Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.226.2.6
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.226.2.6 2007/08/20 18:16:14 ad Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.226.2.6 2007/08/20 18:16:14 ad Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 static int raid_match(struct device *, struct cfdata *, void *);
    218 static void raid_attach(struct device *, struct device *, void *);
    219 static int raid_detach(struct device *, int);
    220 
    221 dev_type_open(raidopen);
    222 dev_type_close(raidclose);
    223 dev_type_read(raidread);
    224 dev_type_write(raidwrite);
    225 dev_type_ioctl(raidioctl);
    226 dev_type_strategy(raidstrategy);
    227 dev_type_dump(raiddump);
    228 dev_type_size(raidsize);
    229 
    230 const struct bdevsw raid_bdevsw = {
    231 	raidopen, raidclose, raidstrategy, raidioctl,
    232 	raiddump, raidsize, D_DISK
    233 };
    234 
    235 const struct cdevsw raid_cdevsw = {
    236 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    237 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    238 };
    239 
    240 /* XXX Not sure if the following should be replacing the raidPtrs above,
    241    or if it should be used in conjunction with that...
    242 */
    243 
    244 struct raid_softc {
    245 	struct device *sc_dev;
    246 	int     sc_flags;	/* flags */
    247 	int     sc_cflags;	/* configuration flags */
    248 	uint64_t sc_size;	/* size of the raid device */
    249 	char    sc_xname[20];	/* XXX external name */
    250 	struct disk sc_dkdev;	/* generic disk device info */
    251 	struct bufq_state *buf_queue;	/* used for the device queue */
    252 };
    253 /* sc_flags */
    254 #define RAIDF_INITED	0x01	/* unit has been initialized */
    255 #define RAIDF_WLABEL	0x02	/* label area is writable */
    256 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    257 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    258 #define RAIDF_LOCKED	0x80	/* unit is locked */
    259 
    260 #define	raidunit(x)	DISKUNIT(x)
    261 int numraid = 0;
    262 
    263 extern struct cfdriver raid_cd;
    264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
    265     raid_match, raid_attach, raid_detach, NULL);
    266 
    267 /*
    268  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    269  * Be aware that large numbers can allow the driver to consume a lot of
    270  * kernel memory, especially on writes, and in degraded mode reads.
    271  *
    272  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    273  * a single 64K write will typically require 64K for the old data,
    274  * 64K for the old parity, and 64K for the new parity, for a total
    275  * of 192K (if the parity buffer is not re-used immediately).
    276  * Even it if is used immediately, that's still 128K, which when multiplied
    277  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    278  *
    279  * Now in degraded mode, for example, a 64K read on the above setup may
    280  * require data reconstruction, which will require *all* of the 4 remaining
    281  * disks to participate -- 4 * 32K/disk == 128K again.
    282  */
    283 
    284 #ifndef RAIDOUTSTANDING
    285 #define RAIDOUTSTANDING   6
    286 #endif
    287 
    288 #define RAIDLABELDEV(dev)	\
    289 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    290 
    291 /* declared here, and made public, for the benefit of KVM stuff.. */
    292 struct raid_softc *raid_softc;
    293 
    294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    295 				     struct disklabel *);
    296 static void raidgetdisklabel(dev_t);
    297 static void raidmakedisklabel(struct raid_softc *);
    298 
    299 static int raidlock(struct raid_softc *);
    300 static void raidunlock(struct raid_softc *);
    301 
    302 static void rf_markalldirty(RF_Raid_t *);
    303 
    304 void rf_ReconThread(struct rf_recon_req *);
    305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    306 void rf_CopybackThread(RF_Raid_t *raidPtr);
    307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    308 int rf_autoconfig(struct device *self);
    309 void rf_buildroothack(RF_ConfigSet_t *);
    310 
    311 RF_AutoConfig_t *rf_find_raid_components(void);
    312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    314 static int rf_reasonable_label(RF_ComponentLabel_t *);
    315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    316 int rf_set_autoconfig(RF_Raid_t *, int);
    317 int rf_set_rootpartition(RF_Raid_t *, int);
    318 void rf_release_all_vps(RF_ConfigSet_t *);
    319 void rf_cleanup_config_set(RF_ConfigSet_t *);
    320 int rf_have_enough_components(RF_ConfigSet_t *);
    321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    322 
    323 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    324 				  allow autoconfig to take place.
    325 				  Note that this is overridden by having
    326 				  RAID_AUTOCONFIG as an option in the
    327 				  kernel config file.  */
    328 
    329 struct RF_Pools_s rf_pools;
    330 
    331 void
    332 raidattach(int num)
    333 {
    334 	int raidID;
    335 	int i, rc;
    336 
    337 #ifdef DEBUG
    338 	printf("raidattach: Asked for %d units\n", num);
    339 #endif
    340 
    341 	if (num <= 0) {
    342 #ifdef DIAGNOSTIC
    343 		panic("raidattach: count <= 0");
    344 #endif
    345 		return;
    346 	}
    347 	/* This is where all the initialization stuff gets done. */
    348 
    349 	numraid = num;
    350 
    351 	/* Make some space for requested number of units... */
    352 
    353 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    354 	if (raidPtrs == NULL) {
    355 		panic("raidPtrs is NULL!!");
    356 	}
    357 
    358 	rf_mutex_init(&rf_sparet_wait_mutex);
    359 
    360 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    361 
    362 	for (i = 0; i < num; i++)
    363 		raidPtrs[i] = NULL;
    364 	rc = rf_BootRaidframe();
    365 	if (rc == 0)
    366 		printf("Kernelized RAIDframe activated\n");
    367 	else
    368 		panic("Serious error booting RAID!!");
    369 
    370 	/* put together some datastructures like the CCD device does.. This
    371 	 * lets us lock the device and what-not when it gets opened. */
    372 
    373 	raid_softc = (struct raid_softc *)
    374 		malloc(num * sizeof(struct raid_softc),
    375 		       M_RAIDFRAME, M_NOWAIT);
    376 	if (raid_softc == NULL) {
    377 		printf("WARNING: no memory for RAIDframe driver\n");
    378 		return;
    379 	}
    380 
    381 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    382 
    383 	for (raidID = 0; raidID < num; raidID++) {
    384 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    385 
    386 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    387 			  (RF_Raid_t *));
    388 		if (raidPtrs[raidID] == NULL) {
    389 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    390 			numraid = raidID;
    391 			return;
    392 		}
    393 	}
    394 
    395 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    396 		printf("config_cfattach_attach failed?\n");
    397 	}
    398 
    399 #ifdef RAID_AUTOCONFIG
    400 	raidautoconfig = 1;
    401 #endif
    402 
    403 	/*
    404 	 * Register a finalizer which will be used to auto-config RAID
    405 	 * sets once all real hardware devices have been found.
    406 	 */
    407 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    408 		printf("WARNING: unable to register RAIDframe finalizer\n");
    409 }
    410 
    411 int
    412 rf_autoconfig(struct device *self)
    413 {
    414 	RF_AutoConfig_t *ac_list;
    415 	RF_ConfigSet_t *config_sets;
    416 	int i;
    417 
    418 	if (raidautoconfig == 0)
    419 		return (0);
    420 
    421 	/* XXX This code can only be run once. */
    422 	raidautoconfig = 0;
    423 
    424 	/* 1. locate all RAID components on the system */
    425 #ifdef DEBUG
    426 	printf("Searching for RAID components...\n");
    427 #endif
    428 	ac_list = rf_find_raid_components();
    429 
    430 	/* 2. Sort them into their respective sets. */
    431 	config_sets = rf_create_auto_sets(ac_list);
    432 
    433 	/*
    434 	 * 3. Evaluate each set andconfigure the valid ones.
    435 	 * This gets done in rf_buildroothack().
    436 	 */
    437 	rf_buildroothack(config_sets);
    438 
    439 	for (i = 0; i < numraid; i++)
    440 		if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
    441 			dkwedge_discover(&raid_softc[i].sc_dkdev);
    442 
    443 	return 1;
    444 }
    445 
    446 void
    447 rf_buildroothack(RF_ConfigSet_t *config_sets)
    448 {
    449 	RF_ConfigSet_t *cset;
    450 	RF_ConfigSet_t *next_cset;
    451 	int retcode;
    452 	int raidID;
    453 	int rootID;
    454 	int col;
    455 	int num_root;
    456 	char *devname;
    457 
    458 	rootID = 0;
    459 	num_root = 0;
    460 	cset = config_sets;
    461 	while(cset != NULL ) {
    462 		next_cset = cset->next;
    463 		if (rf_have_enough_components(cset) &&
    464 		    cset->ac->clabel->autoconfigure==1) {
    465 			retcode = rf_auto_config_set(cset,&raidID);
    466 			if (!retcode) {
    467 #ifdef DEBUG
    468 				printf("raid%d: configured ok\n", raidID);
    469 #endif
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #ifdef DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 #ifdef DEBUG
    483 			printf("raid%d: not enough components\n", raidID);
    484 #endif
    485 			/* we're not autoconfiguring this set...
    486 			   release the associated resources */
    487 			rf_release_all_vps(cset);
    488 		}
    489 		/* cleanup */
    490 		rf_cleanup_config_set(cset);
    491 		cset = next_cset;
    492 	}
    493 
    494 	/* if the user has specified what the root device should be
    495 	   then we don't touch booted_device or boothowto... */
    496 
    497 	if (rootspec != NULL)
    498 		return;
    499 
    500 	/* we found something bootable... */
    501 
    502 	if (num_root == 1) {
    503 		booted_device = raid_softc[rootID].sc_dev;
    504 	} else if (num_root > 1) {
    505 
    506 		/*
    507 		 * Maybe the MD code can help. If it cannot, then
    508 		 * setroot() will discover that we have no
    509 		 * booted_device and will ask the user if nothing was
    510 		 * hardwired in the kernel config file
    511 		 */
    512 
    513 		if (booted_device == NULL)
    514 			cpu_rootconf();
    515 		if (booted_device == NULL)
    516 			return;
    517 
    518 		num_root = 0;
    519 		for (raidID = 0; raidID < numraid; raidID++) {
    520 			if (raidPtrs[raidID]->valid == 0)
    521 				continue;
    522 
    523 			if (raidPtrs[raidID]->root_partition == 0)
    524 				continue;
    525 
    526 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    527 				devname = raidPtrs[raidID]->Disks[col].devname;
    528 				devname += sizeof("/dev/") - 1;
    529 				if (strncmp(devname, booted_device->dv_xname,
    530 					    strlen(booted_device->dv_xname)) != 0)
    531 					continue;
    532 #ifdef DEBUG
    533 				printf("raid%d includes boot device %s\n",
    534 				       raidID, devname);
    535 #endif
    536 				num_root++;
    537 				rootID = raidID;
    538 			}
    539 		}
    540 
    541 		if (num_root == 1) {
    542 			booted_device = raid_softc[rootID].sc_dev;
    543 		} else {
    544 			/* we can't guess.. require the user to answer... */
    545 			boothowto |= RB_ASKNAME;
    546 		}
    547 	}
    548 }
    549 
    550 
    551 int
    552 raidsize(dev_t dev)
    553 {
    554 	struct raid_softc *rs;
    555 	struct disklabel *lp;
    556 	int     part, unit, omask, size;
    557 
    558 	unit = raidunit(dev);
    559 	if (unit >= numraid)
    560 		return (-1);
    561 	rs = &raid_softc[unit];
    562 
    563 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    564 		return (-1);
    565 
    566 	part = DISKPART(dev);
    567 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    568 	lp = rs->sc_dkdev.dk_label;
    569 
    570 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    571 		return (-1);
    572 
    573 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    574 		size = -1;
    575 	else
    576 		size = lp->d_partitions[part].p_size *
    577 		    (lp->d_secsize / DEV_BSIZE);
    578 
    579 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    580 		return (-1);
    581 
    582 	return (size);
    583 
    584 }
    585 
    586 int
    587 raiddump(dev_t dev, daddr_t blkno, void *va,
    588     size_t  size)
    589 {
    590 	/* Not implemented. */
    591 	return ENXIO;
    592 }
    593 /* ARGSUSED */
    594 int
    595 raidopen(dev_t dev, int flags, int fmt,
    596     struct lwp *l)
    597 {
    598 	int     unit = raidunit(dev);
    599 	struct raid_softc *rs;
    600 	struct disklabel *lp;
    601 	int     part, pmask;
    602 	int     error = 0;
    603 
    604 	if (unit >= numraid)
    605 		return (ENXIO);
    606 	rs = &raid_softc[unit];
    607 
    608 	if ((error = raidlock(rs)) != 0)
    609 		return (error);
    610 	lp = rs->sc_dkdev.dk_label;
    611 
    612 	part = DISKPART(dev);
    613 
    614 	/*
    615 	 * If there are wedges, and this is not RAW_PART, then we
    616 	 * need to fail.
    617 	 */
    618 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    619 		error = EBUSY;
    620 		goto bad;
    621 	}
    622 	pmask = (1 << part);
    623 
    624 	if ((rs->sc_flags & RAIDF_INITED) &&
    625 	    (rs->sc_dkdev.dk_openmask == 0))
    626 		raidgetdisklabel(dev);
    627 
    628 	/* make sure that this partition exists */
    629 
    630 	if (part != RAW_PART) {
    631 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    632 		    ((part >= lp->d_npartitions) ||
    633 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    634 			error = ENXIO;
    635 			goto bad;
    636 		}
    637 	}
    638 	/* Prevent this unit from being unconfigured while open. */
    639 	switch (fmt) {
    640 	case S_IFCHR:
    641 		rs->sc_dkdev.dk_copenmask |= pmask;
    642 		break;
    643 
    644 	case S_IFBLK:
    645 		rs->sc_dkdev.dk_bopenmask |= pmask;
    646 		break;
    647 	}
    648 
    649 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    650 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    651 		/* First one... mark things as dirty... Note that we *MUST*
    652 		 have done a configure before this.  I DO NOT WANT TO BE
    653 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    654 		 THAT THEY BELONG TOGETHER!!!!! */
    655 		/* XXX should check to see if we're only open for reading
    656 		   here... If so, we needn't do this, but then need some
    657 		   other way of keeping track of what's happened.. */
    658 
    659 		rf_markalldirty( raidPtrs[unit] );
    660 	}
    661 
    662 
    663 	rs->sc_dkdev.dk_openmask =
    664 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    665 
    666 bad:
    667 	raidunlock(rs);
    668 
    669 	return (error);
    670 
    671 
    672 }
    673 /* ARGSUSED */
    674 int
    675 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    676 {
    677 	int     unit = raidunit(dev);
    678 	struct cfdata *cf;
    679 	struct raid_softc *rs;
    680 	int     error = 0;
    681 	int     part;
    682 
    683 	if (unit >= numraid)
    684 		return (ENXIO);
    685 	rs = &raid_softc[unit];
    686 
    687 	if ((error = raidlock(rs)) != 0)
    688 		return (error);
    689 
    690 	part = DISKPART(dev);
    691 
    692 	/* ...that much closer to allowing unconfiguration... */
    693 	switch (fmt) {
    694 	case S_IFCHR:
    695 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    696 		break;
    697 
    698 	case S_IFBLK:
    699 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    700 		break;
    701 	}
    702 	rs->sc_dkdev.dk_openmask =
    703 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    704 
    705 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    706 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    707 		/* Last one... device is not unconfigured yet.
    708 		   Device shutdown has taken care of setting the
    709 		   clean bits if RAIDF_INITED is not set
    710 		   mark things as clean... */
    711 
    712 		rf_update_component_labels(raidPtrs[unit],
    713 						 RF_FINAL_COMPONENT_UPDATE);
    714 		if (doing_shutdown) {
    715 			/* last one, and we're going down, so
    716 			   lights out for this RAID set too. */
    717 			error = rf_Shutdown(raidPtrs[unit]);
    718 
    719 			/* It's no longer initialized... */
    720 			rs->sc_flags &= ~RAIDF_INITED;
    721 
    722 			/* detach the device */
    723 
    724 			cf = device_cfdata(rs->sc_dev);
    725 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    726 			free(cf, M_RAIDFRAME);
    727 
    728 			/* Detach the disk. */
    729 			disk_detach(&rs->sc_dkdev);
    730 			disk_destroy(&rs->sc_dkdev);
    731 		}
    732 	}
    733 
    734 	raidunlock(rs);
    735 	return (0);
    736 
    737 }
    738 
    739 void
    740 raidstrategy(struct buf *bp)
    741 {
    742 	int s;
    743 
    744 	unsigned int raidID = raidunit(bp->b_dev);
    745 	RF_Raid_t *raidPtr;
    746 	struct raid_softc *rs = &raid_softc[raidID];
    747 	int     wlabel;
    748 
    749 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    750 		bp->b_error = ENXIO;
    751 		goto done;
    752 	}
    753 	if (raidID >= numraid || !raidPtrs[raidID]) {
    754 		bp->b_error = ENODEV;
    755 		goto done;
    756 	}
    757 	raidPtr = raidPtrs[raidID];
    758 	if (!raidPtr->valid) {
    759 		bp->b_error = ENODEV;
    760 		goto done;
    761 	}
    762 	if (bp->b_bcount == 0) {
    763 		db1_printf(("b_bcount is zero..\n"));
    764 		goto done;
    765 	}
    766 
    767 	/*
    768 	 * Do bounds checking and adjust transfer.  If there's an
    769 	 * error, the bounds check will flag that for us.
    770 	 */
    771 
    772 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    773 	if (DISKPART(bp->b_dev) == RAW_PART) {
    774 		uint64_t size; /* device size in DEV_BSIZE unit */
    775 
    776 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    777 			size = raidPtr->totalSectors <<
    778 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    779 		} else {
    780 			size = raidPtr->totalSectors >>
    781 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    782 		}
    783 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    784 			goto done;
    785 		}
    786 	} else {
    787 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    788 			db1_printf(("Bounds check failed!!:%d %d\n",
    789 				(int) bp->b_blkno, (int) wlabel));
    790 			goto done;
    791 		}
    792 	}
    793 	s = splbio();
    794 
    795 	bp->b_resid = 0;
    796 
    797 	/* stuff it onto our queue */
    798 	BUFQ_PUT(rs->buf_queue, bp);
    799 
    800 	/* scheduled the IO to happen at the next convenient time */
    801 	wakeup(&(raidPtrs[raidID]->iodone));
    802 
    803 	splx(s);
    804 	return;
    805 
    806 done:
    807 	bp->b_resid = bp->b_bcount;
    808 	biodone(bp);
    809 }
    810 /* ARGSUSED */
    811 int
    812 raidread(dev_t dev, struct uio *uio, int flags)
    813 {
    814 	int     unit = raidunit(dev);
    815 	struct raid_softc *rs;
    816 
    817 	if (unit >= numraid)
    818 		return (ENXIO);
    819 	rs = &raid_softc[unit];
    820 
    821 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    822 		return (ENXIO);
    823 
    824 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    825 
    826 }
    827 /* ARGSUSED */
    828 int
    829 raidwrite(dev_t dev, struct uio *uio, int flags)
    830 {
    831 	int     unit = raidunit(dev);
    832 	struct raid_softc *rs;
    833 
    834 	if (unit >= numraid)
    835 		return (ENXIO);
    836 	rs = &raid_softc[unit];
    837 
    838 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    839 		return (ENXIO);
    840 
    841 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    842 
    843 }
    844 
    845 int
    846 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    847 {
    848 	int     unit = raidunit(dev);
    849 	int     error = 0;
    850 	int     part, pmask;
    851 	struct cfdata *cf;
    852 	struct raid_softc *rs;
    853 	RF_Config_t *k_cfg, *u_cfg;
    854 	RF_Raid_t *raidPtr;
    855 	RF_RaidDisk_t *diskPtr;
    856 	RF_AccTotals_t *totals;
    857 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    858 	u_char *specific_buf;
    859 	int retcode = 0;
    860 	int column;
    861 	int raidid;
    862 	struct rf_recon_req *rrcopy, *rr;
    863 	RF_ComponentLabel_t *clabel;
    864 	RF_ComponentLabel_t *ci_label;
    865 	RF_ComponentLabel_t **clabel_ptr;
    866 	RF_SingleComponent_t *sparePtr,*componentPtr;
    867 	RF_SingleComponent_t component;
    868 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    869 	int i, j, d;
    870 #ifdef __HAVE_OLD_DISKLABEL
    871 	struct disklabel newlabel;
    872 #endif
    873 	struct dkwedge_info *dkw;
    874 
    875 	if (unit >= numraid)
    876 		return (ENXIO);
    877 	rs = &raid_softc[unit];
    878 	raidPtr = raidPtrs[unit];
    879 
    880 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    881 		(int) DISKPART(dev), (int) unit, (int) cmd));
    882 
    883 	/* Must be open for writes for these commands... */
    884 	switch (cmd) {
    885 #ifdef DIOCGSECTORSIZE
    886 	case DIOCGSECTORSIZE:
    887 		*(u_int *)data = raidPtr->bytesPerSector;
    888 		return 0;
    889 	case DIOCGMEDIASIZE:
    890 		*(off_t *)data =
    891 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
    892 		return 0;
    893 #endif
    894 	case DIOCSDINFO:
    895 	case DIOCWDINFO:
    896 #ifdef __HAVE_OLD_DISKLABEL
    897 	case ODIOCWDINFO:
    898 	case ODIOCSDINFO:
    899 #endif
    900 	case DIOCWLABEL:
    901 	case DIOCAWEDGE:
    902 	case DIOCDWEDGE:
    903 		if ((flag & FWRITE) == 0)
    904 			return (EBADF);
    905 	}
    906 
    907 	/* Must be initialized for these... */
    908 	switch (cmd) {
    909 	case DIOCGDINFO:
    910 	case DIOCSDINFO:
    911 	case DIOCWDINFO:
    912 #ifdef __HAVE_OLD_DISKLABEL
    913 	case ODIOCGDINFO:
    914 	case ODIOCWDINFO:
    915 	case ODIOCSDINFO:
    916 	case ODIOCGDEFLABEL:
    917 #endif
    918 	case DIOCGPART:
    919 	case DIOCWLABEL:
    920 	case DIOCGDEFLABEL:
    921 	case DIOCAWEDGE:
    922 	case DIOCDWEDGE:
    923 	case DIOCLWEDGES:
    924 	case RAIDFRAME_SHUTDOWN:
    925 	case RAIDFRAME_REWRITEPARITY:
    926 	case RAIDFRAME_GET_INFO:
    927 	case RAIDFRAME_RESET_ACCTOTALS:
    928 	case RAIDFRAME_GET_ACCTOTALS:
    929 	case RAIDFRAME_KEEP_ACCTOTALS:
    930 	case RAIDFRAME_GET_SIZE:
    931 	case RAIDFRAME_FAIL_DISK:
    932 	case RAIDFRAME_COPYBACK:
    933 	case RAIDFRAME_CHECK_RECON_STATUS:
    934 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    935 	case RAIDFRAME_GET_COMPONENT_LABEL:
    936 	case RAIDFRAME_SET_COMPONENT_LABEL:
    937 	case RAIDFRAME_ADD_HOT_SPARE:
    938 	case RAIDFRAME_REMOVE_HOT_SPARE:
    939 	case RAIDFRAME_INIT_LABELS:
    940 	case RAIDFRAME_REBUILD_IN_PLACE:
    941 	case RAIDFRAME_CHECK_PARITY:
    942 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    943 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    944 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    945 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    946 	case RAIDFRAME_SET_AUTOCONFIG:
    947 	case RAIDFRAME_SET_ROOT:
    948 	case RAIDFRAME_DELETE_COMPONENT:
    949 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    950 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    951 			return (ENXIO);
    952 	}
    953 
    954 	switch (cmd) {
    955 
    956 		/* configure the system */
    957 	case RAIDFRAME_CONFIGURE:
    958 
    959 		if (raidPtr->valid) {
    960 			/* There is a valid RAID set running on this unit! */
    961 			printf("raid%d: Device already configured!\n",unit);
    962 			return(EINVAL);
    963 		}
    964 
    965 		/* copy-in the configuration information */
    966 		/* data points to a pointer to the configuration structure */
    967 
    968 		u_cfg = *((RF_Config_t **) data);
    969 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    970 		if (k_cfg == NULL) {
    971 			return (ENOMEM);
    972 		}
    973 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    974 		if (retcode) {
    975 			RF_Free(k_cfg, sizeof(RF_Config_t));
    976 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    977 				retcode));
    978 			return (retcode);
    979 		}
    980 		/* allocate a buffer for the layout-specific data, and copy it
    981 		 * in */
    982 		if (k_cfg->layoutSpecificSize) {
    983 			if (k_cfg->layoutSpecificSize > 10000) {
    984 				/* sanity check */
    985 				RF_Free(k_cfg, sizeof(RF_Config_t));
    986 				return (EINVAL);
    987 			}
    988 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    989 			    (u_char *));
    990 			if (specific_buf == NULL) {
    991 				RF_Free(k_cfg, sizeof(RF_Config_t));
    992 				return (ENOMEM);
    993 			}
    994 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    995 			    k_cfg->layoutSpecificSize);
    996 			if (retcode) {
    997 				RF_Free(k_cfg, sizeof(RF_Config_t));
    998 				RF_Free(specific_buf,
    999 					k_cfg->layoutSpecificSize);
   1000 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1001 					retcode));
   1002 				return (retcode);
   1003 			}
   1004 		} else
   1005 			specific_buf = NULL;
   1006 		k_cfg->layoutSpecific = specific_buf;
   1007 
   1008 		/* should do some kind of sanity check on the configuration.
   1009 		 * Store the sum of all the bytes in the last byte? */
   1010 
   1011 		/* configure the system */
   1012 
   1013 		/*
   1014 		 * Clear the entire RAID descriptor, just to make sure
   1015 		 *  there is no stale data left in the case of a
   1016 		 *  reconfiguration
   1017 		 */
   1018 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1019 		raidPtr->raidid = unit;
   1020 
   1021 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1022 
   1023 		if (retcode == 0) {
   1024 
   1025 			/* allow this many simultaneous IO's to
   1026 			   this RAID device */
   1027 			raidPtr->openings = RAIDOUTSTANDING;
   1028 
   1029 			raidinit(raidPtr);
   1030 			rf_markalldirty(raidPtr);
   1031 		}
   1032 		/* free the buffers.  No return code here. */
   1033 		if (k_cfg->layoutSpecificSize) {
   1034 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1035 		}
   1036 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1037 
   1038 		return (retcode);
   1039 
   1040 		/* shutdown the system */
   1041 	case RAIDFRAME_SHUTDOWN:
   1042 
   1043 		if ((error = raidlock(rs)) != 0)
   1044 			return (error);
   1045 
   1046 		/*
   1047 		 * If somebody has a partition mounted, we shouldn't
   1048 		 * shutdown.
   1049 		 */
   1050 
   1051 		part = DISKPART(dev);
   1052 		pmask = (1 << part);
   1053 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1054 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1055 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1056 			raidunlock(rs);
   1057 			return (EBUSY);
   1058 		}
   1059 
   1060 		retcode = rf_Shutdown(raidPtr);
   1061 
   1062 		/* It's no longer initialized... */
   1063 		rs->sc_flags &= ~RAIDF_INITED;
   1064 
   1065 		/* free the pseudo device attach bits */
   1066 
   1067 		cf = device_cfdata(rs->sc_dev);
   1068 		/* XXX this causes us to not return any errors
   1069 		   from the above call to rf_Shutdown() */
   1070 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1071 		free(cf, M_RAIDFRAME);
   1072 
   1073 		/* Detach the disk. */
   1074 		disk_detach(&rs->sc_dkdev);
   1075 		disk_destroy(&rs->sc_dkdev);
   1076 
   1077 		raidunlock(rs);
   1078 
   1079 		return (retcode);
   1080 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1081 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1082 		/* need to read the component label for the disk indicated
   1083 		   by row,column in clabel */
   1084 
   1085 		/* For practice, let's get it directly fromdisk, rather
   1086 		   than from the in-core copy */
   1087 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1088 			   (RF_ComponentLabel_t *));
   1089 		if (clabel == NULL)
   1090 			return (ENOMEM);
   1091 
   1092 		retcode = copyin( *clabel_ptr, clabel,
   1093 				  sizeof(RF_ComponentLabel_t));
   1094 
   1095 		if (retcode) {
   1096 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1097 			return(retcode);
   1098 		}
   1099 
   1100 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1101 
   1102 		column = clabel->column;
   1103 
   1104 		if ((column < 0) || (column >= raidPtr->numCol +
   1105 				     raidPtr->numSpare)) {
   1106 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1107 			return(EINVAL);
   1108 		}
   1109 
   1110 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1111 				raidPtr->raid_cinfo[column].ci_vp,
   1112 				clabel );
   1113 
   1114 		if (retcode == 0) {
   1115 			retcode = copyout(clabel, *clabel_ptr,
   1116 					  sizeof(RF_ComponentLabel_t));
   1117 		}
   1118 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1119 		return (retcode);
   1120 
   1121 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1122 		clabel = (RF_ComponentLabel_t *) data;
   1123 
   1124 		/* XXX check the label for valid stuff... */
   1125 		/* Note that some things *should not* get modified --
   1126 		   the user should be re-initing the labels instead of
   1127 		   trying to patch things.
   1128 		   */
   1129 
   1130 		raidid = raidPtr->raidid;
   1131 #ifdef DEBUG
   1132 		printf("raid%d: Got component label:\n", raidid);
   1133 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1134 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1135 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1136 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1137 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1138 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1139 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1140 #endif
   1141 		clabel->row = 0;
   1142 		column = clabel->column;
   1143 
   1144 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1145 			return(EINVAL);
   1146 		}
   1147 
   1148 		/* XXX this isn't allowed to do anything for now :-) */
   1149 
   1150 		/* XXX and before it is, we need to fill in the rest
   1151 		   of the fields!?!?!?! */
   1152 #if 0
   1153 		raidwrite_component_label(
   1154 		     raidPtr->Disks[column].dev,
   1155 			    raidPtr->raid_cinfo[column].ci_vp,
   1156 			    clabel );
   1157 #endif
   1158 		return (0);
   1159 
   1160 	case RAIDFRAME_INIT_LABELS:
   1161 		clabel = (RF_ComponentLabel_t *) data;
   1162 		/*
   1163 		   we only want the serial number from
   1164 		   the above.  We get all the rest of the information
   1165 		   from the config that was used to create this RAID
   1166 		   set.
   1167 		   */
   1168 
   1169 		raidPtr->serial_number = clabel->serial_number;
   1170 
   1171 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1172 			  (RF_ComponentLabel_t *));
   1173 		if (ci_label == NULL)
   1174 			return (ENOMEM);
   1175 
   1176 		raid_init_component_label(raidPtr, ci_label);
   1177 		ci_label->serial_number = clabel->serial_number;
   1178 		ci_label->row = 0; /* we dont' pretend to support more */
   1179 
   1180 		for(column=0;column<raidPtr->numCol;column++) {
   1181 			diskPtr = &raidPtr->Disks[column];
   1182 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1183 				ci_label->partitionSize = diskPtr->partitionSize;
   1184 				ci_label->column = column;
   1185 				raidwrite_component_label(
   1186 							  raidPtr->Disks[column].dev,
   1187 							  raidPtr->raid_cinfo[column].ci_vp,
   1188 							  ci_label );
   1189 			}
   1190 		}
   1191 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1192 
   1193 		return (retcode);
   1194 	case RAIDFRAME_SET_AUTOCONFIG:
   1195 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1196 		printf("raid%d: New autoconfig value is: %d\n",
   1197 		       raidPtr->raidid, d);
   1198 		*(int *) data = d;
   1199 		return (retcode);
   1200 
   1201 	case RAIDFRAME_SET_ROOT:
   1202 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1203 		printf("raid%d: New rootpartition value is: %d\n",
   1204 		       raidPtr->raidid, d);
   1205 		*(int *) data = d;
   1206 		return (retcode);
   1207 
   1208 		/* initialize all parity */
   1209 	case RAIDFRAME_REWRITEPARITY:
   1210 
   1211 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1212 			/* Parity for RAID 0 is trivially correct */
   1213 			raidPtr->parity_good = RF_RAID_CLEAN;
   1214 			return(0);
   1215 		}
   1216 
   1217 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1218 			/* Re-write is already in progress! */
   1219 			return(EINVAL);
   1220 		}
   1221 
   1222 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1223 					   rf_RewriteParityThread,
   1224 					   raidPtr,"raid_parity");
   1225 		return (retcode);
   1226 
   1227 
   1228 	case RAIDFRAME_ADD_HOT_SPARE:
   1229 		sparePtr = (RF_SingleComponent_t *) data;
   1230 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1231 		retcode = rf_add_hot_spare(raidPtr, &component);
   1232 		return(retcode);
   1233 
   1234 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1235 		return(retcode);
   1236 
   1237 	case RAIDFRAME_DELETE_COMPONENT:
   1238 		componentPtr = (RF_SingleComponent_t *)data;
   1239 		memcpy( &component, componentPtr,
   1240 			sizeof(RF_SingleComponent_t));
   1241 		retcode = rf_delete_component(raidPtr, &component);
   1242 		return(retcode);
   1243 
   1244 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1245 		componentPtr = (RF_SingleComponent_t *)data;
   1246 		memcpy( &component, componentPtr,
   1247 			sizeof(RF_SingleComponent_t));
   1248 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1249 		return(retcode);
   1250 
   1251 	case RAIDFRAME_REBUILD_IN_PLACE:
   1252 
   1253 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1254 			/* Can't do this on a RAID 0!! */
   1255 			return(EINVAL);
   1256 		}
   1257 
   1258 		if (raidPtr->recon_in_progress == 1) {
   1259 			/* a reconstruct is already in progress! */
   1260 			return(EINVAL);
   1261 		}
   1262 
   1263 		componentPtr = (RF_SingleComponent_t *) data;
   1264 		memcpy( &component, componentPtr,
   1265 			sizeof(RF_SingleComponent_t));
   1266 		component.row = 0; /* we don't support any more */
   1267 		column = component.column;
   1268 
   1269 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1270 			return(EINVAL);
   1271 		}
   1272 
   1273 		RF_LOCK_MUTEX(raidPtr->mutex);
   1274 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1275 		    (raidPtr->numFailures > 0)) {
   1276 			/* XXX 0 above shouldn't be constant!!! */
   1277 			/* some component other than this has failed.
   1278 			   Let's not make things worse than they already
   1279 			   are... */
   1280 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1281 			       raidPtr->raidid);
   1282 			printf("raid%d:     Col: %d   Too many failures.\n",
   1283 			       raidPtr->raidid, column);
   1284 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1285 			return (EINVAL);
   1286 		}
   1287 		if (raidPtr->Disks[column].status ==
   1288 		    rf_ds_reconstructing) {
   1289 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1290 			       raidPtr->raidid);
   1291 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1292 
   1293 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1294 			return (EINVAL);
   1295 		}
   1296 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1297 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1298 			return (EINVAL);
   1299 		}
   1300 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1301 
   1302 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1303 		if (rrcopy == NULL)
   1304 			return(ENOMEM);
   1305 
   1306 		rrcopy->raidPtr = (void *) raidPtr;
   1307 		rrcopy->col = column;
   1308 
   1309 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1310 					   rf_ReconstructInPlaceThread,
   1311 					   rrcopy,"raid_reconip");
   1312 		return(retcode);
   1313 
   1314 	case RAIDFRAME_GET_INFO:
   1315 		if (!raidPtr->valid)
   1316 			return (ENODEV);
   1317 		ucfgp = (RF_DeviceConfig_t **) data;
   1318 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1319 			  (RF_DeviceConfig_t *));
   1320 		if (d_cfg == NULL)
   1321 			return (ENOMEM);
   1322 		d_cfg->rows = 1; /* there is only 1 row now */
   1323 		d_cfg->cols = raidPtr->numCol;
   1324 		d_cfg->ndevs = raidPtr->numCol;
   1325 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1326 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1327 			return (ENOMEM);
   1328 		}
   1329 		d_cfg->nspares = raidPtr->numSpare;
   1330 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1331 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1332 			return (ENOMEM);
   1333 		}
   1334 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1335 		d = 0;
   1336 		for (j = 0; j < d_cfg->cols; j++) {
   1337 			d_cfg->devs[d] = raidPtr->Disks[j];
   1338 			d++;
   1339 		}
   1340 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1341 			d_cfg->spares[i] = raidPtr->Disks[j];
   1342 		}
   1343 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1344 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1345 
   1346 		return (retcode);
   1347 
   1348 	case RAIDFRAME_CHECK_PARITY:
   1349 		*(int *) data = raidPtr->parity_good;
   1350 		return (0);
   1351 
   1352 	case RAIDFRAME_RESET_ACCTOTALS:
   1353 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1354 		return (0);
   1355 
   1356 	case RAIDFRAME_GET_ACCTOTALS:
   1357 		totals = (RF_AccTotals_t *) data;
   1358 		*totals = raidPtr->acc_totals;
   1359 		return (0);
   1360 
   1361 	case RAIDFRAME_KEEP_ACCTOTALS:
   1362 		raidPtr->keep_acc_totals = *(int *)data;
   1363 		return (0);
   1364 
   1365 	case RAIDFRAME_GET_SIZE:
   1366 		*(int *) data = raidPtr->totalSectors;
   1367 		return (0);
   1368 
   1369 		/* fail a disk & optionally start reconstruction */
   1370 	case RAIDFRAME_FAIL_DISK:
   1371 
   1372 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1373 			/* Can't do this on a RAID 0!! */
   1374 			return(EINVAL);
   1375 		}
   1376 
   1377 		rr = (struct rf_recon_req *) data;
   1378 		rr->row = 0;
   1379 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1380 			return (EINVAL);
   1381 
   1382 
   1383 		RF_LOCK_MUTEX(raidPtr->mutex);
   1384 		if (raidPtr->status == rf_rs_reconstructing) {
   1385 			/* you can't fail a disk while we're reconstructing! */
   1386 			/* XXX wrong for RAID6 */
   1387 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1388 			return (EINVAL);
   1389 		}
   1390 		if ((raidPtr->Disks[rr->col].status ==
   1391 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1392 			/* some other component has failed.  Let's not make
   1393 			   things worse. XXX wrong for RAID6 */
   1394 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1395 			return (EINVAL);
   1396 		}
   1397 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1398 			/* Can't fail a spared disk! */
   1399 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1400 			return (EINVAL);
   1401 		}
   1402 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1403 
   1404 		/* make a copy of the recon request so that we don't rely on
   1405 		 * the user's buffer */
   1406 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1407 		if (rrcopy == NULL)
   1408 			return(ENOMEM);
   1409 		memcpy(rrcopy, rr, sizeof(*rr));
   1410 		rrcopy->raidPtr = (void *) raidPtr;
   1411 
   1412 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1413 					   rf_ReconThread,
   1414 					   rrcopy,"raid_recon");
   1415 		return (0);
   1416 
   1417 		/* invoke a copyback operation after recon on whatever disk
   1418 		 * needs it, if any */
   1419 	case RAIDFRAME_COPYBACK:
   1420 
   1421 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1422 			/* This makes no sense on a RAID 0!! */
   1423 			return(EINVAL);
   1424 		}
   1425 
   1426 		if (raidPtr->copyback_in_progress == 1) {
   1427 			/* Copyback is already in progress! */
   1428 			return(EINVAL);
   1429 		}
   1430 
   1431 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1432 					   rf_CopybackThread,
   1433 					   raidPtr,"raid_copyback");
   1434 		return (retcode);
   1435 
   1436 		/* return the percentage completion of reconstruction */
   1437 	case RAIDFRAME_CHECK_RECON_STATUS:
   1438 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1439 			/* This makes no sense on a RAID 0, so tell the
   1440 			   user it's done. */
   1441 			*(int *) data = 100;
   1442 			return(0);
   1443 		}
   1444 		if (raidPtr->status != rf_rs_reconstructing)
   1445 			*(int *) data = 100;
   1446 		else {
   1447 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1448 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1449 			} else {
   1450 				*(int *) data = 0;
   1451 			}
   1452 		}
   1453 		return (0);
   1454 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1455 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1456 		if (raidPtr->status != rf_rs_reconstructing) {
   1457 			progressInfo.remaining = 0;
   1458 			progressInfo.completed = 100;
   1459 			progressInfo.total = 100;
   1460 		} else {
   1461 			progressInfo.total =
   1462 				raidPtr->reconControl->numRUsTotal;
   1463 			progressInfo.completed =
   1464 				raidPtr->reconControl->numRUsComplete;
   1465 			progressInfo.remaining = progressInfo.total -
   1466 				progressInfo.completed;
   1467 		}
   1468 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1469 				  sizeof(RF_ProgressInfo_t));
   1470 		return (retcode);
   1471 
   1472 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1473 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1474 			/* This makes no sense on a RAID 0, so tell the
   1475 			   user it's done. */
   1476 			*(int *) data = 100;
   1477 			return(0);
   1478 		}
   1479 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1480 			*(int *) data = 100 *
   1481 				raidPtr->parity_rewrite_stripes_done /
   1482 				raidPtr->Layout.numStripe;
   1483 		} else {
   1484 			*(int *) data = 100;
   1485 		}
   1486 		return (0);
   1487 
   1488 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1489 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1490 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1491 			progressInfo.total = raidPtr->Layout.numStripe;
   1492 			progressInfo.completed =
   1493 				raidPtr->parity_rewrite_stripes_done;
   1494 			progressInfo.remaining = progressInfo.total -
   1495 				progressInfo.completed;
   1496 		} else {
   1497 			progressInfo.remaining = 0;
   1498 			progressInfo.completed = 100;
   1499 			progressInfo.total = 100;
   1500 		}
   1501 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1502 				  sizeof(RF_ProgressInfo_t));
   1503 		return (retcode);
   1504 
   1505 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1506 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1507 			/* This makes no sense on a RAID 0 */
   1508 			*(int *) data = 100;
   1509 			return(0);
   1510 		}
   1511 		if (raidPtr->copyback_in_progress == 1) {
   1512 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1513 				raidPtr->Layout.numStripe;
   1514 		} else {
   1515 			*(int *) data = 100;
   1516 		}
   1517 		return (0);
   1518 
   1519 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1520 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1521 		if (raidPtr->copyback_in_progress == 1) {
   1522 			progressInfo.total = raidPtr->Layout.numStripe;
   1523 			progressInfo.completed =
   1524 				raidPtr->copyback_stripes_done;
   1525 			progressInfo.remaining = progressInfo.total -
   1526 				progressInfo.completed;
   1527 		} else {
   1528 			progressInfo.remaining = 0;
   1529 			progressInfo.completed = 100;
   1530 			progressInfo.total = 100;
   1531 		}
   1532 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1533 				  sizeof(RF_ProgressInfo_t));
   1534 		return (retcode);
   1535 
   1536 		/* the sparetable daemon calls this to wait for the kernel to
   1537 		 * need a spare table. this ioctl does not return until a
   1538 		 * spare table is needed. XXX -- calling mpsleep here in the
   1539 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1540 		 * -- I should either compute the spare table in the kernel,
   1541 		 * or have a different -- XXX XXX -- interface (a different
   1542 		 * character device) for delivering the table     -- XXX */
   1543 #if 0
   1544 	case RAIDFRAME_SPARET_WAIT:
   1545 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1546 		while (!rf_sparet_wait_queue)
   1547 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1548 		waitreq = rf_sparet_wait_queue;
   1549 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1550 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1551 
   1552 		/* structure assignment */
   1553 		*((RF_SparetWait_t *) data) = *waitreq;
   1554 
   1555 		RF_Free(waitreq, sizeof(*waitreq));
   1556 		return (0);
   1557 
   1558 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1559 		 * code in it that will cause the dameon to exit */
   1560 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1561 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1562 		waitreq->fcol = -1;
   1563 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1564 		waitreq->next = rf_sparet_wait_queue;
   1565 		rf_sparet_wait_queue = waitreq;
   1566 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1567 		wakeup(&rf_sparet_wait_queue);
   1568 		return (0);
   1569 
   1570 		/* used by the spare table daemon to deliver a spare table
   1571 		 * into the kernel */
   1572 	case RAIDFRAME_SEND_SPARET:
   1573 
   1574 		/* install the spare table */
   1575 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1576 
   1577 		/* respond to the requestor.  the return status of the spare
   1578 		 * table installation is passed in the "fcol" field */
   1579 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1580 		waitreq->fcol = retcode;
   1581 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1582 		waitreq->next = rf_sparet_resp_queue;
   1583 		rf_sparet_resp_queue = waitreq;
   1584 		wakeup(&rf_sparet_resp_queue);
   1585 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1586 
   1587 		return (retcode);
   1588 #endif
   1589 
   1590 	default:
   1591 		break; /* fall through to the os-specific code below */
   1592 
   1593 	}
   1594 
   1595 	if (!raidPtr->valid)
   1596 		return (EINVAL);
   1597 
   1598 	/*
   1599 	 * Add support for "regular" device ioctls here.
   1600 	 */
   1601 
   1602 	switch (cmd) {
   1603 	case DIOCGDINFO:
   1604 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1605 		break;
   1606 #ifdef __HAVE_OLD_DISKLABEL
   1607 	case ODIOCGDINFO:
   1608 		newlabel = *(rs->sc_dkdev.dk_label);
   1609 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1610 			return ENOTTY;
   1611 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1612 		break;
   1613 #endif
   1614 
   1615 	case DIOCGPART:
   1616 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1617 		((struct partinfo *) data)->part =
   1618 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1619 		break;
   1620 
   1621 	case DIOCWDINFO:
   1622 	case DIOCSDINFO:
   1623 #ifdef __HAVE_OLD_DISKLABEL
   1624 	case ODIOCWDINFO:
   1625 	case ODIOCSDINFO:
   1626 #endif
   1627 	{
   1628 		struct disklabel *lp;
   1629 #ifdef __HAVE_OLD_DISKLABEL
   1630 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1631 			memset(&newlabel, 0, sizeof newlabel);
   1632 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1633 			lp = &newlabel;
   1634 		} else
   1635 #endif
   1636 		lp = (struct disklabel *)data;
   1637 
   1638 		if ((error = raidlock(rs)) != 0)
   1639 			return (error);
   1640 
   1641 		rs->sc_flags |= RAIDF_LABELLING;
   1642 
   1643 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1644 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1645 		if (error == 0) {
   1646 			if (cmd == DIOCWDINFO
   1647 #ifdef __HAVE_OLD_DISKLABEL
   1648 			    || cmd == ODIOCWDINFO
   1649 #endif
   1650 			   )
   1651 				error = writedisklabel(RAIDLABELDEV(dev),
   1652 				    raidstrategy, rs->sc_dkdev.dk_label,
   1653 				    rs->sc_dkdev.dk_cpulabel);
   1654 		}
   1655 		rs->sc_flags &= ~RAIDF_LABELLING;
   1656 
   1657 		raidunlock(rs);
   1658 
   1659 		if (error)
   1660 			return (error);
   1661 		break;
   1662 	}
   1663 
   1664 	case DIOCWLABEL:
   1665 		if (*(int *) data != 0)
   1666 			rs->sc_flags |= RAIDF_WLABEL;
   1667 		else
   1668 			rs->sc_flags &= ~RAIDF_WLABEL;
   1669 		break;
   1670 
   1671 	case DIOCGDEFLABEL:
   1672 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1673 		break;
   1674 
   1675 #ifdef __HAVE_OLD_DISKLABEL
   1676 	case ODIOCGDEFLABEL:
   1677 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1678 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1679 			return ENOTTY;
   1680 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1681 		break;
   1682 #endif
   1683 
   1684 	case DIOCAWEDGE:
   1685 	case DIOCDWEDGE:
   1686 	    	dkw = (void *)data;
   1687 
   1688 		/* If the ioctl happens here, the parent is us. */
   1689 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1690 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1691 
   1692 	case DIOCLWEDGES:
   1693 		return dkwedge_list(&rs->sc_dkdev,
   1694 		    (struct dkwedge_list *)data, l);
   1695 
   1696 	default:
   1697 		retcode = ENOTTY;
   1698 	}
   1699 	return (retcode);
   1700 
   1701 }
   1702 
   1703 
   1704 /* raidinit -- complete the rest of the initialization for the
   1705    RAIDframe device.  */
   1706 
   1707 
   1708 static void
   1709 raidinit(RF_Raid_t *raidPtr)
   1710 {
   1711 	struct cfdata *cf;
   1712 	struct raid_softc *rs;
   1713 	int     unit;
   1714 
   1715 	unit = raidPtr->raidid;
   1716 
   1717 	rs = &raid_softc[unit];
   1718 
   1719 	/* XXX should check return code first... */
   1720 	rs->sc_flags |= RAIDF_INITED;
   1721 
   1722 	/* XXX doesn't check bounds. */
   1723 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1724 
   1725 	/* attach the pseudo device */
   1726 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1727 	cf->cf_name = raid_cd.cd_name;
   1728 	cf->cf_atname = raid_cd.cd_name;
   1729 	cf->cf_unit = unit;
   1730 	cf->cf_fstate = FSTATE_STAR;
   1731 
   1732 	rs->sc_dev = config_attach_pseudo(cf);
   1733 
   1734 	if (rs->sc_dev==NULL) {
   1735 		printf("raid%d: config_attach_pseudo failed\n",
   1736 		       raidPtr->raidid);
   1737 	}
   1738 
   1739 	/* disk_attach actually creates space for the CPU disklabel, among
   1740 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1741 	 * with disklabels. */
   1742 
   1743 	disk_init(&rs->sc_dkdev, rs->sc_xname, NULL);
   1744 	disk_attach(&rs->sc_dkdev);
   1745 
   1746 	/* XXX There may be a weird interaction here between this, and
   1747 	 * protectedSectors, as used in RAIDframe.  */
   1748 
   1749 	rs->sc_size = raidPtr->totalSectors;
   1750 }
   1751 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1752 /* wake up the daemon & tell it to get us a spare table
   1753  * XXX
   1754  * the entries in the queues should be tagged with the raidPtr
   1755  * so that in the extremely rare case that two recons happen at once,
   1756  * we know for which device were requesting a spare table
   1757  * XXX
   1758  *
   1759  * XXX This code is not currently used. GO
   1760  */
   1761 int
   1762 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1763 {
   1764 	int     retcode;
   1765 
   1766 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1767 	req->next = rf_sparet_wait_queue;
   1768 	rf_sparet_wait_queue = req;
   1769 	wakeup(&rf_sparet_wait_queue);
   1770 
   1771 	/* mpsleep unlocks the mutex */
   1772 	while (!rf_sparet_resp_queue) {
   1773 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1774 		    "raidframe getsparetable", 0);
   1775 	}
   1776 	req = rf_sparet_resp_queue;
   1777 	rf_sparet_resp_queue = req->next;
   1778 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1779 
   1780 	retcode = req->fcol;
   1781 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1782 					 * alloc'd */
   1783 	return (retcode);
   1784 }
   1785 #endif
   1786 
   1787 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1788  * bp & passes it down.
   1789  * any calls originating in the kernel must use non-blocking I/O
   1790  * do some extra sanity checking to return "appropriate" error values for
   1791  * certain conditions (to make some standard utilities work)
   1792  *
   1793  * Formerly known as: rf_DoAccessKernel
   1794  */
   1795 void
   1796 raidstart(RF_Raid_t *raidPtr)
   1797 {
   1798 	RF_SectorCount_t num_blocks, pb, sum;
   1799 	RF_RaidAddr_t raid_addr;
   1800 	struct partition *pp;
   1801 	daddr_t blocknum;
   1802 	int     unit;
   1803 	struct raid_softc *rs;
   1804 	int     do_async;
   1805 	struct buf *bp;
   1806 	int rc;
   1807 
   1808 	unit = raidPtr->raidid;
   1809 	rs = &raid_softc[unit];
   1810 
   1811 	/* quick check to see if anything has died recently */
   1812 	RF_LOCK_MUTEX(raidPtr->mutex);
   1813 	if (raidPtr->numNewFailures > 0) {
   1814 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1815 		rf_update_component_labels(raidPtr,
   1816 					   RF_NORMAL_COMPONENT_UPDATE);
   1817 		RF_LOCK_MUTEX(raidPtr->mutex);
   1818 		raidPtr->numNewFailures--;
   1819 	}
   1820 
   1821 	/* Check to see if we're at the limit... */
   1822 	while (raidPtr->openings > 0) {
   1823 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1824 
   1825 		/* get the next item, if any, from the queue */
   1826 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1827 			/* nothing more to do */
   1828 			return;
   1829 		}
   1830 
   1831 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1832 		 * partition.. Need to make it absolute to the underlying
   1833 		 * device.. */
   1834 
   1835 		blocknum = bp->b_blkno;
   1836 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1837 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1838 			blocknum += pp->p_offset;
   1839 		}
   1840 
   1841 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1842 			    (int) blocknum));
   1843 
   1844 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1845 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1846 
   1847 		/* *THIS* is where we adjust what block we're going to...
   1848 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1849 		raid_addr = blocknum;
   1850 
   1851 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1852 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1853 		sum = raid_addr + num_blocks + pb;
   1854 		if (1 || rf_debugKernelAccess) {
   1855 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1856 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1857 				    (int) pb, (int) bp->b_resid));
   1858 		}
   1859 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1860 		    || (sum < num_blocks) || (sum < pb)) {
   1861 			bp->b_error = ENOSPC;
   1862 			bp->b_resid = bp->b_bcount;
   1863 			biodone(bp);
   1864 			RF_LOCK_MUTEX(raidPtr->mutex);
   1865 			continue;
   1866 		}
   1867 		/*
   1868 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1869 		 */
   1870 
   1871 		if (bp->b_bcount & raidPtr->sectorMask) {
   1872 			bp->b_error = EINVAL;
   1873 			bp->b_resid = bp->b_bcount;
   1874 			biodone(bp);
   1875 			RF_LOCK_MUTEX(raidPtr->mutex);
   1876 			continue;
   1877 
   1878 		}
   1879 		db1_printf(("Calling DoAccess..\n"));
   1880 
   1881 
   1882 		RF_LOCK_MUTEX(raidPtr->mutex);
   1883 		raidPtr->openings--;
   1884 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1885 
   1886 		/*
   1887 		 * Everything is async.
   1888 		 */
   1889 		do_async = 1;
   1890 
   1891 		disk_busy(&rs->sc_dkdev);
   1892 
   1893 		/* XXX we're still at splbio() here... do we *really*
   1894 		   need to be? */
   1895 
   1896 		/* don't ever condition on bp->b_flags & B_WRITE.
   1897 		 * always condition on B_READ instead */
   1898 
   1899 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1900 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1901 				 do_async, raid_addr, num_blocks,
   1902 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1903 
   1904 		if (rc) {
   1905 			bp->b_error = rc;
   1906 			bp->b_resid = bp->b_bcount;
   1907 			biodone(bp);
   1908 			/* continue loop */
   1909 		}
   1910 
   1911 		RF_LOCK_MUTEX(raidPtr->mutex);
   1912 	}
   1913 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1914 }
   1915 
   1916 
   1917 
   1918 
   1919 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1920 
   1921 int
   1922 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1923 {
   1924 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1925 	struct buf *bp;
   1926 
   1927 	req->queue = queue;
   1928 
   1929 #if DIAGNOSTIC
   1930 	if (queue->raidPtr->raidid >= numraid) {
   1931 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1932 		    numraid);
   1933 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1934 	}
   1935 #endif
   1936 
   1937 	bp = req->bp;
   1938 
   1939 	switch (req->type) {
   1940 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1941 		/* XXX need to do something extra here.. */
   1942 		/* I'm leaving this in, as I've never actually seen it used,
   1943 		 * and I'd like folks to report it... GO */
   1944 		printf(("WAKEUP CALLED\n"));
   1945 		queue->numOutstanding++;
   1946 
   1947 		bp->b_flags = 0;
   1948 		bp->b_private = req;
   1949 
   1950 		KernelWakeupFunc(bp);
   1951 		break;
   1952 
   1953 	case RF_IO_TYPE_READ:
   1954 	case RF_IO_TYPE_WRITE:
   1955 #if RF_ACC_TRACE > 0
   1956 		if (req->tracerec) {
   1957 			RF_ETIMER_START(req->tracerec->timer);
   1958 		}
   1959 #endif
   1960 		InitBP(bp, queue->rf_cinfo->ci_vp,
   1961 		    op, queue->rf_cinfo->ci_dev,
   1962 		    req->sectorOffset, req->numSector,
   1963 		    req->buf, KernelWakeupFunc, (void *) req,
   1964 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1965 
   1966 		if (rf_debugKernelAccess) {
   1967 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1968 				(long) bp->b_blkno));
   1969 		}
   1970 		queue->numOutstanding++;
   1971 		queue->last_deq_sector = req->sectorOffset;
   1972 		/* acc wouldn't have been let in if there were any pending
   1973 		 * reqs at any other priority */
   1974 		queue->curPriority = req->priority;
   1975 
   1976 		db1_printf(("Going for %c to unit %d col %d\n",
   1977 			    req->type, queue->raidPtr->raidid,
   1978 			    queue->col));
   1979 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1980 			(int) req->sectorOffset, (int) req->numSector,
   1981 			(int) (req->numSector <<
   1982 			    queue->raidPtr->logBytesPerSector),
   1983 			(int) queue->raidPtr->logBytesPerSector));
   1984 		VOP_STRATEGY(bp->b_vp, bp);
   1985 
   1986 		break;
   1987 
   1988 	default:
   1989 		panic("bad req->type in rf_DispatchKernelIO");
   1990 	}
   1991 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1992 
   1993 	return (0);
   1994 }
   1995 /* this is the callback function associated with a I/O invoked from
   1996    kernel code.
   1997  */
   1998 static void
   1999 KernelWakeupFunc(struct buf *bp)
   2000 {
   2001 	RF_DiskQueueData_t *req = NULL;
   2002 	RF_DiskQueue_t *queue;
   2003 	int s;
   2004 
   2005 	s = splbio();
   2006 	db1_printf(("recovering the request queue:\n"));
   2007 	req = bp->b_private;
   2008 
   2009 	queue = (RF_DiskQueue_t *) req->queue;
   2010 
   2011 #if RF_ACC_TRACE > 0
   2012 	if (req->tracerec) {
   2013 		RF_ETIMER_STOP(req->tracerec->timer);
   2014 		RF_ETIMER_EVAL(req->tracerec->timer);
   2015 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2016 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2017 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2018 		req->tracerec->num_phys_ios++;
   2019 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2020 	}
   2021 #endif
   2022 
   2023 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2024 	 * ballistic, and mark the component as hosed... */
   2025 
   2026 	if (bp->b_error != 0) {
   2027 		/* Mark the disk as dead */
   2028 		/* but only mark it once... */
   2029 		/* and only if it wouldn't leave this RAID set
   2030 		   completely broken */
   2031 		if (((queue->raidPtr->Disks[queue->col].status ==
   2032 		      rf_ds_optimal) ||
   2033 		     (queue->raidPtr->Disks[queue->col].status ==
   2034 		      rf_ds_used_spare)) &&
   2035 		     (queue->raidPtr->numFailures <
   2036 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2037 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2038 			       queue->raidPtr->raidid,
   2039 			       queue->raidPtr->Disks[queue->col].devname);
   2040 			queue->raidPtr->Disks[queue->col].status =
   2041 			    rf_ds_failed;
   2042 			queue->raidPtr->status = rf_rs_degraded;
   2043 			queue->raidPtr->numFailures++;
   2044 			queue->raidPtr->numNewFailures++;
   2045 		} else {	/* Disk is already dead... */
   2046 			/* printf("Disk already marked as dead!\n"); */
   2047 		}
   2048 
   2049 	}
   2050 
   2051 	/* Fill in the error value */
   2052 
   2053 	req->error = bp->b_error;
   2054 
   2055 	simple_lock(&queue->raidPtr->iodone_lock);
   2056 
   2057 	/* Drop this one on the "finished" queue... */
   2058 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2059 
   2060 	/* Let the raidio thread know there is work to be done. */
   2061 	wakeup(&(queue->raidPtr->iodone));
   2062 
   2063 	simple_unlock(&queue->raidPtr->iodone_lock);
   2064 
   2065 	splx(s);
   2066 }
   2067 
   2068 
   2069 
   2070 /*
   2071  * initialize a buf structure for doing an I/O in the kernel.
   2072  */
   2073 static void
   2074 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2075        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2076        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2077        struct proc *b_proc)
   2078 {
   2079 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2080 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2081 	bp->b_bcount = numSect << logBytesPerSector;
   2082 	bp->b_bufsize = bp->b_bcount;
   2083 	bp->b_error = 0;
   2084 	bp->b_dev = dev;
   2085 	bp->b_data = bf;
   2086 	bp->b_blkno = startSect;
   2087 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2088 	if (bp->b_bcount == 0) {
   2089 		panic("bp->b_bcount is zero in InitBP!!");
   2090 	}
   2091 	bp->b_proc = b_proc;
   2092 	bp->b_iodone = cbFunc;
   2093 	bp->b_private = cbArg;
   2094 	bp->b_vp = b_vp;
   2095 	if ((bp->b_flags & B_READ) == 0) {
   2096 		bp->b_vp->v_numoutput++;
   2097 	}
   2098 
   2099 }
   2100 
   2101 static void
   2102 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2103 		    struct disklabel *lp)
   2104 {
   2105 	memset(lp, 0, sizeof(*lp));
   2106 
   2107 	/* fabricate a label... */
   2108 	lp->d_secperunit = raidPtr->totalSectors;
   2109 	lp->d_secsize = raidPtr->bytesPerSector;
   2110 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2111 	lp->d_ntracks = 4 * raidPtr->numCol;
   2112 	lp->d_ncylinders = raidPtr->totalSectors /
   2113 		(lp->d_nsectors * lp->d_ntracks);
   2114 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2115 
   2116 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2117 	lp->d_type = DTYPE_RAID;
   2118 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2119 	lp->d_rpm = 3600;
   2120 	lp->d_interleave = 1;
   2121 	lp->d_flags = 0;
   2122 
   2123 	lp->d_partitions[RAW_PART].p_offset = 0;
   2124 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2125 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2126 	lp->d_npartitions = RAW_PART + 1;
   2127 
   2128 	lp->d_magic = DISKMAGIC;
   2129 	lp->d_magic2 = DISKMAGIC;
   2130 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2131 
   2132 }
   2133 /*
   2134  * Read the disklabel from the raid device.  If one is not present, fake one
   2135  * up.
   2136  */
   2137 static void
   2138 raidgetdisklabel(dev_t dev)
   2139 {
   2140 	int     unit = raidunit(dev);
   2141 	struct raid_softc *rs = &raid_softc[unit];
   2142 	const char   *errstring;
   2143 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2144 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2145 	RF_Raid_t *raidPtr;
   2146 
   2147 	db1_printf(("Getting the disklabel...\n"));
   2148 
   2149 	memset(clp, 0, sizeof(*clp));
   2150 
   2151 	raidPtr = raidPtrs[unit];
   2152 
   2153 	raidgetdefaultlabel(raidPtr, rs, lp);
   2154 
   2155 	/*
   2156 	 * Call the generic disklabel extraction routine.
   2157 	 */
   2158 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2159 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2160 	if (errstring)
   2161 		raidmakedisklabel(rs);
   2162 	else {
   2163 		int     i;
   2164 		struct partition *pp;
   2165 
   2166 		/*
   2167 		 * Sanity check whether the found disklabel is valid.
   2168 		 *
   2169 		 * This is necessary since total size of the raid device
   2170 		 * may vary when an interleave is changed even though exactly
   2171 		 * same components are used, and old disklabel may used
   2172 		 * if that is found.
   2173 		 */
   2174 		if (lp->d_secperunit != rs->sc_size)
   2175 			printf("raid%d: WARNING: %s: "
   2176 			    "total sector size in disklabel (%d) != "
   2177 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2178 			    lp->d_secperunit, (long) rs->sc_size);
   2179 		for (i = 0; i < lp->d_npartitions; i++) {
   2180 			pp = &lp->d_partitions[i];
   2181 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2182 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2183 				       "exceeds the size of raid (%ld)\n",
   2184 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2185 		}
   2186 	}
   2187 
   2188 }
   2189 /*
   2190  * Take care of things one might want to take care of in the event
   2191  * that a disklabel isn't present.
   2192  */
   2193 static void
   2194 raidmakedisklabel(struct raid_softc *rs)
   2195 {
   2196 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2197 	db1_printf(("Making a label..\n"));
   2198 
   2199 	/*
   2200 	 * For historical reasons, if there's no disklabel present
   2201 	 * the raw partition must be marked FS_BSDFFS.
   2202 	 */
   2203 
   2204 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2205 
   2206 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2207 
   2208 	lp->d_checksum = dkcksum(lp);
   2209 }
   2210 /*
   2211  * Wait interruptibly for an exclusive lock.
   2212  *
   2213  * XXX
   2214  * Several drivers do this; it should be abstracted and made MP-safe.
   2215  * (Hmm... where have we seen this warning before :->  GO )
   2216  */
   2217 static int
   2218 raidlock(struct raid_softc *rs)
   2219 {
   2220 	int     error;
   2221 
   2222 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2223 		rs->sc_flags |= RAIDF_WANTED;
   2224 		if ((error =
   2225 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2226 			return (error);
   2227 	}
   2228 	rs->sc_flags |= RAIDF_LOCKED;
   2229 	return (0);
   2230 }
   2231 /*
   2232  * Unlock and wake up any waiters.
   2233  */
   2234 static void
   2235 raidunlock(struct raid_softc *rs)
   2236 {
   2237 
   2238 	rs->sc_flags &= ~RAIDF_LOCKED;
   2239 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2240 		rs->sc_flags &= ~RAIDF_WANTED;
   2241 		wakeup(rs);
   2242 	}
   2243 }
   2244 
   2245 
   2246 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2247 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2248 
   2249 int
   2250 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2251 {
   2252 	RF_ComponentLabel_t clabel;
   2253 	raidread_component_label(dev, b_vp, &clabel);
   2254 	clabel.mod_counter = mod_counter;
   2255 	clabel.clean = RF_RAID_CLEAN;
   2256 	raidwrite_component_label(dev, b_vp, &clabel);
   2257 	return(0);
   2258 }
   2259 
   2260 
   2261 int
   2262 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2263 {
   2264 	RF_ComponentLabel_t clabel;
   2265 	raidread_component_label(dev, b_vp, &clabel);
   2266 	clabel.mod_counter = mod_counter;
   2267 	clabel.clean = RF_RAID_DIRTY;
   2268 	raidwrite_component_label(dev, b_vp, &clabel);
   2269 	return(0);
   2270 }
   2271 
   2272 /* ARGSUSED */
   2273 int
   2274 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2275 			 RF_ComponentLabel_t *clabel)
   2276 {
   2277 	struct buf *bp;
   2278 	const struct bdevsw *bdev;
   2279 	int error;
   2280 
   2281 	/* XXX should probably ensure that we don't try to do this if
   2282 	   someone has changed rf_protected_sectors. */
   2283 
   2284 	if (b_vp == NULL) {
   2285 		/* For whatever reason, this component is not valid.
   2286 		   Don't try to read a component label from it. */
   2287 		return(EINVAL);
   2288 	}
   2289 
   2290 	/* get a block of the appropriate size... */
   2291 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2292 	bp->b_dev = dev;
   2293 
   2294 	/* get our ducks in a row for the read */
   2295 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2296 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2297 	bp->b_flags |= B_READ;
   2298  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2299 
   2300 	bdev = bdevsw_lookup(bp->b_dev);
   2301 	if (bdev == NULL)
   2302 		return (ENXIO);
   2303 	(*bdev->d_strategy)(bp);
   2304 
   2305 	error = biowait(bp);
   2306 
   2307 	if (!error) {
   2308 		memcpy(clabel, bp->b_data,
   2309 		       sizeof(RF_ComponentLabel_t));
   2310 	}
   2311 
   2312 	brelse(bp, 0);
   2313 	return(error);
   2314 }
   2315 /* ARGSUSED */
   2316 int
   2317 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2318 			  RF_ComponentLabel_t *clabel)
   2319 {
   2320 	struct buf *bp;
   2321 	const struct bdevsw *bdev;
   2322 	int error;
   2323 
   2324 	/* get a block of the appropriate size... */
   2325 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2326 	bp->b_dev = dev;
   2327 
   2328 	/* get our ducks in a row for the write */
   2329 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2330 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2331 	bp->b_flags |= B_WRITE;
   2332  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2333 
   2334 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2335 
   2336 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2337 
   2338 	bdev = bdevsw_lookup(bp->b_dev);
   2339 	if (bdev == NULL)
   2340 		return (ENXIO);
   2341 	(*bdev->d_strategy)(bp);
   2342 	error = biowait(bp);
   2343 	brelse(bp, 0);
   2344 	if (error) {
   2345 #if 1
   2346 		printf("Failed to write RAID component info!\n");
   2347 #endif
   2348 	}
   2349 
   2350 	return(error);
   2351 }
   2352 
   2353 void
   2354 rf_markalldirty(RF_Raid_t *raidPtr)
   2355 {
   2356 	RF_ComponentLabel_t clabel;
   2357 	int sparecol;
   2358 	int c;
   2359 	int j;
   2360 	int scol = -1;
   2361 
   2362 	raidPtr->mod_counter++;
   2363 	for (c = 0; c < raidPtr->numCol; c++) {
   2364 		/* we don't want to touch (at all) a disk that has
   2365 		   failed */
   2366 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2367 			raidread_component_label(
   2368 						 raidPtr->Disks[c].dev,
   2369 						 raidPtr->raid_cinfo[c].ci_vp,
   2370 						 &clabel);
   2371 			if (clabel.status == rf_ds_spared) {
   2372 				/* XXX do something special...
   2373 				   but whatever you do, don't
   2374 				   try to access it!! */
   2375 			} else {
   2376 				raidmarkdirty(
   2377 					      raidPtr->Disks[c].dev,
   2378 					      raidPtr->raid_cinfo[c].ci_vp,
   2379 					      raidPtr->mod_counter);
   2380 			}
   2381 		}
   2382 	}
   2383 
   2384 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2385 		sparecol = raidPtr->numCol + c;
   2386 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2387 			/*
   2388 
   2389 			   we claim this disk is "optimal" if it's
   2390 			   rf_ds_used_spare, as that means it should be
   2391 			   directly substitutable for the disk it replaced.
   2392 			   We note that too...
   2393 
   2394 			 */
   2395 
   2396 			for(j=0;j<raidPtr->numCol;j++) {
   2397 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2398 					scol = j;
   2399 					break;
   2400 				}
   2401 			}
   2402 
   2403 			raidread_component_label(
   2404 				 raidPtr->Disks[sparecol].dev,
   2405 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2406 				 &clabel);
   2407 			/* make sure status is noted */
   2408 
   2409 			raid_init_component_label(raidPtr, &clabel);
   2410 
   2411 			clabel.row = 0;
   2412 			clabel.column = scol;
   2413 			/* Note: we *don't* change status from rf_ds_used_spare
   2414 			   to rf_ds_optimal */
   2415 			/* clabel.status = rf_ds_optimal; */
   2416 
   2417 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2418 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2419 				      raidPtr->mod_counter);
   2420 		}
   2421 	}
   2422 }
   2423 
   2424 
   2425 void
   2426 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2427 {
   2428 	RF_ComponentLabel_t clabel;
   2429 	int sparecol;
   2430 	int c;
   2431 	int j;
   2432 	int scol;
   2433 
   2434 	scol = -1;
   2435 
   2436 	/* XXX should do extra checks to make sure things really are clean,
   2437 	   rather than blindly setting the clean bit... */
   2438 
   2439 	raidPtr->mod_counter++;
   2440 
   2441 	for (c = 0; c < raidPtr->numCol; c++) {
   2442 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2443 			raidread_component_label(
   2444 						 raidPtr->Disks[c].dev,
   2445 						 raidPtr->raid_cinfo[c].ci_vp,
   2446 						 &clabel);
   2447 			/* make sure status is noted */
   2448 			clabel.status = rf_ds_optimal;
   2449 
   2450 			/* bump the counter */
   2451 			clabel.mod_counter = raidPtr->mod_counter;
   2452 
   2453 			/* note what unit we are configured as */
   2454 			clabel.last_unit = raidPtr->raidid;
   2455 
   2456 			raidwrite_component_label(
   2457 						  raidPtr->Disks[c].dev,
   2458 						  raidPtr->raid_cinfo[c].ci_vp,
   2459 						  &clabel);
   2460 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2461 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2462 					raidmarkclean(
   2463 						      raidPtr->Disks[c].dev,
   2464 						      raidPtr->raid_cinfo[c].ci_vp,
   2465 						      raidPtr->mod_counter);
   2466 				}
   2467 			}
   2468 		}
   2469 		/* else we don't touch it.. */
   2470 	}
   2471 
   2472 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2473 		sparecol = raidPtr->numCol + c;
   2474 		/* Need to ensure that the reconstruct actually completed! */
   2475 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2476 			/*
   2477 
   2478 			   we claim this disk is "optimal" if it's
   2479 			   rf_ds_used_spare, as that means it should be
   2480 			   directly substitutable for the disk it replaced.
   2481 			   We note that too...
   2482 
   2483 			 */
   2484 
   2485 			for(j=0;j<raidPtr->numCol;j++) {
   2486 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2487 					scol = j;
   2488 					break;
   2489 				}
   2490 			}
   2491 
   2492 			/* XXX shouldn't *really* need this... */
   2493 			raidread_component_label(
   2494 				      raidPtr->Disks[sparecol].dev,
   2495 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2496 				      &clabel);
   2497 			/* make sure status is noted */
   2498 
   2499 			raid_init_component_label(raidPtr, &clabel);
   2500 
   2501 			clabel.mod_counter = raidPtr->mod_counter;
   2502 			clabel.column = scol;
   2503 			clabel.status = rf_ds_optimal;
   2504 			clabel.last_unit = raidPtr->raidid;
   2505 
   2506 			raidwrite_component_label(
   2507 				      raidPtr->Disks[sparecol].dev,
   2508 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2509 				      &clabel);
   2510 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2511 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2512 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2513 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2514 						       raidPtr->mod_counter);
   2515 				}
   2516 			}
   2517 		}
   2518 	}
   2519 }
   2520 
   2521 void
   2522 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2523 {
   2524 
   2525 	if (vp != NULL) {
   2526 		if (auto_configured == 1) {
   2527 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2528 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2529 			vput(vp);
   2530 
   2531 		} else {
   2532 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred, curlwp);
   2533 		}
   2534 	}
   2535 }
   2536 
   2537 
   2538 void
   2539 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2540 {
   2541 	int r,c;
   2542 	struct vnode *vp;
   2543 	int acd;
   2544 
   2545 
   2546 	/* We take this opportunity to close the vnodes like we should.. */
   2547 
   2548 	for (c = 0; c < raidPtr->numCol; c++) {
   2549 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2550 		acd = raidPtr->Disks[c].auto_configured;
   2551 		rf_close_component(raidPtr, vp, acd);
   2552 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2553 		raidPtr->Disks[c].auto_configured = 0;
   2554 	}
   2555 
   2556 	for (r = 0; r < raidPtr->numSpare; r++) {
   2557 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2558 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2559 		rf_close_component(raidPtr, vp, acd);
   2560 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2561 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2562 	}
   2563 }
   2564 
   2565 
   2566 void
   2567 rf_ReconThread(struct rf_recon_req *req)
   2568 {
   2569 	int     s;
   2570 	RF_Raid_t *raidPtr;
   2571 
   2572 	s = splbio();
   2573 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2574 	raidPtr->recon_in_progress = 1;
   2575 
   2576 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2577 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2578 
   2579 	RF_Free(req, sizeof(*req));
   2580 
   2581 	raidPtr->recon_in_progress = 0;
   2582 	splx(s);
   2583 
   2584 	/* That's all... */
   2585 	kthread_exit(0);	/* does not return */
   2586 }
   2587 
   2588 void
   2589 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2590 {
   2591 	int retcode;
   2592 	int s;
   2593 
   2594 	raidPtr->parity_rewrite_stripes_done = 0;
   2595 	raidPtr->parity_rewrite_in_progress = 1;
   2596 	s = splbio();
   2597 	retcode = rf_RewriteParity(raidPtr);
   2598 	splx(s);
   2599 	if (retcode) {
   2600 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2601 	} else {
   2602 		/* set the clean bit!  If we shutdown correctly,
   2603 		   the clean bit on each component label will get
   2604 		   set */
   2605 		raidPtr->parity_good = RF_RAID_CLEAN;
   2606 	}
   2607 	raidPtr->parity_rewrite_in_progress = 0;
   2608 
   2609 	/* Anyone waiting for us to stop?  If so, inform them... */
   2610 	if (raidPtr->waitShutdown) {
   2611 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2612 	}
   2613 
   2614 	/* That's all... */
   2615 	kthread_exit(0);	/* does not return */
   2616 }
   2617 
   2618 
   2619 void
   2620 rf_CopybackThread(RF_Raid_t *raidPtr)
   2621 {
   2622 	int s;
   2623 
   2624 	raidPtr->copyback_in_progress = 1;
   2625 	s = splbio();
   2626 	rf_CopybackReconstructedData(raidPtr);
   2627 	splx(s);
   2628 	raidPtr->copyback_in_progress = 0;
   2629 
   2630 	/* That's all... */
   2631 	kthread_exit(0);	/* does not return */
   2632 }
   2633 
   2634 
   2635 void
   2636 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2637 {
   2638 	int s;
   2639 	RF_Raid_t *raidPtr;
   2640 
   2641 	s = splbio();
   2642 	raidPtr = req->raidPtr;
   2643 	raidPtr->recon_in_progress = 1;
   2644 	rf_ReconstructInPlace(raidPtr, req->col);
   2645 	RF_Free(req, sizeof(*req));
   2646 	raidPtr->recon_in_progress = 0;
   2647 	splx(s);
   2648 
   2649 	/* That's all... */
   2650 	kthread_exit(0);	/* does not return */
   2651 }
   2652 
   2653 static RF_AutoConfig_t *
   2654 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2655     const char *cname, RF_SectorCount_t size)
   2656 {
   2657 	int good_one = 0;
   2658 	RF_ComponentLabel_t *clabel;
   2659 	RF_AutoConfig_t *ac;
   2660 
   2661 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2662 	if (clabel == NULL) {
   2663 oomem:
   2664 		    while(ac_list) {
   2665 			    ac = ac_list;
   2666 			    if (ac->clabel)
   2667 				    free(ac->clabel, M_RAIDFRAME);
   2668 			    ac_list = ac_list->next;
   2669 			    free(ac, M_RAIDFRAME);
   2670 		    }
   2671 		    printf("RAID auto config: out of memory!\n");
   2672 		    return NULL; /* XXX probably should panic? */
   2673 	}
   2674 
   2675 	if (!raidread_component_label(dev, vp, clabel)) {
   2676 		    /* Got the label.  Does it look reasonable? */
   2677 		    if (rf_reasonable_label(clabel) &&
   2678 			(clabel->partitionSize <= size)) {
   2679 #ifdef DEBUG
   2680 			    printf("Component on: %s: %llu\n",
   2681 				cname, (unsigned long long)size);
   2682 			    rf_print_component_label(clabel);
   2683 #endif
   2684 			    /* if it's reasonable, add it, else ignore it. */
   2685 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2686 				M_NOWAIT);
   2687 			    if (ac == NULL) {
   2688 				    free(clabel, M_RAIDFRAME);
   2689 				    goto oomem;
   2690 			    }
   2691 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2692 			    ac->dev = dev;
   2693 			    ac->vp = vp;
   2694 			    ac->clabel = clabel;
   2695 			    ac->next = ac_list;
   2696 			    ac_list = ac;
   2697 			    good_one = 1;
   2698 		    }
   2699 	}
   2700 	if (!good_one) {
   2701 		/* cleanup */
   2702 		free(clabel, M_RAIDFRAME);
   2703 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2704 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2705 		vput(vp);
   2706 	}
   2707 	return ac_list;
   2708 }
   2709 
   2710 RF_AutoConfig_t *
   2711 rf_find_raid_components()
   2712 {
   2713 	struct vnode *vp;
   2714 	struct disklabel label;
   2715 	struct device *dv;
   2716 	dev_t dev;
   2717 	int bmajor, bminor, wedge;
   2718 	int error;
   2719 	int i;
   2720 	RF_AutoConfig_t *ac_list;
   2721 
   2722 
   2723 	/* initialize the AutoConfig list */
   2724 	ac_list = NULL;
   2725 
   2726 	/* we begin by trolling through *all* the devices on the system */
   2727 
   2728 	for (dv = alldevs.tqh_first; dv != NULL;
   2729 	     dv = dv->dv_list.tqe_next) {
   2730 
   2731 		/* we are only interested in disks... */
   2732 		if (device_class(dv) != DV_DISK)
   2733 			continue;
   2734 
   2735 		/* we don't care about floppies... */
   2736 		if (device_is_a(dv, "fd")) {
   2737 			continue;
   2738 		}
   2739 
   2740 		/* we don't care about CD's... */
   2741 		if (device_is_a(dv, "cd")) {
   2742 			continue;
   2743 		}
   2744 
   2745 		/* hdfd is the Atari/Hades floppy driver */
   2746 		if (device_is_a(dv, "hdfd")) {
   2747 			continue;
   2748 		}
   2749 
   2750 		/* fdisa is the Atari/Milan floppy driver */
   2751 		if (device_is_a(dv, "fdisa")) {
   2752 			continue;
   2753 		}
   2754 
   2755 		/* need to find the device_name_to_block_device_major stuff */
   2756 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2757 
   2758 		/* get a vnode for the raw partition of this disk */
   2759 
   2760 		wedge = device_is_a(dv, "dk");
   2761 		bminor = minor(device_unit(dv));
   2762 		dev = wedge ? makedev(bmajor, bminor) :
   2763 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2764 		if (bdevvp(dev, &vp))
   2765 			panic("RAID can't alloc vnode");
   2766 
   2767 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2768 
   2769 		if (error) {
   2770 			/* "Who cares."  Continue looking
   2771 			   for something that exists*/
   2772 			vput(vp);
   2773 			continue;
   2774 		}
   2775 
   2776 		if (wedge) {
   2777 			struct dkwedge_info dkw;
   2778 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2779 			    NOCRED, 0);
   2780 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2781 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2782 			vput(vp);
   2783 			if (error) {
   2784 				printf("RAIDframe: can't get wedge info for "
   2785 				    "dev %s (%d)\n", dv->dv_xname, error);
   2786 				continue;
   2787 			}
   2788 
   2789 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
   2790 				continue;
   2791 
   2792 			ac_list = rf_get_component(ac_list, dev, vp,
   2793 			    dv->dv_xname, dkw.dkw_size);
   2794 			continue;
   2795 		}
   2796 
   2797 		/* Ok, the disk exists.  Go get the disklabel. */
   2798 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2799 		if (error) {
   2800 			/*
   2801 			 * XXX can't happen - open() would
   2802 			 * have errored out (or faked up one)
   2803 			 */
   2804 			if (error != ENOTTY)
   2805 				printf("RAIDframe: can't get label for dev "
   2806 				    "%s (%d)\n", dv->dv_xname, error);
   2807 		}
   2808 
   2809 		/* don't need this any more.  We'll allocate it again
   2810 		   a little later if we really do... */
   2811 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2812 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2813 		vput(vp);
   2814 
   2815 		if (error)
   2816 			continue;
   2817 
   2818 		for (i = 0; i < label.d_npartitions; i++) {
   2819 			char cname[sizeof(ac_list->devname)];
   2820 
   2821 			/* We only support partitions marked as RAID */
   2822 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2823 				continue;
   2824 
   2825 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2826 			if (bdevvp(dev, &vp))
   2827 				panic("RAID can't alloc vnode");
   2828 
   2829 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2830 			if (error) {
   2831 				/* Whatever... */
   2832 				vput(vp);
   2833 				continue;
   2834 			}
   2835 			snprintf(cname, sizeof(cname), "%s%c",
   2836 			    dv->dv_xname, 'a' + i);
   2837 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2838 				label.d_partitions[i].p_size);
   2839 		}
   2840 	}
   2841 	return ac_list;
   2842 }
   2843 
   2844 
   2845 static int
   2846 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2847 {
   2848 
   2849 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2850 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2851 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2852 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2853 	    clabel->row >=0 &&
   2854 	    clabel->column >= 0 &&
   2855 	    clabel->num_rows > 0 &&
   2856 	    clabel->num_columns > 0 &&
   2857 	    clabel->row < clabel->num_rows &&
   2858 	    clabel->column < clabel->num_columns &&
   2859 	    clabel->blockSize > 0 &&
   2860 	    clabel->numBlocks > 0) {
   2861 		/* label looks reasonable enough... */
   2862 		return(1);
   2863 	}
   2864 	return(0);
   2865 }
   2866 
   2867 
   2868 #ifdef DEBUG
   2869 void
   2870 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2871 {
   2872 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2873 	       clabel->row, clabel->column,
   2874 	       clabel->num_rows, clabel->num_columns);
   2875 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2876 	       clabel->version, clabel->serial_number,
   2877 	       clabel->mod_counter);
   2878 	printf("   Clean: %s Status: %d\n",
   2879 	       clabel->clean ? "Yes" : "No", clabel->status );
   2880 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2881 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2882 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2883 	       (char) clabel->parityConfig, clabel->blockSize,
   2884 	       clabel->numBlocks);
   2885 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2886 	printf("   Contains root partition: %s\n",
   2887 	       clabel->root_partition ? "Yes" : "No" );
   2888 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2889 #if 0
   2890 	   printf("   Config order: %d\n", clabel->config_order);
   2891 #endif
   2892 
   2893 }
   2894 #endif
   2895 
   2896 RF_ConfigSet_t *
   2897 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2898 {
   2899 	RF_AutoConfig_t *ac;
   2900 	RF_ConfigSet_t *config_sets;
   2901 	RF_ConfigSet_t *cset;
   2902 	RF_AutoConfig_t *ac_next;
   2903 
   2904 
   2905 	config_sets = NULL;
   2906 
   2907 	/* Go through the AutoConfig list, and figure out which components
   2908 	   belong to what sets.  */
   2909 	ac = ac_list;
   2910 	while(ac!=NULL) {
   2911 		/* we're going to putz with ac->next, so save it here
   2912 		   for use at the end of the loop */
   2913 		ac_next = ac->next;
   2914 
   2915 		if (config_sets == NULL) {
   2916 			/* will need at least this one... */
   2917 			config_sets = (RF_ConfigSet_t *)
   2918 				malloc(sizeof(RF_ConfigSet_t),
   2919 				       M_RAIDFRAME, M_NOWAIT);
   2920 			if (config_sets == NULL) {
   2921 				panic("rf_create_auto_sets: No memory!");
   2922 			}
   2923 			/* this one is easy :) */
   2924 			config_sets->ac = ac;
   2925 			config_sets->next = NULL;
   2926 			config_sets->rootable = 0;
   2927 			ac->next = NULL;
   2928 		} else {
   2929 			/* which set does this component fit into? */
   2930 			cset = config_sets;
   2931 			while(cset!=NULL) {
   2932 				if (rf_does_it_fit(cset, ac)) {
   2933 					/* looks like it matches... */
   2934 					ac->next = cset->ac;
   2935 					cset->ac = ac;
   2936 					break;
   2937 				}
   2938 				cset = cset->next;
   2939 			}
   2940 			if (cset==NULL) {
   2941 				/* didn't find a match above... new set..*/
   2942 				cset = (RF_ConfigSet_t *)
   2943 					malloc(sizeof(RF_ConfigSet_t),
   2944 					       M_RAIDFRAME, M_NOWAIT);
   2945 				if (cset == NULL) {
   2946 					panic("rf_create_auto_sets: No memory!");
   2947 				}
   2948 				cset->ac = ac;
   2949 				ac->next = NULL;
   2950 				cset->next = config_sets;
   2951 				cset->rootable = 0;
   2952 				config_sets = cset;
   2953 			}
   2954 		}
   2955 		ac = ac_next;
   2956 	}
   2957 
   2958 
   2959 	return(config_sets);
   2960 }
   2961 
   2962 static int
   2963 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2964 {
   2965 	RF_ComponentLabel_t *clabel1, *clabel2;
   2966 
   2967 	/* If this one matches the *first* one in the set, that's good
   2968 	   enough, since the other members of the set would have been
   2969 	   through here too... */
   2970 	/* note that we are not checking partitionSize here..
   2971 
   2972 	   Note that we are also not checking the mod_counters here.
   2973 	   If everything else matches execpt the mod_counter, that's
   2974 	   good enough for this test.  We will deal with the mod_counters
   2975 	   a little later in the autoconfiguration process.
   2976 
   2977 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2978 
   2979 	   The reason we don't check for this is that failed disks
   2980 	   will have lower modification counts.  If those disks are
   2981 	   not added to the set they used to belong to, then they will
   2982 	   form their own set, which may result in 2 different sets,
   2983 	   for example, competing to be configured at raid0, and
   2984 	   perhaps competing to be the root filesystem set.  If the
   2985 	   wrong ones get configured, or both attempt to become /,
   2986 	   weird behaviour and or serious lossage will occur.  Thus we
   2987 	   need to bring them into the fold here, and kick them out at
   2988 	   a later point.
   2989 
   2990 	*/
   2991 
   2992 	clabel1 = cset->ac->clabel;
   2993 	clabel2 = ac->clabel;
   2994 	if ((clabel1->version == clabel2->version) &&
   2995 	    (clabel1->serial_number == clabel2->serial_number) &&
   2996 	    (clabel1->num_rows == clabel2->num_rows) &&
   2997 	    (clabel1->num_columns == clabel2->num_columns) &&
   2998 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   2999 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3000 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3001 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3002 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3003 	    (clabel1->blockSize == clabel2->blockSize) &&
   3004 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3005 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3006 	    (clabel1->root_partition == clabel2->root_partition) &&
   3007 	    (clabel1->last_unit == clabel2->last_unit) &&
   3008 	    (clabel1->config_order == clabel2->config_order)) {
   3009 		/* if it get's here, it almost *has* to be a match */
   3010 	} else {
   3011 		/* it's not consistent with somebody in the set..
   3012 		   punt */
   3013 		return(0);
   3014 	}
   3015 	/* all was fine.. it must fit... */
   3016 	return(1);
   3017 }
   3018 
   3019 int
   3020 rf_have_enough_components(RF_ConfigSet_t *cset)
   3021 {
   3022 	RF_AutoConfig_t *ac;
   3023 	RF_AutoConfig_t *auto_config;
   3024 	RF_ComponentLabel_t *clabel;
   3025 	int c;
   3026 	int num_cols;
   3027 	int num_missing;
   3028 	int mod_counter;
   3029 	int mod_counter_found;
   3030 	int even_pair_failed;
   3031 	char parity_type;
   3032 
   3033 
   3034 	/* check to see that we have enough 'live' components
   3035 	   of this set.  If so, we can configure it if necessary */
   3036 
   3037 	num_cols = cset->ac->clabel->num_columns;
   3038 	parity_type = cset->ac->clabel->parityConfig;
   3039 
   3040 	/* XXX Check for duplicate components!?!?!? */
   3041 
   3042 	/* Determine what the mod_counter is supposed to be for this set. */
   3043 
   3044 	mod_counter_found = 0;
   3045 	mod_counter = 0;
   3046 	ac = cset->ac;
   3047 	while(ac!=NULL) {
   3048 		if (mod_counter_found==0) {
   3049 			mod_counter = ac->clabel->mod_counter;
   3050 			mod_counter_found = 1;
   3051 		} else {
   3052 			if (ac->clabel->mod_counter > mod_counter) {
   3053 				mod_counter = ac->clabel->mod_counter;
   3054 			}
   3055 		}
   3056 		ac = ac->next;
   3057 	}
   3058 
   3059 	num_missing = 0;
   3060 	auto_config = cset->ac;
   3061 
   3062 	even_pair_failed = 0;
   3063 	for(c=0; c<num_cols; c++) {
   3064 		ac = auto_config;
   3065 		while(ac!=NULL) {
   3066 			if ((ac->clabel->column == c) &&
   3067 			    (ac->clabel->mod_counter == mod_counter)) {
   3068 				/* it's this one... */
   3069 #ifdef DEBUG
   3070 				printf("Found: %s at %d\n",
   3071 				       ac->devname,c);
   3072 #endif
   3073 				break;
   3074 			}
   3075 			ac=ac->next;
   3076 		}
   3077 		if (ac==NULL) {
   3078 				/* Didn't find one here! */
   3079 				/* special case for RAID 1, especially
   3080 				   where there are more than 2
   3081 				   components (where RAIDframe treats
   3082 				   things a little differently :( ) */
   3083 			if (parity_type == '1') {
   3084 				if (c%2 == 0) { /* even component */
   3085 					even_pair_failed = 1;
   3086 				} else { /* odd component.  If
   3087 					    we're failed, and
   3088 					    so is the even
   3089 					    component, it's
   3090 					    "Good Night, Charlie" */
   3091 					if (even_pair_failed == 1) {
   3092 						return(0);
   3093 					}
   3094 				}
   3095 			} else {
   3096 				/* normal accounting */
   3097 				num_missing++;
   3098 			}
   3099 		}
   3100 		if ((parity_type == '1') && (c%2 == 1)) {
   3101 				/* Just did an even component, and we didn't
   3102 				   bail.. reset the even_pair_failed flag,
   3103 				   and go on to the next component.... */
   3104 			even_pair_failed = 0;
   3105 		}
   3106 	}
   3107 
   3108 	clabel = cset->ac->clabel;
   3109 
   3110 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3111 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3112 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3113 		/* XXX this needs to be made *much* more general */
   3114 		/* Too many failures */
   3115 		return(0);
   3116 	}
   3117 	/* otherwise, all is well, and we've got enough to take a kick
   3118 	   at autoconfiguring this set */
   3119 	return(1);
   3120 }
   3121 
   3122 void
   3123 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3124 			RF_Raid_t *raidPtr)
   3125 {
   3126 	RF_ComponentLabel_t *clabel;
   3127 	int i;
   3128 
   3129 	clabel = ac->clabel;
   3130 
   3131 	/* 1. Fill in the common stuff */
   3132 	config->numRow = clabel->num_rows = 1;
   3133 	config->numCol = clabel->num_columns;
   3134 	config->numSpare = 0; /* XXX should this be set here? */
   3135 	config->sectPerSU = clabel->sectPerSU;
   3136 	config->SUsPerPU = clabel->SUsPerPU;
   3137 	config->SUsPerRU = clabel->SUsPerRU;
   3138 	config->parityConfig = clabel->parityConfig;
   3139 	/* XXX... */
   3140 	strcpy(config->diskQueueType,"fifo");
   3141 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3142 	config->layoutSpecificSize = 0; /* XXX ?? */
   3143 
   3144 	while(ac!=NULL) {
   3145 		/* row/col values will be in range due to the checks
   3146 		   in reasonable_label() */
   3147 		strcpy(config->devnames[0][ac->clabel->column],
   3148 		       ac->devname);
   3149 		ac = ac->next;
   3150 	}
   3151 
   3152 	for(i=0;i<RF_MAXDBGV;i++) {
   3153 		config->debugVars[i][0] = 0;
   3154 	}
   3155 }
   3156 
   3157 int
   3158 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3159 {
   3160 	RF_ComponentLabel_t clabel;
   3161 	struct vnode *vp;
   3162 	dev_t dev;
   3163 	int column;
   3164 	int sparecol;
   3165 
   3166 	raidPtr->autoconfigure = new_value;
   3167 
   3168 	for(column=0; column<raidPtr->numCol; column++) {
   3169 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3170 			dev = raidPtr->Disks[column].dev;
   3171 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3172 			raidread_component_label(dev, vp, &clabel);
   3173 			clabel.autoconfigure = new_value;
   3174 			raidwrite_component_label(dev, vp, &clabel);
   3175 		}
   3176 	}
   3177 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3178 		sparecol = raidPtr->numCol + column;
   3179 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3180 			dev = raidPtr->Disks[sparecol].dev;
   3181 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3182 			raidread_component_label(dev, vp, &clabel);
   3183 			clabel.autoconfigure = new_value;
   3184 			raidwrite_component_label(dev, vp, &clabel);
   3185 		}
   3186 	}
   3187 	return(new_value);
   3188 }
   3189 
   3190 int
   3191 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3192 {
   3193 	RF_ComponentLabel_t clabel;
   3194 	struct vnode *vp;
   3195 	dev_t dev;
   3196 	int column;
   3197 	int sparecol;
   3198 
   3199 	raidPtr->root_partition = new_value;
   3200 	for(column=0; column<raidPtr->numCol; column++) {
   3201 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3202 			dev = raidPtr->Disks[column].dev;
   3203 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3204 			raidread_component_label(dev, vp, &clabel);
   3205 			clabel.root_partition = new_value;
   3206 			raidwrite_component_label(dev, vp, &clabel);
   3207 		}
   3208 	}
   3209 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3210 		sparecol = raidPtr->numCol + column;
   3211 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3212 			dev = raidPtr->Disks[sparecol].dev;
   3213 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3214 			raidread_component_label(dev, vp, &clabel);
   3215 			clabel.root_partition = new_value;
   3216 			raidwrite_component_label(dev, vp, &clabel);
   3217 		}
   3218 	}
   3219 	return(new_value);
   3220 }
   3221 
   3222 void
   3223 rf_release_all_vps(RF_ConfigSet_t *cset)
   3224 {
   3225 	RF_AutoConfig_t *ac;
   3226 
   3227 	ac = cset->ac;
   3228 	while(ac!=NULL) {
   3229 		/* Close the vp, and give it back */
   3230 		if (ac->vp) {
   3231 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3232 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3233 			vput(ac->vp);
   3234 			ac->vp = NULL;
   3235 		}
   3236 		ac = ac->next;
   3237 	}
   3238 }
   3239 
   3240 
   3241 void
   3242 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3243 {
   3244 	RF_AutoConfig_t *ac;
   3245 	RF_AutoConfig_t *next_ac;
   3246 
   3247 	ac = cset->ac;
   3248 	while(ac!=NULL) {
   3249 		next_ac = ac->next;
   3250 		/* nuke the label */
   3251 		free(ac->clabel, M_RAIDFRAME);
   3252 		/* cleanup the config structure */
   3253 		free(ac, M_RAIDFRAME);
   3254 		/* "next.." */
   3255 		ac = next_ac;
   3256 	}
   3257 	/* and, finally, nuke the config set */
   3258 	free(cset, M_RAIDFRAME);
   3259 }
   3260 
   3261 
   3262 void
   3263 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3264 {
   3265 	/* current version number */
   3266 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3267 	clabel->serial_number = raidPtr->serial_number;
   3268 	clabel->mod_counter = raidPtr->mod_counter;
   3269 	clabel->num_rows = 1;
   3270 	clabel->num_columns = raidPtr->numCol;
   3271 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3272 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3273 
   3274 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3275 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3276 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3277 
   3278 	clabel->blockSize = raidPtr->bytesPerSector;
   3279 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3280 
   3281 	/* XXX not portable */
   3282 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3283 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3284 	clabel->autoconfigure = raidPtr->autoconfigure;
   3285 	clabel->root_partition = raidPtr->root_partition;
   3286 	clabel->last_unit = raidPtr->raidid;
   3287 	clabel->config_order = raidPtr->config_order;
   3288 }
   3289 
   3290 int
   3291 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3292 {
   3293 	RF_Raid_t *raidPtr;
   3294 	RF_Config_t *config;
   3295 	int raidID;
   3296 	int retcode;
   3297 
   3298 #ifdef DEBUG
   3299 	printf("RAID autoconfigure\n");
   3300 #endif
   3301 
   3302 	retcode = 0;
   3303 	*unit = -1;
   3304 
   3305 	/* 1. Create a config structure */
   3306 
   3307 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3308 				       M_RAIDFRAME,
   3309 				       M_NOWAIT);
   3310 	if (config==NULL) {
   3311 		printf("Out of mem!?!?\n");
   3312 				/* XXX do something more intelligent here. */
   3313 		return(1);
   3314 	}
   3315 
   3316 	memset(config, 0, sizeof(RF_Config_t));
   3317 
   3318 	/*
   3319 	   2. Figure out what RAID ID this one is supposed to live at
   3320 	   See if we can get the same RAID dev that it was configured
   3321 	   on last time..
   3322 	*/
   3323 
   3324 	raidID = cset->ac->clabel->last_unit;
   3325 	if ((raidID < 0) || (raidID >= numraid)) {
   3326 		/* let's not wander off into lala land. */
   3327 		raidID = numraid - 1;
   3328 	}
   3329 	if (raidPtrs[raidID]->valid != 0) {
   3330 
   3331 		/*
   3332 		   Nope... Go looking for an alternative...
   3333 		   Start high so we don't immediately use raid0 if that's
   3334 		   not taken.
   3335 		*/
   3336 
   3337 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3338 			if (raidPtrs[raidID]->valid == 0) {
   3339 				/* can use this one! */
   3340 				break;
   3341 			}
   3342 		}
   3343 	}
   3344 
   3345 	if (raidID < 0) {
   3346 		/* punt... */
   3347 		printf("Unable to auto configure this set!\n");
   3348 		printf("(Out of RAID devs!)\n");
   3349 		free(config, M_RAIDFRAME);
   3350 		return(1);
   3351 	}
   3352 
   3353 #ifdef DEBUG
   3354 	printf("Configuring raid%d:\n",raidID);
   3355 #endif
   3356 
   3357 	raidPtr = raidPtrs[raidID];
   3358 
   3359 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3360 	raidPtr->raidid = raidID;
   3361 	raidPtr->openings = RAIDOUTSTANDING;
   3362 
   3363 	/* 3. Build the configuration structure */
   3364 	rf_create_configuration(cset->ac, config, raidPtr);
   3365 
   3366 	/* 4. Do the configuration */
   3367 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3368 
   3369 	if (retcode == 0) {
   3370 
   3371 		raidinit(raidPtrs[raidID]);
   3372 
   3373 		rf_markalldirty(raidPtrs[raidID]);
   3374 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3375 		if (cset->ac->clabel->root_partition==1) {
   3376 			/* everything configured just fine.  Make a note
   3377 			   that this set is eligible to be root. */
   3378 			cset->rootable = 1;
   3379 			/* XXX do this here? */
   3380 			raidPtrs[raidID]->root_partition = 1;
   3381 		}
   3382 	}
   3383 
   3384 	/* 5. Cleanup */
   3385 	free(config, M_RAIDFRAME);
   3386 
   3387 	*unit = raidID;
   3388 	return(retcode);
   3389 }
   3390 
   3391 void
   3392 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3393 {
   3394 	struct buf *bp;
   3395 
   3396 	bp = (struct buf *)desc->bp;
   3397 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3398 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3399 }
   3400 
   3401 void
   3402 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3403 	     size_t xmin, size_t xmax)
   3404 {
   3405 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3406 	pool_sethiwat(p, xmax);
   3407 	pool_prime(p, xmin);
   3408 	pool_setlowat(p, xmin);
   3409 }
   3410 
   3411 /*
   3412  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3413  * if there is IO pending and if that IO could possibly be done for a
   3414  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3415  * otherwise.
   3416  *
   3417  */
   3418 
   3419 int
   3420 rf_buf_queue_check(int raidid)
   3421 {
   3422 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3423 	    raidPtrs[raidid]->openings > 0) {
   3424 		/* there is work to do */
   3425 		return 0;
   3426 	}
   3427 	/* default is nothing to do */
   3428 	return 1;
   3429 }
   3430 
   3431 int
   3432 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3433 {
   3434 	struct partinfo dpart;
   3435 	struct dkwedge_info dkw;
   3436 	int error;
   3437 
   3438 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
   3439 	if (error == 0) {
   3440 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3441 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3442 		diskPtr->partitionSize = dpart.part->p_size;
   3443 		return 0;
   3444 	}
   3445 
   3446 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
   3447 	if (error == 0) {
   3448 		diskPtr->blockSize = 512;	/* XXX */
   3449 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3450 		diskPtr->partitionSize = dkw.dkw_size;
   3451 		return 0;
   3452 	}
   3453 	return error;
   3454 }
   3455 
   3456 static int
   3457 raid_match(struct device *self, struct cfdata *cfdata,
   3458     void *aux)
   3459 {
   3460 	return 1;
   3461 }
   3462 
   3463 static void
   3464 raid_attach(struct device *parent, struct device *self,
   3465     void *aux)
   3466 {
   3467 
   3468 }
   3469 
   3470 
   3471 static int
   3472 raid_detach(struct device *self, int flags)
   3473 {
   3474 	struct raid_softc *rs = (struct raid_softc *)self;
   3475 
   3476 	if (rs->sc_flags & RAIDF_INITED)
   3477 		return EBUSY;
   3478 
   3479 	return 0;
   3480 }
   3481 
   3482 
   3483