Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.229
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.229 2007/07/18 19:04:58 ad Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.229 2007/07/18 19:04:58 ad Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 static int raid_match(struct device *, struct cfdata *, void *);
    218 static void raid_attach(struct device *, struct device *, void *);
    219 static int raid_detach(struct device *, int);
    220 
    221 dev_type_open(raidopen);
    222 dev_type_close(raidclose);
    223 dev_type_read(raidread);
    224 dev_type_write(raidwrite);
    225 dev_type_ioctl(raidioctl);
    226 dev_type_strategy(raidstrategy);
    227 dev_type_dump(raiddump);
    228 dev_type_size(raidsize);
    229 
    230 const struct bdevsw raid_bdevsw = {
    231 	raidopen, raidclose, raidstrategy, raidioctl,
    232 	raiddump, raidsize, D_DISK
    233 };
    234 
    235 const struct cdevsw raid_cdevsw = {
    236 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    237 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    238 };
    239 
    240 /* XXX Not sure if the following should be replacing the raidPtrs above,
    241    or if it should be used in conjunction with that...
    242 */
    243 
    244 struct raid_softc {
    245 	struct device *sc_dev;
    246 	int     sc_flags;	/* flags */
    247 	int     sc_cflags;	/* configuration flags */
    248 	uint64_t sc_size;	/* size of the raid device */
    249 	char    sc_xname[20];	/* XXX external name */
    250 	struct disk sc_dkdev;	/* generic disk device info */
    251 	struct bufq_state *buf_queue;	/* used for the device queue */
    252 };
    253 /* sc_flags */
    254 #define RAIDF_INITED	0x01	/* unit has been initialized */
    255 #define RAIDF_WLABEL	0x02	/* label area is writable */
    256 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    257 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    258 #define RAIDF_LOCKED	0x80	/* unit is locked */
    259 
    260 #define	raidunit(x)	DISKUNIT(x)
    261 int numraid = 0;
    262 
    263 extern struct cfdriver raid_cd;
    264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
    265     raid_match, raid_attach, raid_detach, NULL);
    266 
    267 /*
    268  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    269  * Be aware that large numbers can allow the driver to consume a lot of
    270  * kernel memory, especially on writes, and in degraded mode reads.
    271  *
    272  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    273  * a single 64K write will typically require 64K for the old data,
    274  * 64K for the old parity, and 64K for the new parity, for a total
    275  * of 192K (if the parity buffer is not re-used immediately).
    276  * Even it if is used immediately, that's still 128K, which when multiplied
    277  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    278  *
    279  * Now in degraded mode, for example, a 64K read on the above setup may
    280  * require data reconstruction, which will require *all* of the 4 remaining
    281  * disks to participate -- 4 * 32K/disk == 128K again.
    282  */
    283 
    284 #ifndef RAIDOUTSTANDING
    285 #define RAIDOUTSTANDING   6
    286 #endif
    287 
    288 #define RAIDLABELDEV(dev)	\
    289 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    290 
    291 /* declared here, and made public, for the benefit of KVM stuff.. */
    292 struct raid_softc *raid_softc;
    293 
    294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    295 				     struct disklabel *);
    296 static void raidgetdisklabel(dev_t);
    297 static void raidmakedisklabel(struct raid_softc *);
    298 
    299 static int raidlock(struct raid_softc *);
    300 static void raidunlock(struct raid_softc *);
    301 
    302 static void rf_markalldirty(RF_Raid_t *);
    303 
    304 void rf_ReconThread(struct rf_recon_req *);
    305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    306 void rf_CopybackThread(RF_Raid_t *raidPtr);
    307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    308 int rf_autoconfig(struct device *self);
    309 void rf_buildroothack(RF_ConfigSet_t *);
    310 
    311 RF_AutoConfig_t *rf_find_raid_components(void);
    312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    314 static int rf_reasonable_label(RF_ComponentLabel_t *);
    315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    316 int rf_set_autoconfig(RF_Raid_t *, int);
    317 int rf_set_rootpartition(RF_Raid_t *, int);
    318 void rf_release_all_vps(RF_ConfigSet_t *);
    319 void rf_cleanup_config_set(RF_ConfigSet_t *);
    320 int rf_have_enough_components(RF_ConfigSet_t *);
    321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    322 
    323 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    324 				  allow autoconfig to take place.
    325 				  Note that this is overridden by having
    326 				  RAID_AUTOCONFIG as an option in the
    327 				  kernel config file.  */
    328 
    329 struct RF_Pools_s rf_pools;
    330 
    331 void
    332 raidattach(int num)
    333 {
    334 	int raidID;
    335 	int i, rc;
    336 
    337 #ifdef DEBUG
    338 	printf("raidattach: Asked for %d units\n", num);
    339 #endif
    340 
    341 	if (num <= 0) {
    342 #ifdef DIAGNOSTIC
    343 		panic("raidattach: count <= 0");
    344 #endif
    345 		return;
    346 	}
    347 	/* This is where all the initialization stuff gets done. */
    348 
    349 	numraid = num;
    350 
    351 	/* Make some space for requested number of units... */
    352 
    353 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    354 	if (raidPtrs == NULL) {
    355 		panic("raidPtrs is NULL!!");
    356 	}
    357 
    358 	rf_mutex_init(&rf_sparet_wait_mutex);
    359 
    360 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    361 
    362 	for (i = 0; i < num; i++)
    363 		raidPtrs[i] = NULL;
    364 	rc = rf_BootRaidframe();
    365 	if (rc == 0)
    366 		printf("Kernelized RAIDframe activated\n");
    367 	else
    368 		panic("Serious error booting RAID!!");
    369 
    370 	/* put together some datastructures like the CCD device does.. This
    371 	 * lets us lock the device and what-not when it gets opened. */
    372 
    373 	raid_softc = (struct raid_softc *)
    374 		malloc(num * sizeof(struct raid_softc),
    375 		       M_RAIDFRAME, M_NOWAIT);
    376 	if (raid_softc == NULL) {
    377 		printf("WARNING: no memory for RAIDframe driver\n");
    378 		return;
    379 	}
    380 
    381 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    382 
    383 	for (raidID = 0; raidID < num; raidID++) {
    384 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    385 
    386 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    387 			  (RF_Raid_t *));
    388 		if (raidPtrs[raidID] == NULL) {
    389 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    390 			numraid = raidID;
    391 			return;
    392 		}
    393 	}
    394 
    395 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    396 		printf("config_cfattach_attach failed?\n");
    397 	}
    398 
    399 #ifdef RAID_AUTOCONFIG
    400 	raidautoconfig = 1;
    401 #endif
    402 
    403 	/*
    404 	 * Register a finalizer which will be used to auto-config RAID
    405 	 * sets once all real hardware devices have been found.
    406 	 */
    407 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    408 		printf("WARNING: unable to register RAIDframe finalizer\n");
    409 }
    410 
    411 int
    412 rf_autoconfig(struct device *self)
    413 {
    414 	RF_AutoConfig_t *ac_list;
    415 	RF_ConfigSet_t *config_sets;
    416 	int i;
    417 
    418 	if (raidautoconfig == 0)
    419 		return (0);
    420 
    421 	/* XXX This code can only be run once. */
    422 	raidautoconfig = 0;
    423 
    424 	/* 1. locate all RAID components on the system */
    425 #ifdef DEBUG
    426 	printf("Searching for RAID components...\n");
    427 #endif
    428 	ac_list = rf_find_raid_components();
    429 
    430 	/* 2. Sort them into their respective sets. */
    431 	config_sets = rf_create_auto_sets(ac_list);
    432 
    433 	/*
    434 	 * 3. Evaluate each set andconfigure the valid ones.
    435 	 * This gets done in rf_buildroothack().
    436 	 */
    437 	rf_buildroothack(config_sets);
    438 
    439 	for (i = 0; i < numraid; i++)
    440 		if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
    441 			dkwedge_discover(&raid_softc[i].sc_dkdev);
    442 
    443 	return 1;
    444 }
    445 
    446 void
    447 rf_buildroothack(RF_ConfigSet_t *config_sets)
    448 {
    449 	RF_ConfigSet_t *cset;
    450 	RF_ConfigSet_t *next_cset;
    451 	int retcode;
    452 	int raidID;
    453 	int rootID;
    454 	int col;
    455 	int num_root;
    456 	char *devname;
    457 
    458 	rootID = 0;
    459 	num_root = 0;
    460 	cset = config_sets;
    461 	while(cset != NULL ) {
    462 		next_cset = cset->next;
    463 		if (rf_have_enough_components(cset) &&
    464 		    cset->ac->clabel->autoconfigure==1) {
    465 			retcode = rf_auto_config_set(cset,&raidID);
    466 			if (!retcode) {
    467 #ifdef DEBUG
    468 				printf("raid%d: configured ok\n", raidID);
    469 #endif
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #ifdef DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 #ifdef DEBUG
    483 			printf("raid%d: not enough components\n", raidID);
    484 #endif
    485 			/* we're not autoconfiguring this set...
    486 			   release the associated resources */
    487 			rf_release_all_vps(cset);
    488 		}
    489 		/* cleanup */
    490 		rf_cleanup_config_set(cset);
    491 		cset = next_cset;
    492 	}
    493 
    494 	/* if the user has specified what the root device should be
    495 	   then we don't touch booted_device or boothowto... */
    496 
    497 	if (rootspec != NULL)
    498 		return;
    499 
    500 	/* we found something bootable... */
    501 
    502 	if (num_root == 1) {
    503 		booted_device = raid_softc[rootID].sc_dev;
    504 	} else if (num_root > 1) {
    505 
    506 		/*
    507 		 * Maybe the MD code can help. If it cannot, then
    508 		 * setroot() will discover that we have no
    509 		 * booted_device and will ask the user if nothing was
    510 		 * hardwired in the kernel config file
    511 		 */
    512 
    513 		if (booted_device == NULL)
    514 			cpu_rootconf();
    515 		if (booted_device == NULL)
    516 			return;
    517 
    518 		num_root = 0;
    519 		for (raidID = 0; raidID < numraid; raidID++) {
    520 			if (raidPtrs[raidID]->valid == 0)
    521 				continue;
    522 
    523 			if (raidPtrs[raidID]->root_partition == 0)
    524 				continue;
    525 
    526 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    527 				devname = raidPtrs[raidID]->Disks[col].devname;
    528 				devname += sizeof("/dev/") - 1;
    529 				if (strncmp(devname, booted_device->dv_xname,
    530 					    strlen(booted_device->dv_xname)) != 0)
    531 					continue;
    532 #ifdef DEBUG
    533 				printf("raid%d includes boot device %s\n",
    534 				       raidID, devname);
    535 #endif
    536 				num_root++;
    537 				rootID = raidID;
    538 			}
    539 		}
    540 
    541 		if (num_root == 1) {
    542 			booted_device = raid_softc[rootID].sc_dev;
    543 		} else {
    544 			/* we can't guess.. require the user to answer... */
    545 			boothowto |= RB_ASKNAME;
    546 		}
    547 	}
    548 }
    549 
    550 
    551 int
    552 raidsize(dev_t dev)
    553 {
    554 	struct raid_softc *rs;
    555 	struct disklabel *lp;
    556 	int     part, unit, omask, size;
    557 
    558 	unit = raidunit(dev);
    559 	if (unit >= numraid)
    560 		return (-1);
    561 	rs = &raid_softc[unit];
    562 
    563 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    564 		return (-1);
    565 
    566 	part = DISKPART(dev);
    567 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    568 	lp = rs->sc_dkdev.dk_label;
    569 
    570 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    571 		return (-1);
    572 
    573 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    574 		size = -1;
    575 	else
    576 		size = lp->d_partitions[part].p_size *
    577 		    (lp->d_secsize / DEV_BSIZE);
    578 
    579 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    580 		return (-1);
    581 
    582 	return (size);
    583 
    584 }
    585 
    586 int
    587 raiddump(dev_t dev, daddr_t blkno, void *va,
    588     size_t  size)
    589 {
    590 	/* Not implemented. */
    591 	return ENXIO;
    592 }
    593 /* ARGSUSED */
    594 int
    595 raidopen(dev_t dev, int flags, int fmt,
    596     struct lwp *l)
    597 {
    598 	int     unit = raidunit(dev);
    599 	struct raid_softc *rs;
    600 	struct disklabel *lp;
    601 	int     part, pmask;
    602 	int     error = 0;
    603 
    604 	if (unit >= numraid)
    605 		return (ENXIO);
    606 	rs = &raid_softc[unit];
    607 
    608 	if ((error = raidlock(rs)) != 0)
    609 		return (error);
    610 	lp = rs->sc_dkdev.dk_label;
    611 
    612 	part = DISKPART(dev);
    613 
    614 	/*
    615 	 * If there are wedges, and this is not RAW_PART, then we
    616 	 * need to fail.
    617 	 */
    618 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    619 		error = EBUSY;
    620 		goto bad;
    621 	}
    622 	pmask = (1 << part);
    623 
    624 	if ((rs->sc_flags & RAIDF_INITED) &&
    625 	    (rs->sc_dkdev.dk_openmask == 0))
    626 		raidgetdisklabel(dev);
    627 
    628 	/* make sure that this partition exists */
    629 
    630 	if (part != RAW_PART) {
    631 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    632 		    ((part >= lp->d_npartitions) ||
    633 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    634 			error = ENXIO;
    635 			goto bad;
    636 		}
    637 	}
    638 	/* Prevent this unit from being unconfigured while open. */
    639 	switch (fmt) {
    640 	case S_IFCHR:
    641 		rs->sc_dkdev.dk_copenmask |= pmask;
    642 		break;
    643 
    644 	case S_IFBLK:
    645 		rs->sc_dkdev.dk_bopenmask |= pmask;
    646 		break;
    647 	}
    648 
    649 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    650 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    651 		/* First one... mark things as dirty... Note that we *MUST*
    652 		 have done a configure before this.  I DO NOT WANT TO BE
    653 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    654 		 THAT THEY BELONG TOGETHER!!!!! */
    655 		/* XXX should check to see if we're only open for reading
    656 		   here... If so, we needn't do this, but then need some
    657 		   other way of keeping track of what's happened.. */
    658 
    659 		rf_markalldirty( raidPtrs[unit] );
    660 	}
    661 
    662 
    663 	rs->sc_dkdev.dk_openmask =
    664 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    665 
    666 bad:
    667 	raidunlock(rs);
    668 
    669 	return (error);
    670 
    671 
    672 }
    673 /* ARGSUSED */
    674 int
    675 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    676 {
    677 	int     unit = raidunit(dev);
    678 	struct cfdata *cf;
    679 	struct raid_softc *rs;
    680 	int     error = 0;
    681 	int     part;
    682 
    683 	if (unit >= numraid)
    684 		return (ENXIO);
    685 	rs = &raid_softc[unit];
    686 
    687 	if ((error = raidlock(rs)) != 0)
    688 		return (error);
    689 
    690 	part = DISKPART(dev);
    691 
    692 	/* ...that much closer to allowing unconfiguration... */
    693 	switch (fmt) {
    694 	case S_IFCHR:
    695 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    696 		break;
    697 
    698 	case S_IFBLK:
    699 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    700 		break;
    701 	}
    702 	rs->sc_dkdev.dk_openmask =
    703 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    704 
    705 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    706 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    707 		/* Last one... device is not unconfigured yet.
    708 		   Device shutdown has taken care of setting the
    709 		   clean bits if RAIDF_INITED is not set
    710 		   mark things as clean... */
    711 
    712 		rf_update_component_labels(raidPtrs[unit],
    713 						 RF_FINAL_COMPONENT_UPDATE);
    714 		if (doing_shutdown) {
    715 			/* last one, and we're going down, so
    716 			   lights out for this RAID set too. */
    717 			error = rf_Shutdown(raidPtrs[unit]);
    718 
    719 			/* It's no longer initialized... */
    720 			rs->sc_flags &= ~RAIDF_INITED;
    721 
    722 			/* detach the device */
    723 
    724 			cf = device_cfdata(rs->sc_dev);
    725 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    726 			free(cf, M_RAIDFRAME);
    727 
    728 			/* Detach the disk. */
    729 			pseudo_disk_detach(&rs->sc_dkdev);
    730 		}
    731 	}
    732 
    733 	raidunlock(rs);
    734 	return (0);
    735 
    736 }
    737 
    738 void
    739 raidstrategy(struct buf *bp)
    740 {
    741 	int s;
    742 
    743 	unsigned int raidID = raidunit(bp->b_dev);
    744 	RF_Raid_t *raidPtr;
    745 	struct raid_softc *rs = &raid_softc[raidID];
    746 	int     wlabel;
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    749 		bp->b_error = ENXIO;
    750 		bp->b_flags |= B_ERROR;
    751 		goto done;
    752 	}
    753 	if (raidID >= numraid || !raidPtrs[raidID]) {
    754 		bp->b_error = ENODEV;
    755 		bp->b_flags |= B_ERROR;
    756 		goto done;
    757 	}
    758 	raidPtr = raidPtrs[raidID];
    759 	if (!raidPtr->valid) {
    760 		bp->b_error = ENODEV;
    761 		bp->b_flags |= B_ERROR;
    762 		goto done;
    763 	}
    764 	if (bp->b_bcount == 0) {
    765 		db1_printf(("b_bcount is zero..\n"));
    766 		goto done;
    767 	}
    768 
    769 	/*
    770 	 * Do bounds checking and adjust transfer.  If there's an
    771 	 * error, the bounds check will flag that for us.
    772 	 */
    773 
    774 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    775 	if (DISKPART(bp->b_dev) == RAW_PART) {
    776 		uint64_t size; /* device size in DEV_BSIZE unit */
    777 
    778 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    779 			size = raidPtr->totalSectors <<
    780 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    781 		} else {
    782 			size = raidPtr->totalSectors >>
    783 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    784 		}
    785 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    786 			goto done;
    787 		}
    788 	} else {
    789 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    790 			db1_printf(("Bounds check failed!!:%d %d\n",
    791 				(int) bp->b_blkno, (int) wlabel));
    792 			goto done;
    793 		}
    794 	}
    795 	s = splbio();
    796 
    797 	bp->b_resid = 0;
    798 
    799 	/* stuff it onto our queue */
    800 	BUFQ_PUT(rs->buf_queue, bp);
    801 
    802 	/* scheduled the IO to happen at the next convenient time */
    803 	wakeup(&(raidPtrs[raidID]->iodone));
    804 
    805 	splx(s);
    806 	return;
    807 
    808 done:
    809 	bp->b_resid = bp->b_bcount;
    810 	biodone(bp);
    811 }
    812 /* ARGSUSED */
    813 int
    814 raidread(dev_t dev, struct uio *uio, int flags)
    815 {
    816 	int     unit = raidunit(dev);
    817 	struct raid_softc *rs;
    818 
    819 	if (unit >= numraid)
    820 		return (ENXIO);
    821 	rs = &raid_softc[unit];
    822 
    823 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    824 		return (ENXIO);
    825 
    826 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    827 
    828 }
    829 /* ARGSUSED */
    830 int
    831 raidwrite(dev_t dev, struct uio *uio, int flags)
    832 {
    833 	int     unit = raidunit(dev);
    834 	struct raid_softc *rs;
    835 
    836 	if (unit >= numraid)
    837 		return (ENXIO);
    838 	rs = &raid_softc[unit];
    839 
    840 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    841 		return (ENXIO);
    842 
    843 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    844 
    845 }
    846 
    847 int
    848 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    849 {
    850 	int     unit = raidunit(dev);
    851 	int     error = 0;
    852 	int     part, pmask;
    853 	struct cfdata *cf;
    854 	struct raid_softc *rs;
    855 	RF_Config_t *k_cfg, *u_cfg;
    856 	RF_Raid_t *raidPtr;
    857 	RF_RaidDisk_t *diskPtr;
    858 	RF_AccTotals_t *totals;
    859 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    860 	u_char *specific_buf;
    861 	int retcode = 0;
    862 	int column;
    863 	int raidid;
    864 	struct rf_recon_req *rrcopy, *rr;
    865 	RF_ComponentLabel_t *clabel;
    866 	RF_ComponentLabel_t *ci_label;
    867 	RF_ComponentLabel_t **clabel_ptr;
    868 	RF_SingleComponent_t *sparePtr,*componentPtr;
    869 	RF_SingleComponent_t component;
    870 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    871 	int i, j, d;
    872 #ifdef __HAVE_OLD_DISKLABEL
    873 	struct disklabel newlabel;
    874 #endif
    875 	struct dkwedge_info *dkw;
    876 
    877 	if (unit >= numraid)
    878 		return (ENXIO);
    879 	rs = &raid_softc[unit];
    880 	raidPtr = raidPtrs[unit];
    881 
    882 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    883 		(int) DISKPART(dev), (int) unit, (int) cmd));
    884 
    885 	/* Must be open for writes for these commands... */
    886 	switch (cmd) {
    887 #ifdef DIOCGSECTORSIZE
    888 	case DIOCGSECTORSIZE:
    889 		*(u_int *)data = raidPtr->bytesPerSector;
    890 		return 0;
    891 	case DIOCGMEDIASIZE:
    892 		*(off_t *)data =
    893 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
    894 		return 0;
    895 #endif
    896 	case DIOCSDINFO:
    897 	case DIOCWDINFO:
    898 #ifdef __HAVE_OLD_DISKLABEL
    899 	case ODIOCWDINFO:
    900 	case ODIOCSDINFO:
    901 #endif
    902 	case DIOCWLABEL:
    903 	case DIOCAWEDGE:
    904 	case DIOCDWEDGE:
    905 		if ((flag & FWRITE) == 0)
    906 			return (EBADF);
    907 	}
    908 
    909 	/* Must be initialized for these... */
    910 	switch (cmd) {
    911 	case DIOCGDINFO:
    912 	case DIOCSDINFO:
    913 	case DIOCWDINFO:
    914 #ifdef __HAVE_OLD_DISKLABEL
    915 	case ODIOCGDINFO:
    916 	case ODIOCWDINFO:
    917 	case ODIOCSDINFO:
    918 	case ODIOCGDEFLABEL:
    919 #endif
    920 	case DIOCGPART:
    921 	case DIOCWLABEL:
    922 	case DIOCGDEFLABEL:
    923 	case DIOCAWEDGE:
    924 	case DIOCDWEDGE:
    925 	case DIOCLWEDGES:
    926 	case RAIDFRAME_SHUTDOWN:
    927 	case RAIDFRAME_REWRITEPARITY:
    928 	case RAIDFRAME_GET_INFO:
    929 	case RAIDFRAME_RESET_ACCTOTALS:
    930 	case RAIDFRAME_GET_ACCTOTALS:
    931 	case RAIDFRAME_KEEP_ACCTOTALS:
    932 	case RAIDFRAME_GET_SIZE:
    933 	case RAIDFRAME_FAIL_DISK:
    934 	case RAIDFRAME_COPYBACK:
    935 	case RAIDFRAME_CHECK_RECON_STATUS:
    936 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    937 	case RAIDFRAME_GET_COMPONENT_LABEL:
    938 	case RAIDFRAME_SET_COMPONENT_LABEL:
    939 	case RAIDFRAME_ADD_HOT_SPARE:
    940 	case RAIDFRAME_REMOVE_HOT_SPARE:
    941 	case RAIDFRAME_INIT_LABELS:
    942 	case RAIDFRAME_REBUILD_IN_PLACE:
    943 	case RAIDFRAME_CHECK_PARITY:
    944 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    945 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    946 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    947 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    948 	case RAIDFRAME_SET_AUTOCONFIG:
    949 	case RAIDFRAME_SET_ROOT:
    950 	case RAIDFRAME_DELETE_COMPONENT:
    951 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    952 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    953 			return (ENXIO);
    954 	}
    955 
    956 	switch (cmd) {
    957 
    958 		/* configure the system */
    959 	case RAIDFRAME_CONFIGURE:
    960 
    961 		if (raidPtr->valid) {
    962 			/* There is a valid RAID set running on this unit! */
    963 			printf("raid%d: Device already configured!\n",unit);
    964 			return(EINVAL);
    965 		}
    966 
    967 		/* copy-in the configuration information */
    968 		/* data points to a pointer to the configuration structure */
    969 
    970 		u_cfg = *((RF_Config_t **) data);
    971 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    972 		if (k_cfg == NULL) {
    973 			return (ENOMEM);
    974 		}
    975 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    976 		if (retcode) {
    977 			RF_Free(k_cfg, sizeof(RF_Config_t));
    978 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    979 				retcode));
    980 			return (retcode);
    981 		}
    982 		/* allocate a buffer for the layout-specific data, and copy it
    983 		 * in */
    984 		if (k_cfg->layoutSpecificSize) {
    985 			if (k_cfg->layoutSpecificSize > 10000) {
    986 				/* sanity check */
    987 				RF_Free(k_cfg, sizeof(RF_Config_t));
    988 				return (EINVAL);
    989 			}
    990 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    991 			    (u_char *));
    992 			if (specific_buf == NULL) {
    993 				RF_Free(k_cfg, sizeof(RF_Config_t));
    994 				return (ENOMEM);
    995 			}
    996 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    997 			    k_cfg->layoutSpecificSize);
    998 			if (retcode) {
    999 				RF_Free(k_cfg, sizeof(RF_Config_t));
   1000 				RF_Free(specific_buf,
   1001 					k_cfg->layoutSpecificSize);
   1002 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1003 					retcode));
   1004 				return (retcode);
   1005 			}
   1006 		} else
   1007 			specific_buf = NULL;
   1008 		k_cfg->layoutSpecific = specific_buf;
   1009 
   1010 		/* should do some kind of sanity check on the configuration.
   1011 		 * Store the sum of all the bytes in the last byte? */
   1012 
   1013 		/* configure the system */
   1014 
   1015 		/*
   1016 		 * Clear the entire RAID descriptor, just to make sure
   1017 		 *  there is no stale data left in the case of a
   1018 		 *  reconfiguration
   1019 		 */
   1020 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1021 		raidPtr->raidid = unit;
   1022 
   1023 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1024 
   1025 		if (retcode == 0) {
   1026 
   1027 			/* allow this many simultaneous IO's to
   1028 			   this RAID device */
   1029 			raidPtr->openings = RAIDOUTSTANDING;
   1030 
   1031 			raidinit(raidPtr);
   1032 			rf_markalldirty(raidPtr);
   1033 		}
   1034 		/* free the buffers.  No return code here. */
   1035 		if (k_cfg->layoutSpecificSize) {
   1036 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1037 		}
   1038 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1039 
   1040 		return (retcode);
   1041 
   1042 		/* shutdown the system */
   1043 	case RAIDFRAME_SHUTDOWN:
   1044 
   1045 		if ((error = raidlock(rs)) != 0)
   1046 			return (error);
   1047 
   1048 		/*
   1049 		 * If somebody has a partition mounted, we shouldn't
   1050 		 * shutdown.
   1051 		 */
   1052 
   1053 		part = DISKPART(dev);
   1054 		pmask = (1 << part);
   1055 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1056 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1057 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1058 			raidunlock(rs);
   1059 			return (EBUSY);
   1060 		}
   1061 
   1062 		retcode = rf_Shutdown(raidPtr);
   1063 
   1064 		/* It's no longer initialized... */
   1065 		rs->sc_flags &= ~RAIDF_INITED;
   1066 
   1067 		/* free the pseudo device attach bits */
   1068 
   1069 		cf = device_cfdata(rs->sc_dev);
   1070 		/* XXX this causes us to not return any errors
   1071 		   from the above call to rf_Shutdown() */
   1072 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1073 		free(cf, M_RAIDFRAME);
   1074 
   1075 		/* Detach the disk. */
   1076 		pseudo_disk_detach(&rs->sc_dkdev);
   1077 
   1078 		raidunlock(rs);
   1079 
   1080 		return (retcode);
   1081 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1082 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1083 		/* need to read the component label for the disk indicated
   1084 		   by row,column in clabel */
   1085 
   1086 		/* For practice, let's get it directly fromdisk, rather
   1087 		   than from the in-core copy */
   1088 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1089 			   (RF_ComponentLabel_t *));
   1090 		if (clabel == NULL)
   1091 			return (ENOMEM);
   1092 
   1093 		retcode = copyin( *clabel_ptr, clabel,
   1094 				  sizeof(RF_ComponentLabel_t));
   1095 
   1096 		if (retcode) {
   1097 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1098 			return(retcode);
   1099 		}
   1100 
   1101 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1102 
   1103 		column = clabel->column;
   1104 
   1105 		if ((column < 0) || (column >= raidPtr->numCol +
   1106 				     raidPtr->numSpare)) {
   1107 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1108 			return(EINVAL);
   1109 		}
   1110 
   1111 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1112 				raidPtr->raid_cinfo[column].ci_vp,
   1113 				clabel );
   1114 
   1115 		if (retcode == 0) {
   1116 			retcode = copyout(clabel, *clabel_ptr,
   1117 					  sizeof(RF_ComponentLabel_t));
   1118 		}
   1119 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1120 		return (retcode);
   1121 
   1122 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1123 		clabel = (RF_ComponentLabel_t *) data;
   1124 
   1125 		/* XXX check the label for valid stuff... */
   1126 		/* Note that some things *should not* get modified --
   1127 		   the user should be re-initing the labels instead of
   1128 		   trying to patch things.
   1129 		   */
   1130 
   1131 		raidid = raidPtr->raidid;
   1132 #ifdef DEBUG
   1133 		printf("raid%d: Got component label:\n", raidid);
   1134 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1135 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1136 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1137 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1138 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1139 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1140 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1141 #endif
   1142 		clabel->row = 0;
   1143 		column = clabel->column;
   1144 
   1145 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1146 			return(EINVAL);
   1147 		}
   1148 
   1149 		/* XXX this isn't allowed to do anything for now :-) */
   1150 
   1151 		/* XXX and before it is, we need to fill in the rest
   1152 		   of the fields!?!?!?! */
   1153 #if 0
   1154 		raidwrite_component_label(
   1155 		     raidPtr->Disks[column].dev,
   1156 			    raidPtr->raid_cinfo[column].ci_vp,
   1157 			    clabel );
   1158 #endif
   1159 		return (0);
   1160 
   1161 	case RAIDFRAME_INIT_LABELS:
   1162 		clabel = (RF_ComponentLabel_t *) data;
   1163 		/*
   1164 		   we only want the serial number from
   1165 		   the above.  We get all the rest of the information
   1166 		   from the config that was used to create this RAID
   1167 		   set.
   1168 		   */
   1169 
   1170 		raidPtr->serial_number = clabel->serial_number;
   1171 
   1172 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1173 			  (RF_ComponentLabel_t *));
   1174 		if (ci_label == NULL)
   1175 			return (ENOMEM);
   1176 
   1177 		raid_init_component_label(raidPtr, ci_label);
   1178 		ci_label->serial_number = clabel->serial_number;
   1179 		ci_label->row = 0; /* we dont' pretend to support more */
   1180 
   1181 		for(column=0;column<raidPtr->numCol;column++) {
   1182 			diskPtr = &raidPtr->Disks[column];
   1183 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1184 				ci_label->partitionSize = diskPtr->partitionSize;
   1185 				ci_label->column = column;
   1186 				raidwrite_component_label(
   1187 							  raidPtr->Disks[column].dev,
   1188 							  raidPtr->raid_cinfo[column].ci_vp,
   1189 							  ci_label );
   1190 			}
   1191 		}
   1192 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1193 
   1194 		return (retcode);
   1195 	case RAIDFRAME_SET_AUTOCONFIG:
   1196 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1197 		printf("raid%d: New autoconfig value is: %d\n",
   1198 		       raidPtr->raidid, d);
   1199 		*(int *) data = d;
   1200 		return (retcode);
   1201 
   1202 	case RAIDFRAME_SET_ROOT:
   1203 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1204 		printf("raid%d: New rootpartition value is: %d\n",
   1205 		       raidPtr->raidid, d);
   1206 		*(int *) data = d;
   1207 		return (retcode);
   1208 
   1209 		/* initialize all parity */
   1210 	case RAIDFRAME_REWRITEPARITY:
   1211 
   1212 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1213 			/* Parity for RAID 0 is trivially correct */
   1214 			raidPtr->parity_good = RF_RAID_CLEAN;
   1215 			return(0);
   1216 		}
   1217 
   1218 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1219 			/* Re-write is already in progress! */
   1220 			return(EINVAL);
   1221 		}
   1222 
   1223 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1224 					   rf_RewriteParityThread,
   1225 					   raidPtr,"raid_parity");
   1226 		return (retcode);
   1227 
   1228 
   1229 	case RAIDFRAME_ADD_HOT_SPARE:
   1230 		sparePtr = (RF_SingleComponent_t *) data;
   1231 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1232 		retcode = rf_add_hot_spare(raidPtr, &component);
   1233 		return(retcode);
   1234 
   1235 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1236 		return(retcode);
   1237 
   1238 	case RAIDFRAME_DELETE_COMPONENT:
   1239 		componentPtr = (RF_SingleComponent_t *)data;
   1240 		memcpy( &component, componentPtr,
   1241 			sizeof(RF_SingleComponent_t));
   1242 		retcode = rf_delete_component(raidPtr, &component);
   1243 		return(retcode);
   1244 
   1245 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1246 		componentPtr = (RF_SingleComponent_t *)data;
   1247 		memcpy( &component, componentPtr,
   1248 			sizeof(RF_SingleComponent_t));
   1249 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1250 		return(retcode);
   1251 
   1252 	case RAIDFRAME_REBUILD_IN_PLACE:
   1253 
   1254 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1255 			/* Can't do this on a RAID 0!! */
   1256 			return(EINVAL);
   1257 		}
   1258 
   1259 		if (raidPtr->recon_in_progress == 1) {
   1260 			/* a reconstruct is already in progress! */
   1261 			return(EINVAL);
   1262 		}
   1263 
   1264 		componentPtr = (RF_SingleComponent_t *) data;
   1265 		memcpy( &component, componentPtr,
   1266 			sizeof(RF_SingleComponent_t));
   1267 		component.row = 0; /* we don't support any more */
   1268 		column = component.column;
   1269 
   1270 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1271 			return(EINVAL);
   1272 		}
   1273 
   1274 		RF_LOCK_MUTEX(raidPtr->mutex);
   1275 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1276 		    (raidPtr->numFailures > 0)) {
   1277 			/* XXX 0 above shouldn't be constant!!! */
   1278 			/* some component other than this has failed.
   1279 			   Let's not make things worse than they already
   1280 			   are... */
   1281 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1282 			       raidPtr->raidid);
   1283 			printf("raid%d:     Col: %d   Too many failures.\n",
   1284 			       raidPtr->raidid, column);
   1285 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1286 			return (EINVAL);
   1287 		}
   1288 		if (raidPtr->Disks[column].status ==
   1289 		    rf_ds_reconstructing) {
   1290 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1291 			       raidPtr->raidid);
   1292 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1293 
   1294 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1295 			return (EINVAL);
   1296 		}
   1297 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1298 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1299 			return (EINVAL);
   1300 		}
   1301 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1302 
   1303 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1304 		if (rrcopy == NULL)
   1305 			return(ENOMEM);
   1306 
   1307 		rrcopy->raidPtr = (void *) raidPtr;
   1308 		rrcopy->col = column;
   1309 
   1310 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1311 					   rf_ReconstructInPlaceThread,
   1312 					   rrcopy,"raid_reconip");
   1313 		return(retcode);
   1314 
   1315 	case RAIDFRAME_GET_INFO:
   1316 		if (!raidPtr->valid)
   1317 			return (ENODEV);
   1318 		ucfgp = (RF_DeviceConfig_t **) data;
   1319 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1320 			  (RF_DeviceConfig_t *));
   1321 		if (d_cfg == NULL)
   1322 			return (ENOMEM);
   1323 		d_cfg->rows = 1; /* there is only 1 row now */
   1324 		d_cfg->cols = raidPtr->numCol;
   1325 		d_cfg->ndevs = raidPtr->numCol;
   1326 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1327 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1328 			return (ENOMEM);
   1329 		}
   1330 		d_cfg->nspares = raidPtr->numSpare;
   1331 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1332 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1333 			return (ENOMEM);
   1334 		}
   1335 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1336 		d = 0;
   1337 		for (j = 0; j < d_cfg->cols; j++) {
   1338 			d_cfg->devs[d] = raidPtr->Disks[j];
   1339 			d++;
   1340 		}
   1341 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1342 			d_cfg->spares[i] = raidPtr->Disks[j];
   1343 		}
   1344 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1345 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1346 
   1347 		return (retcode);
   1348 
   1349 	case RAIDFRAME_CHECK_PARITY:
   1350 		*(int *) data = raidPtr->parity_good;
   1351 		return (0);
   1352 
   1353 	case RAIDFRAME_RESET_ACCTOTALS:
   1354 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1355 		return (0);
   1356 
   1357 	case RAIDFRAME_GET_ACCTOTALS:
   1358 		totals = (RF_AccTotals_t *) data;
   1359 		*totals = raidPtr->acc_totals;
   1360 		return (0);
   1361 
   1362 	case RAIDFRAME_KEEP_ACCTOTALS:
   1363 		raidPtr->keep_acc_totals = *(int *)data;
   1364 		return (0);
   1365 
   1366 	case RAIDFRAME_GET_SIZE:
   1367 		*(int *) data = raidPtr->totalSectors;
   1368 		return (0);
   1369 
   1370 		/* fail a disk & optionally start reconstruction */
   1371 	case RAIDFRAME_FAIL_DISK:
   1372 
   1373 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1374 			/* Can't do this on a RAID 0!! */
   1375 			return(EINVAL);
   1376 		}
   1377 
   1378 		rr = (struct rf_recon_req *) data;
   1379 		rr->row = 0;
   1380 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1381 			return (EINVAL);
   1382 
   1383 
   1384 		RF_LOCK_MUTEX(raidPtr->mutex);
   1385 		if (raidPtr->status == rf_rs_reconstructing) {
   1386 			/* you can't fail a disk while we're reconstructing! */
   1387 			/* XXX wrong for RAID6 */
   1388 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1389 			return (EINVAL);
   1390 		}
   1391 		if ((raidPtr->Disks[rr->col].status ==
   1392 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1393 			/* some other component has failed.  Let's not make
   1394 			   things worse. XXX wrong for RAID6 */
   1395 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1396 			return (EINVAL);
   1397 		}
   1398 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1399 			/* Can't fail a spared disk! */
   1400 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1401 			return (EINVAL);
   1402 		}
   1403 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1404 
   1405 		/* make a copy of the recon request so that we don't rely on
   1406 		 * the user's buffer */
   1407 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1408 		if (rrcopy == NULL)
   1409 			return(ENOMEM);
   1410 		memcpy(rrcopy, rr, sizeof(*rr));
   1411 		rrcopy->raidPtr = (void *) raidPtr;
   1412 
   1413 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1414 					   rf_ReconThread,
   1415 					   rrcopy,"raid_recon");
   1416 		return (0);
   1417 
   1418 		/* invoke a copyback operation after recon on whatever disk
   1419 		 * needs it, if any */
   1420 	case RAIDFRAME_COPYBACK:
   1421 
   1422 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1423 			/* This makes no sense on a RAID 0!! */
   1424 			return(EINVAL);
   1425 		}
   1426 
   1427 		if (raidPtr->copyback_in_progress == 1) {
   1428 			/* Copyback is already in progress! */
   1429 			return(EINVAL);
   1430 		}
   1431 
   1432 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1433 					   rf_CopybackThread,
   1434 					   raidPtr,"raid_copyback");
   1435 		return (retcode);
   1436 
   1437 		/* return the percentage completion of reconstruction */
   1438 	case RAIDFRAME_CHECK_RECON_STATUS:
   1439 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1440 			/* This makes no sense on a RAID 0, so tell the
   1441 			   user it's done. */
   1442 			*(int *) data = 100;
   1443 			return(0);
   1444 		}
   1445 		if (raidPtr->status != rf_rs_reconstructing)
   1446 			*(int *) data = 100;
   1447 		else {
   1448 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1449 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1450 			} else {
   1451 				*(int *) data = 0;
   1452 			}
   1453 		}
   1454 		return (0);
   1455 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1456 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1457 		if (raidPtr->status != rf_rs_reconstructing) {
   1458 			progressInfo.remaining = 0;
   1459 			progressInfo.completed = 100;
   1460 			progressInfo.total = 100;
   1461 		} else {
   1462 			progressInfo.total =
   1463 				raidPtr->reconControl->numRUsTotal;
   1464 			progressInfo.completed =
   1465 				raidPtr->reconControl->numRUsComplete;
   1466 			progressInfo.remaining = progressInfo.total -
   1467 				progressInfo.completed;
   1468 		}
   1469 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1470 				  sizeof(RF_ProgressInfo_t));
   1471 		return (retcode);
   1472 
   1473 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1474 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1475 			/* This makes no sense on a RAID 0, so tell the
   1476 			   user it's done. */
   1477 			*(int *) data = 100;
   1478 			return(0);
   1479 		}
   1480 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1481 			*(int *) data = 100 *
   1482 				raidPtr->parity_rewrite_stripes_done /
   1483 				raidPtr->Layout.numStripe;
   1484 		} else {
   1485 			*(int *) data = 100;
   1486 		}
   1487 		return (0);
   1488 
   1489 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1490 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1491 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1492 			progressInfo.total = raidPtr->Layout.numStripe;
   1493 			progressInfo.completed =
   1494 				raidPtr->parity_rewrite_stripes_done;
   1495 			progressInfo.remaining = progressInfo.total -
   1496 				progressInfo.completed;
   1497 		} else {
   1498 			progressInfo.remaining = 0;
   1499 			progressInfo.completed = 100;
   1500 			progressInfo.total = 100;
   1501 		}
   1502 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1503 				  sizeof(RF_ProgressInfo_t));
   1504 		return (retcode);
   1505 
   1506 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1507 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1508 			/* This makes no sense on a RAID 0 */
   1509 			*(int *) data = 100;
   1510 			return(0);
   1511 		}
   1512 		if (raidPtr->copyback_in_progress == 1) {
   1513 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1514 				raidPtr->Layout.numStripe;
   1515 		} else {
   1516 			*(int *) data = 100;
   1517 		}
   1518 		return (0);
   1519 
   1520 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1521 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1522 		if (raidPtr->copyback_in_progress == 1) {
   1523 			progressInfo.total = raidPtr->Layout.numStripe;
   1524 			progressInfo.completed =
   1525 				raidPtr->copyback_stripes_done;
   1526 			progressInfo.remaining = progressInfo.total -
   1527 				progressInfo.completed;
   1528 		} else {
   1529 			progressInfo.remaining = 0;
   1530 			progressInfo.completed = 100;
   1531 			progressInfo.total = 100;
   1532 		}
   1533 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1534 				  sizeof(RF_ProgressInfo_t));
   1535 		return (retcode);
   1536 
   1537 		/* the sparetable daemon calls this to wait for the kernel to
   1538 		 * need a spare table. this ioctl does not return until a
   1539 		 * spare table is needed. XXX -- calling mpsleep here in the
   1540 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1541 		 * -- I should either compute the spare table in the kernel,
   1542 		 * or have a different -- XXX XXX -- interface (a different
   1543 		 * character device) for delivering the table     -- XXX */
   1544 #if 0
   1545 	case RAIDFRAME_SPARET_WAIT:
   1546 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1547 		while (!rf_sparet_wait_queue)
   1548 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1549 		waitreq = rf_sparet_wait_queue;
   1550 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1551 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1552 
   1553 		/* structure assignment */
   1554 		*((RF_SparetWait_t *) data) = *waitreq;
   1555 
   1556 		RF_Free(waitreq, sizeof(*waitreq));
   1557 		return (0);
   1558 
   1559 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1560 		 * code in it that will cause the dameon to exit */
   1561 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1562 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1563 		waitreq->fcol = -1;
   1564 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1565 		waitreq->next = rf_sparet_wait_queue;
   1566 		rf_sparet_wait_queue = waitreq;
   1567 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1568 		wakeup(&rf_sparet_wait_queue);
   1569 		return (0);
   1570 
   1571 		/* used by the spare table daemon to deliver a spare table
   1572 		 * into the kernel */
   1573 	case RAIDFRAME_SEND_SPARET:
   1574 
   1575 		/* install the spare table */
   1576 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1577 
   1578 		/* respond to the requestor.  the return status of the spare
   1579 		 * table installation is passed in the "fcol" field */
   1580 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1581 		waitreq->fcol = retcode;
   1582 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1583 		waitreq->next = rf_sparet_resp_queue;
   1584 		rf_sparet_resp_queue = waitreq;
   1585 		wakeup(&rf_sparet_resp_queue);
   1586 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1587 
   1588 		return (retcode);
   1589 #endif
   1590 
   1591 	default:
   1592 		break; /* fall through to the os-specific code below */
   1593 
   1594 	}
   1595 
   1596 	if (!raidPtr->valid)
   1597 		return (EINVAL);
   1598 
   1599 	/*
   1600 	 * Add support for "regular" device ioctls here.
   1601 	 */
   1602 
   1603 	switch (cmd) {
   1604 	case DIOCGDINFO:
   1605 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1606 		break;
   1607 #ifdef __HAVE_OLD_DISKLABEL
   1608 	case ODIOCGDINFO:
   1609 		newlabel = *(rs->sc_dkdev.dk_label);
   1610 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1611 			return ENOTTY;
   1612 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1613 		break;
   1614 #endif
   1615 
   1616 	case DIOCGPART:
   1617 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1618 		((struct partinfo *) data)->part =
   1619 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1620 		break;
   1621 
   1622 	case DIOCWDINFO:
   1623 	case DIOCSDINFO:
   1624 #ifdef __HAVE_OLD_DISKLABEL
   1625 	case ODIOCWDINFO:
   1626 	case ODIOCSDINFO:
   1627 #endif
   1628 	{
   1629 		struct disklabel *lp;
   1630 #ifdef __HAVE_OLD_DISKLABEL
   1631 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1632 			memset(&newlabel, 0, sizeof newlabel);
   1633 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1634 			lp = &newlabel;
   1635 		} else
   1636 #endif
   1637 		lp = (struct disklabel *)data;
   1638 
   1639 		if ((error = raidlock(rs)) != 0)
   1640 			return (error);
   1641 
   1642 		rs->sc_flags |= RAIDF_LABELLING;
   1643 
   1644 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1645 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1646 		if (error == 0) {
   1647 			if (cmd == DIOCWDINFO
   1648 #ifdef __HAVE_OLD_DISKLABEL
   1649 			    || cmd == ODIOCWDINFO
   1650 #endif
   1651 			   )
   1652 				error = writedisklabel(RAIDLABELDEV(dev),
   1653 				    raidstrategy, rs->sc_dkdev.dk_label,
   1654 				    rs->sc_dkdev.dk_cpulabel);
   1655 		}
   1656 		rs->sc_flags &= ~RAIDF_LABELLING;
   1657 
   1658 		raidunlock(rs);
   1659 
   1660 		if (error)
   1661 			return (error);
   1662 		break;
   1663 	}
   1664 
   1665 	case DIOCWLABEL:
   1666 		if (*(int *) data != 0)
   1667 			rs->sc_flags |= RAIDF_WLABEL;
   1668 		else
   1669 			rs->sc_flags &= ~RAIDF_WLABEL;
   1670 		break;
   1671 
   1672 	case DIOCGDEFLABEL:
   1673 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1674 		break;
   1675 
   1676 #ifdef __HAVE_OLD_DISKLABEL
   1677 	case ODIOCGDEFLABEL:
   1678 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1679 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1680 			return ENOTTY;
   1681 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1682 		break;
   1683 #endif
   1684 
   1685 	case DIOCAWEDGE:
   1686 	case DIOCDWEDGE:
   1687 	    	dkw = (void *)data;
   1688 
   1689 		/* If the ioctl happens here, the parent is us. */
   1690 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1691 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1692 
   1693 	case DIOCLWEDGES:
   1694 		return dkwedge_list(&rs->sc_dkdev,
   1695 		    (struct dkwedge_list *)data, l);
   1696 
   1697 	default:
   1698 		retcode = ENOTTY;
   1699 	}
   1700 	return (retcode);
   1701 
   1702 }
   1703 
   1704 
   1705 /* raidinit -- complete the rest of the initialization for the
   1706    RAIDframe device.  */
   1707 
   1708 
   1709 static void
   1710 raidinit(RF_Raid_t *raidPtr)
   1711 {
   1712 	struct cfdata *cf;
   1713 	struct raid_softc *rs;
   1714 	int     unit;
   1715 
   1716 	unit = raidPtr->raidid;
   1717 
   1718 	rs = &raid_softc[unit];
   1719 
   1720 	/* XXX should check return code first... */
   1721 	rs->sc_flags |= RAIDF_INITED;
   1722 
   1723 	/* XXX doesn't check bounds. */
   1724 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1725 
   1726 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1727 
   1728 	/* attach the pseudo device */
   1729 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1730 	cf->cf_name = raid_cd.cd_name;
   1731 	cf->cf_atname = raid_cd.cd_name;
   1732 	cf->cf_unit = unit;
   1733 	cf->cf_fstate = FSTATE_STAR;
   1734 
   1735 	rs->sc_dev = config_attach_pseudo(cf);
   1736 
   1737 	if (rs->sc_dev==NULL) {
   1738 		printf("raid%d: config_attach_pseudo failed\n",
   1739 		       raidPtr->raidid);
   1740 	}
   1741 
   1742 	/* disk_attach actually creates space for the CPU disklabel, among
   1743 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1744 	 * with disklabels. */
   1745 
   1746 	disk_attach(&rs->sc_dkdev);
   1747 
   1748 	/* XXX There may be a weird interaction here between this, and
   1749 	 * protectedSectors, as used in RAIDframe.  */
   1750 
   1751 	rs->sc_size = raidPtr->totalSectors;
   1752 }
   1753 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1754 /* wake up the daemon & tell it to get us a spare table
   1755  * XXX
   1756  * the entries in the queues should be tagged with the raidPtr
   1757  * so that in the extremely rare case that two recons happen at once,
   1758  * we know for which device were requesting a spare table
   1759  * XXX
   1760  *
   1761  * XXX This code is not currently used. GO
   1762  */
   1763 int
   1764 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1765 {
   1766 	int     retcode;
   1767 
   1768 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1769 	req->next = rf_sparet_wait_queue;
   1770 	rf_sparet_wait_queue = req;
   1771 	wakeup(&rf_sparet_wait_queue);
   1772 
   1773 	/* mpsleep unlocks the mutex */
   1774 	while (!rf_sparet_resp_queue) {
   1775 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1776 		    "raidframe getsparetable", 0);
   1777 	}
   1778 	req = rf_sparet_resp_queue;
   1779 	rf_sparet_resp_queue = req->next;
   1780 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1781 
   1782 	retcode = req->fcol;
   1783 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1784 					 * alloc'd */
   1785 	return (retcode);
   1786 }
   1787 #endif
   1788 
   1789 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1790  * bp & passes it down.
   1791  * any calls originating in the kernel must use non-blocking I/O
   1792  * do some extra sanity checking to return "appropriate" error values for
   1793  * certain conditions (to make some standard utilities work)
   1794  *
   1795  * Formerly known as: rf_DoAccessKernel
   1796  */
   1797 void
   1798 raidstart(RF_Raid_t *raidPtr)
   1799 {
   1800 	RF_SectorCount_t num_blocks, pb, sum;
   1801 	RF_RaidAddr_t raid_addr;
   1802 	struct partition *pp;
   1803 	daddr_t blocknum;
   1804 	int     unit;
   1805 	struct raid_softc *rs;
   1806 	int     do_async;
   1807 	struct buf *bp;
   1808 	int rc;
   1809 
   1810 	unit = raidPtr->raidid;
   1811 	rs = &raid_softc[unit];
   1812 
   1813 	/* quick check to see if anything has died recently */
   1814 	RF_LOCK_MUTEX(raidPtr->mutex);
   1815 	if (raidPtr->numNewFailures > 0) {
   1816 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1817 		rf_update_component_labels(raidPtr,
   1818 					   RF_NORMAL_COMPONENT_UPDATE);
   1819 		RF_LOCK_MUTEX(raidPtr->mutex);
   1820 		raidPtr->numNewFailures--;
   1821 	}
   1822 
   1823 	/* Check to see if we're at the limit... */
   1824 	while (raidPtr->openings > 0) {
   1825 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1826 
   1827 		/* get the next item, if any, from the queue */
   1828 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1829 			/* nothing more to do */
   1830 			return;
   1831 		}
   1832 
   1833 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1834 		 * partition.. Need to make it absolute to the underlying
   1835 		 * device.. */
   1836 
   1837 		blocknum = bp->b_blkno;
   1838 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1839 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1840 			blocknum += pp->p_offset;
   1841 		}
   1842 
   1843 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1844 			    (int) blocknum));
   1845 
   1846 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1847 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1848 
   1849 		/* *THIS* is where we adjust what block we're going to...
   1850 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1851 		raid_addr = blocknum;
   1852 
   1853 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1854 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1855 		sum = raid_addr + num_blocks + pb;
   1856 		if (1 || rf_debugKernelAccess) {
   1857 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1858 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1859 				    (int) pb, (int) bp->b_resid));
   1860 		}
   1861 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1862 		    || (sum < num_blocks) || (sum < pb)) {
   1863 			bp->b_error = ENOSPC;
   1864 			bp->b_flags |= B_ERROR;
   1865 			bp->b_resid = bp->b_bcount;
   1866 			biodone(bp);
   1867 			RF_LOCK_MUTEX(raidPtr->mutex);
   1868 			continue;
   1869 		}
   1870 		/*
   1871 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1872 		 */
   1873 
   1874 		if (bp->b_bcount & raidPtr->sectorMask) {
   1875 			bp->b_error = EINVAL;
   1876 			bp->b_flags |= B_ERROR;
   1877 			bp->b_resid = bp->b_bcount;
   1878 			biodone(bp);
   1879 			RF_LOCK_MUTEX(raidPtr->mutex);
   1880 			continue;
   1881 
   1882 		}
   1883 		db1_printf(("Calling DoAccess..\n"));
   1884 
   1885 
   1886 		RF_LOCK_MUTEX(raidPtr->mutex);
   1887 		raidPtr->openings--;
   1888 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1889 
   1890 		/*
   1891 		 * Everything is async.
   1892 		 */
   1893 		do_async = 1;
   1894 
   1895 		disk_busy(&rs->sc_dkdev);
   1896 
   1897 		/* XXX we're still at splbio() here... do we *really*
   1898 		   need to be? */
   1899 
   1900 		/* don't ever condition on bp->b_flags & B_WRITE.
   1901 		 * always condition on B_READ instead */
   1902 
   1903 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1904 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1905 				 do_async, raid_addr, num_blocks,
   1906 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1907 
   1908 		if (rc) {
   1909 			bp->b_error = rc;
   1910 			bp->b_flags |= B_ERROR;
   1911 			bp->b_resid = bp->b_bcount;
   1912 			biodone(bp);
   1913 			/* continue loop */
   1914 		}
   1915 
   1916 		RF_LOCK_MUTEX(raidPtr->mutex);
   1917 	}
   1918 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1919 }
   1920 
   1921 
   1922 
   1923 
   1924 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1925 
   1926 int
   1927 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1928 {
   1929 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1930 	struct buf *bp;
   1931 
   1932 	req->queue = queue;
   1933 
   1934 #if DIAGNOSTIC
   1935 	if (queue->raidPtr->raidid >= numraid) {
   1936 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1937 		    numraid);
   1938 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1939 	}
   1940 #endif
   1941 
   1942 	bp = req->bp;
   1943 
   1944 	switch (req->type) {
   1945 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1946 		/* XXX need to do something extra here.. */
   1947 		/* I'm leaving this in, as I've never actually seen it used,
   1948 		 * and I'd like folks to report it... GO */
   1949 		printf(("WAKEUP CALLED\n"));
   1950 		queue->numOutstanding++;
   1951 
   1952 		bp->b_flags = 0;
   1953 		bp->b_private = req;
   1954 
   1955 		KernelWakeupFunc(bp);
   1956 		break;
   1957 
   1958 	case RF_IO_TYPE_READ:
   1959 	case RF_IO_TYPE_WRITE:
   1960 #if RF_ACC_TRACE > 0
   1961 		if (req->tracerec) {
   1962 			RF_ETIMER_START(req->tracerec->timer);
   1963 		}
   1964 #endif
   1965 		InitBP(bp, queue->rf_cinfo->ci_vp,
   1966 		    op, queue->rf_cinfo->ci_dev,
   1967 		    req->sectorOffset, req->numSector,
   1968 		    req->buf, KernelWakeupFunc, (void *) req,
   1969 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1970 
   1971 		if (rf_debugKernelAccess) {
   1972 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1973 				(long) bp->b_blkno));
   1974 		}
   1975 		queue->numOutstanding++;
   1976 		queue->last_deq_sector = req->sectorOffset;
   1977 		/* acc wouldn't have been let in if there were any pending
   1978 		 * reqs at any other priority */
   1979 		queue->curPriority = req->priority;
   1980 
   1981 		db1_printf(("Going for %c to unit %d col %d\n",
   1982 			    req->type, queue->raidPtr->raidid,
   1983 			    queue->col));
   1984 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1985 			(int) req->sectorOffset, (int) req->numSector,
   1986 			(int) (req->numSector <<
   1987 			    queue->raidPtr->logBytesPerSector),
   1988 			(int) queue->raidPtr->logBytesPerSector));
   1989 		VOP_STRATEGY(bp->b_vp, bp);
   1990 
   1991 		break;
   1992 
   1993 	default:
   1994 		panic("bad req->type in rf_DispatchKernelIO");
   1995 	}
   1996 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1997 
   1998 	return (0);
   1999 }
   2000 /* this is the callback function associated with a I/O invoked from
   2001    kernel code.
   2002  */
   2003 static void
   2004 KernelWakeupFunc(struct buf *bp)
   2005 {
   2006 	RF_DiskQueueData_t *req = NULL;
   2007 	RF_DiskQueue_t *queue;
   2008 	int s;
   2009 
   2010 	s = splbio();
   2011 	db1_printf(("recovering the request queue:\n"));
   2012 	req = bp->b_private;
   2013 
   2014 	queue = (RF_DiskQueue_t *) req->queue;
   2015 
   2016 #if RF_ACC_TRACE > 0
   2017 	if (req->tracerec) {
   2018 		RF_ETIMER_STOP(req->tracerec->timer);
   2019 		RF_ETIMER_EVAL(req->tracerec->timer);
   2020 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2021 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2022 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2023 		req->tracerec->num_phys_ios++;
   2024 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2025 	}
   2026 #endif
   2027 
   2028 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   2029 	 * ballistic, and mark the component as hosed... */
   2030 
   2031 	if (bp->b_flags & B_ERROR) {
   2032 		/* Mark the disk as dead */
   2033 		/* but only mark it once... */
   2034 		/* and only if it wouldn't leave this RAID set
   2035 		   completely broken */
   2036 		if (((queue->raidPtr->Disks[queue->col].status ==
   2037 		      rf_ds_optimal) ||
   2038 		     (queue->raidPtr->Disks[queue->col].status ==
   2039 		      rf_ds_used_spare)) &&
   2040 		     (queue->raidPtr->numFailures <
   2041 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2042 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2043 			       queue->raidPtr->raidid,
   2044 			       queue->raidPtr->Disks[queue->col].devname);
   2045 			queue->raidPtr->Disks[queue->col].status =
   2046 			    rf_ds_failed;
   2047 			queue->raidPtr->status = rf_rs_degraded;
   2048 			queue->raidPtr->numFailures++;
   2049 			queue->raidPtr->numNewFailures++;
   2050 		} else {	/* Disk is already dead... */
   2051 			/* printf("Disk already marked as dead!\n"); */
   2052 		}
   2053 
   2054 	}
   2055 
   2056 	/* Fill in the error value */
   2057 
   2058 	req->error = (bp->b_flags & B_ERROR) ? bp->b_error : 0;
   2059 
   2060 	simple_lock(&queue->raidPtr->iodone_lock);
   2061 
   2062 	/* Drop this one on the "finished" queue... */
   2063 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2064 
   2065 	/* Let the raidio thread know there is work to be done. */
   2066 	wakeup(&(queue->raidPtr->iodone));
   2067 
   2068 	simple_unlock(&queue->raidPtr->iodone_lock);
   2069 
   2070 	splx(s);
   2071 }
   2072 
   2073 
   2074 
   2075 /*
   2076  * initialize a buf structure for doing an I/O in the kernel.
   2077  */
   2078 static void
   2079 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2080        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2081        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2082        struct proc *b_proc)
   2083 {
   2084 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2085 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2086 	bp->b_bcount = numSect << logBytesPerSector;
   2087 	bp->b_bufsize = bp->b_bcount;
   2088 	bp->b_error = 0;
   2089 	bp->b_dev = dev;
   2090 	bp->b_data = bf;
   2091 	bp->b_blkno = startSect;
   2092 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2093 	if (bp->b_bcount == 0) {
   2094 		panic("bp->b_bcount is zero in InitBP!!");
   2095 	}
   2096 	bp->b_proc = b_proc;
   2097 	bp->b_iodone = cbFunc;
   2098 	bp->b_private = cbArg;
   2099 	bp->b_vp = b_vp;
   2100 	if ((bp->b_flags & B_READ) == 0) {
   2101 		bp->b_vp->v_numoutput++;
   2102 	}
   2103 
   2104 }
   2105 
   2106 static void
   2107 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2108 		    struct disklabel *lp)
   2109 {
   2110 	memset(lp, 0, sizeof(*lp));
   2111 
   2112 	/* fabricate a label... */
   2113 	lp->d_secperunit = raidPtr->totalSectors;
   2114 	lp->d_secsize = raidPtr->bytesPerSector;
   2115 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2116 	lp->d_ntracks = 4 * raidPtr->numCol;
   2117 	lp->d_ncylinders = raidPtr->totalSectors /
   2118 		(lp->d_nsectors * lp->d_ntracks);
   2119 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2120 
   2121 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2122 	lp->d_type = DTYPE_RAID;
   2123 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2124 	lp->d_rpm = 3600;
   2125 	lp->d_interleave = 1;
   2126 	lp->d_flags = 0;
   2127 
   2128 	lp->d_partitions[RAW_PART].p_offset = 0;
   2129 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2130 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2131 	lp->d_npartitions = RAW_PART + 1;
   2132 
   2133 	lp->d_magic = DISKMAGIC;
   2134 	lp->d_magic2 = DISKMAGIC;
   2135 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2136 
   2137 }
   2138 /*
   2139  * Read the disklabel from the raid device.  If one is not present, fake one
   2140  * up.
   2141  */
   2142 static void
   2143 raidgetdisklabel(dev_t dev)
   2144 {
   2145 	int     unit = raidunit(dev);
   2146 	struct raid_softc *rs = &raid_softc[unit];
   2147 	const char   *errstring;
   2148 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2149 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2150 	RF_Raid_t *raidPtr;
   2151 
   2152 	db1_printf(("Getting the disklabel...\n"));
   2153 
   2154 	memset(clp, 0, sizeof(*clp));
   2155 
   2156 	raidPtr = raidPtrs[unit];
   2157 
   2158 	raidgetdefaultlabel(raidPtr, rs, lp);
   2159 
   2160 	/*
   2161 	 * Call the generic disklabel extraction routine.
   2162 	 */
   2163 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2164 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2165 	if (errstring)
   2166 		raidmakedisklabel(rs);
   2167 	else {
   2168 		int     i;
   2169 		struct partition *pp;
   2170 
   2171 		/*
   2172 		 * Sanity check whether the found disklabel is valid.
   2173 		 *
   2174 		 * This is necessary since total size of the raid device
   2175 		 * may vary when an interleave is changed even though exactly
   2176 		 * same components are used, and old disklabel may used
   2177 		 * if that is found.
   2178 		 */
   2179 		if (lp->d_secperunit != rs->sc_size)
   2180 			printf("raid%d: WARNING: %s: "
   2181 			    "total sector size in disklabel (%d) != "
   2182 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2183 			    lp->d_secperunit, (long) rs->sc_size);
   2184 		for (i = 0; i < lp->d_npartitions; i++) {
   2185 			pp = &lp->d_partitions[i];
   2186 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2187 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2188 				       "exceeds the size of raid (%ld)\n",
   2189 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2190 		}
   2191 	}
   2192 
   2193 }
   2194 /*
   2195  * Take care of things one might want to take care of in the event
   2196  * that a disklabel isn't present.
   2197  */
   2198 static void
   2199 raidmakedisklabel(struct raid_softc *rs)
   2200 {
   2201 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2202 	db1_printf(("Making a label..\n"));
   2203 
   2204 	/*
   2205 	 * For historical reasons, if there's no disklabel present
   2206 	 * the raw partition must be marked FS_BSDFFS.
   2207 	 */
   2208 
   2209 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2210 
   2211 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2212 
   2213 	lp->d_checksum = dkcksum(lp);
   2214 }
   2215 /*
   2216  * Wait interruptibly for an exclusive lock.
   2217  *
   2218  * XXX
   2219  * Several drivers do this; it should be abstracted and made MP-safe.
   2220  * (Hmm... where have we seen this warning before :->  GO )
   2221  */
   2222 static int
   2223 raidlock(struct raid_softc *rs)
   2224 {
   2225 	int     error;
   2226 
   2227 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2228 		rs->sc_flags |= RAIDF_WANTED;
   2229 		if ((error =
   2230 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2231 			return (error);
   2232 	}
   2233 	rs->sc_flags |= RAIDF_LOCKED;
   2234 	return (0);
   2235 }
   2236 /*
   2237  * Unlock and wake up any waiters.
   2238  */
   2239 static void
   2240 raidunlock(struct raid_softc *rs)
   2241 {
   2242 
   2243 	rs->sc_flags &= ~RAIDF_LOCKED;
   2244 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2245 		rs->sc_flags &= ~RAIDF_WANTED;
   2246 		wakeup(rs);
   2247 	}
   2248 }
   2249 
   2250 
   2251 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2252 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2253 
   2254 int
   2255 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2256 {
   2257 	RF_ComponentLabel_t clabel;
   2258 	raidread_component_label(dev, b_vp, &clabel);
   2259 	clabel.mod_counter = mod_counter;
   2260 	clabel.clean = RF_RAID_CLEAN;
   2261 	raidwrite_component_label(dev, b_vp, &clabel);
   2262 	return(0);
   2263 }
   2264 
   2265 
   2266 int
   2267 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2268 {
   2269 	RF_ComponentLabel_t clabel;
   2270 	raidread_component_label(dev, b_vp, &clabel);
   2271 	clabel.mod_counter = mod_counter;
   2272 	clabel.clean = RF_RAID_DIRTY;
   2273 	raidwrite_component_label(dev, b_vp, &clabel);
   2274 	return(0);
   2275 }
   2276 
   2277 /* ARGSUSED */
   2278 int
   2279 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2280 			 RF_ComponentLabel_t *clabel)
   2281 {
   2282 	struct buf *bp;
   2283 	const struct bdevsw *bdev;
   2284 	int error;
   2285 
   2286 	/* XXX should probably ensure that we don't try to do this if
   2287 	   someone has changed rf_protected_sectors. */
   2288 
   2289 	if (b_vp == NULL) {
   2290 		/* For whatever reason, this component is not valid.
   2291 		   Don't try to read a component label from it. */
   2292 		return(EINVAL);
   2293 	}
   2294 
   2295 	/* get a block of the appropriate size... */
   2296 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2297 	bp->b_dev = dev;
   2298 
   2299 	/* get our ducks in a row for the read */
   2300 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2301 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2302 	bp->b_flags |= B_READ;
   2303  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2304 
   2305 	bdev = bdevsw_lookup(bp->b_dev);
   2306 	if (bdev == NULL)
   2307 		return (ENXIO);
   2308 	(*bdev->d_strategy)(bp);
   2309 
   2310 	error = biowait(bp);
   2311 
   2312 	if (!error) {
   2313 		memcpy(clabel, bp->b_data,
   2314 		       sizeof(RF_ComponentLabel_t));
   2315 	}
   2316 
   2317 	brelse(bp);
   2318 	return(error);
   2319 }
   2320 /* ARGSUSED */
   2321 int
   2322 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2323 			  RF_ComponentLabel_t *clabel)
   2324 {
   2325 	struct buf *bp;
   2326 	const struct bdevsw *bdev;
   2327 	int error;
   2328 
   2329 	/* get a block of the appropriate size... */
   2330 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2331 	bp->b_dev = dev;
   2332 
   2333 	/* get our ducks in a row for the write */
   2334 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2335 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2336 	bp->b_flags |= B_WRITE;
   2337  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2338 
   2339 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2340 
   2341 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2342 
   2343 	bdev = bdevsw_lookup(bp->b_dev);
   2344 	if (bdev == NULL)
   2345 		return (ENXIO);
   2346 	(*bdev->d_strategy)(bp);
   2347 	error = biowait(bp);
   2348 	brelse(bp);
   2349 	if (error) {
   2350 #if 1
   2351 		printf("Failed to write RAID component info!\n");
   2352 #endif
   2353 	}
   2354 
   2355 	return(error);
   2356 }
   2357 
   2358 void
   2359 rf_markalldirty(RF_Raid_t *raidPtr)
   2360 {
   2361 	RF_ComponentLabel_t clabel;
   2362 	int sparecol;
   2363 	int c;
   2364 	int j;
   2365 	int scol = -1;
   2366 
   2367 	raidPtr->mod_counter++;
   2368 	for (c = 0; c < raidPtr->numCol; c++) {
   2369 		/* we don't want to touch (at all) a disk that has
   2370 		   failed */
   2371 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2372 			raidread_component_label(
   2373 						 raidPtr->Disks[c].dev,
   2374 						 raidPtr->raid_cinfo[c].ci_vp,
   2375 						 &clabel);
   2376 			if (clabel.status == rf_ds_spared) {
   2377 				/* XXX do something special...
   2378 				   but whatever you do, don't
   2379 				   try to access it!! */
   2380 			} else {
   2381 				raidmarkdirty(
   2382 					      raidPtr->Disks[c].dev,
   2383 					      raidPtr->raid_cinfo[c].ci_vp,
   2384 					      raidPtr->mod_counter);
   2385 			}
   2386 		}
   2387 	}
   2388 
   2389 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2390 		sparecol = raidPtr->numCol + c;
   2391 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2392 			/*
   2393 
   2394 			   we claim this disk is "optimal" if it's
   2395 			   rf_ds_used_spare, as that means it should be
   2396 			   directly substitutable for the disk it replaced.
   2397 			   We note that too...
   2398 
   2399 			 */
   2400 
   2401 			for(j=0;j<raidPtr->numCol;j++) {
   2402 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2403 					scol = j;
   2404 					break;
   2405 				}
   2406 			}
   2407 
   2408 			raidread_component_label(
   2409 				 raidPtr->Disks[sparecol].dev,
   2410 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2411 				 &clabel);
   2412 			/* make sure status is noted */
   2413 
   2414 			raid_init_component_label(raidPtr, &clabel);
   2415 
   2416 			clabel.row = 0;
   2417 			clabel.column = scol;
   2418 			/* Note: we *don't* change status from rf_ds_used_spare
   2419 			   to rf_ds_optimal */
   2420 			/* clabel.status = rf_ds_optimal; */
   2421 
   2422 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2423 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2424 				      raidPtr->mod_counter);
   2425 		}
   2426 	}
   2427 }
   2428 
   2429 
   2430 void
   2431 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2432 {
   2433 	RF_ComponentLabel_t clabel;
   2434 	int sparecol;
   2435 	int c;
   2436 	int j;
   2437 	int scol;
   2438 
   2439 	scol = -1;
   2440 
   2441 	/* XXX should do extra checks to make sure things really are clean,
   2442 	   rather than blindly setting the clean bit... */
   2443 
   2444 	raidPtr->mod_counter++;
   2445 
   2446 	for (c = 0; c < raidPtr->numCol; c++) {
   2447 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2448 			raidread_component_label(
   2449 						 raidPtr->Disks[c].dev,
   2450 						 raidPtr->raid_cinfo[c].ci_vp,
   2451 						 &clabel);
   2452 			/* make sure status is noted */
   2453 			clabel.status = rf_ds_optimal;
   2454 
   2455 			/* bump the counter */
   2456 			clabel.mod_counter = raidPtr->mod_counter;
   2457 
   2458 			/* note what unit we are configured as */
   2459 			clabel.last_unit = raidPtr->raidid;
   2460 
   2461 			raidwrite_component_label(
   2462 						  raidPtr->Disks[c].dev,
   2463 						  raidPtr->raid_cinfo[c].ci_vp,
   2464 						  &clabel);
   2465 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2466 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2467 					raidmarkclean(
   2468 						      raidPtr->Disks[c].dev,
   2469 						      raidPtr->raid_cinfo[c].ci_vp,
   2470 						      raidPtr->mod_counter);
   2471 				}
   2472 			}
   2473 		}
   2474 		/* else we don't touch it.. */
   2475 	}
   2476 
   2477 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2478 		sparecol = raidPtr->numCol + c;
   2479 		/* Need to ensure that the reconstruct actually completed! */
   2480 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2481 			/*
   2482 
   2483 			   we claim this disk is "optimal" if it's
   2484 			   rf_ds_used_spare, as that means it should be
   2485 			   directly substitutable for the disk it replaced.
   2486 			   We note that too...
   2487 
   2488 			 */
   2489 
   2490 			for(j=0;j<raidPtr->numCol;j++) {
   2491 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2492 					scol = j;
   2493 					break;
   2494 				}
   2495 			}
   2496 
   2497 			/* XXX shouldn't *really* need this... */
   2498 			raidread_component_label(
   2499 				      raidPtr->Disks[sparecol].dev,
   2500 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2501 				      &clabel);
   2502 			/* make sure status is noted */
   2503 
   2504 			raid_init_component_label(raidPtr, &clabel);
   2505 
   2506 			clabel.mod_counter = raidPtr->mod_counter;
   2507 			clabel.column = scol;
   2508 			clabel.status = rf_ds_optimal;
   2509 			clabel.last_unit = raidPtr->raidid;
   2510 
   2511 			raidwrite_component_label(
   2512 				      raidPtr->Disks[sparecol].dev,
   2513 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2514 				      &clabel);
   2515 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2516 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2517 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2518 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2519 						       raidPtr->mod_counter);
   2520 				}
   2521 			}
   2522 		}
   2523 	}
   2524 }
   2525 
   2526 void
   2527 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2528 {
   2529 	struct lwp *l;
   2530 
   2531 	l = curlwp;
   2532 
   2533 	if (vp != NULL) {
   2534 		if (auto_configured == 1) {
   2535 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2536 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2537 			vput(vp);
   2538 
   2539 		} else {
   2540 			(void) vn_close(vp, FREAD | FWRITE, l->l_cred, l);
   2541 		}
   2542 	}
   2543 }
   2544 
   2545 
   2546 void
   2547 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2548 {
   2549 	int r,c;
   2550 	struct vnode *vp;
   2551 	int acd;
   2552 
   2553 
   2554 	/* We take this opportunity to close the vnodes like we should.. */
   2555 
   2556 	for (c = 0; c < raidPtr->numCol; c++) {
   2557 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2558 		acd = raidPtr->Disks[c].auto_configured;
   2559 		rf_close_component(raidPtr, vp, acd);
   2560 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2561 		raidPtr->Disks[c].auto_configured = 0;
   2562 	}
   2563 
   2564 	for (r = 0; r < raidPtr->numSpare; r++) {
   2565 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2566 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2567 		rf_close_component(raidPtr, vp, acd);
   2568 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2569 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2570 	}
   2571 }
   2572 
   2573 
   2574 void
   2575 rf_ReconThread(struct rf_recon_req *req)
   2576 {
   2577 	int     s;
   2578 	RF_Raid_t *raidPtr;
   2579 
   2580 	s = splbio();
   2581 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2582 	raidPtr->recon_in_progress = 1;
   2583 
   2584 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2585 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2586 
   2587 	RF_Free(req, sizeof(*req));
   2588 
   2589 	raidPtr->recon_in_progress = 0;
   2590 	splx(s);
   2591 
   2592 	/* That's all... */
   2593 	kthread_exit(0);	/* does not return */
   2594 }
   2595 
   2596 void
   2597 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2598 {
   2599 	int retcode;
   2600 	int s;
   2601 
   2602 	raidPtr->parity_rewrite_stripes_done = 0;
   2603 	raidPtr->parity_rewrite_in_progress = 1;
   2604 	s = splbio();
   2605 	retcode = rf_RewriteParity(raidPtr);
   2606 	splx(s);
   2607 	if (retcode) {
   2608 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2609 	} else {
   2610 		/* set the clean bit!  If we shutdown correctly,
   2611 		   the clean bit on each component label will get
   2612 		   set */
   2613 		raidPtr->parity_good = RF_RAID_CLEAN;
   2614 	}
   2615 	raidPtr->parity_rewrite_in_progress = 0;
   2616 
   2617 	/* Anyone waiting for us to stop?  If so, inform them... */
   2618 	if (raidPtr->waitShutdown) {
   2619 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2620 	}
   2621 
   2622 	/* That's all... */
   2623 	kthread_exit(0);	/* does not return */
   2624 }
   2625 
   2626 
   2627 void
   2628 rf_CopybackThread(RF_Raid_t *raidPtr)
   2629 {
   2630 	int s;
   2631 
   2632 	raidPtr->copyback_in_progress = 1;
   2633 	s = splbio();
   2634 	rf_CopybackReconstructedData(raidPtr);
   2635 	splx(s);
   2636 	raidPtr->copyback_in_progress = 0;
   2637 
   2638 	/* That's all... */
   2639 	kthread_exit(0);	/* does not return */
   2640 }
   2641 
   2642 
   2643 void
   2644 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2645 {
   2646 	int s;
   2647 	RF_Raid_t *raidPtr;
   2648 
   2649 	s = splbio();
   2650 	raidPtr = req->raidPtr;
   2651 	raidPtr->recon_in_progress = 1;
   2652 	rf_ReconstructInPlace(raidPtr, req->col);
   2653 	RF_Free(req, sizeof(*req));
   2654 	raidPtr->recon_in_progress = 0;
   2655 	splx(s);
   2656 
   2657 	/* That's all... */
   2658 	kthread_exit(0);	/* does not return */
   2659 }
   2660 
   2661 static RF_AutoConfig_t *
   2662 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2663     const char *cname, RF_SectorCount_t size)
   2664 {
   2665 	int good_one = 0;
   2666 	RF_ComponentLabel_t *clabel;
   2667 	RF_AutoConfig_t *ac;
   2668 
   2669 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2670 	if (clabel == NULL) {
   2671 oomem:
   2672 		    while(ac_list) {
   2673 			    ac = ac_list;
   2674 			    if (ac->clabel)
   2675 				    free(ac->clabel, M_RAIDFRAME);
   2676 			    ac_list = ac_list->next;
   2677 			    free(ac, M_RAIDFRAME);
   2678 		    }
   2679 		    printf("RAID auto config: out of memory!\n");
   2680 		    return NULL; /* XXX probably should panic? */
   2681 	}
   2682 
   2683 	if (!raidread_component_label(dev, vp, clabel)) {
   2684 		    /* Got the label.  Does it look reasonable? */
   2685 		    if (rf_reasonable_label(clabel) &&
   2686 			(clabel->partitionSize <= size)) {
   2687 #ifdef DEBUG
   2688 			    printf("Component on: %s: %llu\n",
   2689 				cname, (unsigned long long)size);
   2690 			    rf_print_component_label(clabel);
   2691 #endif
   2692 			    /* if it's reasonable, add it, else ignore it. */
   2693 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2694 				M_NOWAIT);
   2695 			    if (ac == NULL) {
   2696 				    free(clabel, M_RAIDFRAME);
   2697 				    goto oomem;
   2698 			    }
   2699 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2700 			    ac->dev = dev;
   2701 			    ac->vp = vp;
   2702 			    ac->clabel = clabel;
   2703 			    ac->next = ac_list;
   2704 			    ac_list = ac;
   2705 			    good_one = 1;
   2706 		    }
   2707 	}
   2708 	if (!good_one) {
   2709 		/* cleanup */
   2710 		free(clabel, M_RAIDFRAME);
   2711 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2712 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2713 		vput(vp);
   2714 	}
   2715 	return ac_list;
   2716 }
   2717 
   2718 RF_AutoConfig_t *
   2719 rf_find_raid_components()
   2720 {
   2721 	struct vnode *vp;
   2722 	struct disklabel label;
   2723 	struct device *dv;
   2724 	dev_t dev;
   2725 	int bmajor, bminor, wedge;
   2726 	int error;
   2727 	int i;
   2728 	RF_AutoConfig_t *ac_list;
   2729 
   2730 
   2731 	/* initialize the AutoConfig list */
   2732 	ac_list = NULL;
   2733 
   2734 	/* we begin by trolling through *all* the devices on the system */
   2735 
   2736 	for (dv = alldevs.tqh_first; dv != NULL;
   2737 	     dv = dv->dv_list.tqe_next) {
   2738 
   2739 		/* we are only interested in disks... */
   2740 		if (device_class(dv) != DV_DISK)
   2741 			continue;
   2742 
   2743 		/* we don't care about floppies... */
   2744 		if (device_is_a(dv, "fd")) {
   2745 			continue;
   2746 		}
   2747 
   2748 		/* we don't care about CD's... */
   2749 		if (device_is_a(dv, "cd")) {
   2750 			continue;
   2751 		}
   2752 
   2753 		/* hdfd is the Atari/Hades floppy driver */
   2754 		if (device_is_a(dv, "hdfd")) {
   2755 			continue;
   2756 		}
   2757 
   2758 		/* fdisa is the Atari/Milan floppy driver */
   2759 		if (device_is_a(dv, "fdisa")) {
   2760 			continue;
   2761 		}
   2762 
   2763 		/* need to find the device_name_to_block_device_major stuff */
   2764 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2765 
   2766 		/* get a vnode for the raw partition of this disk */
   2767 
   2768 		wedge = device_is_a(dv, "dk");
   2769 		bminor = minor(device_unit(dv));
   2770 		dev = wedge ? makedev(bmajor, bminor) :
   2771 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2772 		if (bdevvp(dev, &vp))
   2773 			panic("RAID can't alloc vnode");
   2774 
   2775 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2776 
   2777 		if (error) {
   2778 			/* "Who cares."  Continue looking
   2779 			   for something that exists*/
   2780 			vput(vp);
   2781 			continue;
   2782 		}
   2783 
   2784 		if (wedge) {
   2785 			struct dkwedge_info dkw;
   2786 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2787 			    NOCRED, 0);
   2788 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2789 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2790 			vput(vp);
   2791 			if (error) {
   2792 				printf("RAIDframe: can't get wedge info for "
   2793 				    "dev %s (%d)\n", dv->dv_xname, error);
   2794 				continue;
   2795 			}
   2796 
   2797 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
   2798 				continue;
   2799 
   2800 			ac_list = rf_get_component(ac_list, dev, vp,
   2801 			    dv->dv_xname, dkw.dkw_size);
   2802 			continue;
   2803 		}
   2804 
   2805 		/* Ok, the disk exists.  Go get the disklabel. */
   2806 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2807 		if (error) {
   2808 			/*
   2809 			 * XXX can't happen - open() would
   2810 			 * have errored out (or faked up one)
   2811 			 */
   2812 			if (error != ENOTTY)
   2813 				printf("RAIDframe: can't get label for dev "
   2814 				    "%s (%d)\n", dv->dv_xname, error);
   2815 		}
   2816 
   2817 		/* don't need this any more.  We'll allocate it again
   2818 		   a little later if we really do... */
   2819 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2820 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2821 		vput(vp);
   2822 
   2823 		if (error)
   2824 			continue;
   2825 
   2826 		for (i = 0; i < label.d_npartitions; i++) {
   2827 			char cname[sizeof(ac_list->devname)];
   2828 
   2829 			/* We only support partitions marked as RAID */
   2830 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2831 				continue;
   2832 
   2833 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2834 			if (bdevvp(dev, &vp))
   2835 				panic("RAID can't alloc vnode");
   2836 
   2837 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2838 			if (error) {
   2839 				/* Whatever... */
   2840 				vput(vp);
   2841 				continue;
   2842 			}
   2843 			snprintf(cname, sizeof(cname), "%s%c",
   2844 			    dv->dv_xname, 'a' + i);
   2845 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2846 				label.d_partitions[i].p_size);
   2847 		}
   2848 	}
   2849 	return ac_list;
   2850 }
   2851 
   2852 
   2853 static int
   2854 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2855 {
   2856 
   2857 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2858 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2859 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2860 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2861 	    clabel->row >=0 &&
   2862 	    clabel->column >= 0 &&
   2863 	    clabel->num_rows > 0 &&
   2864 	    clabel->num_columns > 0 &&
   2865 	    clabel->row < clabel->num_rows &&
   2866 	    clabel->column < clabel->num_columns &&
   2867 	    clabel->blockSize > 0 &&
   2868 	    clabel->numBlocks > 0) {
   2869 		/* label looks reasonable enough... */
   2870 		return(1);
   2871 	}
   2872 	return(0);
   2873 }
   2874 
   2875 
   2876 #ifdef DEBUG
   2877 void
   2878 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2879 {
   2880 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2881 	       clabel->row, clabel->column,
   2882 	       clabel->num_rows, clabel->num_columns);
   2883 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2884 	       clabel->version, clabel->serial_number,
   2885 	       clabel->mod_counter);
   2886 	printf("   Clean: %s Status: %d\n",
   2887 	       clabel->clean ? "Yes" : "No", clabel->status );
   2888 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2889 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2890 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2891 	       (char) clabel->parityConfig, clabel->blockSize,
   2892 	       clabel->numBlocks);
   2893 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2894 	printf("   Contains root partition: %s\n",
   2895 	       clabel->root_partition ? "Yes" : "No" );
   2896 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2897 #if 0
   2898 	   printf("   Config order: %d\n", clabel->config_order);
   2899 #endif
   2900 
   2901 }
   2902 #endif
   2903 
   2904 RF_ConfigSet_t *
   2905 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2906 {
   2907 	RF_AutoConfig_t *ac;
   2908 	RF_ConfigSet_t *config_sets;
   2909 	RF_ConfigSet_t *cset;
   2910 	RF_AutoConfig_t *ac_next;
   2911 
   2912 
   2913 	config_sets = NULL;
   2914 
   2915 	/* Go through the AutoConfig list, and figure out which components
   2916 	   belong to what sets.  */
   2917 	ac = ac_list;
   2918 	while(ac!=NULL) {
   2919 		/* we're going to putz with ac->next, so save it here
   2920 		   for use at the end of the loop */
   2921 		ac_next = ac->next;
   2922 
   2923 		if (config_sets == NULL) {
   2924 			/* will need at least this one... */
   2925 			config_sets = (RF_ConfigSet_t *)
   2926 				malloc(sizeof(RF_ConfigSet_t),
   2927 				       M_RAIDFRAME, M_NOWAIT);
   2928 			if (config_sets == NULL) {
   2929 				panic("rf_create_auto_sets: No memory!");
   2930 			}
   2931 			/* this one is easy :) */
   2932 			config_sets->ac = ac;
   2933 			config_sets->next = NULL;
   2934 			config_sets->rootable = 0;
   2935 			ac->next = NULL;
   2936 		} else {
   2937 			/* which set does this component fit into? */
   2938 			cset = config_sets;
   2939 			while(cset!=NULL) {
   2940 				if (rf_does_it_fit(cset, ac)) {
   2941 					/* looks like it matches... */
   2942 					ac->next = cset->ac;
   2943 					cset->ac = ac;
   2944 					break;
   2945 				}
   2946 				cset = cset->next;
   2947 			}
   2948 			if (cset==NULL) {
   2949 				/* didn't find a match above... new set..*/
   2950 				cset = (RF_ConfigSet_t *)
   2951 					malloc(sizeof(RF_ConfigSet_t),
   2952 					       M_RAIDFRAME, M_NOWAIT);
   2953 				if (cset == NULL) {
   2954 					panic("rf_create_auto_sets: No memory!");
   2955 				}
   2956 				cset->ac = ac;
   2957 				ac->next = NULL;
   2958 				cset->next = config_sets;
   2959 				cset->rootable = 0;
   2960 				config_sets = cset;
   2961 			}
   2962 		}
   2963 		ac = ac_next;
   2964 	}
   2965 
   2966 
   2967 	return(config_sets);
   2968 }
   2969 
   2970 static int
   2971 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2972 {
   2973 	RF_ComponentLabel_t *clabel1, *clabel2;
   2974 
   2975 	/* If this one matches the *first* one in the set, that's good
   2976 	   enough, since the other members of the set would have been
   2977 	   through here too... */
   2978 	/* note that we are not checking partitionSize here..
   2979 
   2980 	   Note that we are also not checking the mod_counters here.
   2981 	   If everything else matches execpt the mod_counter, that's
   2982 	   good enough for this test.  We will deal with the mod_counters
   2983 	   a little later in the autoconfiguration process.
   2984 
   2985 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2986 
   2987 	   The reason we don't check for this is that failed disks
   2988 	   will have lower modification counts.  If those disks are
   2989 	   not added to the set they used to belong to, then they will
   2990 	   form their own set, which may result in 2 different sets,
   2991 	   for example, competing to be configured at raid0, and
   2992 	   perhaps competing to be the root filesystem set.  If the
   2993 	   wrong ones get configured, or both attempt to become /,
   2994 	   weird behaviour and or serious lossage will occur.  Thus we
   2995 	   need to bring them into the fold here, and kick them out at
   2996 	   a later point.
   2997 
   2998 	*/
   2999 
   3000 	clabel1 = cset->ac->clabel;
   3001 	clabel2 = ac->clabel;
   3002 	if ((clabel1->version == clabel2->version) &&
   3003 	    (clabel1->serial_number == clabel2->serial_number) &&
   3004 	    (clabel1->num_rows == clabel2->num_rows) &&
   3005 	    (clabel1->num_columns == clabel2->num_columns) &&
   3006 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3007 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3008 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3009 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3010 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3011 	    (clabel1->blockSize == clabel2->blockSize) &&
   3012 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3013 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3014 	    (clabel1->root_partition == clabel2->root_partition) &&
   3015 	    (clabel1->last_unit == clabel2->last_unit) &&
   3016 	    (clabel1->config_order == clabel2->config_order)) {
   3017 		/* if it get's here, it almost *has* to be a match */
   3018 	} else {
   3019 		/* it's not consistent with somebody in the set..
   3020 		   punt */
   3021 		return(0);
   3022 	}
   3023 	/* all was fine.. it must fit... */
   3024 	return(1);
   3025 }
   3026 
   3027 int
   3028 rf_have_enough_components(RF_ConfigSet_t *cset)
   3029 {
   3030 	RF_AutoConfig_t *ac;
   3031 	RF_AutoConfig_t *auto_config;
   3032 	RF_ComponentLabel_t *clabel;
   3033 	int c;
   3034 	int num_cols;
   3035 	int num_missing;
   3036 	int mod_counter;
   3037 	int mod_counter_found;
   3038 	int even_pair_failed;
   3039 	char parity_type;
   3040 
   3041 
   3042 	/* check to see that we have enough 'live' components
   3043 	   of this set.  If so, we can configure it if necessary */
   3044 
   3045 	num_cols = cset->ac->clabel->num_columns;
   3046 	parity_type = cset->ac->clabel->parityConfig;
   3047 
   3048 	/* XXX Check for duplicate components!?!?!? */
   3049 
   3050 	/* Determine what the mod_counter is supposed to be for this set. */
   3051 
   3052 	mod_counter_found = 0;
   3053 	mod_counter = 0;
   3054 	ac = cset->ac;
   3055 	while(ac!=NULL) {
   3056 		if (mod_counter_found==0) {
   3057 			mod_counter = ac->clabel->mod_counter;
   3058 			mod_counter_found = 1;
   3059 		} else {
   3060 			if (ac->clabel->mod_counter > mod_counter) {
   3061 				mod_counter = ac->clabel->mod_counter;
   3062 			}
   3063 		}
   3064 		ac = ac->next;
   3065 	}
   3066 
   3067 	num_missing = 0;
   3068 	auto_config = cset->ac;
   3069 
   3070 	even_pair_failed = 0;
   3071 	for(c=0; c<num_cols; c++) {
   3072 		ac = auto_config;
   3073 		while(ac!=NULL) {
   3074 			if ((ac->clabel->column == c) &&
   3075 			    (ac->clabel->mod_counter == mod_counter)) {
   3076 				/* it's this one... */
   3077 #ifdef DEBUG
   3078 				printf("Found: %s at %d\n",
   3079 				       ac->devname,c);
   3080 #endif
   3081 				break;
   3082 			}
   3083 			ac=ac->next;
   3084 		}
   3085 		if (ac==NULL) {
   3086 				/* Didn't find one here! */
   3087 				/* special case for RAID 1, especially
   3088 				   where there are more than 2
   3089 				   components (where RAIDframe treats
   3090 				   things a little differently :( ) */
   3091 			if (parity_type == '1') {
   3092 				if (c%2 == 0) { /* even component */
   3093 					even_pair_failed = 1;
   3094 				} else { /* odd component.  If
   3095 					    we're failed, and
   3096 					    so is the even
   3097 					    component, it's
   3098 					    "Good Night, Charlie" */
   3099 					if (even_pair_failed == 1) {
   3100 						return(0);
   3101 					}
   3102 				}
   3103 			} else {
   3104 				/* normal accounting */
   3105 				num_missing++;
   3106 			}
   3107 		}
   3108 		if ((parity_type == '1') && (c%2 == 1)) {
   3109 				/* Just did an even component, and we didn't
   3110 				   bail.. reset the even_pair_failed flag,
   3111 				   and go on to the next component.... */
   3112 			even_pair_failed = 0;
   3113 		}
   3114 	}
   3115 
   3116 	clabel = cset->ac->clabel;
   3117 
   3118 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3119 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3120 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3121 		/* XXX this needs to be made *much* more general */
   3122 		/* Too many failures */
   3123 		return(0);
   3124 	}
   3125 	/* otherwise, all is well, and we've got enough to take a kick
   3126 	   at autoconfiguring this set */
   3127 	return(1);
   3128 }
   3129 
   3130 void
   3131 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3132 			RF_Raid_t *raidPtr)
   3133 {
   3134 	RF_ComponentLabel_t *clabel;
   3135 	int i;
   3136 
   3137 	clabel = ac->clabel;
   3138 
   3139 	/* 1. Fill in the common stuff */
   3140 	config->numRow = clabel->num_rows = 1;
   3141 	config->numCol = clabel->num_columns;
   3142 	config->numSpare = 0; /* XXX should this be set here? */
   3143 	config->sectPerSU = clabel->sectPerSU;
   3144 	config->SUsPerPU = clabel->SUsPerPU;
   3145 	config->SUsPerRU = clabel->SUsPerRU;
   3146 	config->parityConfig = clabel->parityConfig;
   3147 	/* XXX... */
   3148 	strcpy(config->diskQueueType,"fifo");
   3149 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3150 	config->layoutSpecificSize = 0; /* XXX ?? */
   3151 
   3152 	while(ac!=NULL) {
   3153 		/* row/col values will be in range due to the checks
   3154 		   in reasonable_label() */
   3155 		strcpy(config->devnames[0][ac->clabel->column],
   3156 		       ac->devname);
   3157 		ac = ac->next;
   3158 	}
   3159 
   3160 	for(i=0;i<RF_MAXDBGV;i++) {
   3161 		config->debugVars[i][0] = 0;
   3162 	}
   3163 }
   3164 
   3165 int
   3166 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3167 {
   3168 	RF_ComponentLabel_t clabel;
   3169 	struct vnode *vp;
   3170 	dev_t dev;
   3171 	int column;
   3172 	int sparecol;
   3173 
   3174 	raidPtr->autoconfigure = new_value;
   3175 
   3176 	for(column=0; column<raidPtr->numCol; column++) {
   3177 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3178 			dev = raidPtr->Disks[column].dev;
   3179 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3180 			raidread_component_label(dev, vp, &clabel);
   3181 			clabel.autoconfigure = new_value;
   3182 			raidwrite_component_label(dev, vp, &clabel);
   3183 		}
   3184 	}
   3185 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3186 		sparecol = raidPtr->numCol + column;
   3187 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3188 			dev = raidPtr->Disks[sparecol].dev;
   3189 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3190 			raidread_component_label(dev, vp, &clabel);
   3191 			clabel.autoconfigure = new_value;
   3192 			raidwrite_component_label(dev, vp, &clabel);
   3193 		}
   3194 	}
   3195 	return(new_value);
   3196 }
   3197 
   3198 int
   3199 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3200 {
   3201 	RF_ComponentLabel_t clabel;
   3202 	struct vnode *vp;
   3203 	dev_t dev;
   3204 	int column;
   3205 	int sparecol;
   3206 
   3207 	raidPtr->root_partition = new_value;
   3208 	for(column=0; column<raidPtr->numCol; column++) {
   3209 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3210 			dev = raidPtr->Disks[column].dev;
   3211 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3212 			raidread_component_label(dev, vp, &clabel);
   3213 			clabel.root_partition = new_value;
   3214 			raidwrite_component_label(dev, vp, &clabel);
   3215 		}
   3216 	}
   3217 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3218 		sparecol = raidPtr->numCol + column;
   3219 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3220 			dev = raidPtr->Disks[sparecol].dev;
   3221 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3222 			raidread_component_label(dev, vp, &clabel);
   3223 			clabel.root_partition = new_value;
   3224 			raidwrite_component_label(dev, vp, &clabel);
   3225 		}
   3226 	}
   3227 	return(new_value);
   3228 }
   3229 
   3230 void
   3231 rf_release_all_vps(RF_ConfigSet_t *cset)
   3232 {
   3233 	RF_AutoConfig_t *ac;
   3234 
   3235 	ac = cset->ac;
   3236 	while(ac!=NULL) {
   3237 		/* Close the vp, and give it back */
   3238 		if (ac->vp) {
   3239 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3240 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3241 			vput(ac->vp);
   3242 			ac->vp = NULL;
   3243 		}
   3244 		ac = ac->next;
   3245 	}
   3246 }
   3247 
   3248 
   3249 void
   3250 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3251 {
   3252 	RF_AutoConfig_t *ac;
   3253 	RF_AutoConfig_t *next_ac;
   3254 
   3255 	ac = cset->ac;
   3256 	while(ac!=NULL) {
   3257 		next_ac = ac->next;
   3258 		/* nuke the label */
   3259 		free(ac->clabel, M_RAIDFRAME);
   3260 		/* cleanup the config structure */
   3261 		free(ac, M_RAIDFRAME);
   3262 		/* "next.." */
   3263 		ac = next_ac;
   3264 	}
   3265 	/* and, finally, nuke the config set */
   3266 	free(cset, M_RAIDFRAME);
   3267 }
   3268 
   3269 
   3270 void
   3271 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3272 {
   3273 	/* current version number */
   3274 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3275 	clabel->serial_number = raidPtr->serial_number;
   3276 	clabel->mod_counter = raidPtr->mod_counter;
   3277 	clabel->num_rows = 1;
   3278 	clabel->num_columns = raidPtr->numCol;
   3279 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3280 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3281 
   3282 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3283 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3284 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3285 
   3286 	clabel->blockSize = raidPtr->bytesPerSector;
   3287 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3288 
   3289 	/* XXX not portable */
   3290 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3291 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3292 	clabel->autoconfigure = raidPtr->autoconfigure;
   3293 	clabel->root_partition = raidPtr->root_partition;
   3294 	clabel->last_unit = raidPtr->raidid;
   3295 	clabel->config_order = raidPtr->config_order;
   3296 }
   3297 
   3298 int
   3299 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3300 {
   3301 	RF_Raid_t *raidPtr;
   3302 	RF_Config_t *config;
   3303 	int raidID;
   3304 	int retcode;
   3305 
   3306 #ifdef DEBUG
   3307 	printf("RAID autoconfigure\n");
   3308 #endif
   3309 
   3310 	retcode = 0;
   3311 	*unit = -1;
   3312 
   3313 	/* 1. Create a config structure */
   3314 
   3315 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3316 				       M_RAIDFRAME,
   3317 				       M_NOWAIT);
   3318 	if (config==NULL) {
   3319 		printf("Out of mem!?!?\n");
   3320 				/* XXX do something more intelligent here. */
   3321 		return(1);
   3322 	}
   3323 
   3324 	memset(config, 0, sizeof(RF_Config_t));
   3325 
   3326 	/*
   3327 	   2. Figure out what RAID ID this one is supposed to live at
   3328 	   See if we can get the same RAID dev that it was configured
   3329 	   on last time..
   3330 	*/
   3331 
   3332 	raidID = cset->ac->clabel->last_unit;
   3333 	if ((raidID < 0) || (raidID >= numraid)) {
   3334 		/* let's not wander off into lala land. */
   3335 		raidID = numraid - 1;
   3336 	}
   3337 	if (raidPtrs[raidID]->valid != 0) {
   3338 
   3339 		/*
   3340 		   Nope... Go looking for an alternative...
   3341 		   Start high so we don't immediately use raid0 if that's
   3342 		   not taken.
   3343 		*/
   3344 
   3345 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3346 			if (raidPtrs[raidID]->valid == 0) {
   3347 				/* can use this one! */
   3348 				break;
   3349 			}
   3350 		}
   3351 	}
   3352 
   3353 	if (raidID < 0) {
   3354 		/* punt... */
   3355 		printf("Unable to auto configure this set!\n");
   3356 		printf("(Out of RAID devs!)\n");
   3357 		free(config, M_RAIDFRAME);
   3358 		return(1);
   3359 	}
   3360 
   3361 #ifdef DEBUG
   3362 	printf("Configuring raid%d:\n",raidID);
   3363 #endif
   3364 
   3365 	raidPtr = raidPtrs[raidID];
   3366 
   3367 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3368 	raidPtr->raidid = raidID;
   3369 	raidPtr->openings = RAIDOUTSTANDING;
   3370 
   3371 	/* 3. Build the configuration structure */
   3372 	rf_create_configuration(cset->ac, config, raidPtr);
   3373 
   3374 	/* 4. Do the configuration */
   3375 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3376 
   3377 	if (retcode == 0) {
   3378 
   3379 		raidinit(raidPtrs[raidID]);
   3380 
   3381 		rf_markalldirty(raidPtrs[raidID]);
   3382 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3383 		if (cset->ac->clabel->root_partition==1) {
   3384 			/* everything configured just fine.  Make a note
   3385 			   that this set is eligible to be root. */
   3386 			cset->rootable = 1;
   3387 			/* XXX do this here? */
   3388 			raidPtrs[raidID]->root_partition = 1;
   3389 		}
   3390 	}
   3391 
   3392 	/* 5. Cleanup */
   3393 	free(config, M_RAIDFRAME);
   3394 
   3395 	*unit = raidID;
   3396 	return(retcode);
   3397 }
   3398 
   3399 void
   3400 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3401 {
   3402 	struct buf *bp;
   3403 
   3404 	bp = (struct buf *)desc->bp;
   3405 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3406 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3407 }
   3408 
   3409 void
   3410 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3411 	     size_t xmin, size_t xmax)
   3412 {
   3413 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3414 	pool_sethiwat(p, xmax);
   3415 	pool_prime(p, xmin);
   3416 	pool_setlowat(p, xmin);
   3417 }
   3418 
   3419 /*
   3420  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3421  * if there is IO pending and if that IO could possibly be done for a
   3422  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3423  * otherwise.
   3424  *
   3425  */
   3426 
   3427 int
   3428 rf_buf_queue_check(int raidid)
   3429 {
   3430 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3431 	    raidPtrs[raidid]->openings > 0) {
   3432 		/* there is work to do */
   3433 		return 0;
   3434 	}
   3435 	/* default is nothing to do */
   3436 	return 1;
   3437 }
   3438 
   3439 int
   3440 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3441 {
   3442 	struct partinfo dpart;
   3443 	struct dkwedge_info dkw;
   3444 	int error;
   3445 
   3446 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
   3447 	if (error == 0) {
   3448 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3449 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3450 		diskPtr->partitionSize = dpart.part->p_size;
   3451 		return 0;
   3452 	}
   3453 
   3454 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
   3455 	if (error == 0) {
   3456 		diskPtr->blockSize = 512;	/* XXX */
   3457 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3458 		diskPtr->partitionSize = dkw.dkw_size;
   3459 		return 0;
   3460 	}
   3461 	return error;
   3462 }
   3463 
   3464 static int
   3465 raid_match(struct device *self, struct cfdata *cfdata,
   3466     void *aux)
   3467 {
   3468 	return 1;
   3469 }
   3470 
   3471 static void
   3472 raid_attach(struct device *parent, struct device *self,
   3473     void *aux)
   3474 {
   3475 
   3476 }
   3477 
   3478 
   3479 static int
   3480 raid_detach(struct device *self, int flags)
   3481 {
   3482 	struct raid_softc *rs = (struct raid_softc *)self;
   3483 
   3484 	if (rs->sc_flags & RAIDF_INITED)
   3485 		return EBUSY;
   3486 
   3487 	return 0;
   3488 }
   3489 
   3490 
   3491