Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.23
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.23 1999/08/10 21:41:37 oster Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1988 University of Utah.
     40  * Copyright (c) 1990, 1993
     41  *      The Regents of the University of California.  All rights reserved.
     42  *
     43  * This code is derived from software contributed to Berkeley by
     44  * the Systems Programming Group of the University of Utah Computer
     45  * Science Department.
     46  *
     47  * Redistribution and use in source and binary forms, with or without
     48  * modification, are permitted provided that the following conditions
     49  * are met:
     50  * 1. Redistributions of source code must retain the above copyright
     51  *    notice, this list of conditions and the following disclaimer.
     52  * 2. Redistributions in binary form must reproduce the above copyright
     53  *    notice, this list of conditions and the following disclaimer in the
     54  *    documentation and/or other materials provided with the distribution.
     55  * 3. All advertising materials mentioning features or use of this software
     56  *    must display the following acknowledgement:
     57  *      This product includes software developed by the University of
     58  *      California, Berkeley and its contributors.
     59  * 4. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     76  *
     77  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     78  */
     79 
     80 
     81 
     82 
     83 /*
     84  * Copyright (c) 1995 Carnegie-Mellon University.
     85  * All rights reserved.
     86  *
     87  * Authors: Mark Holland, Jim Zelenka
     88  *
     89  * Permission to use, copy, modify and distribute this software and
     90  * its documentation is hereby granted, provided that both the copyright
     91  * notice and this permission notice appear in all copies of the
     92  * software, derivative works or modified versions, and any portions
     93  * thereof, and that both notices appear in supporting documentation.
     94  *
     95  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     96  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     97  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     98  *
     99  * Carnegie Mellon requests users of this software to return to
    100  *
    101  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    102  *  School of Computer Science
    103  *  Carnegie Mellon University
    104  *  Pittsburgh PA 15213-3890
    105  *
    106  * any improvements or extensions that they make and grant Carnegie the
    107  * rights to redistribute these changes.
    108  */
    109 
    110 /***********************************************************
    111  *
    112  * rf_kintf.c -- the kernel interface routines for RAIDframe
    113  *
    114  ***********************************************************/
    115 
    116 #include <sys/errno.h>
    117 #include <sys/param.h>
    118 #include <sys/pool.h>
    119 #include <sys/queue.h>
    120 #include <sys/disk.h>
    121 #include <sys/device.h>
    122 #include <sys/stat.h>
    123 #include <sys/ioctl.h>
    124 #include <sys/fcntl.h>
    125 #include <sys/systm.h>
    126 #include <sys/namei.h>
    127 #include <sys/vnode.h>
    128 #include <sys/param.h>
    129 #include <sys/types.h>
    130 #include <machine/types.h>
    131 #include <sys/disklabel.h>
    132 #include <sys/conf.h>
    133 #include <sys/lock.h>
    134 #include <sys/buf.h>
    135 #include <sys/user.h>
    136 
    137 #include "raid.h"
    138 #include "rf_raid.h"
    139 #include "rf_raidframe.h"
    140 #include "rf_dag.h"
    141 #include "rf_dagflags.h"
    142 #include "rf_diskqueue.h"
    143 #include "rf_acctrace.h"
    144 #include "rf_etimer.h"
    145 #include "rf_general.h"
    146 #include "rf_debugMem.h"
    147 #include "rf_kintf.h"
    148 #include "rf_options.h"
    149 #include "rf_driver.h"
    150 #include "rf_parityscan.h"
    151 #include "rf_debugprint.h"
    152 #include "rf_threadstuff.h"
    153 
    154 int     rf_kdebug_level = 0;
    155 
    156 #define RFK_BOOT_NONE 0
    157 #define RFK_BOOT_GOOD 1
    158 #define RFK_BOOT_BAD  2
    159 static int rf_kbooted = RFK_BOOT_NONE;
    160 
    161 #ifdef DEBUG
    162 #define db0_printf(a) printf a
    163 #define db_printf(a) if (rf_kdebug_level > 0) printf a
    164 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    165 #define db2_printf(a) if (rf_kdebug_level > 1) printf a
    166 #define db3_printf(a) if (rf_kdebug_level > 2) printf a
    167 #define db4_printf(a) if (rf_kdebug_level > 3) printf a
    168 #define db5_printf(a) if (rf_kdebug_level > 4) printf a
    169 #else				/* DEBUG */
    170 #define db0_printf(a) printf a
    171 #define db1_printf(a) { }
    172 #define db2_printf(a) { }
    173 #define db3_printf(a) { }
    174 #define db4_printf(a) { }
    175 #define db5_printf(a) { }
    176 #endif				/* DEBUG */
    177 
    178 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    179 
    180 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    181 
    182 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    183 						 * spare table */
    184 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    185 						 * installation process */
    186 
    187 static struct rf_recon_req *recon_queue = NULL;	/* used to communicate
    188 						 * reconstruction
    189 						 * requests */
    190 
    191 
    192 decl_simple_lock_data(, recon_queue_mutex)
    193 #define LOCK_RECON_Q_MUTEX() simple_lock(&recon_queue_mutex)
    194 #define UNLOCK_RECON_Q_MUTEX() simple_unlock(&recon_queue_mutex)
    195 
    196 /* prototypes */
    197 static void KernelWakeupFunc(struct buf * bp);
    198 static void InitBP(struct buf * bp, struct vnode *, unsigned rw_flag,
    199 		   dev_t dev, RF_SectorNum_t startSect,
    200 		   RF_SectorCount_t numSect, caddr_t buf,
    201 		   void (*cbFunc) (struct buf *), void *cbArg,
    202 		   int logBytesPerSector, struct proc * b_proc);
    203 
    204 #define Dprintf0(s)       if (rf_queueDebug) \
    205      rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
    206 #define Dprintf1(s,a)     if (rf_queueDebug) \
    207      rf_debug_printf(s,a,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
    208 #define Dprintf2(s,a,b)   if (rf_queueDebug) \
    209      rf_debug_printf(s,a,b,NULL,NULL,NULL,NULL,NULL,NULL)
    210 #define Dprintf3(s,a,b,c) if (rf_queueDebug) \
    211      rf_debug_printf(s,a,b,c,NULL,NULL,NULL,NULL,NULL)
    212 
    213 int raidmarkclean(dev_t dev, struct vnode *b_vp, int);
    214 int raidmarkdirty(dev_t dev, struct vnode *b_vp, int);
    215 
    216 void raidattach __P((int));
    217 int raidsize __P((dev_t));
    218 
    219 void    rf_DiskIOComplete(RF_DiskQueue_t *, RF_DiskQueueData_t *, int);
    220 void    rf_CopybackReconstructedData(RF_Raid_t * raidPtr);
    221 static int raidinit __P((dev_t, RF_Raid_t *, int));
    222 
    223 int raidopen __P((dev_t, int, int, struct proc *));
    224 int raidclose __P((dev_t, int, int, struct proc *));
    225 int raidioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    226 int raidwrite __P((dev_t, struct uio *, int));
    227 int raidread __P((dev_t, struct uio *, int));
    228 void raidstrategy __P((struct buf *));
    229 int raiddump __P((dev_t, daddr_t, caddr_t, size_t));
    230 
    231 int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
    232 int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
    233 void rf_update_component_labels( RF_Raid_t *);
    234 /*
    235  * Pilfered from ccd.c
    236  */
    237 
    238 struct raidbuf {
    239 	struct buf rf_buf;	/* new I/O buf.  MUST BE FIRST!!! */
    240 	struct buf *rf_obp;	/* ptr. to original I/O buf */
    241 	int     rf_flags;	/* misc. flags */
    242 	RF_DiskQueueData_t *req;/* the request that this was part of.. */
    243 };
    244 
    245 
    246 #define RAIDGETBUF(rs) pool_get(&(rs)->sc_cbufpool, PR_NOWAIT)
    247 #define	RAIDPUTBUF(rs, cbp) pool_put(&(rs)->sc_cbufpool, cbp)
    248 
    249 /* XXX Not sure if the following should be replacing the raidPtrs above,
    250    or if it should be used in conjunction with that... */
    251 
    252 struct raid_softc {
    253 	int     sc_flags;	/* flags */
    254 	int     sc_cflags;	/* configuration flags */
    255 	size_t  sc_size;        /* size of the raid device */
    256 	dev_t   sc_dev;	        /* our device.. */
    257 	char    sc_xname[20];	/* XXX external name */
    258 	struct disk sc_dkdev;	/* generic disk device info */
    259 	struct pool sc_cbufpool;	/* component buffer pool */
    260 };
    261 /* sc_flags */
    262 #define RAIDF_INITED	0x01	/* unit has been initialized */
    263 #define RAIDF_WLABEL	0x02	/* label area is writable */
    264 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    265 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    266 #define RAIDF_LOCKED	0x80	/* unit is locked */
    267 
    268 #define	raidunit(x)	DISKUNIT(x)
    269 static int numraid = 0;
    270 
    271 /*
    272  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    273  * Be aware that large numbers can allow the driver to consume a lot of
    274  * kernel memory, especially on writes...
    275  */
    276 
    277 #ifndef RAIDOUTSTANDING
    278 #define RAIDOUTSTANDING   10
    279 #endif
    280 
    281 #define RAIDLABELDEV(dev)	\
    282 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    283 
    284 /* declared here, and made public, for the benefit of KVM stuff.. */
    285 struct raid_softc *raid_softc;
    286 
    287 static void raidgetdefaultlabel __P((RF_Raid_t *, struct raid_softc *,
    288 				     struct disklabel *));
    289 static void raidgetdisklabel __P((dev_t));
    290 static void raidmakedisklabel __P((struct raid_softc *));
    291 
    292 static int raidlock __P((struct raid_softc *));
    293 static void raidunlock __P((struct raid_softc *));
    294 int raidlookup __P((char *, struct proc * p, struct vnode **));
    295 
    296 static void rf_markalldirty __P((RF_Raid_t *));
    297 
    298 void
    299 raidattach(num)
    300 	int     num;
    301 {
    302 	int raidID;
    303 	int i, rc;
    304 
    305 #ifdef DEBUG
    306 	printf("raidattach: Asked for %d units\n", num);
    307 #endif
    308 
    309 	if (num <= 0) {
    310 #ifdef DIAGNOSTIC
    311 		panic("raidattach: count <= 0");
    312 #endif
    313 		return;
    314 	}
    315 	/* This is where all the initialization stuff gets done. */
    316 
    317 	/* Make some space for requested number of units... */
    318 
    319 	RF_Calloc(raidPtrs, num, sizeof(RF_Raid_t *), (RF_Raid_t **));
    320 	if (raidPtrs == NULL) {
    321 		panic("raidPtrs is NULL!!\n");
    322 	}
    323 
    324 	rc = rf_mutex_init(&rf_sparet_wait_mutex);
    325 	if (rc) {
    326 		RF_PANIC();
    327 	}
    328 
    329 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    330 	recon_queue = NULL;
    331 
    332 	for (i = 0; i < numraid; i++)
    333 		raidPtrs[i] = NULL;
    334 	rc = rf_BootRaidframe();
    335 	if (rc == 0)
    336 		printf("Kernelized RAIDframe activated\n");
    337 	else
    338 		panic("Serious error booting RAID!!\n");
    339 
    340 	rf_kbooted = RFK_BOOT_GOOD;
    341 
    342 	/* put together some datastructures like the CCD device does.. This
    343 	 * lets us lock the device and what-not when it gets opened. */
    344 
    345 	raid_softc = (struct raid_softc *)
    346 	    malloc(num * sizeof(struct raid_softc),
    347 	    M_RAIDFRAME, M_NOWAIT);
    348 	if (raid_softc == NULL) {
    349 		printf("WARNING: no memory for RAIDframe driver\n");
    350 		return;
    351 	}
    352 	numraid = num;
    353 	bzero(raid_softc, num * sizeof(struct raid_softc));
    354 
    355 	for (raidID = 0; raidID < num; raidID++) {
    356 		RF_Calloc(raidPtrs[raidID], 1, sizeof(RF_Raid_t),
    357 			  (RF_Raid_t *));
    358 		if (raidPtrs[raidID] == NULL) {
    359 			printf("raidPtrs[%d] is NULL\n", raidID);
    360 		}
    361 	}
    362 }
    363 
    364 
    365 int
    366 raidsize(dev)
    367 	dev_t   dev;
    368 {
    369 	struct raid_softc *rs;
    370 	struct disklabel *lp;
    371 	int     part, unit, omask, size;
    372 
    373 	unit = raidunit(dev);
    374 	if (unit >= numraid)
    375 		return (-1);
    376 	rs = &raid_softc[unit];
    377 
    378 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    379 		return (-1);
    380 
    381 	part = DISKPART(dev);
    382 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    383 	lp = rs->sc_dkdev.dk_label;
    384 
    385 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curproc))
    386 		return (-1);
    387 
    388 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    389 		size = -1;
    390 	else
    391 		size = lp->d_partitions[part].p_size *
    392 		    (lp->d_secsize / DEV_BSIZE);
    393 
    394 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curproc))
    395 		return (-1);
    396 
    397 	return (size);
    398 
    399 }
    400 
    401 int
    402 raiddump(dev, blkno, va, size)
    403 	dev_t   dev;
    404 	daddr_t blkno;
    405 	caddr_t va;
    406 	size_t  size;
    407 {
    408 	/* Not implemented. */
    409 	return ENXIO;
    410 }
    411 /* ARGSUSED */
    412 int
    413 raidopen(dev, flags, fmt, p)
    414 	dev_t   dev;
    415 	int     flags, fmt;
    416 	struct proc *p;
    417 {
    418 	int     unit = raidunit(dev);
    419 	struct raid_softc *rs;
    420 	struct disklabel *lp;
    421 	int     part, pmask;
    422 	int     error = 0;
    423 
    424 	if (unit >= numraid)
    425 		return (ENXIO);
    426 	rs = &raid_softc[unit];
    427 
    428 	if ((error = raidlock(rs)) != 0)
    429 		return (error);
    430 	lp = rs->sc_dkdev.dk_label;
    431 
    432 	part = DISKPART(dev);
    433 	pmask = (1 << part);
    434 
    435 	db1_printf(("Opening raid device number: %d partition: %d\n",
    436 		unit, part));
    437 
    438 
    439 	if ((rs->sc_flags & RAIDF_INITED) &&
    440 	    (rs->sc_dkdev.dk_openmask == 0))
    441 		raidgetdisklabel(dev);
    442 
    443 	/* make sure that this partition exists */
    444 
    445 	if (part != RAW_PART) {
    446 		db1_printf(("Not a raw partition..\n"));
    447 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    448 		    ((part >= lp->d_npartitions) ||
    449 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    450 			error = ENXIO;
    451 			raidunlock(rs);
    452 			db1_printf(("Bailing out...\n"));
    453 			return (error);
    454 		}
    455 	}
    456 	/* Prevent this unit from being unconfigured while open. */
    457 	switch (fmt) {
    458 	case S_IFCHR:
    459 		rs->sc_dkdev.dk_copenmask |= pmask;
    460 		break;
    461 
    462 	case S_IFBLK:
    463 		rs->sc_dkdev.dk_bopenmask |= pmask;
    464 		break;
    465 	}
    466 
    467 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    468 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    469 		/* First one... mark things as dirty... Note that we *MUST*
    470 		 have done a configure before this.  I DO NOT WANT TO BE
    471 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    472 		 THAT THEY BELONG TOGETHER!!!!! */
    473 		/* XXX should check to see if we're only open for reading
    474 		   here... If so, we needn't do this, but then need some
    475 		   other way of keeping track of what's happened.. */
    476 
    477 		rf_markalldirty( raidPtrs[unit] );
    478 	}
    479 
    480 
    481 	rs->sc_dkdev.dk_openmask =
    482 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    483 
    484 	raidunlock(rs);
    485 
    486 	return (error);
    487 
    488 
    489 }
    490 /* ARGSUSED */
    491 int
    492 raidclose(dev, flags, fmt, p)
    493 	dev_t   dev;
    494 	int     flags, fmt;
    495 	struct proc *p;
    496 {
    497 	int     unit = raidunit(dev);
    498 	struct raid_softc *rs;
    499 	int     error = 0;
    500 	int     part;
    501 
    502 	if (unit >= numraid)
    503 		return (ENXIO);
    504 	rs = &raid_softc[unit];
    505 
    506 	if ((error = raidlock(rs)) != 0)
    507 		return (error);
    508 
    509 	part = DISKPART(dev);
    510 
    511 	/* ...that much closer to allowing unconfiguration... */
    512 	switch (fmt) {
    513 	case S_IFCHR:
    514 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    515 		break;
    516 
    517 	case S_IFBLK:
    518 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    519 		break;
    520 	}
    521 	rs->sc_dkdev.dk_openmask =
    522 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    523 
    524 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    525 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    526 		/* Last one... device is not unconfigured yet.
    527 		   Device shutdown has taken care of setting the
    528 		   clean bits if RAIDF_INITED is not set
    529 		   mark things as clean... */
    530 		rf_update_component_labels( raidPtrs[unit] );
    531 	}
    532 
    533 	raidunlock(rs);
    534 	return (0);
    535 
    536 }
    537 
    538 void
    539 raidstrategy(bp)
    540 	register struct buf *bp;
    541 {
    542 	register int s;
    543 
    544 	unsigned int raidID = raidunit(bp->b_dev);
    545 	RF_Raid_t *raidPtr;
    546 	struct raid_softc *rs = &raid_softc[raidID];
    547 	struct disklabel *lp;
    548 	int     wlabel;
    549 
    550 #if 0
    551 	db1_printf(("Strategy: 0x%x 0x%x\n", bp, bp->b_data));
    552 	db1_printf(("Strategy(2): bp->b_bufsize%d\n", (int) bp->b_bufsize));
    553 	db1_printf(("bp->b_count=%d\n", (int) bp->b_bcount));
    554 	db1_printf(("bp->b_resid=%d\n", (int) bp->b_resid));
    555 	db1_printf(("bp->b_blkno=%d\n", (int) bp->b_blkno));
    556 
    557 	if (bp->b_flags & B_READ)
    558 		db1_printf(("READ\n"));
    559 	else
    560 		db1_printf(("WRITE\n"));
    561 #endif
    562 	if (rf_kbooted != RFK_BOOT_GOOD)
    563 		return;
    564 	if (raidID >= numraid || !raidPtrs[raidID]) {
    565 		bp->b_error = ENODEV;
    566 		bp->b_flags |= B_ERROR;
    567 		bp->b_resid = bp->b_bcount;
    568 		biodone(bp);
    569 		return;
    570 	}
    571 	raidPtr = raidPtrs[raidID];
    572 	if (!raidPtr->valid) {
    573 		bp->b_error = ENODEV;
    574 		bp->b_flags |= B_ERROR;
    575 		bp->b_resid = bp->b_bcount;
    576 		biodone(bp);
    577 		return;
    578 	}
    579 	if (bp->b_bcount == 0) {
    580 		db1_printf(("b_bcount is zero..\n"));
    581 		biodone(bp);
    582 		return;
    583 	}
    584 	lp = rs->sc_dkdev.dk_label;
    585 
    586 	/*
    587 	 * Do bounds checking and adjust transfer.  If there's an
    588 	 * error, the bounds check will flag that for us.
    589 	 */
    590 
    591 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    592 	if (DISKPART(bp->b_dev) != RAW_PART)
    593 		if (bounds_check_with_label(bp, lp, wlabel) <= 0) {
    594 			db1_printf(("Bounds check failed!!:%d %d\n",
    595 				(int) bp->b_blkno, (int) wlabel));
    596 			biodone(bp);
    597 			return;
    598 		}
    599 	s = splbio();		/* XXX Needed? */
    600 	db1_printf(("Beginning strategy...\n"));
    601 
    602 	bp->b_resid = 0;
    603 	bp->b_error = rf_DoAccessKernel(raidPtrs[raidID], bp,
    604 	    NULL, NULL, NULL);
    605 	if (bp->b_error) {
    606 		bp->b_flags |= B_ERROR;
    607 		db1_printf(("bp->b_flags HAS B_ERROR SET!!!: %d\n",
    608 			bp->b_error));
    609 	}
    610 	splx(s);
    611 #if 0
    612 	db1_printf(("Strategy exiting: 0x%x 0x%x %d %d\n",
    613 		bp, bp->b_data,
    614 		(int) bp->b_bcount, (int) bp->b_resid));
    615 #endif
    616 }
    617 /* ARGSUSED */
    618 int
    619 raidread(dev, uio, flags)
    620 	dev_t   dev;
    621 	struct uio *uio;
    622 	int     flags;
    623 {
    624 	int     unit = raidunit(dev);
    625 	struct raid_softc *rs;
    626 	int     part;
    627 
    628 	if (unit >= numraid)
    629 		return (ENXIO);
    630 	rs = &raid_softc[unit];
    631 
    632 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    633 		return (ENXIO);
    634 	part = DISKPART(dev);
    635 
    636 	db1_printf(("raidread: unit: %d partition: %d\n", unit, part));
    637 
    638 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    639 
    640 }
    641 /* ARGSUSED */
    642 int
    643 raidwrite(dev, uio, flags)
    644 	dev_t   dev;
    645 	struct uio *uio;
    646 	int     flags;
    647 {
    648 	int     unit = raidunit(dev);
    649 	struct raid_softc *rs;
    650 
    651 	if (unit >= numraid)
    652 		return (ENXIO);
    653 	rs = &raid_softc[unit];
    654 
    655 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    656 		return (ENXIO);
    657 	db1_printf(("raidwrite\n"));
    658 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    659 
    660 }
    661 
    662 int
    663 raidioctl(dev, cmd, data, flag, p)
    664 	dev_t   dev;
    665 	u_long  cmd;
    666 	caddr_t data;
    667 	int     flag;
    668 	struct proc *p;
    669 {
    670 	int     unit = raidunit(dev);
    671 	int     error = 0;
    672 	int     part, pmask;
    673 	struct raid_softc *rs;
    674 #if 0
    675 	int     r, c;
    676 #endif
    677 	/* struct raid_ioctl *ccio = (struct ccd_ioctl *)data; */
    678 
    679 	/* struct ccdbuf *cbp; */
    680 	/* struct raidbuf *raidbp; */
    681 	RF_Config_t *k_cfg, *u_cfg;
    682 	u_char *specific_buf;
    683 	int retcode = 0;
    684 	int row;
    685 	int column;
    686 	int s;
    687 	struct rf_recon_req *rrcopy, *rr;
    688 	RF_ComponentLabel_t *component_label;
    689 	RF_ComponentLabel_t ci_label;
    690 	RF_ComponentLabel_t **c_label_ptr;
    691 	RF_SingleComponent_t *sparePtr,*componentPtr;
    692 	RF_SingleComponent_t hot_spare;
    693 	RF_SingleComponent_t component;
    694 
    695 	if (unit >= numraid)
    696 		return (ENXIO);
    697 	rs = &raid_softc[unit];
    698 
    699 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    700 		(int) DISKPART(dev), (int) unit, (int) cmd));
    701 
    702 	/* Must be open for writes for these commands... */
    703 	switch (cmd) {
    704 	case DIOCSDINFO:
    705 	case DIOCWDINFO:
    706 	case DIOCWLABEL:
    707 		if ((flag & FWRITE) == 0)
    708 			return (EBADF);
    709 	}
    710 
    711 	/* Must be initialized for these... */
    712 	switch (cmd) {
    713 	case DIOCGDINFO:
    714 	case DIOCSDINFO:
    715 	case DIOCWDINFO:
    716 	case DIOCGPART:
    717 	case DIOCWLABEL:
    718 	case DIOCGDEFLABEL:
    719 	case RAIDFRAME_SHUTDOWN:
    720 	case RAIDFRAME_REWRITEPARITY:
    721 	case RAIDFRAME_GET_INFO:
    722 	case RAIDFRAME_RESET_ACCTOTALS:
    723 	case RAIDFRAME_GET_ACCTOTALS:
    724 	case RAIDFRAME_KEEP_ACCTOTALS:
    725 	case RAIDFRAME_GET_SIZE:
    726 	case RAIDFRAME_FAIL_DISK:
    727 	case RAIDFRAME_COPYBACK:
    728 	case RAIDFRAME_CHECKRECON:
    729 	case RAIDFRAME_GET_COMPONENT_LABEL:
    730 	case RAIDFRAME_SET_COMPONENT_LABEL:
    731 	case RAIDFRAME_ADD_HOT_SPARE:
    732 	case RAIDFRAME_REMOVE_HOT_SPARE:
    733 	case RAIDFRAME_INIT_LABELS:
    734 	case RAIDFRAME_REBUILD_IN_PLACE:
    735 	case RAIDFRAME_CHECK_PARITY:
    736 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    737 			return (ENXIO);
    738 	}
    739 
    740 	switch (cmd) {
    741 
    742 
    743 		/* configure the system */
    744 	case RAIDFRAME_CONFIGURE:
    745 
    746 		db3_printf(("rf_ioctl: RAIDFRAME_CONFIGURE\n"));
    747 		/* copy-in the configuration information */
    748 		/* data points to a pointer to the configuration structure */
    749 		u_cfg = *((RF_Config_t **) data);
    750 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    751 		if (k_cfg == NULL) {
    752 			db3_printf(("rf_ioctl: ENOMEM for config. Code is %d\n", retcode));
    753 			return (ENOMEM);
    754 		}
    755 		retcode = copyin((caddr_t) u_cfg, (caddr_t) k_cfg,
    756 		    sizeof(RF_Config_t));
    757 		if (retcode) {
    758 			db3_printf(("rf_ioctl: retcode=%d copyin.1\n",
    759 				retcode));
    760 			return (retcode);
    761 		}
    762 		/* allocate a buffer for the layout-specific data, and copy it
    763 		 * in */
    764 		if (k_cfg->layoutSpecificSize) {
    765 			if (k_cfg->layoutSpecificSize > 10000) {
    766 				/* sanity check */
    767 				db3_printf(("rf_ioctl: EINVAL %d\n", retcode));
    768 				return (EINVAL);
    769 			}
    770 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    771 			    (u_char *));
    772 			if (specific_buf == NULL) {
    773 				RF_Free(k_cfg, sizeof(RF_Config_t));
    774 				db3_printf(("rf_ioctl: ENOMEM %d\n", retcode));
    775 				return (ENOMEM);
    776 			}
    777 			retcode = copyin(k_cfg->layoutSpecific,
    778 			    (caddr_t) specific_buf,
    779 			    k_cfg->layoutSpecificSize);
    780 			if (retcode) {
    781 				db3_printf(("rf_ioctl: retcode=%d copyin.2\n",
    782 					retcode));
    783 				return (retcode);
    784 			}
    785 		} else
    786 			specific_buf = NULL;
    787 		k_cfg->layoutSpecific = specific_buf;
    788 
    789 		/* should do some kind of sanity check on the configuration.
    790 		 * Store the sum of all the bytes in the last byte? */
    791 
    792 #if 0
    793 		db1_printf(("Considering configuring the system.:%d 0x%x\n",
    794 			unit, p));
    795 #endif
    796 
    797 		/* We need the pointer to this a little deeper, so stash it
    798 		 * here... */
    799 
    800 		raidPtrs[unit]->proc = p;
    801 
    802 		/* configure the system */
    803 
    804 		raidPtrs[unit]->raidid = unit;
    805 
    806 		retcode = rf_Configure(raidPtrs[unit], k_cfg);
    807 
    808 		/* allow this many simultaneous IO's to this RAID device */
    809 		raidPtrs[unit]->openings = RAIDOUTSTANDING;
    810 
    811 		if (retcode == 0) {
    812 			retcode = raidinit(dev, raidPtrs[unit], unit);
    813 			rf_markalldirty( raidPtrs[unit] );
    814 		}
    815 		/* free the buffers.  No return code here. */
    816 		if (k_cfg->layoutSpecificSize) {
    817 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
    818 		}
    819 		RF_Free(k_cfg, sizeof(RF_Config_t));
    820 
    821 		db3_printf(("rf_ioctl: retcode=%d RAIDFRAME_CONFIGURE\n",
    822 			retcode));
    823 
    824 		return (retcode);
    825 
    826 		/* shutdown the system */
    827 	case RAIDFRAME_SHUTDOWN:
    828 
    829 		if ((error = raidlock(rs)) != 0)
    830 			return (error);
    831 
    832 		/*
    833 		 * If somebody has a partition mounted, we shouldn't
    834 		 * shutdown.
    835 		 */
    836 
    837 		part = DISKPART(dev);
    838 		pmask = (1 << part);
    839 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
    840 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
    841 			(rs->sc_dkdev.dk_copenmask & pmask))) {
    842 			raidunlock(rs);
    843 			return (EBUSY);
    844 		}
    845 
    846 		if (rf_debugKernelAccess) {
    847 			printf("call shutdown\n");
    848 		}
    849 		raidPtrs[unit]->proc = p;	/* XXX  necessary evil */
    850 
    851 		retcode = rf_Shutdown(raidPtrs[unit]);
    852 
    853 		db1_printf(("Done main shutdown\n"));
    854 
    855 		pool_destroy(&rs->sc_cbufpool);
    856 		db1_printf(("Done freeing component buffer freelist\n"));
    857 
    858 		/* It's no longer initialized... */
    859 		rs->sc_flags &= ~RAIDF_INITED;
    860 
    861 		/* Detach the disk. */
    862 		disk_detach(&rs->sc_dkdev);
    863 
    864 		raidunlock(rs);
    865 
    866 		return (retcode);
    867 	case RAIDFRAME_GET_COMPONENT_LABEL:
    868 		c_label_ptr = (RF_ComponentLabel_t **) data;
    869 		/* need to read the component label for the disk indicated
    870 		   by row,column in component_label
    871 		   XXX need to sanity check these values!!!
    872 		   */
    873 
    874 		/* For practice, let's get it directly fromdisk, rather
    875 		   than from the in-core copy */
    876 		RF_Malloc( component_label, sizeof( RF_ComponentLabel_t ),
    877 			   (RF_ComponentLabel_t *));
    878 		if (component_label == NULL)
    879 			return (ENOMEM);
    880 
    881 		bzero((char *) component_label, sizeof(RF_ComponentLabel_t));
    882 
    883 		retcode = copyin( *c_label_ptr, component_label,
    884 				  sizeof(RF_ComponentLabel_t));
    885 
    886 		if (retcode) {
    887 			return(retcode);
    888 		}
    889 
    890 		row = component_label->row;
    891 		printf("Row: %d\n",row);
    892 		if (row > raidPtrs[unit]->numRow) {
    893 			row = 0; /* XXX */
    894 		}
    895 		column = component_label->column;
    896 		printf("Column: %d\n",column);
    897 		if (column > raidPtrs[unit]->numCol) {
    898 			column = 0; /* XXX */
    899 		}
    900 
    901 		raidread_component_label(
    902                               raidPtrs[unit]->Disks[row][column].dev,
    903 			      raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    904 			      component_label );
    905 
    906 		retcode = copyout((caddr_t) component_label,
    907 				  (caddr_t) *c_label_ptr,
    908 				  sizeof(RF_ComponentLabel_t));
    909 		RF_Free( component_label, sizeof(RF_ComponentLabel_t));
    910 		return (retcode);
    911 
    912 	case RAIDFRAME_SET_COMPONENT_LABEL:
    913 		component_label = (RF_ComponentLabel_t *) data;
    914 
    915 		/* XXX check the label for valid stuff... */
    916 		/* Note that some things *should not* get modified --
    917 		   the user should be re-initing the labels instead of
    918 		   trying to patch things.
    919 		   */
    920 
    921 		printf("Got component label:\n");
    922 		printf("Version: %d\n",component_label->version);
    923 		printf("Serial Number: %d\n",component_label->serial_number);
    924 		printf("Mod counter: %d\n",component_label->mod_counter);
    925 		printf("Row: %d\n", component_label->row);
    926 		printf("Column: %d\n", component_label->column);
    927 		printf("Num Rows: %d\n", component_label->num_rows);
    928 		printf("Num Columns: %d\n", component_label->num_columns);
    929 		printf("Clean: %d\n", component_label->clean);
    930 		printf("Status: %d\n", component_label->status);
    931 
    932 		row = component_label->row;
    933 		column = component_label->column;
    934 
    935 		if ((row < 0) || (row > raidPtrs[unit]->numRow) ||
    936 		    (column < 0) || (column > raidPtrs[unit]->numCol)) {
    937 			return(EINVAL);
    938 		}
    939 
    940 		/* XXX this isn't allowed to do anything for now :-) */
    941 #if 0
    942 		raidwrite_component_label(
    943                             raidPtrs[unit]->Disks[row][column].dev,
    944 			    raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    945 			    component_label );
    946 #endif
    947 		return (0);
    948 
    949 	case RAIDFRAME_INIT_LABELS:
    950 		component_label = (RF_ComponentLabel_t *) data;
    951 		/*
    952 		   we only want the serial number from
    953 		   the above.  We get all the rest of the information
    954 		   from the config that was used to create this RAID
    955 		   set.
    956 		   */
    957 
    958 		raidPtrs[unit]->serial_number = component_label->serial_number;
    959 		/* current version number */
    960 		ci_label.version = RF_COMPONENT_LABEL_VERSION;
    961 		ci_label.serial_number = component_label->serial_number;
    962 		ci_label.mod_counter = raidPtrs[unit]->mod_counter;
    963 		ci_label.num_rows = raidPtrs[unit]->numRow;
    964 		ci_label.num_columns = raidPtrs[unit]->numCol;
    965 		ci_label.clean = RF_RAID_DIRTY; /* not clean */
    966 		ci_label.status = rf_ds_optimal; /* "It's good!" */
    967 
    968 		for(row=0;row<raidPtrs[unit]->numRow;row++) {
    969 			ci_label.row = row;
    970 			for(column=0;column<raidPtrs[unit]->numCol;column++) {
    971 				ci_label.column = column;
    972 				raidwrite_component_label(
    973 				  raidPtrs[unit]->Disks[row][column].dev,
    974 				  raidPtrs[unit]->raid_cinfo[row][column].ci_vp,
    975 				  &ci_label );
    976 			}
    977 		}
    978 
    979 		return (retcode);
    980 
    981 		/* initialize all parity */
    982 	case RAIDFRAME_REWRITEPARITY:
    983 
    984 		if (raidPtrs[unit]->Layout.map->faultsTolerated == 0) {
    985 			/* Parity for RAID 0 is trivially correct */
    986 			raidPtrs[unit]->parity_good = RF_RAID_CLEAN;
    987 			return(0);
    988 		}
    989 
    990 		/* borrow the thread of the requesting process */
    991 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
    992 		s = splbio();
    993 		retcode = rf_RewriteParity(raidPtrs[unit]);
    994 		splx(s);
    995 		/* return I/O Error if the parity rewrite fails */
    996 
    997 		if (retcode) {
    998 			retcode = EIO;
    999 		} else {
   1000 			/* set the clean bit!  If we shutdown correctly,
   1001 			 the clean bit on each component label will get
   1002 			 set */
   1003 			raidPtrs[unit]->parity_good = RF_RAID_CLEAN;
   1004 		}
   1005 		return (retcode);
   1006 
   1007 
   1008 	case RAIDFRAME_ADD_HOT_SPARE:
   1009 		sparePtr = (RF_SingleComponent_t *) data;
   1010 		memcpy( &hot_spare, sparePtr, sizeof(RF_SingleComponent_t));
   1011 		printf("Adding spare\n");
   1012 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
   1013 		retcode = rf_add_hot_spare(raidPtrs[unit], &hot_spare);
   1014 		return(retcode);
   1015 
   1016 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1017 		return(retcode);
   1018 
   1019 	case RAIDFRAME_REBUILD_IN_PLACE:
   1020 		componentPtr = (RF_SingleComponent_t *) data;
   1021 		memcpy( &component, componentPtr,
   1022 			sizeof(RF_SingleComponent_t));
   1023 		row = component.row;
   1024 		column = component.column;
   1025 		printf("Rebuild: %d %d\n",row, column);
   1026 		if ((row < 0) || (row > raidPtrs[unit]->numRow) ||
   1027 		    (column < 0) || (column > raidPtrs[unit]->numCol)) {
   1028 			return(EINVAL);
   1029 		}
   1030 		printf("Attempting a rebuild in place\n");
   1031 		s = splbio();
   1032 		raidPtrs[unit]->proc = p;	/* Blah... :-p GO */
   1033 		retcode = rf_ReconstructInPlace(raidPtrs[unit], row, column);
   1034 		splx(s);
   1035 		return(retcode);
   1036 
   1037 		/* issue a test-unit-ready through raidframe to the indicated
   1038 		 * device */
   1039 #if 0				/* XXX not supported yet (ever?) */
   1040 	case RAIDFRAME_TUR:
   1041 		/* debug only */
   1042 		retcode = rf_SCSI_DoTUR(0, 0, 0, 0, *(dev_t *) data);
   1043 		return (retcode);
   1044 #endif
   1045 	case RAIDFRAME_GET_INFO:
   1046 		{
   1047 			RF_Raid_t *raid = raidPtrs[unit];
   1048 			RF_DeviceConfig_t *cfg, **ucfgp;
   1049 			int     i, j, d;
   1050 
   1051 			if (!raid->valid)
   1052 				return (ENODEV);
   1053 			ucfgp = (RF_DeviceConfig_t **) data;
   1054 			RF_Malloc(cfg, sizeof(RF_DeviceConfig_t),
   1055 				  (RF_DeviceConfig_t *));
   1056 			if (cfg == NULL)
   1057 				return (ENOMEM);
   1058 			bzero((char *) cfg, sizeof(RF_DeviceConfig_t));
   1059 			cfg->rows = raid->numRow;
   1060 			cfg->cols = raid->numCol;
   1061 			cfg->ndevs = raid->numRow * raid->numCol;
   1062 			if (cfg->ndevs >= RF_MAX_DISKS) {
   1063 				cfg->ndevs = 0;
   1064 				return (ENOMEM);
   1065 			}
   1066 			cfg->nspares = raid->numSpare;
   1067 			if (cfg->nspares >= RF_MAX_DISKS) {
   1068 				cfg->nspares = 0;
   1069 				return (ENOMEM);
   1070 			}
   1071 			cfg->maxqdepth = raid->maxQueueDepth;
   1072 			d = 0;
   1073 			for (i = 0; i < cfg->rows; i++) {
   1074 				for (j = 0; j < cfg->cols; j++) {
   1075 					cfg->devs[d] = raid->Disks[i][j];
   1076 					d++;
   1077 				}
   1078 			}
   1079 			for (j = cfg->cols, i = 0; i < cfg->nspares; i++, j++) {
   1080 				cfg->spares[i] = raid->Disks[0][j];
   1081 			}
   1082 			retcode = copyout((caddr_t) cfg, (caddr_t) * ucfgp,
   1083 					  sizeof(RF_DeviceConfig_t));
   1084 			RF_Free(cfg, sizeof(RF_DeviceConfig_t));
   1085 
   1086 			return (retcode);
   1087 		}
   1088 		break;
   1089 	case RAIDFRAME_CHECK_PARITY:
   1090 		*(int *) data = raidPtrs[unit]->parity_good;
   1091 		return (0);
   1092 	case RAIDFRAME_RESET_ACCTOTALS:
   1093 		{
   1094 			RF_Raid_t *raid = raidPtrs[unit];
   1095 
   1096 			bzero(&raid->acc_totals, sizeof(raid->acc_totals));
   1097 			return (0);
   1098 		}
   1099 		break;
   1100 
   1101 	case RAIDFRAME_GET_ACCTOTALS:
   1102 		{
   1103 			RF_AccTotals_t *totals = (RF_AccTotals_t *) data;
   1104 			RF_Raid_t *raid = raidPtrs[unit];
   1105 
   1106 			*totals = raid->acc_totals;
   1107 			return (0);
   1108 		}
   1109 		break;
   1110 
   1111 	case RAIDFRAME_KEEP_ACCTOTALS:
   1112 		{
   1113 			RF_Raid_t *raid = raidPtrs[unit];
   1114 			int    *keep = (int *) data;
   1115 
   1116 			raid->keep_acc_totals = *keep;
   1117 			return (0);
   1118 		}
   1119 		break;
   1120 
   1121 	case RAIDFRAME_GET_SIZE:
   1122 		*(int *) data = raidPtrs[unit]->totalSectors;
   1123 		return (0);
   1124 
   1125 #define RAIDFRAME_RECON 1
   1126 		/* XXX The above should probably be set somewhere else!! GO */
   1127 #if RAIDFRAME_RECON > 0
   1128 
   1129 		/* fail a disk & optionally start reconstruction */
   1130 	case RAIDFRAME_FAIL_DISK:
   1131 		rr = (struct rf_recon_req *) data;
   1132 
   1133 		if (rr->row < 0 || rr->row >= raidPtrs[unit]->numRow
   1134 		    || rr->col < 0 || rr->col >= raidPtrs[unit]->numCol)
   1135 			return (EINVAL);
   1136 
   1137 		printf("raid%d: Failing the disk: row: %d col: %d\n",
   1138 		       unit, rr->row, rr->col);
   1139 
   1140 		/* make a copy of the recon request so that we don't rely on
   1141 		 * the user's buffer */
   1142 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1143 		bcopy(rr, rrcopy, sizeof(*rr));
   1144 		rrcopy->raidPtr = (void *) raidPtrs[unit];
   1145 
   1146 		LOCK_RECON_Q_MUTEX();
   1147 		rrcopy->next = recon_queue;
   1148 		recon_queue = rrcopy;
   1149 		wakeup(&recon_queue);
   1150 		UNLOCK_RECON_Q_MUTEX();
   1151 
   1152 		return (0);
   1153 
   1154 		/* invoke a copyback operation after recon on whatever disk
   1155 		 * needs it, if any */
   1156 	case RAIDFRAME_COPYBACK:
   1157 		/* borrow the current thread to get this done */
   1158 		raidPtrs[unit]->proc = p;	/* ICK.. but needed :-p  GO */
   1159 		s = splbio();
   1160 		rf_CopybackReconstructedData(raidPtrs[unit]);
   1161 		splx(s);
   1162 		return (0);
   1163 
   1164 		/* return the percentage completion of reconstruction */
   1165 	case RAIDFRAME_CHECKRECON:
   1166 		row = *(int *) data;
   1167 		if (row < 0 || row >= raidPtrs[unit]->numRow)
   1168 			return (EINVAL);
   1169 		if (raidPtrs[unit]->status[row] != rf_rs_reconstructing)
   1170 			*(int *) data = 100;
   1171 		else
   1172 			*(int *) data = raidPtrs[unit]->reconControl[row]->percentComplete;
   1173 		return (0);
   1174 
   1175 		/* the sparetable daemon calls this to wait for the kernel to
   1176 		 * need a spare table. this ioctl does not return until a
   1177 		 * spare table is needed. XXX -- calling mpsleep here in the
   1178 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1179 		 * -- I should either compute the spare table in the kernel,
   1180 		 * or have a different -- XXX XXX -- interface (a different
   1181 		 * character device) for delivering the table          -- XXX */
   1182 #if 0
   1183 	case RAIDFRAME_SPARET_WAIT:
   1184 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1185 		while (!rf_sparet_wait_queue)
   1186 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1187 		waitreq = rf_sparet_wait_queue;
   1188 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1189 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1190 
   1191 		*((RF_SparetWait_t *) data) = *waitreq;	/* structure assignment */
   1192 
   1193 		RF_Free(waitreq, sizeof(*waitreq));
   1194 		return (0);
   1195 
   1196 
   1197 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1198 		 * code in it that will cause the dameon to exit */
   1199 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1200 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1201 		waitreq->fcol = -1;
   1202 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1203 		waitreq->next = rf_sparet_wait_queue;
   1204 		rf_sparet_wait_queue = waitreq;
   1205 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1206 		wakeup(&rf_sparet_wait_queue);
   1207 		return (0);
   1208 
   1209 		/* used by the spare table daemon to deliver a spare table
   1210 		 * into the kernel */
   1211 	case RAIDFRAME_SEND_SPARET:
   1212 
   1213 		/* install the spare table */
   1214 		retcode = rf_SetSpareTable(raidPtrs[unit], *(void **) data);
   1215 
   1216 		/* respond to the requestor.  the return status of the spare
   1217 		 * table installation is passed in the "fcol" field */
   1218 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1219 		waitreq->fcol = retcode;
   1220 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1221 		waitreq->next = rf_sparet_resp_queue;
   1222 		rf_sparet_resp_queue = waitreq;
   1223 		wakeup(&rf_sparet_resp_queue);
   1224 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1225 
   1226 		return (retcode);
   1227 #endif
   1228 
   1229 
   1230 #endif				/* RAIDFRAME_RECON > 0 */
   1231 
   1232 	default:
   1233 		break;		/* fall through to the os-specific code below */
   1234 
   1235 	}
   1236 
   1237 	if (!raidPtrs[unit]->valid)
   1238 		return (EINVAL);
   1239 
   1240 	/*
   1241 	 * Add support for "regular" device ioctls here.
   1242 	 */
   1243 
   1244 	switch (cmd) {
   1245 	case DIOCGDINFO:
   1246 		db1_printf(("DIOCGDINFO %d %d\n", (int) dev, (int) DISKPART(dev)));
   1247 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1248 		break;
   1249 
   1250 	case DIOCGPART:
   1251 		db1_printf(("DIOCGPART: %d %d\n", (int) dev, (int) DISKPART(dev)));
   1252 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1253 		((struct partinfo *) data)->part =
   1254 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1255 		break;
   1256 
   1257 	case DIOCWDINFO:
   1258 		db1_printf(("DIOCWDINFO\n"));
   1259 	case DIOCSDINFO:
   1260 		db1_printf(("DIOCSDINFO\n"));
   1261 		if ((error = raidlock(rs)) != 0)
   1262 			return (error);
   1263 
   1264 		rs->sc_flags |= RAIDF_LABELLING;
   1265 
   1266 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1267 		    (struct disklabel *) data, 0, rs->sc_dkdev.dk_cpulabel);
   1268 		if (error == 0) {
   1269 			if (cmd == DIOCWDINFO)
   1270 				error = writedisklabel(RAIDLABELDEV(dev),
   1271 				    raidstrategy, rs->sc_dkdev.dk_label,
   1272 				    rs->sc_dkdev.dk_cpulabel);
   1273 		}
   1274 		rs->sc_flags &= ~RAIDF_LABELLING;
   1275 
   1276 		raidunlock(rs);
   1277 
   1278 		if (error)
   1279 			return (error);
   1280 		break;
   1281 
   1282 	case DIOCWLABEL:
   1283 		db1_printf(("DIOCWLABEL\n"));
   1284 		if (*(int *) data != 0)
   1285 			rs->sc_flags |= RAIDF_WLABEL;
   1286 		else
   1287 			rs->sc_flags &= ~RAIDF_WLABEL;
   1288 		break;
   1289 
   1290 	case DIOCGDEFLABEL:
   1291 		db1_printf(("DIOCGDEFLABEL\n"));
   1292 		raidgetdefaultlabel(raidPtrs[unit], rs,
   1293 		    (struct disklabel *) data);
   1294 		break;
   1295 
   1296 	default:
   1297 		retcode = ENOTTY;	/* XXXX ?? OR EINVAL ? */
   1298 	}
   1299 	return (retcode);
   1300 
   1301 }
   1302 
   1303 
   1304 /* raidinit -- complete the rest of the initialization for the
   1305    RAIDframe device.  */
   1306 
   1307 
   1308 static int
   1309 raidinit(dev, raidPtr, unit)
   1310 	dev_t   dev;
   1311 	RF_Raid_t *raidPtr;
   1312 	int     unit;
   1313 {
   1314 	int     retcode;
   1315 	/* int ix; */
   1316 	/* struct raidbuf *raidbp; */
   1317 	struct raid_softc *rs;
   1318 
   1319 	retcode = 0;
   1320 
   1321 	rs = &raid_softc[unit];
   1322 	pool_init(&rs->sc_cbufpool, sizeof(struct raidbuf), 0,
   1323 		  0, 0, "raidpl", 0, NULL, NULL, M_RAIDFRAME);
   1324 
   1325 
   1326 	/* XXX should check return code first... */
   1327 	rs->sc_flags |= RAIDF_INITED;
   1328 
   1329 	sprintf(rs->sc_xname, "raid%d", unit);	/* XXX doesn't check bounds. */
   1330 
   1331 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1332 
   1333 	/* disk_attach actually creates space for the CPU disklabel, among
   1334 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1335 	 * with disklabels. */
   1336 
   1337 	disk_attach(&rs->sc_dkdev);
   1338 
   1339 	/* XXX There may be a weird interaction here between this, and
   1340 	 * protectedSectors, as used in RAIDframe.  */
   1341 
   1342 	rs->sc_size = raidPtr->totalSectors;
   1343 	rs->sc_dev = dev;
   1344 
   1345 	return (retcode);
   1346 }
   1347 
   1348 /*
   1349  * This kernel thread never exits.  It is created once, and persists
   1350  * until the system reboots.
   1351  */
   1352 
   1353 void
   1354 rf_ReconKernelThread()
   1355 {
   1356 	struct rf_recon_req *req;
   1357 	int     s;
   1358 
   1359 	/* XXX not sure what spl() level we should be at here... probably
   1360 	 * splbio() */
   1361 	s = splbio();
   1362 
   1363 	while (1) {
   1364 		/* grab the next reconstruction request from the queue */
   1365 		LOCK_RECON_Q_MUTEX();
   1366 		while (!recon_queue) {
   1367 			UNLOCK_RECON_Q_MUTEX();
   1368 			tsleep(&recon_queue, PRIBIO,
   1369 			       "raidframe recon", 0);
   1370 			LOCK_RECON_Q_MUTEX();
   1371 		}
   1372 		req = recon_queue;
   1373 		recon_queue = recon_queue->next;
   1374 		UNLOCK_RECON_Q_MUTEX();
   1375 
   1376 		/*
   1377 	         * If flags specifies that we should start recon, this call
   1378 	         * will not return until reconstruction completes, fails,
   1379 		 * or is aborted.
   1380 	         */
   1381 		rf_FailDisk((RF_Raid_t *) req->raidPtr, req->row, req->col,
   1382 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   1383 
   1384 		RF_Free(req, sizeof(*req));
   1385 	}
   1386 }
   1387 /* wake up the daemon & tell it to get us a spare table
   1388  * XXX
   1389  * the entries in the queues should be tagged with the raidPtr
   1390  * so that in the extremely rare case that two recons happen at once,
   1391  * we know for which device were requesting a spare table
   1392  * XXX
   1393  */
   1394 int
   1395 rf_GetSpareTableFromDaemon(req)
   1396 	RF_SparetWait_t *req;
   1397 {
   1398 	int     retcode;
   1399 
   1400 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1401 	req->next = rf_sparet_wait_queue;
   1402 	rf_sparet_wait_queue = req;
   1403 	wakeup(&rf_sparet_wait_queue);
   1404 
   1405 	/* mpsleep unlocks the mutex */
   1406 	while (!rf_sparet_resp_queue) {
   1407 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1408 		    "raidframe getsparetable", 0);
   1409 #if 0
   1410 		mpsleep(&rf_sparet_resp_queue, PZERO, "sparet resp", 0,
   1411 			(void *) simple_lock_addr(rf_sparet_wait_mutex),
   1412 			MS_LOCK_SIMPLE);
   1413 #endif
   1414 	}
   1415 	req = rf_sparet_resp_queue;
   1416 	rf_sparet_resp_queue = req->next;
   1417 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1418 
   1419 	retcode = req->fcol;
   1420 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1421 					 * alloc'd */
   1422 	return (retcode);
   1423 }
   1424 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1425  * bp & passes it down.
   1426  * any calls originating in the kernel must use non-blocking I/O
   1427  * do some extra sanity checking to return "appropriate" error values for
   1428  * certain conditions (to make some standard utilities work)
   1429  */
   1430 int
   1431 rf_DoAccessKernel(raidPtr, bp, flags, cbFunc, cbArg)
   1432 	RF_Raid_t *raidPtr;
   1433 	struct buf *bp;
   1434 	RF_RaidAccessFlags_t flags;
   1435 	void    (*cbFunc) (struct buf *);
   1436 	void   *cbArg;
   1437 {
   1438 	RF_SectorCount_t num_blocks, pb, sum;
   1439 	RF_RaidAddr_t raid_addr;
   1440 	int     retcode;
   1441 	struct partition *pp;
   1442 	daddr_t blocknum;
   1443 	int     unit;
   1444 	struct raid_softc *rs;
   1445 	int     do_async;
   1446 
   1447 	/* XXX The dev_t used here should be for /dev/[r]raid* !!! */
   1448 
   1449 	unit = raidPtr->raidid;
   1450 	rs = &raid_softc[unit];
   1451 
   1452 	/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1453 	 * partition.. Need to make it absolute to the underlying device.. */
   1454 
   1455 	blocknum = bp->b_blkno;
   1456 	if (DISKPART(bp->b_dev) != RAW_PART) {
   1457 		pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1458 		blocknum += pp->p_offset;
   1459 		db1_printf(("updated: %d %d\n", DISKPART(bp->b_dev),
   1460 			pp->p_offset));
   1461 	} else {
   1462 		db1_printf(("Is raw..\n"));
   1463 	}
   1464 	db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno, (int) blocknum));
   1465 
   1466 	db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1467 	db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1468 
   1469 	/* *THIS* is where we adjust what block we're going to... but DO NOT
   1470 	 * TOUCH bp->b_blkno!!! */
   1471 	raid_addr = blocknum;
   1472 
   1473 	num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1474 	pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1475 	sum = raid_addr + num_blocks + pb;
   1476 	if (1 || rf_debugKernelAccess) {
   1477 		db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1478 			(int) raid_addr, (int) sum, (int) num_blocks,
   1479 			(int) pb, (int) bp->b_resid));
   1480 	}
   1481 	if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1482 	    || (sum < num_blocks) || (sum < pb)) {
   1483 		bp->b_error = ENOSPC;
   1484 		bp->b_flags |= B_ERROR;
   1485 		bp->b_resid = bp->b_bcount;
   1486 		biodone(bp);
   1487 		return (bp->b_error);
   1488 	}
   1489 	/*
   1490 	 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1491 	 */
   1492 
   1493 	if (bp->b_bcount & raidPtr->sectorMask) {
   1494 		bp->b_error = EINVAL;
   1495 		bp->b_flags |= B_ERROR;
   1496 		bp->b_resid = bp->b_bcount;
   1497 		biodone(bp);
   1498 		return (bp->b_error);
   1499 	}
   1500 	db1_printf(("Calling DoAccess..\n"));
   1501 
   1502 
   1503 	/* Put a throttle on the number of requests we handle simultanously */
   1504 
   1505 	RF_LOCK_MUTEX(raidPtr->mutex);
   1506 
   1507 	while(raidPtr->openings <= 0) {
   1508 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1509 		(void)tsleep(&raidPtr->openings, PRIBIO, "rfdwait", 0);
   1510 		RF_LOCK_MUTEX(raidPtr->mutex);
   1511 	}
   1512 	raidPtr->openings--;
   1513 
   1514 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1515 
   1516 	/*
   1517 	 * Everything is async.
   1518 	 */
   1519 	do_async = 1;
   1520 
   1521 	/* don't ever condition on bp->b_flags & B_WRITE.  always condition on
   1522 	 * B_READ instead */
   1523 	retcode = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1524 	    RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1525 	    do_async, raid_addr, num_blocks,
   1526 	    bp->b_un.b_addr,
   1527 	    bp, NULL, NULL, RF_DAG_NONBLOCKING_IO | flags,
   1528 	    NULL, cbFunc, cbArg);
   1529 #if 0
   1530 	db1_printf(("After call to DoAccess: 0x%x 0x%x %d\n", bp,
   1531 		bp->b_data, (int) bp->b_resid));
   1532 #endif
   1533 
   1534 	return (retcode);
   1535 }
   1536 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1537 
   1538 int
   1539 rf_DispatchKernelIO(queue, req)
   1540 	RF_DiskQueue_t *queue;
   1541 	RF_DiskQueueData_t *req;
   1542 {
   1543 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1544 	struct buf *bp;
   1545 	struct raidbuf *raidbp = NULL;
   1546 	struct raid_softc *rs;
   1547 	int     unit;
   1548 
   1549 	/* XXX along with the vnode, we also need the softc associated with
   1550 	 * this device.. */
   1551 
   1552 	req->queue = queue;
   1553 
   1554 	unit = queue->raidPtr->raidid;
   1555 
   1556 	db1_printf(("DispatchKernelIO unit: %d\n", unit));
   1557 
   1558 	if (unit >= numraid) {
   1559 		printf("Invalid unit number: %d %d\n", unit, numraid);
   1560 		panic("Invalid Unit number in rf_DispatchKernelIO\n");
   1561 	}
   1562 	rs = &raid_softc[unit];
   1563 
   1564 	/* XXX is this the right place? */
   1565 	disk_busy(&rs->sc_dkdev);
   1566 
   1567 	bp = req->bp;
   1568 #if 1
   1569 	/* XXX when there is a physical disk failure, someone is passing us a
   1570 	 * buffer that contains old stuff!!  Attempt to deal with this problem
   1571 	 * without taking a performance hit... (not sure where the real bug
   1572 	 * is.  It's buried in RAIDframe somewhere) :-(  GO ) */
   1573 
   1574 	if (bp->b_flags & B_ERROR) {
   1575 		bp->b_flags &= ~B_ERROR;
   1576 	}
   1577 	if (bp->b_error != 0) {
   1578 		bp->b_error = 0;
   1579 	}
   1580 #endif
   1581 	raidbp = RAIDGETBUF(rs);
   1582 
   1583 	raidbp->rf_flags = 0;	/* XXX not really used anywhere... */
   1584 
   1585 	/*
   1586 	 * context for raidiodone
   1587 	 */
   1588 	raidbp->rf_obp = bp;
   1589 	raidbp->req = req;
   1590 
   1591 	switch (req->type) {
   1592 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1593 		/* Dprintf2("rf_DispatchKernelIO: NOP to r %d c %d\n",
   1594 		 * queue->row, queue->col); */
   1595 		/* XXX need to do something extra here.. */
   1596 		/* I'm leaving this in, as I've never actually seen it used,
   1597 		 * and I'd like folks to report it... GO */
   1598 		printf(("WAKEUP CALLED\n"));
   1599 		queue->numOutstanding++;
   1600 
   1601 		/* XXX need to glue the original buffer into this??  */
   1602 
   1603 		KernelWakeupFunc(&raidbp->rf_buf);
   1604 		break;
   1605 
   1606 	case RF_IO_TYPE_READ:
   1607 	case RF_IO_TYPE_WRITE:
   1608 
   1609 		if (req->tracerec) {
   1610 			RF_ETIMER_START(req->tracerec->timer);
   1611 		}
   1612 		InitBP(&raidbp->rf_buf, queue->rf_cinfo->ci_vp,
   1613 		    op | bp->b_flags, queue->rf_cinfo->ci_dev,
   1614 		    req->sectorOffset, req->numSector,
   1615 		    req->buf, KernelWakeupFunc, (void *) req,
   1616 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1617 
   1618 		if (rf_debugKernelAccess) {
   1619 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1620 				(long) bp->b_blkno));
   1621 		}
   1622 		queue->numOutstanding++;
   1623 		queue->last_deq_sector = req->sectorOffset;
   1624 		/* acc wouldn't have been let in if there were any pending
   1625 		 * reqs at any other priority */
   1626 		queue->curPriority = req->priority;
   1627 		/* Dprintf3("rf_DispatchKernelIO: %c to row %d col %d\n",
   1628 		 * req->type, queue->row, queue->col); */
   1629 
   1630 		db1_printf(("Going for %c to unit %d row %d col %d\n",
   1631 			req->type, unit, queue->row, queue->col));
   1632 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1633 			(int) req->sectorOffset, (int) req->numSector,
   1634 			(int) (req->numSector <<
   1635 			    queue->raidPtr->logBytesPerSector),
   1636 			(int) queue->raidPtr->logBytesPerSector));
   1637 		if ((raidbp->rf_buf.b_flags & B_READ) == 0) {
   1638 			raidbp->rf_buf.b_vp->v_numoutput++;
   1639 		}
   1640 		VOP_STRATEGY(&raidbp->rf_buf);
   1641 
   1642 		break;
   1643 
   1644 	default:
   1645 		panic("bad req->type in rf_DispatchKernelIO");
   1646 	}
   1647 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1648 	return (0);
   1649 }
   1650 /* this is the callback function associated with a I/O invoked from
   1651    kernel code.
   1652  */
   1653 static void
   1654 KernelWakeupFunc(vbp)
   1655 	struct buf *vbp;
   1656 {
   1657 	RF_DiskQueueData_t *req = NULL;
   1658 	RF_DiskQueue_t *queue;
   1659 	struct raidbuf *raidbp = (struct raidbuf *) vbp;
   1660 	struct buf *bp;
   1661 	struct raid_softc *rs;
   1662 	int     unit;
   1663 	register int s;
   1664 
   1665 	s = splbio();		/* XXX */
   1666 	db1_printf(("recovering the request queue:\n"));
   1667 	req = raidbp->req;
   1668 
   1669 	bp = raidbp->rf_obp;
   1670 #if 0
   1671 	db1_printf(("bp=0x%x\n", bp));
   1672 #endif
   1673 
   1674 	queue = (RF_DiskQueue_t *) req->queue;
   1675 
   1676 	if (raidbp->rf_buf.b_flags & B_ERROR) {
   1677 #if 0
   1678 		printf("Setting bp->b_flags!!! %d\n", raidbp->rf_buf.b_error);
   1679 #endif
   1680 		bp->b_flags |= B_ERROR;
   1681 		bp->b_error = raidbp->rf_buf.b_error ?
   1682 		    raidbp->rf_buf.b_error : EIO;
   1683 	}
   1684 #if 0
   1685 	db1_printf(("raidbp->rf_buf.b_bcount=%d\n", (int) raidbp->rf_buf.b_bcount));
   1686 	db1_printf(("raidbp->rf_buf.b_bufsize=%d\n", (int) raidbp->rf_buf.b_bufsize));
   1687 	db1_printf(("raidbp->rf_buf.b_resid=%d\n", (int) raidbp->rf_buf.b_resid));
   1688 	db1_printf(("raidbp->rf_buf.b_data=0x%x\n", raidbp->rf_buf.b_data));
   1689 #endif
   1690 
   1691 	/* XXX methinks this could be wrong... */
   1692 #if 1
   1693 	bp->b_resid = raidbp->rf_buf.b_resid;
   1694 #endif
   1695 
   1696 	if (req->tracerec) {
   1697 		RF_ETIMER_STOP(req->tracerec->timer);
   1698 		RF_ETIMER_EVAL(req->tracerec->timer);
   1699 		RF_LOCK_MUTEX(rf_tracing_mutex);
   1700 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1701 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   1702 		req->tracerec->num_phys_ios++;
   1703 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   1704 	}
   1705 	bp->b_bcount = raidbp->rf_buf.b_bcount;	/* XXXX ?? */
   1706 
   1707 	unit = queue->raidPtr->raidid;	/* *Much* simpler :-> */
   1708 
   1709 
   1710 	/* XXX Ok, let's get aggressive... If B_ERROR is set, let's go
   1711 	 * ballistic, and mark the component as hosed... */
   1712 #if 1
   1713 	if (bp->b_flags & B_ERROR) {
   1714 		/* Mark the disk as dead */
   1715 		/* but only mark it once... */
   1716 		if (queue->raidPtr->Disks[queue->row][queue->col].status ==
   1717 		    rf_ds_optimal) {
   1718 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   1719 			    unit, queue->raidPtr->Disks[queue->row][queue->col].devname);
   1720 			queue->raidPtr->Disks[queue->row][queue->col].status =
   1721 			    rf_ds_failed;
   1722 			queue->raidPtr->status[queue->row] = rf_rs_degraded;
   1723 			queue->raidPtr->numFailures++;
   1724 			/* XXX here we should bump the version number for each component, and write that data out */
   1725 		} else {	/* Disk is already dead... */
   1726 			/* printf("Disk already marked as dead!\n"); */
   1727 		}
   1728 
   1729 	}
   1730 #endif
   1731 
   1732 	rs = &raid_softc[unit];
   1733 	RAIDPUTBUF(rs, raidbp);
   1734 
   1735 
   1736 	if (bp->b_resid == 0) {
   1737 		db1_printf(("Disk is no longer busy for this buffer... %d %ld %ld\n",
   1738 			unit, bp->b_resid, bp->b_bcount));
   1739 		/* XXX is this the right place for a disk_unbusy()??!??!?!? */
   1740 		disk_unbusy(&rs->sc_dkdev, (bp->b_bcount - bp->b_resid));
   1741 	} else {
   1742 		db1_printf(("b_resid is still %ld\n", bp->b_resid));
   1743 	}
   1744 
   1745 	rf_DiskIOComplete(queue, req, (bp->b_flags & B_ERROR) ? 1 : 0);
   1746 	(req->CompleteFunc) (req->argument, (bp->b_flags & B_ERROR) ? 1 : 0);
   1747 	/* printf("Exiting KernelWakeupFunc\n"); */
   1748 
   1749 	splx(s);		/* XXX */
   1750 }
   1751 
   1752 
   1753 
   1754 /*
   1755  * initialize a buf structure for doing an I/O in the kernel.
   1756  */
   1757 static void
   1758 InitBP(
   1759     struct buf * bp,
   1760     struct vnode * b_vp,
   1761     unsigned rw_flag,
   1762     dev_t dev,
   1763     RF_SectorNum_t startSect,
   1764     RF_SectorCount_t numSect,
   1765     caddr_t buf,
   1766     void (*cbFunc) (struct buf *),
   1767     void *cbArg,
   1768     int logBytesPerSector,
   1769     struct proc * b_proc)
   1770 {
   1771 	/* bp->b_flags       = B_PHYS | rw_flag; */
   1772 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   1773 	bp->b_bcount = numSect << logBytesPerSector;
   1774 	bp->b_bufsize = bp->b_bcount;
   1775 	bp->b_error = 0;
   1776 	bp->b_dev = dev;
   1777 	db1_printf(("bp->b_dev is %d\n", dev));
   1778 	bp->b_un.b_addr = buf;
   1779 #if 0
   1780 	db1_printf(("bp->b_data=0x%x\n", bp->b_data));
   1781 #endif
   1782 
   1783 	bp->b_blkno = startSect;
   1784 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   1785 	db1_printf(("b_bcount is: %d\n", (int) bp->b_bcount));
   1786 	if (bp->b_bcount == 0) {
   1787 		panic("bp->b_bcount is zero in InitBP!!\n");
   1788 	}
   1789 	bp->b_proc = b_proc;
   1790 	bp->b_iodone = cbFunc;
   1791 	bp->b_vp = b_vp;
   1792 
   1793 }
   1794 /* Extras... */
   1795 
   1796 unsigned int
   1797 rpcc()
   1798 {
   1799 	/* XXX no clue what this is supposed to do.. my guess is that it's
   1800 	 * supposed to read the CPU cycle counter... */
   1801 	/* db1_printf("this is supposed to do something useful too!??\n"); */
   1802 	return (0);
   1803 }
   1804 #if 0
   1805 int
   1806 rf_GetSpareTableFromDaemon(req)
   1807 	RF_SparetWait_t *req;
   1808 {
   1809 	int     retcode = 1;
   1810 	printf("This is supposed to do something useful!!\n");	/* XXX */
   1811 
   1812 	return (retcode);
   1813 
   1814 }
   1815 #endif
   1816 
   1817 static void
   1818 raidgetdefaultlabel(raidPtr, rs, lp)
   1819 	RF_Raid_t *raidPtr;
   1820 	struct raid_softc *rs;
   1821 	struct disklabel *lp;
   1822 {
   1823 	db1_printf(("Building a default label...\n"));
   1824 	bzero(lp, sizeof(*lp));
   1825 
   1826 	/* fabricate a label... */
   1827 	lp->d_secperunit = raidPtr->totalSectors;
   1828 	lp->d_secsize = raidPtr->bytesPerSector;
   1829 	lp->d_nsectors = 1024 * (1024 / raidPtr->bytesPerSector);
   1830 	lp->d_ntracks = 1;
   1831 	lp->d_ncylinders = raidPtr->totalSectors / lp->d_nsectors;
   1832 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   1833 
   1834 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   1835 	lp->d_type = DTYPE_RAID;
   1836 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   1837 	lp->d_rpm = 3600;
   1838 	lp->d_interleave = 1;
   1839 	lp->d_flags = 0;
   1840 
   1841 	lp->d_partitions[RAW_PART].p_offset = 0;
   1842 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   1843 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   1844 	lp->d_npartitions = RAW_PART + 1;
   1845 
   1846 	lp->d_magic = DISKMAGIC;
   1847 	lp->d_magic2 = DISKMAGIC;
   1848 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   1849 
   1850 }
   1851 /*
   1852  * Read the disklabel from the raid device.  If one is not present, fake one
   1853  * up.
   1854  */
   1855 static void
   1856 raidgetdisklabel(dev)
   1857 	dev_t   dev;
   1858 {
   1859 	int     unit = raidunit(dev);
   1860 	struct raid_softc *rs = &raid_softc[unit];
   1861 	char   *errstring;
   1862 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1863 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   1864 	RF_Raid_t *raidPtr;
   1865 
   1866 	db1_printf(("Getting the disklabel...\n"));
   1867 
   1868 	bzero(clp, sizeof(*clp));
   1869 
   1870 	raidPtr = raidPtrs[unit];
   1871 
   1872 	raidgetdefaultlabel(raidPtr, rs, lp);
   1873 
   1874 	/*
   1875 	 * Call the generic disklabel extraction routine.
   1876 	 */
   1877 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   1878 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   1879 	if (errstring)
   1880 		raidmakedisklabel(rs);
   1881 	else {
   1882 		int     i;
   1883 		struct partition *pp;
   1884 
   1885 		/*
   1886 		 * Sanity check whether the found disklabel is valid.
   1887 		 *
   1888 		 * This is necessary since total size of the raid device
   1889 		 * may vary when an interleave is changed even though exactly
   1890 		 * same componets are used, and old disklabel may used
   1891 		 * if that is found.
   1892 		 */
   1893 		if (lp->d_secperunit != rs->sc_size)
   1894 			printf("WARNING: %s: "
   1895 			    "total sector size in disklabel (%d) != "
   1896 			    "the size of raid (%ld)\n", rs->sc_xname,
   1897 			    lp->d_secperunit, (long) rs->sc_size);
   1898 		for (i = 0; i < lp->d_npartitions; i++) {
   1899 			pp = &lp->d_partitions[i];
   1900 			if (pp->p_offset + pp->p_size > rs->sc_size)
   1901 				printf("WARNING: %s: end of partition `%c' "
   1902 				    "exceeds the size of raid (%ld)\n",
   1903 				    rs->sc_xname, 'a' + i, (long) rs->sc_size);
   1904 		}
   1905 	}
   1906 
   1907 }
   1908 /*
   1909  * Take care of things one might want to take care of in the event
   1910  * that a disklabel isn't present.
   1911  */
   1912 static void
   1913 raidmakedisklabel(rs)
   1914 	struct raid_softc *rs;
   1915 {
   1916 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   1917 	db1_printf(("Making a label..\n"));
   1918 
   1919 	/*
   1920 	 * For historical reasons, if there's no disklabel present
   1921 	 * the raw partition must be marked FS_BSDFFS.
   1922 	 */
   1923 
   1924 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   1925 
   1926 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   1927 
   1928 	lp->d_checksum = dkcksum(lp);
   1929 }
   1930 /*
   1931  * Lookup the provided name in the filesystem.  If the file exists,
   1932  * is a valid block device, and isn't being used by anyone else,
   1933  * set *vpp to the file's vnode.
   1934  * You'll find the original of this in ccd.c
   1935  */
   1936 int
   1937 raidlookup(path, p, vpp)
   1938 	char   *path;
   1939 	struct proc *p;
   1940 	struct vnode **vpp;	/* result */
   1941 {
   1942 	struct nameidata nd;
   1943 	struct vnode *vp;
   1944 	struct vattr va;
   1945 	int     error;
   1946 
   1947 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, path, p);
   1948 	if ((error = vn_open(&nd, FREAD | FWRITE, 0)) != 0) {
   1949 #ifdef DEBUG
   1950 		printf("RAIDframe: vn_open returned %d\n", error);
   1951 #endif
   1952 		return (error);
   1953 	}
   1954 	vp = nd.ni_vp;
   1955 	if (vp->v_usecount > 1) {
   1956 		VOP_UNLOCK(vp, 0);
   1957 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1958 		return (EBUSY);
   1959 	}
   1960 	if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0) {
   1961 		VOP_UNLOCK(vp, 0);
   1962 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1963 		return (error);
   1964 	}
   1965 	/* XXX: eventually we should handle VREG, too. */
   1966 	if (va.va_type != VBLK) {
   1967 		VOP_UNLOCK(vp, 0);
   1968 		(void) vn_close(vp, FREAD | FWRITE, p->p_ucred, p);
   1969 		return (ENOTBLK);
   1970 	}
   1971 	VOP_UNLOCK(vp, 0);
   1972 	*vpp = vp;
   1973 	return (0);
   1974 }
   1975 /*
   1976  * Wait interruptibly for an exclusive lock.
   1977  *
   1978  * XXX
   1979  * Several drivers do this; it should be abstracted and made MP-safe.
   1980  * (Hmm... where have we seen this warning before :->  GO )
   1981  */
   1982 static int
   1983 raidlock(rs)
   1984 	struct raid_softc *rs;
   1985 {
   1986 	int     error;
   1987 
   1988 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   1989 		rs->sc_flags |= RAIDF_WANTED;
   1990 		if ((error =
   1991 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   1992 			return (error);
   1993 	}
   1994 	rs->sc_flags |= RAIDF_LOCKED;
   1995 	return (0);
   1996 }
   1997 /*
   1998  * Unlock and wake up any waiters.
   1999  */
   2000 static void
   2001 raidunlock(rs)
   2002 	struct raid_softc *rs;
   2003 {
   2004 
   2005 	rs->sc_flags &= ~RAIDF_LOCKED;
   2006 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2007 		rs->sc_flags &= ~RAIDF_WANTED;
   2008 		wakeup(rs);
   2009 	}
   2010 }
   2011 
   2012 
   2013 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2014 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2015 
   2016 int
   2017 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2018 {
   2019 	RF_ComponentLabel_t component_label;
   2020 	raidread_component_label(dev, b_vp, &component_label);
   2021 	component_label.mod_counter = mod_counter;
   2022 	component_label.clean = RF_RAID_CLEAN;
   2023 	raidwrite_component_label(dev, b_vp, &component_label);
   2024 	return(0);
   2025 }
   2026 
   2027 
   2028 int
   2029 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2030 {
   2031 	RF_ComponentLabel_t component_label;
   2032 	raidread_component_label(dev, b_vp, &component_label);
   2033 	component_label.mod_counter = mod_counter;
   2034 	component_label.clean = RF_RAID_DIRTY;
   2035 	raidwrite_component_label(dev, b_vp, &component_label);
   2036 	return(0);
   2037 }
   2038 
   2039 /* ARGSUSED */
   2040 int
   2041 raidread_component_label(dev, b_vp, component_label)
   2042 	dev_t dev;
   2043 	struct vnode *b_vp;
   2044 	RF_ComponentLabel_t *component_label;
   2045 {
   2046 	struct buf *bp;
   2047 	int error;
   2048 
   2049 	/* XXX should probably ensure that we don't try to do this if
   2050 	   someone has changed rf_protected_sectors. */
   2051 
   2052 	/* get a block of the appropriate size... */
   2053 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2054 	bp->b_dev = dev;
   2055 
   2056 	/* get our ducks in a row for the read */
   2057 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2058 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2059 	bp->b_flags = B_BUSY | B_READ;
   2060  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2061 
   2062 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2063 
   2064 	error = biowait(bp);
   2065 
   2066 	if (!error) {
   2067 		memcpy(component_label, bp->b_un.b_addr,
   2068 		       sizeof(RF_ComponentLabel_t));
   2069 #if 0
   2070 		printf("raidread_component_label: got component label:\n");
   2071 		printf("Version: %d\n",component_label->version);
   2072 		printf("Serial Number: %d\n",component_label->serial_number);
   2073 		printf("Mod counter: %d\n",component_label->mod_counter);
   2074 		printf("Row: %d\n", component_label->row);
   2075 		printf("Column: %d\n", component_label->column);
   2076 		printf("Num Rows: %d\n", component_label->num_rows);
   2077 		printf("Num Columns: %d\n", component_label->num_columns);
   2078 		printf("Clean: %d\n", component_label->clean);
   2079 		printf("Status: %d\n", component_label->status);
   2080 #endif
   2081         } else {
   2082 		printf("Failed to read RAID component label!\n");
   2083 	}
   2084 
   2085         bp->b_flags = B_INVAL | B_AGE;
   2086 	brelse(bp);
   2087 	return(error);
   2088 }
   2089 /* ARGSUSED */
   2090 int
   2091 raidwrite_component_label(dev, b_vp, component_label)
   2092 	dev_t dev;
   2093 	struct vnode *b_vp;
   2094 	RF_ComponentLabel_t *component_label;
   2095 {
   2096 	struct buf *bp;
   2097 	int error;
   2098 
   2099 	/* get a block of the appropriate size... */
   2100 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2101 	bp->b_dev = dev;
   2102 
   2103 	/* get our ducks in a row for the write */
   2104 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2105 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2106 	bp->b_flags = B_BUSY | B_WRITE;
   2107  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2108 
   2109 	memset( bp->b_un.b_addr, 0, RF_COMPONENT_INFO_SIZE );
   2110 
   2111 	memcpy( bp->b_un.b_addr, component_label, sizeof(RF_ComponentLabel_t));
   2112 
   2113 	(*bdevsw[major(bp->b_dev)].d_strategy)(bp);
   2114 	error = biowait(bp);
   2115         bp->b_flags = B_INVAL | B_AGE;
   2116 	brelse(bp);
   2117 	if (error) {
   2118 		printf("Failed to write RAID component info!\n");
   2119 	}
   2120 
   2121 	return(error);
   2122 }
   2123 
   2124 void
   2125 rf_markalldirty( raidPtr )
   2126 	RF_Raid_t *raidPtr;
   2127 {
   2128 	RF_ComponentLabel_t c_label;
   2129 	int r,c;
   2130 
   2131 	raidPtr->mod_counter++;
   2132 	for (r = 0; r < raidPtr->numRow; r++) {
   2133 		for (c = 0; c < raidPtr->numCol; c++) {
   2134 			if (raidPtr->Disks[r][c].status != rf_ds_failed) {
   2135 				raidread_component_label(
   2136 					raidPtr->Disks[r][c].dev,
   2137 					raidPtr->raid_cinfo[r][c].ci_vp,
   2138 					&c_label);
   2139 				if (c_label.status == rf_ds_spared) {
   2140 					/* XXX do something special...
   2141 					 but whatever you do, don't
   2142 					 try to access it!! */
   2143 				} else {
   2144 #if 0
   2145 				c_label.status =
   2146 					raidPtr->Disks[r][c].status;
   2147 				raidwrite_component_label(
   2148 					raidPtr->Disks[r][c].dev,
   2149 					raidPtr->raid_cinfo[r][c].ci_vp,
   2150 					&c_label);
   2151 #endif
   2152 				raidmarkdirty(
   2153 				       raidPtr->Disks[r][c].dev,
   2154 				       raidPtr->raid_cinfo[r][c].ci_vp,
   2155 				       raidPtr->mod_counter);
   2156 				}
   2157 			}
   2158 		}
   2159 	}
   2160 	/* printf("Component labels marked dirty.\n"); */
   2161 #if 0
   2162 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2163 		sparecol = raidPtr->numCol + c;
   2164 		if (raidPtr->Disks[r][sparecol].status == rf_ds_used_spare) {
   2165 			/*
   2166 
   2167 			   XXX this is where we get fancy and map this spare
   2168 			   into it's correct spot in the array.
   2169 
   2170 			 */
   2171 			/*
   2172 
   2173 			   we claim this disk is "optimal" if it's
   2174 			   rf_ds_used_spare, as that means it should be
   2175 			   directly substitutable for the disk it replaced.
   2176 			   We note that too...
   2177 
   2178 			 */
   2179 
   2180 			for(i=0;i<raidPtr->numRow;i++) {
   2181 				for(j=0;j<raidPtr->numCol;j++) {
   2182 					if ((raidPtr->Disks[i][j].spareRow ==
   2183 					     r) &&
   2184 					    (raidPtr->Disks[i][j].spareCol ==
   2185 					     sparecol)) {
   2186 						srow = r;
   2187 						scol = sparecol;
   2188 						break;
   2189 					}
   2190 				}
   2191 			}
   2192 
   2193 			raidread_component_label(
   2194 				      raidPtr->Disks[r][sparecol].dev,
   2195 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2196 				      &c_label);
   2197 			/* make sure status is noted */
   2198 			c_label.version = RF_COMPONENT_LABEL_VERSION;
   2199 			c_label.mod_counter = raidPtr->mod_counter;
   2200 			c_label.serial_number = raidPtr->serial_number;
   2201 			c_label.row = srow;
   2202 			c_label.column = scol;
   2203 			c_label.num_rows = raidPtr->numRow;
   2204 			c_label.num_columns = raidPtr->numCol;
   2205 			c_label.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2206 			c_label.status = rf_ds_optimal;
   2207 			raidwrite_component_label(
   2208 				      raidPtr->Disks[r][sparecol].dev,
   2209 				      raidPtr->raid_cinfo[r][sparecol].ci_vp,
   2210 				      &c_label);
   2211 			raidmarkclean( raidPtr->Disks[r][sparecol].dev,
   2212 			              raidPtr->raid_cinfo[r][sparecol].ci_vp);
   2213 		}
   2214 	}
   2215 
   2216 #endif
   2217 }
   2218 
   2219 
   2220 void
   2221 rf_update_component_labels( raidPtr )
   2222 	RF_Raid_t *raidPtr;
   2223 {
   2224 	RF_ComponentLabel_t c_label;
   2225 	int sparecol;
   2226 	int r,c;
   2227 	int i,j;
   2228 	int srow, scol;
   2229 
   2230 	srow = -1;
   2231 	scol = -1;
   2232 
   2233 	/* XXX should do extra checks to make sure things really are clean,
   2234 	   rather than blindly setting the clean bit... */
   2235 
   2236 	raidPtr->mod_counter++;
   2237 
   2238 	for (r = 0; r < raidPtr->numRow; r++) {
   2239 		for (c = 0; c < raidPtr->numCol; c++) {
   2240 			if (raidPtr->Disks[r][c].status == rf_ds_optimal) {
   2241 				raidread_component_label(
   2242 					raidPtr->Disks[r][c].dev,
   2243 					raidPtr->raid_cinfo[r][c].ci_vp,
   2244 					&c_label);
   2245 				/* make sure status is noted */
   2246 				c_label.status = rf_ds_optimal;
   2247 				raidwrite_component_label(
   2248 					raidPtr->Disks[r][c].dev,
   2249 					raidPtr->raid_cinfo[r][c].ci_vp,
   2250 					&c_label);
   2251 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2252 					raidmarkclean(
   2253 					      raidPtr->Disks[r][c].dev,
   2254 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2255 					      raidPtr->mod_counter);
   2256 				}
   2257 			}
   2258 			/* else we don't touch it.. */
   2259 #if 0
   2260 			else if (raidPtr->Disks[r][c].status !=
   2261 				   rf_ds_failed) {
   2262 				raidread_component_label(
   2263 					raidPtr->Disks[r][c].dev,
   2264 					raidPtr->raid_cinfo[r][c].ci_vp,
   2265 					&c_label);
   2266 				/* make sure status is noted */
   2267 				c_label.status =
   2268 					raidPtr->Disks[r][c].status;
   2269 				raidwrite_component_label(
   2270 					raidPtr->Disks[r][c].dev,
   2271 					raidPtr->raid_cinfo[r][c].ci_vp,
   2272 					&c_label);
   2273 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2274 					raidmarkclean(
   2275 					      raidPtr->Disks[r][c].dev,
   2276 					      raidPtr->raid_cinfo[r][c].ci_vp,
   2277 					      raidPtr->mod_counter);
   2278 				}
   2279 			}
   2280 #endif
   2281 		}
   2282 	}
   2283 
   2284 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2285 		sparecol = raidPtr->numCol + c;
   2286 		if (raidPtr->Disks[0][sparecol].status == rf_ds_used_spare) {
   2287 			/*
   2288 
   2289 			   we claim this disk is "optimal" if it's
   2290 			   rf_ds_used_spare, as that means it should be
   2291 			   directly substitutable for the disk it replaced.
   2292 			   We note that too...
   2293 
   2294 			 */
   2295 
   2296 			for(i=0;i<raidPtr->numRow;i++) {
   2297 				for(j=0;j<raidPtr->numCol;j++) {
   2298 					if ((raidPtr->Disks[i][j].spareRow ==
   2299 					     0) &&
   2300 					    (raidPtr->Disks[i][j].spareCol ==
   2301 					     sparecol)) {
   2302 						srow = i;
   2303 						scol = j;
   2304 						break;
   2305 					}
   2306 				}
   2307 			}
   2308 
   2309 			raidread_component_label(
   2310 				      raidPtr->Disks[0][sparecol].dev,
   2311 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2312 				      &c_label);
   2313 			/* make sure status is noted */
   2314 			c_label.version = RF_COMPONENT_LABEL_VERSION;
   2315 			c_label.mod_counter = raidPtr->mod_counter;
   2316 			c_label.serial_number = raidPtr->serial_number;
   2317 			c_label.row = srow;
   2318 			c_label.column = scol;
   2319 			c_label.num_rows = raidPtr->numRow;
   2320 			c_label.num_columns = raidPtr->numCol;
   2321 			c_label.clean = RF_RAID_DIRTY; /* changed in a bit*/
   2322 			c_label.status = rf_ds_optimal;
   2323 			raidwrite_component_label(
   2324 				      raidPtr->Disks[0][sparecol].dev,
   2325 				      raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2326 				      &c_label);
   2327 			if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2328 				raidmarkclean( raidPtr->Disks[0][sparecol].dev,
   2329 			              raidPtr->raid_cinfo[0][sparecol].ci_vp,
   2330 					       raidPtr->mod_counter);
   2331 			}
   2332 		}
   2333 	}
   2334 	/* 	printf("Component labels updated\n"); */
   2335 }
   2336