rf_netbsdkintf.c revision 1.226.2.8 1 /* $NetBSD: rf_netbsdkintf.c,v 1.226.2.8 2007/10/09 13:42:01 ad Exp $ */
2 /*-
3 * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Greg Oster; Jason R. Thorpe.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Copyright (c) 1990, 1993
40 * The Regents of the University of California. All rights reserved.
41 *
42 * This code is derived from software contributed to Berkeley by
43 * the Systems Programming Group of the University of Utah Computer
44 * Science Department.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * from: Utah $Hdr: cd.c 1.6 90/11/28$
71 *
72 * @(#)cd.c 8.2 (Berkeley) 11/16/93
73 */
74
75 /*
76 * Copyright (c) 1988 University of Utah.
77 *
78 * This code is derived from software contributed to Berkeley by
79 * the Systems Programming Group of the University of Utah Computer
80 * Science Department.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the University of
93 * California, Berkeley and its contributors.
94 * 4. Neither the name of the University nor the names of its contributors
95 * may be used to endorse or promote products derived from this software
96 * without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * from: Utah $Hdr: cd.c 1.6 90/11/28$
111 *
112 * @(#)cd.c 8.2 (Berkeley) 11/16/93
113 */
114
115 /*
116 * Copyright (c) 1995 Carnegie-Mellon University.
117 * All rights reserved.
118 *
119 * Authors: Mark Holland, Jim Zelenka
120 *
121 * Permission to use, copy, modify and distribute this software and
122 * its documentation is hereby granted, provided that both the copyright
123 * notice and this permission notice appear in all copies of the
124 * software, derivative works or modified versions, and any portions
125 * thereof, and that both notices appear in supporting documentation.
126 *
127 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
128 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
129 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
130 *
131 * Carnegie Mellon requests users of this software to return to
132 *
133 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
134 * School of Computer Science
135 * Carnegie Mellon University
136 * Pittsburgh PA 15213-3890
137 *
138 * any improvements or extensions that they make and grant Carnegie the
139 * rights to redistribute these changes.
140 */
141
142 /***********************************************************
143 *
144 * rf_kintf.c -- the kernel interface routines for RAIDframe
145 *
146 ***********************************************************/
147
148 #include <sys/cdefs.h>
149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.226.2.8 2007/10/09 13:42:01 ad Exp $");
150
151 #include <sys/param.h>
152 #include <sys/errno.h>
153 #include <sys/pool.h>
154 #include <sys/proc.h>
155 #include <sys/queue.h>
156 #include <sys/disk.h>
157 #include <sys/device.h>
158 #include <sys/stat.h>
159 #include <sys/ioctl.h>
160 #include <sys/fcntl.h>
161 #include <sys/systm.h>
162 #include <sys/namei.h>
163 #include <sys/vnode.h>
164 #include <sys/disklabel.h>
165 #include <sys/conf.h>
166 #include <sys/lock.h>
167 #include <sys/buf.h>
168 #include <sys/bufq.h>
169 #include <sys/user.h>
170 #include <sys/reboot.h>
171 #include <sys/kauth.h>
172
173 #include <dev/raidframe/raidframevar.h>
174 #include <dev/raidframe/raidframeio.h>
175 #include "raid.h"
176 #include "opt_raid_autoconfig.h"
177 #include "rf_raid.h"
178 #include "rf_copyback.h"
179 #include "rf_dag.h"
180 #include "rf_dagflags.h"
181 #include "rf_desc.h"
182 #include "rf_diskqueue.h"
183 #include "rf_etimer.h"
184 #include "rf_general.h"
185 #include "rf_kintf.h"
186 #include "rf_options.h"
187 #include "rf_driver.h"
188 #include "rf_parityscan.h"
189 #include "rf_threadstuff.h"
190
191 #ifdef DEBUG
192 int rf_kdebug_level = 0;
193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
194 #else /* DEBUG */
195 #define db1_printf(a) { }
196 #endif /* DEBUG */
197
198 static RF_Raid_t **raidPtrs; /* global raid device descriptors */
199
200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
201
202 static RF_SparetWait_t *rf_sparet_wait_queue; /* requests to install a
203 * spare table */
204 static RF_SparetWait_t *rf_sparet_resp_queue; /* responses from
205 * installation process */
206
207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
208
209 /* prototypes */
210 static void KernelWakeupFunc(struct buf *);
211 static void InitBP(struct buf *, struct vnode *, unsigned,
212 dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
213 void *, int, struct proc *);
214 static void raidinit(RF_Raid_t *);
215
216 void raidattach(int);
217 static int raid_match(struct device *, struct cfdata *, void *);
218 static void raid_attach(struct device *, struct device *, void *);
219 static int raid_detach(struct device *, int);
220
221 dev_type_open(raidopen);
222 dev_type_close(raidclose);
223 dev_type_read(raidread);
224 dev_type_write(raidwrite);
225 dev_type_ioctl(raidioctl);
226 dev_type_strategy(raidstrategy);
227 dev_type_dump(raiddump);
228 dev_type_size(raidsize);
229
230 const struct bdevsw raid_bdevsw = {
231 raidopen, raidclose, raidstrategy, raidioctl,
232 raiddump, raidsize, D_DISK
233 };
234
235 const struct cdevsw raid_cdevsw = {
236 raidopen, raidclose, raidread, raidwrite, raidioctl,
237 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
238 };
239
240 /* XXX Not sure if the following should be replacing the raidPtrs above,
241 or if it should be used in conjunction with that...
242 */
243
244 struct raid_softc {
245 struct device *sc_dev;
246 int sc_flags; /* flags */
247 int sc_cflags; /* configuration flags */
248 uint64_t sc_size; /* size of the raid device */
249 char sc_xname[20]; /* XXX external name */
250 struct disk sc_dkdev; /* generic disk device info */
251 struct bufq_state *buf_queue; /* used for the device queue */
252 };
253 /* sc_flags */
254 #define RAIDF_INITED 0x01 /* unit has been initialized */
255 #define RAIDF_WLABEL 0x02 /* label area is writable */
256 #define RAIDF_LABELLING 0x04 /* unit is currently being labelled */
257 #define RAIDF_WANTED 0x40 /* someone is waiting to obtain a lock */
258 #define RAIDF_LOCKED 0x80 /* unit is locked */
259
260 #define raidunit(x) DISKUNIT(x)
261 int numraid = 0;
262
263 extern struct cfdriver raid_cd;
264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
265 raid_match, raid_attach, raid_detach, NULL);
266
267 /*
268 * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
269 * Be aware that large numbers can allow the driver to consume a lot of
270 * kernel memory, especially on writes, and in degraded mode reads.
271 *
272 * For example: with a stripe width of 64 blocks (32k) and 5 disks,
273 * a single 64K write will typically require 64K for the old data,
274 * 64K for the old parity, and 64K for the new parity, for a total
275 * of 192K (if the parity buffer is not re-used immediately).
276 * Even it if is used immediately, that's still 128K, which when multiplied
277 * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
278 *
279 * Now in degraded mode, for example, a 64K read on the above setup may
280 * require data reconstruction, which will require *all* of the 4 remaining
281 * disks to participate -- 4 * 32K/disk == 128K again.
282 */
283
284 #ifndef RAIDOUTSTANDING
285 #define RAIDOUTSTANDING 6
286 #endif
287
288 #define RAIDLABELDEV(dev) \
289 (MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
290
291 /* declared here, and made public, for the benefit of KVM stuff.. */
292 struct raid_softc *raid_softc;
293
294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
295 struct disklabel *);
296 static void raidgetdisklabel(dev_t);
297 static void raidmakedisklabel(struct raid_softc *);
298
299 static int raidlock(struct raid_softc *);
300 static void raidunlock(struct raid_softc *);
301
302 static void rf_markalldirty(RF_Raid_t *);
303
304 void rf_ReconThread(struct rf_recon_req *);
305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
306 void rf_CopybackThread(RF_Raid_t *raidPtr);
307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
308 int rf_autoconfig(struct device *self);
309 void rf_buildroothack(RF_ConfigSet_t *);
310
311 RF_AutoConfig_t *rf_find_raid_components(void);
312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
314 static int rf_reasonable_label(RF_ComponentLabel_t *);
315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
316 int rf_set_autoconfig(RF_Raid_t *, int);
317 int rf_set_rootpartition(RF_Raid_t *, int);
318 void rf_release_all_vps(RF_ConfigSet_t *);
319 void rf_cleanup_config_set(RF_ConfigSet_t *);
320 int rf_have_enough_components(RF_ConfigSet_t *);
321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
322
323 static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
324 allow autoconfig to take place.
325 Note that this is overridden by having
326 RAID_AUTOCONFIG as an option in the
327 kernel config file. */
328
329 struct RF_Pools_s rf_pools;
330
331 void
332 raidattach(int num)
333 {
334 int raidID;
335 int i, rc;
336
337 #ifdef DEBUG
338 printf("raidattach: Asked for %d units\n", num);
339 #endif
340
341 if (num <= 0) {
342 #ifdef DIAGNOSTIC
343 panic("raidattach: count <= 0");
344 #endif
345 return;
346 }
347 /* This is where all the initialization stuff gets done. */
348
349 numraid = num;
350
351 /* Make some space for requested number of units... */
352
353 RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
354 if (raidPtrs == NULL) {
355 panic("raidPtrs is NULL!!");
356 }
357
358 rf_mutex_init(&rf_sparet_wait_mutex);
359
360 rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
361
362 for (i = 0; i < num; i++)
363 raidPtrs[i] = NULL;
364 rc = rf_BootRaidframe();
365 if (rc == 0)
366 printf("Kernelized RAIDframe activated\n");
367 else
368 panic("Serious error booting RAID!!");
369
370 /* put together some datastructures like the CCD device does.. This
371 * lets us lock the device and what-not when it gets opened. */
372
373 raid_softc = (struct raid_softc *)
374 malloc(num * sizeof(struct raid_softc),
375 M_RAIDFRAME, M_NOWAIT);
376 if (raid_softc == NULL) {
377 printf("WARNING: no memory for RAIDframe driver\n");
378 return;
379 }
380
381 memset(raid_softc, 0, num * sizeof(struct raid_softc));
382
383 for (raidID = 0; raidID < num; raidID++) {
384 bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
385
386 RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
387 (RF_Raid_t *));
388 if (raidPtrs[raidID] == NULL) {
389 printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
390 numraid = raidID;
391 return;
392 }
393 }
394
395 if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
396 printf("config_cfattach_attach failed?\n");
397 }
398
399 #ifdef RAID_AUTOCONFIG
400 raidautoconfig = 1;
401 #endif
402
403 /*
404 * Register a finalizer which will be used to auto-config RAID
405 * sets once all real hardware devices have been found.
406 */
407 if (config_finalize_register(NULL, rf_autoconfig) != 0)
408 printf("WARNING: unable to register RAIDframe finalizer\n");
409 }
410
411 int
412 rf_autoconfig(struct device *self)
413 {
414 RF_AutoConfig_t *ac_list;
415 RF_ConfigSet_t *config_sets;
416 int i;
417
418 if (raidautoconfig == 0)
419 return (0);
420
421 /* XXX This code can only be run once. */
422 raidautoconfig = 0;
423
424 /* 1. locate all RAID components on the system */
425 #ifdef DEBUG
426 printf("Searching for RAID components...\n");
427 #endif
428 ac_list = rf_find_raid_components();
429
430 /* 2. Sort them into their respective sets. */
431 config_sets = rf_create_auto_sets(ac_list);
432
433 /*
434 * 3. Evaluate each set andconfigure the valid ones.
435 * This gets done in rf_buildroothack().
436 */
437 rf_buildroothack(config_sets);
438
439 for (i = 0; i < numraid; i++)
440 if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
441 dkwedge_discover(&raid_softc[i].sc_dkdev);
442
443 return 1;
444 }
445
446 void
447 rf_buildroothack(RF_ConfigSet_t *config_sets)
448 {
449 RF_ConfigSet_t *cset;
450 RF_ConfigSet_t *next_cset;
451 int retcode;
452 int raidID;
453 int rootID;
454 int col;
455 int num_root;
456 char *devname;
457
458 rootID = 0;
459 num_root = 0;
460 cset = config_sets;
461 while(cset != NULL ) {
462 next_cset = cset->next;
463 if (rf_have_enough_components(cset) &&
464 cset->ac->clabel->autoconfigure==1) {
465 retcode = rf_auto_config_set(cset,&raidID);
466 if (!retcode) {
467 #ifdef DEBUG
468 printf("raid%d: configured ok\n", raidID);
469 #endif
470 if (cset->rootable) {
471 rootID = raidID;
472 num_root++;
473 }
474 } else {
475 /* The autoconfig didn't work :( */
476 #ifdef DEBUG
477 printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
478 #endif
479 rf_release_all_vps(cset);
480 }
481 } else {
482 #ifdef DEBUG
483 printf("raid%d: not enough components\n", raidID);
484 #endif
485 /* we're not autoconfiguring this set...
486 release the associated resources */
487 rf_release_all_vps(cset);
488 }
489 /* cleanup */
490 rf_cleanup_config_set(cset);
491 cset = next_cset;
492 }
493
494 /* if the user has specified what the root device should be
495 then we don't touch booted_device or boothowto... */
496
497 if (rootspec != NULL)
498 return;
499
500 /* we found something bootable... */
501
502 if (num_root == 1) {
503 booted_device = raid_softc[rootID].sc_dev;
504 } else if (num_root > 1) {
505
506 /*
507 * Maybe the MD code can help. If it cannot, then
508 * setroot() will discover that we have no
509 * booted_device and will ask the user if nothing was
510 * hardwired in the kernel config file
511 */
512
513 if (booted_device == NULL)
514 cpu_rootconf();
515 if (booted_device == NULL)
516 return;
517
518 num_root = 0;
519 for (raidID = 0; raidID < numraid; raidID++) {
520 if (raidPtrs[raidID]->valid == 0)
521 continue;
522
523 if (raidPtrs[raidID]->root_partition == 0)
524 continue;
525
526 for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
527 devname = raidPtrs[raidID]->Disks[col].devname;
528 devname += sizeof("/dev/") - 1;
529 if (strncmp(devname, booted_device->dv_xname,
530 strlen(booted_device->dv_xname)) != 0)
531 continue;
532 #ifdef DEBUG
533 printf("raid%d includes boot device %s\n",
534 raidID, devname);
535 #endif
536 num_root++;
537 rootID = raidID;
538 }
539 }
540
541 if (num_root == 1) {
542 booted_device = raid_softc[rootID].sc_dev;
543 } else {
544 /* we can't guess.. require the user to answer... */
545 boothowto |= RB_ASKNAME;
546 }
547 }
548 }
549
550
551 int
552 raidsize(dev_t dev)
553 {
554 struct raid_softc *rs;
555 struct disklabel *lp;
556 int part, unit, omask, size;
557
558 unit = raidunit(dev);
559 if (unit >= numraid)
560 return (-1);
561 rs = &raid_softc[unit];
562
563 if ((rs->sc_flags & RAIDF_INITED) == 0)
564 return (-1);
565
566 part = DISKPART(dev);
567 omask = rs->sc_dkdev.dk_openmask & (1 << part);
568 lp = rs->sc_dkdev.dk_label;
569
570 if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
571 return (-1);
572
573 if (lp->d_partitions[part].p_fstype != FS_SWAP)
574 size = -1;
575 else
576 size = lp->d_partitions[part].p_size *
577 (lp->d_secsize / DEV_BSIZE);
578
579 if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
580 return (-1);
581
582 return (size);
583
584 }
585
586 int
587 raiddump(dev_t dev, daddr_t blkno, void *va, size_t size)
588 {
589 int unit = raidunit(dev);
590 struct raid_softc *rs;
591 const struct bdevsw *bdev;
592 struct disklabel *lp;
593 RF_Raid_t *raidPtr;
594 daddr_t offset;
595 int part, c, sparecol, j, scol, dumpto;
596 int error = 0;
597
598 if (unit >= numraid)
599 return (ENXIO);
600
601 rs = &raid_softc[unit];
602 raidPtr = raidPtrs[unit];
603
604 if ((rs->sc_flags & RAIDF_INITED) == 0)
605 return ENXIO;
606
607 /* we only support dumping to RAID 1 sets */
608 if (raidPtr->Layout.numDataCol != 1 ||
609 raidPtr->Layout.numParityCol != 1)
610 return EINVAL;
611
612
613 if ((error = raidlock(rs)) != 0)
614 return error;
615
616 if (size % DEV_BSIZE != 0) {
617 error = EINVAL;
618 goto out;
619 }
620
621 if (blkno + size / DEV_BSIZE > rs->sc_size) {
622 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
623 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
624 size / DEV_BSIZE, rs->sc_size);
625 error = EINVAL;
626 goto out;
627 }
628
629 part = DISKPART(dev);
630 lp = rs->sc_dkdev.dk_label;
631 offset = lp->d_partitions[part].p_offset + RF_PROTECTED_SECTORS;
632
633 /* figure out what device is alive.. */
634
635 /*
636 Look for a component to dump to. The preference for the
637 component to dump to is as follows:
638 1) the master
639 2) a used_spare of the master
640 3) the slave
641 4) a used_spare of the slave
642 */
643
644 dumpto = -1;
645 for (c = 0; c < raidPtr->numCol; c++) {
646 if (raidPtr->Disks[c].status == rf_ds_optimal) {
647 /* this might be the one */
648 dumpto = c;
649 break;
650 }
651 }
652
653 /*
654 At this point we have possibly selected a live master or a
655 live slave. We now check to see if there is a spared
656 master (or a spared slave), if we didn't find a live master
657 or a live slave.
658 */
659
660 for (c = 0; c < raidPtr->numSpare; c++) {
661 sparecol = raidPtr->numCol + c;
662 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
663 /* How about this one? */
664 scol = -1;
665 for(j=0;j<raidPtr->numCol;j++) {
666 if (raidPtr->Disks[j].spareCol == sparecol) {
667 scol = j;
668 break;
669 }
670 }
671 if (scol == 0) {
672 /*
673 We must have found a spared master!
674 We'll take that over anything else
675 found so far. (We couldn't have
676 found a real master before, since
677 this is a used spare, and it's
678 saying that it's replacing the
679 master.) On reboot (with
680 autoconfiguration turned on)
681 sparecol will become the 1st
682 component (component0) of this set.
683 */
684 dumpto = sparecol;
685 break;
686 } else if (scol != -1) {
687 /*
688 Must be a spared slave. We'll dump
689 to that if we havn't found anything
690 else so far.
691 */
692 if (dumpto == -1)
693 dumpto = sparecol;
694 }
695 }
696 }
697
698 if (dumpto == -1) {
699 /* we couldn't find any live components to dump to!?!?
700 */
701 error = EINVAL;
702 goto out;
703 }
704
705 bdev = bdevsw_lookup(raidPtr->Disks[dumpto].dev);
706
707 /*
708 Note that blkno is relative to this particular partition.
709 By adding the offset of this partition in the RAID
710 set, and also adding RF_PROTECTED_SECTORS, we get a
711 value that is relative to the partition used for the
712 underlying component.
713 */
714
715 error = (*bdev->d_dump)(raidPtr->Disks[dumpto].dev,
716 blkno + offset, va, size);
717
718 out:
719 raidunlock(rs);
720
721 return error;
722 }
723 /* ARGSUSED */
724 int
725 raidopen(dev_t dev, int flags, int fmt,
726 struct lwp *l)
727 {
728 int unit = raidunit(dev);
729 struct raid_softc *rs;
730 struct disklabel *lp;
731 int part, pmask;
732 int error = 0;
733
734 if (unit >= numraid)
735 return (ENXIO);
736 rs = &raid_softc[unit];
737
738 if ((error = raidlock(rs)) != 0)
739 return (error);
740 lp = rs->sc_dkdev.dk_label;
741
742 part = DISKPART(dev);
743
744 /*
745 * If there are wedges, and this is not RAW_PART, then we
746 * need to fail.
747 */
748 if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
749 error = EBUSY;
750 goto bad;
751 }
752 pmask = (1 << part);
753
754 if ((rs->sc_flags & RAIDF_INITED) &&
755 (rs->sc_dkdev.dk_openmask == 0))
756 raidgetdisklabel(dev);
757
758 /* make sure that this partition exists */
759
760 if (part != RAW_PART) {
761 if (((rs->sc_flags & RAIDF_INITED) == 0) ||
762 ((part >= lp->d_npartitions) ||
763 (lp->d_partitions[part].p_fstype == FS_UNUSED))) {
764 error = ENXIO;
765 goto bad;
766 }
767 }
768 /* Prevent this unit from being unconfigured while open. */
769 switch (fmt) {
770 case S_IFCHR:
771 rs->sc_dkdev.dk_copenmask |= pmask;
772 break;
773
774 case S_IFBLK:
775 rs->sc_dkdev.dk_bopenmask |= pmask;
776 break;
777 }
778
779 if ((rs->sc_dkdev.dk_openmask == 0) &&
780 ((rs->sc_flags & RAIDF_INITED) != 0)) {
781 /* First one... mark things as dirty... Note that we *MUST*
782 have done a configure before this. I DO NOT WANT TO BE
783 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
784 THAT THEY BELONG TOGETHER!!!!! */
785 /* XXX should check to see if we're only open for reading
786 here... If so, we needn't do this, but then need some
787 other way of keeping track of what's happened.. */
788
789 rf_markalldirty( raidPtrs[unit] );
790 }
791
792
793 rs->sc_dkdev.dk_openmask =
794 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
795
796 bad:
797 raidunlock(rs);
798
799 return (error);
800
801
802 }
803 /* ARGSUSED */
804 int
805 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
806 {
807 int unit = raidunit(dev);
808 struct cfdata *cf;
809 struct raid_softc *rs;
810 int error = 0;
811 int part;
812
813 if (unit >= numraid)
814 return (ENXIO);
815 rs = &raid_softc[unit];
816
817 if ((error = raidlock(rs)) != 0)
818 return (error);
819
820 part = DISKPART(dev);
821
822 /* ...that much closer to allowing unconfiguration... */
823 switch (fmt) {
824 case S_IFCHR:
825 rs->sc_dkdev.dk_copenmask &= ~(1 << part);
826 break;
827
828 case S_IFBLK:
829 rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
830 break;
831 }
832 rs->sc_dkdev.dk_openmask =
833 rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
834
835 if ((rs->sc_dkdev.dk_openmask == 0) &&
836 ((rs->sc_flags & RAIDF_INITED) != 0)) {
837 /* Last one... device is not unconfigured yet.
838 Device shutdown has taken care of setting the
839 clean bits if RAIDF_INITED is not set
840 mark things as clean... */
841
842 rf_update_component_labels(raidPtrs[unit],
843 RF_FINAL_COMPONENT_UPDATE);
844 if (doing_shutdown) {
845 /* last one, and we're going down, so
846 lights out for this RAID set too. */
847 error = rf_Shutdown(raidPtrs[unit]);
848
849 /* It's no longer initialized... */
850 rs->sc_flags &= ~RAIDF_INITED;
851
852 /* detach the device */
853
854 cf = device_cfdata(rs->sc_dev);
855 error = config_detach(rs->sc_dev, DETACH_QUIET);
856 free(cf, M_RAIDFRAME);
857
858 /* Detach the disk. */
859 disk_detach(&rs->sc_dkdev);
860 disk_destroy(&rs->sc_dkdev);
861 }
862 }
863
864 raidunlock(rs);
865 return (0);
866
867 }
868
869 void
870 raidstrategy(struct buf *bp)
871 {
872 int s;
873
874 unsigned int raidID = raidunit(bp->b_dev);
875 RF_Raid_t *raidPtr;
876 struct raid_softc *rs = &raid_softc[raidID];
877 int wlabel;
878
879 if ((rs->sc_flags & RAIDF_INITED) ==0) {
880 bp->b_error = ENXIO;
881 goto done;
882 }
883 if (raidID >= numraid || !raidPtrs[raidID]) {
884 bp->b_error = ENODEV;
885 goto done;
886 }
887 raidPtr = raidPtrs[raidID];
888 if (!raidPtr->valid) {
889 bp->b_error = ENODEV;
890 goto done;
891 }
892 if (bp->b_bcount == 0) {
893 db1_printf(("b_bcount is zero..\n"));
894 goto done;
895 }
896
897 /*
898 * Do bounds checking and adjust transfer. If there's an
899 * error, the bounds check will flag that for us.
900 */
901
902 wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
903 if (DISKPART(bp->b_dev) == RAW_PART) {
904 uint64_t size; /* device size in DEV_BSIZE unit */
905
906 if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
907 size = raidPtr->totalSectors <<
908 (raidPtr->logBytesPerSector - DEV_BSHIFT);
909 } else {
910 size = raidPtr->totalSectors >>
911 (DEV_BSHIFT - raidPtr->logBytesPerSector);
912 }
913 if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
914 goto done;
915 }
916 } else {
917 if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
918 db1_printf(("Bounds check failed!!:%d %d\n",
919 (int) bp->b_blkno, (int) wlabel));
920 goto done;
921 }
922 }
923 s = splbio();
924
925 bp->b_resid = 0;
926
927 /* stuff it onto our queue */
928 BUFQ_PUT(rs->buf_queue, bp);
929
930 /* scheduled the IO to happen at the next convenient time */
931 wakeup(&(raidPtrs[raidID]->iodone));
932
933 splx(s);
934 return;
935
936 done:
937 bp->b_resid = bp->b_bcount;
938 biodone(bp);
939 }
940 /* ARGSUSED */
941 int
942 raidread(dev_t dev, struct uio *uio, int flags)
943 {
944 int unit = raidunit(dev);
945 struct raid_softc *rs;
946
947 if (unit >= numraid)
948 return (ENXIO);
949 rs = &raid_softc[unit];
950
951 if ((rs->sc_flags & RAIDF_INITED) == 0)
952 return (ENXIO);
953
954 return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
955
956 }
957 /* ARGSUSED */
958 int
959 raidwrite(dev_t dev, struct uio *uio, int flags)
960 {
961 int unit = raidunit(dev);
962 struct raid_softc *rs;
963
964 if (unit >= numraid)
965 return (ENXIO);
966 rs = &raid_softc[unit];
967
968 if ((rs->sc_flags & RAIDF_INITED) == 0)
969 return (ENXIO);
970
971 return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
972
973 }
974
975 int
976 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
977 {
978 int unit = raidunit(dev);
979 int error = 0;
980 int part, pmask;
981 struct cfdata *cf;
982 struct raid_softc *rs;
983 RF_Config_t *k_cfg, *u_cfg;
984 RF_Raid_t *raidPtr;
985 RF_RaidDisk_t *diskPtr;
986 RF_AccTotals_t *totals;
987 RF_DeviceConfig_t *d_cfg, **ucfgp;
988 u_char *specific_buf;
989 int retcode = 0;
990 int column;
991 int raidid;
992 struct rf_recon_req *rrcopy, *rr;
993 RF_ComponentLabel_t *clabel;
994 RF_ComponentLabel_t *ci_label;
995 RF_ComponentLabel_t **clabel_ptr;
996 RF_SingleComponent_t *sparePtr,*componentPtr;
997 RF_SingleComponent_t component;
998 RF_ProgressInfo_t progressInfo, **progressInfoPtr;
999 int i, j, d;
1000 #ifdef __HAVE_OLD_DISKLABEL
1001 struct disklabel newlabel;
1002 #endif
1003 struct dkwedge_info *dkw;
1004
1005 if (unit >= numraid)
1006 return (ENXIO);
1007 rs = &raid_softc[unit];
1008 raidPtr = raidPtrs[unit];
1009
1010 db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
1011 (int) DISKPART(dev), (int) unit, (int) cmd));
1012
1013 /* Must be open for writes for these commands... */
1014 switch (cmd) {
1015 #ifdef DIOCGSECTORSIZE
1016 case DIOCGSECTORSIZE:
1017 *(u_int *)data = raidPtr->bytesPerSector;
1018 return 0;
1019 case DIOCGMEDIASIZE:
1020 *(off_t *)data =
1021 (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
1022 return 0;
1023 #endif
1024 case DIOCSDINFO:
1025 case DIOCWDINFO:
1026 #ifdef __HAVE_OLD_DISKLABEL
1027 case ODIOCWDINFO:
1028 case ODIOCSDINFO:
1029 #endif
1030 case DIOCWLABEL:
1031 case DIOCAWEDGE:
1032 case DIOCDWEDGE:
1033 if ((flag & FWRITE) == 0)
1034 return (EBADF);
1035 }
1036
1037 /* Must be initialized for these... */
1038 switch (cmd) {
1039 case DIOCGDINFO:
1040 case DIOCSDINFO:
1041 case DIOCWDINFO:
1042 #ifdef __HAVE_OLD_DISKLABEL
1043 case ODIOCGDINFO:
1044 case ODIOCWDINFO:
1045 case ODIOCSDINFO:
1046 case ODIOCGDEFLABEL:
1047 #endif
1048 case DIOCGPART:
1049 case DIOCWLABEL:
1050 case DIOCGDEFLABEL:
1051 case DIOCAWEDGE:
1052 case DIOCDWEDGE:
1053 case DIOCLWEDGES:
1054 case RAIDFRAME_SHUTDOWN:
1055 case RAIDFRAME_REWRITEPARITY:
1056 case RAIDFRAME_GET_INFO:
1057 case RAIDFRAME_RESET_ACCTOTALS:
1058 case RAIDFRAME_GET_ACCTOTALS:
1059 case RAIDFRAME_KEEP_ACCTOTALS:
1060 case RAIDFRAME_GET_SIZE:
1061 case RAIDFRAME_FAIL_DISK:
1062 case RAIDFRAME_COPYBACK:
1063 case RAIDFRAME_CHECK_RECON_STATUS:
1064 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1065 case RAIDFRAME_GET_COMPONENT_LABEL:
1066 case RAIDFRAME_SET_COMPONENT_LABEL:
1067 case RAIDFRAME_ADD_HOT_SPARE:
1068 case RAIDFRAME_REMOVE_HOT_SPARE:
1069 case RAIDFRAME_INIT_LABELS:
1070 case RAIDFRAME_REBUILD_IN_PLACE:
1071 case RAIDFRAME_CHECK_PARITY:
1072 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1073 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1074 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1075 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1076 case RAIDFRAME_SET_AUTOCONFIG:
1077 case RAIDFRAME_SET_ROOT:
1078 case RAIDFRAME_DELETE_COMPONENT:
1079 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1080 if ((rs->sc_flags & RAIDF_INITED) == 0)
1081 return (ENXIO);
1082 }
1083
1084 switch (cmd) {
1085
1086 /* configure the system */
1087 case RAIDFRAME_CONFIGURE:
1088
1089 if (raidPtr->valid) {
1090 /* There is a valid RAID set running on this unit! */
1091 printf("raid%d: Device already configured!\n",unit);
1092 return(EINVAL);
1093 }
1094
1095 /* copy-in the configuration information */
1096 /* data points to a pointer to the configuration structure */
1097
1098 u_cfg = *((RF_Config_t **) data);
1099 RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
1100 if (k_cfg == NULL) {
1101 return (ENOMEM);
1102 }
1103 retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
1104 if (retcode) {
1105 RF_Free(k_cfg, sizeof(RF_Config_t));
1106 db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
1107 retcode));
1108 return (retcode);
1109 }
1110 /* allocate a buffer for the layout-specific data, and copy it
1111 * in */
1112 if (k_cfg->layoutSpecificSize) {
1113 if (k_cfg->layoutSpecificSize > 10000) {
1114 /* sanity check */
1115 RF_Free(k_cfg, sizeof(RF_Config_t));
1116 return (EINVAL);
1117 }
1118 RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
1119 (u_char *));
1120 if (specific_buf == NULL) {
1121 RF_Free(k_cfg, sizeof(RF_Config_t));
1122 return (ENOMEM);
1123 }
1124 retcode = copyin(k_cfg->layoutSpecific, specific_buf,
1125 k_cfg->layoutSpecificSize);
1126 if (retcode) {
1127 RF_Free(k_cfg, sizeof(RF_Config_t));
1128 RF_Free(specific_buf,
1129 k_cfg->layoutSpecificSize);
1130 db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
1131 retcode));
1132 return (retcode);
1133 }
1134 } else
1135 specific_buf = NULL;
1136 k_cfg->layoutSpecific = specific_buf;
1137
1138 /* should do some kind of sanity check on the configuration.
1139 * Store the sum of all the bytes in the last byte? */
1140
1141 /* configure the system */
1142
1143 /*
1144 * Clear the entire RAID descriptor, just to make sure
1145 * there is no stale data left in the case of a
1146 * reconfiguration
1147 */
1148 memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
1149 raidPtr->raidid = unit;
1150
1151 retcode = rf_Configure(raidPtr, k_cfg, NULL);
1152
1153 if (retcode == 0) {
1154
1155 /* allow this many simultaneous IO's to
1156 this RAID device */
1157 raidPtr->openings = RAIDOUTSTANDING;
1158
1159 raidinit(raidPtr);
1160 rf_markalldirty(raidPtr);
1161 }
1162 /* free the buffers. No return code here. */
1163 if (k_cfg->layoutSpecificSize) {
1164 RF_Free(specific_buf, k_cfg->layoutSpecificSize);
1165 }
1166 RF_Free(k_cfg, sizeof(RF_Config_t));
1167
1168 return (retcode);
1169
1170 /* shutdown the system */
1171 case RAIDFRAME_SHUTDOWN:
1172
1173 if ((error = raidlock(rs)) != 0)
1174 return (error);
1175
1176 /*
1177 * If somebody has a partition mounted, we shouldn't
1178 * shutdown.
1179 */
1180
1181 part = DISKPART(dev);
1182 pmask = (1 << part);
1183 if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
1184 ((rs->sc_dkdev.dk_bopenmask & pmask) &&
1185 (rs->sc_dkdev.dk_copenmask & pmask))) {
1186 raidunlock(rs);
1187 return (EBUSY);
1188 }
1189
1190 retcode = rf_Shutdown(raidPtr);
1191
1192 /* It's no longer initialized... */
1193 rs->sc_flags &= ~RAIDF_INITED;
1194
1195 /* free the pseudo device attach bits */
1196
1197 cf = device_cfdata(rs->sc_dev);
1198 /* XXX this causes us to not return any errors
1199 from the above call to rf_Shutdown() */
1200 retcode = config_detach(rs->sc_dev, DETACH_QUIET);
1201 free(cf, M_RAIDFRAME);
1202
1203 /* Detach the disk. */
1204 disk_detach(&rs->sc_dkdev);
1205 disk_destroy(&rs->sc_dkdev);
1206
1207 raidunlock(rs);
1208
1209 return (retcode);
1210 case RAIDFRAME_GET_COMPONENT_LABEL:
1211 clabel_ptr = (RF_ComponentLabel_t **) data;
1212 /* need to read the component label for the disk indicated
1213 by row,column in clabel */
1214
1215 /* For practice, let's get it directly fromdisk, rather
1216 than from the in-core copy */
1217 RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
1218 (RF_ComponentLabel_t *));
1219 if (clabel == NULL)
1220 return (ENOMEM);
1221
1222 retcode = copyin( *clabel_ptr, clabel,
1223 sizeof(RF_ComponentLabel_t));
1224
1225 if (retcode) {
1226 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1227 return(retcode);
1228 }
1229
1230 clabel->row = 0; /* Don't allow looking at anything else.*/
1231
1232 column = clabel->column;
1233
1234 if ((column < 0) || (column >= raidPtr->numCol +
1235 raidPtr->numSpare)) {
1236 RF_Free( clabel, sizeof(RF_ComponentLabel_t));
1237 return(EINVAL);
1238 }
1239
1240 retcode = raidread_component_label(raidPtr->Disks[column].dev,
1241 raidPtr->raid_cinfo[column].ci_vp,
1242 clabel );
1243
1244 if (retcode == 0) {
1245 retcode = copyout(clabel, *clabel_ptr,
1246 sizeof(RF_ComponentLabel_t));
1247 }
1248 RF_Free(clabel, sizeof(RF_ComponentLabel_t));
1249 return (retcode);
1250
1251 case RAIDFRAME_SET_COMPONENT_LABEL:
1252 clabel = (RF_ComponentLabel_t *) data;
1253
1254 /* XXX check the label for valid stuff... */
1255 /* Note that some things *should not* get modified --
1256 the user should be re-initing the labels instead of
1257 trying to patch things.
1258 */
1259
1260 raidid = raidPtr->raidid;
1261 #ifdef DEBUG
1262 printf("raid%d: Got component label:\n", raidid);
1263 printf("raid%d: Version: %d\n", raidid, clabel->version);
1264 printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
1265 printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
1266 printf("raid%d: Column: %d\n", raidid, clabel->column);
1267 printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
1268 printf("raid%d: Clean: %d\n", raidid, clabel->clean);
1269 printf("raid%d: Status: %d\n", raidid, clabel->status);
1270 #endif
1271 clabel->row = 0;
1272 column = clabel->column;
1273
1274 if ((column < 0) || (column >= raidPtr->numCol)) {
1275 return(EINVAL);
1276 }
1277
1278 /* XXX this isn't allowed to do anything for now :-) */
1279
1280 /* XXX and before it is, we need to fill in the rest
1281 of the fields!?!?!?! */
1282 #if 0
1283 raidwrite_component_label(
1284 raidPtr->Disks[column].dev,
1285 raidPtr->raid_cinfo[column].ci_vp,
1286 clabel );
1287 #endif
1288 return (0);
1289
1290 case RAIDFRAME_INIT_LABELS:
1291 clabel = (RF_ComponentLabel_t *) data;
1292 /*
1293 we only want the serial number from
1294 the above. We get all the rest of the information
1295 from the config that was used to create this RAID
1296 set.
1297 */
1298
1299 raidPtr->serial_number = clabel->serial_number;
1300
1301 RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
1302 (RF_ComponentLabel_t *));
1303 if (ci_label == NULL)
1304 return (ENOMEM);
1305
1306 raid_init_component_label(raidPtr, ci_label);
1307 ci_label->serial_number = clabel->serial_number;
1308 ci_label->row = 0; /* we dont' pretend to support more */
1309
1310 for(column=0;column<raidPtr->numCol;column++) {
1311 diskPtr = &raidPtr->Disks[column];
1312 if (!RF_DEAD_DISK(diskPtr->status)) {
1313 ci_label->partitionSize = diskPtr->partitionSize;
1314 ci_label->column = column;
1315 raidwrite_component_label(
1316 raidPtr->Disks[column].dev,
1317 raidPtr->raid_cinfo[column].ci_vp,
1318 ci_label );
1319 }
1320 }
1321 RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
1322
1323 return (retcode);
1324 case RAIDFRAME_SET_AUTOCONFIG:
1325 d = rf_set_autoconfig(raidPtr, *(int *) data);
1326 printf("raid%d: New autoconfig value is: %d\n",
1327 raidPtr->raidid, d);
1328 *(int *) data = d;
1329 return (retcode);
1330
1331 case RAIDFRAME_SET_ROOT:
1332 d = rf_set_rootpartition(raidPtr, *(int *) data);
1333 printf("raid%d: New rootpartition value is: %d\n",
1334 raidPtr->raidid, d);
1335 *(int *) data = d;
1336 return (retcode);
1337
1338 /* initialize all parity */
1339 case RAIDFRAME_REWRITEPARITY:
1340
1341 if (raidPtr->Layout.map->faultsTolerated == 0) {
1342 /* Parity for RAID 0 is trivially correct */
1343 raidPtr->parity_good = RF_RAID_CLEAN;
1344 return(0);
1345 }
1346
1347 if (raidPtr->parity_rewrite_in_progress == 1) {
1348 /* Re-write is already in progress! */
1349 return(EINVAL);
1350 }
1351
1352 retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
1353 rf_RewriteParityThread,
1354 raidPtr,"raid_parity");
1355 return (retcode);
1356
1357
1358 case RAIDFRAME_ADD_HOT_SPARE:
1359 sparePtr = (RF_SingleComponent_t *) data;
1360 memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
1361 retcode = rf_add_hot_spare(raidPtr, &component);
1362 return(retcode);
1363
1364 case RAIDFRAME_REMOVE_HOT_SPARE:
1365 return(retcode);
1366
1367 case RAIDFRAME_DELETE_COMPONENT:
1368 componentPtr = (RF_SingleComponent_t *)data;
1369 memcpy( &component, componentPtr,
1370 sizeof(RF_SingleComponent_t));
1371 retcode = rf_delete_component(raidPtr, &component);
1372 return(retcode);
1373
1374 case RAIDFRAME_INCORPORATE_HOT_SPARE:
1375 componentPtr = (RF_SingleComponent_t *)data;
1376 memcpy( &component, componentPtr,
1377 sizeof(RF_SingleComponent_t));
1378 retcode = rf_incorporate_hot_spare(raidPtr, &component);
1379 return(retcode);
1380
1381 case RAIDFRAME_REBUILD_IN_PLACE:
1382
1383 if (raidPtr->Layout.map->faultsTolerated == 0) {
1384 /* Can't do this on a RAID 0!! */
1385 return(EINVAL);
1386 }
1387
1388 if (raidPtr->recon_in_progress == 1) {
1389 /* a reconstruct is already in progress! */
1390 return(EINVAL);
1391 }
1392
1393 componentPtr = (RF_SingleComponent_t *) data;
1394 memcpy( &component, componentPtr,
1395 sizeof(RF_SingleComponent_t));
1396 component.row = 0; /* we don't support any more */
1397 column = component.column;
1398
1399 if ((column < 0) || (column >= raidPtr->numCol)) {
1400 return(EINVAL);
1401 }
1402
1403 RF_LOCK_MUTEX(raidPtr->mutex);
1404 if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
1405 (raidPtr->numFailures > 0)) {
1406 /* XXX 0 above shouldn't be constant!!! */
1407 /* some component other than this has failed.
1408 Let's not make things worse than they already
1409 are... */
1410 printf("raid%d: Unable to reconstruct to disk at:\n",
1411 raidPtr->raidid);
1412 printf("raid%d: Col: %d Too many failures.\n",
1413 raidPtr->raidid, column);
1414 RF_UNLOCK_MUTEX(raidPtr->mutex);
1415 return (EINVAL);
1416 }
1417 if (raidPtr->Disks[column].status ==
1418 rf_ds_reconstructing) {
1419 printf("raid%d: Unable to reconstruct to disk at:\n",
1420 raidPtr->raidid);
1421 printf("raid%d: Col: %d Reconstruction already occuring!\n", raidPtr->raidid, column);
1422
1423 RF_UNLOCK_MUTEX(raidPtr->mutex);
1424 return (EINVAL);
1425 }
1426 if (raidPtr->Disks[column].status == rf_ds_spared) {
1427 RF_UNLOCK_MUTEX(raidPtr->mutex);
1428 return (EINVAL);
1429 }
1430 RF_UNLOCK_MUTEX(raidPtr->mutex);
1431
1432 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1433 if (rrcopy == NULL)
1434 return(ENOMEM);
1435
1436 rrcopy->raidPtr = (void *) raidPtr;
1437 rrcopy->col = column;
1438
1439 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1440 rf_ReconstructInPlaceThread,
1441 rrcopy,"raid_reconip");
1442 return(retcode);
1443
1444 case RAIDFRAME_GET_INFO:
1445 if (!raidPtr->valid)
1446 return (ENODEV);
1447 ucfgp = (RF_DeviceConfig_t **) data;
1448 RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
1449 (RF_DeviceConfig_t *));
1450 if (d_cfg == NULL)
1451 return (ENOMEM);
1452 d_cfg->rows = 1; /* there is only 1 row now */
1453 d_cfg->cols = raidPtr->numCol;
1454 d_cfg->ndevs = raidPtr->numCol;
1455 if (d_cfg->ndevs >= RF_MAX_DISKS) {
1456 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1457 return (ENOMEM);
1458 }
1459 d_cfg->nspares = raidPtr->numSpare;
1460 if (d_cfg->nspares >= RF_MAX_DISKS) {
1461 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1462 return (ENOMEM);
1463 }
1464 d_cfg->maxqdepth = raidPtr->maxQueueDepth;
1465 d = 0;
1466 for (j = 0; j < d_cfg->cols; j++) {
1467 d_cfg->devs[d] = raidPtr->Disks[j];
1468 d++;
1469 }
1470 for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
1471 d_cfg->spares[i] = raidPtr->Disks[j];
1472 }
1473 retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
1474 RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
1475
1476 return (retcode);
1477
1478 case RAIDFRAME_CHECK_PARITY:
1479 *(int *) data = raidPtr->parity_good;
1480 return (0);
1481
1482 case RAIDFRAME_RESET_ACCTOTALS:
1483 memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
1484 return (0);
1485
1486 case RAIDFRAME_GET_ACCTOTALS:
1487 totals = (RF_AccTotals_t *) data;
1488 *totals = raidPtr->acc_totals;
1489 return (0);
1490
1491 case RAIDFRAME_KEEP_ACCTOTALS:
1492 raidPtr->keep_acc_totals = *(int *)data;
1493 return (0);
1494
1495 case RAIDFRAME_GET_SIZE:
1496 *(int *) data = raidPtr->totalSectors;
1497 return (0);
1498
1499 /* fail a disk & optionally start reconstruction */
1500 case RAIDFRAME_FAIL_DISK:
1501
1502 if (raidPtr->Layout.map->faultsTolerated == 0) {
1503 /* Can't do this on a RAID 0!! */
1504 return(EINVAL);
1505 }
1506
1507 rr = (struct rf_recon_req *) data;
1508 rr->row = 0;
1509 if (rr->col < 0 || rr->col >= raidPtr->numCol)
1510 return (EINVAL);
1511
1512
1513 RF_LOCK_MUTEX(raidPtr->mutex);
1514 if (raidPtr->status == rf_rs_reconstructing) {
1515 /* you can't fail a disk while we're reconstructing! */
1516 /* XXX wrong for RAID6 */
1517 RF_UNLOCK_MUTEX(raidPtr->mutex);
1518 return (EINVAL);
1519 }
1520 if ((raidPtr->Disks[rr->col].status ==
1521 rf_ds_optimal) && (raidPtr->numFailures > 0)) {
1522 /* some other component has failed. Let's not make
1523 things worse. XXX wrong for RAID6 */
1524 RF_UNLOCK_MUTEX(raidPtr->mutex);
1525 return (EINVAL);
1526 }
1527 if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
1528 /* Can't fail a spared disk! */
1529 RF_UNLOCK_MUTEX(raidPtr->mutex);
1530 return (EINVAL);
1531 }
1532 RF_UNLOCK_MUTEX(raidPtr->mutex);
1533
1534 /* make a copy of the recon request so that we don't rely on
1535 * the user's buffer */
1536 RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
1537 if (rrcopy == NULL)
1538 return(ENOMEM);
1539 memcpy(rrcopy, rr, sizeof(*rr));
1540 rrcopy->raidPtr = (void *) raidPtr;
1541
1542 retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
1543 rf_ReconThread,
1544 rrcopy,"raid_recon");
1545 return (0);
1546
1547 /* invoke a copyback operation after recon on whatever disk
1548 * needs it, if any */
1549 case RAIDFRAME_COPYBACK:
1550
1551 if (raidPtr->Layout.map->faultsTolerated == 0) {
1552 /* This makes no sense on a RAID 0!! */
1553 return(EINVAL);
1554 }
1555
1556 if (raidPtr->copyback_in_progress == 1) {
1557 /* Copyback is already in progress! */
1558 return(EINVAL);
1559 }
1560
1561 retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
1562 rf_CopybackThread,
1563 raidPtr,"raid_copyback");
1564 return (retcode);
1565
1566 /* return the percentage completion of reconstruction */
1567 case RAIDFRAME_CHECK_RECON_STATUS:
1568 if (raidPtr->Layout.map->faultsTolerated == 0) {
1569 /* This makes no sense on a RAID 0, so tell the
1570 user it's done. */
1571 *(int *) data = 100;
1572 return(0);
1573 }
1574 if (raidPtr->status != rf_rs_reconstructing)
1575 *(int *) data = 100;
1576 else {
1577 if (raidPtr->reconControl->numRUsTotal > 0) {
1578 *(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
1579 } else {
1580 *(int *) data = 0;
1581 }
1582 }
1583 return (0);
1584 case RAIDFRAME_CHECK_RECON_STATUS_EXT:
1585 progressInfoPtr = (RF_ProgressInfo_t **) data;
1586 if (raidPtr->status != rf_rs_reconstructing) {
1587 progressInfo.remaining = 0;
1588 progressInfo.completed = 100;
1589 progressInfo.total = 100;
1590 } else {
1591 progressInfo.total =
1592 raidPtr->reconControl->numRUsTotal;
1593 progressInfo.completed =
1594 raidPtr->reconControl->numRUsComplete;
1595 progressInfo.remaining = progressInfo.total -
1596 progressInfo.completed;
1597 }
1598 retcode = copyout(&progressInfo, *progressInfoPtr,
1599 sizeof(RF_ProgressInfo_t));
1600 return (retcode);
1601
1602 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
1603 if (raidPtr->Layout.map->faultsTolerated == 0) {
1604 /* This makes no sense on a RAID 0, so tell the
1605 user it's done. */
1606 *(int *) data = 100;
1607 return(0);
1608 }
1609 if (raidPtr->parity_rewrite_in_progress == 1) {
1610 *(int *) data = 100 *
1611 raidPtr->parity_rewrite_stripes_done /
1612 raidPtr->Layout.numStripe;
1613 } else {
1614 *(int *) data = 100;
1615 }
1616 return (0);
1617
1618 case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
1619 progressInfoPtr = (RF_ProgressInfo_t **) data;
1620 if (raidPtr->parity_rewrite_in_progress == 1) {
1621 progressInfo.total = raidPtr->Layout.numStripe;
1622 progressInfo.completed =
1623 raidPtr->parity_rewrite_stripes_done;
1624 progressInfo.remaining = progressInfo.total -
1625 progressInfo.completed;
1626 } else {
1627 progressInfo.remaining = 0;
1628 progressInfo.completed = 100;
1629 progressInfo.total = 100;
1630 }
1631 retcode = copyout(&progressInfo, *progressInfoPtr,
1632 sizeof(RF_ProgressInfo_t));
1633 return (retcode);
1634
1635 case RAIDFRAME_CHECK_COPYBACK_STATUS:
1636 if (raidPtr->Layout.map->faultsTolerated == 0) {
1637 /* This makes no sense on a RAID 0 */
1638 *(int *) data = 100;
1639 return(0);
1640 }
1641 if (raidPtr->copyback_in_progress == 1) {
1642 *(int *) data = 100 * raidPtr->copyback_stripes_done /
1643 raidPtr->Layout.numStripe;
1644 } else {
1645 *(int *) data = 100;
1646 }
1647 return (0);
1648
1649 case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
1650 progressInfoPtr = (RF_ProgressInfo_t **) data;
1651 if (raidPtr->copyback_in_progress == 1) {
1652 progressInfo.total = raidPtr->Layout.numStripe;
1653 progressInfo.completed =
1654 raidPtr->copyback_stripes_done;
1655 progressInfo.remaining = progressInfo.total -
1656 progressInfo.completed;
1657 } else {
1658 progressInfo.remaining = 0;
1659 progressInfo.completed = 100;
1660 progressInfo.total = 100;
1661 }
1662 retcode = copyout(&progressInfo, *progressInfoPtr,
1663 sizeof(RF_ProgressInfo_t));
1664 return (retcode);
1665
1666 /* the sparetable daemon calls this to wait for the kernel to
1667 * need a spare table. this ioctl does not return until a
1668 * spare table is needed. XXX -- calling mpsleep here in the
1669 * ioctl code is almost certainly wrong and evil. -- XXX XXX
1670 * -- I should either compute the spare table in the kernel,
1671 * or have a different -- XXX XXX -- interface (a different
1672 * character device) for delivering the table -- XXX */
1673 #if 0
1674 case RAIDFRAME_SPARET_WAIT:
1675 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1676 while (!rf_sparet_wait_queue)
1677 mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
1678 waitreq = rf_sparet_wait_queue;
1679 rf_sparet_wait_queue = rf_sparet_wait_queue->next;
1680 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1681
1682 /* structure assignment */
1683 *((RF_SparetWait_t *) data) = *waitreq;
1684
1685 RF_Free(waitreq, sizeof(*waitreq));
1686 return (0);
1687
1688 /* wakes up a process waiting on SPARET_WAIT and puts an error
1689 * code in it that will cause the dameon to exit */
1690 case RAIDFRAME_ABORT_SPARET_WAIT:
1691 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1692 waitreq->fcol = -1;
1693 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1694 waitreq->next = rf_sparet_wait_queue;
1695 rf_sparet_wait_queue = waitreq;
1696 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1697 wakeup(&rf_sparet_wait_queue);
1698 return (0);
1699
1700 /* used by the spare table daemon to deliver a spare table
1701 * into the kernel */
1702 case RAIDFRAME_SEND_SPARET:
1703
1704 /* install the spare table */
1705 retcode = rf_SetSpareTable(raidPtr, *(void **) data);
1706
1707 /* respond to the requestor. the return status of the spare
1708 * table installation is passed in the "fcol" field */
1709 RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
1710 waitreq->fcol = retcode;
1711 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1712 waitreq->next = rf_sparet_resp_queue;
1713 rf_sparet_resp_queue = waitreq;
1714 wakeup(&rf_sparet_resp_queue);
1715 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1716
1717 return (retcode);
1718 #endif
1719
1720 default:
1721 break; /* fall through to the os-specific code below */
1722
1723 }
1724
1725 if (!raidPtr->valid)
1726 return (EINVAL);
1727
1728 /*
1729 * Add support for "regular" device ioctls here.
1730 */
1731
1732 switch (cmd) {
1733 case DIOCGDINFO:
1734 *(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
1735 break;
1736 #ifdef __HAVE_OLD_DISKLABEL
1737 case ODIOCGDINFO:
1738 newlabel = *(rs->sc_dkdev.dk_label);
1739 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1740 return ENOTTY;
1741 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1742 break;
1743 #endif
1744
1745 case DIOCGPART:
1746 ((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
1747 ((struct partinfo *) data)->part =
1748 &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
1749 break;
1750
1751 case DIOCWDINFO:
1752 case DIOCSDINFO:
1753 #ifdef __HAVE_OLD_DISKLABEL
1754 case ODIOCWDINFO:
1755 case ODIOCSDINFO:
1756 #endif
1757 {
1758 struct disklabel *lp;
1759 #ifdef __HAVE_OLD_DISKLABEL
1760 if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
1761 memset(&newlabel, 0, sizeof newlabel);
1762 memcpy(&newlabel, data, sizeof (struct olddisklabel));
1763 lp = &newlabel;
1764 } else
1765 #endif
1766 lp = (struct disklabel *)data;
1767
1768 if ((error = raidlock(rs)) != 0)
1769 return (error);
1770
1771 rs->sc_flags |= RAIDF_LABELLING;
1772
1773 error = setdisklabel(rs->sc_dkdev.dk_label,
1774 lp, 0, rs->sc_dkdev.dk_cpulabel);
1775 if (error == 0) {
1776 if (cmd == DIOCWDINFO
1777 #ifdef __HAVE_OLD_DISKLABEL
1778 || cmd == ODIOCWDINFO
1779 #endif
1780 )
1781 error = writedisklabel(RAIDLABELDEV(dev),
1782 raidstrategy, rs->sc_dkdev.dk_label,
1783 rs->sc_dkdev.dk_cpulabel);
1784 }
1785 rs->sc_flags &= ~RAIDF_LABELLING;
1786
1787 raidunlock(rs);
1788
1789 if (error)
1790 return (error);
1791 break;
1792 }
1793
1794 case DIOCWLABEL:
1795 if (*(int *) data != 0)
1796 rs->sc_flags |= RAIDF_WLABEL;
1797 else
1798 rs->sc_flags &= ~RAIDF_WLABEL;
1799 break;
1800
1801 case DIOCGDEFLABEL:
1802 raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
1803 break;
1804
1805 #ifdef __HAVE_OLD_DISKLABEL
1806 case ODIOCGDEFLABEL:
1807 raidgetdefaultlabel(raidPtr, rs, &newlabel);
1808 if (newlabel.d_npartitions > OLDMAXPARTITIONS)
1809 return ENOTTY;
1810 memcpy(data, &newlabel, sizeof (struct olddisklabel));
1811 break;
1812 #endif
1813
1814 case DIOCAWEDGE:
1815 case DIOCDWEDGE:
1816 dkw = (void *)data;
1817
1818 /* If the ioctl happens here, the parent is us. */
1819 (void)strcpy(dkw->dkw_parent, rs->sc_xname);
1820 return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
1821
1822 case DIOCLWEDGES:
1823 return dkwedge_list(&rs->sc_dkdev,
1824 (struct dkwedge_list *)data, l);
1825
1826 default:
1827 retcode = ENOTTY;
1828 }
1829 return (retcode);
1830
1831 }
1832
1833
1834 /* raidinit -- complete the rest of the initialization for the
1835 RAIDframe device. */
1836
1837
1838 static void
1839 raidinit(RF_Raid_t *raidPtr)
1840 {
1841 struct cfdata *cf;
1842 struct raid_softc *rs;
1843 int unit;
1844
1845 unit = raidPtr->raidid;
1846
1847 rs = &raid_softc[unit];
1848
1849 /* XXX should check return code first... */
1850 rs->sc_flags |= RAIDF_INITED;
1851
1852 /* XXX doesn't check bounds. */
1853 snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
1854
1855 /* attach the pseudo device */
1856 cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
1857 cf->cf_name = raid_cd.cd_name;
1858 cf->cf_atname = raid_cd.cd_name;
1859 cf->cf_unit = unit;
1860 cf->cf_fstate = FSTATE_STAR;
1861
1862 rs->sc_dev = config_attach_pseudo(cf);
1863
1864 if (rs->sc_dev==NULL) {
1865 printf("raid%d: config_attach_pseudo failed\n",
1866 raidPtr->raidid);
1867 }
1868
1869 /* disk_attach actually creates space for the CPU disklabel, among
1870 * other things, so it's critical to call this *BEFORE* we try putzing
1871 * with disklabels. */
1872
1873 disk_init(&rs->sc_dkdev, rs->sc_xname, NULL);
1874 disk_attach(&rs->sc_dkdev);
1875
1876 /* XXX There may be a weird interaction here between this, and
1877 * protectedSectors, as used in RAIDframe. */
1878
1879 rs->sc_size = raidPtr->totalSectors;
1880 }
1881 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
1882 /* wake up the daemon & tell it to get us a spare table
1883 * XXX
1884 * the entries in the queues should be tagged with the raidPtr
1885 * so that in the extremely rare case that two recons happen at once,
1886 * we know for which device were requesting a spare table
1887 * XXX
1888 *
1889 * XXX This code is not currently used. GO
1890 */
1891 int
1892 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
1893 {
1894 int retcode;
1895
1896 RF_LOCK_MUTEX(rf_sparet_wait_mutex);
1897 req->next = rf_sparet_wait_queue;
1898 rf_sparet_wait_queue = req;
1899 wakeup(&rf_sparet_wait_queue);
1900
1901 /* mpsleep unlocks the mutex */
1902 while (!rf_sparet_resp_queue) {
1903 tsleep(&rf_sparet_resp_queue, PRIBIO,
1904 "raidframe getsparetable", 0);
1905 }
1906 req = rf_sparet_resp_queue;
1907 rf_sparet_resp_queue = req->next;
1908 RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
1909
1910 retcode = req->fcol;
1911 RF_Free(req, sizeof(*req)); /* this is not the same req as we
1912 * alloc'd */
1913 return (retcode);
1914 }
1915 #endif
1916
1917 /* a wrapper around rf_DoAccess that extracts appropriate info from the
1918 * bp & passes it down.
1919 * any calls originating in the kernel must use non-blocking I/O
1920 * do some extra sanity checking to return "appropriate" error values for
1921 * certain conditions (to make some standard utilities work)
1922 *
1923 * Formerly known as: rf_DoAccessKernel
1924 */
1925 void
1926 raidstart(RF_Raid_t *raidPtr)
1927 {
1928 RF_SectorCount_t num_blocks, pb, sum;
1929 RF_RaidAddr_t raid_addr;
1930 struct partition *pp;
1931 daddr_t blocknum;
1932 int unit;
1933 struct raid_softc *rs;
1934 int do_async;
1935 struct buf *bp;
1936 int rc;
1937
1938 unit = raidPtr->raidid;
1939 rs = &raid_softc[unit];
1940
1941 /* quick check to see if anything has died recently */
1942 RF_LOCK_MUTEX(raidPtr->mutex);
1943 if (raidPtr->numNewFailures > 0) {
1944 RF_UNLOCK_MUTEX(raidPtr->mutex);
1945 rf_update_component_labels(raidPtr,
1946 RF_NORMAL_COMPONENT_UPDATE);
1947 RF_LOCK_MUTEX(raidPtr->mutex);
1948 raidPtr->numNewFailures--;
1949 }
1950
1951 /* Check to see if we're at the limit... */
1952 while (raidPtr->openings > 0) {
1953 RF_UNLOCK_MUTEX(raidPtr->mutex);
1954
1955 /* get the next item, if any, from the queue */
1956 if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
1957 /* nothing more to do */
1958 return;
1959 }
1960
1961 /* Ok, for the bp we have here, bp->b_blkno is relative to the
1962 * partition.. Need to make it absolute to the underlying
1963 * device.. */
1964
1965 blocknum = bp->b_blkno;
1966 if (DISKPART(bp->b_dev) != RAW_PART) {
1967 pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
1968 blocknum += pp->p_offset;
1969 }
1970
1971 db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
1972 (int) blocknum));
1973
1974 db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
1975 db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
1976
1977 /* *THIS* is where we adjust what block we're going to...
1978 * but DO NOT TOUCH bp->b_blkno!!! */
1979 raid_addr = blocknum;
1980
1981 num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
1982 pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
1983 sum = raid_addr + num_blocks + pb;
1984 if (1 || rf_debugKernelAccess) {
1985 db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
1986 (int) raid_addr, (int) sum, (int) num_blocks,
1987 (int) pb, (int) bp->b_resid));
1988 }
1989 if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
1990 || (sum < num_blocks) || (sum < pb)) {
1991 bp->b_error = ENOSPC;
1992 bp->b_resid = bp->b_bcount;
1993 biodone(bp);
1994 RF_LOCK_MUTEX(raidPtr->mutex);
1995 continue;
1996 }
1997 /*
1998 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
1999 */
2000
2001 if (bp->b_bcount & raidPtr->sectorMask) {
2002 bp->b_error = EINVAL;
2003 bp->b_resid = bp->b_bcount;
2004 biodone(bp);
2005 RF_LOCK_MUTEX(raidPtr->mutex);
2006 continue;
2007
2008 }
2009 db1_printf(("Calling DoAccess..\n"));
2010
2011
2012 RF_LOCK_MUTEX(raidPtr->mutex);
2013 raidPtr->openings--;
2014 RF_UNLOCK_MUTEX(raidPtr->mutex);
2015
2016 /*
2017 * Everything is async.
2018 */
2019 do_async = 1;
2020
2021 disk_busy(&rs->sc_dkdev);
2022
2023 /* XXX we're still at splbio() here... do we *really*
2024 need to be? */
2025
2026 /* don't ever condition on bp->b_flags & B_WRITE.
2027 * always condition on B_READ instead */
2028
2029 rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
2030 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
2031 do_async, raid_addr, num_blocks,
2032 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
2033
2034 if (rc) {
2035 bp->b_error = rc;
2036 bp->b_resid = bp->b_bcount;
2037 biodone(bp);
2038 /* continue loop */
2039 }
2040
2041 RF_LOCK_MUTEX(raidPtr->mutex);
2042 }
2043 RF_UNLOCK_MUTEX(raidPtr->mutex);
2044 }
2045
2046
2047
2048
2049 /* invoke an I/O from kernel mode. Disk queue should be locked upon entry */
2050
2051 int
2052 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
2053 {
2054 int op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
2055 struct buf *bp;
2056
2057 req->queue = queue;
2058
2059 #if DIAGNOSTIC
2060 if (queue->raidPtr->raidid >= numraid) {
2061 printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
2062 numraid);
2063 panic("Invalid Unit number in rf_DispatchKernelIO");
2064 }
2065 #endif
2066
2067 bp = req->bp;
2068
2069 switch (req->type) {
2070 case RF_IO_TYPE_NOP: /* used primarily to unlock a locked queue */
2071 /* XXX need to do something extra here.. */
2072 /* I'm leaving this in, as I've never actually seen it used,
2073 * and I'd like folks to report it... GO */
2074 printf(("WAKEUP CALLED\n"));
2075 queue->numOutstanding++;
2076
2077 bp->b_flags = 0;
2078 bp->b_private = req;
2079
2080 KernelWakeupFunc(bp);
2081 break;
2082
2083 case RF_IO_TYPE_READ:
2084 case RF_IO_TYPE_WRITE:
2085 #if RF_ACC_TRACE > 0
2086 if (req->tracerec) {
2087 RF_ETIMER_START(req->tracerec->timer);
2088 }
2089 #endif
2090 InitBP(bp, queue->rf_cinfo->ci_vp,
2091 op, queue->rf_cinfo->ci_dev,
2092 req->sectorOffset, req->numSector,
2093 req->buf, KernelWakeupFunc, (void *) req,
2094 queue->raidPtr->logBytesPerSector, req->b_proc);
2095
2096 if (rf_debugKernelAccess) {
2097 db1_printf(("dispatch: bp->b_blkno = %ld\n",
2098 (long) bp->b_blkno));
2099 }
2100 queue->numOutstanding++;
2101 queue->last_deq_sector = req->sectorOffset;
2102 /* acc wouldn't have been let in if there were any pending
2103 * reqs at any other priority */
2104 queue->curPriority = req->priority;
2105
2106 db1_printf(("Going for %c to unit %d col %d\n",
2107 req->type, queue->raidPtr->raidid,
2108 queue->col));
2109 db1_printf(("sector %d count %d (%d bytes) %d\n",
2110 (int) req->sectorOffset, (int) req->numSector,
2111 (int) (req->numSector <<
2112 queue->raidPtr->logBytesPerSector),
2113 (int) queue->raidPtr->logBytesPerSector));
2114 VOP_STRATEGY(bp->b_vp, bp);
2115
2116 break;
2117
2118 default:
2119 panic("bad req->type in rf_DispatchKernelIO");
2120 }
2121 db1_printf(("Exiting from DispatchKernelIO\n"));
2122
2123 return (0);
2124 }
2125 /* this is the callback function associated with a I/O invoked from
2126 kernel code.
2127 */
2128 static void
2129 KernelWakeupFunc(struct buf *bp)
2130 {
2131 RF_DiskQueueData_t *req = NULL;
2132 RF_DiskQueue_t *queue;
2133 int s;
2134
2135 s = splbio();
2136 db1_printf(("recovering the request queue:\n"));
2137 req = bp->b_private;
2138
2139 queue = (RF_DiskQueue_t *) req->queue;
2140
2141 #if RF_ACC_TRACE > 0
2142 if (req->tracerec) {
2143 RF_ETIMER_STOP(req->tracerec->timer);
2144 RF_ETIMER_EVAL(req->tracerec->timer);
2145 RF_LOCK_MUTEX(rf_tracing_mutex);
2146 req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2147 req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
2148 req->tracerec->num_phys_ios++;
2149 RF_UNLOCK_MUTEX(rf_tracing_mutex);
2150 }
2151 #endif
2152
2153 /* XXX Ok, let's get aggressive... If b_error is set, let's go
2154 * ballistic, and mark the component as hosed... */
2155
2156 if (bp->b_error != 0) {
2157 /* Mark the disk as dead */
2158 /* but only mark it once... */
2159 /* and only if it wouldn't leave this RAID set
2160 completely broken */
2161 if (((queue->raidPtr->Disks[queue->col].status ==
2162 rf_ds_optimal) ||
2163 (queue->raidPtr->Disks[queue->col].status ==
2164 rf_ds_used_spare)) &&
2165 (queue->raidPtr->numFailures <
2166 queue->raidPtr->Layout.map->faultsTolerated)) {
2167 printf("raid%d: IO Error. Marking %s as failed.\n",
2168 queue->raidPtr->raidid,
2169 queue->raidPtr->Disks[queue->col].devname);
2170 queue->raidPtr->Disks[queue->col].status =
2171 rf_ds_failed;
2172 queue->raidPtr->status = rf_rs_degraded;
2173 queue->raidPtr->numFailures++;
2174 queue->raidPtr->numNewFailures++;
2175 } else { /* Disk is already dead... */
2176 /* printf("Disk already marked as dead!\n"); */
2177 }
2178
2179 }
2180
2181 /* Fill in the error value */
2182
2183 req->error = bp->b_error;
2184
2185 simple_lock(&queue->raidPtr->iodone_lock);
2186
2187 /* Drop this one on the "finished" queue... */
2188 TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
2189
2190 /* Let the raidio thread know there is work to be done. */
2191 wakeup(&(queue->raidPtr->iodone));
2192
2193 simple_unlock(&queue->raidPtr->iodone_lock);
2194
2195 splx(s);
2196 }
2197
2198
2199
2200 /*
2201 * initialize a buf structure for doing an I/O in the kernel.
2202 */
2203 static void
2204 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
2205 RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
2206 void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
2207 struct proc *b_proc)
2208 {
2209 /* bp->b_flags = B_PHYS | rw_flag; */
2210 bp->b_flags = rw_flag; /* XXX need B_PHYS here too??? */
2211 bp->b_oflags = 0;
2212 bp->b_cflags = 0;
2213 bp->b_bcount = numSect << logBytesPerSector;
2214 bp->b_bufsize = bp->b_bcount;
2215 bp->b_error = 0;
2216 bp->b_dev = dev;
2217 bp->b_data = bf;
2218 bp->b_blkno = startSect;
2219 bp->b_resid = bp->b_bcount; /* XXX is this right!??!?!! */
2220 if (bp->b_bcount == 0) {
2221 panic("bp->b_bcount is zero in InitBP!!");
2222 }
2223 bp->b_proc = b_proc;
2224 bp->b_iodone = cbFunc;
2225 bp->b_private = cbArg;
2226 bp->b_vp = b_vp;
2227 if ((bp->b_flags & B_READ) == 0) {
2228 mutex_enter(&bp->b_vp->v_interlock);
2229 bp->b_vp->v_numoutput++;
2230 mutex_exit(&bp->b_vp->v_interlock);
2231 }
2232
2233 }
2234
2235 static void
2236 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
2237 struct disklabel *lp)
2238 {
2239 memset(lp, 0, sizeof(*lp));
2240
2241 /* fabricate a label... */
2242 lp->d_secperunit = raidPtr->totalSectors;
2243 lp->d_secsize = raidPtr->bytesPerSector;
2244 lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
2245 lp->d_ntracks = 4 * raidPtr->numCol;
2246 lp->d_ncylinders = raidPtr->totalSectors /
2247 (lp->d_nsectors * lp->d_ntracks);
2248 lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
2249
2250 strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
2251 lp->d_type = DTYPE_RAID;
2252 strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
2253 lp->d_rpm = 3600;
2254 lp->d_interleave = 1;
2255 lp->d_flags = 0;
2256
2257 lp->d_partitions[RAW_PART].p_offset = 0;
2258 lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
2259 lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
2260 lp->d_npartitions = RAW_PART + 1;
2261
2262 lp->d_magic = DISKMAGIC;
2263 lp->d_magic2 = DISKMAGIC;
2264 lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
2265
2266 }
2267 /*
2268 * Read the disklabel from the raid device. If one is not present, fake one
2269 * up.
2270 */
2271 static void
2272 raidgetdisklabel(dev_t dev)
2273 {
2274 int unit = raidunit(dev);
2275 struct raid_softc *rs = &raid_softc[unit];
2276 const char *errstring;
2277 struct disklabel *lp = rs->sc_dkdev.dk_label;
2278 struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
2279 RF_Raid_t *raidPtr;
2280
2281 db1_printf(("Getting the disklabel...\n"));
2282
2283 memset(clp, 0, sizeof(*clp));
2284
2285 raidPtr = raidPtrs[unit];
2286
2287 raidgetdefaultlabel(raidPtr, rs, lp);
2288
2289 /*
2290 * Call the generic disklabel extraction routine.
2291 */
2292 errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
2293 rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
2294 if (errstring)
2295 raidmakedisklabel(rs);
2296 else {
2297 int i;
2298 struct partition *pp;
2299
2300 /*
2301 * Sanity check whether the found disklabel is valid.
2302 *
2303 * This is necessary since total size of the raid device
2304 * may vary when an interleave is changed even though exactly
2305 * same components are used, and old disklabel may used
2306 * if that is found.
2307 */
2308 if (lp->d_secperunit != rs->sc_size)
2309 printf("raid%d: WARNING: %s: "
2310 "total sector size in disklabel (%d) != "
2311 "the size of raid (%ld)\n", unit, rs->sc_xname,
2312 lp->d_secperunit, (long) rs->sc_size);
2313 for (i = 0; i < lp->d_npartitions; i++) {
2314 pp = &lp->d_partitions[i];
2315 if (pp->p_offset + pp->p_size > rs->sc_size)
2316 printf("raid%d: WARNING: %s: end of partition `%c' "
2317 "exceeds the size of raid (%ld)\n",
2318 unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
2319 }
2320 }
2321
2322 }
2323 /*
2324 * Take care of things one might want to take care of in the event
2325 * that a disklabel isn't present.
2326 */
2327 static void
2328 raidmakedisklabel(struct raid_softc *rs)
2329 {
2330 struct disklabel *lp = rs->sc_dkdev.dk_label;
2331 db1_printf(("Making a label..\n"));
2332
2333 /*
2334 * For historical reasons, if there's no disklabel present
2335 * the raw partition must be marked FS_BSDFFS.
2336 */
2337
2338 lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
2339
2340 strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
2341
2342 lp->d_checksum = dkcksum(lp);
2343 }
2344 /*
2345 * Wait interruptibly for an exclusive lock.
2346 *
2347 * XXX
2348 * Several drivers do this; it should be abstracted and made MP-safe.
2349 * (Hmm... where have we seen this warning before :-> GO )
2350 */
2351 static int
2352 raidlock(struct raid_softc *rs)
2353 {
2354 int error;
2355
2356 while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
2357 rs->sc_flags |= RAIDF_WANTED;
2358 if ((error =
2359 tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
2360 return (error);
2361 }
2362 rs->sc_flags |= RAIDF_LOCKED;
2363 return (0);
2364 }
2365 /*
2366 * Unlock and wake up any waiters.
2367 */
2368 static void
2369 raidunlock(struct raid_softc *rs)
2370 {
2371
2372 rs->sc_flags &= ~RAIDF_LOCKED;
2373 if ((rs->sc_flags & RAIDF_WANTED) != 0) {
2374 rs->sc_flags &= ~RAIDF_WANTED;
2375 wakeup(rs);
2376 }
2377 }
2378
2379
2380 #define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
2381 #define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
2382
2383 int
2384 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
2385 {
2386 RF_ComponentLabel_t clabel;
2387 raidread_component_label(dev, b_vp, &clabel);
2388 clabel.mod_counter = mod_counter;
2389 clabel.clean = RF_RAID_CLEAN;
2390 raidwrite_component_label(dev, b_vp, &clabel);
2391 return(0);
2392 }
2393
2394
2395 int
2396 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
2397 {
2398 RF_ComponentLabel_t clabel;
2399 raidread_component_label(dev, b_vp, &clabel);
2400 clabel.mod_counter = mod_counter;
2401 clabel.clean = RF_RAID_DIRTY;
2402 raidwrite_component_label(dev, b_vp, &clabel);
2403 return(0);
2404 }
2405
2406 /* ARGSUSED */
2407 int
2408 raidread_component_label(dev_t dev, struct vnode *b_vp,
2409 RF_ComponentLabel_t *clabel)
2410 {
2411 struct buf *bp;
2412 const struct bdevsw *bdev;
2413 int error;
2414
2415 /* XXX should probably ensure that we don't try to do this if
2416 someone has changed rf_protected_sectors. */
2417
2418 if (b_vp == NULL) {
2419 /* For whatever reason, this component is not valid.
2420 Don't try to read a component label from it. */
2421 return(EINVAL);
2422 }
2423
2424 /* get a block of the appropriate size... */
2425 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2426 bp->b_dev = dev;
2427
2428 /* get our ducks in a row for the read */
2429 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2430 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2431 bp->b_flags |= B_READ;
2432 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2433
2434 bdev = bdevsw_lookup(bp->b_dev);
2435 if (bdev == NULL)
2436 return (ENXIO);
2437 (*bdev->d_strategy)(bp);
2438
2439 error = biowait(bp);
2440
2441 if (!error) {
2442 memcpy(clabel, bp->b_data,
2443 sizeof(RF_ComponentLabel_t));
2444 }
2445
2446 brelse(bp, 0);
2447 return(error);
2448 }
2449 /* ARGSUSED */
2450 int
2451 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
2452 RF_ComponentLabel_t *clabel)
2453 {
2454 struct buf *bp;
2455 const struct bdevsw *bdev;
2456 int error;
2457
2458 /* get a block of the appropriate size... */
2459 bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
2460 bp->b_dev = dev;
2461
2462 /* get our ducks in a row for the write */
2463 bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
2464 bp->b_bcount = RF_COMPONENT_INFO_SIZE;
2465 bp->b_flags |= B_WRITE;
2466 bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
2467
2468 memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
2469
2470 memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
2471
2472 bdev = bdevsw_lookup(bp->b_dev);
2473 if (bdev == NULL)
2474 return (ENXIO);
2475 (*bdev->d_strategy)(bp);
2476 error = biowait(bp);
2477 brelse(bp, 0);
2478 if (error) {
2479 #if 1
2480 printf("Failed to write RAID component info!\n");
2481 #endif
2482 }
2483
2484 return(error);
2485 }
2486
2487 void
2488 rf_markalldirty(RF_Raid_t *raidPtr)
2489 {
2490 RF_ComponentLabel_t clabel;
2491 int sparecol;
2492 int c;
2493 int j;
2494 int scol = -1;
2495
2496 raidPtr->mod_counter++;
2497 for (c = 0; c < raidPtr->numCol; c++) {
2498 /* we don't want to touch (at all) a disk that has
2499 failed */
2500 if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
2501 raidread_component_label(
2502 raidPtr->Disks[c].dev,
2503 raidPtr->raid_cinfo[c].ci_vp,
2504 &clabel);
2505 if (clabel.status == rf_ds_spared) {
2506 /* XXX do something special...
2507 but whatever you do, don't
2508 try to access it!! */
2509 } else {
2510 raidmarkdirty(
2511 raidPtr->Disks[c].dev,
2512 raidPtr->raid_cinfo[c].ci_vp,
2513 raidPtr->mod_counter);
2514 }
2515 }
2516 }
2517
2518 for( c = 0; c < raidPtr->numSpare ; c++) {
2519 sparecol = raidPtr->numCol + c;
2520 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2521 /*
2522
2523 we claim this disk is "optimal" if it's
2524 rf_ds_used_spare, as that means it should be
2525 directly substitutable for the disk it replaced.
2526 We note that too...
2527
2528 */
2529
2530 for(j=0;j<raidPtr->numCol;j++) {
2531 if (raidPtr->Disks[j].spareCol == sparecol) {
2532 scol = j;
2533 break;
2534 }
2535 }
2536
2537 raidread_component_label(
2538 raidPtr->Disks[sparecol].dev,
2539 raidPtr->raid_cinfo[sparecol].ci_vp,
2540 &clabel);
2541 /* make sure status is noted */
2542
2543 raid_init_component_label(raidPtr, &clabel);
2544
2545 clabel.row = 0;
2546 clabel.column = scol;
2547 /* Note: we *don't* change status from rf_ds_used_spare
2548 to rf_ds_optimal */
2549 /* clabel.status = rf_ds_optimal; */
2550
2551 raidmarkdirty(raidPtr->Disks[sparecol].dev,
2552 raidPtr->raid_cinfo[sparecol].ci_vp,
2553 raidPtr->mod_counter);
2554 }
2555 }
2556 }
2557
2558
2559 void
2560 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
2561 {
2562 RF_ComponentLabel_t clabel;
2563 int sparecol;
2564 int c;
2565 int j;
2566 int scol;
2567
2568 scol = -1;
2569
2570 /* XXX should do extra checks to make sure things really are clean,
2571 rather than blindly setting the clean bit... */
2572
2573 raidPtr->mod_counter++;
2574
2575 for (c = 0; c < raidPtr->numCol; c++) {
2576 if (raidPtr->Disks[c].status == rf_ds_optimal) {
2577 raidread_component_label(
2578 raidPtr->Disks[c].dev,
2579 raidPtr->raid_cinfo[c].ci_vp,
2580 &clabel);
2581 /* make sure status is noted */
2582 clabel.status = rf_ds_optimal;
2583
2584 /* bump the counter */
2585 clabel.mod_counter = raidPtr->mod_counter;
2586
2587 /* note what unit we are configured as */
2588 clabel.last_unit = raidPtr->raidid;
2589
2590 raidwrite_component_label(
2591 raidPtr->Disks[c].dev,
2592 raidPtr->raid_cinfo[c].ci_vp,
2593 &clabel);
2594 if (final == RF_FINAL_COMPONENT_UPDATE) {
2595 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2596 raidmarkclean(
2597 raidPtr->Disks[c].dev,
2598 raidPtr->raid_cinfo[c].ci_vp,
2599 raidPtr->mod_counter);
2600 }
2601 }
2602 }
2603 /* else we don't touch it.. */
2604 }
2605
2606 for( c = 0; c < raidPtr->numSpare ; c++) {
2607 sparecol = raidPtr->numCol + c;
2608 /* Need to ensure that the reconstruct actually completed! */
2609 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
2610 /*
2611
2612 we claim this disk is "optimal" if it's
2613 rf_ds_used_spare, as that means it should be
2614 directly substitutable for the disk it replaced.
2615 We note that too...
2616
2617 */
2618
2619 for(j=0;j<raidPtr->numCol;j++) {
2620 if (raidPtr->Disks[j].spareCol == sparecol) {
2621 scol = j;
2622 break;
2623 }
2624 }
2625
2626 /* XXX shouldn't *really* need this... */
2627 raidread_component_label(
2628 raidPtr->Disks[sparecol].dev,
2629 raidPtr->raid_cinfo[sparecol].ci_vp,
2630 &clabel);
2631 /* make sure status is noted */
2632
2633 raid_init_component_label(raidPtr, &clabel);
2634
2635 clabel.mod_counter = raidPtr->mod_counter;
2636 clabel.column = scol;
2637 clabel.status = rf_ds_optimal;
2638 clabel.last_unit = raidPtr->raidid;
2639
2640 raidwrite_component_label(
2641 raidPtr->Disks[sparecol].dev,
2642 raidPtr->raid_cinfo[sparecol].ci_vp,
2643 &clabel);
2644 if (final == RF_FINAL_COMPONENT_UPDATE) {
2645 if (raidPtr->parity_good == RF_RAID_CLEAN) {
2646 raidmarkclean( raidPtr->Disks[sparecol].dev,
2647 raidPtr->raid_cinfo[sparecol].ci_vp,
2648 raidPtr->mod_counter);
2649 }
2650 }
2651 }
2652 }
2653 }
2654
2655 void
2656 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
2657 {
2658
2659 if (vp != NULL) {
2660 if (auto_configured == 1) {
2661 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2662 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2663 vput(vp);
2664
2665 } else {
2666 (void) vn_close(vp, FREAD | FWRITE, curlwp->l_cred, curlwp);
2667 }
2668 }
2669 }
2670
2671
2672 void
2673 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
2674 {
2675 int r,c;
2676 struct vnode *vp;
2677 int acd;
2678
2679
2680 /* We take this opportunity to close the vnodes like we should.. */
2681
2682 for (c = 0; c < raidPtr->numCol; c++) {
2683 vp = raidPtr->raid_cinfo[c].ci_vp;
2684 acd = raidPtr->Disks[c].auto_configured;
2685 rf_close_component(raidPtr, vp, acd);
2686 raidPtr->raid_cinfo[c].ci_vp = NULL;
2687 raidPtr->Disks[c].auto_configured = 0;
2688 }
2689
2690 for (r = 0; r < raidPtr->numSpare; r++) {
2691 vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
2692 acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
2693 rf_close_component(raidPtr, vp, acd);
2694 raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
2695 raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
2696 }
2697 }
2698
2699
2700 void
2701 rf_ReconThread(struct rf_recon_req *req)
2702 {
2703 int s;
2704 RF_Raid_t *raidPtr;
2705
2706 s = splbio();
2707 raidPtr = (RF_Raid_t *) req->raidPtr;
2708 raidPtr->recon_in_progress = 1;
2709
2710 rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
2711 ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
2712
2713 RF_Free(req, sizeof(*req));
2714
2715 raidPtr->recon_in_progress = 0;
2716 splx(s);
2717
2718 /* That's all... */
2719 kthread_exit(0); /* does not return */
2720 }
2721
2722 void
2723 rf_RewriteParityThread(RF_Raid_t *raidPtr)
2724 {
2725 int retcode;
2726 int s;
2727
2728 raidPtr->parity_rewrite_stripes_done = 0;
2729 raidPtr->parity_rewrite_in_progress = 1;
2730 s = splbio();
2731 retcode = rf_RewriteParity(raidPtr);
2732 splx(s);
2733 if (retcode) {
2734 printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
2735 } else {
2736 /* set the clean bit! If we shutdown correctly,
2737 the clean bit on each component label will get
2738 set */
2739 raidPtr->parity_good = RF_RAID_CLEAN;
2740 }
2741 raidPtr->parity_rewrite_in_progress = 0;
2742
2743 /* Anyone waiting for us to stop? If so, inform them... */
2744 if (raidPtr->waitShutdown) {
2745 wakeup(&raidPtr->parity_rewrite_in_progress);
2746 }
2747
2748 /* That's all... */
2749 kthread_exit(0); /* does not return */
2750 }
2751
2752
2753 void
2754 rf_CopybackThread(RF_Raid_t *raidPtr)
2755 {
2756 int s;
2757
2758 raidPtr->copyback_in_progress = 1;
2759 s = splbio();
2760 rf_CopybackReconstructedData(raidPtr);
2761 splx(s);
2762 raidPtr->copyback_in_progress = 0;
2763
2764 /* That's all... */
2765 kthread_exit(0); /* does not return */
2766 }
2767
2768
2769 void
2770 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
2771 {
2772 int s;
2773 RF_Raid_t *raidPtr;
2774
2775 s = splbio();
2776 raidPtr = req->raidPtr;
2777 raidPtr->recon_in_progress = 1;
2778 rf_ReconstructInPlace(raidPtr, req->col);
2779 RF_Free(req, sizeof(*req));
2780 raidPtr->recon_in_progress = 0;
2781 splx(s);
2782
2783 /* That's all... */
2784 kthread_exit(0); /* does not return */
2785 }
2786
2787 static RF_AutoConfig_t *
2788 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
2789 const char *cname, RF_SectorCount_t size)
2790 {
2791 int good_one = 0;
2792 RF_ComponentLabel_t *clabel;
2793 RF_AutoConfig_t *ac;
2794
2795 clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
2796 if (clabel == NULL) {
2797 oomem:
2798 while(ac_list) {
2799 ac = ac_list;
2800 if (ac->clabel)
2801 free(ac->clabel, M_RAIDFRAME);
2802 ac_list = ac_list->next;
2803 free(ac, M_RAIDFRAME);
2804 }
2805 printf("RAID auto config: out of memory!\n");
2806 return NULL; /* XXX probably should panic? */
2807 }
2808
2809 if (!raidread_component_label(dev, vp, clabel)) {
2810 /* Got the label. Does it look reasonable? */
2811 if (rf_reasonable_label(clabel) &&
2812 (clabel->partitionSize <= size)) {
2813 #ifdef DEBUG
2814 printf("Component on: %s: %llu\n",
2815 cname, (unsigned long long)size);
2816 rf_print_component_label(clabel);
2817 #endif
2818 /* if it's reasonable, add it, else ignore it. */
2819 ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
2820 M_NOWAIT);
2821 if (ac == NULL) {
2822 free(clabel, M_RAIDFRAME);
2823 goto oomem;
2824 }
2825 strlcpy(ac->devname, cname, sizeof(ac->devname));
2826 ac->dev = dev;
2827 ac->vp = vp;
2828 ac->clabel = clabel;
2829 ac->next = ac_list;
2830 ac_list = ac;
2831 good_one = 1;
2832 }
2833 }
2834 if (!good_one) {
2835 /* cleanup */
2836 free(clabel, M_RAIDFRAME);
2837 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2838 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2839 vput(vp);
2840 }
2841 return ac_list;
2842 }
2843
2844 RF_AutoConfig_t *
2845 rf_find_raid_components()
2846 {
2847 struct vnode *vp;
2848 struct disklabel label;
2849 struct device *dv;
2850 dev_t dev;
2851 int bmajor, bminor, wedge;
2852 int error;
2853 int i;
2854 RF_AutoConfig_t *ac_list;
2855
2856
2857 /* initialize the AutoConfig list */
2858 ac_list = NULL;
2859
2860 /* we begin by trolling through *all* the devices on the system */
2861
2862 for (dv = alldevs.tqh_first; dv != NULL;
2863 dv = dv->dv_list.tqe_next) {
2864
2865 /* we are only interested in disks... */
2866 if (device_class(dv) != DV_DISK)
2867 continue;
2868
2869 /* we don't care about floppies... */
2870 if (device_is_a(dv, "fd")) {
2871 continue;
2872 }
2873
2874 /* we don't care about CD's... */
2875 if (device_is_a(dv, "cd")) {
2876 continue;
2877 }
2878
2879 /* hdfd is the Atari/Hades floppy driver */
2880 if (device_is_a(dv, "hdfd")) {
2881 continue;
2882 }
2883
2884 /* fdisa is the Atari/Milan floppy driver */
2885 if (device_is_a(dv, "fdisa")) {
2886 continue;
2887 }
2888
2889 /* need to find the device_name_to_block_device_major stuff */
2890 bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
2891
2892 /* get a vnode for the raw partition of this disk */
2893
2894 wedge = device_is_a(dv, "dk");
2895 bminor = minor(device_unit(dv));
2896 dev = wedge ? makedev(bmajor, bminor) :
2897 MAKEDISKDEV(bmajor, bminor, RAW_PART);
2898 if (bdevvp(dev, &vp))
2899 panic("RAID can't alloc vnode");
2900
2901 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2902
2903 if (error) {
2904 /* "Who cares." Continue looking
2905 for something that exists*/
2906 vput(vp);
2907 continue;
2908 }
2909
2910 if (wedge) {
2911 struct dkwedge_info dkw;
2912 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
2913 NOCRED, 0);
2914 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2915 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2916 vput(vp);
2917 if (error) {
2918 printf("RAIDframe: can't get wedge info for "
2919 "dev %s (%d)\n", dv->dv_xname, error);
2920 continue;
2921 }
2922
2923 if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
2924 continue;
2925
2926 ac_list = rf_get_component(ac_list, dev, vp,
2927 dv->dv_xname, dkw.dkw_size);
2928 continue;
2929 }
2930
2931 /* Ok, the disk exists. Go get the disklabel. */
2932 error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
2933 if (error) {
2934 /*
2935 * XXX can't happen - open() would
2936 * have errored out (or faked up one)
2937 */
2938 if (error != ENOTTY)
2939 printf("RAIDframe: can't get label for dev "
2940 "%s (%d)\n", dv->dv_xname, error);
2941 }
2942
2943 /* don't need this any more. We'll allocate it again
2944 a little later if we really do... */
2945 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2946 VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
2947 vput(vp);
2948
2949 if (error)
2950 continue;
2951
2952 for (i = 0; i < label.d_npartitions; i++) {
2953 char cname[sizeof(ac_list->devname)];
2954
2955 /* We only support partitions marked as RAID */
2956 if (label.d_partitions[i].p_fstype != FS_RAID)
2957 continue;
2958
2959 dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
2960 if (bdevvp(dev, &vp))
2961 panic("RAID can't alloc vnode");
2962
2963 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
2964 if (error) {
2965 /* Whatever... */
2966 vput(vp);
2967 continue;
2968 }
2969 snprintf(cname, sizeof(cname), "%s%c",
2970 dv->dv_xname, 'a' + i);
2971 ac_list = rf_get_component(ac_list, dev, vp, cname,
2972 label.d_partitions[i].p_size);
2973 }
2974 }
2975 return ac_list;
2976 }
2977
2978
2979 static int
2980 rf_reasonable_label(RF_ComponentLabel_t *clabel)
2981 {
2982
2983 if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
2984 (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
2985 ((clabel->clean == RF_RAID_CLEAN) ||
2986 (clabel->clean == RF_RAID_DIRTY)) &&
2987 clabel->row >=0 &&
2988 clabel->column >= 0 &&
2989 clabel->num_rows > 0 &&
2990 clabel->num_columns > 0 &&
2991 clabel->row < clabel->num_rows &&
2992 clabel->column < clabel->num_columns &&
2993 clabel->blockSize > 0 &&
2994 clabel->numBlocks > 0) {
2995 /* label looks reasonable enough... */
2996 return(1);
2997 }
2998 return(0);
2999 }
3000
3001
3002 #ifdef DEBUG
3003 void
3004 rf_print_component_label(RF_ComponentLabel_t *clabel)
3005 {
3006 printf(" Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
3007 clabel->row, clabel->column,
3008 clabel->num_rows, clabel->num_columns);
3009 printf(" Version: %d Serial Number: %d Mod Counter: %d\n",
3010 clabel->version, clabel->serial_number,
3011 clabel->mod_counter);
3012 printf(" Clean: %s Status: %d\n",
3013 clabel->clean ? "Yes" : "No", clabel->status );
3014 printf(" sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
3015 clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
3016 printf(" RAID Level: %c blocksize: %d numBlocks: %d\n",
3017 (char) clabel->parityConfig, clabel->blockSize,
3018 clabel->numBlocks);
3019 printf(" Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
3020 printf(" Contains root partition: %s\n",
3021 clabel->root_partition ? "Yes" : "No" );
3022 printf(" Last configured as: raid%d\n", clabel->last_unit );
3023 #if 0
3024 printf(" Config order: %d\n", clabel->config_order);
3025 #endif
3026
3027 }
3028 #endif
3029
3030 RF_ConfigSet_t *
3031 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
3032 {
3033 RF_AutoConfig_t *ac;
3034 RF_ConfigSet_t *config_sets;
3035 RF_ConfigSet_t *cset;
3036 RF_AutoConfig_t *ac_next;
3037
3038
3039 config_sets = NULL;
3040
3041 /* Go through the AutoConfig list, and figure out which components
3042 belong to what sets. */
3043 ac = ac_list;
3044 while(ac!=NULL) {
3045 /* we're going to putz with ac->next, so save it here
3046 for use at the end of the loop */
3047 ac_next = ac->next;
3048
3049 if (config_sets == NULL) {
3050 /* will need at least this one... */
3051 config_sets = (RF_ConfigSet_t *)
3052 malloc(sizeof(RF_ConfigSet_t),
3053 M_RAIDFRAME, M_NOWAIT);
3054 if (config_sets == NULL) {
3055 panic("rf_create_auto_sets: No memory!");
3056 }
3057 /* this one is easy :) */
3058 config_sets->ac = ac;
3059 config_sets->next = NULL;
3060 config_sets->rootable = 0;
3061 ac->next = NULL;
3062 } else {
3063 /* which set does this component fit into? */
3064 cset = config_sets;
3065 while(cset!=NULL) {
3066 if (rf_does_it_fit(cset, ac)) {
3067 /* looks like it matches... */
3068 ac->next = cset->ac;
3069 cset->ac = ac;
3070 break;
3071 }
3072 cset = cset->next;
3073 }
3074 if (cset==NULL) {
3075 /* didn't find a match above... new set..*/
3076 cset = (RF_ConfigSet_t *)
3077 malloc(sizeof(RF_ConfigSet_t),
3078 M_RAIDFRAME, M_NOWAIT);
3079 if (cset == NULL) {
3080 panic("rf_create_auto_sets: No memory!");
3081 }
3082 cset->ac = ac;
3083 ac->next = NULL;
3084 cset->next = config_sets;
3085 cset->rootable = 0;
3086 config_sets = cset;
3087 }
3088 }
3089 ac = ac_next;
3090 }
3091
3092
3093 return(config_sets);
3094 }
3095
3096 static int
3097 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
3098 {
3099 RF_ComponentLabel_t *clabel1, *clabel2;
3100
3101 /* If this one matches the *first* one in the set, that's good
3102 enough, since the other members of the set would have been
3103 through here too... */
3104 /* note that we are not checking partitionSize here..
3105
3106 Note that we are also not checking the mod_counters here.
3107 If everything else matches execpt the mod_counter, that's
3108 good enough for this test. We will deal with the mod_counters
3109 a little later in the autoconfiguration process.
3110
3111 (clabel1->mod_counter == clabel2->mod_counter) &&
3112
3113 The reason we don't check for this is that failed disks
3114 will have lower modification counts. If those disks are
3115 not added to the set they used to belong to, then they will
3116 form their own set, which may result in 2 different sets,
3117 for example, competing to be configured at raid0, and
3118 perhaps competing to be the root filesystem set. If the
3119 wrong ones get configured, or both attempt to become /,
3120 weird behaviour and or serious lossage will occur. Thus we
3121 need to bring them into the fold here, and kick them out at
3122 a later point.
3123
3124 */
3125
3126 clabel1 = cset->ac->clabel;
3127 clabel2 = ac->clabel;
3128 if ((clabel1->version == clabel2->version) &&
3129 (clabel1->serial_number == clabel2->serial_number) &&
3130 (clabel1->num_rows == clabel2->num_rows) &&
3131 (clabel1->num_columns == clabel2->num_columns) &&
3132 (clabel1->sectPerSU == clabel2->sectPerSU) &&
3133 (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
3134 (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
3135 (clabel1->parityConfig == clabel2->parityConfig) &&
3136 (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
3137 (clabel1->blockSize == clabel2->blockSize) &&
3138 (clabel1->numBlocks == clabel2->numBlocks) &&
3139 (clabel1->autoconfigure == clabel2->autoconfigure) &&
3140 (clabel1->root_partition == clabel2->root_partition) &&
3141 (clabel1->last_unit == clabel2->last_unit) &&
3142 (clabel1->config_order == clabel2->config_order)) {
3143 /* if it get's here, it almost *has* to be a match */
3144 } else {
3145 /* it's not consistent with somebody in the set..
3146 punt */
3147 return(0);
3148 }
3149 /* all was fine.. it must fit... */
3150 return(1);
3151 }
3152
3153 int
3154 rf_have_enough_components(RF_ConfigSet_t *cset)
3155 {
3156 RF_AutoConfig_t *ac;
3157 RF_AutoConfig_t *auto_config;
3158 RF_ComponentLabel_t *clabel;
3159 int c;
3160 int num_cols;
3161 int num_missing;
3162 int mod_counter;
3163 int mod_counter_found;
3164 int even_pair_failed;
3165 char parity_type;
3166
3167
3168 /* check to see that we have enough 'live' components
3169 of this set. If so, we can configure it if necessary */
3170
3171 num_cols = cset->ac->clabel->num_columns;
3172 parity_type = cset->ac->clabel->parityConfig;
3173
3174 /* XXX Check for duplicate components!?!?!? */
3175
3176 /* Determine what the mod_counter is supposed to be for this set. */
3177
3178 mod_counter_found = 0;
3179 mod_counter = 0;
3180 ac = cset->ac;
3181 while(ac!=NULL) {
3182 if (mod_counter_found==0) {
3183 mod_counter = ac->clabel->mod_counter;
3184 mod_counter_found = 1;
3185 } else {
3186 if (ac->clabel->mod_counter > mod_counter) {
3187 mod_counter = ac->clabel->mod_counter;
3188 }
3189 }
3190 ac = ac->next;
3191 }
3192
3193 num_missing = 0;
3194 auto_config = cset->ac;
3195
3196 even_pair_failed = 0;
3197 for(c=0; c<num_cols; c++) {
3198 ac = auto_config;
3199 while(ac!=NULL) {
3200 if ((ac->clabel->column == c) &&
3201 (ac->clabel->mod_counter == mod_counter)) {
3202 /* it's this one... */
3203 #ifdef DEBUG
3204 printf("Found: %s at %d\n",
3205 ac->devname,c);
3206 #endif
3207 break;
3208 }
3209 ac=ac->next;
3210 }
3211 if (ac==NULL) {
3212 /* Didn't find one here! */
3213 /* special case for RAID 1, especially
3214 where there are more than 2
3215 components (where RAIDframe treats
3216 things a little differently :( ) */
3217 if (parity_type == '1') {
3218 if (c%2 == 0) { /* even component */
3219 even_pair_failed = 1;
3220 } else { /* odd component. If
3221 we're failed, and
3222 so is the even
3223 component, it's
3224 "Good Night, Charlie" */
3225 if (even_pair_failed == 1) {
3226 return(0);
3227 }
3228 }
3229 } else {
3230 /* normal accounting */
3231 num_missing++;
3232 }
3233 }
3234 if ((parity_type == '1') && (c%2 == 1)) {
3235 /* Just did an even component, and we didn't
3236 bail.. reset the even_pair_failed flag,
3237 and go on to the next component.... */
3238 even_pair_failed = 0;
3239 }
3240 }
3241
3242 clabel = cset->ac->clabel;
3243
3244 if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
3245 ((clabel->parityConfig == '4') && (num_missing > 1)) ||
3246 ((clabel->parityConfig == '5') && (num_missing > 1))) {
3247 /* XXX this needs to be made *much* more general */
3248 /* Too many failures */
3249 return(0);
3250 }
3251 /* otherwise, all is well, and we've got enough to take a kick
3252 at autoconfiguring this set */
3253 return(1);
3254 }
3255
3256 void
3257 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
3258 RF_Raid_t *raidPtr)
3259 {
3260 RF_ComponentLabel_t *clabel;
3261 int i;
3262
3263 clabel = ac->clabel;
3264
3265 /* 1. Fill in the common stuff */
3266 config->numRow = clabel->num_rows = 1;
3267 config->numCol = clabel->num_columns;
3268 config->numSpare = 0; /* XXX should this be set here? */
3269 config->sectPerSU = clabel->sectPerSU;
3270 config->SUsPerPU = clabel->SUsPerPU;
3271 config->SUsPerRU = clabel->SUsPerRU;
3272 config->parityConfig = clabel->parityConfig;
3273 /* XXX... */
3274 strcpy(config->diskQueueType,"fifo");
3275 config->maxOutstandingDiskReqs = clabel->maxOutstanding;
3276 config->layoutSpecificSize = 0; /* XXX ?? */
3277
3278 while(ac!=NULL) {
3279 /* row/col values will be in range due to the checks
3280 in reasonable_label() */
3281 strcpy(config->devnames[0][ac->clabel->column],
3282 ac->devname);
3283 ac = ac->next;
3284 }
3285
3286 for(i=0;i<RF_MAXDBGV;i++) {
3287 config->debugVars[i][0] = 0;
3288 }
3289 }
3290
3291 int
3292 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
3293 {
3294 RF_ComponentLabel_t clabel;
3295 struct vnode *vp;
3296 dev_t dev;
3297 int column;
3298 int sparecol;
3299
3300 raidPtr->autoconfigure = new_value;
3301
3302 for(column=0; column<raidPtr->numCol; column++) {
3303 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3304 dev = raidPtr->Disks[column].dev;
3305 vp = raidPtr->raid_cinfo[column].ci_vp;
3306 raidread_component_label(dev, vp, &clabel);
3307 clabel.autoconfigure = new_value;
3308 raidwrite_component_label(dev, vp, &clabel);
3309 }
3310 }
3311 for(column = 0; column < raidPtr->numSpare ; column++) {
3312 sparecol = raidPtr->numCol + column;
3313 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3314 dev = raidPtr->Disks[sparecol].dev;
3315 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3316 raidread_component_label(dev, vp, &clabel);
3317 clabel.autoconfigure = new_value;
3318 raidwrite_component_label(dev, vp, &clabel);
3319 }
3320 }
3321 return(new_value);
3322 }
3323
3324 int
3325 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
3326 {
3327 RF_ComponentLabel_t clabel;
3328 struct vnode *vp;
3329 dev_t dev;
3330 int column;
3331 int sparecol;
3332
3333 raidPtr->root_partition = new_value;
3334 for(column=0; column<raidPtr->numCol; column++) {
3335 if (raidPtr->Disks[column].status == rf_ds_optimal) {
3336 dev = raidPtr->Disks[column].dev;
3337 vp = raidPtr->raid_cinfo[column].ci_vp;
3338 raidread_component_label(dev, vp, &clabel);
3339 clabel.root_partition = new_value;
3340 raidwrite_component_label(dev, vp, &clabel);
3341 }
3342 }
3343 for(column = 0; column < raidPtr->numSpare ; column++) {
3344 sparecol = raidPtr->numCol + column;
3345 if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
3346 dev = raidPtr->Disks[sparecol].dev;
3347 vp = raidPtr->raid_cinfo[sparecol].ci_vp;
3348 raidread_component_label(dev, vp, &clabel);
3349 clabel.root_partition = new_value;
3350 raidwrite_component_label(dev, vp, &clabel);
3351 }
3352 }
3353 return(new_value);
3354 }
3355
3356 void
3357 rf_release_all_vps(RF_ConfigSet_t *cset)
3358 {
3359 RF_AutoConfig_t *ac;
3360
3361 ac = cset->ac;
3362 while(ac!=NULL) {
3363 /* Close the vp, and give it back */
3364 if (ac->vp) {
3365 vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
3366 VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
3367 vput(ac->vp);
3368 ac->vp = NULL;
3369 }
3370 ac = ac->next;
3371 }
3372 }
3373
3374
3375 void
3376 rf_cleanup_config_set(RF_ConfigSet_t *cset)
3377 {
3378 RF_AutoConfig_t *ac;
3379 RF_AutoConfig_t *next_ac;
3380
3381 ac = cset->ac;
3382 while(ac!=NULL) {
3383 next_ac = ac->next;
3384 /* nuke the label */
3385 free(ac->clabel, M_RAIDFRAME);
3386 /* cleanup the config structure */
3387 free(ac, M_RAIDFRAME);
3388 /* "next.." */
3389 ac = next_ac;
3390 }
3391 /* and, finally, nuke the config set */
3392 free(cset, M_RAIDFRAME);
3393 }
3394
3395
3396 void
3397 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
3398 {
3399 /* current version number */
3400 clabel->version = RF_COMPONENT_LABEL_VERSION;
3401 clabel->serial_number = raidPtr->serial_number;
3402 clabel->mod_counter = raidPtr->mod_counter;
3403 clabel->num_rows = 1;
3404 clabel->num_columns = raidPtr->numCol;
3405 clabel->clean = RF_RAID_DIRTY; /* not clean */
3406 clabel->status = rf_ds_optimal; /* "It's good!" */
3407
3408 clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
3409 clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
3410 clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
3411
3412 clabel->blockSize = raidPtr->bytesPerSector;
3413 clabel->numBlocks = raidPtr->sectorsPerDisk;
3414
3415 /* XXX not portable */
3416 clabel->parityConfig = raidPtr->Layout.map->parityConfig;
3417 clabel->maxOutstanding = raidPtr->maxOutstanding;
3418 clabel->autoconfigure = raidPtr->autoconfigure;
3419 clabel->root_partition = raidPtr->root_partition;
3420 clabel->last_unit = raidPtr->raidid;
3421 clabel->config_order = raidPtr->config_order;
3422 }
3423
3424 int
3425 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
3426 {
3427 RF_Raid_t *raidPtr;
3428 RF_Config_t *config;
3429 int raidID;
3430 int retcode;
3431
3432 #ifdef DEBUG
3433 printf("RAID autoconfigure\n");
3434 #endif
3435
3436 retcode = 0;
3437 *unit = -1;
3438
3439 /* 1. Create a config structure */
3440
3441 config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
3442 M_RAIDFRAME,
3443 M_NOWAIT);
3444 if (config==NULL) {
3445 printf("Out of mem!?!?\n");
3446 /* XXX do something more intelligent here. */
3447 return(1);
3448 }
3449
3450 memset(config, 0, sizeof(RF_Config_t));
3451
3452 /*
3453 2. Figure out what RAID ID this one is supposed to live at
3454 See if we can get the same RAID dev that it was configured
3455 on last time..
3456 */
3457
3458 raidID = cset->ac->clabel->last_unit;
3459 if ((raidID < 0) || (raidID >= numraid)) {
3460 /* let's not wander off into lala land. */
3461 raidID = numraid - 1;
3462 }
3463 if (raidPtrs[raidID]->valid != 0) {
3464
3465 /*
3466 Nope... Go looking for an alternative...
3467 Start high so we don't immediately use raid0 if that's
3468 not taken.
3469 */
3470
3471 for(raidID = numraid - 1; raidID >= 0; raidID--) {
3472 if (raidPtrs[raidID]->valid == 0) {
3473 /* can use this one! */
3474 break;
3475 }
3476 }
3477 }
3478
3479 if (raidID < 0) {
3480 /* punt... */
3481 printf("Unable to auto configure this set!\n");
3482 printf("(Out of RAID devs!)\n");
3483 free(config, M_RAIDFRAME);
3484 return(1);
3485 }
3486
3487 #ifdef DEBUG
3488 printf("Configuring raid%d:\n",raidID);
3489 #endif
3490
3491 raidPtr = raidPtrs[raidID];
3492
3493 /* XXX all this stuff should be done SOMEWHERE ELSE! */
3494 raidPtr->raidid = raidID;
3495 raidPtr->openings = RAIDOUTSTANDING;
3496
3497 /* 3. Build the configuration structure */
3498 rf_create_configuration(cset->ac, config, raidPtr);
3499
3500 /* 4. Do the configuration */
3501 retcode = rf_Configure(raidPtr, config, cset->ac);
3502
3503 if (retcode == 0) {
3504
3505 raidinit(raidPtrs[raidID]);
3506
3507 rf_markalldirty(raidPtrs[raidID]);
3508 raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
3509 if (cset->ac->clabel->root_partition==1) {
3510 /* everything configured just fine. Make a note
3511 that this set is eligible to be root. */
3512 cset->rootable = 1;
3513 /* XXX do this here? */
3514 raidPtrs[raidID]->root_partition = 1;
3515 }
3516 }
3517
3518 /* 5. Cleanup */
3519 free(config, M_RAIDFRAME);
3520
3521 *unit = raidID;
3522 return(retcode);
3523 }
3524
3525 void
3526 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
3527 {
3528 struct buf *bp;
3529
3530 bp = (struct buf *)desc->bp;
3531 disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
3532 (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
3533 }
3534
3535 void
3536 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
3537 size_t xmin, size_t xmax)
3538 {
3539 pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
3540 pool_sethiwat(p, xmax);
3541 pool_prime(p, xmin);
3542 pool_setlowat(p, xmin);
3543 }
3544
3545 /*
3546 * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
3547 * if there is IO pending and if that IO could possibly be done for a
3548 * given RAID set. Returns 0 if IO is waiting and can be done, 1
3549 * otherwise.
3550 *
3551 */
3552
3553 int
3554 rf_buf_queue_check(int raidid)
3555 {
3556 if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
3557 raidPtrs[raidid]->openings > 0) {
3558 /* there is work to do */
3559 return 0;
3560 }
3561 /* default is nothing to do */
3562 return 1;
3563 }
3564
3565 int
3566 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
3567 {
3568 struct partinfo dpart;
3569 struct dkwedge_info dkw;
3570 int error;
3571
3572 error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
3573 if (error == 0) {
3574 diskPtr->blockSize = dpart.disklab->d_secsize;
3575 diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
3576 diskPtr->partitionSize = dpart.part->p_size;
3577 return 0;
3578 }
3579
3580 error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
3581 if (error == 0) {
3582 diskPtr->blockSize = 512; /* XXX */
3583 diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
3584 diskPtr->partitionSize = dkw.dkw_size;
3585 return 0;
3586 }
3587 return error;
3588 }
3589
3590 static int
3591 raid_match(struct device *self, struct cfdata *cfdata,
3592 void *aux)
3593 {
3594 return 1;
3595 }
3596
3597 static void
3598 raid_attach(struct device *parent, struct device *self,
3599 void *aux)
3600 {
3601
3602 }
3603
3604
3605 static int
3606 raid_detach(struct device *self, int flags)
3607 {
3608 struct raid_softc *rs = (struct raid_softc *)self;
3609
3610 if (rs->sc_flags & RAIDF_INITED)
3611 return EBUSY;
3612
3613 return 0;
3614 }
3615
3616
3617