rf_netbsdkintf.c revision 1.225 1 /* $NetBSD: rf_netbsdkintf.c,v 1.225 2007/03/04 06:02:38 christos Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.225 2007/03/04 06:02:38 christos Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/bufq.h>
169 #include <sys/user.h>
170 #include <sys/reboot.h>
171 #include <sys/kauth.h>
172
173 #include <dev/raidframe/raidframevar.h>
174 #include <dev/raidframe/raidframeio.h>
175 #include "raid.h"
176 #include "opt_raid_autoconfig.h"
177 #include "rf_raid.h"
178 #include "rf_copyback.h"
179 #include "rf_dag.h"
180 #include "rf_dagflags.h"
181 #include "rf_desc.h"
182 #include "rf_diskqueue.h"
183 #include "rf_etimer.h"
184 #include "rf_general.h"
185 #include "rf_kintf.h"
186 #include "rf_options.h"
187 #include "rf_driver.h"
188 #include "rf_parityscan.h"
189 #include "rf_threadstuff.h"
190
191 #ifdef DEBUG
192 int rf_kdebug_level = 0;
193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
194 #else /* DEBUG */
195 #define db1_printf(a) { }
196 #endif /* DEBUG */
197
198 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
199
200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
201
202 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
203 * spare table */
204 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
205 * installation process */
206
207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
208
209 /* prototypes */
210 static void KernelWakeupFunc(struct buf *);
211 static void InitBP(struct buf *, struct vnode *, unsigned,
212 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
213 void *, int, struct proc *);
214 static void raidinit(RF_Raid_t *);
215
216 void raidattach(int);
217 static int raid_match(struct device *, struct cfdata *, void *);
218 static void raid_attach(struct device *, struct device *, void *);
219 static int raid_detach(struct device *, int);
220
221 dev_type_open(raidopen);
222 dev_type_close(raidclose);
223 dev_type_read(raidread);
224 dev_type_write(raidwrite);
225 dev_type_ioctl(raidioctl);
226 dev_type_strategy(raidstrategy);
227 dev_type_dump(raiddump);
228 dev_type_size(raidsize);
229
230 const struct bdevsw raid_bdevsw = {
231 raidopen, raidclose, raidstrategy, raidioctl,
232 raiddump, raidsize, D_DISK
233 };
234
235 const struct cdevsw raid_cdevsw = {
236 raidopen, raidclose, raidread, raidwrite, raidioctl,
237 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
238 };
239
240 /* XXX Not sure if the following should be replacing the raidPtrs above,
241 or if it should be used in conjunction with that...
242 */
243
244 struct raid_softc {
245 struct device *sc_dev;
246 int sc_flags; /* flags */
247 int sc_cflags; /* configuration flags */
248 uint64_t sc_size; /* size of the raid device */
249 char sc_xname[20]; /* XXX external name */
250 struct disk sc_dkdev; /* generic disk device info */
251 struct bufq_state *buf_queue; /* used for the device queue */
252 };
253 /* sc_flags */
254 #define RAIDF_INITED 0x01 /* unit has been initialized */
255 #define RAIDF_WLABEL 0x02 /* label area is writable */
256 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
257 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
258 #define RAIDF_LOCKED 0x80 /* unit is locked */
259
260 #define raidunit(x) DISKUNIT(x)
261 int numraid = 0;
262
263 extern struct cfdriver raid_cd;
264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
265 raid_match, raid_attach, raid_detach, NULL);
266
267 /*
268 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
269 * Be aware that large numbers can allow the driver to consume a lot of
270 * kernel memory, especially on writes, and in degraded mode reads.
271 *
272 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
273 * a single 64K write will typically require 64K for the old data,
274 * 64K for the old parity, and 64K for the new parity, for a total
275 * of 192K (if the parity buffer is not re-used immediately).
276 * Even it if is used immediately, that's still 128K, which when multiplied
277 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
278 *
279 * Now in degraded mode, for example, a 64K read on the above setup may
280 * require data reconstruction, which will require *all* of the 4 remaining
281 * disks to participate -- 4 * 32K/disk == 128K again.
282 */
283
284 #ifndef RAIDOUTSTANDING
285 #define RAIDOUTSTANDING 6
286 #endif
287
288 #define RAIDLABELDEV(dev) \
289 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
290
291 /* declared here, and made public, for the benefit of KVM stuff.. */
292 struct raid_softc *raid_softc;
293
294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
295 struct disklabel *);
296 static void raidgetdisklabel(dev_t);
297 static void raidmakedisklabel(struct raid_softc *);
298
299 static int raidlock(struct raid_softc *);
300 static void raidunlock(struct raid_softc *);
301
302 static void rf_markalldirty(RF_Raid_t *);
303
304 void rf_ReconThread(struct rf_recon_req *);
305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
306 void rf_CopybackThread(RF_Raid_t *raidPtr);
307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
308 int rf_autoconfig(struct device *self);
309 void rf_buildroothack(RF_ConfigSet_t *);
310
311 RF_AutoConfig_t *rf_find_raid_components(void);
312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
314 static int rf_reasonable_label(RF_ComponentLabel_t *);
315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
316 int rf_set_autoconfig(RF_Raid_t *, int);
317 int rf_set_rootpartition(RF_Raid_t *, int);
318 void rf_release_all_vps(RF_ConfigSet_t *);
319 void rf_cleanup_config_set(RF_ConfigSet_t *);
320 int rf_have_enough_components(RF_ConfigSet_t *);
321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
322
323 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
324 allow autoconfig to take place.
325 Note that this is overridden by having
326 RAID_AUTOCONFIG as an option in the
327 kernel config file. */
328
329 struct RF_Pools_s rf_pools;
330
331 void
332 raidattach(int num)
333 {
334 int raidID;
335 int i, rc;
336
337 #ifdef DEBUG
338 printf("raidattach: Asked for %d units\n", num);
339 #endif
340
341 if (num <= 0) {
342 #ifdef DIAGNOSTIC
343 panic("raidattach: count <= 0");
344 #endif
345 return;
346 }
347 /* This is where all the initialization stuff gets done. */
348
349 numraid = num;
350
351 /* Make some space for requested number of units... */
352
353 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
354 if (raidPtrs == NULL) {
355 panic("raidPtrs is NULL!!");
356 }
357
358 rf_mutex_init(&rf_sparet_wait_mutex);
359
360 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
361
362 for (i = 0; i < num; i++)
363 raidPtrs[i] = NULL;
364 rc = rf_BootRaidframe();
365 if (rc == 0)
366 printf("Kernelized RAIDframe activated\n");
367 else
368 panic("Serious error booting RAID!!");
369
370 /* put together some datastructures like the CCD device does.. This
371 * lets us lock the device and what-not when it gets opened. */
372
373 raid_softc = (struct raid_softc *)
374 malloc(num * sizeof(struct raid_softc),
375 M_RAIDFRAME, M_NOWAIT);
376 if (raid_softc == NULL) {
377 printf("WARNING: no memory for RAIDframe driver\n");
378 return;
379 }
380
381 memset(raid_softc, 0, num * sizeof(struct raid_softc));
382
383 for (raidID = 0; raidID < num; raidID++) {
384 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
385
386 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
387 (RF_Raid_t *));
388 if (raidPtrs[raidID] == NULL) {
389 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
390 numraid = raidID;
391 return;
392 }
393 }
394
395 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
396 printf("config_cfattach_attach failed?\n");
397 }
398
399 #ifdef RAID_AUTOCONFIG
400 raidautoconfig = 1;
401 #endif
402
403 /*
404 * Register a finalizer which will be used to auto-config RAID
405 * sets once all real hardware devices have been found.
406 */
407 if (config_finalize_register(NULL, rf_autoconfig) != 0)
408 printf("WARNING: unable to register RAIDframe finalizer\n");
409 }
410
411 int
412 rf_autoconfig(struct device *self)
413 {
414 RF_AutoConfig_t *ac_list;
415 RF_ConfigSet_t *config_sets;
416 int i;
417
418 if (raidautoconfig == 0)
419 return (0);
420
421 /* XXX This code can only be run once. */
422 raidautoconfig = 0;
423
424 /* 1. locate all RAID components on the system */
425 #ifdef DEBUG
426 printf("Searching for RAID components...\n");
427 #endif
428 ac_list = rf_find_raid_components();
429
430 /* 2. Sort them into their respective sets. */
431 config_sets = rf_create_auto_sets(ac_list);
432
433 /*
434 * 3. Evaluate each set andconfigure the valid ones.
435 * This gets done in rf_buildroothack().
436 */
437 rf_buildroothack(config_sets);
438
439 for (i = 0; i < numraid; i++)
440 if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
441 dkwedge_discover(&raid_softc[i].sc_dkdev);
442
443 return 1;
444 }
445
446 void
447 rf_buildroothack(RF_ConfigSet_t *config_sets)
448 {
449 RF_ConfigSet_t *cset;
450 RF_ConfigSet_t *next_cset;
451 int retcode;
452 int raidID;
453 int rootID;
454 int num_root;
455
456 rootID = 0;
457 num_root = 0;
458 cset = config_sets;
459 while(cset != NULL ) {
460 next_cset = cset->next;
461 if (rf_have_enough_components(cset) &&
462 cset->ac->clabel->autoconfigure==1) {
463 retcode = rf_auto_config_set(cset,&raidID);
464 if (!retcode) {
465 #ifdef DEBUG
466 printf("raid%d: configured ok\n", raidID);
467 #endif
468 if (cset->rootable) {
469 rootID = raidID;
470 num_root++;
471 }
472 } else {
473 /* The autoconfig didn't work :( */
474 #ifdef DEBUG
475 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
476 #endif
477 rf_release_all_vps(cset);
478 }
479 } else {
480 #ifdef DEBUG
481 printf("raid%d: not enough components\n", raidID);
482 #endif
483 /* we're not autoconfiguring this set...
484 release the associated resources */
485 rf_release_all_vps(cset);
486 }
487 /* cleanup */
488 rf_cleanup_config_set(cset);
489 cset = next_cset;
490 }
491
492 /* if the user has specified what the root device should be
493 then we don't touch booted_device or boothowto... */
494
495 if (rootspec != NULL)
496 return;
497
498 /* we found something bootable... */
499
500 if (num_root == 1) {
501 booted_device = raid_softc[rootID].sc_dev;
502 } else if (num_root > 1) {
503 /* we can't guess.. require the user to answer... */
504 boothowto |= RB_ASKNAME;
505 }
506 }
507
508
509 int
510 raidsize(dev_t dev)
511 {
512 struct raid_softc *rs;
513 struct disklabel *lp;
514 int part, unit, omask, size;
515
516 unit = raidunit(dev);
517 if (unit >= numraid)
518 return (-1);
519 rs = &raid_softc[unit];
520
521 if ((rs->sc_flags & RAIDF_INITED) == 0)
522 return (-1);
523
524 part = DISKPART(dev);
525 omask = rs->sc_dkdev.dk_openmask & (1 << part);
526 lp = rs->sc_dkdev.dk_label;
527
528 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
529 return (-1);
530
531 if (lp->d_partitions[part].p_fstype != FS_SWAP)
532 size = -1;
533 else
534 size = lp->d_partitions[part].p_size *
535 (lp->d_secsize / DEV_BSIZE);
536
537 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
538 return (-1);
539
540 return (size);
541
542 }
543
544 int
545 raiddump(dev_t dev, daddr_t blkno, void *va,
546 size_t size)
547 {
548 /* Not implemented. */
549 return ENXIO;
550 }
551 /* ARGSUSED */
552 int
553 raidopen(dev_t dev, int flags, int fmt,
554 struct lwp *l)
555 {
556 int unit = raidunit(dev);
557 struct raid_softc *rs;
558 struct disklabel *lp;
559 int part, pmask;
560 int error = 0;
561
562 if (unit >= numraid)
563 return (ENXIO);
564 rs = &raid_softc[unit];
565
566 if ((error = raidlock(rs)) != 0)
567 return (error);
568 lp = rs->sc_dkdev.dk_label;
569
570 part = DISKPART(dev);
571
572 /*
573 * If there are wedges, and this is not RAW_PART, then we
574 * need to fail.
575 */
576 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
577 error = EBUSY;
578 goto bad;
579 }
580 pmask = (1 << part);
581
582 if ((rs->sc_flags & RAIDF_INITED) &&
583 (rs->sc_dkdev.dk_openmask == 0))
584 raidgetdisklabel(dev);
585
586 /* make sure that this partition exists */
587
588 if (part != RAW_PART) {
589 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
590 ((part >= lp->d_npartitions) ||
591 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
592 error = ENXIO;
593 goto bad;
594 }
595 }
596 /* Prevent this unit from being unconfigured while open. */
597 switch (fmt) {
598 case S_IFCHR:
599 rs->sc_dkdev.dk_copenmask |= pmask;
600 break;
601
602 case S_IFBLK:
603 rs->sc_dkdev.dk_bopenmask |= pmask;
604 break;
605 }
606
607 if ((rs->sc_dkdev.dk_openmask == 0) &&
608 ((rs->sc_flags & RAIDF_INITED) != 0)) {
609 /* First one... mark things as dirty... Note that we *MUST*
610 have done a configure before this. I DO NOT WANT TO BE
611 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
612 THAT THEY BELONG TOGETHER!!!!! */
613 /* XXX should check to see if we're only open for reading
614 here... If so, we needn't do this, but then need some
615 other way of keeping track of what's happened.. */
616
617 rf_markalldirty( raidPtrs[unit] );
618 }
619
620
621 rs->sc_dkdev.dk_openmask =
622 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
623
624 bad:
625 raidunlock(rs);
626
627 return (error);
628
629
630 }
631 /* ARGSUSED */
632 int
633 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
634 {
635 int unit = raidunit(dev);
636 struct cfdata *cf;
637 struct raid_softc *rs;
638 int error = 0;
639 int part;
640
641 if (unit >= numraid)
642 return (ENXIO);
643 rs = &raid_softc[unit];
644
645 if ((error = raidlock(rs)) != 0)
646 return (error);
647
648 part = DISKPART(dev);
649
650 /* ...that much closer to allowing unconfiguration... */
651 switch (fmt) {
652 case S_IFCHR:
653 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
654 break;
655
656 case S_IFBLK:
657 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
658 break;
659 }
660 rs->sc_dkdev.dk_openmask =
661 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
662
663 if ((rs->sc_dkdev.dk_openmask == 0) &&
664 ((rs->sc_flags & RAIDF_INITED) != 0)) {
665 /* Last one... device is not unconfigured yet.
666 Device shutdown has taken care of setting the
667 clean bits if RAIDF_INITED is not set
668 mark things as clean... */
669
670 rf_update_component_labels(raidPtrs[unit],
671 RF_FINAL_COMPONENT_UPDATE);
672 if (doing_shutdown) {
673 /* last one, and we're going down, so
674 lights out for this RAID set too. */
675 error = rf_Shutdown(raidPtrs[unit]);
676
677 /* It's no longer initialized... */
678 rs->sc_flags &= ~RAIDF_INITED;
679
680 /* detach the device */
681
682 cf = device_cfdata(rs->sc_dev);
683 error = config_detach(rs->sc_dev, DETACH_QUIET);
684 free(cf, M_RAIDFRAME);
685
686 /* Detach the disk. */
687 pseudo_disk_detach(&rs->sc_dkdev);
688 }
689 }
690
691 raidunlock(rs);
692 return (0);
693
694 }
695
696 void
697 raidstrategy(struct buf *bp)
698 {
699 int s;
700
701 unsigned int raidID = raidunit(bp->b_dev);
702 RF_Raid_t *raidPtr;
703 struct raid_softc *rs = &raid_softc[raidID];
704 int wlabel;
705
706 if ((rs->sc_flags & RAIDF_INITED) ==0) {
707 bp->b_error = ENXIO;
708 bp->b_flags |= B_ERROR;
709 goto done;
710 }
711 if (raidID >= numraid || !raidPtrs[raidID]) {
712 bp->b_error = ENODEV;
713 bp->b_flags |= B_ERROR;
714 goto done;
715 }
716 raidPtr = raidPtrs[raidID];
717 if (!raidPtr->valid) {
718 bp->b_error = ENODEV;
719 bp->b_flags |= B_ERROR;
720 goto done;
721 }
722 if (bp->b_bcount == 0) {
723 db1_printf(("b_bcount is zero..\n"));
724 goto done;
725 }
726
727 /*
728 * Do bounds checking and adjust transfer. If there's an
729 * error, the bounds check will flag that for us.
730 */
731
732 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
733 if (DISKPART(bp->b_dev) == RAW_PART) {
734 uint64_t size; /* device size in DEV_BSIZE unit */
735
736 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
737 size = raidPtr->totalSectors <<
738 (raidPtr->logBytesPerSector - DEV_BSHIFT);
739 } else {
740 size = raidPtr->totalSectors >>
741 (DEV_BSHIFT - raidPtr->logBytesPerSector);
742 }
743 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
744 goto done;
745 }
746 } else {
747 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
748 db1_printf(("Bounds check failed!!:%d %d\n",
749 (int) bp->b_blkno, (int) wlabel));
750 goto done;
751 }
752 }
753 s = splbio();
754
755 bp->b_resid = 0;
756
757 /* stuff it onto our queue */
758 BUFQ_PUT(rs->buf_queue, bp);
759
760 /* scheduled the IO to happen at the next convenient time */
761 wakeup(&(raidPtrs[raidID]->iodone));
762
763 splx(s);
764 return;
765
766 done:
767 bp->b_resid = bp->b_bcount;
768 biodone(bp);
769 }
770 /* ARGSUSED */
771 int
772 raidread(dev_t dev, struct uio *uio, int flags)
773 {
774 int unit = raidunit(dev);
775 struct raid_softc *rs;
776
777 if (unit >= numraid)
778 return (ENXIO);
779 rs = &raid_softc[unit];
780
781 if ((rs->sc_flags & RAIDF_INITED) == 0)
782 return (ENXIO);
783
784 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
785
786 }
787 /* ARGSUSED */
788 int
789 raidwrite(dev_t dev, struct uio *uio, int flags)
790 {
791 int unit = raidunit(dev);
792 struct raid_softc *rs;
793
794 if (unit >= numraid)
795 return (ENXIO);
796 rs = &raid_softc[unit];
797
798 if ((rs->sc_flags & RAIDF_INITED) == 0)
799 return (ENXIO);
800
801 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
802
803 }
804
805 int
806 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
807 {
808 int unit = raidunit(dev);
809 int error = 0;
810 int part, pmask;
811 struct cfdata *cf;
812 struct raid_softc *rs;
813 RF_Config_t *k_cfg, *u_cfg;
814 RF_Raid_t *raidPtr;
815 RF_RaidDisk_t *diskPtr;
816 RF_AccTotals_t *totals;
817 RF_DeviceConfig_t *d_cfg, **ucfgp;
818 u_char *specific_buf;
819 int retcode = 0;
820 int column;
821 int raidid;
822 struct rf_recon_req *rrcopy, *rr;
823 RF_ComponentLabel_t *clabel;
824 RF_ComponentLabel_t *ci_label;
825 RF_ComponentLabel_t **clabel_ptr;
826 RF_SingleComponent_t *sparePtr,*componentPtr;
827 RF_SingleComponent_t component;
828 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
829 int i, j, d;
830 #ifdef __HAVE_OLD_DISKLABEL
831 struct disklabel newlabel;
832 #endif
833 struct dkwedge_info *dkw;
834
835 if (unit >= numraid)
836 return (ENXIO);
837 rs = &raid_softc[unit];
838 raidPtr = raidPtrs[unit];
839
840 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
841 (int) DISKPART(dev), (int) unit, (int) cmd));
842
843 /* Must be open for writes for these commands... */
844 switch (cmd) {
845 #ifdef DIOCGSECTORSIZE
846 case DIOCGSECTORSIZE:
847 *(u_int *)data = raidPtr->bytesPerSector;
848 return 0;
849 case DIOCGMEDIASIZE:
850 *(off_t *)data =
851 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
852 return 0;
853 #endif
854 case DIOCSDINFO:
855 case DIOCWDINFO:
856 #ifdef __HAVE_OLD_DISKLABEL
857 case ODIOCWDINFO:
858 case ODIOCSDINFO:
859 #endif
860 case DIOCWLABEL:
861 case DIOCAWEDGE:
862 case DIOCDWEDGE:
863 if ((flag & FWRITE) == 0)
864 return (EBADF);
865 }
866
867 /* Must be initialized for these... */
868 switch (cmd) {
869 case DIOCGDINFO:
870 case DIOCSDINFO:
871 case DIOCWDINFO:
872 #ifdef __HAVE_OLD_DISKLABEL
873 case ODIOCGDINFO:
874 case ODIOCWDINFO:
875 case ODIOCSDINFO:
876 case ODIOCGDEFLABEL:
877 #endif
878 case DIOCGPART:
879 case DIOCWLABEL:
880 case DIOCGDEFLABEL:
881 case DIOCAWEDGE:
882 case DIOCDWEDGE:
883 case DIOCLWEDGES:
884 case RAIDFRAME_SHUTDOWN:
885 case RAIDFRAME_REWRITEPARITY:
886 case RAIDFRAME_GET_INFO:
887 case RAIDFRAME_RESET_ACCTOTALS:
888 case RAIDFRAME_GET_ACCTOTALS:
889 case RAIDFRAME_KEEP_ACCTOTALS:
890 case RAIDFRAME_GET_SIZE:
891 case RAIDFRAME_FAIL_DISK:
892 case RAIDFRAME_COPYBACK:
893 case RAIDFRAME_CHECK_RECON_STATUS:
894 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
895 case RAIDFRAME_GET_COMPONENT_LABEL:
896 case RAIDFRAME_SET_COMPONENT_LABEL:
897 case RAIDFRAME_ADD_HOT_SPARE:
898 case RAIDFRAME_REMOVE_HOT_SPARE:
899 case RAIDFRAME_INIT_LABELS:
900 case RAIDFRAME_REBUILD_IN_PLACE:
901 case RAIDFRAME_CHECK_PARITY:
902 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
903 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
904 case RAIDFRAME_CHECK_COPYBACK_STATUS:
905 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
906 case RAIDFRAME_SET_AUTOCONFIG:
907 case RAIDFRAME_SET_ROOT:
908 case RAIDFRAME_DELETE_COMPONENT:
909 case RAIDFRAME_INCORPORATE_HOT_SPARE:
910 if ((rs->sc_flags & RAIDF_INITED) == 0)
911 return (ENXIO);
912 }
913
914 switch (cmd) {
915
916 /* configure the system */
917 case RAIDFRAME_CONFIGURE:
918
919 if (raidPtr->valid) {
920 /* There is a valid RAID set running on this unit! */
921 printf("raid%d: Device already configured!\n",unit);
922 return(EINVAL);
923 }
924
925 /* copy-in the configuration information */
926 /* data points to a pointer to the configuration structure */
927
928 u_cfg = *((RF_Config_t **) data);
929 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
930 if (k_cfg == NULL) {
931 return (ENOMEM);
932 }
933 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
934 if (retcode) {
935 RF_Free(k_cfg, sizeof(RF_Config_t));
936 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
937 retcode));
938 return (retcode);
939 }
940 /* allocate a buffer for the layout-specific data, and copy it
941 * in */
942 if (k_cfg->layoutSpecificSize) {
943 if (k_cfg->layoutSpecificSize > 10000) {
944 /* sanity check */
945 RF_Free(k_cfg, sizeof(RF_Config_t));
946 return (EINVAL);
947 }
948 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
949 (u_char *));
950 if (specific_buf == NULL) {
951 RF_Free(k_cfg, sizeof(RF_Config_t));
952 return (ENOMEM);
953 }
954 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
955 k_cfg->layoutSpecificSize);
956 if (retcode) {
957 RF_Free(k_cfg, sizeof(RF_Config_t));
958 RF_Free(specific_buf,
959 k_cfg->layoutSpecificSize);
960 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
961 retcode));
962 return (retcode);
963 }
964 } else
965 specific_buf = NULL;
966 k_cfg->layoutSpecific = specific_buf;
967
968 /* should do some kind of sanity check on the configuration.
969 * Store the sum of all the bytes in the last byte? */
970
971 /* configure the system */
972
973 /*
974 * Clear the entire RAID descriptor, just to make sure
975 * there is no stale data left in the case of a
976 * reconfiguration
977 */
978 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
979 raidPtr->raidid = unit;
980
981 retcode = rf_Configure(raidPtr, k_cfg, NULL);
982
983 if (retcode == 0) {
984
985 /* allow this many simultaneous IO's to
986 this RAID device */
987 raidPtr->openings = RAIDOUTSTANDING;
988
989 raidinit(raidPtr);
990 rf_markalldirty(raidPtr);
991 }
992 /* free the buffers. No return code here. */
993 if (k_cfg->layoutSpecificSize) {
994 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
995 }
996 RF_Free(k_cfg, sizeof(RF_Config_t));
997
998 return (retcode);
999
1000 /* shutdown the system */
1001 case RAIDFRAME_SHUTDOWN:
1002
1003 if ((error = raidlock(rs)) != 0)
1004 return (error);
1005
1006 /*
1007 * If somebody has a partition mounted, we shouldn't
1008 * shutdown.
1009 */
1010
1011 part = DISKPART(dev);
1012 pmask = (1 << part);
1013 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1014 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1015 (rs->sc_dkdev.dk_copenmask & pmask))) {
1016 raidunlock(rs);
1017 return (EBUSY);
1018 }
1019
1020 retcode = rf_Shutdown(raidPtr);
1021
1022 /* It's no longer initialized... */
1023 rs->sc_flags &= ~RAIDF_INITED;
1024
1025 /* free the pseudo device attach bits */
1026
1027 cf = device_cfdata(rs->sc_dev);
1028 /* XXX this causes us to not return any errors
1029 from the above call to rf_Shutdown() */
1030 retcode = config_detach(rs->sc_dev, DETACH_QUIET);
1031 free(cf, M_RAIDFRAME);
1032
1033 /* Detach the disk. */
1034 pseudo_disk_detach(&rs->sc_dkdev);
1035
1036 raidunlock(rs);
1037
1038 return (retcode);
1039 case RAIDFRAME_GET_COMPONENT_LABEL:
1040 clabel_ptr = (RF_ComponentLabel_t **) data;
1041 /* need to read the component label for the disk indicated
1042 by row,column in clabel */
1043
1044 /* For practice, let's get it directly fromdisk, rather
1045 than from the in-core copy */
1046 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1047 (RF_ComponentLabel_t *));
1048 if (clabel == NULL)
1049 return (ENOMEM);
1050
1051 retcode = copyin( *clabel_ptr, clabel,
1052 sizeof(RF_ComponentLabel_t));
1053
1054 if (retcode) {
1055 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1056 return(retcode);
1057 }
1058
1059 clabel->row = 0; /* Don't allow looking at anything else.*/
1060
1061 column = clabel->column;
1062
1063 if ((column < 0) || (column >= raidPtr->numCol +
1064 raidPtr->numSpare)) {
1065 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1066 return(EINVAL);
1067 }
1068
1069 retcode = raidread_component_label(raidPtr->Disks[column].dev,
1070 raidPtr->raid_cinfo[column].ci_vp,
1071 clabel );
1072
1073 if (retcode == 0) {
1074 retcode = copyout(clabel, *clabel_ptr,
1075 sizeof(RF_ComponentLabel_t));
1076 }
1077 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1078 return (retcode);
1079
1080 case RAIDFRAME_SET_COMPONENT_LABEL:
1081 clabel = (RF_ComponentLabel_t *) data;
1082
1083 /* XXX check the label for valid stuff... */
1084 /* Note that some things *should not* get modified --
1085 the user should be re-initing the labels instead of
1086 trying to patch things.
1087 */
1088
1089 raidid = raidPtr->raidid;
1090 #ifdef DEBUG
1091 printf("raid%d: Got component label:\n", raidid);
1092 printf("raid%d: Version: %d\n", raidid, clabel->version);
1093 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1094 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1095 printf("raid%d: Column: %d\n", raidid, clabel->column);
1096 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1097 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1098 printf("raid%d: Status: %d\n", raidid, clabel->status);
1099 #endif
1100 clabel->row = 0;
1101 column = clabel->column;
1102
1103 if ((column < 0) || (column >= raidPtr->numCol)) {
1104 return(EINVAL);
1105 }
1106
1107 /* XXX this isn't allowed to do anything for now :-) */
1108
1109 /* XXX and before it is, we need to fill in the rest
1110 of the fields!?!?!?! */
1111 #if 0
1112 raidwrite_component_label(
1113 raidPtr->Disks[column].dev,
1114 raidPtr->raid_cinfo[column].ci_vp,
1115 clabel );
1116 #endif
1117 return (0);
1118
1119 case RAIDFRAME_INIT_LABELS:
1120 clabel = (RF_ComponentLabel_t *) data;
1121 /*
1122 we only want the serial number from
1123 the above. We get all the rest of the information
1124 from the config that was used to create this RAID
1125 set.
1126 */
1127
1128 raidPtr->serial_number = clabel->serial_number;
1129
1130 RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
1131 (RF_ComponentLabel_t *));
1132 if (ci_label == NULL)
1133 return (ENOMEM);
1134
1135 raid_init_component_label(raidPtr, ci_label);
1136 ci_label->serial_number = clabel->serial_number;
1137 ci_label->row = 0; /* we dont' pretend to support more */
1138
1139 for(column=0;column<raidPtr->numCol;column++) {
1140 diskPtr = &raidPtr->Disks[column];
1141 if (!RF_DEAD_DISK(diskPtr->status)) {
1142 ci_label->partitionSize = diskPtr->partitionSize;
1143 ci_label->column = column;
1144 raidwrite_component_label(
1145 raidPtr->Disks[column].dev,
1146 raidPtr->raid_cinfo[column].ci_vp,
1147 ci_label );
1148 }
1149 }
1150 RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
1151
1152 return (retcode);
1153 case RAIDFRAME_SET_AUTOCONFIG:
1154 d = rf_set_autoconfig(raidPtr, *(int *) data);
1155 printf("raid%d: New autoconfig value is: %d\n",
1156 raidPtr->raidid, d);
1157 *(int *) data = d;
1158 return (retcode);
1159
1160 case RAIDFRAME_SET_ROOT:
1161 d = rf_set_rootpartition(raidPtr, *(int *) data);
1162 printf("raid%d: New rootpartition value is: %d\n",
1163 raidPtr->raidid, d);
1164 *(int *) data = d;
1165 return (retcode);
1166
1167 /* initialize all parity */
1168 case RAIDFRAME_REWRITEPARITY:
1169
1170 if (raidPtr->Layout.map->faultsTolerated == 0) {
1171 /* Parity for RAID 0 is trivially correct */
1172 raidPtr->parity_good = RF_RAID_CLEAN;
1173 return(0);
1174 }
1175
1176 if (raidPtr->parity_rewrite_in_progress == 1) {
1177 /* Re-write is already in progress! */
1178 return(EINVAL);
1179 }
1180
1181 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1182 rf_RewriteParityThread,
1183 raidPtr,"raid_parity");
1184 return (retcode);
1185
1186
1187 case RAIDFRAME_ADD_HOT_SPARE:
1188 sparePtr = (RF_SingleComponent_t *) data;
1189 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1190 retcode = rf_add_hot_spare(raidPtr, &component);
1191 return(retcode);
1192
1193 case RAIDFRAME_REMOVE_HOT_SPARE:
1194 return(retcode);
1195
1196 case RAIDFRAME_DELETE_COMPONENT:
1197 componentPtr = (RF_SingleComponent_t *)data;
1198 memcpy( &component, componentPtr,
1199 sizeof(RF_SingleComponent_t));
1200 retcode = rf_delete_component(raidPtr, &component);
1201 return(retcode);
1202
1203 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1204 componentPtr = (RF_SingleComponent_t *)data;
1205 memcpy( &component, componentPtr,
1206 sizeof(RF_SingleComponent_t));
1207 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1208 return(retcode);
1209
1210 case RAIDFRAME_REBUILD_IN_PLACE:
1211
1212 if (raidPtr->Layout.map->faultsTolerated == 0) {
1213 /* Can't do this on a RAID 0!! */
1214 return(EINVAL);
1215 }
1216
1217 if (raidPtr->recon_in_progress == 1) {
1218 /* a reconstruct is already in progress! */
1219 return(EINVAL);
1220 }
1221
1222 componentPtr = (RF_SingleComponent_t *) data;
1223 memcpy( &component, componentPtr,
1224 sizeof(RF_SingleComponent_t));
1225 component.row = 0; /* we don't support any more */
1226 column = component.column;
1227
1228 if ((column < 0) || (column >= raidPtr->numCol)) {
1229 return(EINVAL);
1230 }
1231
1232 RF_LOCK_MUTEX(raidPtr->mutex);
1233 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1234 (raidPtr->numFailures > 0)) {
1235 /* XXX 0 above shouldn't be constant!!! */
1236 /* some component other than this has failed.
1237 Let's not make things worse than they already
1238 are... */
1239 printf("raid%d: Unable to reconstruct to disk at:\n",
1240 raidPtr->raidid);
1241 printf("raid%d: Col: %d Too many failures.\n",
1242 raidPtr->raidid, column);
1243 RF_UNLOCK_MUTEX(raidPtr->mutex);
1244 return (EINVAL);
1245 }
1246 if (raidPtr->Disks[column].status ==
1247 rf_ds_reconstructing) {
1248 printf("raid%d: Unable to reconstruct to disk at:\n",
1249 raidPtr->raidid);
1250 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1251
1252 RF_UNLOCK_MUTEX(raidPtr->mutex);
1253 return (EINVAL);
1254 }
1255 if (raidPtr->Disks[column].status == rf_ds_spared) {
1256 RF_UNLOCK_MUTEX(raidPtr->mutex);
1257 return (EINVAL);
1258 }
1259 RF_UNLOCK_MUTEX(raidPtr->mutex);
1260
1261 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1262 if (rrcopy == NULL)
1263 return(ENOMEM);
1264
1265 rrcopy->raidPtr = (void *) raidPtr;
1266 rrcopy->col = column;
1267
1268 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1269 rf_ReconstructInPlaceThread,
1270 rrcopy,"raid_reconip");
1271 return(retcode);
1272
1273 case RAIDFRAME_GET_INFO:
1274 if (!raidPtr->valid)
1275 return (ENODEV);
1276 ucfgp = (RF_DeviceConfig_t **) data;
1277 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1278 (RF_DeviceConfig_t *));
1279 if (d_cfg == NULL)
1280 return (ENOMEM);
1281 d_cfg->rows = 1; /* there is only 1 row now */
1282 d_cfg->cols = raidPtr->numCol;
1283 d_cfg->ndevs = raidPtr->numCol;
1284 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1285 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1286 return (ENOMEM);
1287 }
1288 d_cfg->nspares = raidPtr->numSpare;
1289 if (d_cfg->nspares >= RF_MAX_DISKS) {
1290 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1291 return (ENOMEM);
1292 }
1293 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1294 d = 0;
1295 for (j = 0; j < d_cfg->cols; j++) {
1296 d_cfg->devs[d] = raidPtr->Disks[j];
1297 d++;
1298 }
1299 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1300 d_cfg->spares[i] = raidPtr->Disks[j];
1301 }
1302 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1303 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1304
1305 return (retcode);
1306
1307 case RAIDFRAME_CHECK_PARITY:
1308 *(int *) data = raidPtr->parity_good;
1309 return (0);
1310
1311 case RAIDFRAME_RESET_ACCTOTALS:
1312 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1313 return (0);
1314
1315 case RAIDFRAME_GET_ACCTOTALS:
1316 totals = (RF_AccTotals_t *) data;
1317 *totals = raidPtr->acc_totals;
1318 return (0);
1319
1320 case RAIDFRAME_KEEP_ACCTOTALS:
1321 raidPtr->keep_acc_totals = *(int *)data;
1322 return (0);
1323
1324 case RAIDFRAME_GET_SIZE:
1325 *(int *) data = raidPtr->totalSectors;
1326 return (0);
1327
1328 /* fail a disk & optionally start reconstruction */
1329 case RAIDFRAME_FAIL_DISK:
1330
1331 if (raidPtr->Layout.map->faultsTolerated == 0) {
1332 /* Can't do this on a RAID 0!! */
1333 return(EINVAL);
1334 }
1335
1336 rr = (struct rf_recon_req *) data;
1337 rr->row = 0;
1338 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1339 return (EINVAL);
1340
1341
1342 RF_LOCK_MUTEX(raidPtr->mutex);
1343 if (raidPtr->status == rf_rs_reconstructing) {
1344 /* you can't fail a disk while we're reconstructing! */
1345 /* XXX wrong for RAID6 */
1346 RF_UNLOCK_MUTEX(raidPtr->mutex);
1347 return (EINVAL);
1348 }
1349 if ((raidPtr->Disks[rr->col].status ==
1350 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1351 /* some other component has failed. Let's not make
1352 things worse. XXX wrong for RAID6 */
1353 RF_UNLOCK_MUTEX(raidPtr->mutex);
1354 return (EINVAL);
1355 }
1356 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1357 /* Can't fail a spared disk! */
1358 RF_UNLOCK_MUTEX(raidPtr->mutex);
1359 return (EINVAL);
1360 }
1361 RF_UNLOCK_MUTEX(raidPtr->mutex);
1362
1363 /* make a copy of the recon request so that we don't rely on
1364 * the user's buffer */
1365 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1366 if (rrcopy == NULL)
1367 return(ENOMEM);
1368 memcpy(rrcopy, rr, sizeof(*rr));
1369 rrcopy->raidPtr = (void *) raidPtr;
1370
1371 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1372 rf_ReconThread,
1373 rrcopy,"raid_recon");
1374 return (0);
1375
1376 /* invoke a copyback operation after recon on whatever disk
1377 * needs it, if any */
1378 case RAIDFRAME_COPYBACK:
1379
1380 if (raidPtr->Layout.map->faultsTolerated == 0) {
1381 /* This makes no sense on a RAID 0!! */
1382 return(EINVAL);
1383 }
1384
1385 if (raidPtr->copyback_in_progress == 1) {
1386 /* Copyback is already in progress! */
1387 return(EINVAL);
1388 }
1389
1390 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1391 rf_CopybackThread,
1392 raidPtr,"raid_copyback");
1393 return (retcode);
1394
1395 /* return the percentage completion of reconstruction */
1396 case RAIDFRAME_CHECK_RECON_STATUS:
1397 if (raidPtr->Layout.map->faultsTolerated == 0) {
1398 /* This makes no sense on a RAID 0, so tell the
1399 user it's done. */
1400 *(int *) data = 100;
1401 return(0);
1402 }
1403 if (raidPtr->status != rf_rs_reconstructing)
1404 *(int *) data = 100;
1405 else {
1406 if (raidPtr->reconControl->numRUsTotal > 0) {
1407 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1408 } else {
1409 *(int *) data = 0;
1410 }
1411 }
1412 return (0);
1413 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1414 progressInfoPtr = (RF_ProgressInfo_t **) data;
1415 if (raidPtr->status != rf_rs_reconstructing) {
1416 progressInfo.remaining = 0;
1417 progressInfo.completed = 100;
1418 progressInfo.total = 100;
1419 } else {
1420 progressInfo.total =
1421 raidPtr->reconControl->numRUsTotal;
1422 progressInfo.completed =
1423 raidPtr->reconControl->numRUsComplete;
1424 progressInfo.remaining = progressInfo.total -
1425 progressInfo.completed;
1426 }
1427 retcode = copyout(&progressInfo, *progressInfoPtr,
1428 sizeof(RF_ProgressInfo_t));
1429 return (retcode);
1430
1431 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1432 if (raidPtr->Layout.map->faultsTolerated == 0) {
1433 /* This makes no sense on a RAID 0, so tell the
1434 user it's done. */
1435 *(int *) data = 100;
1436 return(0);
1437 }
1438 if (raidPtr->parity_rewrite_in_progress == 1) {
1439 *(int *) data = 100 *
1440 raidPtr->parity_rewrite_stripes_done /
1441 raidPtr->Layout.numStripe;
1442 } else {
1443 *(int *) data = 100;
1444 }
1445 return (0);
1446
1447 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1448 progressInfoPtr = (RF_ProgressInfo_t **) data;
1449 if (raidPtr->parity_rewrite_in_progress == 1) {
1450 progressInfo.total = raidPtr->Layout.numStripe;
1451 progressInfo.completed =
1452 raidPtr->parity_rewrite_stripes_done;
1453 progressInfo.remaining = progressInfo.total -
1454 progressInfo.completed;
1455 } else {
1456 progressInfo.remaining = 0;
1457 progressInfo.completed = 100;
1458 progressInfo.total = 100;
1459 }
1460 retcode = copyout(&progressInfo, *progressInfoPtr,
1461 sizeof(RF_ProgressInfo_t));
1462 return (retcode);
1463
1464 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1465 if (raidPtr->Layout.map->faultsTolerated == 0) {
1466 /* This makes no sense on a RAID 0 */
1467 *(int *) data = 100;
1468 return(0);
1469 }
1470 if (raidPtr->copyback_in_progress == 1) {
1471 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1472 raidPtr->Layout.numStripe;
1473 } else {
1474 *(int *) data = 100;
1475 }
1476 return (0);
1477
1478 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1479 progressInfoPtr = (RF_ProgressInfo_t **) data;
1480 if (raidPtr->copyback_in_progress == 1) {
1481 progressInfo.total = raidPtr->Layout.numStripe;
1482 progressInfo.completed =
1483 raidPtr->copyback_stripes_done;
1484 progressInfo.remaining = progressInfo.total -
1485 progressInfo.completed;
1486 } else {
1487 progressInfo.remaining = 0;
1488 progressInfo.completed = 100;
1489 progressInfo.total = 100;
1490 }
1491 retcode = copyout(&progressInfo, *progressInfoPtr,
1492 sizeof(RF_ProgressInfo_t));
1493 return (retcode);
1494
1495 /* the sparetable daemon calls this to wait for the kernel to
1496 * need a spare table. this ioctl does not return until a
1497 * spare table is needed. XXX -- calling mpsleep here in the
1498 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1499 * -- I should either compute the spare table in the kernel,
1500 * or have a different -- XXX XXX -- interface (a different
1501 * character device) for delivering the table -- XXX */
1502 #if 0
1503 case RAIDFRAME_SPARET_WAIT:
1504 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1505 while (!rf_sparet_wait_queue)
1506 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1507 waitreq = rf_sparet_wait_queue;
1508 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1509 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1510
1511 /* structure assignment */
1512 *((RF_SparetWait_t *) data) = *waitreq;
1513
1514 RF_Free(waitreq, sizeof(*waitreq));
1515 return (0);
1516
1517 /* wakes up a process waiting on SPARET_WAIT and puts an error
1518 * code in it that will cause the dameon to exit */
1519 case RAIDFRAME_ABORT_SPARET_WAIT:
1520 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1521 waitreq->fcol = -1;
1522 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1523 waitreq->next = rf_sparet_wait_queue;
1524 rf_sparet_wait_queue = waitreq;
1525 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1526 wakeup(&rf_sparet_wait_queue);
1527 return (0);
1528
1529 /* used by the spare table daemon to deliver a spare table
1530 * into the kernel */
1531 case RAIDFRAME_SEND_SPARET:
1532
1533 /* install the spare table */
1534 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1535
1536 /* respond to the requestor. the return status of the spare
1537 * table installation is passed in the "fcol" field */
1538 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1539 waitreq->fcol = retcode;
1540 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1541 waitreq->next = rf_sparet_resp_queue;
1542 rf_sparet_resp_queue = waitreq;
1543 wakeup(&rf_sparet_resp_queue);
1544 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1545
1546 return (retcode);
1547 #endif
1548
1549 default:
1550 break; /* fall through to the os-specific code below */
1551
1552 }
1553
1554 if (!raidPtr->valid)
1555 return (EINVAL);
1556
1557 /*
1558 * Add support for "regular" device ioctls here.
1559 */
1560
1561 switch (cmd) {
1562 case DIOCGDINFO:
1563 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1564 break;
1565 #ifdef __HAVE_OLD_DISKLABEL
1566 case ODIOCGDINFO:
1567 newlabel = *(rs->sc_dkdev.dk_label);
1568 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1569 return ENOTTY;
1570 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1571 break;
1572 #endif
1573
1574 case DIOCGPART:
1575 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1576 ((struct partinfo *) data)->part =
1577 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1578 break;
1579
1580 case DIOCWDINFO:
1581 case DIOCSDINFO:
1582 #ifdef __HAVE_OLD_DISKLABEL
1583 case ODIOCWDINFO:
1584 case ODIOCSDINFO:
1585 #endif
1586 {
1587 struct disklabel *lp;
1588 #ifdef __HAVE_OLD_DISKLABEL
1589 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1590 memset(&newlabel, 0, sizeof newlabel);
1591 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1592 lp = &newlabel;
1593 } else
1594 #endif
1595 lp = (struct disklabel *)data;
1596
1597 if ((error = raidlock(rs)) != 0)
1598 return (error);
1599
1600 rs->sc_flags |= RAIDF_LABELLING;
1601
1602 error = setdisklabel(rs->sc_dkdev.dk_label,
1603 lp, 0, rs->sc_dkdev.dk_cpulabel);
1604 if (error == 0) {
1605 if (cmd == DIOCWDINFO
1606 #ifdef __HAVE_OLD_DISKLABEL
1607 || cmd == ODIOCWDINFO
1608 #endif
1609 )
1610 error = writedisklabel(RAIDLABELDEV(dev),
1611 raidstrategy, rs->sc_dkdev.dk_label,
1612 rs->sc_dkdev.dk_cpulabel);
1613 }
1614 rs->sc_flags &= ~RAIDF_LABELLING;
1615
1616 raidunlock(rs);
1617
1618 if (error)
1619 return (error);
1620 break;
1621 }
1622
1623 case DIOCWLABEL:
1624 if (*(int *) data != 0)
1625 rs->sc_flags |= RAIDF_WLABEL;
1626 else
1627 rs->sc_flags &= ~RAIDF_WLABEL;
1628 break;
1629
1630 case DIOCGDEFLABEL:
1631 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1632 break;
1633
1634 #ifdef __HAVE_OLD_DISKLABEL
1635 case ODIOCGDEFLABEL:
1636 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1637 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1638 return ENOTTY;
1639 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1640 break;
1641 #endif
1642
1643 case DIOCAWEDGE:
1644 case DIOCDWEDGE:
1645 dkw = (void *)data;
1646
1647 /* If the ioctl happens here, the parent is us. */
1648 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1649 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1650
1651 case DIOCLWEDGES:
1652 return dkwedge_list(&rs->sc_dkdev,
1653 (struct dkwedge_list *)data, l);
1654
1655 default:
1656 retcode = ENOTTY;
1657 }
1658 return (retcode);
1659
1660 }
1661
1662
1663 /* raidinit -- complete the rest of the initialization for the
1664 RAIDframe device. */
1665
1666
1667 static void
1668 raidinit(RF_Raid_t *raidPtr)
1669 {
1670 struct cfdata *cf;
1671 struct raid_softc *rs;
1672 int unit;
1673
1674 unit = raidPtr->raidid;
1675
1676 rs = &raid_softc[unit];
1677
1678 /* XXX should check return code first... */
1679 rs->sc_flags |= RAIDF_INITED;
1680
1681 /* XXX doesn't check bounds. */
1682 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1683
1684 rs->sc_dkdev.dk_name = rs->sc_xname;
1685
1686 /* attach the pseudo device */
1687 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1688 cf->cf_name = raid_cd.cd_name;
1689 cf->cf_atname = raid_cd.cd_name;
1690 cf->cf_unit = unit;
1691 cf->cf_fstate = FSTATE_STAR;
1692
1693 rs->sc_dev = config_attach_pseudo(cf);
1694
1695 if (rs->sc_dev==NULL) {
1696 printf("raid%d: config_attach_pseudo failed\n",
1697 raidPtr->raidid);
1698 }
1699
1700 /* disk_attach actually creates space for the CPU disklabel, among
1701 * other things, so it's critical to call this *BEFORE* we try putzing
1702 * with disklabels. */
1703
1704 disk_attach(&rs->sc_dkdev);
1705
1706 /* XXX There may be a weird interaction here between this, and
1707 * protectedSectors, as used in RAIDframe. */
1708
1709 rs->sc_size = raidPtr->totalSectors;
1710 }
1711 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1712 /* wake up the daemon & tell it to get us a spare table
1713 * XXX
1714 * the entries in the queues should be tagged with the raidPtr
1715 * so that in the extremely rare case that two recons happen at once,
1716 * we know for which device were requesting a spare table
1717 * XXX
1718 *
1719 * XXX This code is not currently used. GO
1720 */
1721 int
1722 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1723 {
1724 int retcode;
1725
1726 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1727 req->next = rf_sparet_wait_queue;
1728 rf_sparet_wait_queue = req;
1729 wakeup(&rf_sparet_wait_queue);
1730
1731 /* mpsleep unlocks the mutex */
1732 while (!rf_sparet_resp_queue) {
1733 tsleep(&rf_sparet_resp_queue, PRIBIO,
1734 "raidframe getsparetable", 0);
1735 }
1736 req = rf_sparet_resp_queue;
1737 rf_sparet_resp_queue = req->next;
1738 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1739
1740 retcode = req->fcol;
1741 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1742 * alloc'd */
1743 return (retcode);
1744 }
1745 #endif
1746
1747 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1748 * bp & passes it down.
1749 * any calls originating in the kernel must use non-blocking I/O
1750 * do some extra sanity checking to return "appropriate" error values for
1751 * certain conditions (to make some standard utilities work)
1752 *
1753 * Formerly known as: rf_DoAccessKernel
1754 */
1755 void
1756 raidstart(RF_Raid_t *raidPtr)
1757 {
1758 RF_SectorCount_t num_blocks, pb, sum;
1759 RF_RaidAddr_t raid_addr;
1760 struct partition *pp;
1761 daddr_t blocknum;
1762 int unit;
1763 struct raid_softc *rs;
1764 int do_async;
1765 struct buf *bp;
1766 int rc;
1767
1768 unit = raidPtr->raidid;
1769 rs = &raid_softc[unit];
1770
1771 /* quick check to see if anything has died recently */
1772 RF_LOCK_MUTEX(raidPtr->mutex);
1773 if (raidPtr->numNewFailures > 0) {
1774 RF_UNLOCK_MUTEX(raidPtr->mutex);
1775 rf_update_component_labels(raidPtr,
1776 RF_NORMAL_COMPONENT_UPDATE);
1777 RF_LOCK_MUTEX(raidPtr->mutex);
1778 raidPtr->numNewFailures--;
1779 }
1780
1781 /* Check to see if we're at the limit... */
1782 while (raidPtr->openings > 0) {
1783 RF_UNLOCK_MUTEX(raidPtr->mutex);
1784
1785 /* get the next item, if any, from the queue */
1786 if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1787 /* nothing more to do */
1788 return;
1789 }
1790
1791 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1792 * partition.. Need to make it absolute to the underlying
1793 * device.. */
1794
1795 blocknum = bp->b_blkno;
1796 if (DISKPART(bp->b_dev) != RAW_PART) {
1797 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1798 blocknum += pp->p_offset;
1799 }
1800
1801 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1802 (int) blocknum));
1803
1804 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1805 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1806
1807 /* *THIS* is where we adjust what block we're going to...
1808 * but DO NOT TOUCH bp->b_blkno!!! */
1809 raid_addr = blocknum;
1810
1811 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1812 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1813 sum = raid_addr + num_blocks + pb;
1814 if (1 || rf_debugKernelAccess) {
1815 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1816 (int) raid_addr, (int) sum, (int) num_blocks,
1817 (int) pb, (int) bp->b_resid));
1818 }
1819 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1820 || (sum < num_blocks) || (sum < pb)) {
1821 bp->b_error = ENOSPC;
1822 bp->b_flags |= B_ERROR;
1823 bp->b_resid = bp->b_bcount;
1824 biodone(bp);
1825 RF_LOCK_MUTEX(raidPtr->mutex);
1826 continue;
1827 }
1828 /*
1829 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1830 */
1831
1832 if (bp->b_bcount & raidPtr->sectorMask) {
1833 bp->b_error = EINVAL;
1834 bp->b_flags |= B_ERROR;
1835 bp->b_resid = bp->b_bcount;
1836 biodone(bp);
1837 RF_LOCK_MUTEX(raidPtr->mutex);
1838 continue;
1839
1840 }
1841 db1_printf(("Calling DoAccess..\n"));
1842
1843
1844 RF_LOCK_MUTEX(raidPtr->mutex);
1845 raidPtr->openings--;
1846 RF_UNLOCK_MUTEX(raidPtr->mutex);
1847
1848 /*
1849 * Everything is async.
1850 */
1851 do_async = 1;
1852
1853 disk_busy(&rs->sc_dkdev);
1854
1855 /* XXX we're still at splbio() here... do we *really*
1856 need to be? */
1857
1858 /* don't ever condition on bp->b_flags & B_WRITE.
1859 * always condition on B_READ instead */
1860
1861 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
1862 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
1863 do_async, raid_addr, num_blocks,
1864 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
1865
1866 if (rc) {
1867 bp->b_error = rc;
1868 bp->b_flags |= B_ERROR;
1869 bp->b_resid = bp->b_bcount;
1870 biodone(bp);
1871 /* continue loop */
1872 }
1873
1874 RF_LOCK_MUTEX(raidPtr->mutex);
1875 }
1876 RF_UNLOCK_MUTEX(raidPtr->mutex);
1877 }
1878
1879
1880
1881
1882 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
1883
1884 int
1885 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
1886 {
1887 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
1888 struct buf *bp;
1889
1890 req->queue = queue;
1891
1892 #if DIAGNOSTIC
1893 if (queue->raidPtr->raidid >= numraid) {
1894 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
1895 numraid);
1896 panic("Invalid Unit number in rf_DispatchKernelIO");
1897 }
1898 #endif
1899
1900 bp = req->bp;
1901
1902 switch (req->type) {
1903 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
1904 /* XXX need to do something extra here.. */
1905 /* I'm leaving this in, as I've never actually seen it used,
1906 * and I'd like folks to report it... GO */
1907 printf(("WAKEUP CALLED\n"));
1908 queue->numOutstanding++;
1909
1910 bp->b_flags = 0;
1911 bp->b_private = req;
1912
1913 KernelWakeupFunc(bp);
1914 break;
1915
1916 case RF_IO_TYPE_READ:
1917 case RF_IO_TYPE_WRITE:
1918 #if RF_ACC_TRACE > 0
1919 if (req->tracerec) {
1920 RF_ETIMER_START(req->tracerec->timer);
1921 }
1922 #endif
1923 InitBP(bp, queue->rf_cinfo->ci_vp,
1924 op, queue->rf_cinfo->ci_dev,
1925 req->sectorOffset, req->numSector,
1926 req->buf, KernelWakeupFunc, (void *) req,
1927 queue->raidPtr->logBytesPerSector, req->b_proc);
1928
1929 if (rf_debugKernelAccess) {
1930 db1_printf(("dispatch: bp->b_blkno = %ld\n",
1931 (long) bp->b_blkno));
1932 }
1933 queue->numOutstanding++;
1934 queue->last_deq_sector = req->sectorOffset;
1935 /* acc wouldn't have been let in if there were any pending
1936 * reqs at any other priority */
1937 queue->curPriority = req->priority;
1938
1939 db1_printf(("Going for %c to unit %d col %d\n",
1940 req->type, queue->raidPtr->raidid,
1941 queue->col));
1942 db1_printf(("sector %d count %d (%d bytes) %d\n",
1943 (int) req->sectorOffset, (int) req->numSector,
1944 (int) (req->numSector <<
1945 queue->raidPtr->logBytesPerSector),
1946 (int) queue->raidPtr->logBytesPerSector));
1947 VOP_STRATEGY(bp->b_vp, bp);
1948
1949 break;
1950
1951 default:
1952 panic("bad req->type in rf_DispatchKernelIO");
1953 }
1954 db1_printf(("Exiting from DispatchKernelIO\n"));
1955
1956 return (0);
1957 }
1958 /* this is the callback function associated with a I/O invoked from
1959 kernel code.
1960 */
1961 static void
1962 KernelWakeupFunc(struct buf *bp)
1963 {
1964 RF_DiskQueueData_t *req = NULL;
1965 RF_DiskQueue_t *queue;
1966 int s;
1967
1968 s = splbio();
1969 db1_printf(("recovering the request queue:\n"));
1970 req = bp->b_private;
1971
1972 queue = (RF_DiskQueue_t *) req->queue;
1973
1974 #if RF_ACC_TRACE > 0
1975 if (req->tracerec) {
1976 RF_ETIMER_STOP(req->tracerec->timer);
1977 RF_ETIMER_EVAL(req->tracerec->timer);
1978 RF_LOCK_MUTEX(rf_tracing_mutex);
1979 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1980 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
1981 req->tracerec->num_phys_ios++;
1982 RF_UNLOCK_MUTEX(rf_tracing_mutex);
1983 }
1984 #endif
1985
1986 /* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
1987 * ballistic, and mark the component as hosed... */
1988
1989 if (bp->b_flags & B_ERROR) {
1990 /* Mark the disk as dead */
1991 /* but only mark it once... */
1992 /* and only if it wouldn't leave this RAID set
1993 completely broken */
1994 if (((queue->raidPtr->Disks[queue->col].status ==
1995 rf_ds_optimal) ||
1996 (queue->raidPtr->Disks[queue->col].status ==
1997 rf_ds_used_spare)) &&
1998 (queue->raidPtr->numFailures <
1999 queue->raidPtr->Layout.map->faultsTolerated)) {
2000 printf("raid%d: IO Error. Marking %s as failed.\n",
2001 queue->raidPtr->raidid,
2002 queue->raidPtr->Disks[queue->col].devname);
2003 queue->raidPtr->Disks[queue->col].status =
2004 rf_ds_failed;
2005 queue->raidPtr->status = rf_rs_degraded;
2006 queue->raidPtr->numFailures++;
2007 queue->raidPtr->numNewFailures++;
2008 } else { /* Disk is already dead... */
2009 /* printf("Disk already marked as dead!\n"); */
2010 }
2011
2012 }
2013
2014 /* Fill in the error value */
2015
2016 req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
2017
2018 simple_lock(&queue->raidPtr->iodone_lock);
2019
2020 /* Drop this one on the "finished" queue... */
2021 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2022
2023 /* Let the raidio thread know there is work to be done. */
2024 wakeup(&(queue->raidPtr->iodone));
2025
2026 simple_unlock(&queue->raidPtr->iodone_lock);
2027
2028 splx(s);
2029 }
2030
2031
2032
2033 /*
2034 * initialize a buf structure for doing an I/O in the kernel.
2035 */
2036 static void
2037 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2038 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2039 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2040 struct proc *b_proc)
2041 {
2042 /* bp->b_flags = B_PHYS | rw_flag; */
2043 bp->b_flags = B_CALL | rw_flag; /* XXX need B_PHYS here too??? */
2044 bp->b_bcount = numSect << logBytesPerSector;
2045 bp->b_bufsize = bp->b_bcount;
2046 bp->b_error = 0;
2047 bp->b_dev = dev;
2048 bp->b_data = bf;
2049 bp->b_blkno = startSect;
2050 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2051 if (bp->b_bcount == 0) {
2052 panic("bp->b_bcount is zero in InitBP!!");
2053 }
2054 bp->b_proc = b_proc;
2055 bp->b_iodone = cbFunc;
2056 bp->b_private = cbArg;
2057 bp->b_vp = b_vp;
2058 if ((bp->b_flags & B_READ) == 0) {
2059 bp->b_vp->v_numoutput++;
2060 }
2061
2062 }
2063
2064 static void
2065 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2066 struct disklabel *lp)
2067 {
2068 memset(lp, 0, sizeof(*lp));
2069
2070 /* fabricate a label... */
2071 lp->d_secperunit = raidPtr->totalSectors;
2072 lp->d_secsize = raidPtr->bytesPerSector;
2073 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2074 lp->d_ntracks = 4 * raidPtr->numCol;
2075 lp->d_ncylinders = raidPtr->totalSectors /
2076 (lp->d_nsectors * lp->d_ntracks);
2077 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2078
2079 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2080 lp->d_type = DTYPE_RAID;
2081 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2082 lp->d_rpm = 3600;
2083 lp->d_interleave = 1;
2084 lp->d_flags = 0;
2085
2086 lp->d_partitions[RAW_PART].p_offset = 0;
2087 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2088 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2089 lp->d_npartitions = RAW_PART + 1;
2090
2091 lp->d_magic = DISKMAGIC;
2092 lp->d_magic2 = DISKMAGIC;
2093 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2094
2095 }
2096 /*
2097 * Read the disklabel from the raid device. If one is not present, fake one
2098 * up.
2099 */
2100 static void
2101 raidgetdisklabel(dev_t dev)
2102 {
2103 int unit = raidunit(dev);
2104 struct raid_softc *rs = &raid_softc[unit];
2105 const char *errstring;
2106 struct disklabel *lp = rs->sc_dkdev.dk_label;
2107 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2108 RF_Raid_t *raidPtr;
2109
2110 db1_printf(("Getting the disklabel...\n"));
2111
2112 memset(clp, 0, sizeof(*clp));
2113
2114 raidPtr = raidPtrs[unit];
2115
2116 raidgetdefaultlabel(raidPtr, rs, lp);
2117
2118 /*
2119 * Call the generic disklabel extraction routine.
2120 */
2121 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2122 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2123 if (errstring)
2124 raidmakedisklabel(rs);
2125 else {
2126 int i;
2127 struct partition *pp;
2128
2129 /*
2130 * Sanity check whether the found disklabel is valid.
2131 *
2132 * This is necessary since total size of the raid device
2133 * may vary when an interleave is changed even though exactly
2134 * same components are used, and old disklabel may used
2135 * if that is found.
2136 */
2137 if (lp->d_secperunit != rs->sc_size)
2138 printf("raid%d: WARNING: %s: "
2139 "total sector size in disklabel (%d) != "
2140 "the size of raid (%ld)\n", unit, rs->sc_xname,
2141 lp->d_secperunit, (long) rs->sc_size);
2142 for (i = 0; i < lp->d_npartitions; i++) {
2143 pp = &lp->d_partitions[i];
2144 if (pp->p_offset + pp->p_size > rs->sc_size)
2145 printf("raid%d: WARNING: %s: end of partition `%c' "
2146 "exceeds the size of raid (%ld)\n",
2147 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2148 }
2149 }
2150
2151 }
2152 /*
2153 * Take care of things one might want to take care of in the event
2154 * that a disklabel isn't present.
2155 */
2156 static void
2157 raidmakedisklabel(struct raid_softc *rs)
2158 {
2159 struct disklabel *lp = rs->sc_dkdev.dk_label;
2160 db1_printf(("Making a label..\n"));
2161
2162 /*
2163 * For historical reasons, if there's no disklabel present
2164 * the raw partition must be marked FS_BSDFFS.
2165 */
2166
2167 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2168
2169 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2170
2171 lp->d_checksum = dkcksum(lp);
2172 }
2173 /*
2174 * Wait interruptibly for an exclusive lock.
2175 *
2176 * XXX
2177 * Several drivers do this; it should be abstracted and made MP-safe.
2178 * (Hmm... where have we seen this warning before :-> GO )
2179 */
2180 static int
2181 raidlock(struct raid_softc *rs)
2182 {
2183 int error;
2184
2185 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2186 rs->sc_flags |= RAIDF_WANTED;
2187 if ((error =
2188 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2189 return (error);
2190 }
2191 rs->sc_flags |= RAIDF_LOCKED;
2192 return (0);
2193 }
2194 /*
2195 * Unlock and wake up any waiters.
2196 */
2197 static void
2198 raidunlock(struct raid_softc *rs)
2199 {
2200
2201 rs->sc_flags &= ~RAIDF_LOCKED;
2202 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2203 rs->sc_flags &= ~RAIDF_WANTED;
2204 wakeup(rs);
2205 }
2206 }
2207
2208
2209 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2210 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2211
2212 int
2213 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2214 {
2215 RF_ComponentLabel_t clabel;
2216 raidread_component_label(dev, b_vp, &clabel);
2217 clabel.mod_counter = mod_counter;
2218 clabel.clean = RF_RAID_CLEAN;
2219 raidwrite_component_label(dev, b_vp, &clabel);
2220 return(0);
2221 }
2222
2223
2224 int
2225 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2226 {
2227 RF_ComponentLabel_t clabel;
2228 raidread_component_label(dev, b_vp, &clabel);
2229 clabel.mod_counter = mod_counter;
2230 clabel.clean = RF_RAID_DIRTY;
2231 raidwrite_component_label(dev, b_vp, &clabel);
2232 return(0);
2233 }
2234
2235 /* ARGSUSED */
2236 int
2237 raidread_component_label(dev_t dev, struct vnode *b_vp,
2238 RF_ComponentLabel_t *clabel)
2239 {
2240 struct buf *bp;
2241 const struct bdevsw *bdev;
2242 int error;
2243
2244 /* XXX should probably ensure that we don't try to do this if
2245 someone has changed rf_protected_sectors. */
2246
2247 if (b_vp == NULL) {
2248 /* For whatever reason, this component is not valid.
2249 Don't try to read a component label from it. */
2250 return(EINVAL);
2251 }
2252
2253 /* get a block of the appropriate size... */
2254 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2255 bp->b_dev = dev;
2256
2257 /* get our ducks in a row for the read */
2258 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2259 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2260 bp->b_flags |= B_READ;
2261 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2262
2263 bdev = bdevsw_lookup(bp->b_dev);
2264 if (bdev == NULL)
2265 return (ENXIO);
2266 (*bdev->d_strategy)(bp);
2267
2268 error = biowait(bp);
2269
2270 if (!error) {
2271 memcpy(clabel, bp->b_data,
2272 sizeof(RF_ComponentLabel_t));
2273 }
2274
2275 brelse(bp);
2276 return(error);
2277 }
2278 /* ARGSUSED */
2279 int
2280 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2281 RF_ComponentLabel_t *clabel)
2282 {
2283 struct buf *bp;
2284 const struct bdevsw *bdev;
2285 int error;
2286
2287 /* get a block of the appropriate size... */
2288 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2289 bp->b_dev = dev;
2290
2291 /* get our ducks in a row for the write */
2292 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2293 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2294 bp->b_flags |= B_WRITE;
2295 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2296
2297 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2298
2299 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2300
2301 bdev = bdevsw_lookup(bp->b_dev);
2302 if (bdev == NULL)
2303 return (ENXIO);
2304 (*bdev->d_strategy)(bp);
2305 error = biowait(bp);
2306 brelse(bp);
2307 if (error) {
2308 #if 1
2309 printf("Failed to write RAID component info!\n");
2310 #endif
2311 }
2312
2313 return(error);
2314 }
2315
2316 void
2317 rf_markalldirty(RF_Raid_t *raidPtr)
2318 {
2319 RF_ComponentLabel_t clabel;
2320 int sparecol;
2321 int c;
2322 int j;
2323 int scol = -1;
2324
2325 raidPtr->mod_counter++;
2326 for (c = 0; c < raidPtr->numCol; c++) {
2327 /* we don't want to touch (at all) a disk that has
2328 failed */
2329 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2330 raidread_component_label(
2331 raidPtr->Disks[c].dev,
2332 raidPtr->raid_cinfo[c].ci_vp,
2333 &clabel);
2334 if (clabel.status == rf_ds_spared) {
2335 /* XXX do something special...
2336 but whatever you do, don't
2337 try to access it!! */
2338 } else {
2339 raidmarkdirty(
2340 raidPtr->Disks[c].dev,
2341 raidPtr->raid_cinfo[c].ci_vp,
2342 raidPtr->mod_counter);
2343 }
2344 }
2345 }
2346
2347 for( c = 0; c < raidPtr->numSpare ; c++) {
2348 sparecol = raidPtr->numCol + c;
2349 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2350 /*
2351
2352 we claim this disk is "optimal" if it's
2353 rf_ds_used_spare, as that means it should be
2354 directly substitutable for the disk it replaced.
2355 We note that too...
2356
2357 */
2358
2359 for(j=0;j<raidPtr->numCol;j++) {
2360 if (raidPtr->Disks[j].spareCol == sparecol) {
2361 scol = j;
2362 break;
2363 }
2364 }
2365
2366 raidread_component_label(
2367 raidPtr->Disks[sparecol].dev,
2368 raidPtr->raid_cinfo[sparecol].ci_vp,
2369 &clabel);
2370 /* make sure status is noted */
2371
2372 raid_init_component_label(raidPtr, &clabel);
2373
2374 clabel.row = 0;
2375 clabel.column = scol;
2376 /* Note: we *don't* change status from rf_ds_used_spare
2377 to rf_ds_optimal */
2378 /* clabel.status = rf_ds_optimal; */
2379
2380 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2381 raidPtr->raid_cinfo[sparecol].ci_vp,
2382 raidPtr->mod_counter);
2383 }
2384 }
2385 }
2386
2387
2388 void
2389 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2390 {
2391 RF_ComponentLabel_t clabel;
2392 int sparecol;
2393 int c;
2394 int j;
2395 int scol;
2396
2397 scol = -1;
2398
2399 /* XXX should do extra checks to make sure things really are clean,
2400 rather than blindly setting the clean bit... */
2401
2402 raidPtr->mod_counter++;
2403
2404 for (c = 0; c < raidPtr->numCol; c++) {
2405 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2406 raidread_component_label(
2407 raidPtr->Disks[c].dev,
2408 raidPtr->raid_cinfo[c].ci_vp,
2409 &clabel);
2410 /* make sure status is noted */
2411 clabel.status = rf_ds_optimal;
2412
2413 /* bump the counter */
2414 clabel.mod_counter = raidPtr->mod_counter;
2415
2416 /* note what unit we are configured as */
2417 clabel.last_unit = raidPtr->raidid;
2418
2419 raidwrite_component_label(
2420 raidPtr->Disks[c].dev,
2421 raidPtr->raid_cinfo[c].ci_vp,
2422 &clabel);
2423 if (final == RF_FINAL_COMPONENT_UPDATE) {
2424 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2425 raidmarkclean(
2426 raidPtr->Disks[c].dev,
2427 raidPtr->raid_cinfo[c].ci_vp,
2428 raidPtr->mod_counter);
2429 }
2430 }
2431 }
2432 /* else we don't touch it.. */
2433 }
2434
2435 for( c = 0; c < raidPtr->numSpare ; c++) {
2436 sparecol = raidPtr->numCol + c;
2437 /* Need to ensure that the reconstruct actually completed! */
2438 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2439 /*
2440
2441 we claim this disk is "optimal" if it's
2442 rf_ds_used_spare, as that means it should be
2443 directly substitutable for the disk it replaced.
2444 We note that too...
2445
2446 */
2447
2448 for(j=0;j<raidPtr->numCol;j++) {
2449 if (raidPtr->Disks[j].spareCol == sparecol) {
2450 scol = j;
2451 break;
2452 }
2453 }
2454
2455 /* XXX shouldn't *really* need this... */
2456 raidread_component_label(
2457 raidPtr->Disks[sparecol].dev,
2458 raidPtr->raid_cinfo[sparecol].ci_vp,
2459 &clabel);
2460 /* make sure status is noted */
2461
2462 raid_init_component_label(raidPtr, &clabel);
2463
2464 clabel.mod_counter = raidPtr->mod_counter;
2465 clabel.column = scol;
2466 clabel.status = rf_ds_optimal;
2467 clabel.last_unit = raidPtr->raidid;
2468
2469 raidwrite_component_label(
2470 raidPtr->Disks[sparecol].dev,
2471 raidPtr->raid_cinfo[sparecol].ci_vp,
2472 &clabel);
2473 if (final == RF_FINAL_COMPONENT_UPDATE) {
2474 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2475 raidmarkclean( raidPtr->Disks[sparecol].dev,
2476 raidPtr->raid_cinfo[sparecol].ci_vp,
2477 raidPtr->mod_counter);
2478 }
2479 }
2480 }
2481 }
2482 }
2483
2484 void
2485 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2486 {
2487 struct proc *p;
2488 struct lwp *l;
2489
2490 p = raidPtr->engine_thread;
2491 l = LIST_FIRST(&p->p_lwps);
2492
2493 if (vp != NULL) {
2494 if (auto_configured == 1) {
2495 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2496 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2497 vput(vp);
2498
2499 } else {
2500 (void) vn_close(vp, FREAD | FWRITE, p->p_cred, l);
2501 }
2502 }
2503 }
2504
2505
2506 void
2507 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2508 {
2509 int r,c;
2510 struct vnode *vp;
2511 int acd;
2512
2513
2514 /* We take this opportunity to close the vnodes like we should.. */
2515
2516 for (c = 0; c < raidPtr->numCol; c++) {
2517 vp = raidPtr->raid_cinfo[c].ci_vp;
2518 acd = raidPtr->Disks[c].auto_configured;
2519 rf_close_component(raidPtr, vp, acd);
2520 raidPtr->raid_cinfo[c].ci_vp = NULL;
2521 raidPtr->Disks[c].auto_configured = 0;
2522 }
2523
2524 for (r = 0; r < raidPtr->numSpare; r++) {
2525 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2526 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2527 rf_close_component(raidPtr, vp, acd);
2528 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2529 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2530 }
2531 }
2532
2533
2534 void
2535 rf_ReconThread(struct rf_recon_req *req)
2536 {
2537 int s;
2538 RF_Raid_t *raidPtr;
2539
2540 s = splbio();
2541 raidPtr = (RF_Raid_t *) req->raidPtr;
2542 raidPtr->recon_in_progress = 1;
2543
2544 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2545 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2546
2547 RF_Free(req, sizeof(*req));
2548
2549 raidPtr->recon_in_progress = 0;
2550 splx(s);
2551
2552 /* That's all... */
2553 kthread_exit(0); /* does not return */
2554 }
2555
2556 void
2557 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2558 {
2559 int retcode;
2560 int s;
2561
2562 raidPtr->parity_rewrite_stripes_done = 0;
2563 raidPtr->parity_rewrite_in_progress = 1;
2564 s = splbio();
2565 retcode = rf_RewriteParity(raidPtr);
2566 splx(s);
2567 if (retcode) {
2568 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2569 } else {
2570 /* set the clean bit! If we shutdown correctly,
2571 the clean bit on each component label will get
2572 set */
2573 raidPtr->parity_good = RF_RAID_CLEAN;
2574 }
2575 raidPtr->parity_rewrite_in_progress = 0;
2576
2577 /* Anyone waiting for us to stop? If so, inform them... */
2578 if (raidPtr->waitShutdown) {
2579 wakeup(&raidPtr->parity_rewrite_in_progress);
2580 }
2581
2582 /* That's all... */
2583 kthread_exit(0); /* does not return */
2584 }
2585
2586
2587 void
2588 rf_CopybackThread(RF_Raid_t *raidPtr)
2589 {
2590 int s;
2591
2592 raidPtr->copyback_in_progress = 1;
2593 s = splbio();
2594 rf_CopybackReconstructedData(raidPtr);
2595 splx(s);
2596 raidPtr->copyback_in_progress = 0;
2597
2598 /* That's all... */
2599 kthread_exit(0); /* does not return */
2600 }
2601
2602
2603 void
2604 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2605 {
2606 int s;
2607 RF_Raid_t *raidPtr;
2608
2609 s = splbio();
2610 raidPtr = req->raidPtr;
2611 raidPtr->recon_in_progress = 1;
2612 rf_ReconstructInPlace(raidPtr, req->col);
2613 RF_Free(req, sizeof(*req));
2614 raidPtr->recon_in_progress = 0;
2615 splx(s);
2616
2617 /* That's all... */
2618 kthread_exit(0); /* does not return */
2619 }
2620
2621 static RF_AutoConfig_t *
2622 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2623 const char *cname, RF_SectorCount_t size)
2624 {
2625 int good_one = 0;
2626 RF_ComponentLabel_t *clabel;
2627 RF_AutoConfig_t *ac;
2628
2629 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2630 if (clabel == NULL) {
2631 oomem:
2632 while(ac_list) {
2633 ac = ac_list;
2634 if (ac->clabel)
2635 free(ac->clabel, M_RAIDFRAME);
2636 ac_list = ac_list->next;
2637 free(ac, M_RAIDFRAME);
2638 }
2639 printf("RAID auto config: out of memory!\n");
2640 return NULL; /* XXX probably should panic? */
2641 }
2642
2643 if (!raidread_component_label(dev, vp, clabel)) {
2644 /* Got the label. Does it look reasonable? */
2645 if (rf_reasonable_label(clabel) &&
2646 (clabel->partitionSize <= size)) {
2647 #ifdef DEBUG
2648 printf("Component on: %s: %llu\n",
2649 cname, (unsigned long long)size);
2650 rf_print_component_label(clabel);
2651 #endif
2652 /* if it's reasonable, add it, else ignore it. */
2653 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2654 M_NOWAIT);
2655 if (ac == NULL) {
2656 free(clabel, M_RAIDFRAME);
2657 goto oomem;
2658 }
2659 strlcpy(ac->devname, cname, sizeof(ac->devname));
2660 ac->dev = dev;
2661 ac->vp = vp;
2662 ac->clabel = clabel;
2663 ac->next = ac_list;
2664 ac_list = ac;
2665 good_one = 1;
2666 }
2667 }
2668 if (!good_one) {
2669 /* cleanup */
2670 free(clabel, M_RAIDFRAME);
2671 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2672 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2673 vput(vp);
2674 }
2675 return ac_list;
2676 }
2677
2678 RF_AutoConfig_t *
2679 rf_find_raid_components()
2680 {
2681 struct vnode *vp;
2682 struct disklabel label;
2683 struct device *dv;
2684 dev_t dev;
2685 int bmajor, bminor, wedge;
2686 int error;
2687 int i;
2688 RF_AutoConfig_t *ac_list;
2689
2690
2691 /* initialize the AutoConfig list */
2692 ac_list = NULL;
2693
2694 /* we begin by trolling through *all* the devices on the system */
2695
2696 for (dv = alldevs.tqh_first; dv != NULL;
2697 dv = dv->dv_list.tqe_next) {
2698
2699 /* we are only interested in disks... */
2700 if (device_class(dv) != DV_DISK)
2701 continue;
2702
2703 /* we don't care about floppies... */
2704 if (device_is_a(dv, "fd")) {
2705 continue;
2706 }
2707
2708 /* we don't care about CD's... */
2709 if (device_is_a(dv, "cd")) {
2710 continue;
2711 }
2712
2713 /* hdfd is the Atari/Hades floppy driver */
2714 if (device_is_a(dv, "hdfd")) {
2715 continue;
2716 }
2717
2718 /* fdisa is the Atari/Milan floppy driver */
2719 if (device_is_a(dv, "fdisa")) {
2720 continue;
2721 }
2722
2723 /* need to find the device_name_to_block_device_major stuff */
2724 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2725
2726 /* get a vnode for the raw partition of this disk */
2727
2728 wedge = device_is_a(dv, "dk");
2729 bminor = minor(device_unit(dv));
2730 dev = wedge ? makedev(bmajor, bminor) :
2731 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2732 if (bdevvp(dev, &vp))
2733 panic("RAID can't alloc vnode");
2734
2735 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2736
2737 if (error) {
2738 /* "Who cares." Continue looking
2739 for something that exists*/
2740 vput(vp);
2741 continue;
2742 }
2743
2744 if (wedge) {
2745 struct dkwedge_info dkw;
2746 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2747 NOCRED, 0);
2748 if (error) {
2749 printf("RAIDframe: can't get wedge info for "
2750 "dev %s (%d)\n", dv->dv_xname, error);
2751 out:
2752 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2753 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2754 vput(vp);
2755 continue;
2756 }
2757
2758 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
2759 goto out;
2760
2761 ac_list = rf_get_component(ac_list, dev, vp,
2762 dv->dv_xname, dkw.dkw_size);
2763 continue;
2764 }
2765
2766 /* Ok, the disk exists. Go get the disklabel. */
2767 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2768 if (error) {
2769 /*
2770 * XXX can't happen - open() would
2771 * have errored out (or faked up one)
2772 */
2773 if (error != ENOTTY)
2774 printf("RAIDframe: can't get label for dev "
2775 "%s (%d)\n", dv->dv_xname, error);
2776 }
2777
2778 /* don't need this any more. We'll allocate it again
2779 a little later if we really do... */
2780 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2781 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2782 vput(vp);
2783
2784 if (error)
2785 continue;
2786
2787 for (i = 0; i < label.d_npartitions; i++) {
2788 char cname[sizeof(ac_list->devname)];
2789
2790 /* We only support partitions marked as RAID */
2791 if (label.d_partitions[i].p_fstype != FS_RAID)
2792 continue;
2793
2794 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2795 if (bdevvp(dev, &vp))
2796 panic("RAID can't alloc vnode");
2797
2798 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2799 if (error) {
2800 /* Whatever... */
2801 vput(vp);
2802 continue;
2803 }
2804 snprintf(cname, sizeof(cname), "%s%c",
2805 dv->dv_xname, 'a' + i);
2806 ac_list = rf_get_component(ac_list, dev, vp, cname,
2807 label.d_partitions[i].p_size);
2808 }
2809 }
2810 return ac_list;
2811 }
2812
2813
2814 static int
2815 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2816 {
2817
2818 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2819 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2820 ((clabel->clean == RF_RAID_CLEAN) ||
2821 (clabel->clean == RF_RAID_DIRTY)) &&
2822 clabel->row >=0 &&
2823 clabel->column >= 0 &&
2824 clabel->num_rows > 0 &&
2825 clabel->num_columns > 0 &&
2826 clabel->row < clabel->num_rows &&
2827 clabel->column < clabel->num_columns &&
2828 clabel->blockSize > 0 &&
2829 clabel->numBlocks > 0) {
2830 /* label looks reasonable enough... */
2831 return(1);
2832 }
2833 return(0);
2834 }
2835
2836
2837 #ifdef DEBUG
2838 void
2839 rf_print_component_label(RF_ComponentLabel_t *clabel)
2840 {
2841 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
2842 clabel->row, clabel->column,
2843 clabel->num_rows, clabel->num_columns);
2844 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
2845 clabel->version, clabel->serial_number,
2846 clabel->mod_counter);
2847 printf(" Clean: %s Status: %d\n",
2848 clabel->clean ? "Yes" : "No", clabel->status );
2849 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
2850 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
2851 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
2852 (char) clabel->parityConfig, clabel->blockSize,
2853 clabel->numBlocks);
2854 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
2855 printf(" Contains root partition: %s\n",
2856 clabel->root_partition ? "Yes" : "No" );
2857 printf(" Last configured as: raid%d\n", clabel->last_unit );
2858 #if 0
2859 printf(" Config order: %d\n", clabel->config_order);
2860 #endif
2861
2862 }
2863 #endif
2864
2865 RF_ConfigSet_t *
2866 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
2867 {
2868 RF_AutoConfig_t *ac;
2869 RF_ConfigSet_t *config_sets;
2870 RF_ConfigSet_t *cset;
2871 RF_AutoConfig_t *ac_next;
2872
2873
2874 config_sets = NULL;
2875
2876 /* Go through the AutoConfig list, and figure out which components
2877 belong to what sets. */
2878 ac = ac_list;
2879 while(ac!=NULL) {
2880 /* we're going to putz with ac->next, so save it here
2881 for use at the end of the loop */
2882 ac_next = ac->next;
2883
2884 if (config_sets == NULL) {
2885 /* will need at least this one... */
2886 config_sets = (RF_ConfigSet_t *)
2887 malloc(sizeof(RF_ConfigSet_t),
2888 M_RAIDFRAME, M_NOWAIT);
2889 if (config_sets == NULL) {
2890 panic("rf_create_auto_sets: No memory!");
2891 }
2892 /* this one is easy :) */
2893 config_sets->ac = ac;
2894 config_sets->next = NULL;
2895 config_sets->rootable = 0;
2896 ac->next = NULL;
2897 } else {
2898 /* which set does this component fit into? */
2899 cset = config_sets;
2900 while(cset!=NULL) {
2901 if (rf_does_it_fit(cset, ac)) {
2902 /* looks like it matches... */
2903 ac->next = cset->ac;
2904 cset->ac = ac;
2905 break;
2906 }
2907 cset = cset->next;
2908 }
2909 if (cset==NULL) {
2910 /* didn't find a match above... new set..*/
2911 cset = (RF_ConfigSet_t *)
2912 malloc(sizeof(RF_ConfigSet_t),
2913 M_RAIDFRAME, M_NOWAIT);
2914 if (cset == NULL) {
2915 panic("rf_create_auto_sets: No memory!");
2916 }
2917 cset->ac = ac;
2918 ac->next = NULL;
2919 cset->next = config_sets;
2920 cset->rootable = 0;
2921 config_sets = cset;
2922 }
2923 }
2924 ac = ac_next;
2925 }
2926
2927
2928 return(config_sets);
2929 }
2930
2931 static int
2932 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
2933 {
2934 RF_ComponentLabel_t *clabel1, *clabel2;
2935
2936 /* If this one matches the *first* one in the set, that's good
2937 enough, since the other members of the set would have been
2938 through here too... */
2939 /* note that we are not checking partitionSize here..
2940
2941 Note that we are also not checking the mod_counters here.
2942 If everything else matches execpt the mod_counter, that's
2943 good enough for this test. We will deal with the mod_counters
2944 a little later in the autoconfiguration process.
2945
2946 (clabel1->mod_counter == clabel2->mod_counter) &&
2947
2948 The reason we don't check for this is that failed disks
2949 will have lower modification counts. If those disks are
2950 not added to the set they used to belong to, then they will
2951 form their own set, which may result in 2 different sets,
2952 for example, competing to be configured at raid0, and
2953 perhaps competing to be the root filesystem set. If the
2954 wrong ones get configured, or both attempt to become /,
2955 weird behaviour and or serious lossage will occur. Thus we
2956 need to bring them into the fold here, and kick them out at
2957 a later point.
2958
2959 */
2960
2961 clabel1 = cset->ac->clabel;
2962 clabel2 = ac->clabel;
2963 if ((clabel1->version == clabel2->version) &&
2964 (clabel1->serial_number == clabel2->serial_number) &&
2965 (clabel1->num_rows == clabel2->num_rows) &&
2966 (clabel1->num_columns == clabel2->num_columns) &&
2967 (clabel1->sectPerSU == clabel2->sectPerSU) &&
2968 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
2969 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
2970 (clabel1->parityConfig == clabel2->parityConfig) &&
2971 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
2972 (clabel1->blockSize == clabel2->blockSize) &&
2973 (clabel1->numBlocks == clabel2->numBlocks) &&
2974 (clabel1->autoconfigure == clabel2->autoconfigure) &&
2975 (clabel1->root_partition == clabel2->root_partition) &&
2976 (clabel1->last_unit == clabel2->last_unit) &&
2977 (clabel1->config_order == clabel2->config_order)) {
2978 /* if it get's here, it almost *has* to be a match */
2979 } else {
2980 /* it's not consistent with somebody in the set..
2981 punt */
2982 return(0);
2983 }
2984 /* all was fine.. it must fit... */
2985 return(1);
2986 }
2987
2988 int
2989 rf_have_enough_components(RF_ConfigSet_t *cset)
2990 {
2991 RF_AutoConfig_t *ac;
2992 RF_AutoConfig_t *auto_config;
2993 RF_ComponentLabel_t *clabel;
2994 int c;
2995 int num_cols;
2996 int num_missing;
2997 int mod_counter;
2998 int mod_counter_found;
2999 int even_pair_failed;
3000 char parity_type;
3001
3002
3003 /* check to see that we have enough 'live' components
3004 of this set. If so, we can configure it if necessary */
3005
3006 num_cols = cset->ac->clabel->num_columns;
3007 parity_type = cset->ac->clabel->parityConfig;
3008
3009 /* XXX Check for duplicate components!?!?!? */
3010
3011 /* Determine what the mod_counter is supposed to be for this set. */
3012
3013 mod_counter_found = 0;
3014 mod_counter = 0;
3015 ac = cset->ac;
3016 while(ac!=NULL) {
3017 if (mod_counter_found==0) {
3018 mod_counter = ac->clabel->mod_counter;
3019 mod_counter_found = 1;
3020 } else {
3021 if (ac->clabel->mod_counter > mod_counter) {
3022 mod_counter = ac->clabel->mod_counter;
3023 }
3024 }
3025 ac = ac->next;
3026 }
3027
3028 num_missing = 0;
3029 auto_config = cset->ac;
3030
3031 even_pair_failed = 0;
3032 for(c=0; c<num_cols; c++) {
3033 ac = auto_config;
3034 while(ac!=NULL) {
3035 if ((ac->clabel->column == c) &&
3036 (ac->clabel->mod_counter == mod_counter)) {
3037 /* it's this one... */
3038 #ifdef DEBUG
3039 printf("Found: %s at %d\n",
3040 ac->devname,c);
3041 #endif
3042 break;
3043 }
3044 ac=ac->next;
3045 }
3046 if (ac==NULL) {
3047 /* Didn't find one here! */
3048 /* special case for RAID 1, especially
3049 where there are more than 2
3050 components (where RAIDframe treats
3051 things a little differently :( ) */
3052 if (parity_type == '1') {
3053 if (c%2 == 0) { /* even component */
3054 even_pair_failed = 1;
3055 } else { /* odd component. If
3056 we're failed, and
3057 so is the even
3058 component, it's
3059 "Good Night, Charlie" */
3060 if (even_pair_failed == 1) {
3061 return(0);
3062 }
3063 }
3064 } else {
3065 /* normal accounting */
3066 num_missing++;
3067 }
3068 }
3069 if ((parity_type == '1') && (c%2 == 1)) {
3070 /* Just did an even component, and we didn't
3071 bail.. reset the even_pair_failed flag,
3072 and go on to the next component.... */
3073 even_pair_failed = 0;
3074 }
3075 }
3076
3077 clabel = cset->ac->clabel;
3078
3079 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3080 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3081 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3082 /* XXX this needs to be made *much* more general */
3083 /* Too many failures */
3084 return(0);
3085 }
3086 /* otherwise, all is well, and we've got enough to take a kick
3087 at autoconfiguring this set */
3088 return(1);
3089 }
3090
3091 void
3092 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3093 RF_Raid_t *raidPtr)
3094 {
3095 RF_ComponentLabel_t *clabel;
3096 int i;
3097
3098 clabel = ac->clabel;
3099
3100 /* 1. Fill in the common stuff */
3101 config->numRow = clabel->num_rows = 1;
3102 config->numCol = clabel->num_columns;
3103 config->numSpare = 0; /* XXX should this be set here? */
3104 config->sectPerSU = clabel->sectPerSU;
3105 config->SUsPerPU = clabel->SUsPerPU;
3106 config->SUsPerRU = clabel->SUsPerRU;
3107 config->parityConfig = clabel->parityConfig;
3108 /* XXX... */
3109 strcpy(config->diskQueueType,"fifo");
3110 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3111 config->layoutSpecificSize = 0; /* XXX ?? */
3112
3113 while(ac!=NULL) {
3114 /* row/col values will be in range due to the checks
3115 in reasonable_label() */
3116 strcpy(config->devnames[0][ac->clabel->column],
3117 ac->devname);
3118 ac = ac->next;
3119 }
3120
3121 for(i=0;i<RF_MAXDBGV;i++) {
3122 config->debugVars[i][0] = 0;
3123 }
3124 }
3125
3126 int
3127 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3128 {
3129 RF_ComponentLabel_t clabel;
3130 struct vnode *vp;
3131 dev_t dev;
3132 int column;
3133 int sparecol;
3134
3135 raidPtr->autoconfigure = new_value;
3136
3137 for(column=0; column<raidPtr->numCol; column++) {
3138 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3139 dev = raidPtr->Disks[column].dev;
3140 vp = raidPtr->raid_cinfo[column].ci_vp;
3141 raidread_component_label(dev, vp, &clabel);
3142 clabel.autoconfigure = new_value;
3143 raidwrite_component_label(dev, vp, &clabel);
3144 }
3145 }
3146 for(column = 0; column < raidPtr->numSpare ; column++) {
3147 sparecol = raidPtr->numCol + column;
3148 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3149 dev = raidPtr->Disks[sparecol].dev;
3150 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3151 raidread_component_label(dev, vp, &clabel);
3152 clabel.autoconfigure = new_value;
3153 raidwrite_component_label(dev, vp, &clabel);
3154 }
3155 }
3156 return(new_value);
3157 }
3158
3159 int
3160 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3161 {
3162 RF_ComponentLabel_t clabel;
3163 struct vnode *vp;
3164 dev_t dev;
3165 int column;
3166 int sparecol;
3167
3168 raidPtr->root_partition = new_value;
3169 for(column=0; column<raidPtr->numCol; column++) {
3170 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3171 dev = raidPtr->Disks[column].dev;
3172 vp = raidPtr->raid_cinfo[column].ci_vp;
3173 raidread_component_label(dev, vp, &clabel);
3174 clabel.root_partition = new_value;
3175 raidwrite_component_label(dev, vp, &clabel);
3176 }
3177 }
3178 for(column = 0; column < raidPtr->numSpare ; column++) {
3179 sparecol = raidPtr->numCol + column;
3180 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3181 dev = raidPtr->Disks[sparecol].dev;
3182 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3183 raidread_component_label(dev, vp, &clabel);
3184 clabel.root_partition = new_value;
3185 raidwrite_component_label(dev, vp, &clabel);
3186 }
3187 }
3188 return(new_value);
3189 }
3190
3191 void
3192 rf_release_all_vps(RF_ConfigSet_t *cset)
3193 {
3194 RF_AutoConfig_t *ac;
3195
3196 ac = cset->ac;
3197 while(ac!=NULL) {
3198 /* Close the vp, and give it back */
3199 if (ac->vp) {
3200 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3201 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3202 vput(ac->vp);
3203 ac->vp = NULL;
3204 }
3205 ac = ac->next;
3206 }
3207 }
3208
3209
3210 void
3211 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3212 {
3213 RF_AutoConfig_t *ac;
3214 RF_AutoConfig_t *next_ac;
3215
3216 ac = cset->ac;
3217 while(ac!=NULL) {
3218 next_ac = ac->next;
3219 /* nuke the label */
3220 free(ac->clabel, M_RAIDFRAME);
3221 /* cleanup the config structure */
3222 free(ac, M_RAIDFRAME);
3223 /* "next.." */
3224 ac = next_ac;
3225 }
3226 /* and, finally, nuke the config set */
3227 free(cset, M_RAIDFRAME);
3228 }
3229
3230
3231 void
3232 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3233 {
3234 /* current version number */
3235 clabel->version = RF_COMPONENT_LABEL_VERSION;
3236 clabel->serial_number = raidPtr->serial_number;
3237 clabel->mod_counter = raidPtr->mod_counter;
3238 clabel->num_rows = 1;
3239 clabel->num_columns = raidPtr->numCol;
3240 clabel->clean = RF_RAID_DIRTY; /* not clean */
3241 clabel->status = rf_ds_optimal; /* "It's good!" */
3242
3243 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3244 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3245 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3246
3247 clabel->blockSize = raidPtr->bytesPerSector;
3248 clabel->numBlocks = raidPtr->sectorsPerDisk;
3249
3250 /* XXX not portable */
3251 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3252 clabel->maxOutstanding = raidPtr->maxOutstanding;
3253 clabel->autoconfigure = raidPtr->autoconfigure;
3254 clabel->root_partition = raidPtr->root_partition;
3255 clabel->last_unit = raidPtr->raidid;
3256 clabel->config_order = raidPtr->config_order;
3257 }
3258
3259 int
3260 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3261 {
3262 RF_Raid_t *raidPtr;
3263 RF_Config_t *config;
3264 int raidID;
3265 int retcode;
3266
3267 #ifdef DEBUG
3268 printf("RAID autoconfigure\n");
3269 #endif
3270
3271 retcode = 0;
3272 *unit = -1;
3273
3274 /* 1. Create a config structure */
3275
3276 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3277 M_RAIDFRAME,
3278 M_NOWAIT);
3279 if (config==NULL) {
3280 printf("Out of mem!?!?\n");
3281 /* XXX do something more intelligent here. */
3282 return(1);
3283 }
3284
3285 memset(config, 0, sizeof(RF_Config_t));
3286
3287 /*
3288 2. Figure out what RAID ID this one is supposed to live at
3289 See if we can get the same RAID dev that it was configured
3290 on last time..
3291 */
3292
3293 raidID = cset->ac->clabel->last_unit;
3294 if ((raidID < 0) || (raidID >= numraid)) {
3295 /* let's not wander off into lala land. */
3296 raidID = numraid - 1;
3297 }
3298 if (raidPtrs[raidID]->valid != 0) {
3299
3300 /*
3301 Nope... Go looking for an alternative...
3302 Start high so we don't immediately use raid0 if that's
3303 not taken.
3304 */
3305
3306 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3307 if (raidPtrs[raidID]->valid == 0) {
3308 /* can use this one! */
3309 break;
3310 }
3311 }
3312 }
3313
3314 if (raidID < 0) {
3315 /* punt... */
3316 printf("Unable to auto configure this set!\n");
3317 printf("(Out of RAID devs!)\n");
3318 free(config, M_RAIDFRAME);
3319 return(1);
3320 }
3321
3322 #ifdef DEBUG
3323 printf("Configuring raid%d:\n",raidID);
3324 #endif
3325
3326 raidPtr = raidPtrs[raidID];
3327
3328 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3329 raidPtr->raidid = raidID;
3330 raidPtr->openings = RAIDOUTSTANDING;
3331
3332 /* 3. Build the configuration structure */
3333 rf_create_configuration(cset->ac, config, raidPtr);
3334
3335 /* 4. Do the configuration */
3336 retcode = rf_Configure(raidPtr, config, cset->ac);
3337
3338 if (retcode == 0) {
3339
3340 raidinit(raidPtrs[raidID]);
3341
3342 rf_markalldirty(raidPtrs[raidID]);
3343 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3344 if (cset->ac->clabel->root_partition==1) {
3345 /* everything configured just fine. Make a note
3346 that this set is eligible to be root. */
3347 cset->rootable = 1;
3348 /* XXX do this here? */
3349 raidPtrs[raidID]->root_partition = 1;
3350 }
3351 }
3352
3353 /* 5. Cleanup */
3354 free(config, M_RAIDFRAME);
3355
3356 *unit = raidID;
3357 return(retcode);
3358 }
3359
3360 void
3361 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3362 {
3363 struct buf *bp;
3364
3365 bp = (struct buf *)desc->bp;
3366 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3367 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3368 }
3369
3370 void
3371 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3372 size_t xmin, size_t xmax)
3373 {
3374 pool_init(p, size, 0, 0, 0, w_chan, NULL);
3375 pool_sethiwat(p, xmax);
3376 pool_prime(p, xmin);
3377 pool_setlowat(p, xmin);
3378 }
3379
3380 /*
3381 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3382 * if there is IO pending and if that IO could possibly be done for a
3383 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3384 * otherwise.
3385 *
3386 */
3387
3388 int
3389 rf_buf_queue_check(int raidid)
3390 {
3391 if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3392 raidPtrs[raidid]->openings > 0) {
3393 /* there is work to do */
3394 return 0;
3395 }
3396 /* default is nothing to do */
3397 return 1;
3398 }
3399
3400 int
3401 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3402 {
3403 struct partinfo dpart;
3404 struct dkwedge_info dkw;
3405 int error;
3406
3407 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
3408 if (error == 0) {
3409 diskPtr->blockSize = dpart.disklab->d_secsize;
3410 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3411 diskPtr->partitionSize = dpart.part->p_size;
3412 return 0;
3413 }
3414
3415 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
3416 if (error == 0) {
3417 diskPtr->blockSize = 512; /* XXX */
3418 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3419 diskPtr->partitionSize = dkw.dkw_size;
3420 return 0;
3421 }
3422 return error;
3423 }
3424
3425 static int
3426 raid_match(struct device *self, struct cfdata *cfdata,
3427 void *aux)
3428 {
3429 return 1;
3430 }
3431
3432 static void
3433 raid_attach(struct device *parent, struct device *self,
3434 void *aux)
3435 {
3436
3437 }
3438
3439
3440 static int
3441 raid_detach(struct device *self, int flags)
3442 {
3443 struct raid_softc *rs = (struct raid_softc *)self;
3444
3445 if (rs->sc_flags & RAIDF_INITED)
3446 return EBUSY;
3447
3448 return 0;
3449 }
3450
3451
3452