Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.226.2.8
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.226.2.8 2007/10/09 13:42:01 ad Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.226.2.8 2007/10/09 13:42:01 ad Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 static int raid_match(struct device *, struct cfdata *, void *);
    218 static void raid_attach(struct device *, struct device *, void *);
    219 static int raid_detach(struct device *, int);
    220 
    221 dev_type_open(raidopen);
    222 dev_type_close(raidclose);
    223 dev_type_read(raidread);
    224 dev_type_write(raidwrite);
    225 dev_type_ioctl(raidioctl);
    226 dev_type_strategy(raidstrategy);
    227 dev_type_dump(raiddump);
    228 dev_type_size(raidsize);
    229 
    230 const struct bdevsw raid_bdevsw = {
    231 	raidopen, raidclose, raidstrategy, raidioctl,
    232 	raiddump, raidsize, D_DISK
    233 };
    234 
    235 const struct cdevsw raid_cdevsw = {
    236 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    237 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    238 };
    239 
    240 /* XXX Not sure if the following should be replacing the raidPtrs above,
    241    or if it should be used in conjunction with that...
    242 */
    243 
    244 struct raid_softc {
    245 	struct device *sc_dev;
    246 	int     sc_flags;	/* flags */
    247 	int     sc_cflags;	/* configuration flags */
    248 	uint64_t sc_size;	/* size of the raid device */
    249 	char    sc_xname[20];	/* XXX external name */
    250 	struct disk sc_dkdev;	/* generic disk device info */
    251 	struct bufq_state *buf_queue;	/* used for the device queue */
    252 };
    253 /* sc_flags */
    254 #define RAIDF_INITED	0x01	/* unit has been initialized */
    255 #define RAIDF_WLABEL	0x02	/* label area is writable */
    256 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    257 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    258 #define RAIDF_LOCKED	0x80	/* unit is locked */
    259 
    260 #define	raidunit(x)	DISKUNIT(x)
    261 int numraid = 0;
    262 
    263 extern struct cfdriver raid_cd;
    264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
    265     raid_match, raid_attach, raid_detach, NULL);
    266 
    267 /*
    268  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    269  * Be aware that large numbers can allow the driver to consume a lot of
    270  * kernel memory, especially on writes, and in degraded mode reads.
    271  *
    272  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    273  * a single 64K write will typically require 64K for the old data,
    274  * 64K for the old parity, and 64K for the new parity, for a total
    275  * of 192K (if the parity buffer is not re-used immediately).
    276  * Even it if is used immediately, that's still 128K, which when multiplied
    277  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    278  *
    279  * Now in degraded mode, for example, a 64K read on the above setup may
    280  * require data reconstruction, which will require *all* of the 4 remaining
    281  * disks to participate -- 4 * 32K/disk == 128K again.
    282  */
    283 
    284 #ifndef RAIDOUTSTANDING
    285 #define RAIDOUTSTANDING   6
    286 #endif
    287 
    288 #define RAIDLABELDEV(dev)	\
    289 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    290 
    291 /* declared here, and made public, for the benefit of KVM stuff.. */
    292 struct raid_softc *raid_softc;
    293 
    294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    295 				     struct disklabel *);
    296 static void raidgetdisklabel(dev_t);
    297 static void raidmakedisklabel(struct raid_softc *);
    298 
    299 static int raidlock(struct raid_softc *);
    300 static void raidunlock(struct raid_softc *);
    301 
    302 static void rf_markalldirty(RF_Raid_t *);
    303 
    304 void rf_ReconThread(struct rf_recon_req *);
    305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    306 void rf_CopybackThread(RF_Raid_t *raidPtr);
    307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    308 int rf_autoconfig(struct device *self);
    309 void rf_buildroothack(RF_ConfigSet_t *);
    310 
    311 RF_AutoConfig_t *rf_find_raid_components(void);
    312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    314 static int rf_reasonable_label(RF_ComponentLabel_t *);
    315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    316 int rf_set_autoconfig(RF_Raid_t *, int);
    317 int rf_set_rootpartition(RF_Raid_t *, int);
    318 void rf_release_all_vps(RF_ConfigSet_t *);
    319 void rf_cleanup_config_set(RF_ConfigSet_t *);
    320 int rf_have_enough_components(RF_ConfigSet_t *);
    321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    322 
    323 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    324 				  allow autoconfig to take place.
    325 				  Note that this is overridden by having
    326 				  RAID_AUTOCONFIG as an option in the
    327 				  kernel config file.  */
    328 
    329 struct RF_Pools_s rf_pools;
    330 
    331 void
    332 raidattach(int num)
    333 {
    334 	int raidID;
    335 	int i, rc;
    336 
    337 #ifdef DEBUG
    338 	printf("raidattach: Asked for %d units\n", num);
    339 #endif
    340 
    341 	if (num <= 0) {
    342 #ifdef DIAGNOSTIC
    343 		panic("raidattach: count <= 0");
    344 #endif
    345 		return;
    346 	}
    347 	/* This is where all the initialization stuff gets done. */
    348 
    349 	numraid = num;
    350 
    351 	/* Make some space for requested number of units... */
    352 
    353 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    354 	if (raidPtrs == NULL) {
    355 		panic("raidPtrs is NULL!!");
    356 	}
    357 
    358 	rf_mutex_init(&rf_sparet_wait_mutex);
    359 
    360 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    361 
    362 	for (i = 0; i < num; i++)
    363 		raidPtrs[i] = NULL;
    364 	rc = rf_BootRaidframe();
    365 	if (rc == 0)
    366 		printf("Kernelized RAIDframe activated\n");
    367 	else
    368 		panic("Serious error booting RAID!!");
    369 
    370 	/* put together some datastructures like the CCD device does.. This
    371 	 * lets us lock the device and what-not when it gets opened. */
    372 
    373 	raid_softc = (struct raid_softc *)
    374 		malloc(num * sizeof(struct raid_softc),
    375 		       M_RAIDFRAME, M_NOWAIT);
    376 	if (raid_softc == NULL) {
    377 		printf("WARNING: no memory for RAIDframe driver\n");
    378 		return;
    379 	}
    380 
    381 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    382 
    383 	for (raidID = 0; raidID < num; raidID++) {
    384 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    385 
    386 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    387 			  (RF_Raid_t *));
    388 		if (raidPtrs[raidID] == NULL) {
    389 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    390 			numraid = raidID;
    391 			return;
    392 		}
    393 	}
    394 
    395 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    396 		printf("config_cfattach_attach failed?\n");
    397 	}
    398 
    399 #ifdef RAID_AUTOCONFIG
    400 	raidautoconfig = 1;
    401 #endif
    402 
    403 	/*
    404 	 * Register a finalizer which will be used to auto-config RAID
    405 	 * sets once all real hardware devices have been found.
    406 	 */
    407 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    408 		printf("WARNING: unable to register RAIDframe finalizer\n");
    409 }
    410 
    411 int
    412 rf_autoconfig(struct device *self)
    413 {
    414 	RF_AutoConfig_t *ac_list;
    415 	RF_ConfigSet_t *config_sets;
    416 	int i;
    417 
    418 	if (raidautoconfig == 0)
    419 		return (0);
    420 
    421 	/* XXX This code can only be run once. */
    422 	raidautoconfig = 0;
    423 
    424 	/* 1. locate all RAID components on the system */
    425 #ifdef DEBUG
    426 	printf("Searching for RAID components...\n");
    427 #endif
    428 	ac_list = rf_find_raid_components();
    429 
    430 	/* 2. Sort them into their respective sets. */
    431 	config_sets = rf_create_auto_sets(ac_list);
    432 
    433 	/*
    434 	 * 3. Evaluate each set andconfigure the valid ones.
    435 	 * This gets done in rf_buildroothack().
    436 	 */
    437 	rf_buildroothack(config_sets);
    438 
    439 	for (i = 0; i < numraid; i++)
    440 		if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
    441 			dkwedge_discover(&raid_softc[i].sc_dkdev);
    442 
    443 	return 1;
    444 }
    445 
    446 void
    447 rf_buildroothack(RF_ConfigSet_t *config_sets)
    448 {
    449 	RF_ConfigSet_t *cset;
    450 	RF_ConfigSet_t *next_cset;
    451 	int retcode;
    452 	int raidID;
    453 	int rootID;
    454 	int col;
    455 	int num_root;
    456 	char *devname;
    457 
    458 	rootID = 0;
    459 	num_root = 0;
    460 	cset = config_sets;
    461 	while(cset != NULL ) {
    462 		next_cset = cset->next;
    463 		if (rf_have_enough_components(cset) &&
    464 		    cset->ac->clabel->autoconfigure==1) {
    465 			retcode = rf_auto_config_set(cset,&raidID);
    466 			if (!retcode) {
    467 #ifdef DEBUG
    468 				printf("raid%d: configured ok\n", raidID);
    469 #endif
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #ifdef DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 #ifdef DEBUG
    483 			printf("raid%d: not enough components\n", raidID);
    484 #endif
    485 			/* we're not autoconfiguring this set...
    486 			   release the associated resources */
    487 			rf_release_all_vps(cset);
    488 		}
    489 		/* cleanup */
    490 		rf_cleanup_config_set(cset);
    491 		cset = next_cset;
    492 	}
    493 
    494 	/* if the user has specified what the root device should be
    495 	   then we don't touch booted_device or boothowto... */
    496 
    497 	if (rootspec != NULL)
    498 		return;
    499 
    500 	/* we found something bootable... */
    501 
    502 	if (num_root == 1) {
    503 		booted_device = raid_softc[rootID].sc_dev;
    504 	} else if (num_root > 1) {
    505 
    506 		/*
    507 		 * Maybe the MD code can help. If it cannot, then
    508 		 * setroot() will discover that we have no
    509 		 * booted_device and will ask the user if nothing was
    510 		 * hardwired in the kernel config file
    511 		 */
    512 
    513 		if (booted_device == NULL)
    514 			cpu_rootconf();
    515 		if (booted_device == NULL)
    516 			return;
    517 
    518 		num_root = 0;
    519 		for (raidID = 0; raidID < numraid; raidID++) {
    520 			if (raidPtrs[raidID]->valid == 0)
    521 				continue;
    522 
    523 			if (raidPtrs[raidID]->root_partition == 0)
    524 				continue;
    525 
    526 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    527 				devname = raidPtrs[raidID]->Disks[col].devname;
    528 				devname += sizeof("/dev/") - 1;
    529 				if (strncmp(devname, booted_device->dv_xname,
    530 					    strlen(booted_device->dv_xname)) != 0)
    531 					continue;
    532 #ifdef DEBUG
    533 				printf("raid%d includes boot device %s\n",
    534 				       raidID, devname);
    535 #endif
    536 				num_root++;
    537 				rootID = raidID;
    538 			}
    539 		}
    540 
    541 		if (num_root == 1) {
    542 			booted_device = raid_softc[rootID].sc_dev;
    543 		} else {
    544 			/* we can't guess.. require the user to answer... */
    545 			boothowto |= RB_ASKNAME;
    546 		}
    547 	}
    548 }
    549 
    550 
    551 int
    552 raidsize(dev_t dev)
    553 {
    554 	struct raid_softc *rs;
    555 	struct disklabel *lp;
    556 	int     part, unit, omask, size;
    557 
    558 	unit = raidunit(dev);
    559 	if (unit >= numraid)
    560 		return (-1);
    561 	rs = &raid_softc[unit];
    562 
    563 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    564 		return (-1);
    565 
    566 	part = DISKPART(dev);
    567 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    568 	lp = rs->sc_dkdev.dk_label;
    569 
    570 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    571 		return (-1);
    572 
    573 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    574 		size = -1;
    575 	else
    576 		size = lp->d_partitions[part].p_size *
    577 		    (lp->d_secsize / DEV_BSIZE);
    578 
    579 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    580 		return (-1);
    581 
    582 	return (size);
    583 
    584 }
    585 
    586 int
    587 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
    588 {
    589 	int     unit = raidunit(dev);
    590 	struct raid_softc *rs;
    591 	const struct bdevsw *bdev;
    592 	struct disklabel *lp;
    593 	RF_Raid_t *raidPtr;
    594 	daddr_t offset;
    595 	int     part, c, sparecol, j, scol, dumpto;
    596 	int     error = 0;
    597 
    598 	if (unit >= numraid)
    599 		return (ENXIO);
    600 
    601 	rs = &raid_softc[unit];
    602 	raidPtr = raidPtrs[unit];
    603 
    604 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    605 		return ENXIO;
    606 
    607 	/* we only support dumping to RAID 1 sets */
    608 	if (raidPtr->Layout.numDataCol != 1 ||
    609 	    raidPtr->Layout.numParityCol != 1)
    610 		return EINVAL;
    611 
    612 
    613 	if ((error = raidlock(rs)) != 0)
    614 		return error;
    615 
    616 	if (size % DEV_BSIZE != 0) {
    617 		error = EINVAL;
    618 		goto out;
    619 	}
    620 
    621 	if (blkno + size / DEV_BSIZE > rs->sc_size) {
    622 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
    623 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
    624 		    size / DEV_BSIZE, rs->sc_size);
    625 		error = EINVAL;
    626 		goto out;
    627 	}
    628 
    629 	part = DISKPART(dev);
    630 	lp = rs->sc_dkdev.dk_label;
    631 	offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
    632 
    633 	/* figure out what device is alive.. */
    634 
    635 	/*
    636 	   Look for a component to dump to.  The preference for the
    637 	   component to dump to is as follows:
    638 	   1) the master
    639 	   2) a used_spare of the master
    640 	   3) the slave
    641 	   4) a used_spare of the slave
    642 	*/
    643 
    644 	dumpto = -1;
    645 	for (c = 0; c < raidPtr->numCol; c++) {
    646 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
    647 			/* this might be the one */
    648 			dumpto = c;
    649 			break;
    650 		}
    651 	}
    652 
    653 	/*
    654 	   At this point we have possibly selected a live master or a
    655 	   live slave.  We now check to see if there is a spared
    656 	   master (or a spared slave), if we didn't find a live master
    657 	   or a live slave.
    658 	*/
    659 
    660 	for (c = 0; c < raidPtr->numSpare; c++) {
    661 		sparecol = raidPtr->numCol + c;
    662 		if (raidPtr->Disks[sparecol].status ==  rf_ds_used_spare) {
    663 			/* How about this one? */
    664 			scol = -1;
    665 			for(j=0;j<raidPtr->numCol;j++) {
    666 				if (raidPtr->Disks[j].spareCol == sparecol) {
    667 					scol = j;
    668 					break;
    669 				}
    670 			}
    671 			if (scol == 0) {
    672 				/*
    673 				   We must have found a spared master!
    674 				   We'll take that over anything else
    675 				   found so far.  (We couldn't have
    676 				   found a real master before, since
    677 				   this is a used spare, and it's
    678 				   saying that it's replacing the
    679 				   master.)  On reboot (with
    680 				   autoconfiguration turned on)
    681 				   sparecol will become the 1st
    682 				   component (component0) of this set.
    683 				*/
    684 				dumpto = sparecol;
    685 				break;
    686 			} else if (scol != -1) {
    687 				/*
    688 				   Must be a spared slave.  We'll dump
    689 				   to that if we havn't found anything
    690 				   else so far.
    691 				*/
    692 				if (dumpto == -1)
    693 					dumpto = sparecol;
    694 			}
    695 		}
    696 	}
    697 
    698 	if (dumpto == -1) {
    699 		/* we couldn't find any live components to dump to!?!?
    700 		 */
    701 		error = EINVAL;
    702 		goto out;
    703 	}
    704 
    705 	bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
    706 
    707 	/*
    708 	   Note that blkno is relative to this particular partition.
    709 	   By adding the offset of this partition in the RAID
    710 	   set, and also adding RF_PROTECTED_SECTORS, we get a
    711 	   value that is relative to the partition used for the
    712 	   underlying component.
    713 	*/
    714 
    715 	error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
    716 				blkno + offset, va, size);
    717 
    718 out:
    719 	raidunlock(rs);
    720 
    721 	return error;
    722 }
    723 /* ARGSUSED */
    724 int
    725 raidopen(dev_t dev, int flags, int fmt,
    726     struct lwp *l)
    727 {
    728 	int     unit = raidunit(dev);
    729 	struct raid_softc *rs;
    730 	struct disklabel *lp;
    731 	int     part, pmask;
    732 	int     error = 0;
    733 
    734 	if (unit >= numraid)
    735 		return (ENXIO);
    736 	rs = &raid_softc[unit];
    737 
    738 	if ((error = raidlock(rs)) != 0)
    739 		return (error);
    740 	lp = rs->sc_dkdev.dk_label;
    741 
    742 	part = DISKPART(dev);
    743 
    744 	/*
    745 	 * If there are wedges, and this is not RAW_PART, then we
    746 	 * need to fail.
    747 	 */
    748 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    749 		error = EBUSY;
    750 		goto bad;
    751 	}
    752 	pmask = (1 << part);
    753 
    754 	if ((rs->sc_flags & RAIDF_INITED) &&
    755 	    (rs->sc_dkdev.dk_openmask == 0))
    756 		raidgetdisklabel(dev);
    757 
    758 	/* make sure that this partition exists */
    759 
    760 	if (part != RAW_PART) {
    761 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    762 		    ((part >= lp->d_npartitions) ||
    763 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    764 			error = ENXIO;
    765 			goto bad;
    766 		}
    767 	}
    768 	/* Prevent this unit from being unconfigured while open. */
    769 	switch (fmt) {
    770 	case S_IFCHR:
    771 		rs->sc_dkdev.dk_copenmask |= pmask;
    772 		break;
    773 
    774 	case S_IFBLK:
    775 		rs->sc_dkdev.dk_bopenmask |= pmask;
    776 		break;
    777 	}
    778 
    779 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    780 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    781 		/* First one... mark things as dirty... Note that we *MUST*
    782 		 have done a configure before this.  I DO NOT WANT TO BE
    783 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    784 		 THAT THEY BELONG TOGETHER!!!!! */
    785 		/* XXX should check to see if we're only open for reading
    786 		   here... If so, we needn't do this, but then need some
    787 		   other way of keeping track of what's happened.. */
    788 
    789 		rf_markalldirty( raidPtrs[unit] );
    790 	}
    791 
    792 
    793 	rs->sc_dkdev.dk_openmask =
    794 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    795 
    796 bad:
    797 	raidunlock(rs);
    798 
    799 	return (error);
    800 
    801 
    802 }
    803 /* ARGSUSED */
    804 int
    805 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    806 {
    807 	int     unit = raidunit(dev);
    808 	struct cfdata *cf;
    809 	struct raid_softc *rs;
    810 	int     error = 0;
    811 	int     part;
    812 
    813 	if (unit >= numraid)
    814 		return (ENXIO);
    815 	rs = &raid_softc[unit];
    816 
    817 	if ((error = raidlock(rs)) != 0)
    818 		return (error);
    819 
    820 	part = DISKPART(dev);
    821 
    822 	/* ...that much closer to allowing unconfiguration... */
    823 	switch (fmt) {
    824 	case S_IFCHR:
    825 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    826 		break;
    827 
    828 	case S_IFBLK:
    829 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    830 		break;
    831 	}
    832 	rs->sc_dkdev.dk_openmask =
    833 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    834 
    835 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    836 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    837 		/* Last one... device is not unconfigured yet.
    838 		   Device shutdown has taken care of setting the
    839 		   clean bits if RAIDF_INITED is not set
    840 		   mark things as clean... */
    841 
    842 		rf_update_component_labels(raidPtrs[unit],
    843 						 RF_FINAL_COMPONENT_UPDATE);
    844 		if (doing_shutdown) {
    845 			/* last one, and we're going down, so
    846 			   lights out for this RAID set too. */
    847 			error = rf_Shutdown(raidPtrs[unit]);
    848 
    849 			/* It's no longer initialized... */
    850 			rs->sc_flags &= ~RAIDF_INITED;
    851 
    852 			/* detach the device */
    853 
    854 			cf = device_cfdata(rs->sc_dev);
    855 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    856 			free(cf, M_RAIDFRAME);
    857 
    858 			/* Detach the disk. */
    859 			disk_detach(&rs->sc_dkdev);
    860 			disk_destroy(&rs->sc_dkdev);
    861 		}
    862 	}
    863 
    864 	raidunlock(rs);
    865 	return (0);
    866 
    867 }
    868 
    869 void
    870 raidstrategy(struct buf *bp)
    871 {
    872 	int s;
    873 
    874 	unsigned int raidID = raidunit(bp->b_dev);
    875 	RF_Raid_t *raidPtr;
    876 	struct raid_softc *rs = &raid_softc[raidID];
    877 	int     wlabel;
    878 
    879 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    880 		bp->b_error = ENXIO;
    881 		goto done;
    882 	}
    883 	if (raidID >= numraid || !raidPtrs[raidID]) {
    884 		bp->b_error = ENODEV;
    885 		goto done;
    886 	}
    887 	raidPtr = raidPtrs[raidID];
    888 	if (!raidPtr->valid) {
    889 		bp->b_error = ENODEV;
    890 		goto done;
    891 	}
    892 	if (bp->b_bcount == 0) {
    893 		db1_printf(("b_bcount is zero..\n"));
    894 		goto done;
    895 	}
    896 
    897 	/*
    898 	 * Do bounds checking and adjust transfer.  If there's an
    899 	 * error, the bounds check will flag that for us.
    900 	 */
    901 
    902 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    903 	if (DISKPART(bp->b_dev) == RAW_PART) {
    904 		uint64_t size; /* device size in DEV_BSIZE unit */
    905 
    906 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    907 			size = raidPtr->totalSectors <<
    908 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    909 		} else {
    910 			size = raidPtr->totalSectors >>
    911 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    912 		}
    913 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    914 			goto done;
    915 		}
    916 	} else {
    917 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    918 			db1_printf(("Bounds check failed!!:%d %d\n",
    919 				(int) bp->b_blkno, (int) wlabel));
    920 			goto done;
    921 		}
    922 	}
    923 	s = splbio();
    924 
    925 	bp->b_resid = 0;
    926 
    927 	/* stuff it onto our queue */
    928 	BUFQ_PUT(rs->buf_queue, bp);
    929 
    930 	/* scheduled the IO to happen at the next convenient time */
    931 	wakeup(&(raidPtrs[raidID]->iodone));
    932 
    933 	splx(s);
    934 	return;
    935 
    936 done:
    937 	bp->b_resid = bp->b_bcount;
    938 	biodone(bp);
    939 }
    940 /* ARGSUSED */
    941 int
    942 raidread(dev_t dev, struct uio *uio, int flags)
    943 {
    944 	int     unit = raidunit(dev);
    945 	struct raid_softc *rs;
    946 
    947 	if (unit >= numraid)
    948 		return (ENXIO);
    949 	rs = &raid_softc[unit];
    950 
    951 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    952 		return (ENXIO);
    953 
    954 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    955 
    956 }
    957 /* ARGSUSED */
    958 int
    959 raidwrite(dev_t dev, struct uio *uio, int flags)
    960 {
    961 	int     unit = raidunit(dev);
    962 	struct raid_softc *rs;
    963 
    964 	if (unit >= numraid)
    965 		return (ENXIO);
    966 	rs = &raid_softc[unit];
    967 
    968 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    969 		return (ENXIO);
    970 
    971 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    972 
    973 }
    974 
    975 int
    976 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    977 {
    978 	int     unit = raidunit(dev);
    979 	int     error = 0;
    980 	int     part, pmask;
    981 	struct cfdata *cf;
    982 	struct raid_softc *rs;
    983 	RF_Config_t *k_cfg, *u_cfg;
    984 	RF_Raid_t *raidPtr;
    985 	RF_RaidDisk_t *diskPtr;
    986 	RF_AccTotals_t *totals;
    987 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    988 	u_char *specific_buf;
    989 	int retcode = 0;
    990 	int column;
    991 	int raidid;
    992 	struct rf_recon_req *rrcopy, *rr;
    993 	RF_ComponentLabel_t *clabel;
    994 	RF_ComponentLabel_t *ci_label;
    995 	RF_ComponentLabel_t **clabel_ptr;
    996 	RF_SingleComponent_t *sparePtr,*componentPtr;
    997 	RF_SingleComponent_t component;
    998 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    999 	int i, j, d;
   1000 #ifdef __HAVE_OLD_DISKLABEL
   1001 	struct disklabel newlabel;
   1002 #endif
   1003 	struct dkwedge_info *dkw;
   1004 
   1005 	if (unit >= numraid)
   1006 		return (ENXIO);
   1007 	rs = &raid_softc[unit];
   1008 	raidPtr = raidPtrs[unit];
   1009 
   1010 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
   1011 		(int) DISKPART(dev), (int) unit, (int) cmd));
   1012 
   1013 	/* Must be open for writes for these commands... */
   1014 	switch (cmd) {
   1015 #ifdef DIOCGSECTORSIZE
   1016 	case DIOCGSECTORSIZE:
   1017 		*(u_int *)data = raidPtr->bytesPerSector;
   1018 		return 0;
   1019 	case DIOCGMEDIASIZE:
   1020 		*(off_t *)data =
   1021 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
   1022 		return 0;
   1023 #endif
   1024 	case DIOCSDINFO:
   1025 	case DIOCWDINFO:
   1026 #ifdef __HAVE_OLD_DISKLABEL
   1027 	case ODIOCWDINFO:
   1028 	case ODIOCSDINFO:
   1029 #endif
   1030 	case DIOCWLABEL:
   1031 	case DIOCAWEDGE:
   1032 	case DIOCDWEDGE:
   1033 		if ((flag & FWRITE) == 0)
   1034 			return (EBADF);
   1035 	}
   1036 
   1037 	/* Must be initialized for these... */
   1038 	switch (cmd) {
   1039 	case DIOCGDINFO:
   1040 	case DIOCSDINFO:
   1041 	case DIOCWDINFO:
   1042 #ifdef __HAVE_OLD_DISKLABEL
   1043 	case ODIOCGDINFO:
   1044 	case ODIOCWDINFO:
   1045 	case ODIOCSDINFO:
   1046 	case ODIOCGDEFLABEL:
   1047 #endif
   1048 	case DIOCGPART:
   1049 	case DIOCWLABEL:
   1050 	case DIOCGDEFLABEL:
   1051 	case DIOCAWEDGE:
   1052 	case DIOCDWEDGE:
   1053 	case DIOCLWEDGES:
   1054 	case RAIDFRAME_SHUTDOWN:
   1055 	case RAIDFRAME_REWRITEPARITY:
   1056 	case RAIDFRAME_GET_INFO:
   1057 	case RAIDFRAME_RESET_ACCTOTALS:
   1058 	case RAIDFRAME_GET_ACCTOTALS:
   1059 	case RAIDFRAME_KEEP_ACCTOTALS:
   1060 	case RAIDFRAME_GET_SIZE:
   1061 	case RAIDFRAME_FAIL_DISK:
   1062 	case RAIDFRAME_COPYBACK:
   1063 	case RAIDFRAME_CHECK_RECON_STATUS:
   1064 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1065 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1066 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1067 	case RAIDFRAME_ADD_HOT_SPARE:
   1068 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1069 	case RAIDFRAME_INIT_LABELS:
   1070 	case RAIDFRAME_REBUILD_IN_PLACE:
   1071 	case RAIDFRAME_CHECK_PARITY:
   1072 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1073 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1074 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1075 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1076 	case RAIDFRAME_SET_AUTOCONFIG:
   1077 	case RAIDFRAME_SET_ROOT:
   1078 	case RAIDFRAME_DELETE_COMPONENT:
   1079 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1080 		if ((rs->sc_flags & RAIDF_INITED) == 0)
   1081 			return (ENXIO);
   1082 	}
   1083 
   1084 	switch (cmd) {
   1085 
   1086 		/* configure the system */
   1087 	case RAIDFRAME_CONFIGURE:
   1088 
   1089 		if (raidPtr->valid) {
   1090 			/* There is a valid RAID set running on this unit! */
   1091 			printf("raid%d: Device already configured!\n",unit);
   1092 			return(EINVAL);
   1093 		}
   1094 
   1095 		/* copy-in the configuration information */
   1096 		/* data points to a pointer to the configuration structure */
   1097 
   1098 		u_cfg = *((RF_Config_t **) data);
   1099 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
   1100 		if (k_cfg == NULL) {
   1101 			return (ENOMEM);
   1102 		}
   1103 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
   1104 		if (retcode) {
   1105 			RF_Free(k_cfg, sizeof(RF_Config_t));
   1106 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
   1107 				retcode));
   1108 			return (retcode);
   1109 		}
   1110 		/* allocate a buffer for the layout-specific data, and copy it
   1111 		 * in */
   1112 		if (k_cfg->layoutSpecificSize) {
   1113 			if (k_cfg->layoutSpecificSize > 10000) {
   1114 				/* sanity check */
   1115 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1116 				return (EINVAL);
   1117 			}
   1118 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
   1119 			    (u_char *));
   1120 			if (specific_buf == NULL) {
   1121 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1122 				return (ENOMEM);
   1123 			}
   1124 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
   1125 			    k_cfg->layoutSpecificSize);
   1126 			if (retcode) {
   1127 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1128 				RF_Free(specific_buf,
   1129 					k_cfg->layoutSpecificSize);
   1130 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1131 					retcode));
   1132 				return (retcode);
   1133 			}
   1134 		} else
   1135 			specific_buf = NULL;
   1136 		k_cfg->layoutSpecific = specific_buf;
   1137 
   1138 		/* should do some kind of sanity check on the configuration.
   1139 		 * Store the sum of all the bytes in the last byte? */
   1140 
   1141 		/* configure the system */
   1142 
   1143 		/*
   1144 		 * Clear the entire RAID descriptor, just to make sure
   1145 		 *  there is no stale data left in the case of a
   1146 		 *  reconfiguration
   1147 		 */
   1148 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1149 		raidPtr->raidid = unit;
   1150 
   1151 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1152 
   1153 		if (retcode == 0) {
   1154 
   1155 			/* allow this many simultaneous IO's to
   1156 			   this RAID device */
   1157 			raidPtr->openings = RAIDOUTSTANDING;
   1158 
   1159 			raidinit(raidPtr);
   1160 			rf_markalldirty(raidPtr);
   1161 		}
   1162 		/* free the buffers.  No return code here. */
   1163 		if (k_cfg->layoutSpecificSize) {
   1164 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1165 		}
   1166 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1167 
   1168 		return (retcode);
   1169 
   1170 		/* shutdown the system */
   1171 	case RAIDFRAME_SHUTDOWN:
   1172 
   1173 		if ((error = raidlock(rs)) != 0)
   1174 			return (error);
   1175 
   1176 		/*
   1177 		 * If somebody has a partition mounted, we shouldn't
   1178 		 * shutdown.
   1179 		 */
   1180 
   1181 		part = DISKPART(dev);
   1182 		pmask = (1 << part);
   1183 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1184 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1185 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1186 			raidunlock(rs);
   1187 			return (EBUSY);
   1188 		}
   1189 
   1190 		retcode = rf_Shutdown(raidPtr);
   1191 
   1192 		/* It's no longer initialized... */
   1193 		rs->sc_flags &= ~RAIDF_INITED;
   1194 
   1195 		/* free the pseudo device attach bits */
   1196 
   1197 		cf = device_cfdata(rs->sc_dev);
   1198 		/* XXX this causes us to not return any errors
   1199 		   from the above call to rf_Shutdown() */
   1200 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1201 		free(cf, M_RAIDFRAME);
   1202 
   1203 		/* Detach the disk. */
   1204 		disk_detach(&rs->sc_dkdev);
   1205 		disk_destroy(&rs->sc_dkdev);
   1206 
   1207 		raidunlock(rs);
   1208 
   1209 		return (retcode);
   1210 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1211 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1212 		/* need to read the component label for the disk indicated
   1213 		   by row,column in clabel */
   1214 
   1215 		/* For practice, let's get it directly fromdisk, rather
   1216 		   than from the in-core copy */
   1217 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1218 			   (RF_ComponentLabel_t *));
   1219 		if (clabel == NULL)
   1220 			return (ENOMEM);
   1221 
   1222 		retcode = copyin( *clabel_ptr, clabel,
   1223 				  sizeof(RF_ComponentLabel_t));
   1224 
   1225 		if (retcode) {
   1226 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1227 			return(retcode);
   1228 		}
   1229 
   1230 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1231 
   1232 		column = clabel->column;
   1233 
   1234 		if ((column < 0) || (column >= raidPtr->numCol +
   1235 				     raidPtr->numSpare)) {
   1236 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1237 			return(EINVAL);
   1238 		}
   1239 
   1240 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1241 				raidPtr->raid_cinfo[column].ci_vp,
   1242 				clabel );
   1243 
   1244 		if (retcode == 0) {
   1245 			retcode = copyout(clabel, *clabel_ptr,
   1246 					  sizeof(RF_ComponentLabel_t));
   1247 		}
   1248 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1249 		return (retcode);
   1250 
   1251 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1252 		clabel = (RF_ComponentLabel_t *) data;
   1253 
   1254 		/* XXX check the label for valid stuff... */
   1255 		/* Note that some things *should not* get modified --
   1256 		   the user should be re-initing the labels instead of
   1257 		   trying to patch things.
   1258 		   */
   1259 
   1260 		raidid = raidPtr->raidid;
   1261 #ifdef DEBUG
   1262 		printf("raid%d: Got component label:\n", raidid);
   1263 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1264 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1265 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1266 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1267 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1268 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1269 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1270 #endif
   1271 		clabel->row = 0;
   1272 		column = clabel->column;
   1273 
   1274 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1275 			return(EINVAL);
   1276 		}
   1277 
   1278 		/* XXX this isn't allowed to do anything for now :-) */
   1279 
   1280 		/* XXX and before it is, we need to fill in the rest
   1281 		   of the fields!?!?!?! */
   1282 #if 0
   1283 		raidwrite_component_label(
   1284 		     raidPtr->Disks[column].dev,
   1285 			    raidPtr->raid_cinfo[column].ci_vp,
   1286 			    clabel );
   1287 #endif
   1288 		return (0);
   1289 
   1290 	case RAIDFRAME_INIT_LABELS:
   1291 		clabel = (RF_ComponentLabel_t *) data;
   1292 		/*
   1293 		   we only want the serial number from
   1294 		   the above.  We get all the rest of the information
   1295 		   from the config that was used to create this RAID
   1296 		   set.
   1297 		   */
   1298 
   1299 		raidPtr->serial_number = clabel->serial_number;
   1300 
   1301 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1302 			  (RF_ComponentLabel_t *));
   1303 		if (ci_label == NULL)
   1304 			return (ENOMEM);
   1305 
   1306 		raid_init_component_label(raidPtr, ci_label);
   1307 		ci_label->serial_number = clabel->serial_number;
   1308 		ci_label->row = 0; /* we dont' pretend to support more */
   1309 
   1310 		for(column=0;column<raidPtr->numCol;column++) {
   1311 			diskPtr = &raidPtr->Disks[column];
   1312 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1313 				ci_label->partitionSize = diskPtr->partitionSize;
   1314 				ci_label->column = column;
   1315 				raidwrite_component_label(
   1316 							  raidPtr->Disks[column].dev,
   1317 							  raidPtr->raid_cinfo[column].ci_vp,
   1318 							  ci_label );
   1319 			}
   1320 		}
   1321 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1322 
   1323 		return (retcode);
   1324 	case RAIDFRAME_SET_AUTOCONFIG:
   1325 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1326 		printf("raid%d: New autoconfig value is: %d\n",
   1327 		       raidPtr->raidid, d);
   1328 		*(int *) data = d;
   1329 		return (retcode);
   1330 
   1331 	case RAIDFRAME_SET_ROOT:
   1332 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1333 		printf("raid%d: New rootpartition value is: %d\n",
   1334 		       raidPtr->raidid, d);
   1335 		*(int *) data = d;
   1336 		return (retcode);
   1337 
   1338 		/* initialize all parity */
   1339 	case RAIDFRAME_REWRITEPARITY:
   1340 
   1341 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1342 			/* Parity for RAID 0 is trivially correct */
   1343 			raidPtr->parity_good = RF_RAID_CLEAN;
   1344 			return(0);
   1345 		}
   1346 
   1347 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1348 			/* Re-write is already in progress! */
   1349 			return(EINVAL);
   1350 		}
   1351 
   1352 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1353 					   rf_RewriteParityThread,
   1354 					   raidPtr,"raid_parity");
   1355 		return (retcode);
   1356 
   1357 
   1358 	case RAIDFRAME_ADD_HOT_SPARE:
   1359 		sparePtr = (RF_SingleComponent_t *) data;
   1360 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1361 		retcode = rf_add_hot_spare(raidPtr, &component);
   1362 		return(retcode);
   1363 
   1364 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1365 		return(retcode);
   1366 
   1367 	case RAIDFRAME_DELETE_COMPONENT:
   1368 		componentPtr = (RF_SingleComponent_t *)data;
   1369 		memcpy( &component, componentPtr,
   1370 			sizeof(RF_SingleComponent_t));
   1371 		retcode = rf_delete_component(raidPtr, &component);
   1372 		return(retcode);
   1373 
   1374 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1375 		componentPtr = (RF_SingleComponent_t *)data;
   1376 		memcpy( &component, componentPtr,
   1377 			sizeof(RF_SingleComponent_t));
   1378 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1379 		return(retcode);
   1380 
   1381 	case RAIDFRAME_REBUILD_IN_PLACE:
   1382 
   1383 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1384 			/* Can't do this on a RAID 0!! */
   1385 			return(EINVAL);
   1386 		}
   1387 
   1388 		if (raidPtr->recon_in_progress == 1) {
   1389 			/* a reconstruct is already in progress! */
   1390 			return(EINVAL);
   1391 		}
   1392 
   1393 		componentPtr = (RF_SingleComponent_t *) data;
   1394 		memcpy( &component, componentPtr,
   1395 			sizeof(RF_SingleComponent_t));
   1396 		component.row = 0; /* we don't support any more */
   1397 		column = component.column;
   1398 
   1399 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1400 			return(EINVAL);
   1401 		}
   1402 
   1403 		RF_LOCK_MUTEX(raidPtr->mutex);
   1404 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1405 		    (raidPtr->numFailures > 0)) {
   1406 			/* XXX 0 above shouldn't be constant!!! */
   1407 			/* some component other than this has failed.
   1408 			   Let's not make things worse than they already
   1409 			   are... */
   1410 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1411 			       raidPtr->raidid);
   1412 			printf("raid%d:     Col: %d   Too many failures.\n",
   1413 			       raidPtr->raidid, column);
   1414 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1415 			return (EINVAL);
   1416 		}
   1417 		if (raidPtr->Disks[column].status ==
   1418 		    rf_ds_reconstructing) {
   1419 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1420 			       raidPtr->raidid);
   1421 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1422 
   1423 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1424 			return (EINVAL);
   1425 		}
   1426 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1427 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1428 			return (EINVAL);
   1429 		}
   1430 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1431 
   1432 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1433 		if (rrcopy == NULL)
   1434 			return(ENOMEM);
   1435 
   1436 		rrcopy->raidPtr = (void *) raidPtr;
   1437 		rrcopy->col = column;
   1438 
   1439 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1440 					   rf_ReconstructInPlaceThread,
   1441 					   rrcopy,"raid_reconip");
   1442 		return(retcode);
   1443 
   1444 	case RAIDFRAME_GET_INFO:
   1445 		if (!raidPtr->valid)
   1446 			return (ENODEV);
   1447 		ucfgp = (RF_DeviceConfig_t **) data;
   1448 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1449 			  (RF_DeviceConfig_t *));
   1450 		if (d_cfg == NULL)
   1451 			return (ENOMEM);
   1452 		d_cfg->rows = 1; /* there is only 1 row now */
   1453 		d_cfg->cols = raidPtr->numCol;
   1454 		d_cfg->ndevs = raidPtr->numCol;
   1455 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1456 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1457 			return (ENOMEM);
   1458 		}
   1459 		d_cfg->nspares = raidPtr->numSpare;
   1460 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1461 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1462 			return (ENOMEM);
   1463 		}
   1464 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1465 		d = 0;
   1466 		for (j = 0; j < d_cfg->cols; j++) {
   1467 			d_cfg->devs[d] = raidPtr->Disks[j];
   1468 			d++;
   1469 		}
   1470 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1471 			d_cfg->spares[i] = raidPtr->Disks[j];
   1472 		}
   1473 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1474 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1475 
   1476 		return (retcode);
   1477 
   1478 	case RAIDFRAME_CHECK_PARITY:
   1479 		*(int *) data = raidPtr->parity_good;
   1480 		return (0);
   1481 
   1482 	case RAIDFRAME_RESET_ACCTOTALS:
   1483 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1484 		return (0);
   1485 
   1486 	case RAIDFRAME_GET_ACCTOTALS:
   1487 		totals = (RF_AccTotals_t *) data;
   1488 		*totals = raidPtr->acc_totals;
   1489 		return (0);
   1490 
   1491 	case RAIDFRAME_KEEP_ACCTOTALS:
   1492 		raidPtr->keep_acc_totals = *(int *)data;
   1493 		return (0);
   1494 
   1495 	case RAIDFRAME_GET_SIZE:
   1496 		*(int *) data = raidPtr->totalSectors;
   1497 		return (0);
   1498 
   1499 		/* fail a disk & optionally start reconstruction */
   1500 	case RAIDFRAME_FAIL_DISK:
   1501 
   1502 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1503 			/* Can't do this on a RAID 0!! */
   1504 			return(EINVAL);
   1505 		}
   1506 
   1507 		rr = (struct rf_recon_req *) data;
   1508 		rr->row = 0;
   1509 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1510 			return (EINVAL);
   1511 
   1512 
   1513 		RF_LOCK_MUTEX(raidPtr->mutex);
   1514 		if (raidPtr->status == rf_rs_reconstructing) {
   1515 			/* you can't fail a disk while we're reconstructing! */
   1516 			/* XXX wrong for RAID6 */
   1517 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1518 			return (EINVAL);
   1519 		}
   1520 		if ((raidPtr->Disks[rr->col].status ==
   1521 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1522 			/* some other component has failed.  Let's not make
   1523 			   things worse. XXX wrong for RAID6 */
   1524 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1525 			return (EINVAL);
   1526 		}
   1527 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1528 			/* Can't fail a spared disk! */
   1529 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1530 			return (EINVAL);
   1531 		}
   1532 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1533 
   1534 		/* make a copy of the recon request so that we don't rely on
   1535 		 * the user's buffer */
   1536 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1537 		if (rrcopy == NULL)
   1538 			return(ENOMEM);
   1539 		memcpy(rrcopy, rr, sizeof(*rr));
   1540 		rrcopy->raidPtr = (void *) raidPtr;
   1541 
   1542 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1543 					   rf_ReconThread,
   1544 					   rrcopy,"raid_recon");
   1545 		return (0);
   1546 
   1547 		/* invoke a copyback operation after recon on whatever disk
   1548 		 * needs it, if any */
   1549 	case RAIDFRAME_COPYBACK:
   1550 
   1551 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1552 			/* This makes no sense on a RAID 0!! */
   1553 			return(EINVAL);
   1554 		}
   1555 
   1556 		if (raidPtr->copyback_in_progress == 1) {
   1557 			/* Copyback is already in progress! */
   1558 			return(EINVAL);
   1559 		}
   1560 
   1561 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1562 					   rf_CopybackThread,
   1563 					   raidPtr,"raid_copyback");
   1564 		return (retcode);
   1565 
   1566 		/* return the percentage completion of reconstruction */
   1567 	case RAIDFRAME_CHECK_RECON_STATUS:
   1568 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1569 			/* This makes no sense on a RAID 0, so tell the
   1570 			   user it's done. */
   1571 			*(int *) data = 100;
   1572 			return(0);
   1573 		}
   1574 		if (raidPtr->status != rf_rs_reconstructing)
   1575 			*(int *) data = 100;
   1576 		else {
   1577 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1578 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1579 			} else {
   1580 				*(int *) data = 0;
   1581 			}
   1582 		}
   1583 		return (0);
   1584 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1585 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1586 		if (raidPtr->status != rf_rs_reconstructing) {
   1587 			progressInfo.remaining = 0;
   1588 			progressInfo.completed = 100;
   1589 			progressInfo.total = 100;
   1590 		} else {
   1591 			progressInfo.total =
   1592 				raidPtr->reconControl->numRUsTotal;
   1593 			progressInfo.completed =
   1594 				raidPtr->reconControl->numRUsComplete;
   1595 			progressInfo.remaining = progressInfo.total -
   1596 				progressInfo.completed;
   1597 		}
   1598 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1599 				  sizeof(RF_ProgressInfo_t));
   1600 		return (retcode);
   1601 
   1602 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1603 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1604 			/* This makes no sense on a RAID 0, so tell the
   1605 			   user it's done. */
   1606 			*(int *) data = 100;
   1607 			return(0);
   1608 		}
   1609 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1610 			*(int *) data = 100 *
   1611 				raidPtr->parity_rewrite_stripes_done /
   1612 				raidPtr->Layout.numStripe;
   1613 		} else {
   1614 			*(int *) data = 100;
   1615 		}
   1616 		return (0);
   1617 
   1618 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1619 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1620 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1621 			progressInfo.total = raidPtr->Layout.numStripe;
   1622 			progressInfo.completed =
   1623 				raidPtr->parity_rewrite_stripes_done;
   1624 			progressInfo.remaining = progressInfo.total -
   1625 				progressInfo.completed;
   1626 		} else {
   1627 			progressInfo.remaining = 0;
   1628 			progressInfo.completed = 100;
   1629 			progressInfo.total = 100;
   1630 		}
   1631 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1632 				  sizeof(RF_ProgressInfo_t));
   1633 		return (retcode);
   1634 
   1635 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1636 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1637 			/* This makes no sense on a RAID 0 */
   1638 			*(int *) data = 100;
   1639 			return(0);
   1640 		}
   1641 		if (raidPtr->copyback_in_progress == 1) {
   1642 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1643 				raidPtr->Layout.numStripe;
   1644 		} else {
   1645 			*(int *) data = 100;
   1646 		}
   1647 		return (0);
   1648 
   1649 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1650 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1651 		if (raidPtr->copyback_in_progress == 1) {
   1652 			progressInfo.total = raidPtr->Layout.numStripe;
   1653 			progressInfo.completed =
   1654 				raidPtr->copyback_stripes_done;
   1655 			progressInfo.remaining = progressInfo.total -
   1656 				progressInfo.completed;
   1657 		} else {
   1658 			progressInfo.remaining = 0;
   1659 			progressInfo.completed = 100;
   1660 			progressInfo.total = 100;
   1661 		}
   1662 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1663 				  sizeof(RF_ProgressInfo_t));
   1664 		return (retcode);
   1665 
   1666 		/* the sparetable daemon calls this to wait for the kernel to
   1667 		 * need a spare table. this ioctl does not return until a
   1668 		 * spare table is needed. XXX -- calling mpsleep here in the
   1669 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1670 		 * -- I should either compute the spare table in the kernel,
   1671 		 * or have a different -- XXX XXX -- interface (a different
   1672 		 * character device) for delivering the table     -- XXX */
   1673 #if 0
   1674 	case RAIDFRAME_SPARET_WAIT:
   1675 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1676 		while (!rf_sparet_wait_queue)
   1677 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1678 		waitreq = rf_sparet_wait_queue;
   1679 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1680 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1681 
   1682 		/* structure assignment */
   1683 		*((RF_SparetWait_t *) data) = *waitreq;
   1684 
   1685 		RF_Free(waitreq, sizeof(*waitreq));
   1686 		return (0);
   1687 
   1688 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1689 		 * code in it that will cause the dameon to exit */
   1690 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1691 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1692 		waitreq->fcol = -1;
   1693 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1694 		waitreq->next = rf_sparet_wait_queue;
   1695 		rf_sparet_wait_queue = waitreq;
   1696 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1697 		wakeup(&rf_sparet_wait_queue);
   1698 		return (0);
   1699 
   1700 		/* used by the spare table daemon to deliver a spare table
   1701 		 * into the kernel */
   1702 	case RAIDFRAME_SEND_SPARET:
   1703 
   1704 		/* install the spare table */
   1705 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1706 
   1707 		/* respond to the requestor.  the return status of the spare
   1708 		 * table installation is passed in the "fcol" field */
   1709 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1710 		waitreq->fcol = retcode;
   1711 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1712 		waitreq->next = rf_sparet_resp_queue;
   1713 		rf_sparet_resp_queue = waitreq;
   1714 		wakeup(&rf_sparet_resp_queue);
   1715 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1716 
   1717 		return (retcode);
   1718 #endif
   1719 
   1720 	default:
   1721 		break; /* fall through to the os-specific code below */
   1722 
   1723 	}
   1724 
   1725 	if (!raidPtr->valid)
   1726 		return (EINVAL);
   1727 
   1728 	/*
   1729 	 * Add support for "regular" device ioctls here.
   1730 	 */
   1731 
   1732 	switch (cmd) {
   1733 	case DIOCGDINFO:
   1734 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1735 		break;
   1736 #ifdef __HAVE_OLD_DISKLABEL
   1737 	case ODIOCGDINFO:
   1738 		newlabel = *(rs->sc_dkdev.dk_label);
   1739 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1740 			return ENOTTY;
   1741 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1742 		break;
   1743 #endif
   1744 
   1745 	case DIOCGPART:
   1746 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1747 		((struct partinfo *) data)->part =
   1748 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1749 		break;
   1750 
   1751 	case DIOCWDINFO:
   1752 	case DIOCSDINFO:
   1753 #ifdef __HAVE_OLD_DISKLABEL
   1754 	case ODIOCWDINFO:
   1755 	case ODIOCSDINFO:
   1756 #endif
   1757 	{
   1758 		struct disklabel *lp;
   1759 #ifdef __HAVE_OLD_DISKLABEL
   1760 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1761 			memset(&newlabel, 0, sizeof newlabel);
   1762 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1763 			lp = &newlabel;
   1764 		} else
   1765 #endif
   1766 		lp = (struct disklabel *)data;
   1767 
   1768 		if ((error = raidlock(rs)) != 0)
   1769 			return (error);
   1770 
   1771 		rs->sc_flags |= RAIDF_LABELLING;
   1772 
   1773 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1774 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1775 		if (error == 0) {
   1776 			if (cmd == DIOCWDINFO
   1777 #ifdef __HAVE_OLD_DISKLABEL
   1778 			    || cmd == ODIOCWDINFO
   1779 #endif
   1780 			   )
   1781 				error = writedisklabel(RAIDLABELDEV(dev),
   1782 				    raidstrategy, rs->sc_dkdev.dk_label,
   1783 				    rs->sc_dkdev.dk_cpulabel);
   1784 		}
   1785 		rs->sc_flags &= ~RAIDF_LABELLING;
   1786 
   1787 		raidunlock(rs);
   1788 
   1789 		if (error)
   1790 			return (error);
   1791 		break;
   1792 	}
   1793 
   1794 	case DIOCWLABEL:
   1795 		if (*(int *) data != 0)
   1796 			rs->sc_flags |= RAIDF_WLABEL;
   1797 		else
   1798 			rs->sc_flags &= ~RAIDF_WLABEL;
   1799 		break;
   1800 
   1801 	case DIOCGDEFLABEL:
   1802 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1803 		break;
   1804 
   1805 #ifdef __HAVE_OLD_DISKLABEL
   1806 	case ODIOCGDEFLABEL:
   1807 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1808 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1809 			return ENOTTY;
   1810 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1811 		break;
   1812 #endif
   1813 
   1814 	case DIOCAWEDGE:
   1815 	case DIOCDWEDGE:
   1816 	    	dkw = (void *)data;
   1817 
   1818 		/* If the ioctl happens here, the parent is us. */
   1819 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1820 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1821 
   1822 	case DIOCLWEDGES:
   1823 		return dkwedge_list(&rs->sc_dkdev,
   1824 		    (struct dkwedge_list *)data, l);
   1825 
   1826 	default:
   1827 		retcode = ENOTTY;
   1828 	}
   1829 	return (retcode);
   1830 
   1831 }
   1832 
   1833 
   1834 /* raidinit -- complete the rest of the initialization for the
   1835    RAIDframe device.  */
   1836 
   1837 
   1838 static void
   1839 raidinit(RF_Raid_t *raidPtr)
   1840 {
   1841 	struct cfdata *cf;
   1842 	struct raid_softc *rs;
   1843 	int     unit;
   1844 
   1845 	unit = raidPtr->raidid;
   1846 
   1847 	rs = &raid_softc[unit];
   1848 
   1849 	/* XXX should check return code first... */
   1850 	rs->sc_flags |= RAIDF_INITED;
   1851 
   1852 	/* XXX doesn't check bounds. */
   1853 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1854 
   1855 	/* attach the pseudo device */
   1856 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1857 	cf->cf_name = raid_cd.cd_name;
   1858 	cf->cf_atname = raid_cd.cd_name;
   1859 	cf->cf_unit = unit;
   1860 	cf->cf_fstate = FSTATE_STAR;
   1861 
   1862 	rs->sc_dev = config_attach_pseudo(cf);
   1863 
   1864 	if (rs->sc_dev==NULL) {
   1865 		printf("raid%d: config_attach_pseudo failed\n",
   1866 		       raidPtr->raidid);
   1867 	}
   1868 
   1869 	/* disk_attach actually creates space for the CPU disklabel, among
   1870 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1871 	 * with disklabels. */
   1872 
   1873 	disk_init(&rs->sc_dkdev, rs->sc_xname, NULL);
   1874 	disk_attach(&rs->sc_dkdev);
   1875 
   1876 	/* XXX There may be a weird interaction here between this, and
   1877 	 * protectedSectors, as used in RAIDframe.  */
   1878 
   1879 	rs->sc_size = raidPtr->totalSectors;
   1880 }
   1881 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1882 /* wake up the daemon & tell it to get us a spare table
   1883  * XXX
   1884  * the entries in the queues should be tagged with the raidPtr
   1885  * so that in the extremely rare case that two recons happen at once,
   1886  * we know for which device were requesting a spare table
   1887  * XXX
   1888  *
   1889  * XXX This code is not currently used. GO
   1890  */
   1891 int
   1892 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1893 {
   1894 	int     retcode;
   1895 
   1896 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1897 	req->next = rf_sparet_wait_queue;
   1898 	rf_sparet_wait_queue = req;
   1899 	wakeup(&rf_sparet_wait_queue);
   1900 
   1901 	/* mpsleep unlocks the mutex */
   1902 	while (!rf_sparet_resp_queue) {
   1903 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1904 		    "raidframe getsparetable", 0);
   1905 	}
   1906 	req = rf_sparet_resp_queue;
   1907 	rf_sparet_resp_queue = req->next;
   1908 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1909 
   1910 	retcode = req->fcol;
   1911 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1912 					 * alloc'd */
   1913 	return (retcode);
   1914 }
   1915 #endif
   1916 
   1917 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1918  * bp & passes it down.
   1919  * any calls originating in the kernel must use non-blocking I/O
   1920  * do some extra sanity checking to return "appropriate" error values for
   1921  * certain conditions (to make some standard utilities work)
   1922  *
   1923  * Formerly known as: rf_DoAccessKernel
   1924  */
   1925 void
   1926 raidstart(RF_Raid_t *raidPtr)
   1927 {
   1928 	RF_SectorCount_t num_blocks, pb, sum;
   1929 	RF_RaidAddr_t raid_addr;
   1930 	struct partition *pp;
   1931 	daddr_t blocknum;
   1932 	int     unit;
   1933 	struct raid_softc *rs;
   1934 	int     do_async;
   1935 	struct buf *bp;
   1936 	int rc;
   1937 
   1938 	unit = raidPtr->raidid;
   1939 	rs = &raid_softc[unit];
   1940 
   1941 	/* quick check to see if anything has died recently */
   1942 	RF_LOCK_MUTEX(raidPtr->mutex);
   1943 	if (raidPtr->numNewFailures > 0) {
   1944 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1945 		rf_update_component_labels(raidPtr,
   1946 					   RF_NORMAL_COMPONENT_UPDATE);
   1947 		RF_LOCK_MUTEX(raidPtr->mutex);
   1948 		raidPtr->numNewFailures--;
   1949 	}
   1950 
   1951 	/* Check to see if we're at the limit... */
   1952 	while (raidPtr->openings > 0) {
   1953 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1954 
   1955 		/* get the next item, if any, from the queue */
   1956 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1957 			/* nothing more to do */
   1958 			return;
   1959 		}
   1960 
   1961 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1962 		 * partition.. Need to make it absolute to the underlying
   1963 		 * device.. */
   1964 
   1965 		blocknum = bp->b_blkno;
   1966 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1967 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1968 			blocknum += pp->p_offset;
   1969 		}
   1970 
   1971 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1972 			    (int) blocknum));
   1973 
   1974 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1975 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1976 
   1977 		/* *THIS* is where we adjust what block we're going to...
   1978 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1979 		raid_addr = blocknum;
   1980 
   1981 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1982 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1983 		sum = raid_addr + num_blocks + pb;
   1984 		if (1 || rf_debugKernelAccess) {
   1985 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1986 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1987 				    (int) pb, (int) bp->b_resid));
   1988 		}
   1989 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1990 		    || (sum < num_blocks) || (sum < pb)) {
   1991 			bp->b_error = ENOSPC;
   1992 			bp->b_resid = bp->b_bcount;
   1993 			biodone(bp);
   1994 			RF_LOCK_MUTEX(raidPtr->mutex);
   1995 			continue;
   1996 		}
   1997 		/*
   1998 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1999 		 */
   2000 
   2001 		if (bp->b_bcount & raidPtr->sectorMask) {
   2002 			bp->b_error = EINVAL;
   2003 			bp->b_resid = bp->b_bcount;
   2004 			biodone(bp);
   2005 			RF_LOCK_MUTEX(raidPtr->mutex);
   2006 			continue;
   2007 
   2008 		}
   2009 		db1_printf(("Calling DoAccess..\n"));
   2010 
   2011 
   2012 		RF_LOCK_MUTEX(raidPtr->mutex);
   2013 		raidPtr->openings--;
   2014 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   2015 
   2016 		/*
   2017 		 * Everything is async.
   2018 		 */
   2019 		do_async = 1;
   2020 
   2021 		disk_busy(&rs->sc_dkdev);
   2022 
   2023 		/* XXX we're still at splbio() here... do we *really*
   2024 		   need to be? */
   2025 
   2026 		/* don't ever condition on bp->b_flags & B_WRITE.
   2027 		 * always condition on B_READ instead */
   2028 
   2029 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   2030 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   2031 				 do_async, raid_addr, num_blocks,
   2032 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   2033 
   2034 		if (rc) {
   2035 			bp->b_error = rc;
   2036 			bp->b_resid = bp->b_bcount;
   2037 			biodone(bp);
   2038 			/* continue loop */
   2039 		}
   2040 
   2041 		RF_LOCK_MUTEX(raidPtr->mutex);
   2042 	}
   2043 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   2044 }
   2045 
   2046 
   2047 
   2048 
   2049 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   2050 
   2051 int
   2052 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   2053 {
   2054 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   2055 	struct buf *bp;
   2056 
   2057 	req->queue = queue;
   2058 
   2059 #if DIAGNOSTIC
   2060 	if (queue->raidPtr->raidid >= numraid) {
   2061 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   2062 		    numraid);
   2063 		panic("Invalid Unit number in rf_DispatchKernelIO");
   2064 	}
   2065 #endif
   2066 
   2067 	bp = req->bp;
   2068 
   2069 	switch (req->type) {
   2070 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   2071 		/* XXX need to do something extra here.. */
   2072 		/* I'm leaving this in, as I've never actually seen it used,
   2073 		 * and I'd like folks to report it... GO */
   2074 		printf(("WAKEUP CALLED\n"));
   2075 		queue->numOutstanding++;
   2076 
   2077 		bp->b_flags = 0;
   2078 		bp->b_private = req;
   2079 
   2080 		KernelWakeupFunc(bp);
   2081 		break;
   2082 
   2083 	case RF_IO_TYPE_READ:
   2084 	case RF_IO_TYPE_WRITE:
   2085 #if RF_ACC_TRACE > 0
   2086 		if (req->tracerec) {
   2087 			RF_ETIMER_START(req->tracerec->timer);
   2088 		}
   2089 #endif
   2090 		InitBP(bp, queue->rf_cinfo->ci_vp,
   2091 		    op, queue->rf_cinfo->ci_dev,
   2092 		    req->sectorOffset, req->numSector,
   2093 		    req->buf, KernelWakeupFunc, (void *) req,
   2094 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   2095 
   2096 		if (rf_debugKernelAccess) {
   2097 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   2098 				(long) bp->b_blkno));
   2099 		}
   2100 		queue->numOutstanding++;
   2101 		queue->last_deq_sector = req->sectorOffset;
   2102 		/* acc wouldn't have been let in if there were any pending
   2103 		 * reqs at any other priority */
   2104 		queue->curPriority = req->priority;
   2105 
   2106 		db1_printf(("Going for %c to unit %d col %d\n",
   2107 			    req->type, queue->raidPtr->raidid,
   2108 			    queue->col));
   2109 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   2110 			(int) req->sectorOffset, (int) req->numSector,
   2111 			(int) (req->numSector <<
   2112 			    queue->raidPtr->logBytesPerSector),
   2113 			(int) queue->raidPtr->logBytesPerSector));
   2114 		VOP_STRATEGY(bp->b_vp, bp);
   2115 
   2116 		break;
   2117 
   2118 	default:
   2119 		panic("bad req->type in rf_DispatchKernelIO");
   2120 	}
   2121 	db1_printf(("Exiting from DispatchKernelIO\n"));
   2122 
   2123 	return (0);
   2124 }
   2125 /* this is the callback function associated with a I/O invoked from
   2126    kernel code.
   2127  */
   2128 static void
   2129 KernelWakeupFunc(struct buf *bp)
   2130 {
   2131 	RF_DiskQueueData_t *req = NULL;
   2132 	RF_DiskQueue_t *queue;
   2133 	int s;
   2134 
   2135 	s = splbio();
   2136 	db1_printf(("recovering the request queue:\n"));
   2137 	req = bp->b_private;
   2138 
   2139 	queue = (RF_DiskQueue_t *) req->queue;
   2140 
   2141 #if RF_ACC_TRACE > 0
   2142 	if (req->tracerec) {
   2143 		RF_ETIMER_STOP(req->tracerec->timer);
   2144 		RF_ETIMER_EVAL(req->tracerec->timer);
   2145 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2146 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2147 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2148 		req->tracerec->num_phys_ios++;
   2149 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2150 	}
   2151 #endif
   2152 
   2153 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2154 	 * ballistic, and mark the component as hosed... */
   2155 
   2156 	if (bp->b_error != 0) {
   2157 		/* Mark the disk as dead */
   2158 		/* but only mark it once... */
   2159 		/* and only if it wouldn't leave this RAID set
   2160 		   completely broken */
   2161 		if (((queue->raidPtr->Disks[queue->col].status ==
   2162 		      rf_ds_optimal) ||
   2163 		     (queue->raidPtr->Disks[queue->col].status ==
   2164 		      rf_ds_used_spare)) &&
   2165 		     (queue->raidPtr->numFailures <
   2166 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2167 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2168 			       queue->raidPtr->raidid,
   2169 			       queue->raidPtr->Disks[queue->col].devname);
   2170 			queue->raidPtr->Disks[queue->col].status =
   2171 			    rf_ds_failed;
   2172 			queue->raidPtr->status = rf_rs_degraded;
   2173 			queue->raidPtr->numFailures++;
   2174 			queue->raidPtr->numNewFailures++;
   2175 		} else {	/* Disk is already dead... */
   2176 			/* printf("Disk already marked as dead!\n"); */
   2177 		}
   2178 
   2179 	}
   2180 
   2181 	/* Fill in the error value */
   2182 
   2183 	req->error = bp->b_error;
   2184 
   2185 	simple_lock(&queue->raidPtr->iodone_lock);
   2186 
   2187 	/* Drop this one on the "finished" queue... */
   2188 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2189 
   2190 	/* Let the raidio thread know there is work to be done. */
   2191 	wakeup(&(queue->raidPtr->iodone));
   2192 
   2193 	simple_unlock(&queue->raidPtr->iodone_lock);
   2194 
   2195 	splx(s);
   2196 }
   2197 
   2198 
   2199 
   2200 /*
   2201  * initialize a buf structure for doing an I/O in the kernel.
   2202  */
   2203 static void
   2204 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2205        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2206        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2207        struct proc *b_proc)
   2208 {
   2209 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2210 	bp->b_flags = rw_flag;	/* XXX need B_PHYS here too??? */
   2211 	bp->b_oflags = 0;
   2212 	bp->b_cflags = 0;
   2213 	bp->b_bcount = numSect << logBytesPerSector;
   2214 	bp->b_bufsize = bp->b_bcount;
   2215 	bp->b_error = 0;
   2216 	bp->b_dev = dev;
   2217 	bp->b_data = bf;
   2218 	bp->b_blkno = startSect;
   2219 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2220 	if (bp->b_bcount == 0) {
   2221 		panic("bp->b_bcount is zero in InitBP!!");
   2222 	}
   2223 	bp->b_proc = b_proc;
   2224 	bp->b_iodone = cbFunc;
   2225 	bp->b_private = cbArg;
   2226 	bp->b_vp = b_vp;
   2227 	if ((bp->b_flags & B_READ) == 0) {
   2228 		mutex_enter(&bp->b_vp->v_interlock);
   2229 		bp->b_vp->v_numoutput++;
   2230 		mutex_exit(&bp->b_vp->v_interlock);
   2231 	}
   2232 
   2233 }
   2234 
   2235 static void
   2236 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2237 		    struct disklabel *lp)
   2238 {
   2239 	memset(lp, 0, sizeof(*lp));
   2240 
   2241 	/* fabricate a label... */
   2242 	lp->d_secperunit = raidPtr->totalSectors;
   2243 	lp->d_secsize = raidPtr->bytesPerSector;
   2244 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2245 	lp->d_ntracks = 4 * raidPtr->numCol;
   2246 	lp->d_ncylinders = raidPtr->totalSectors /
   2247 		(lp->d_nsectors * lp->d_ntracks);
   2248 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2249 
   2250 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2251 	lp->d_type = DTYPE_RAID;
   2252 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2253 	lp->d_rpm = 3600;
   2254 	lp->d_interleave = 1;
   2255 	lp->d_flags = 0;
   2256 
   2257 	lp->d_partitions[RAW_PART].p_offset = 0;
   2258 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2259 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2260 	lp->d_npartitions = RAW_PART + 1;
   2261 
   2262 	lp->d_magic = DISKMAGIC;
   2263 	lp->d_magic2 = DISKMAGIC;
   2264 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2265 
   2266 }
   2267 /*
   2268  * Read the disklabel from the raid device.  If one is not present, fake one
   2269  * up.
   2270  */
   2271 static void
   2272 raidgetdisklabel(dev_t dev)
   2273 {
   2274 	int     unit = raidunit(dev);
   2275 	struct raid_softc *rs = &raid_softc[unit];
   2276 	const char   *errstring;
   2277 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2278 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2279 	RF_Raid_t *raidPtr;
   2280 
   2281 	db1_printf(("Getting the disklabel...\n"));
   2282 
   2283 	memset(clp, 0, sizeof(*clp));
   2284 
   2285 	raidPtr = raidPtrs[unit];
   2286 
   2287 	raidgetdefaultlabel(raidPtr, rs, lp);
   2288 
   2289 	/*
   2290 	 * Call the generic disklabel extraction routine.
   2291 	 */
   2292 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2293 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2294 	if (errstring)
   2295 		raidmakedisklabel(rs);
   2296 	else {
   2297 		int     i;
   2298 		struct partition *pp;
   2299 
   2300 		/*
   2301 		 * Sanity check whether the found disklabel is valid.
   2302 		 *
   2303 		 * This is necessary since total size of the raid device
   2304 		 * may vary when an interleave is changed even though exactly
   2305 		 * same components are used, and old disklabel may used
   2306 		 * if that is found.
   2307 		 */
   2308 		if (lp->d_secperunit != rs->sc_size)
   2309 			printf("raid%d: WARNING: %s: "
   2310 			    "total sector size in disklabel (%d) != "
   2311 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2312 			    lp->d_secperunit, (long) rs->sc_size);
   2313 		for (i = 0; i < lp->d_npartitions; i++) {
   2314 			pp = &lp->d_partitions[i];
   2315 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2316 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2317 				       "exceeds the size of raid (%ld)\n",
   2318 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2319 		}
   2320 	}
   2321 
   2322 }
   2323 /*
   2324  * Take care of things one might want to take care of in the event
   2325  * that a disklabel isn't present.
   2326  */
   2327 static void
   2328 raidmakedisklabel(struct raid_softc *rs)
   2329 {
   2330 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2331 	db1_printf(("Making a label..\n"));
   2332 
   2333 	/*
   2334 	 * For historical reasons, if there's no disklabel present
   2335 	 * the raw partition must be marked FS_BSDFFS.
   2336 	 */
   2337 
   2338 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2339 
   2340 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2341 
   2342 	lp->d_checksum = dkcksum(lp);
   2343 }
   2344 /*
   2345  * Wait interruptibly for an exclusive lock.
   2346  *
   2347  * XXX
   2348  * Several drivers do this; it should be abstracted and made MP-safe.
   2349  * (Hmm... where have we seen this warning before :->  GO )
   2350  */
   2351 static int
   2352 raidlock(struct raid_softc *rs)
   2353 {
   2354 	int     error;
   2355 
   2356 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2357 		rs->sc_flags |= RAIDF_WANTED;
   2358 		if ((error =
   2359 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2360 			return (error);
   2361 	}
   2362 	rs->sc_flags |= RAIDF_LOCKED;
   2363 	return (0);
   2364 }
   2365 /*
   2366  * Unlock and wake up any waiters.
   2367  */
   2368 static void
   2369 raidunlock(struct raid_softc *rs)
   2370 {
   2371 
   2372 	rs->sc_flags &= ~RAIDF_LOCKED;
   2373 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2374 		rs->sc_flags &= ~RAIDF_WANTED;
   2375 		wakeup(rs);
   2376 	}
   2377 }
   2378 
   2379 
   2380 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2381 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2382 
   2383 int
   2384 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2385 {
   2386 	RF_ComponentLabel_t clabel;
   2387 	raidread_component_label(dev, b_vp, &clabel);
   2388 	clabel.mod_counter = mod_counter;
   2389 	clabel.clean = RF_RAID_CLEAN;
   2390 	raidwrite_component_label(dev, b_vp, &clabel);
   2391 	return(0);
   2392 }
   2393 
   2394 
   2395 int
   2396 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2397 {
   2398 	RF_ComponentLabel_t clabel;
   2399 	raidread_component_label(dev, b_vp, &clabel);
   2400 	clabel.mod_counter = mod_counter;
   2401 	clabel.clean = RF_RAID_DIRTY;
   2402 	raidwrite_component_label(dev, b_vp, &clabel);
   2403 	return(0);
   2404 }
   2405 
   2406 /* ARGSUSED */
   2407 int
   2408 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2409 			 RF_ComponentLabel_t *clabel)
   2410 {
   2411 	struct buf *bp;
   2412 	const struct bdevsw *bdev;
   2413 	int error;
   2414 
   2415 	/* XXX should probably ensure that we don't try to do this if
   2416 	   someone has changed rf_protected_sectors. */
   2417 
   2418 	if (b_vp == NULL) {
   2419 		/* For whatever reason, this component is not valid.
   2420 		   Don't try to read a component label from it. */
   2421 		return(EINVAL);
   2422 	}
   2423 
   2424 	/* get a block of the appropriate size... */
   2425 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2426 	bp->b_dev = dev;
   2427 
   2428 	/* get our ducks in a row for the read */
   2429 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2430 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2431 	bp->b_flags |= B_READ;
   2432  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2433 
   2434 	bdev = bdevsw_lookup(bp->b_dev);
   2435 	if (bdev == NULL)
   2436 		return (ENXIO);
   2437 	(*bdev->d_strategy)(bp);
   2438 
   2439 	error = biowait(bp);
   2440 
   2441 	if (!error) {
   2442 		memcpy(clabel, bp->b_data,
   2443 		       sizeof(RF_ComponentLabel_t));
   2444 	}
   2445 
   2446 	brelse(bp, 0);
   2447 	return(error);
   2448 }
   2449 /* ARGSUSED */
   2450 int
   2451 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2452 			  RF_ComponentLabel_t *clabel)
   2453 {
   2454 	struct buf *bp;
   2455 	const struct bdevsw *bdev;
   2456 	int error;
   2457 
   2458 	/* get a block of the appropriate size... */
   2459 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2460 	bp->b_dev = dev;
   2461 
   2462 	/* get our ducks in a row for the write */
   2463 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2464 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2465 	bp->b_flags |= B_WRITE;
   2466  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2467 
   2468 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2469 
   2470 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2471 
   2472 	bdev = bdevsw_lookup(bp->b_dev);
   2473 	if (bdev == NULL)
   2474 		return (ENXIO);
   2475 	(*bdev->d_strategy)(bp);
   2476 	error = biowait(bp);
   2477 	brelse(bp, 0);
   2478 	if (error) {
   2479 #if 1
   2480 		printf("Failed to write RAID component info!\n");
   2481 #endif
   2482 	}
   2483 
   2484 	return(error);
   2485 }
   2486 
   2487 void
   2488 rf_markalldirty(RF_Raid_t *raidPtr)
   2489 {
   2490 	RF_ComponentLabel_t clabel;
   2491 	int sparecol;
   2492 	int c;
   2493 	int j;
   2494 	int scol = -1;
   2495 
   2496 	raidPtr->mod_counter++;
   2497 	for (c = 0; c < raidPtr->numCol; c++) {
   2498 		/* we don't want to touch (at all) a disk that has
   2499 		   failed */
   2500 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2501 			raidread_component_label(
   2502 						 raidPtr->Disks[c].dev,
   2503 						 raidPtr->raid_cinfo[c].ci_vp,
   2504 						 &clabel);
   2505 			if (clabel.status == rf_ds_spared) {
   2506 				/* XXX do something special...
   2507 				   but whatever you do, don't
   2508 				   try to access it!! */
   2509 			} else {
   2510 				raidmarkdirty(
   2511 					      raidPtr->Disks[c].dev,
   2512 					      raidPtr->raid_cinfo[c].ci_vp,
   2513 					      raidPtr->mod_counter);
   2514 			}
   2515 		}
   2516 	}
   2517 
   2518 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2519 		sparecol = raidPtr->numCol + c;
   2520 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2521 			/*
   2522 
   2523 			   we claim this disk is "optimal" if it's
   2524 			   rf_ds_used_spare, as that means it should be
   2525 			   directly substitutable for the disk it replaced.
   2526 			   We note that too...
   2527 
   2528 			 */
   2529 
   2530 			for(j=0;j<raidPtr->numCol;j++) {
   2531 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2532 					scol = j;
   2533 					break;
   2534 				}
   2535 			}
   2536 
   2537 			raidread_component_label(
   2538 				 raidPtr->Disks[sparecol].dev,
   2539 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2540 				 &clabel);
   2541 			/* make sure status is noted */
   2542 
   2543 			raid_init_component_label(raidPtr, &clabel);
   2544 
   2545 			clabel.row = 0;
   2546 			clabel.column = scol;
   2547 			/* Note: we *don't* change status from rf_ds_used_spare
   2548 			   to rf_ds_optimal */
   2549 			/* clabel.status = rf_ds_optimal; */
   2550 
   2551 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2552 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2553 				      raidPtr->mod_counter);
   2554 		}
   2555 	}
   2556 }
   2557 
   2558 
   2559 void
   2560 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2561 {
   2562 	RF_ComponentLabel_t clabel;
   2563 	int sparecol;
   2564 	int c;
   2565 	int j;
   2566 	int scol;
   2567 
   2568 	scol = -1;
   2569 
   2570 	/* XXX should do extra checks to make sure things really are clean,
   2571 	   rather than blindly setting the clean bit... */
   2572 
   2573 	raidPtr->mod_counter++;
   2574 
   2575 	for (c = 0; c < raidPtr->numCol; c++) {
   2576 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2577 			raidread_component_label(
   2578 						 raidPtr->Disks[c].dev,
   2579 						 raidPtr->raid_cinfo[c].ci_vp,
   2580 						 &clabel);
   2581 			/* make sure status is noted */
   2582 			clabel.status = rf_ds_optimal;
   2583 
   2584 			/* bump the counter */
   2585 			clabel.mod_counter = raidPtr->mod_counter;
   2586 
   2587 			/* note what unit we are configured as */
   2588 			clabel.last_unit = raidPtr->raidid;
   2589 
   2590 			raidwrite_component_label(
   2591 						  raidPtr->Disks[c].dev,
   2592 						  raidPtr->raid_cinfo[c].ci_vp,
   2593 						  &clabel);
   2594 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2595 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2596 					raidmarkclean(
   2597 						      raidPtr->Disks[c].dev,
   2598 						      raidPtr->raid_cinfo[c].ci_vp,
   2599 						      raidPtr->mod_counter);
   2600 				}
   2601 			}
   2602 		}
   2603 		/* else we don't touch it.. */
   2604 	}
   2605 
   2606 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2607 		sparecol = raidPtr->numCol + c;
   2608 		/* Need to ensure that the reconstruct actually completed! */
   2609 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2610 			/*
   2611 
   2612 			   we claim this disk is "optimal" if it's
   2613 			   rf_ds_used_spare, as that means it should be
   2614 			   directly substitutable for the disk it replaced.
   2615 			   We note that too...
   2616 
   2617 			 */
   2618 
   2619 			for(j=0;j<raidPtr->numCol;j++) {
   2620 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2621 					scol = j;
   2622 					break;
   2623 				}
   2624 			}
   2625 
   2626 			/* XXX shouldn't *really* need this... */
   2627 			raidread_component_label(
   2628 				      raidPtr->Disks[sparecol].dev,
   2629 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2630 				      &clabel);
   2631 			/* make sure status is noted */
   2632 
   2633 			raid_init_component_label(raidPtr, &clabel);
   2634 
   2635 			clabel.mod_counter = raidPtr->mod_counter;
   2636 			clabel.column = scol;
   2637 			clabel.status = rf_ds_optimal;
   2638 			clabel.last_unit = raidPtr->raidid;
   2639 
   2640 			raidwrite_component_label(
   2641 				      raidPtr->Disks[sparecol].dev,
   2642 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2643 				      &clabel);
   2644 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2645 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2646 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2647 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2648 						       raidPtr->mod_counter);
   2649 				}
   2650 			}
   2651 		}
   2652 	}
   2653 }
   2654 
   2655 void
   2656 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2657 {
   2658 
   2659 	if (vp != NULL) {
   2660 		if (auto_configured == 1) {
   2661 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2662 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2663 			vput(vp);
   2664 
   2665 		} else {
   2666 			(void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred, curlwp);
   2667 		}
   2668 	}
   2669 }
   2670 
   2671 
   2672 void
   2673 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2674 {
   2675 	int r,c;
   2676 	struct vnode *vp;
   2677 	int acd;
   2678 
   2679 
   2680 	/* We take this opportunity to close the vnodes like we should.. */
   2681 
   2682 	for (c = 0; c < raidPtr->numCol; c++) {
   2683 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2684 		acd = raidPtr->Disks[c].auto_configured;
   2685 		rf_close_component(raidPtr, vp, acd);
   2686 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2687 		raidPtr->Disks[c].auto_configured = 0;
   2688 	}
   2689 
   2690 	for (r = 0; r < raidPtr->numSpare; r++) {
   2691 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2692 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2693 		rf_close_component(raidPtr, vp, acd);
   2694 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2695 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2696 	}
   2697 }
   2698 
   2699 
   2700 void
   2701 rf_ReconThread(struct rf_recon_req *req)
   2702 {
   2703 	int     s;
   2704 	RF_Raid_t *raidPtr;
   2705 
   2706 	s = splbio();
   2707 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2708 	raidPtr->recon_in_progress = 1;
   2709 
   2710 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2711 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2712 
   2713 	RF_Free(req, sizeof(*req));
   2714 
   2715 	raidPtr->recon_in_progress = 0;
   2716 	splx(s);
   2717 
   2718 	/* That's all... */
   2719 	kthread_exit(0);	/* does not return */
   2720 }
   2721 
   2722 void
   2723 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2724 {
   2725 	int retcode;
   2726 	int s;
   2727 
   2728 	raidPtr->parity_rewrite_stripes_done = 0;
   2729 	raidPtr->parity_rewrite_in_progress = 1;
   2730 	s = splbio();
   2731 	retcode = rf_RewriteParity(raidPtr);
   2732 	splx(s);
   2733 	if (retcode) {
   2734 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2735 	} else {
   2736 		/* set the clean bit!  If we shutdown correctly,
   2737 		   the clean bit on each component label will get
   2738 		   set */
   2739 		raidPtr->parity_good = RF_RAID_CLEAN;
   2740 	}
   2741 	raidPtr->parity_rewrite_in_progress = 0;
   2742 
   2743 	/* Anyone waiting for us to stop?  If so, inform them... */
   2744 	if (raidPtr->waitShutdown) {
   2745 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2746 	}
   2747 
   2748 	/* That's all... */
   2749 	kthread_exit(0);	/* does not return */
   2750 }
   2751 
   2752 
   2753 void
   2754 rf_CopybackThread(RF_Raid_t *raidPtr)
   2755 {
   2756 	int s;
   2757 
   2758 	raidPtr->copyback_in_progress = 1;
   2759 	s = splbio();
   2760 	rf_CopybackReconstructedData(raidPtr);
   2761 	splx(s);
   2762 	raidPtr->copyback_in_progress = 0;
   2763 
   2764 	/* That's all... */
   2765 	kthread_exit(0);	/* does not return */
   2766 }
   2767 
   2768 
   2769 void
   2770 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2771 {
   2772 	int s;
   2773 	RF_Raid_t *raidPtr;
   2774 
   2775 	s = splbio();
   2776 	raidPtr = req->raidPtr;
   2777 	raidPtr->recon_in_progress = 1;
   2778 	rf_ReconstructInPlace(raidPtr, req->col);
   2779 	RF_Free(req, sizeof(*req));
   2780 	raidPtr->recon_in_progress = 0;
   2781 	splx(s);
   2782 
   2783 	/* That's all... */
   2784 	kthread_exit(0);	/* does not return */
   2785 }
   2786 
   2787 static RF_AutoConfig_t *
   2788 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2789     const char *cname, RF_SectorCount_t size)
   2790 {
   2791 	int good_one = 0;
   2792 	RF_ComponentLabel_t *clabel;
   2793 	RF_AutoConfig_t *ac;
   2794 
   2795 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2796 	if (clabel == NULL) {
   2797 oomem:
   2798 		    while(ac_list) {
   2799 			    ac = ac_list;
   2800 			    if (ac->clabel)
   2801 				    free(ac->clabel, M_RAIDFRAME);
   2802 			    ac_list = ac_list->next;
   2803 			    free(ac, M_RAIDFRAME);
   2804 		    }
   2805 		    printf("RAID auto config: out of memory!\n");
   2806 		    return NULL; /* XXX probably should panic? */
   2807 	}
   2808 
   2809 	if (!raidread_component_label(dev, vp, clabel)) {
   2810 		    /* Got the label.  Does it look reasonable? */
   2811 		    if (rf_reasonable_label(clabel) &&
   2812 			(clabel->partitionSize <= size)) {
   2813 #ifdef DEBUG
   2814 			    printf("Component on: %s: %llu\n",
   2815 				cname, (unsigned long long)size);
   2816 			    rf_print_component_label(clabel);
   2817 #endif
   2818 			    /* if it's reasonable, add it, else ignore it. */
   2819 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2820 				M_NOWAIT);
   2821 			    if (ac == NULL) {
   2822 				    free(clabel, M_RAIDFRAME);
   2823 				    goto oomem;
   2824 			    }
   2825 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2826 			    ac->dev = dev;
   2827 			    ac->vp = vp;
   2828 			    ac->clabel = clabel;
   2829 			    ac->next = ac_list;
   2830 			    ac_list = ac;
   2831 			    good_one = 1;
   2832 		    }
   2833 	}
   2834 	if (!good_one) {
   2835 		/* cleanup */
   2836 		free(clabel, M_RAIDFRAME);
   2837 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2838 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2839 		vput(vp);
   2840 	}
   2841 	return ac_list;
   2842 }
   2843 
   2844 RF_AutoConfig_t *
   2845 rf_find_raid_components()
   2846 {
   2847 	struct vnode *vp;
   2848 	struct disklabel label;
   2849 	struct device *dv;
   2850 	dev_t dev;
   2851 	int bmajor, bminor, wedge;
   2852 	int error;
   2853 	int i;
   2854 	RF_AutoConfig_t *ac_list;
   2855 
   2856 
   2857 	/* initialize the AutoConfig list */
   2858 	ac_list = NULL;
   2859 
   2860 	/* we begin by trolling through *all* the devices on the system */
   2861 
   2862 	for (dv = alldevs.tqh_first; dv != NULL;
   2863 	     dv = dv->dv_list.tqe_next) {
   2864 
   2865 		/* we are only interested in disks... */
   2866 		if (device_class(dv) != DV_DISK)
   2867 			continue;
   2868 
   2869 		/* we don't care about floppies... */
   2870 		if (device_is_a(dv, "fd")) {
   2871 			continue;
   2872 		}
   2873 
   2874 		/* we don't care about CD's... */
   2875 		if (device_is_a(dv, "cd")) {
   2876 			continue;
   2877 		}
   2878 
   2879 		/* hdfd is the Atari/Hades floppy driver */
   2880 		if (device_is_a(dv, "hdfd")) {
   2881 			continue;
   2882 		}
   2883 
   2884 		/* fdisa is the Atari/Milan floppy driver */
   2885 		if (device_is_a(dv, "fdisa")) {
   2886 			continue;
   2887 		}
   2888 
   2889 		/* need to find the device_name_to_block_device_major stuff */
   2890 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2891 
   2892 		/* get a vnode for the raw partition of this disk */
   2893 
   2894 		wedge = device_is_a(dv, "dk");
   2895 		bminor = minor(device_unit(dv));
   2896 		dev = wedge ? makedev(bmajor, bminor) :
   2897 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2898 		if (bdevvp(dev, &vp))
   2899 			panic("RAID can't alloc vnode");
   2900 
   2901 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2902 
   2903 		if (error) {
   2904 			/* "Who cares."  Continue looking
   2905 			   for something that exists*/
   2906 			vput(vp);
   2907 			continue;
   2908 		}
   2909 
   2910 		if (wedge) {
   2911 			struct dkwedge_info dkw;
   2912 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2913 			    NOCRED, 0);
   2914 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2915 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2916 			vput(vp);
   2917 			if (error) {
   2918 				printf("RAIDframe: can't get wedge info for "
   2919 				    "dev %s (%d)\n", dv->dv_xname, error);
   2920 				continue;
   2921 			}
   2922 
   2923 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
   2924 				continue;
   2925 
   2926 			ac_list = rf_get_component(ac_list, dev, vp,
   2927 			    dv->dv_xname, dkw.dkw_size);
   2928 			continue;
   2929 		}
   2930 
   2931 		/* Ok, the disk exists.  Go get the disklabel. */
   2932 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2933 		if (error) {
   2934 			/*
   2935 			 * XXX can't happen - open() would
   2936 			 * have errored out (or faked up one)
   2937 			 */
   2938 			if (error != ENOTTY)
   2939 				printf("RAIDframe: can't get label for dev "
   2940 				    "%s (%d)\n", dv->dv_xname, error);
   2941 		}
   2942 
   2943 		/* don't need this any more.  We'll allocate it again
   2944 		   a little later if we really do... */
   2945 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2946 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2947 		vput(vp);
   2948 
   2949 		if (error)
   2950 			continue;
   2951 
   2952 		for (i = 0; i < label.d_npartitions; i++) {
   2953 			char cname[sizeof(ac_list->devname)];
   2954 
   2955 			/* We only support partitions marked as RAID */
   2956 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2957 				continue;
   2958 
   2959 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2960 			if (bdevvp(dev, &vp))
   2961 				panic("RAID can't alloc vnode");
   2962 
   2963 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2964 			if (error) {
   2965 				/* Whatever... */
   2966 				vput(vp);
   2967 				continue;
   2968 			}
   2969 			snprintf(cname, sizeof(cname), "%s%c",
   2970 			    dv->dv_xname, 'a' + i);
   2971 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2972 				label.d_partitions[i].p_size);
   2973 		}
   2974 	}
   2975 	return ac_list;
   2976 }
   2977 
   2978 
   2979 static int
   2980 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2981 {
   2982 
   2983 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2984 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2985 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2986 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2987 	    clabel->row >=0 &&
   2988 	    clabel->column >= 0 &&
   2989 	    clabel->num_rows > 0 &&
   2990 	    clabel->num_columns > 0 &&
   2991 	    clabel->row < clabel->num_rows &&
   2992 	    clabel->column < clabel->num_columns &&
   2993 	    clabel->blockSize > 0 &&
   2994 	    clabel->numBlocks > 0) {
   2995 		/* label looks reasonable enough... */
   2996 		return(1);
   2997 	}
   2998 	return(0);
   2999 }
   3000 
   3001 
   3002 #ifdef DEBUG
   3003 void
   3004 rf_print_component_label(RF_ComponentLabel_t *clabel)
   3005 {
   3006 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   3007 	       clabel->row, clabel->column,
   3008 	       clabel->num_rows, clabel->num_columns);
   3009 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   3010 	       clabel->version, clabel->serial_number,
   3011 	       clabel->mod_counter);
   3012 	printf("   Clean: %s Status: %d\n",
   3013 	       clabel->clean ? "Yes" : "No", clabel->status );
   3014 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   3015 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   3016 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   3017 	       (char) clabel->parityConfig, clabel->blockSize,
   3018 	       clabel->numBlocks);
   3019 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   3020 	printf("   Contains root partition: %s\n",
   3021 	       clabel->root_partition ? "Yes" : "No" );
   3022 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   3023 #if 0
   3024 	   printf("   Config order: %d\n", clabel->config_order);
   3025 #endif
   3026 
   3027 }
   3028 #endif
   3029 
   3030 RF_ConfigSet_t *
   3031 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   3032 {
   3033 	RF_AutoConfig_t *ac;
   3034 	RF_ConfigSet_t *config_sets;
   3035 	RF_ConfigSet_t *cset;
   3036 	RF_AutoConfig_t *ac_next;
   3037 
   3038 
   3039 	config_sets = NULL;
   3040 
   3041 	/* Go through the AutoConfig list, and figure out which components
   3042 	   belong to what sets.  */
   3043 	ac = ac_list;
   3044 	while(ac!=NULL) {
   3045 		/* we're going to putz with ac->next, so save it here
   3046 		   for use at the end of the loop */
   3047 		ac_next = ac->next;
   3048 
   3049 		if (config_sets == NULL) {
   3050 			/* will need at least this one... */
   3051 			config_sets = (RF_ConfigSet_t *)
   3052 				malloc(sizeof(RF_ConfigSet_t),
   3053 				       M_RAIDFRAME, M_NOWAIT);
   3054 			if (config_sets == NULL) {
   3055 				panic("rf_create_auto_sets: No memory!");
   3056 			}
   3057 			/* this one is easy :) */
   3058 			config_sets->ac = ac;
   3059 			config_sets->next = NULL;
   3060 			config_sets->rootable = 0;
   3061 			ac->next = NULL;
   3062 		} else {
   3063 			/* which set does this component fit into? */
   3064 			cset = config_sets;
   3065 			while(cset!=NULL) {
   3066 				if (rf_does_it_fit(cset, ac)) {
   3067 					/* looks like it matches... */
   3068 					ac->next = cset->ac;
   3069 					cset->ac = ac;
   3070 					break;
   3071 				}
   3072 				cset = cset->next;
   3073 			}
   3074 			if (cset==NULL) {
   3075 				/* didn't find a match above... new set..*/
   3076 				cset = (RF_ConfigSet_t *)
   3077 					malloc(sizeof(RF_ConfigSet_t),
   3078 					       M_RAIDFRAME, M_NOWAIT);
   3079 				if (cset == NULL) {
   3080 					panic("rf_create_auto_sets: No memory!");
   3081 				}
   3082 				cset->ac = ac;
   3083 				ac->next = NULL;
   3084 				cset->next = config_sets;
   3085 				cset->rootable = 0;
   3086 				config_sets = cset;
   3087 			}
   3088 		}
   3089 		ac = ac_next;
   3090 	}
   3091 
   3092 
   3093 	return(config_sets);
   3094 }
   3095 
   3096 static int
   3097 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   3098 {
   3099 	RF_ComponentLabel_t *clabel1, *clabel2;
   3100 
   3101 	/* If this one matches the *first* one in the set, that's good
   3102 	   enough, since the other members of the set would have been
   3103 	   through here too... */
   3104 	/* note that we are not checking partitionSize here..
   3105 
   3106 	   Note that we are also not checking the mod_counters here.
   3107 	   If everything else matches execpt the mod_counter, that's
   3108 	   good enough for this test.  We will deal with the mod_counters
   3109 	   a little later in the autoconfiguration process.
   3110 
   3111 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   3112 
   3113 	   The reason we don't check for this is that failed disks
   3114 	   will have lower modification counts.  If those disks are
   3115 	   not added to the set they used to belong to, then they will
   3116 	   form their own set, which may result in 2 different sets,
   3117 	   for example, competing to be configured at raid0, and
   3118 	   perhaps competing to be the root filesystem set.  If the
   3119 	   wrong ones get configured, or both attempt to become /,
   3120 	   weird behaviour and or serious lossage will occur.  Thus we
   3121 	   need to bring them into the fold here, and kick them out at
   3122 	   a later point.
   3123 
   3124 	*/
   3125 
   3126 	clabel1 = cset->ac->clabel;
   3127 	clabel2 = ac->clabel;
   3128 	if ((clabel1->version == clabel2->version) &&
   3129 	    (clabel1->serial_number == clabel2->serial_number) &&
   3130 	    (clabel1->num_rows == clabel2->num_rows) &&
   3131 	    (clabel1->num_columns == clabel2->num_columns) &&
   3132 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3133 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3134 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3135 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3136 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3137 	    (clabel1->blockSize == clabel2->blockSize) &&
   3138 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3139 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3140 	    (clabel1->root_partition == clabel2->root_partition) &&
   3141 	    (clabel1->last_unit == clabel2->last_unit) &&
   3142 	    (clabel1->config_order == clabel2->config_order)) {
   3143 		/* if it get's here, it almost *has* to be a match */
   3144 	} else {
   3145 		/* it's not consistent with somebody in the set..
   3146 		   punt */
   3147 		return(0);
   3148 	}
   3149 	/* all was fine.. it must fit... */
   3150 	return(1);
   3151 }
   3152 
   3153 int
   3154 rf_have_enough_components(RF_ConfigSet_t *cset)
   3155 {
   3156 	RF_AutoConfig_t *ac;
   3157 	RF_AutoConfig_t *auto_config;
   3158 	RF_ComponentLabel_t *clabel;
   3159 	int c;
   3160 	int num_cols;
   3161 	int num_missing;
   3162 	int mod_counter;
   3163 	int mod_counter_found;
   3164 	int even_pair_failed;
   3165 	char parity_type;
   3166 
   3167 
   3168 	/* check to see that we have enough 'live' components
   3169 	   of this set.  If so, we can configure it if necessary */
   3170 
   3171 	num_cols = cset->ac->clabel->num_columns;
   3172 	parity_type = cset->ac->clabel->parityConfig;
   3173 
   3174 	/* XXX Check for duplicate components!?!?!? */
   3175 
   3176 	/* Determine what the mod_counter is supposed to be for this set. */
   3177 
   3178 	mod_counter_found = 0;
   3179 	mod_counter = 0;
   3180 	ac = cset->ac;
   3181 	while(ac!=NULL) {
   3182 		if (mod_counter_found==0) {
   3183 			mod_counter = ac->clabel->mod_counter;
   3184 			mod_counter_found = 1;
   3185 		} else {
   3186 			if (ac->clabel->mod_counter > mod_counter) {
   3187 				mod_counter = ac->clabel->mod_counter;
   3188 			}
   3189 		}
   3190 		ac = ac->next;
   3191 	}
   3192 
   3193 	num_missing = 0;
   3194 	auto_config = cset->ac;
   3195 
   3196 	even_pair_failed = 0;
   3197 	for(c=0; c<num_cols; c++) {
   3198 		ac = auto_config;
   3199 		while(ac!=NULL) {
   3200 			if ((ac->clabel->column == c) &&
   3201 			    (ac->clabel->mod_counter == mod_counter)) {
   3202 				/* it's this one... */
   3203 #ifdef DEBUG
   3204 				printf("Found: %s at %d\n",
   3205 				       ac->devname,c);
   3206 #endif
   3207 				break;
   3208 			}
   3209 			ac=ac->next;
   3210 		}
   3211 		if (ac==NULL) {
   3212 				/* Didn't find one here! */
   3213 				/* special case for RAID 1, especially
   3214 				   where there are more than 2
   3215 				   components (where RAIDframe treats
   3216 				   things a little differently :( ) */
   3217 			if (parity_type == '1') {
   3218 				if (c%2 == 0) { /* even component */
   3219 					even_pair_failed = 1;
   3220 				} else { /* odd component.  If
   3221 					    we're failed, and
   3222 					    so is the even
   3223 					    component, it's
   3224 					    "Good Night, Charlie" */
   3225 					if (even_pair_failed == 1) {
   3226 						return(0);
   3227 					}
   3228 				}
   3229 			} else {
   3230 				/* normal accounting */
   3231 				num_missing++;
   3232 			}
   3233 		}
   3234 		if ((parity_type == '1') && (c%2 == 1)) {
   3235 				/* Just did an even component, and we didn't
   3236 				   bail.. reset the even_pair_failed flag,
   3237 				   and go on to the next component.... */
   3238 			even_pair_failed = 0;
   3239 		}
   3240 	}
   3241 
   3242 	clabel = cset->ac->clabel;
   3243 
   3244 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3245 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3246 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3247 		/* XXX this needs to be made *much* more general */
   3248 		/* Too many failures */
   3249 		return(0);
   3250 	}
   3251 	/* otherwise, all is well, and we've got enough to take a kick
   3252 	   at autoconfiguring this set */
   3253 	return(1);
   3254 }
   3255 
   3256 void
   3257 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3258 			RF_Raid_t *raidPtr)
   3259 {
   3260 	RF_ComponentLabel_t *clabel;
   3261 	int i;
   3262 
   3263 	clabel = ac->clabel;
   3264 
   3265 	/* 1. Fill in the common stuff */
   3266 	config->numRow = clabel->num_rows = 1;
   3267 	config->numCol = clabel->num_columns;
   3268 	config->numSpare = 0; /* XXX should this be set here? */
   3269 	config->sectPerSU = clabel->sectPerSU;
   3270 	config->SUsPerPU = clabel->SUsPerPU;
   3271 	config->SUsPerRU = clabel->SUsPerRU;
   3272 	config->parityConfig = clabel->parityConfig;
   3273 	/* XXX... */
   3274 	strcpy(config->diskQueueType,"fifo");
   3275 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3276 	config->layoutSpecificSize = 0; /* XXX ?? */
   3277 
   3278 	while(ac!=NULL) {
   3279 		/* row/col values will be in range due to the checks
   3280 		   in reasonable_label() */
   3281 		strcpy(config->devnames[0][ac->clabel->column],
   3282 		       ac->devname);
   3283 		ac = ac->next;
   3284 	}
   3285 
   3286 	for(i=0;i<RF_MAXDBGV;i++) {
   3287 		config->debugVars[i][0] = 0;
   3288 	}
   3289 }
   3290 
   3291 int
   3292 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3293 {
   3294 	RF_ComponentLabel_t clabel;
   3295 	struct vnode *vp;
   3296 	dev_t dev;
   3297 	int column;
   3298 	int sparecol;
   3299 
   3300 	raidPtr->autoconfigure = new_value;
   3301 
   3302 	for(column=0; column<raidPtr->numCol; column++) {
   3303 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3304 			dev = raidPtr->Disks[column].dev;
   3305 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3306 			raidread_component_label(dev, vp, &clabel);
   3307 			clabel.autoconfigure = new_value;
   3308 			raidwrite_component_label(dev, vp, &clabel);
   3309 		}
   3310 	}
   3311 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3312 		sparecol = raidPtr->numCol + column;
   3313 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3314 			dev = raidPtr->Disks[sparecol].dev;
   3315 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3316 			raidread_component_label(dev, vp, &clabel);
   3317 			clabel.autoconfigure = new_value;
   3318 			raidwrite_component_label(dev, vp, &clabel);
   3319 		}
   3320 	}
   3321 	return(new_value);
   3322 }
   3323 
   3324 int
   3325 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3326 {
   3327 	RF_ComponentLabel_t clabel;
   3328 	struct vnode *vp;
   3329 	dev_t dev;
   3330 	int column;
   3331 	int sparecol;
   3332 
   3333 	raidPtr->root_partition = new_value;
   3334 	for(column=0; column<raidPtr->numCol; column++) {
   3335 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3336 			dev = raidPtr->Disks[column].dev;
   3337 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3338 			raidread_component_label(dev, vp, &clabel);
   3339 			clabel.root_partition = new_value;
   3340 			raidwrite_component_label(dev, vp, &clabel);
   3341 		}
   3342 	}
   3343 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3344 		sparecol = raidPtr->numCol + column;
   3345 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3346 			dev = raidPtr->Disks[sparecol].dev;
   3347 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3348 			raidread_component_label(dev, vp, &clabel);
   3349 			clabel.root_partition = new_value;
   3350 			raidwrite_component_label(dev, vp, &clabel);
   3351 		}
   3352 	}
   3353 	return(new_value);
   3354 }
   3355 
   3356 void
   3357 rf_release_all_vps(RF_ConfigSet_t *cset)
   3358 {
   3359 	RF_AutoConfig_t *ac;
   3360 
   3361 	ac = cset->ac;
   3362 	while(ac!=NULL) {
   3363 		/* Close the vp, and give it back */
   3364 		if (ac->vp) {
   3365 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3366 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3367 			vput(ac->vp);
   3368 			ac->vp = NULL;
   3369 		}
   3370 		ac = ac->next;
   3371 	}
   3372 }
   3373 
   3374 
   3375 void
   3376 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3377 {
   3378 	RF_AutoConfig_t *ac;
   3379 	RF_AutoConfig_t *next_ac;
   3380 
   3381 	ac = cset->ac;
   3382 	while(ac!=NULL) {
   3383 		next_ac = ac->next;
   3384 		/* nuke the label */
   3385 		free(ac->clabel, M_RAIDFRAME);
   3386 		/* cleanup the config structure */
   3387 		free(ac, M_RAIDFRAME);
   3388 		/* "next.." */
   3389 		ac = next_ac;
   3390 	}
   3391 	/* and, finally, nuke the config set */
   3392 	free(cset, M_RAIDFRAME);
   3393 }
   3394 
   3395 
   3396 void
   3397 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3398 {
   3399 	/* current version number */
   3400 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3401 	clabel->serial_number = raidPtr->serial_number;
   3402 	clabel->mod_counter = raidPtr->mod_counter;
   3403 	clabel->num_rows = 1;
   3404 	clabel->num_columns = raidPtr->numCol;
   3405 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3406 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3407 
   3408 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3409 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3410 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3411 
   3412 	clabel->blockSize = raidPtr->bytesPerSector;
   3413 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3414 
   3415 	/* XXX not portable */
   3416 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3417 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3418 	clabel->autoconfigure = raidPtr->autoconfigure;
   3419 	clabel->root_partition = raidPtr->root_partition;
   3420 	clabel->last_unit = raidPtr->raidid;
   3421 	clabel->config_order = raidPtr->config_order;
   3422 }
   3423 
   3424 int
   3425 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3426 {
   3427 	RF_Raid_t *raidPtr;
   3428 	RF_Config_t *config;
   3429 	int raidID;
   3430 	int retcode;
   3431 
   3432 #ifdef DEBUG
   3433 	printf("RAID autoconfigure\n");
   3434 #endif
   3435 
   3436 	retcode = 0;
   3437 	*unit = -1;
   3438 
   3439 	/* 1. Create a config structure */
   3440 
   3441 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3442 				       M_RAIDFRAME,
   3443 				       M_NOWAIT);
   3444 	if (config==NULL) {
   3445 		printf("Out of mem!?!?\n");
   3446 				/* XXX do something more intelligent here. */
   3447 		return(1);
   3448 	}
   3449 
   3450 	memset(config, 0, sizeof(RF_Config_t));
   3451 
   3452 	/*
   3453 	   2. Figure out what RAID ID this one is supposed to live at
   3454 	   See if we can get the same RAID dev that it was configured
   3455 	   on last time..
   3456 	*/
   3457 
   3458 	raidID = cset->ac->clabel->last_unit;
   3459 	if ((raidID < 0) || (raidID >= numraid)) {
   3460 		/* let's not wander off into lala land. */
   3461 		raidID = numraid - 1;
   3462 	}
   3463 	if (raidPtrs[raidID]->valid != 0) {
   3464 
   3465 		/*
   3466 		   Nope... Go looking for an alternative...
   3467 		   Start high so we don't immediately use raid0 if that's
   3468 		   not taken.
   3469 		*/
   3470 
   3471 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3472 			if (raidPtrs[raidID]->valid == 0) {
   3473 				/* can use this one! */
   3474 				break;
   3475 			}
   3476 		}
   3477 	}
   3478 
   3479 	if (raidID < 0) {
   3480 		/* punt... */
   3481 		printf("Unable to auto configure this set!\n");
   3482 		printf("(Out of RAID devs!)\n");
   3483 		free(config, M_RAIDFRAME);
   3484 		return(1);
   3485 	}
   3486 
   3487 #ifdef DEBUG
   3488 	printf("Configuring raid%d:\n",raidID);
   3489 #endif
   3490 
   3491 	raidPtr = raidPtrs[raidID];
   3492 
   3493 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3494 	raidPtr->raidid = raidID;
   3495 	raidPtr->openings = RAIDOUTSTANDING;
   3496 
   3497 	/* 3. Build the configuration structure */
   3498 	rf_create_configuration(cset->ac, config, raidPtr);
   3499 
   3500 	/* 4. Do the configuration */
   3501 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3502 
   3503 	if (retcode == 0) {
   3504 
   3505 		raidinit(raidPtrs[raidID]);
   3506 
   3507 		rf_markalldirty(raidPtrs[raidID]);
   3508 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3509 		if (cset->ac->clabel->root_partition==1) {
   3510 			/* everything configured just fine.  Make a note
   3511 			   that this set is eligible to be root. */
   3512 			cset->rootable = 1;
   3513 			/* XXX do this here? */
   3514 			raidPtrs[raidID]->root_partition = 1;
   3515 		}
   3516 	}
   3517 
   3518 	/* 5. Cleanup */
   3519 	free(config, M_RAIDFRAME);
   3520 
   3521 	*unit = raidID;
   3522 	return(retcode);
   3523 }
   3524 
   3525 void
   3526 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3527 {
   3528 	struct buf *bp;
   3529 
   3530 	bp = (struct buf *)desc->bp;
   3531 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3532 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3533 }
   3534 
   3535 void
   3536 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3537 	     size_t xmin, size_t xmax)
   3538 {
   3539 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3540 	pool_sethiwat(p, xmax);
   3541 	pool_prime(p, xmin);
   3542 	pool_setlowat(p, xmin);
   3543 }
   3544 
   3545 /*
   3546  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3547  * if there is IO pending and if that IO could possibly be done for a
   3548  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3549  * otherwise.
   3550  *
   3551  */
   3552 
   3553 int
   3554 rf_buf_queue_check(int raidid)
   3555 {
   3556 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3557 	    raidPtrs[raidid]->openings > 0) {
   3558 		/* there is work to do */
   3559 		return 0;
   3560 	}
   3561 	/* default is nothing to do */
   3562 	return 1;
   3563 }
   3564 
   3565 int
   3566 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3567 {
   3568 	struct partinfo dpart;
   3569 	struct dkwedge_info dkw;
   3570 	int error;
   3571 
   3572 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
   3573 	if (error == 0) {
   3574 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3575 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3576 		diskPtr->partitionSize = dpart.part->p_size;
   3577 		return 0;
   3578 	}
   3579 
   3580 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
   3581 	if (error == 0) {
   3582 		diskPtr->blockSize = 512;	/* XXX */
   3583 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3584 		diskPtr->partitionSize = dkw.dkw_size;
   3585 		return 0;
   3586 	}
   3587 	return error;
   3588 }
   3589 
   3590 static int
   3591 raid_match(struct device *self, struct cfdata *cfdata,
   3592     void *aux)
   3593 {
   3594 	return 1;
   3595 }
   3596 
   3597 static void
   3598 raid_attach(struct device *parent, struct device *self,
   3599     void *aux)
   3600 {
   3601 
   3602 }
   3603 
   3604 
   3605 static int
   3606 raid_detach(struct device *self, int flags)
   3607 {
   3608 	struct raid_softc *rs = (struct raid_softc *)self;
   3609 
   3610 	if (rs->sc_flags & RAIDF_INITED)
   3611 		return EBUSY;
   3612 
   3613 	return 0;
   3614 }
   3615 
   3616 
   3617