Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.226.2.2
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.226.2.2 2007/06/09 23:57:56 ad Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.226.2.2 2007/06/09 23:57:56 ad Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 static int raid_match(struct device *, struct cfdata *, void *);
    218 static void raid_attach(struct device *, struct device *, void *);
    219 static int raid_detach(struct device *, int);
    220 
    221 dev_type_open(raidopen);
    222 dev_type_close(raidclose);
    223 dev_type_read(raidread);
    224 dev_type_write(raidwrite);
    225 dev_type_ioctl(raidioctl);
    226 dev_type_strategy(raidstrategy);
    227 dev_type_dump(raiddump);
    228 dev_type_size(raidsize);
    229 
    230 const struct bdevsw raid_bdevsw = {
    231 	raidopen, raidclose, raidstrategy, raidioctl,
    232 	raiddump, raidsize, D_DISK
    233 };
    234 
    235 const struct cdevsw raid_cdevsw = {
    236 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    237 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    238 };
    239 
    240 /* XXX Not sure if the following should be replacing the raidPtrs above,
    241    or if it should be used in conjunction with that...
    242 */
    243 
    244 struct raid_softc {
    245 	struct device *sc_dev;
    246 	int     sc_flags;	/* flags */
    247 	int     sc_cflags;	/* configuration flags */
    248 	uint64_t sc_size;	/* size of the raid device */
    249 	char    sc_xname[20];	/* XXX external name */
    250 	struct disk sc_dkdev;	/* generic disk device info */
    251 	struct bufq_state *buf_queue;	/* used for the device queue */
    252 };
    253 /* sc_flags */
    254 #define RAIDF_INITED	0x01	/* unit has been initialized */
    255 #define RAIDF_WLABEL	0x02	/* label area is writable */
    256 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    257 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    258 #define RAIDF_LOCKED	0x80	/* unit is locked */
    259 
    260 #define	raidunit(x)	DISKUNIT(x)
    261 int numraid = 0;
    262 
    263 extern struct cfdriver raid_cd;
    264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
    265     raid_match, raid_attach, raid_detach, NULL);
    266 
    267 /*
    268  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    269  * Be aware that large numbers can allow the driver to consume a lot of
    270  * kernel memory, especially on writes, and in degraded mode reads.
    271  *
    272  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    273  * a single 64K write will typically require 64K for the old data,
    274  * 64K for the old parity, and 64K for the new parity, for a total
    275  * of 192K (if the parity buffer is not re-used immediately).
    276  * Even it if is used immediately, that's still 128K, which when multiplied
    277  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    278  *
    279  * Now in degraded mode, for example, a 64K read on the above setup may
    280  * require data reconstruction, which will require *all* of the 4 remaining
    281  * disks to participate -- 4 * 32K/disk == 128K again.
    282  */
    283 
    284 #ifndef RAIDOUTSTANDING
    285 #define RAIDOUTSTANDING   6
    286 #endif
    287 
    288 #define RAIDLABELDEV(dev)	\
    289 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    290 
    291 /* declared here, and made public, for the benefit of KVM stuff.. */
    292 struct raid_softc *raid_softc;
    293 
    294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    295 				     struct disklabel *);
    296 static void raidgetdisklabel(dev_t);
    297 static void raidmakedisklabel(struct raid_softc *);
    298 
    299 static int raidlock(struct raid_softc *);
    300 static void raidunlock(struct raid_softc *);
    301 
    302 static void rf_markalldirty(RF_Raid_t *);
    303 
    304 void rf_ReconThread(struct rf_recon_req *);
    305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    306 void rf_CopybackThread(RF_Raid_t *raidPtr);
    307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    308 int rf_autoconfig(struct device *self);
    309 void rf_buildroothack(RF_ConfigSet_t *);
    310 
    311 RF_AutoConfig_t *rf_find_raid_components(void);
    312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    314 static int rf_reasonable_label(RF_ComponentLabel_t *);
    315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    316 int rf_set_autoconfig(RF_Raid_t *, int);
    317 int rf_set_rootpartition(RF_Raid_t *, int);
    318 void rf_release_all_vps(RF_ConfigSet_t *);
    319 void rf_cleanup_config_set(RF_ConfigSet_t *);
    320 int rf_have_enough_components(RF_ConfigSet_t *);
    321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    322 
    323 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    324 				  allow autoconfig to take place.
    325 				  Note that this is overridden by having
    326 				  RAID_AUTOCONFIG as an option in the
    327 				  kernel config file.  */
    328 
    329 struct RF_Pools_s rf_pools;
    330 
    331 void
    332 raidattach(int num)
    333 {
    334 	int raidID;
    335 	int i, rc;
    336 
    337 #ifdef DEBUG
    338 	printf("raidattach: Asked for %d units\n", num);
    339 #endif
    340 
    341 	if (num <= 0) {
    342 #ifdef DIAGNOSTIC
    343 		panic("raidattach: count <= 0");
    344 #endif
    345 		return;
    346 	}
    347 	/* This is where all the initialization stuff gets done. */
    348 
    349 	numraid = num;
    350 
    351 	/* Make some space for requested number of units... */
    352 
    353 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    354 	if (raidPtrs == NULL) {
    355 		panic("raidPtrs is NULL!!");
    356 	}
    357 
    358 	rf_mutex_init(&rf_sparet_wait_mutex);
    359 
    360 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    361 
    362 	for (i = 0; i < num; i++)
    363 		raidPtrs[i] = NULL;
    364 	rc = rf_BootRaidframe();
    365 	if (rc == 0)
    366 		printf("Kernelized RAIDframe activated\n");
    367 	else
    368 		panic("Serious error booting RAID!!");
    369 
    370 	/* put together some datastructures like the CCD device does.. This
    371 	 * lets us lock the device and what-not when it gets opened. */
    372 
    373 	raid_softc = (struct raid_softc *)
    374 		malloc(num * sizeof(struct raid_softc),
    375 		       M_RAIDFRAME, M_NOWAIT);
    376 	if (raid_softc == NULL) {
    377 		printf("WARNING: no memory for RAIDframe driver\n");
    378 		return;
    379 	}
    380 
    381 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    382 
    383 	for (raidID = 0; raidID < num; raidID++) {
    384 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    385 
    386 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    387 			  (RF_Raid_t *));
    388 		if (raidPtrs[raidID] == NULL) {
    389 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    390 			numraid = raidID;
    391 			return;
    392 		}
    393 	}
    394 
    395 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    396 		printf("config_cfattach_attach failed?\n");
    397 	}
    398 
    399 #ifdef RAID_AUTOCONFIG
    400 	raidautoconfig = 1;
    401 #endif
    402 
    403 	/*
    404 	 * Register a finalizer which will be used to auto-config RAID
    405 	 * sets once all real hardware devices have been found.
    406 	 */
    407 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    408 		printf("WARNING: unable to register RAIDframe finalizer\n");
    409 }
    410 
    411 int
    412 rf_autoconfig(struct device *self)
    413 {
    414 	RF_AutoConfig_t *ac_list;
    415 	RF_ConfigSet_t *config_sets;
    416 	int i;
    417 
    418 	if (raidautoconfig == 0)
    419 		return (0);
    420 
    421 	/* XXX This code can only be run once. */
    422 	raidautoconfig = 0;
    423 
    424 	/* 1. locate all RAID components on the system */
    425 #ifdef DEBUG
    426 	printf("Searching for RAID components...\n");
    427 #endif
    428 	ac_list = rf_find_raid_components();
    429 
    430 	/* 2. Sort them into their respective sets. */
    431 	config_sets = rf_create_auto_sets(ac_list);
    432 
    433 	/*
    434 	 * 3. Evaluate each set andconfigure the valid ones.
    435 	 * This gets done in rf_buildroothack().
    436 	 */
    437 	rf_buildroothack(config_sets);
    438 
    439 	for (i = 0; i < numraid; i++)
    440 		if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
    441 			dkwedge_discover(&raid_softc[i].sc_dkdev);
    442 
    443 	return 1;
    444 }
    445 
    446 void
    447 rf_buildroothack(RF_ConfigSet_t *config_sets)
    448 {
    449 	RF_ConfigSet_t *cset;
    450 	RF_ConfigSet_t *next_cset;
    451 	int retcode;
    452 	int raidID;
    453 	int rootID;
    454 	int col;
    455 	int num_root;
    456 	char *devname;
    457 
    458 	rootID = 0;
    459 	num_root = 0;
    460 	cset = config_sets;
    461 	while(cset != NULL ) {
    462 		next_cset = cset->next;
    463 		if (rf_have_enough_components(cset) &&
    464 		    cset->ac->clabel->autoconfigure==1) {
    465 			retcode = rf_auto_config_set(cset,&raidID);
    466 			if (!retcode) {
    467 #ifdef DEBUG
    468 				printf("raid%d: configured ok\n", raidID);
    469 #endif
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #ifdef DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 #ifdef DEBUG
    483 			printf("raid%d: not enough components\n", raidID);
    484 #endif
    485 			/* we're not autoconfiguring this set...
    486 			   release the associated resources */
    487 			rf_release_all_vps(cset);
    488 		}
    489 		/* cleanup */
    490 		rf_cleanup_config_set(cset);
    491 		cset = next_cset;
    492 	}
    493 
    494 	/* if the user has specified what the root device should be
    495 	   then we don't touch booted_device or boothowto... */
    496 
    497 	if (rootspec != NULL)
    498 		return;
    499 
    500 	/* we found something bootable... */
    501 
    502 	if (num_root == 1) {
    503 		booted_device = raid_softc[rootID].sc_dev;
    504 	} else if (num_root > 1) {
    505 
    506 		/*
    507 		 * Maybe the MD code can help. If it cannot, then
    508 		 * setroot() will discover that we have no
    509 		 * booted_device and will ask the user if nothing was
    510 		 * hardwired in the kernel config file
    511 		 */
    512 
    513 		if (booted_device == NULL)
    514 			cpu_rootconf();
    515 		if (booted_device == NULL)
    516 			return;
    517 
    518 		num_root = 0;
    519 		for (raidID = 0; raidID < numraid; raidID++) {
    520 			if (raidPtrs[raidID]->valid == 0)
    521 				continue;
    522 
    523 			if (raidPtrs[raidID]->root_partition == 0)
    524 				continue;
    525 
    526 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    527 				devname = raidPtrs[raidID]->Disks[col].devname;
    528 				devname += sizeof("/dev/") - 1;
    529 				if (strncmp(devname, booted_device->dv_xname,
    530 					    strlen(booted_device->dv_xname)) != 0)
    531 					continue;
    532 #ifdef DEBUG
    533 				printf("raid%d includes boot device %s\n",
    534 				       raidID, devname);
    535 #endif
    536 				num_root++;
    537 				rootID = raidID;
    538 			}
    539 		}
    540 
    541 		if (num_root == 1) {
    542 			booted_device = raid_softc[rootID].sc_dev;
    543 		} else {
    544 			/* we can't guess.. require the user to answer... */
    545 			boothowto |= RB_ASKNAME;
    546 		}
    547 	}
    548 }
    549 
    550 
    551 int
    552 raidsize(dev_t dev)
    553 {
    554 	struct raid_softc *rs;
    555 	struct disklabel *lp;
    556 	int     part, unit, omask, size;
    557 
    558 	unit = raidunit(dev);
    559 	if (unit >= numraid)
    560 		return (-1);
    561 	rs = &raid_softc[unit];
    562 
    563 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    564 		return (-1);
    565 
    566 	part = DISKPART(dev);
    567 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    568 	lp = rs->sc_dkdev.dk_label;
    569 
    570 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    571 		return (-1);
    572 
    573 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    574 		size = -1;
    575 	else
    576 		size = lp->d_partitions[part].p_size *
    577 		    (lp->d_secsize / DEV_BSIZE);
    578 
    579 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    580 		return (-1);
    581 
    582 	return (size);
    583 
    584 }
    585 
    586 int
    587 raiddump(dev_t dev, daddr_t blkno, void *va,
    588     size_t  size)
    589 {
    590 	/* Not implemented. */
    591 	return ENXIO;
    592 }
    593 /* ARGSUSED */
    594 int
    595 raidopen(dev_t dev, int flags, int fmt,
    596     struct lwp *l)
    597 {
    598 	int     unit = raidunit(dev);
    599 	struct raid_softc *rs;
    600 	struct disklabel *lp;
    601 	int     part, pmask;
    602 	int     error = 0;
    603 
    604 	if (unit >= numraid)
    605 		return (ENXIO);
    606 	rs = &raid_softc[unit];
    607 
    608 	if ((error = raidlock(rs)) != 0)
    609 		return (error);
    610 	lp = rs->sc_dkdev.dk_label;
    611 
    612 	part = DISKPART(dev);
    613 
    614 	/*
    615 	 * If there are wedges, and this is not RAW_PART, then we
    616 	 * need to fail.
    617 	 */
    618 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    619 		error = EBUSY;
    620 		goto bad;
    621 	}
    622 	pmask = (1 << part);
    623 
    624 	if ((rs->sc_flags & RAIDF_INITED) &&
    625 	    (rs->sc_dkdev.dk_openmask == 0))
    626 		raidgetdisklabel(dev);
    627 
    628 	/* make sure that this partition exists */
    629 
    630 	if (part != RAW_PART) {
    631 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    632 		    ((part >= lp->d_npartitions) ||
    633 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    634 			error = ENXIO;
    635 			goto bad;
    636 		}
    637 	}
    638 	/* Prevent this unit from being unconfigured while open. */
    639 	switch (fmt) {
    640 	case S_IFCHR:
    641 		rs->sc_dkdev.dk_copenmask |= pmask;
    642 		break;
    643 
    644 	case S_IFBLK:
    645 		rs->sc_dkdev.dk_bopenmask |= pmask;
    646 		break;
    647 	}
    648 
    649 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    650 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    651 		/* First one... mark things as dirty... Note that we *MUST*
    652 		 have done a configure before this.  I DO NOT WANT TO BE
    653 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    654 		 THAT THEY BELONG TOGETHER!!!!! */
    655 		/* XXX should check to see if we're only open for reading
    656 		   here... If so, we needn't do this, but then need some
    657 		   other way of keeping track of what's happened.. */
    658 
    659 		rf_markalldirty( raidPtrs[unit] );
    660 	}
    661 
    662 
    663 	rs->sc_dkdev.dk_openmask =
    664 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    665 
    666 bad:
    667 	raidunlock(rs);
    668 
    669 	return (error);
    670 
    671 
    672 }
    673 /* ARGSUSED */
    674 int
    675 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    676 {
    677 	int     unit = raidunit(dev);
    678 	struct cfdata *cf;
    679 	struct raid_softc *rs;
    680 	int     error = 0;
    681 	int     part;
    682 
    683 	if (unit >= numraid)
    684 		return (ENXIO);
    685 	rs = &raid_softc[unit];
    686 
    687 	if ((error = raidlock(rs)) != 0)
    688 		return (error);
    689 
    690 	part = DISKPART(dev);
    691 
    692 	/* ...that much closer to allowing unconfiguration... */
    693 	switch (fmt) {
    694 	case S_IFCHR:
    695 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    696 		break;
    697 
    698 	case S_IFBLK:
    699 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    700 		break;
    701 	}
    702 	rs->sc_dkdev.dk_openmask =
    703 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    704 
    705 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    706 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    707 		/* Last one... device is not unconfigured yet.
    708 		   Device shutdown has taken care of setting the
    709 		   clean bits if RAIDF_INITED is not set
    710 		   mark things as clean... */
    711 
    712 		rf_update_component_labels(raidPtrs[unit],
    713 						 RF_FINAL_COMPONENT_UPDATE);
    714 		if (doing_shutdown) {
    715 			/* last one, and we're going down, so
    716 			   lights out for this RAID set too. */
    717 			error = rf_Shutdown(raidPtrs[unit]);
    718 
    719 			/* It's no longer initialized... */
    720 			rs->sc_flags &= ~RAIDF_INITED;
    721 
    722 			/* detach the device */
    723 
    724 			cf = device_cfdata(rs->sc_dev);
    725 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    726 			free(cf, M_RAIDFRAME);
    727 
    728 			/* Detach the disk. */
    729 			pseudo_disk_detach(&rs->sc_dkdev);
    730 		}
    731 	}
    732 
    733 	raidunlock(rs);
    734 	return (0);
    735 
    736 }
    737 
    738 void
    739 raidstrategy(struct buf *bp)
    740 {
    741 	int s, error = 0;
    742 
    743 	unsigned int raidID = raidunit(bp->b_dev);
    744 	RF_Raid_t *raidPtr;
    745 	struct raid_softc *rs = &raid_softc[raidID];
    746 	int     wlabel;
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    749 		error = ENXIO;
    750 		goto done;
    751 	}
    752 	if (raidID >= numraid || !raidPtrs[raidID]) {
    753 		error = ENODEV;
    754 		goto done;
    755 	}
    756 	raidPtr = raidPtrs[raidID];
    757 	if (!raidPtr->valid) {
    758 		error = ENODEV;
    759 		goto done;
    760 	}
    761 	if (bp->b_bcount == 0) {
    762 		db1_printf(("b_bcount is zero..\n"));
    763 		goto done;
    764 	}
    765 
    766 	/*
    767 	 * Do bounds checking and adjust transfer.  If there's an
    768 	 * error, the bounds check will flag that for us.
    769 	 */
    770 
    771 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    772 	if (DISKPART(bp->b_dev) == RAW_PART) {
    773 		uint64_t size; /* device size in DEV_BSIZE unit */
    774 
    775 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    776 			size = raidPtr->totalSectors <<
    777 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    778 		} else {
    779 			size = raidPtr->totalSectors >>
    780 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    781 		}
    782 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    783 			goto done;
    784 		}
    785 	} else {
    786 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    787 			db1_printf(("Bounds check failed!!:%d %d\n",
    788 				(int) bp->b_blkno, (int) wlabel));
    789 			goto done;
    790 		}
    791 	}
    792 	s = splbio();
    793 
    794 	bp->b_resid = 0;
    795 
    796 	/* stuff it onto our queue */
    797 	BUFQ_PUT(rs->buf_queue, bp);
    798 
    799 	/* scheduled the IO to happen at the next convenient time */
    800 	wakeup(&(raidPtrs[raidID]->iodone));
    801 
    802 	splx(s);
    803 	return;
    804 
    805 done:
    806 	biodone(bp, error, bp->b_bcount);
    807 }
    808 /* ARGSUSED */
    809 int
    810 raidread(dev_t dev, struct uio *uio, int flags)
    811 {
    812 	int     unit = raidunit(dev);
    813 	struct raid_softc *rs;
    814 
    815 	if (unit >= numraid)
    816 		return (ENXIO);
    817 	rs = &raid_softc[unit];
    818 
    819 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    820 		return (ENXIO);
    821 
    822 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    823 
    824 }
    825 /* ARGSUSED */
    826 int
    827 raidwrite(dev_t dev, struct uio *uio, int flags)
    828 {
    829 	int     unit = raidunit(dev);
    830 	struct raid_softc *rs;
    831 
    832 	if (unit >= numraid)
    833 		return (ENXIO);
    834 	rs = &raid_softc[unit];
    835 
    836 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    837 		return (ENXIO);
    838 
    839 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    840 
    841 }
    842 
    843 int
    844 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    845 {
    846 	int     unit = raidunit(dev);
    847 	int     error = 0;
    848 	int     part, pmask;
    849 	struct cfdata *cf;
    850 	struct raid_softc *rs;
    851 	RF_Config_t *k_cfg, *u_cfg;
    852 	RF_Raid_t *raidPtr;
    853 	RF_RaidDisk_t *diskPtr;
    854 	RF_AccTotals_t *totals;
    855 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    856 	u_char *specific_buf;
    857 	int retcode = 0;
    858 	int column;
    859 	int raidid;
    860 	struct rf_recon_req *rrcopy, *rr;
    861 	RF_ComponentLabel_t *clabel;
    862 	RF_ComponentLabel_t *ci_label;
    863 	RF_ComponentLabel_t **clabel_ptr;
    864 	RF_SingleComponent_t *sparePtr,*componentPtr;
    865 	RF_SingleComponent_t component;
    866 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    867 	int i, j, d;
    868 #ifdef __HAVE_OLD_DISKLABEL
    869 	struct disklabel newlabel;
    870 #endif
    871 	struct dkwedge_info *dkw;
    872 
    873 	if (unit >= numraid)
    874 		return (ENXIO);
    875 	rs = &raid_softc[unit];
    876 	raidPtr = raidPtrs[unit];
    877 
    878 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    879 		(int) DISKPART(dev), (int) unit, (int) cmd));
    880 
    881 	/* Must be open for writes for these commands... */
    882 	switch (cmd) {
    883 #ifdef DIOCGSECTORSIZE
    884 	case DIOCGSECTORSIZE:
    885 		*(u_int *)data = raidPtr->bytesPerSector;
    886 		return 0;
    887 	case DIOCGMEDIASIZE:
    888 		*(off_t *)data =
    889 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
    890 		return 0;
    891 #endif
    892 	case DIOCSDINFO:
    893 	case DIOCWDINFO:
    894 #ifdef __HAVE_OLD_DISKLABEL
    895 	case ODIOCWDINFO:
    896 	case ODIOCSDINFO:
    897 #endif
    898 	case DIOCWLABEL:
    899 	case DIOCAWEDGE:
    900 	case DIOCDWEDGE:
    901 		if ((flag & FWRITE) == 0)
    902 			return (EBADF);
    903 	}
    904 
    905 	/* Must be initialized for these... */
    906 	switch (cmd) {
    907 	case DIOCGDINFO:
    908 	case DIOCSDINFO:
    909 	case DIOCWDINFO:
    910 #ifdef __HAVE_OLD_DISKLABEL
    911 	case ODIOCGDINFO:
    912 	case ODIOCWDINFO:
    913 	case ODIOCSDINFO:
    914 	case ODIOCGDEFLABEL:
    915 #endif
    916 	case DIOCGPART:
    917 	case DIOCWLABEL:
    918 	case DIOCGDEFLABEL:
    919 	case DIOCAWEDGE:
    920 	case DIOCDWEDGE:
    921 	case DIOCLWEDGES:
    922 	case RAIDFRAME_SHUTDOWN:
    923 	case RAIDFRAME_REWRITEPARITY:
    924 	case RAIDFRAME_GET_INFO:
    925 	case RAIDFRAME_RESET_ACCTOTALS:
    926 	case RAIDFRAME_GET_ACCTOTALS:
    927 	case RAIDFRAME_KEEP_ACCTOTALS:
    928 	case RAIDFRAME_GET_SIZE:
    929 	case RAIDFRAME_FAIL_DISK:
    930 	case RAIDFRAME_COPYBACK:
    931 	case RAIDFRAME_CHECK_RECON_STATUS:
    932 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    933 	case RAIDFRAME_GET_COMPONENT_LABEL:
    934 	case RAIDFRAME_SET_COMPONENT_LABEL:
    935 	case RAIDFRAME_ADD_HOT_SPARE:
    936 	case RAIDFRAME_REMOVE_HOT_SPARE:
    937 	case RAIDFRAME_INIT_LABELS:
    938 	case RAIDFRAME_REBUILD_IN_PLACE:
    939 	case RAIDFRAME_CHECK_PARITY:
    940 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    941 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    942 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    943 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    944 	case RAIDFRAME_SET_AUTOCONFIG:
    945 	case RAIDFRAME_SET_ROOT:
    946 	case RAIDFRAME_DELETE_COMPONENT:
    947 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    948 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    949 			return (ENXIO);
    950 	}
    951 
    952 	switch (cmd) {
    953 
    954 		/* configure the system */
    955 	case RAIDFRAME_CONFIGURE:
    956 
    957 		if (raidPtr->valid) {
    958 			/* There is a valid RAID set running on this unit! */
    959 			printf("raid%d: Device already configured!\n",unit);
    960 			return(EINVAL);
    961 		}
    962 
    963 		/* copy-in the configuration information */
    964 		/* data points to a pointer to the configuration structure */
    965 
    966 		u_cfg = *((RF_Config_t **) data);
    967 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    968 		if (k_cfg == NULL) {
    969 			return (ENOMEM);
    970 		}
    971 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    972 		if (retcode) {
    973 			RF_Free(k_cfg, sizeof(RF_Config_t));
    974 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    975 				retcode));
    976 			return (retcode);
    977 		}
    978 		/* allocate a buffer for the layout-specific data, and copy it
    979 		 * in */
    980 		if (k_cfg->layoutSpecificSize) {
    981 			if (k_cfg->layoutSpecificSize > 10000) {
    982 				/* sanity check */
    983 				RF_Free(k_cfg, sizeof(RF_Config_t));
    984 				return (EINVAL);
    985 			}
    986 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    987 			    (u_char *));
    988 			if (specific_buf == NULL) {
    989 				RF_Free(k_cfg, sizeof(RF_Config_t));
    990 				return (ENOMEM);
    991 			}
    992 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    993 			    k_cfg->layoutSpecificSize);
    994 			if (retcode) {
    995 				RF_Free(k_cfg, sizeof(RF_Config_t));
    996 				RF_Free(specific_buf,
    997 					k_cfg->layoutSpecificSize);
    998 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
    999 					retcode));
   1000 				return (retcode);
   1001 			}
   1002 		} else
   1003 			specific_buf = NULL;
   1004 		k_cfg->layoutSpecific = specific_buf;
   1005 
   1006 		/* should do some kind of sanity check on the configuration.
   1007 		 * Store the sum of all the bytes in the last byte? */
   1008 
   1009 		/* configure the system */
   1010 
   1011 		/*
   1012 		 * Clear the entire RAID descriptor, just to make sure
   1013 		 *  there is no stale data left in the case of a
   1014 		 *  reconfiguration
   1015 		 */
   1016 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1017 		raidPtr->raidid = unit;
   1018 
   1019 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1020 
   1021 		if (retcode == 0) {
   1022 
   1023 			/* allow this many simultaneous IO's to
   1024 			   this RAID device */
   1025 			raidPtr->openings = RAIDOUTSTANDING;
   1026 
   1027 			raidinit(raidPtr);
   1028 			rf_markalldirty(raidPtr);
   1029 		}
   1030 		/* free the buffers.  No return code here. */
   1031 		if (k_cfg->layoutSpecificSize) {
   1032 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1033 		}
   1034 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1035 
   1036 		return (retcode);
   1037 
   1038 		/* shutdown the system */
   1039 	case RAIDFRAME_SHUTDOWN:
   1040 
   1041 		if ((error = raidlock(rs)) != 0)
   1042 			return (error);
   1043 
   1044 		/*
   1045 		 * If somebody has a partition mounted, we shouldn't
   1046 		 * shutdown.
   1047 		 */
   1048 
   1049 		part = DISKPART(dev);
   1050 		pmask = (1 << part);
   1051 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1052 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1053 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1054 			raidunlock(rs);
   1055 			return (EBUSY);
   1056 		}
   1057 
   1058 		retcode = rf_Shutdown(raidPtr);
   1059 
   1060 		/* It's no longer initialized... */
   1061 		rs->sc_flags &= ~RAIDF_INITED;
   1062 
   1063 		/* free the pseudo device attach bits */
   1064 
   1065 		cf = device_cfdata(rs->sc_dev);
   1066 		/* XXX this causes us to not return any errors
   1067 		   from the above call to rf_Shutdown() */
   1068 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1069 		free(cf, M_RAIDFRAME);
   1070 
   1071 		/* Detach the disk. */
   1072 		pseudo_disk_detach(&rs->sc_dkdev);
   1073 
   1074 		raidunlock(rs);
   1075 
   1076 		return (retcode);
   1077 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1078 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1079 		/* need to read the component label for the disk indicated
   1080 		   by row,column in clabel */
   1081 
   1082 		/* For practice, let's get it directly fromdisk, rather
   1083 		   than from the in-core copy */
   1084 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1085 			   (RF_ComponentLabel_t *));
   1086 		if (clabel == NULL)
   1087 			return (ENOMEM);
   1088 
   1089 		retcode = copyin( *clabel_ptr, clabel,
   1090 				  sizeof(RF_ComponentLabel_t));
   1091 
   1092 		if (retcode) {
   1093 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1094 			return(retcode);
   1095 		}
   1096 
   1097 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1098 
   1099 		column = clabel->column;
   1100 
   1101 		if ((column < 0) || (column >= raidPtr->numCol +
   1102 				     raidPtr->numSpare)) {
   1103 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1104 			return(EINVAL);
   1105 		}
   1106 
   1107 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1108 				raidPtr->raid_cinfo[column].ci_vp,
   1109 				clabel );
   1110 
   1111 		if (retcode == 0) {
   1112 			retcode = copyout(clabel, *clabel_ptr,
   1113 					  sizeof(RF_ComponentLabel_t));
   1114 		}
   1115 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1116 		return (retcode);
   1117 
   1118 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1119 		clabel = (RF_ComponentLabel_t *) data;
   1120 
   1121 		/* XXX check the label for valid stuff... */
   1122 		/* Note that some things *should not* get modified --
   1123 		   the user should be re-initing the labels instead of
   1124 		   trying to patch things.
   1125 		   */
   1126 
   1127 		raidid = raidPtr->raidid;
   1128 #ifdef DEBUG
   1129 		printf("raid%d: Got component label:\n", raidid);
   1130 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1131 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1132 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1133 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1134 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1135 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1136 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1137 #endif
   1138 		clabel->row = 0;
   1139 		column = clabel->column;
   1140 
   1141 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1142 			return(EINVAL);
   1143 		}
   1144 
   1145 		/* XXX this isn't allowed to do anything for now :-) */
   1146 
   1147 		/* XXX and before it is, we need to fill in the rest
   1148 		   of the fields!?!?!?! */
   1149 #if 0
   1150 		raidwrite_component_label(
   1151 		     raidPtr->Disks[column].dev,
   1152 			    raidPtr->raid_cinfo[column].ci_vp,
   1153 			    clabel );
   1154 #endif
   1155 		return (0);
   1156 
   1157 	case RAIDFRAME_INIT_LABELS:
   1158 		clabel = (RF_ComponentLabel_t *) data;
   1159 		/*
   1160 		   we only want the serial number from
   1161 		   the above.  We get all the rest of the information
   1162 		   from the config that was used to create this RAID
   1163 		   set.
   1164 		   */
   1165 
   1166 		raidPtr->serial_number = clabel->serial_number;
   1167 
   1168 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1169 			  (RF_ComponentLabel_t *));
   1170 		if (ci_label == NULL)
   1171 			return (ENOMEM);
   1172 
   1173 		raid_init_component_label(raidPtr, ci_label);
   1174 		ci_label->serial_number = clabel->serial_number;
   1175 		ci_label->row = 0; /* we dont' pretend to support more */
   1176 
   1177 		for(column=0;column<raidPtr->numCol;column++) {
   1178 			diskPtr = &raidPtr->Disks[column];
   1179 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1180 				ci_label->partitionSize = diskPtr->partitionSize;
   1181 				ci_label->column = column;
   1182 				raidwrite_component_label(
   1183 							  raidPtr->Disks[column].dev,
   1184 							  raidPtr->raid_cinfo[column].ci_vp,
   1185 							  ci_label );
   1186 			}
   1187 		}
   1188 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1189 
   1190 		return (retcode);
   1191 	case RAIDFRAME_SET_AUTOCONFIG:
   1192 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1193 		printf("raid%d: New autoconfig value is: %d\n",
   1194 		       raidPtr->raidid, d);
   1195 		*(int *) data = d;
   1196 		return (retcode);
   1197 
   1198 	case RAIDFRAME_SET_ROOT:
   1199 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1200 		printf("raid%d: New rootpartition value is: %d\n",
   1201 		       raidPtr->raidid, d);
   1202 		*(int *) data = d;
   1203 		return (retcode);
   1204 
   1205 		/* initialize all parity */
   1206 	case RAIDFRAME_REWRITEPARITY:
   1207 
   1208 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1209 			/* Parity for RAID 0 is trivially correct */
   1210 			raidPtr->parity_good = RF_RAID_CLEAN;
   1211 			return(0);
   1212 		}
   1213 
   1214 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1215 			/* Re-write is already in progress! */
   1216 			return(EINVAL);
   1217 		}
   1218 
   1219 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1220 					   rf_RewriteParityThread,
   1221 					   raidPtr,"raid_parity");
   1222 		return (retcode);
   1223 
   1224 
   1225 	case RAIDFRAME_ADD_HOT_SPARE:
   1226 		sparePtr = (RF_SingleComponent_t *) data;
   1227 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1228 		retcode = rf_add_hot_spare(raidPtr, &component);
   1229 		return(retcode);
   1230 
   1231 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1232 		return(retcode);
   1233 
   1234 	case RAIDFRAME_DELETE_COMPONENT:
   1235 		componentPtr = (RF_SingleComponent_t *)data;
   1236 		memcpy( &component, componentPtr,
   1237 			sizeof(RF_SingleComponent_t));
   1238 		retcode = rf_delete_component(raidPtr, &component);
   1239 		return(retcode);
   1240 
   1241 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1242 		componentPtr = (RF_SingleComponent_t *)data;
   1243 		memcpy( &component, componentPtr,
   1244 			sizeof(RF_SingleComponent_t));
   1245 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1246 		return(retcode);
   1247 
   1248 	case RAIDFRAME_REBUILD_IN_PLACE:
   1249 
   1250 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1251 			/* Can't do this on a RAID 0!! */
   1252 			return(EINVAL);
   1253 		}
   1254 
   1255 		if (raidPtr->recon_in_progress == 1) {
   1256 			/* a reconstruct is already in progress! */
   1257 			return(EINVAL);
   1258 		}
   1259 
   1260 		componentPtr = (RF_SingleComponent_t *) data;
   1261 		memcpy( &component, componentPtr,
   1262 			sizeof(RF_SingleComponent_t));
   1263 		component.row = 0; /* we don't support any more */
   1264 		column = component.column;
   1265 
   1266 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1267 			return(EINVAL);
   1268 		}
   1269 
   1270 		RF_LOCK_MUTEX(raidPtr->mutex);
   1271 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1272 		    (raidPtr->numFailures > 0)) {
   1273 			/* XXX 0 above shouldn't be constant!!! */
   1274 			/* some component other than this has failed.
   1275 			   Let's not make things worse than they already
   1276 			   are... */
   1277 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1278 			       raidPtr->raidid);
   1279 			printf("raid%d:     Col: %d   Too many failures.\n",
   1280 			       raidPtr->raidid, column);
   1281 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1282 			return (EINVAL);
   1283 		}
   1284 		if (raidPtr->Disks[column].status ==
   1285 		    rf_ds_reconstructing) {
   1286 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1287 			       raidPtr->raidid);
   1288 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1289 
   1290 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1291 			return (EINVAL);
   1292 		}
   1293 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1294 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1295 			return (EINVAL);
   1296 		}
   1297 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1298 
   1299 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1300 		if (rrcopy == NULL)
   1301 			return(ENOMEM);
   1302 
   1303 		rrcopy->raidPtr = (void *) raidPtr;
   1304 		rrcopy->col = column;
   1305 
   1306 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1307 					   rf_ReconstructInPlaceThread,
   1308 					   rrcopy,"raid_reconip");
   1309 		return(retcode);
   1310 
   1311 	case RAIDFRAME_GET_INFO:
   1312 		if (!raidPtr->valid)
   1313 			return (ENODEV);
   1314 		ucfgp = (RF_DeviceConfig_t **) data;
   1315 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1316 			  (RF_DeviceConfig_t *));
   1317 		if (d_cfg == NULL)
   1318 			return (ENOMEM);
   1319 		d_cfg->rows = 1; /* there is only 1 row now */
   1320 		d_cfg->cols = raidPtr->numCol;
   1321 		d_cfg->ndevs = raidPtr->numCol;
   1322 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1323 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1324 			return (ENOMEM);
   1325 		}
   1326 		d_cfg->nspares = raidPtr->numSpare;
   1327 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1328 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1329 			return (ENOMEM);
   1330 		}
   1331 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1332 		d = 0;
   1333 		for (j = 0; j < d_cfg->cols; j++) {
   1334 			d_cfg->devs[d] = raidPtr->Disks[j];
   1335 			d++;
   1336 		}
   1337 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1338 			d_cfg->spares[i] = raidPtr->Disks[j];
   1339 		}
   1340 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1341 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1342 
   1343 		return (retcode);
   1344 
   1345 	case RAIDFRAME_CHECK_PARITY:
   1346 		*(int *) data = raidPtr->parity_good;
   1347 		return (0);
   1348 
   1349 	case RAIDFRAME_RESET_ACCTOTALS:
   1350 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1351 		return (0);
   1352 
   1353 	case RAIDFRAME_GET_ACCTOTALS:
   1354 		totals = (RF_AccTotals_t *) data;
   1355 		*totals = raidPtr->acc_totals;
   1356 		return (0);
   1357 
   1358 	case RAIDFRAME_KEEP_ACCTOTALS:
   1359 		raidPtr->keep_acc_totals = *(int *)data;
   1360 		return (0);
   1361 
   1362 	case RAIDFRAME_GET_SIZE:
   1363 		*(int *) data = raidPtr->totalSectors;
   1364 		return (0);
   1365 
   1366 		/* fail a disk & optionally start reconstruction */
   1367 	case RAIDFRAME_FAIL_DISK:
   1368 
   1369 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1370 			/* Can't do this on a RAID 0!! */
   1371 			return(EINVAL);
   1372 		}
   1373 
   1374 		rr = (struct rf_recon_req *) data;
   1375 		rr->row = 0;
   1376 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1377 			return (EINVAL);
   1378 
   1379 
   1380 		RF_LOCK_MUTEX(raidPtr->mutex);
   1381 		if (raidPtr->status == rf_rs_reconstructing) {
   1382 			/* you can't fail a disk while we're reconstructing! */
   1383 			/* XXX wrong for RAID6 */
   1384 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1385 			return (EINVAL);
   1386 		}
   1387 		if ((raidPtr->Disks[rr->col].status ==
   1388 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1389 			/* some other component has failed.  Let's not make
   1390 			   things worse. XXX wrong for RAID6 */
   1391 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1392 			return (EINVAL);
   1393 		}
   1394 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1395 			/* Can't fail a spared disk! */
   1396 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1397 			return (EINVAL);
   1398 		}
   1399 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1400 
   1401 		/* make a copy of the recon request so that we don't rely on
   1402 		 * the user's buffer */
   1403 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1404 		if (rrcopy == NULL)
   1405 			return(ENOMEM);
   1406 		memcpy(rrcopy, rr, sizeof(*rr));
   1407 		rrcopy->raidPtr = (void *) raidPtr;
   1408 
   1409 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1410 					   rf_ReconThread,
   1411 					   rrcopy,"raid_recon");
   1412 		return (0);
   1413 
   1414 		/* invoke a copyback operation after recon on whatever disk
   1415 		 * needs it, if any */
   1416 	case RAIDFRAME_COPYBACK:
   1417 
   1418 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1419 			/* This makes no sense on a RAID 0!! */
   1420 			return(EINVAL);
   1421 		}
   1422 
   1423 		if (raidPtr->copyback_in_progress == 1) {
   1424 			/* Copyback is already in progress! */
   1425 			return(EINVAL);
   1426 		}
   1427 
   1428 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1429 					   rf_CopybackThread,
   1430 					   raidPtr,"raid_copyback");
   1431 		return (retcode);
   1432 
   1433 		/* return the percentage completion of reconstruction */
   1434 	case RAIDFRAME_CHECK_RECON_STATUS:
   1435 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1436 			/* This makes no sense on a RAID 0, so tell the
   1437 			   user it's done. */
   1438 			*(int *) data = 100;
   1439 			return(0);
   1440 		}
   1441 		if (raidPtr->status != rf_rs_reconstructing)
   1442 			*(int *) data = 100;
   1443 		else {
   1444 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1445 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1446 			} else {
   1447 				*(int *) data = 0;
   1448 			}
   1449 		}
   1450 		return (0);
   1451 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1452 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1453 		if (raidPtr->status != rf_rs_reconstructing) {
   1454 			progressInfo.remaining = 0;
   1455 			progressInfo.completed = 100;
   1456 			progressInfo.total = 100;
   1457 		} else {
   1458 			progressInfo.total =
   1459 				raidPtr->reconControl->numRUsTotal;
   1460 			progressInfo.completed =
   1461 				raidPtr->reconControl->numRUsComplete;
   1462 			progressInfo.remaining = progressInfo.total -
   1463 				progressInfo.completed;
   1464 		}
   1465 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1466 				  sizeof(RF_ProgressInfo_t));
   1467 		return (retcode);
   1468 
   1469 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1470 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1471 			/* This makes no sense on a RAID 0, so tell the
   1472 			   user it's done. */
   1473 			*(int *) data = 100;
   1474 			return(0);
   1475 		}
   1476 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1477 			*(int *) data = 100 *
   1478 				raidPtr->parity_rewrite_stripes_done /
   1479 				raidPtr->Layout.numStripe;
   1480 		} else {
   1481 			*(int *) data = 100;
   1482 		}
   1483 		return (0);
   1484 
   1485 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1486 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1487 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1488 			progressInfo.total = raidPtr->Layout.numStripe;
   1489 			progressInfo.completed =
   1490 				raidPtr->parity_rewrite_stripes_done;
   1491 			progressInfo.remaining = progressInfo.total -
   1492 				progressInfo.completed;
   1493 		} else {
   1494 			progressInfo.remaining = 0;
   1495 			progressInfo.completed = 100;
   1496 			progressInfo.total = 100;
   1497 		}
   1498 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1499 				  sizeof(RF_ProgressInfo_t));
   1500 		return (retcode);
   1501 
   1502 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1503 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1504 			/* This makes no sense on a RAID 0 */
   1505 			*(int *) data = 100;
   1506 			return(0);
   1507 		}
   1508 		if (raidPtr->copyback_in_progress == 1) {
   1509 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1510 				raidPtr->Layout.numStripe;
   1511 		} else {
   1512 			*(int *) data = 100;
   1513 		}
   1514 		return (0);
   1515 
   1516 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1517 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1518 		if (raidPtr->copyback_in_progress == 1) {
   1519 			progressInfo.total = raidPtr->Layout.numStripe;
   1520 			progressInfo.completed =
   1521 				raidPtr->copyback_stripes_done;
   1522 			progressInfo.remaining = progressInfo.total -
   1523 				progressInfo.completed;
   1524 		} else {
   1525 			progressInfo.remaining = 0;
   1526 			progressInfo.completed = 100;
   1527 			progressInfo.total = 100;
   1528 		}
   1529 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1530 				  sizeof(RF_ProgressInfo_t));
   1531 		return (retcode);
   1532 
   1533 		/* the sparetable daemon calls this to wait for the kernel to
   1534 		 * need a spare table. this ioctl does not return until a
   1535 		 * spare table is needed. XXX -- calling mpsleep here in the
   1536 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1537 		 * -- I should either compute the spare table in the kernel,
   1538 		 * or have a different -- XXX XXX -- interface (a different
   1539 		 * character device) for delivering the table     -- XXX */
   1540 #if 0
   1541 	case RAIDFRAME_SPARET_WAIT:
   1542 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1543 		while (!rf_sparet_wait_queue)
   1544 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1545 		waitreq = rf_sparet_wait_queue;
   1546 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1547 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1548 
   1549 		/* structure assignment */
   1550 		*((RF_SparetWait_t *) data) = *waitreq;
   1551 
   1552 		RF_Free(waitreq, sizeof(*waitreq));
   1553 		return (0);
   1554 
   1555 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1556 		 * code in it that will cause the dameon to exit */
   1557 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1558 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1559 		waitreq->fcol = -1;
   1560 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1561 		waitreq->next = rf_sparet_wait_queue;
   1562 		rf_sparet_wait_queue = waitreq;
   1563 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1564 		wakeup(&rf_sparet_wait_queue);
   1565 		return (0);
   1566 
   1567 		/* used by the spare table daemon to deliver a spare table
   1568 		 * into the kernel */
   1569 	case RAIDFRAME_SEND_SPARET:
   1570 
   1571 		/* install the spare table */
   1572 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1573 
   1574 		/* respond to the requestor.  the return status of the spare
   1575 		 * table installation is passed in the "fcol" field */
   1576 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1577 		waitreq->fcol = retcode;
   1578 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1579 		waitreq->next = rf_sparet_resp_queue;
   1580 		rf_sparet_resp_queue = waitreq;
   1581 		wakeup(&rf_sparet_resp_queue);
   1582 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1583 
   1584 		return (retcode);
   1585 #endif
   1586 
   1587 	default:
   1588 		break; /* fall through to the os-specific code below */
   1589 
   1590 	}
   1591 
   1592 	if (!raidPtr->valid)
   1593 		return (EINVAL);
   1594 
   1595 	/*
   1596 	 * Add support for "regular" device ioctls here.
   1597 	 */
   1598 
   1599 	switch (cmd) {
   1600 	case DIOCGDINFO:
   1601 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1602 		break;
   1603 #ifdef __HAVE_OLD_DISKLABEL
   1604 	case ODIOCGDINFO:
   1605 		newlabel = *(rs->sc_dkdev.dk_label);
   1606 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1607 			return ENOTTY;
   1608 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1609 		break;
   1610 #endif
   1611 
   1612 	case DIOCGPART:
   1613 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1614 		((struct partinfo *) data)->part =
   1615 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1616 		break;
   1617 
   1618 	case DIOCWDINFO:
   1619 	case DIOCSDINFO:
   1620 #ifdef __HAVE_OLD_DISKLABEL
   1621 	case ODIOCWDINFO:
   1622 	case ODIOCSDINFO:
   1623 #endif
   1624 	{
   1625 		struct disklabel *lp;
   1626 #ifdef __HAVE_OLD_DISKLABEL
   1627 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1628 			memset(&newlabel, 0, sizeof newlabel);
   1629 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1630 			lp = &newlabel;
   1631 		} else
   1632 #endif
   1633 		lp = (struct disklabel *)data;
   1634 
   1635 		if ((error = raidlock(rs)) != 0)
   1636 			return (error);
   1637 
   1638 		rs->sc_flags |= RAIDF_LABELLING;
   1639 
   1640 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1641 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1642 		if (error == 0) {
   1643 			if (cmd == DIOCWDINFO
   1644 #ifdef __HAVE_OLD_DISKLABEL
   1645 			    || cmd == ODIOCWDINFO
   1646 #endif
   1647 			   )
   1648 				error = writedisklabel(RAIDLABELDEV(dev),
   1649 				    raidstrategy, rs->sc_dkdev.dk_label,
   1650 				    rs->sc_dkdev.dk_cpulabel);
   1651 		}
   1652 		rs->sc_flags &= ~RAIDF_LABELLING;
   1653 
   1654 		raidunlock(rs);
   1655 
   1656 		if (error)
   1657 			return (error);
   1658 		break;
   1659 	}
   1660 
   1661 	case DIOCWLABEL:
   1662 		if (*(int *) data != 0)
   1663 			rs->sc_flags |= RAIDF_WLABEL;
   1664 		else
   1665 			rs->sc_flags &= ~RAIDF_WLABEL;
   1666 		break;
   1667 
   1668 	case DIOCGDEFLABEL:
   1669 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1670 		break;
   1671 
   1672 #ifdef __HAVE_OLD_DISKLABEL
   1673 	case ODIOCGDEFLABEL:
   1674 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1675 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1676 			return ENOTTY;
   1677 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1678 		break;
   1679 #endif
   1680 
   1681 	case DIOCAWEDGE:
   1682 	case DIOCDWEDGE:
   1683 	    	dkw = (void *)data;
   1684 
   1685 		/* If the ioctl happens here, the parent is us. */
   1686 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1687 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1688 
   1689 	case DIOCLWEDGES:
   1690 		return dkwedge_list(&rs->sc_dkdev,
   1691 		    (struct dkwedge_list *)data, l);
   1692 
   1693 	default:
   1694 		retcode = ENOTTY;
   1695 	}
   1696 	return (retcode);
   1697 
   1698 }
   1699 
   1700 
   1701 /* raidinit -- complete the rest of the initialization for the
   1702    RAIDframe device.  */
   1703 
   1704 
   1705 static void
   1706 raidinit(RF_Raid_t *raidPtr)
   1707 {
   1708 	struct cfdata *cf;
   1709 	struct raid_softc *rs;
   1710 	int     unit;
   1711 
   1712 	unit = raidPtr->raidid;
   1713 
   1714 	rs = &raid_softc[unit];
   1715 
   1716 	/* XXX should check return code first... */
   1717 	rs->sc_flags |= RAIDF_INITED;
   1718 
   1719 	/* XXX doesn't check bounds. */
   1720 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1721 
   1722 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1723 
   1724 	/* attach the pseudo device */
   1725 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1726 	cf->cf_name = raid_cd.cd_name;
   1727 	cf->cf_atname = raid_cd.cd_name;
   1728 	cf->cf_unit = unit;
   1729 	cf->cf_fstate = FSTATE_STAR;
   1730 
   1731 	rs->sc_dev = config_attach_pseudo(cf);
   1732 
   1733 	if (rs->sc_dev==NULL) {
   1734 		printf("raid%d: config_attach_pseudo failed\n",
   1735 		       raidPtr->raidid);
   1736 	}
   1737 
   1738 	/* disk_attach actually creates space for the CPU disklabel, among
   1739 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1740 	 * with disklabels. */
   1741 
   1742 	disk_attach(&rs->sc_dkdev);
   1743 
   1744 	/* XXX There may be a weird interaction here between this, and
   1745 	 * protectedSectors, as used in RAIDframe.  */
   1746 
   1747 	rs->sc_size = raidPtr->totalSectors;
   1748 }
   1749 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1750 /* wake up the daemon & tell it to get us a spare table
   1751  * XXX
   1752  * the entries in the queues should be tagged with the raidPtr
   1753  * so that in the extremely rare case that two recons happen at once,
   1754  * we know for which device were requesting a spare table
   1755  * XXX
   1756  *
   1757  * XXX This code is not currently used. GO
   1758  */
   1759 int
   1760 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1761 {
   1762 	int     retcode;
   1763 
   1764 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1765 	req->next = rf_sparet_wait_queue;
   1766 	rf_sparet_wait_queue = req;
   1767 	wakeup(&rf_sparet_wait_queue);
   1768 
   1769 	/* mpsleep unlocks the mutex */
   1770 	while (!rf_sparet_resp_queue) {
   1771 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1772 		    "raidframe getsparetable", 0);
   1773 	}
   1774 	req = rf_sparet_resp_queue;
   1775 	rf_sparet_resp_queue = req->next;
   1776 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1777 
   1778 	retcode = req->fcol;
   1779 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1780 					 * alloc'd */
   1781 	return (retcode);
   1782 }
   1783 #endif
   1784 
   1785 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1786  * bp & passes it down.
   1787  * any calls originating in the kernel must use non-blocking I/O
   1788  * do some extra sanity checking to return "appropriate" error values for
   1789  * certain conditions (to make some standard utilities work)
   1790  *
   1791  * Formerly known as: rf_DoAccessKernel
   1792  */
   1793 void
   1794 raidstart(RF_Raid_t *raidPtr)
   1795 {
   1796 	RF_SectorCount_t num_blocks, pb, sum;
   1797 	RF_RaidAddr_t raid_addr;
   1798 	struct partition *pp;
   1799 	daddr_t blocknum;
   1800 	int     unit;
   1801 	struct raid_softc *rs;
   1802 	int     do_async;
   1803 	struct buf *bp;
   1804 	int rc;
   1805 
   1806 	unit = raidPtr->raidid;
   1807 	rs = &raid_softc[unit];
   1808 
   1809 	/* quick check to see if anything has died recently */
   1810 	RF_LOCK_MUTEX(raidPtr->mutex);
   1811 	if (raidPtr->numNewFailures > 0) {
   1812 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1813 		rf_update_component_labels(raidPtr,
   1814 					   RF_NORMAL_COMPONENT_UPDATE);
   1815 		RF_LOCK_MUTEX(raidPtr->mutex);
   1816 		raidPtr->numNewFailures--;
   1817 	}
   1818 
   1819 	/* Check to see if we're at the limit... */
   1820 	while (raidPtr->openings > 0) {
   1821 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1822 
   1823 		/* get the next item, if any, from the queue */
   1824 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1825 			/* nothing more to do */
   1826 			return;
   1827 		}
   1828 
   1829 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1830 		 * partition.. Need to make it absolute to the underlying
   1831 		 * device.. */
   1832 
   1833 		blocknum = bp->b_blkno;
   1834 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1835 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1836 			blocknum += pp->p_offset;
   1837 		}
   1838 
   1839 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1840 			    (int) blocknum));
   1841 
   1842 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1843 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1844 
   1845 		/* *THIS* is where we adjust what block we're going to...
   1846 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1847 		raid_addr = blocknum;
   1848 
   1849 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1850 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1851 		sum = raid_addr + num_blocks + pb;
   1852 		if (1 || rf_debugKernelAccess) {
   1853 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1854 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1855 				    (int) pb, (int) bp->b_resid));
   1856 		}
   1857 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1858 		    || (sum < num_blocks) || (sum < pb)) {
   1859 			biodone(bp, ENOSPC, bp->b_bcount);
   1860 			RF_LOCK_MUTEX(raidPtr->mutex);
   1861 			continue;
   1862 		}
   1863 		/*
   1864 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1865 		 */
   1866 
   1867 		if (bp->b_bcount & raidPtr->sectorMask) {
   1868 			biodone(bp, EINVAL, bp->b_bcount);
   1869 			RF_LOCK_MUTEX(raidPtr->mutex);
   1870 			continue;
   1871 
   1872 		}
   1873 		db1_printf(("Calling DoAccess..\n"));
   1874 
   1875 
   1876 		RF_LOCK_MUTEX(raidPtr->mutex);
   1877 		raidPtr->openings--;
   1878 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1879 
   1880 		/*
   1881 		 * Everything is async.
   1882 		 */
   1883 		do_async = 1;
   1884 
   1885 		disk_busy(&rs->sc_dkdev);
   1886 
   1887 		/* XXX we're still at splbio() here... do we *really*
   1888 		   need to be? */
   1889 
   1890 		/* don't ever condition on bp->b_flags & B_WRITE.
   1891 		 * always condition on B_READ instead */
   1892 
   1893 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1894 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1895 				 do_async, raid_addr, num_blocks,
   1896 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1897 
   1898 		if (rc) {
   1899 			biodone(bp, rc, bp->b_bcount);
   1900 			/* continue loop */
   1901 		}
   1902 
   1903 		RF_LOCK_MUTEX(raidPtr->mutex);
   1904 	}
   1905 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1906 }
   1907 
   1908 
   1909 
   1910 
   1911 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1912 
   1913 int
   1914 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1915 {
   1916 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1917 	struct buf *bp;
   1918 
   1919 	req->queue = queue;
   1920 
   1921 #if DIAGNOSTIC
   1922 	if (queue->raidPtr->raidid >= numraid) {
   1923 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1924 		    numraid);
   1925 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1926 	}
   1927 #endif
   1928 
   1929 	bp = req->bp;
   1930 
   1931 	switch (req->type) {
   1932 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1933 		/* XXX need to do something extra here.. */
   1934 		/* I'm leaving this in, as I've never actually seen it used,
   1935 		 * and I'd like folks to report it... GO */
   1936 		printf(("WAKEUP CALLED\n"));
   1937 		queue->numOutstanding++;
   1938 
   1939 		bp->b_flags = 0;
   1940 		bp->b_private = req;
   1941 
   1942 		KernelWakeupFunc(bp);
   1943 		break;
   1944 
   1945 	case RF_IO_TYPE_READ:
   1946 	case RF_IO_TYPE_WRITE:
   1947 #if RF_ACC_TRACE > 0
   1948 		if (req->tracerec) {
   1949 			RF_ETIMER_START(req->tracerec->timer);
   1950 		}
   1951 #endif
   1952 		InitBP(bp, queue->rf_cinfo->ci_vp,
   1953 		    op, queue->rf_cinfo->ci_dev,
   1954 		    req->sectorOffset, req->numSector,
   1955 		    req->buf, KernelWakeupFunc, (void *) req,
   1956 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1957 
   1958 		if (rf_debugKernelAccess) {
   1959 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1960 				(long) bp->b_blkno));
   1961 		}
   1962 		queue->numOutstanding++;
   1963 		queue->last_deq_sector = req->sectorOffset;
   1964 		/* acc wouldn't have been let in if there were any pending
   1965 		 * reqs at any other priority */
   1966 		queue->curPriority = req->priority;
   1967 
   1968 		db1_printf(("Going for %c to unit %d col %d\n",
   1969 			    req->type, queue->raidPtr->raidid,
   1970 			    queue->col));
   1971 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1972 			(int) req->sectorOffset, (int) req->numSector,
   1973 			(int) (req->numSector <<
   1974 			    queue->raidPtr->logBytesPerSector),
   1975 			(int) queue->raidPtr->logBytesPerSector));
   1976 		VOP_STRATEGY(bp->b_vp, bp);
   1977 
   1978 		break;
   1979 
   1980 	default:
   1981 		panic("bad req->type in rf_DispatchKernelIO");
   1982 	}
   1983 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1984 
   1985 	return (0);
   1986 }
   1987 /* this is the callback function associated with a I/O invoked from
   1988    kernel code.
   1989  */
   1990 static void
   1991 KernelWakeupFunc(struct buf *bp)
   1992 {
   1993 	RF_DiskQueueData_t *req = NULL;
   1994 	RF_DiskQueue_t *queue;
   1995 	int s;
   1996 
   1997 	s = splbio();
   1998 	db1_printf(("recovering the request queue:\n"));
   1999 	req = bp->b_private;
   2000 
   2001 	queue = (RF_DiskQueue_t *) req->queue;
   2002 
   2003 #if RF_ACC_TRACE > 0
   2004 	if (req->tracerec) {
   2005 		RF_ETIMER_STOP(req->tracerec->timer);
   2006 		RF_ETIMER_EVAL(req->tracerec->timer);
   2007 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2008 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2009 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2010 		req->tracerec->num_phys_ios++;
   2011 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2012 	}
   2013 #endif
   2014 
   2015 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   2016 	 * ballistic, and mark the component as hosed... */
   2017 
   2018 	if (bp->b_flags & B_ERROR) {
   2019 		/* Mark the disk as dead */
   2020 		/* but only mark it once... */
   2021 		/* and only if it wouldn't leave this RAID set
   2022 		   completely broken */
   2023 		if (((queue->raidPtr->Disks[queue->col].status ==
   2024 		      rf_ds_optimal) ||
   2025 		     (queue->raidPtr->Disks[queue->col].status ==
   2026 		      rf_ds_used_spare)) &&
   2027 		     (queue->raidPtr->numFailures <
   2028 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2029 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2030 			       queue->raidPtr->raidid,
   2031 			       queue->raidPtr->Disks[queue->col].devname);
   2032 			queue->raidPtr->Disks[queue->col].status =
   2033 			    rf_ds_failed;
   2034 			queue->raidPtr->status = rf_rs_degraded;
   2035 			queue->raidPtr->numFailures++;
   2036 			queue->raidPtr->numNewFailures++;
   2037 		} else {	/* Disk is already dead... */
   2038 			/* printf("Disk already marked as dead!\n"); */
   2039 		}
   2040 
   2041 	}
   2042 
   2043 	/* Fill in the error value */
   2044 
   2045 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   2046 
   2047 	simple_lock(&queue->raidPtr->iodone_lock);
   2048 
   2049 	/* Drop this one on the "finished" queue... */
   2050 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2051 
   2052 	/* Let the raidio thread know there is work to be done. */
   2053 	wakeup(&(queue->raidPtr->iodone));
   2054 
   2055 	simple_unlock(&queue->raidPtr->iodone_lock);
   2056 
   2057 	splx(s);
   2058 }
   2059 
   2060 
   2061 
   2062 /*
   2063  * initialize a buf structure for doing an I/O in the kernel.
   2064  */
   2065 static void
   2066 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2067        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2068        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2069        struct proc *b_proc)
   2070 {
   2071 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2072 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2073 	bp->b_bcount = numSect << logBytesPerSector;
   2074 	bp->b_bufsize = bp->b_bcount;
   2075 	bp->b_error = 0;
   2076 	bp->b_dev = dev;
   2077 	bp->b_data = bf;
   2078 	bp->b_blkno = startSect;
   2079 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2080 	if (bp->b_bcount == 0) {
   2081 		panic("bp->b_bcount is zero in InitBP!!");
   2082 	}
   2083 	bp->b_proc = b_proc;
   2084 	bp->b_iodone = cbFunc;
   2085 	bp->b_private = cbArg;
   2086 	bp->b_vp = b_vp;
   2087 	if ((bp->b_flags & B_READ) == 0) {
   2088 		bp->b_vp->v_numoutput++;
   2089 	}
   2090 
   2091 }
   2092 
   2093 static void
   2094 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2095 		    struct disklabel *lp)
   2096 {
   2097 	memset(lp, 0, sizeof(*lp));
   2098 
   2099 	/* fabricate a label... */
   2100 	lp->d_secperunit = raidPtr->totalSectors;
   2101 	lp->d_secsize = raidPtr->bytesPerSector;
   2102 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2103 	lp->d_ntracks = 4 * raidPtr->numCol;
   2104 	lp->d_ncylinders = raidPtr->totalSectors /
   2105 		(lp->d_nsectors * lp->d_ntracks);
   2106 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2107 
   2108 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2109 	lp->d_type = DTYPE_RAID;
   2110 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2111 	lp->d_rpm = 3600;
   2112 	lp->d_interleave = 1;
   2113 	lp->d_flags = 0;
   2114 
   2115 	lp->d_partitions[RAW_PART].p_offset = 0;
   2116 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2117 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2118 	lp->d_npartitions = RAW_PART + 1;
   2119 
   2120 	lp->d_magic = DISKMAGIC;
   2121 	lp->d_magic2 = DISKMAGIC;
   2122 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2123 
   2124 }
   2125 /*
   2126  * Read the disklabel from the raid device.  If one is not present, fake one
   2127  * up.
   2128  */
   2129 static void
   2130 raidgetdisklabel(dev_t dev)
   2131 {
   2132 	int     unit = raidunit(dev);
   2133 	struct raid_softc *rs = &raid_softc[unit];
   2134 	const char   *errstring;
   2135 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2136 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2137 	RF_Raid_t *raidPtr;
   2138 
   2139 	db1_printf(("Getting the disklabel...\n"));
   2140 
   2141 	memset(clp, 0, sizeof(*clp));
   2142 
   2143 	raidPtr = raidPtrs[unit];
   2144 
   2145 	raidgetdefaultlabel(raidPtr, rs, lp);
   2146 
   2147 	/*
   2148 	 * Call the generic disklabel extraction routine.
   2149 	 */
   2150 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2151 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2152 	if (errstring)
   2153 		raidmakedisklabel(rs);
   2154 	else {
   2155 		int     i;
   2156 		struct partition *pp;
   2157 
   2158 		/*
   2159 		 * Sanity check whether the found disklabel is valid.
   2160 		 *
   2161 		 * This is necessary since total size of the raid device
   2162 		 * may vary when an interleave is changed even though exactly
   2163 		 * same components are used, and old disklabel may used
   2164 		 * if that is found.
   2165 		 */
   2166 		if (lp->d_secperunit != rs->sc_size)
   2167 			printf("raid%d: WARNING: %s: "
   2168 			    "total sector size in disklabel (%d) != "
   2169 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2170 			    lp->d_secperunit, (long) rs->sc_size);
   2171 		for (i = 0; i < lp->d_npartitions; i++) {
   2172 			pp = &lp->d_partitions[i];
   2173 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2174 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2175 				       "exceeds the size of raid (%ld)\n",
   2176 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2177 		}
   2178 	}
   2179 
   2180 }
   2181 /*
   2182  * Take care of things one might want to take care of in the event
   2183  * that a disklabel isn't present.
   2184  */
   2185 static void
   2186 raidmakedisklabel(struct raid_softc *rs)
   2187 {
   2188 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2189 	db1_printf(("Making a label..\n"));
   2190 
   2191 	/*
   2192 	 * For historical reasons, if there's no disklabel present
   2193 	 * the raw partition must be marked FS_BSDFFS.
   2194 	 */
   2195 
   2196 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2197 
   2198 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2199 
   2200 	lp->d_checksum = dkcksum(lp);
   2201 }
   2202 /*
   2203  * Wait interruptibly for an exclusive lock.
   2204  *
   2205  * XXX
   2206  * Several drivers do this; it should be abstracted and made MP-safe.
   2207  * (Hmm... where have we seen this warning before :->  GO )
   2208  */
   2209 static int
   2210 raidlock(struct raid_softc *rs)
   2211 {
   2212 	int     error;
   2213 
   2214 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2215 		rs->sc_flags |= RAIDF_WANTED;
   2216 		if ((error =
   2217 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2218 			return (error);
   2219 	}
   2220 	rs->sc_flags |= RAIDF_LOCKED;
   2221 	return (0);
   2222 }
   2223 /*
   2224  * Unlock and wake up any waiters.
   2225  */
   2226 static void
   2227 raidunlock(struct raid_softc *rs)
   2228 {
   2229 
   2230 	rs->sc_flags &= ~RAIDF_LOCKED;
   2231 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2232 		rs->sc_flags &= ~RAIDF_WANTED;
   2233 		wakeup(rs);
   2234 	}
   2235 }
   2236 
   2237 
   2238 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2239 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2240 
   2241 int
   2242 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2243 {
   2244 	RF_ComponentLabel_t clabel;
   2245 	raidread_component_label(dev, b_vp, &clabel);
   2246 	clabel.mod_counter = mod_counter;
   2247 	clabel.clean = RF_RAID_CLEAN;
   2248 	raidwrite_component_label(dev, b_vp, &clabel);
   2249 	return(0);
   2250 }
   2251 
   2252 
   2253 int
   2254 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2255 {
   2256 	RF_ComponentLabel_t clabel;
   2257 	raidread_component_label(dev, b_vp, &clabel);
   2258 	clabel.mod_counter = mod_counter;
   2259 	clabel.clean = RF_RAID_DIRTY;
   2260 	raidwrite_component_label(dev, b_vp, &clabel);
   2261 	return(0);
   2262 }
   2263 
   2264 /* ARGSUSED */
   2265 int
   2266 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2267 			 RF_ComponentLabel_t *clabel)
   2268 {
   2269 	struct buf *bp;
   2270 	const struct bdevsw *bdev;
   2271 	int error;
   2272 
   2273 	/* XXX should probably ensure that we don't try to do this if
   2274 	   someone has changed rf_protected_sectors. */
   2275 
   2276 	if (b_vp == NULL) {
   2277 		/* For whatever reason, this component is not valid.
   2278 		   Don't try to read a component label from it. */
   2279 		return(EINVAL);
   2280 	}
   2281 
   2282 	/* get a block of the appropriate size... */
   2283 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2284 	bp->b_dev = dev;
   2285 
   2286 	/* get our ducks in a row for the read */
   2287 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2288 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2289 	bp->b_flags |= B_READ;
   2290  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2291 
   2292 	bdev = bdevsw_lookup(bp->b_dev);
   2293 	if (bdev == NULL)
   2294 		return (ENXIO);
   2295 	(*bdev->d_strategy)(bp);
   2296 
   2297 	error = biowait(bp);
   2298 
   2299 	if (!error) {
   2300 		memcpy(clabel, bp->b_data,
   2301 		       sizeof(RF_ComponentLabel_t));
   2302 	}
   2303 
   2304 	brelse(bp, 0);
   2305 	return(error);
   2306 }
   2307 /* ARGSUSED */
   2308 int
   2309 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2310 			  RF_ComponentLabel_t *clabel)
   2311 {
   2312 	struct buf *bp;
   2313 	const struct bdevsw *bdev;
   2314 	int error;
   2315 
   2316 	/* get a block of the appropriate size... */
   2317 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2318 	bp->b_dev = dev;
   2319 
   2320 	/* get our ducks in a row for the write */
   2321 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2322 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2323 	bp->b_flags |= B_WRITE;
   2324  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2325 
   2326 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2327 
   2328 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2329 
   2330 	bdev = bdevsw_lookup(bp->b_dev);
   2331 	if (bdev == NULL)
   2332 		return (ENXIO);
   2333 	(*bdev->d_strategy)(bp);
   2334 	error = biowait(bp);
   2335 	brelse(bp, 0);
   2336 	if (error) {
   2337 #if 1
   2338 		printf("Failed to write RAID component info!\n");
   2339 #endif
   2340 	}
   2341 
   2342 	return(error);
   2343 }
   2344 
   2345 void
   2346 rf_markalldirty(RF_Raid_t *raidPtr)
   2347 {
   2348 	RF_ComponentLabel_t clabel;
   2349 	int sparecol;
   2350 	int c;
   2351 	int j;
   2352 	int scol = -1;
   2353 
   2354 	raidPtr->mod_counter++;
   2355 	for (c = 0; c < raidPtr->numCol; c++) {
   2356 		/* we don't want to touch (at all) a disk that has
   2357 		   failed */
   2358 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2359 			raidread_component_label(
   2360 						 raidPtr->Disks[c].dev,
   2361 						 raidPtr->raid_cinfo[c].ci_vp,
   2362 						 &clabel);
   2363 			if (clabel.status == rf_ds_spared) {
   2364 				/* XXX do something special...
   2365 				   but whatever you do, don't
   2366 				   try to access it!! */
   2367 			} else {
   2368 				raidmarkdirty(
   2369 					      raidPtr->Disks[c].dev,
   2370 					      raidPtr->raid_cinfo[c].ci_vp,
   2371 					      raidPtr->mod_counter);
   2372 			}
   2373 		}
   2374 	}
   2375 
   2376 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2377 		sparecol = raidPtr->numCol + c;
   2378 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2379 			/*
   2380 
   2381 			   we claim this disk is "optimal" if it's
   2382 			   rf_ds_used_spare, as that means it should be
   2383 			   directly substitutable for the disk it replaced.
   2384 			   We note that too...
   2385 
   2386 			 */
   2387 
   2388 			for(j=0;j<raidPtr->numCol;j++) {
   2389 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2390 					scol = j;
   2391 					break;
   2392 				}
   2393 			}
   2394 
   2395 			raidread_component_label(
   2396 				 raidPtr->Disks[sparecol].dev,
   2397 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2398 				 &clabel);
   2399 			/* make sure status is noted */
   2400 
   2401 			raid_init_component_label(raidPtr, &clabel);
   2402 
   2403 			clabel.row = 0;
   2404 			clabel.column = scol;
   2405 			/* Note: we *don't* change status from rf_ds_used_spare
   2406 			   to rf_ds_optimal */
   2407 			/* clabel.status = rf_ds_optimal; */
   2408 
   2409 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2410 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2411 				      raidPtr->mod_counter);
   2412 		}
   2413 	}
   2414 }
   2415 
   2416 
   2417 void
   2418 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2419 {
   2420 	RF_ComponentLabel_t clabel;
   2421 	int sparecol;
   2422 	int c;
   2423 	int j;
   2424 	int scol;
   2425 
   2426 	scol = -1;
   2427 
   2428 	/* XXX should do extra checks to make sure things really are clean,
   2429 	   rather than blindly setting the clean bit... */
   2430 
   2431 	raidPtr->mod_counter++;
   2432 
   2433 	for (c = 0; c < raidPtr->numCol; c++) {
   2434 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2435 			raidread_component_label(
   2436 						 raidPtr->Disks[c].dev,
   2437 						 raidPtr->raid_cinfo[c].ci_vp,
   2438 						 &clabel);
   2439 			/* make sure status is noted */
   2440 			clabel.status = rf_ds_optimal;
   2441 
   2442 			/* bump the counter */
   2443 			clabel.mod_counter = raidPtr->mod_counter;
   2444 
   2445 			/* note what unit we are configured as */
   2446 			clabel.last_unit = raidPtr->raidid;
   2447 
   2448 			raidwrite_component_label(
   2449 						  raidPtr->Disks[c].dev,
   2450 						  raidPtr->raid_cinfo[c].ci_vp,
   2451 						  &clabel);
   2452 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2453 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2454 					raidmarkclean(
   2455 						      raidPtr->Disks[c].dev,
   2456 						      raidPtr->raid_cinfo[c].ci_vp,
   2457 						      raidPtr->mod_counter);
   2458 				}
   2459 			}
   2460 		}
   2461 		/* else we don't touch it.. */
   2462 	}
   2463 
   2464 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2465 		sparecol = raidPtr->numCol + c;
   2466 		/* Need to ensure that the reconstruct actually completed! */
   2467 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2468 			/*
   2469 
   2470 			   we claim this disk is "optimal" if it's
   2471 			   rf_ds_used_spare, as that means it should be
   2472 			   directly substitutable for the disk it replaced.
   2473 			   We note that too...
   2474 
   2475 			 */
   2476 
   2477 			for(j=0;j<raidPtr->numCol;j++) {
   2478 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2479 					scol = j;
   2480 					break;
   2481 				}
   2482 			}
   2483 
   2484 			/* XXX shouldn't *really* need this... */
   2485 			raidread_component_label(
   2486 				      raidPtr->Disks[sparecol].dev,
   2487 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2488 				      &clabel);
   2489 			/* make sure status is noted */
   2490 
   2491 			raid_init_component_label(raidPtr, &clabel);
   2492 
   2493 			clabel.mod_counter = raidPtr->mod_counter;
   2494 			clabel.column = scol;
   2495 			clabel.status = rf_ds_optimal;
   2496 			clabel.last_unit = raidPtr->raidid;
   2497 
   2498 			raidwrite_component_label(
   2499 				      raidPtr->Disks[sparecol].dev,
   2500 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2501 				      &clabel);
   2502 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2503 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2504 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2505 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2506 						       raidPtr->mod_counter);
   2507 				}
   2508 			}
   2509 		}
   2510 	}
   2511 }
   2512 
   2513 void
   2514 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2515 {
   2516 	struct proc *p;
   2517 	struct lwp *l;
   2518 
   2519 	p = raidPtr->engine_thread;
   2520 	l = LIST_FIRST(&p->p_lwps);
   2521 
   2522 	if (vp != NULL) {
   2523 		if (auto_configured == 1) {
   2524 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2525 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2526 			vput(vp);
   2527 
   2528 		} else {
   2529 			(void) vn_close(vp, FREAD | FWRITE, p->p_cred, l);
   2530 		}
   2531 	}
   2532 }
   2533 
   2534 
   2535 void
   2536 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2537 {
   2538 	int r,c;
   2539 	struct vnode *vp;
   2540 	int acd;
   2541 
   2542 
   2543 	/* We take this opportunity to close the vnodes like we should.. */
   2544 
   2545 	for (c = 0; c < raidPtr->numCol; c++) {
   2546 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2547 		acd = raidPtr->Disks[c].auto_configured;
   2548 		rf_close_component(raidPtr, vp, acd);
   2549 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2550 		raidPtr->Disks[c].auto_configured = 0;
   2551 	}
   2552 
   2553 	for (r = 0; r < raidPtr->numSpare; r++) {
   2554 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2555 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2556 		rf_close_component(raidPtr, vp, acd);
   2557 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2558 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2559 	}
   2560 }
   2561 
   2562 
   2563 void
   2564 rf_ReconThread(struct rf_recon_req *req)
   2565 {
   2566 	int     s;
   2567 	RF_Raid_t *raidPtr;
   2568 
   2569 	s = splbio();
   2570 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2571 	raidPtr->recon_in_progress = 1;
   2572 
   2573 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2574 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2575 
   2576 	RF_Free(req, sizeof(*req));
   2577 
   2578 	raidPtr->recon_in_progress = 0;
   2579 	splx(s);
   2580 
   2581 	/* That's all... */
   2582 	kthread_exit(0);	/* does not return */
   2583 }
   2584 
   2585 void
   2586 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2587 {
   2588 	int retcode;
   2589 	int s;
   2590 
   2591 	raidPtr->parity_rewrite_stripes_done = 0;
   2592 	raidPtr->parity_rewrite_in_progress = 1;
   2593 	s = splbio();
   2594 	retcode = rf_RewriteParity(raidPtr);
   2595 	splx(s);
   2596 	if (retcode) {
   2597 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2598 	} else {
   2599 		/* set the clean bit!  If we shutdown correctly,
   2600 		   the clean bit on each component label will get
   2601 		   set */
   2602 		raidPtr->parity_good = RF_RAID_CLEAN;
   2603 	}
   2604 	raidPtr->parity_rewrite_in_progress = 0;
   2605 
   2606 	/* Anyone waiting for us to stop?  If so, inform them... */
   2607 	if (raidPtr->waitShutdown) {
   2608 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2609 	}
   2610 
   2611 	/* That's all... */
   2612 	kthread_exit(0);	/* does not return */
   2613 }
   2614 
   2615 
   2616 void
   2617 rf_CopybackThread(RF_Raid_t *raidPtr)
   2618 {
   2619 	int s;
   2620 
   2621 	raidPtr->copyback_in_progress = 1;
   2622 	s = splbio();
   2623 	rf_CopybackReconstructedData(raidPtr);
   2624 	splx(s);
   2625 	raidPtr->copyback_in_progress = 0;
   2626 
   2627 	/* That's all... */
   2628 	kthread_exit(0);	/* does not return */
   2629 }
   2630 
   2631 
   2632 void
   2633 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2634 {
   2635 	int s;
   2636 	RF_Raid_t *raidPtr;
   2637 
   2638 	s = splbio();
   2639 	raidPtr = req->raidPtr;
   2640 	raidPtr->recon_in_progress = 1;
   2641 	rf_ReconstructInPlace(raidPtr, req->col);
   2642 	RF_Free(req, sizeof(*req));
   2643 	raidPtr->recon_in_progress = 0;
   2644 	splx(s);
   2645 
   2646 	/* That's all... */
   2647 	kthread_exit(0);	/* does not return */
   2648 }
   2649 
   2650 static RF_AutoConfig_t *
   2651 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2652     const char *cname, RF_SectorCount_t size)
   2653 {
   2654 	int good_one = 0;
   2655 	RF_ComponentLabel_t *clabel;
   2656 	RF_AutoConfig_t *ac;
   2657 
   2658 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2659 	if (clabel == NULL) {
   2660 oomem:
   2661 		    while(ac_list) {
   2662 			    ac = ac_list;
   2663 			    if (ac->clabel)
   2664 				    free(ac->clabel, M_RAIDFRAME);
   2665 			    ac_list = ac_list->next;
   2666 			    free(ac, M_RAIDFRAME);
   2667 		    }
   2668 		    printf("RAID auto config: out of memory!\n");
   2669 		    return NULL; /* XXX probably should panic? */
   2670 	}
   2671 
   2672 	if (!raidread_component_label(dev, vp, clabel)) {
   2673 		    /* Got the label.  Does it look reasonable? */
   2674 		    if (rf_reasonable_label(clabel) &&
   2675 			(clabel->partitionSize <= size)) {
   2676 #ifdef DEBUG
   2677 			    printf("Component on: %s: %llu\n",
   2678 				cname, (unsigned long long)size);
   2679 			    rf_print_component_label(clabel);
   2680 #endif
   2681 			    /* if it's reasonable, add it, else ignore it. */
   2682 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2683 				M_NOWAIT);
   2684 			    if (ac == NULL) {
   2685 				    free(clabel, M_RAIDFRAME);
   2686 				    goto oomem;
   2687 			    }
   2688 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2689 			    ac->dev = dev;
   2690 			    ac->vp = vp;
   2691 			    ac->clabel = clabel;
   2692 			    ac->next = ac_list;
   2693 			    ac_list = ac;
   2694 			    good_one = 1;
   2695 		    }
   2696 	}
   2697 	if (!good_one) {
   2698 		/* cleanup */
   2699 		free(clabel, M_RAIDFRAME);
   2700 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2701 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2702 		vput(vp);
   2703 	}
   2704 	return ac_list;
   2705 }
   2706 
   2707 RF_AutoConfig_t *
   2708 rf_find_raid_components()
   2709 {
   2710 	struct vnode *vp;
   2711 	struct disklabel label;
   2712 	struct device *dv;
   2713 	dev_t dev;
   2714 	int bmajor, bminor, wedge;
   2715 	int error;
   2716 	int i;
   2717 	RF_AutoConfig_t *ac_list;
   2718 
   2719 
   2720 	/* initialize the AutoConfig list */
   2721 	ac_list = NULL;
   2722 
   2723 	/* we begin by trolling through *all* the devices on the system */
   2724 
   2725 	for (dv = alldevs.tqh_first; dv != NULL;
   2726 	     dv = dv->dv_list.tqe_next) {
   2727 
   2728 		/* we are only interested in disks... */
   2729 		if (device_class(dv) != DV_DISK)
   2730 			continue;
   2731 
   2732 		/* we don't care about floppies... */
   2733 		if (device_is_a(dv, "fd")) {
   2734 			continue;
   2735 		}
   2736 
   2737 		/* we don't care about CD's... */
   2738 		if (device_is_a(dv, "cd")) {
   2739 			continue;
   2740 		}
   2741 
   2742 		/* hdfd is the Atari/Hades floppy driver */
   2743 		if (device_is_a(dv, "hdfd")) {
   2744 			continue;
   2745 		}
   2746 
   2747 		/* fdisa is the Atari/Milan floppy driver */
   2748 		if (device_is_a(dv, "fdisa")) {
   2749 			continue;
   2750 		}
   2751 
   2752 		/* need to find the device_name_to_block_device_major stuff */
   2753 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2754 
   2755 		/* get a vnode for the raw partition of this disk */
   2756 
   2757 		wedge = device_is_a(dv, "dk");
   2758 		bminor = minor(device_unit(dv));
   2759 		dev = wedge ? makedev(bmajor, bminor) :
   2760 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2761 		if (bdevvp(dev, &vp))
   2762 			panic("RAID can't alloc vnode");
   2763 
   2764 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2765 
   2766 		if (error) {
   2767 			/* "Who cares."  Continue looking
   2768 			   for something that exists*/
   2769 			vput(vp);
   2770 			continue;
   2771 		}
   2772 
   2773 		if (wedge) {
   2774 			struct dkwedge_info dkw;
   2775 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2776 			    NOCRED, 0);
   2777 			if (error) {
   2778 				printf("RAIDframe: can't get wedge info for "
   2779 				    "dev %s (%d)\n", dv->dv_xname, error);
   2780 out:
   2781 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2782 				VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2783 				vput(vp);
   2784 				continue;
   2785 			}
   2786 
   2787 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
   2788 				goto out;
   2789 
   2790 			ac_list = rf_get_component(ac_list, dev, vp,
   2791 			    dv->dv_xname, dkw.dkw_size);
   2792 			continue;
   2793 		}
   2794 
   2795 		/* Ok, the disk exists.  Go get the disklabel. */
   2796 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2797 		if (error) {
   2798 			/*
   2799 			 * XXX can't happen - open() would
   2800 			 * have errored out (or faked up one)
   2801 			 */
   2802 			if (error != ENOTTY)
   2803 				printf("RAIDframe: can't get label for dev "
   2804 				    "%s (%d)\n", dv->dv_xname, error);
   2805 		}
   2806 
   2807 		/* don't need this any more.  We'll allocate it again
   2808 		   a little later if we really do... */
   2809 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2810 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2811 		vput(vp);
   2812 
   2813 		if (error)
   2814 			continue;
   2815 
   2816 		for (i = 0; i < label.d_npartitions; i++) {
   2817 			char cname[sizeof(ac_list->devname)];
   2818 
   2819 			/* We only support partitions marked as RAID */
   2820 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2821 				continue;
   2822 
   2823 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2824 			if (bdevvp(dev, &vp))
   2825 				panic("RAID can't alloc vnode");
   2826 
   2827 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2828 			if (error) {
   2829 				/* Whatever... */
   2830 				vput(vp);
   2831 				continue;
   2832 			}
   2833 			snprintf(cname, sizeof(cname), "%s%c",
   2834 			    dv->dv_xname, 'a' + i);
   2835 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2836 				label.d_partitions[i].p_size);
   2837 		}
   2838 	}
   2839 	return ac_list;
   2840 }
   2841 
   2842 
   2843 static int
   2844 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2845 {
   2846 
   2847 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2848 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2849 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2850 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2851 	    clabel->row >=0 &&
   2852 	    clabel->column >= 0 &&
   2853 	    clabel->num_rows > 0 &&
   2854 	    clabel->num_columns > 0 &&
   2855 	    clabel->row < clabel->num_rows &&
   2856 	    clabel->column < clabel->num_columns &&
   2857 	    clabel->blockSize > 0 &&
   2858 	    clabel->numBlocks > 0) {
   2859 		/* label looks reasonable enough... */
   2860 		return(1);
   2861 	}
   2862 	return(0);
   2863 }
   2864 
   2865 
   2866 #ifdef DEBUG
   2867 void
   2868 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2869 {
   2870 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2871 	       clabel->row, clabel->column,
   2872 	       clabel->num_rows, clabel->num_columns);
   2873 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2874 	       clabel->version, clabel->serial_number,
   2875 	       clabel->mod_counter);
   2876 	printf("   Clean: %s Status: %d\n",
   2877 	       clabel->clean ? "Yes" : "No", clabel->status );
   2878 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2879 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2880 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2881 	       (char) clabel->parityConfig, clabel->blockSize,
   2882 	       clabel->numBlocks);
   2883 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2884 	printf("   Contains root partition: %s\n",
   2885 	       clabel->root_partition ? "Yes" : "No" );
   2886 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2887 #if 0
   2888 	   printf("   Config order: %d\n", clabel->config_order);
   2889 #endif
   2890 
   2891 }
   2892 #endif
   2893 
   2894 RF_ConfigSet_t *
   2895 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2896 {
   2897 	RF_AutoConfig_t *ac;
   2898 	RF_ConfigSet_t *config_sets;
   2899 	RF_ConfigSet_t *cset;
   2900 	RF_AutoConfig_t *ac_next;
   2901 
   2902 
   2903 	config_sets = NULL;
   2904 
   2905 	/* Go through the AutoConfig list, and figure out which components
   2906 	   belong to what sets.  */
   2907 	ac = ac_list;
   2908 	while(ac!=NULL) {
   2909 		/* we're going to putz with ac->next, so save it here
   2910 		   for use at the end of the loop */
   2911 		ac_next = ac->next;
   2912 
   2913 		if (config_sets == NULL) {
   2914 			/* will need at least this one... */
   2915 			config_sets = (RF_ConfigSet_t *)
   2916 				malloc(sizeof(RF_ConfigSet_t),
   2917 				       M_RAIDFRAME, M_NOWAIT);
   2918 			if (config_sets == NULL) {
   2919 				panic("rf_create_auto_sets: No memory!");
   2920 			}
   2921 			/* this one is easy :) */
   2922 			config_sets->ac = ac;
   2923 			config_sets->next = NULL;
   2924 			config_sets->rootable = 0;
   2925 			ac->next = NULL;
   2926 		} else {
   2927 			/* which set does this component fit into? */
   2928 			cset = config_sets;
   2929 			while(cset!=NULL) {
   2930 				if (rf_does_it_fit(cset, ac)) {
   2931 					/* looks like it matches... */
   2932 					ac->next = cset->ac;
   2933 					cset->ac = ac;
   2934 					break;
   2935 				}
   2936 				cset = cset->next;
   2937 			}
   2938 			if (cset==NULL) {
   2939 				/* didn't find a match above... new set..*/
   2940 				cset = (RF_ConfigSet_t *)
   2941 					malloc(sizeof(RF_ConfigSet_t),
   2942 					       M_RAIDFRAME, M_NOWAIT);
   2943 				if (cset == NULL) {
   2944 					panic("rf_create_auto_sets: No memory!");
   2945 				}
   2946 				cset->ac = ac;
   2947 				ac->next = NULL;
   2948 				cset->next = config_sets;
   2949 				cset->rootable = 0;
   2950 				config_sets = cset;
   2951 			}
   2952 		}
   2953 		ac = ac_next;
   2954 	}
   2955 
   2956 
   2957 	return(config_sets);
   2958 }
   2959 
   2960 static int
   2961 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2962 {
   2963 	RF_ComponentLabel_t *clabel1, *clabel2;
   2964 
   2965 	/* If this one matches the *first* one in the set, that's good
   2966 	   enough, since the other members of the set would have been
   2967 	   through here too... */
   2968 	/* note that we are not checking partitionSize here..
   2969 
   2970 	   Note that we are also not checking the mod_counters here.
   2971 	   If everything else matches execpt the mod_counter, that's
   2972 	   good enough for this test.  We will deal with the mod_counters
   2973 	   a little later in the autoconfiguration process.
   2974 
   2975 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2976 
   2977 	   The reason we don't check for this is that failed disks
   2978 	   will have lower modification counts.  If those disks are
   2979 	   not added to the set they used to belong to, then they will
   2980 	   form their own set, which may result in 2 different sets,
   2981 	   for example, competing to be configured at raid0, and
   2982 	   perhaps competing to be the root filesystem set.  If the
   2983 	   wrong ones get configured, or both attempt to become /,
   2984 	   weird behaviour and or serious lossage will occur.  Thus we
   2985 	   need to bring them into the fold here, and kick them out at
   2986 	   a later point.
   2987 
   2988 	*/
   2989 
   2990 	clabel1 = cset->ac->clabel;
   2991 	clabel2 = ac->clabel;
   2992 	if ((clabel1->version == clabel2->version) &&
   2993 	    (clabel1->serial_number == clabel2->serial_number) &&
   2994 	    (clabel1->num_rows == clabel2->num_rows) &&
   2995 	    (clabel1->num_columns == clabel2->num_columns) &&
   2996 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2997 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   2998 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   2999 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3000 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3001 	    (clabel1->blockSize == clabel2->blockSize) &&
   3002 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3003 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3004 	    (clabel1->root_partition == clabel2->root_partition) &&
   3005 	    (clabel1->last_unit == clabel2->last_unit) &&
   3006 	    (clabel1->config_order == clabel2->config_order)) {
   3007 		/* if it get's here, it almost *has* to be a match */
   3008 	} else {
   3009 		/* it's not consistent with somebody in the set..
   3010 		   punt */
   3011 		return(0);
   3012 	}
   3013 	/* all was fine.. it must fit... */
   3014 	return(1);
   3015 }
   3016 
   3017 int
   3018 rf_have_enough_components(RF_ConfigSet_t *cset)
   3019 {
   3020 	RF_AutoConfig_t *ac;
   3021 	RF_AutoConfig_t *auto_config;
   3022 	RF_ComponentLabel_t *clabel;
   3023 	int c;
   3024 	int num_cols;
   3025 	int num_missing;
   3026 	int mod_counter;
   3027 	int mod_counter_found;
   3028 	int even_pair_failed;
   3029 	char parity_type;
   3030 
   3031 
   3032 	/* check to see that we have enough 'live' components
   3033 	   of this set.  If so, we can configure it if necessary */
   3034 
   3035 	num_cols = cset->ac->clabel->num_columns;
   3036 	parity_type = cset->ac->clabel->parityConfig;
   3037 
   3038 	/* XXX Check for duplicate components!?!?!? */
   3039 
   3040 	/* Determine what the mod_counter is supposed to be for this set. */
   3041 
   3042 	mod_counter_found = 0;
   3043 	mod_counter = 0;
   3044 	ac = cset->ac;
   3045 	while(ac!=NULL) {
   3046 		if (mod_counter_found==0) {
   3047 			mod_counter = ac->clabel->mod_counter;
   3048 			mod_counter_found = 1;
   3049 		} else {
   3050 			if (ac->clabel->mod_counter > mod_counter) {
   3051 				mod_counter = ac->clabel->mod_counter;
   3052 			}
   3053 		}
   3054 		ac = ac->next;
   3055 	}
   3056 
   3057 	num_missing = 0;
   3058 	auto_config = cset->ac;
   3059 
   3060 	even_pair_failed = 0;
   3061 	for(c=0; c<num_cols; c++) {
   3062 		ac = auto_config;
   3063 		while(ac!=NULL) {
   3064 			if ((ac->clabel->column == c) &&
   3065 			    (ac->clabel->mod_counter == mod_counter)) {
   3066 				/* it's this one... */
   3067 #ifdef DEBUG
   3068 				printf("Found: %s at %d\n",
   3069 				       ac->devname,c);
   3070 #endif
   3071 				break;
   3072 			}
   3073 			ac=ac->next;
   3074 		}
   3075 		if (ac==NULL) {
   3076 				/* Didn't find one here! */
   3077 				/* special case for RAID 1, especially
   3078 				   where there are more than 2
   3079 				   components (where RAIDframe treats
   3080 				   things a little differently :( ) */
   3081 			if (parity_type == '1') {
   3082 				if (c%2 == 0) { /* even component */
   3083 					even_pair_failed = 1;
   3084 				} else { /* odd component.  If
   3085 					    we're failed, and
   3086 					    so is the even
   3087 					    component, it's
   3088 					    "Good Night, Charlie" */
   3089 					if (even_pair_failed == 1) {
   3090 						return(0);
   3091 					}
   3092 				}
   3093 			} else {
   3094 				/* normal accounting */
   3095 				num_missing++;
   3096 			}
   3097 		}
   3098 		if ((parity_type == '1') && (c%2 == 1)) {
   3099 				/* Just did an even component, and we didn't
   3100 				   bail.. reset the even_pair_failed flag,
   3101 				   and go on to the next component.... */
   3102 			even_pair_failed = 0;
   3103 		}
   3104 	}
   3105 
   3106 	clabel = cset->ac->clabel;
   3107 
   3108 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3109 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3110 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3111 		/* XXX this needs to be made *much* more general */
   3112 		/* Too many failures */
   3113 		return(0);
   3114 	}
   3115 	/* otherwise, all is well, and we've got enough to take a kick
   3116 	   at autoconfiguring this set */
   3117 	return(1);
   3118 }
   3119 
   3120 void
   3121 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3122 			RF_Raid_t *raidPtr)
   3123 {
   3124 	RF_ComponentLabel_t *clabel;
   3125 	int i;
   3126 
   3127 	clabel = ac->clabel;
   3128 
   3129 	/* 1. Fill in the common stuff */
   3130 	config->numRow = clabel->num_rows = 1;
   3131 	config->numCol = clabel->num_columns;
   3132 	config->numSpare = 0; /* XXX should this be set here? */
   3133 	config->sectPerSU = clabel->sectPerSU;
   3134 	config->SUsPerPU = clabel->SUsPerPU;
   3135 	config->SUsPerRU = clabel->SUsPerRU;
   3136 	config->parityConfig = clabel->parityConfig;
   3137 	/* XXX... */
   3138 	strcpy(config->diskQueueType,"fifo");
   3139 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3140 	config->layoutSpecificSize = 0; /* XXX ?? */
   3141 
   3142 	while(ac!=NULL) {
   3143 		/* row/col values will be in range due to the checks
   3144 		   in reasonable_label() */
   3145 		strcpy(config->devnames[0][ac->clabel->column],
   3146 		       ac->devname);
   3147 		ac = ac->next;
   3148 	}
   3149 
   3150 	for(i=0;i<RF_MAXDBGV;i++) {
   3151 		config->debugVars[i][0] = 0;
   3152 	}
   3153 }
   3154 
   3155 int
   3156 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3157 {
   3158 	RF_ComponentLabel_t clabel;
   3159 	struct vnode *vp;
   3160 	dev_t dev;
   3161 	int column;
   3162 	int sparecol;
   3163 
   3164 	raidPtr->autoconfigure = new_value;
   3165 
   3166 	for(column=0; column<raidPtr->numCol; column++) {
   3167 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3168 			dev = raidPtr->Disks[column].dev;
   3169 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3170 			raidread_component_label(dev, vp, &clabel);
   3171 			clabel.autoconfigure = new_value;
   3172 			raidwrite_component_label(dev, vp, &clabel);
   3173 		}
   3174 	}
   3175 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3176 		sparecol = raidPtr->numCol + column;
   3177 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3178 			dev = raidPtr->Disks[sparecol].dev;
   3179 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3180 			raidread_component_label(dev, vp, &clabel);
   3181 			clabel.autoconfigure = new_value;
   3182 			raidwrite_component_label(dev, vp, &clabel);
   3183 		}
   3184 	}
   3185 	return(new_value);
   3186 }
   3187 
   3188 int
   3189 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3190 {
   3191 	RF_ComponentLabel_t clabel;
   3192 	struct vnode *vp;
   3193 	dev_t dev;
   3194 	int column;
   3195 	int sparecol;
   3196 
   3197 	raidPtr->root_partition = new_value;
   3198 	for(column=0; column<raidPtr->numCol; column++) {
   3199 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3200 			dev = raidPtr->Disks[column].dev;
   3201 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3202 			raidread_component_label(dev, vp, &clabel);
   3203 			clabel.root_partition = new_value;
   3204 			raidwrite_component_label(dev, vp, &clabel);
   3205 		}
   3206 	}
   3207 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3208 		sparecol = raidPtr->numCol + column;
   3209 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3210 			dev = raidPtr->Disks[sparecol].dev;
   3211 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3212 			raidread_component_label(dev, vp, &clabel);
   3213 			clabel.root_partition = new_value;
   3214 			raidwrite_component_label(dev, vp, &clabel);
   3215 		}
   3216 	}
   3217 	return(new_value);
   3218 }
   3219 
   3220 void
   3221 rf_release_all_vps(RF_ConfigSet_t *cset)
   3222 {
   3223 	RF_AutoConfig_t *ac;
   3224 
   3225 	ac = cset->ac;
   3226 	while(ac!=NULL) {
   3227 		/* Close the vp, and give it back */
   3228 		if (ac->vp) {
   3229 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3230 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3231 			vput(ac->vp);
   3232 			ac->vp = NULL;
   3233 		}
   3234 		ac = ac->next;
   3235 	}
   3236 }
   3237 
   3238 
   3239 void
   3240 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3241 {
   3242 	RF_AutoConfig_t *ac;
   3243 	RF_AutoConfig_t *next_ac;
   3244 
   3245 	ac = cset->ac;
   3246 	while(ac!=NULL) {
   3247 		next_ac = ac->next;
   3248 		/* nuke the label */
   3249 		free(ac->clabel, M_RAIDFRAME);
   3250 		/* cleanup the config structure */
   3251 		free(ac, M_RAIDFRAME);
   3252 		/* "next.." */
   3253 		ac = next_ac;
   3254 	}
   3255 	/* and, finally, nuke the config set */
   3256 	free(cset, M_RAIDFRAME);
   3257 }
   3258 
   3259 
   3260 void
   3261 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3262 {
   3263 	/* current version number */
   3264 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3265 	clabel->serial_number = raidPtr->serial_number;
   3266 	clabel->mod_counter = raidPtr->mod_counter;
   3267 	clabel->num_rows = 1;
   3268 	clabel->num_columns = raidPtr->numCol;
   3269 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3270 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3271 
   3272 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3273 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3274 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3275 
   3276 	clabel->blockSize = raidPtr->bytesPerSector;
   3277 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3278 
   3279 	/* XXX not portable */
   3280 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3281 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3282 	clabel->autoconfigure = raidPtr->autoconfigure;
   3283 	clabel->root_partition = raidPtr->root_partition;
   3284 	clabel->last_unit = raidPtr->raidid;
   3285 	clabel->config_order = raidPtr->config_order;
   3286 }
   3287 
   3288 int
   3289 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3290 {
   3291 	RF_Raid_t *raidPtr;
   3292 	RF_Config_t *config;
   3293 	int raidID;
   3294 	int retcode;
   3295 
   3296 #ifdef DEBUG
   3297 	printf("RAID autoconfigure\n");
   3298 #endif
   3299 
   3300 	retcode = 0;
   3301 	*unit = -1;
   3302 
   3303 	/* 1. Create a config structure */
   3304 
   3305 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3306 				       M_RAIDFRAME,
   3307 				       M_NOWAIT);
   3308 	if (config==NULL) {
   3309 		printf("Out of mem!?!?\n");
   3310 				/* XXX do something more intelligent here. */
   3311 		return(1);
   3312 	}
   3313 
   3314 	memset(config, 0, sizeof(RF_Config_t));
   3315 
   3316 	/*
   3317 	   2. Figure out what RAID ID this one is supposed to live at
   3318 	   See if we can get the same RAID dev that it was configured
   3319 	   on last time..
   3320 	*/
   3321 
   3322 	raidID = cset->ac->clabel->last_unit;
   3323 	if ((raidID < 0) || (raidID >= numraid)) {
   3324 		/* let's not wander off into lala land. */
   3325 		raidID = numraid - 1;
   3326 	}
   3327 	if (raidPtrs[raidID]->valid != 0) {
   3328 
   3329 		/*
   3330 		   Nope... Go looking for an alternative...
   3331 		   Start high so we don't immediately use raid0 if that's
   3332 		   not taken.
   3333 		*/
   3334 
   3335 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3336 			if (raidPtrs[raidID]->valid == 0) {
   3337 				/* can use this one! */
   3338 				break;
   3339 			}
   3340 		}
   3341 	}
   3342 
   3343 	if (raidID < 0) {
   3344 		/* punt... */
   3345 		printf("Unable to auto configure this set!\n");
   3346 		printf("(Out of RAID devs!)\n");
   3347 		free(config, M_RAIDFRAME);
   3348 		return(1);
   3349 	}
   3350 
   3351 #ifdef DEBUG
   3352 	printf("Configuring raid%d:\n",raidID);
   3353 #endif
   3354 
   3355 	raidPtr = raidPtrs[raidID];
   3356 
   3357 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3358 	raidPtr->raidid = raidID;
   3359 	raidPtr->openings = RAIDOUTSTANDING;
   3360 
   3361 	/* 3. Build the configuration structure */
   3362 	rf_create_configuration(cset->ac, config, raidPtr);
   3363 
   3364 	/* 4. Do the configuration */
   3365 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3366 
   3367 	if (retcode == 0) {
   3368 
   3369 		raidinit(raidPtrs[raidID]);
   3370 
   3371 		rf_markalldirty(raidPtrs[raidID]);
   3372 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3373 		if (cset->ac->clabel->root_partition==1) {
   3374 			/* everything configured just fine.  Make a note
   3375 			   that this set is eligible to be root. */
   3376 			cset->rootable = 1;
   3377 			/* XXX do this here? */
   3378 			raidPtrs[raidID]->root_partition = 1;
   3379 		}
   3380 	}
   3381 
   3382 	/* 5. Cleanup */
   3383 	free(config, M_RAIDFRAME);
   3384 
   3385 	*unit = raidID;
   3386 	return(retcode);
   3387 }
   3388 
   3389 void
   3390 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3391 {
   3392 	struct buf *bp;
   3393 
   3394 	bp = (struct buf *)desc->bp;
   3395 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3396 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3397 }
   3398 
   3399 void
   3400 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3401 	     size_t xmin, size_t xmax)
   3402 {
   3403 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3404 	pool_sethiwat(p, xmax);
   3405 	pool_prime(p, xmin);
   3406 	pool_setlowat(p, xmin);
   3407 }
   3408 
   3409 /*
   3410  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3411  * if there is IO pending and if that IO could possibly be done for a
   3412  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3413  * otherwise.
   3414  *
   3415  */
   3416 
   3417 int
   3418 rf_buf_queue_check(int raidid)
   3419 {
   3420 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3421 	    raidPtrs[raidid]->openings > 0) {
   3422 		/* there is work to do */
   3423 		return 0;
   3424 	}
   3425 	/* default is nothing to do */
   3426 	return 1;
   3427 }
   3428 
   3429 int
   3430 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3431 {
   3432 	struct partinfo dpart;
   3433 	struct dkwedge_info dkw;
   3434 	int error;
   3435 
   3436 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
   3437 	if (error == 0) {
   3438 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3439 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3440 		diskPtr->partitionSize = dpart.part->p_size;
   3441 		return 0;
   3442 	}
   3443 
   3444 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
   3445 	if (error == 0) {
   3446 		diskPtr->blockSize = 512;	/* XXX */
   3447 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3448 		diskPtr->partitionSize = dkw.dkw_size;
   3449 		return 0;
   3450 	}
   3451 	return error;
   3452 }
   3453 
   3454 static int
   3455 raid_match(struct device *self, struct cfdata *cfdata,
   3456     void *aux)
   3457 {
   3458 	return 1;
   3459 }
   3460 
   3461 static void
   3462 raid_attach(struct device *parent, struct device *self,
   3463     void *aux)
   3464 {
   3465 
   3466 }
   3467 
   3468 
   3469 static int
   3470 raid_detach(struct device *self, int flags)
   3471 {
   3472 	struct raid_softc *rs = (struct raid_softc *)self;
   3473 
   3474 	if (rs->sc_flags & RAIDF_INITED)
   3475 		return EBUSY;
   3476 
   3477 	return 0;
   3478 }
   3479 
   3480 
   3481