_pair_failed = 1;
   2998 				} else { /* odd component.  If
   2999 					    we're failed, and
   3000 					    so is the even
   3001 					    component, it's
   3002 					    "Good Night, Charlie" */
   3003 					if (even_pair_failed == 1) {
   3004 						return(0);
   3005 					}
   3006 				}
   3007 			} else {
   3008 				/* normal accounting */
   3009 				num_missing++;
   3010 			}
   3011 		}
   3012 		if ((parity_type == '1') && (c%2 == 1)) {
   3013 				/* Just did an even component, and we didn't
   3014 				   bail.. reset the even_pair_failed flag,
   3015 				   and go on to the next component.... */
   3016 			even_pair_failed = 0;
   3017 		}
   3018 	}
   3019 
   3020 	clabel = cset->ac->clabel;
   3021 
   3022 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3023 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3024 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3025 		/* XXX this needs to be made *much* more general */
   3026 		/* Too many failures */
   3027 		return(0);
   3028 	}
   3029 	/* otherwise, all is well, and we've got enough to take a kick
   3030 	   at autoconfiguring this set */
   3031 	return(1);
   3032 }
   3033 
   3034 void
   3035 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3036 			RF_Raid_t *raidPtr)
   3037 {
   3038 	RF_ComponentLabel_t *clabel;
   3039 	int i;
   3040 
   3041 	clabel = ac->clabel;
   3042 
   3043 	/* 1. Fill in the common stuff */
   3044 	config->numRow = clabel->num_rows = 1;
   3045 	config->numCol = clabel->num_columns;
   3046 	config->numSpare = 0; /* XXX should this be set here? */
   3047 	config->sectPerSU = clabel->sectPerSU;
   3048 	config->SUsPerPU = clabel->SUsPerPU;
   3049 	config->SUsPerRU = clabel->SUsPerRU;
   3050 	config->parityConfig = clabel->parityConfig;
   3051 	/* XXX... */
   3052 	strcpy(config->diskQueueType,"fifo");
   3053 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3054 	config->layoutSpecificSize = 0; /* XXX ?? */
   3055 
   3056 	while(ac!=NULL) {
   3057 		/* row/col values will be in range due to the checks
   3058 		   in reasonable_label() */
   3059 		strcpy(config->devnames[0][ac->clabel->column],
   3060 		       ac->devname);
   3061 		ac = ac->next;
   3062 	}
   3063 
   3064 	for(i=0;i<RF_MAXDBGV;i++) {
   3065 		config->debugVars[i][0] = 0;
   3066 	}
   3067 }
   3068 
   3069 int
   3070 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3071 {
   3072 	RF_ComponentLabel_t clabel;
   3073 	struct vnode *vp;
   3074 	dev_t dev;
   3075 	int column;
   3076 	int sparecol;
   3077 
   3078 	raidPtr->autoconfigure = new_value;
   3079 
   3080 	for(column=0; column<raidPtr->numCol; column++) {
   3081 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3082 			dev = raidPtr->Disks[column].dev;
   3083 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3084 			raidread_component_label(dev, vp, &clabel);
   3085 			clabel.autoconfigure = new_value;
   3086 			raidwrite_component_label(dev, vp, &clabel);
   3087 		}
   3088 	}
   3089 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3090 		sparecol = raidPtr->numCol + column;
   3091 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3092 			dev = raidPtr->Disks[sparecol].dev;
   3093 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3094 			raidread_component_label(dev, vp, &clabel);
   3095 			clabel.autoconfigure = new_value;
   3096 			raidwrite_component_label(dev, vp, &clabel);
   3097 		}
   3098 	}
   3099 	return(new_value);
   3100 }
   3101 
   3102 int
   3103 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3104 {
   3105 	RF_ComponentLabel_t clabel;
   3106 	struct vnode *vp;
   3107 	dev_t dev;
   3108 	int column;
   3109 	int sparecol;
   3110 
   3111 	raidPtr->root_partition = new_value;
   3112 	for(column=0; column<raidPtr->numCol; column++) {
   3113 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3114 			dev = raidPtr->Disks[column].dev;
   3115 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3116 			raidread_component_label(dev, vp, &clabel);
   3117 			clabel.root_partition = new_value;
   3118 			raidwrite_component_label(dev, vp, &clabel);
   3119 		}
   3120 	}
   3121 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3122 		sparecol = raidPtr->numCol + column;
   3123 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3124 			dev = raidPtr->Disks[sparecol].dev;
   3125 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3126 			raidread_component_label(dev, vp, &clabel);
   3127 			clabel.root_partition = new_value;
   3128 			raidwrite_component_label(dev, vp, &clabel);
   3129 		}
   3130 	}
   3131 	return(new_value);
   3132 }
   3133 
   3134 void
   3135 rf_release_all_vps(RF_ConfigSet_t *cset)
   3136 {
   3137 	RF_AutoConfig_t *ac;
   3138 
   3139 	ac = cset->ac;
   3140 	while(ac!=NULL) {
   3141 		/* Close the vp, and give it back */
   3142 		if (ac->vp) {
   3143 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3144 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3145 			vput(ac->vp);
   3146 			ac->vp = NULL;
   3147 		}
   3148 		ac = ac->next;
   3149 	}
   3150 }
   3151 
   3152 
   3153 void
   3154 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3155 {
   3156 	RF_AutoConfig_t *ac;
   3157 	RF_AutoConfig_t *next_ac;
   3158 
   3159 	ac = cset->ac;
   3160 	while(ac!=NULL) {
   3161 		next_ac = ac->next;
   3162 		/* nuke the label */
   3163 		free(ac->clabel, M_RAIDFRAME);
   3164 		/* cleanup the config structure */
   3165 		free(ac, M_RAIDFRAME);
   3166 		/* "next.." */
   3167 		ac = next_ac;
   3168 	}
   3169 	/* and, finally, nuke the config set */
   3170 	free(cset, M_RAIDFRAME);
   3171 }
   3172 
   3173 
   3174 void
   3175 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3176 {
   3177 	/* current version number */
   3178 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3179 	clabel->serial_number = raidPtr->serial_number;
   3180 	clabel->mod_counter = raidPtr->mod_counter;
   3181 	clabel->num_rows = 1;
   3182 	clabel->num_columns = raidPtr->numCol;
   3183 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3184 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3185 
   3186 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3187 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3188 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3189 
   3190 	clabel->blockSize = raidPtr->bytesPerSector;
   3191 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3192 
   3193 	/* XXX not portable */
   3194 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3195 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3196 	clabel->autoconfigure = raidPtr->autoconfigure;
   3197 	clabel->root_partition = raidPtr->root_partition;
   3198 	clabel->last_unit = raidPtr->raidid;
   3199 	clabel->config_order = raidPtr->config_order;
   3200 }
   3201 
   3202 int
   3203 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3204 {
   3205 	RF_Raid_t *raidPtr;
   3206 	RF_Config_t *config;
   3207 	int raidID;
   3208 	int retcode;
   3209 
   3210 #if DEBUG
   3211 	printf("RAID autoconfigure\n");
   3212 #endif
   3213 
   3214 	retcode = 0;
   3215 	*unit = -1;
   3216 
   3217 	/* 1. Create a config structure */
   3218 
   3219 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3220 				       M_RAIDFRAME,
   3221 				       M_NOWAIT);
   3222 	if (config==NULL) {
   3223 		printf("Out of mem!?!?\n");
   3224 				/* XXX do something more intelligent here. */
   3225 		return(1);
   3226 	}
   3227 
   3228 	memset(config, 0, sizeof(RF_Config_t));
   3229 
   3230 	/*
   3231 	   2. Figure out what RAID ID this one is supposed to live at
   3232 	   See if we can get the same RAID dev that it was configured
   3233 	   on last time..
   3234 	*/
   3235 
   3236 	raidID = cset->ac->clabel->last_unit;
   3237 	if ((raidID < 0) || (raidID >= numraid)) {
   3238 		/* let's not wander off into lala land. */
   3239 		raidID = numraid - 1;
   3240 	}
   3241 	if (raidPtrs[raidID]->valid != 0) {
   3242 
   3243 		/*
   3244 		   Nope... Go looking for an alternative...
   3245 		   Start high so we don't immediately use raid0 if that's
   3246 		   not taken.
   3247 		*/
   3248 
   3249 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3250 			if (raidPtrs[raidID]->valid == 0) {
   3251 				/* can use this one! */
   3252 				break;
   3253 			}
   3254 		}
   3255 	}
   3256 
   3257 	if (raidID < 0) {
   3258 		/* punt... */
   3259 		printf("Unable to auto configure this set!\n");
   3260 		printf("(Out of RAID devs!)\n");
   3261 		free(config, M_RAIDFRAME);
   3262 		return(1);
   3263 	}
   3264 
   3265 #if DEBUG
   3266 	printf("Configuring raid%d:\n",raidID);
   3267 #endif
   3268 
   3269 	raidPtr = raidPtrs[raidID];
   3270 
   3271 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3272 	raidPtr->raidid = raidID;
   3273 	raidPtr->openings = RAIDOUTSTANDING;
   3274 
   3275 	/* 3. Build the configuration structure */
   3276 	rf_create_configuration(cset->ac, config, raidPtr);
   3277 
   3278 	/* 4. Do the configuration */
   3279 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3280 
   3281 	if (retcode == 0) {
   3282 
   3283 		raidinit(raidPtrs[raidID]);
   3284 
   3285 		rf_markalldirty(raidPtrs[raidID]);
   3286 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3287 		if (cset->ac->clabel->root_partition==1) {
   3288 			/* everything configured just fine.  Make a note
   3289 			   that this set is eligible to be root. */
   3290 			cset->rootable = 1;
   3291 			/* XXX do this here? */
   3292 			raidPtrs[raidID]->root_partition = 1;
   3293 		}
   3294 	}
   3295 
   3296 	/* 5. Cleanup */
   3297 	free(config, M_RAIDFRAME);
   3298 
   3299 	*unit = raidID;
   3300 	return(retcode);
   3301 }
   3302 
   3303 void
   3304 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3305 {
   3306 	struct buf *bp;
   3307 
   3308 	bp = (struct buf *)desc->bp;
   3309 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3310 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3311 }
   3312 
   3313 void
   3314 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3315 	     size_t xmin, size_t xmax)
   3316 {
   3317 	pool_init(p, size, 0, 0, 0, w_chan, NULL);
   3318 	pool_sethiwat(p, xmax);
   3319 	pool_prime(p, xmin);
   3320 	pool_setlowat(p, xmin);
   3321 }
   3322 
   3323 /*
   3324  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3325  * if there is IO pending and if that IO could possibly be done for a
   3326  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3327  * otherwise.
   3328  *
   3329  */
   3330 
   3331 int
   3332 rf_buf_queue_check(int raidid)
   3333 {
   3334 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3335 	    raidPtrs[raidid]->openings > 0) {
   3336 		/* there is work to do */
   3337 		return 0;
   3338 	}
   3339 	/* default is nothing to do */
   3340 	return 1;
   3341 }
   3342