Home | History | Annotate | Line # | Download | only in raidframe
rf_netbsdkintf.c revision 1.230
      1 /*	$NetBSD: rf_netbsdkintf.c,v 1.230 2007/07/29 12:50:22 ad Exp $	*/
      2 /*-
      3  * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Greg Oster; Jason R. Thorpe.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1990, 1993
     40  *      The Regents of the University of California.  All rights reserved.
     41  *
     42  * This code is derived from software contributed to Berkeley by
     43  * the Systems Programming Group of the University of Utah Computer
     44  * Science Department.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  * from: Utah $Hdr: cd.c 1.6 90/11/28$
     71  *
     72  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
     73  */
     74 
     75 /*
     76  * Copyright (c) 1988 University of Utah.
     77  *
     78  * This code is derived from software contributed to Berkeley by
     79  * the Systems Programming Group of the University of Utah Computer
     80  * Science Department.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *      This product includes software developed by the University of
     93  *      California, Berkeley and its contributors.
     94  * 4. Neither the name of the University nor the names of its contributors
     95  *    may be used to endorse or promote products derived from this software
     96  *    without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     99  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    100  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    101  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    102  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    103  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    104  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    105  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    106  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    107  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    108  * SUCH DAMAGE.
    109  *
    110  * from: Utah $Hdr: cd.c 1.6 90/11/28$
    111  *
    112  *      @(#)cd.c        8.2 (Berkeley) 11/16/93
    113  */
    114 
    115 /*
    116  * Copyright (c) 1995 Carnegie-Mellon University.
    117  * All rights reserved.
    118  *
    119  * Authors: Mark Holland, Jim Zelenka
    120  *
    121  * Permission to use, copy, modify and distribute this software and
    122  * its documentation is hereby granted, provided that both the copyright
    123  * notice and this permission notice appear in all copies of the
    124  * software, derivative works or modified versions, and any portions
    125  * thereof, and that both notices appear in supporting documentation.
    126  *
    127  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
    128  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
    129  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
    130  *
    131  * Carnegie Mellon requests users of this software to return to
    132  *
    133  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
    134  *  School of Computer Science
    135  *  Carnegie Mellon University
    136  *  Pittsburgh PA 15213-3890
    137  *
    138  * any improvements or extensions that they make and grant Carnegie the
    139  * rights to redistribute these changes.
    140  */
    141 
    142 /***********************************************************
    143  *
    144  * rf_kintf.c -- the kernel interface routines for RAIDframe
    145  *
    146  ***********************************************************/
    147 
    148 #include <sys/cdefs.h>
    149 __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.230 2007/07/29 12:50:22 ad Exp $");
    150 
    151 #include <sys/param.h>
    152 #include <sys/errno.h>
    153 #include <sys/pool.h>
    154 #include <sys/proc.h>
    155 #include <sys/queue.h>
    156 #include <sys/disk.h>
    157 #include <sys/device.h>
    158 #include <sys/stat.h>
    159 #include <sys/ioctl.h>
    160 #include <sys/fcntl.h>
    161 #include <sys/systm.h>
    162 #include <sys/namei.h>
    163 #include <sys/vnode.h>
    164 #include <sys/disklabel.h>
    165 #include <sys/conf.h>
    166 #include <sys/lock.h>
    167 #include <sys/buf.h>
    168 #include <sys/bufq.h>
    169 #include <sys/user.h>
    170 #include <sys/reboot.h>
    171 #include <sys/kauth.h>
    172 
    173 #include <dev/raidframe/raidframevar.h>
    174 #include <dev/raidframe/raidframeio.h>
    175 #include "raid.h"
    176 #include "opt_raid_autoconfig.h"
    177 #include "rf_raid.h"
    178 #include "rf_copyback.h"
    179 #include "rf_dag.h"
    180 #include "rf_dagflags.h"
    181 #include "rf_desc.h"
    182 #include "rf_diskqueue.h"
    183 #include "rf_etimer.h"
    184 #include "rf_general.h"
    185 #include "rf_kintf.h"
    186 #include "rf_options.h"
    187 #include "rf_driver.h"
    188 #include "rf_parityscan.h"
    189 #include "rf_threadstuff.h"
    190 
    191 #ifdef DEBUG
    192 int     rf_kdebug_level = 0;
    193 #define db1_printf(a) if (rf_kdebug_level > 0) printf a
    194 #else				/* DEBUG */
    195 #define db1_printf(a) { }
    196 #endif				/* DEBUG */
    197 
    198 static RF_Raid_t **raidPtrs;	/* global raid device descriptors */
    199 
    200 RF_DECLARE_STATIC_MUTEX(rf_sparet_wait_mutex)
    201 
    202 static RF_SparetWait_t *rf_sparet_wait_queue;	/* requests to install a
    203 						 * spare table */
    204 static RF_SparetWait_t *rf_sparet_resp_queue;	/* responses from
    205 						 * installation process */
    206 
    207 MALLOC_DEFINE(M_RAIDFRAME, "RAIDframe", "RAIDframe structures");
    208 
    209 /* prototypes */
    210 static void KernelWakeupFunc(struct buf *);
    211 static void InitBP(struct buf *, struct vnode *, unsigned,
    212     dev_t, RF_SectorNum_t, RF_SectorCount_t, void *, void (*) (struct buf *),
    213     void *, int, struct proc *);
    214 static void raidinit(RF_Raid_t *);
    215 
    216 void raidattach(int);
    217 static int raid_match(struct device *, struct cfdata *, void *);
    218 static void raid_attach(struct device *, struct device *, void *);
    219 static int raid_detach(struct device *, int);
    220 
    221 dev_type_open(raidopen);
    222 dev_type_close(raidclose);
    223 dev_type_read(raidread);
    224 dev_type_write(raidwrite);
    225 dev_type_ioctl(raidioctl);
    226 dev_type_strategy(raidstrategy);
    227 dev_type_dump(raiddump);
    228 dev_type_size(raidsize);
    229 
    230 const struct bdevsw raid_bdevsw = {
    231 	raidopen, raidclose, raidstrategy, raidioctl,
    232 	raiddump, raidsize, D_DISK
    233 };
    234 
    235 const struct cdevsw raid_cdevsw = {
    236 	raidopen, raidclose, raidread, raidwrite, raidioctl,
    237 	nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    238 };
    239 
    240 /* XXX Not sure if the following should be replacing the raidPtrs above,
    241    or if it should be used in conjunction with that...
    242 */
    243 
    244 struct raid_softc {
    245 	struct device *sc_dev;
    246 	int     sc_flags;	/* flags */
    247 	int     sc_cflags;	/* configuration flags */
    248 	uint64_t sc_size;	/* size of the raid device */
    249 	char    sc_xname[20];	/* XXX external name */
    250 	struct disk sc_dkdev;	/* generic disk device info */
    251 	struct bufq_state *buf_queue;	/* used for the device queue */
    252 };
    253 /* sc_flags */
    254 #define RAIDF_INITED	0x01	/* unit has been initialized */
    255 #define RAIDF_WLABEL	0x02	/* label area is writable */
    256 #define RAIDF_LABELLING	0x04	/* unit is currently being labelled */
    257 #define RAIDF_WANTED	0x40	/* someone is waiting to obtain a lock */
    258 #define RAIDF_LOCKED	0x80	/* unit is locked */
    259 
    260 #define	raidunit(x)	DISKUNIT(x)
    261 int numraid = 0;
    262 
    263 extern struct cfdriver raid_cd;
    264 CFATTACH_DECL(raid, sizeof(struct raid_softc),
    265     raid_match, raid_attach, raid_detach, NULL);
    266 
    267 /*
    268  * Allow RAIDOUTSTANDING number of simultaneous IO's to this RAID device.
    269  * Be aware that large numbers can allow the driver to consume a lot of
    270  * kernel memory, especially on writes, and in degraded mode reads.
    271  *
    272  * For example: with a stripe width of 64 blocks (32k) and 5 disks,
    273  * a single 64K write will typically require 64K for the old data,
    274  * 64K for the old parity, and 64K for the new parity, for a total
    275  * of 192K (if the parity buffer is not re-used immediately).
    276  * Even it if is used immediately, that's still 128K, which when multiplied
    277  * by say 10 requests, is 1280K, *on top* of the 640K of incoming data.
    278  *
    279  * Now in degraded mode, for example, a 64K read on the above setup may
    280  * require data reconstruction, which will require *all* of the 4 remaining
    281  * disks to participate -- 4 * 32K/disk == 128K again.
    282  */
    283 
    284 #ifndef RAIDOUTSTANDING
    285 #define RAIDOUTSTANDING   6
    286 #endif
    287 
    288 #define RAIDLABELDEV(dev)	\
    289 	(MAKEDISKDEV(major((dev)), raidunit((dev)), RAW_PART))
    290 
    291 /* declared here, and made public, for the benefit of KVM stuff.. */
    292 struct raid_softc *raid_softc;
    293 
    294 static void raidgetdefaultlabel(RF_Raid_t *, struct raid_softc *,
    295 				     struct disklabel *);
    296 static void raidgetdisklabel(dev_t);
    297 static void raidmakedisklabel(struct raid_softc *);
    298 
    299 static int raidlock(struct raid_softc *);
    300 static void raidunlock(struct raid_softc *);
    301 
    302 static void rf_markalldirty(RF_Raid_t *);
    303 
    304 void rf_ReconThread(struct rf_recon_req *);
    305 void rf_RewriteParityThread(RF_Raid_t *raidPtr);
    306 void rf_CopybackThread(RF_Raid_t *raidPtr);
    307 void rf_ReconstructInPlaceThread(struct rf_recon_req *);
    308 int rf_autoconfig(struct device *self);
    309 void rf_buildroothack(RF_ConfigSet_t *);
    310 
    311 RF_AutoConfig_t *rf_find_raid_components(void);
    312 RF_ConfigSet_t *rf_create_auto_sets(RF_AutoConfig_t *);
    313 static int rf_does_it_fit(RF_ConfigSet_t *,RF_AutoConfig_t *);
    314 static int rf_reasonable_label(RF_ComponentLabel_t *);
    315 void rf_create_configuration(RF_AutoConfig_t *,RF_Config_t *, RF_Raid_t *);
    316 int rf_set_autoconfig(RF_Raid_t *, int);
    317 int rf_set_rootpartition(RF_Raid_t *, int);
    318 void rf_release_all_vps(RF_ConfigSet_t *);
    319 void rf_cleanup_config_set(RF_ConfigSet_t *);
    320 int rf_have_enough_components(RF_ConfigSet_t *);
    321 int rf_auto_config_set(RF_ConfigSet_t *, int *);
    322 
    323 static int raidautoconfig = 0; /* Debugging, mostly.  Set to 0 to not
    324 				  allow autoconfig to take place.
    325 				  Note that this is overridden by having
    326 				  RAID_AUTOCONFIG as an option in the
    327 				  kernel config file.  */
    328 
    329 struct RF_Pools_s rf_pools;
    330 
    331 void
    332 raidattach(int num)
    333 {
    334 	int raidID;
    335 	int i, rc;
    336 
    337 #ifdef DEBUG
    338 	printf("raidattach: Asked for %d units\n", num);
    339 #endif
    340 
    341 	if (num <= 0) {
    342 #ifdef DIAGNOSTIC
    343 		panic("raidattach: count <= 0");
    344 #endif
    345 		return;
    346 	}
    347 	/* This is where all the initialization stuff gets done. */
    348 
    349 	numraid = num;
    350 
    351 	/* Make some space for requested number of units... */
    352 
    353 	RF_Malloc(raidPtrs, num * sizeof(RF_Raid_t *), (RF_Raid_t **));
    354 	if (raidPtrs == NULL) {
    355 		panic("raidPtrs is NULL!!");
    356 	}
    357 
    358 	rf_mutex_init(&rf_sparet_wait_mutex);
    359 
    360 	rf_sparet_wait_queue = rf_sparet_resp_queue = NULL;
    361 
    362 	for (i = 0; i < num; i++)
    363 		raidPtrs[i] = NULL;
    364 	rc = rf_BootRaidframe();
    365 	if (rc == 0)
    366 		printf("Kernelized RAIDframe activated\n");
    367 	else
    368 		panic("Serious error booting RAID!!");
    369 
    370 	/* put together some datastructures like the CCD device does.. This
    371 	 * lets us lock the device and what-not when it gets opened. */
    372 
    373 	raid_softc = (struct raid_softc *)
    374 		malloc(num * sizeof(struct raid_softc),
    375 		       M_RAIDFRAME, M_NOWAIT);
    376 	if (raid_softc == NULL) {
    377 		printf("WARNING: no memory for RAIDframe driver\n");
    378 		return;
    379 	}
    380 
    381 	memset(raid_softc, 0, num * sizeof(struct raid_softc));
    382 
    383 	for (raidID = 0; raidID < num; raidID++) {
    384 		bufq_alloc(&raid_softc[raidID].buf_queue, "fcfs", 0);
    385 
    386 		RF_Malloc(raidPtrs[raidID], sizeof(RF_Raid_t),
    387 			  (RF_Raid_t *));
    388 		if (raidPtrs[raidID] == NULL) {
    389 			printf("WARNING: raidPtrs[%d] is NULL\n", raidID);
    390 			numraid = raidID;
    391 			return;
    392 		}
    393 	}
    394 
    395 	if (config_cfattach_attach(raid_cd.cd_name, &raid_ca)) {
    396 		printf("config_cfattach_attach failed?\n");
    397 	}
    398 
    399 #ifdef RAID_AUTOCONFIG
    400 	raidautoconfig = 1;
    401 #endif
    402 
    403 	/*
    404 	 * Register a finalizer which will be used to auto-config RAID
    405 	 * sets once all real hardware devices have been found.
    406 	 */
    407 	if (config_finalize_register(NULL, rf_autoconfig) != 0)
    408 		printf("WARNING: unable to register RAIDframe finalizer\n");
    409 }
    410 
    411 int
    412 rf_autoconfig(struct device *self)
    413 {
    414 	RF_AutoConfig_t *ac_list;
    415 	RF_ConfigSet_t *config_sets;
    416 	int i;
    417 
    418 	if (raidautoconfig == 0)
    419 		return (0);
    420 
    421 	/* XXX This code can only be run once. */
    422 	raidautoconfig = 0;
    423 
    424 	/* 1. locate all RAID components on the system */
    425 #ifdef DEBUG
    426 	printf("Searching for RAID components...\n");
    427 #endif
    428 	ac_list = rf_find_raid_components();
    429 
    430 	/* 2. Sort them into their respective sets. */
    431 	config_sets = rf_create_auto_sets(ac_list);
    432 
    433 	/*
    434 	 * 3. Evaluate each set andconfigure the valid ones.
    435 	 * This gets done in rf_buildroothack().
    436 	 */
    437 	rf_buildroothack(config_sets);
    438 
    439 	for (i = 0; i < numraid; i++)
    440 		if (raidPtrs[i] != NULL && raidPtrs[i]->valid)
    441 			dkwedge_discover(&raid_softc[i].sc_dkdev);
    442 
    443 	return 1;
    444 }
    445 
    446 void
    447 rf_buildroothack(RF_ConfigSet_t *config_sets)
    448 {
    449 	RF_ConfigSet_t *cset;
    450 	RF_ConfigSet_t *next_cset;
    451 	int retcode;
    452 	int raidID;
    453 	int rootID;
    454 	int col;
    455 	int num_root;
    456 	char *devname;
    457 
    458 	rootID = 0;
    459 	num_root = 0;
    460 	cset = config_sets;
    461 	while(cset != NULL ) {
    462 		next_cset = cset->next;
    463 		if (rf_have_enough_components(cset) &&
    464 		    cset->ac->clabel->autoconfigure==1) {
    465 			retcode = rf_auto_config_set(cset,&raidID);
    466 			if (!retcode) {
    467 #ifdef DEBUG
    468 				printf("raid%d: configured ok\n", raidID);
    469 #endif
    470 				if (cset->rootable) {
    471 					rootID = raidID;
    472 					num_root++;
    473 				}
    474 			} else {
    475 				/* The autoconfig didn't work :( */
    476 #ifdef DEBUG
    477 				printf("Autoconfig failed with code %d for raid%d\n", retcode, raidID);
    478 #endif
    479 				rf_release_all_vps(cset);
    480 			}
    481 		} else {
    482 #ifdef DEBUG
    483 			printf("raid%d: not enough components\n", raidID);
    484 #endif
    485 			/* we're not autoconfiguring this set...
    486 			   release the associated resources */
    487 			rf_release_all_vps(cset);
    488 		}
    489 		/* cleanup */
    490 		rf_cleanup_config_set(cset);
    491 		cset = next_cset;
    492 	}
    493 
    494 	/* if the user has specified what the root device should be
    495 	   then we don't touch booted_device or boothowto... */
    496 
    497 	if (rootspec != NULL)
    498 		return;
    499 
    500 	/* we found something bootable... */
    501 
    502 	if (num_root == 1) {
    503 		booted_device = raid_softc[rootID].sc_dev;
    504 	} else if (num_root > 1) {
    505 
    506 		/*
    507 		 * Maybe the MD code can help. If it cannot, then
    508 		 * setroot() will discover that we have no
    509 		 * booted_device and will ask the user if nothing was
    510 		 * hardwired in the kernel config file
    511 		 */
    512 
    513 		if (booted_device == NULL)
    514 			cpu_rootconf();
    515 		if (booted_device == NULL)
    516 			return;
    517 
    518 		num_root = 0;
    519 		for (raidID = 0; raidID < numraid; raidID++) {
    520 			if (raidPtrs[raidID]->valid == 0)
    521 				continue;
    522 
    523 			if (raidPtrs[raidID]->root_partition == 0)
    524 				continue;
    525 
    526 			for (col = 0; col < raidPtrs[raidID]->numCol; col++) {
    527 				devname = raidPtrs[raidID]->Disks[col].devname;
    528 				devname += sizeof("/dev/") - 1;
    529 				if (strncmp(devname, booted_device->dv_xname,
    530 					    strlen(booted_device->dv_xname)) != 0)
    531 					continue;
    532 #ifdef DEBUG
    533 				printf("raid%d includes boot device %s\n",
    534 				       raidID, devname);
    535 #endif
    536 				num_root++;
    537 				rootID = raidID;
    538 			}
    539 		}
    540 
    541 		if (num_root == 1) {
    542 			booted_device = raid_softc[rootID].sc_dev;
    543 		} else {
    544 			/* we can't guess.. require the user to answer... */
    545 			boothowto |= RB_ASKNAME;
    546 		}
    547 	}
    548 }
    549 
    550 
    551 int
    552 raidsize(dev_t dev)
    553 {
    554 	struct raid_softc *rs;
    555 	struct disklabel *lp;
    556 	int     part, unit, omask, size;
    557 
    558 	unit = raidunit(dev);
    559 	if (unit >= numraid)
    560 		return (-1);
    561 	rs = &raid_softc[unit];
    562 
    563 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    564 		return (-1);
    565 
    566 	part = DISKPART(dev);
    567 	omask = rs->sc_dkdev.dk_openmask & (1 << part);
    568 	lp = rs->sc_dkdev.dk_label;
    569 
    570 	if (omask == 0 && raidopen(dev, 0, S_IFBLK, curlwp))
    571 		return (-1);
    572 
    573 	if (lp->d_partitions[part].p_fstype != FS_SWAP)
    574 		size = -1;
    575 	else
    576 		size = lp->d_partitions[part].p_size *
    577 		    (lp->d_secsize / DEV_BSIZE);
    578 
    579 	if (omask == 0 && raidclose(dev, 0, S_IFBLK, curlwp))
    580 		return (-1);
    581 
    582 	return (size);
    583 
    584 }
    585 
    586 int
    587 raiddump(dev_t dev, daddr_t blkno, void *va,
    588     size_t  size)
    589 {
    590 	/* Not implemented. */
    591 	return ENXIO;
    592 }
    593 /* ARGSUSED */
    594 int
    595 raidopen(dev_t dev, int flags, int fmt,
    596     struct lwp *l)
    597 {
    598 	int     unit = raidunit(dev);
    599 	struct raid_softc *rs;
    600 	struct disklabel *lp;
    601 	int     part, pmask;
    602 	int     error = 0;
    603 
    604 	if (unit >= numraid)
    605 		return (ENXIO);
    606 	rs = &raid_softc[unit];
    607 
    608 	if ((error = raidlock(rs)) != 0)
    609 		return (error);
    610 	lp = rs->sc_dkdev.dk_label;
    611 
    612 	part = DISKPART(dev);
    613 
    614 	/*
    615 	 * If there are wedges, and this is not RAW_PART, then we
    616 	 * need to fail.
    617 	 */
    618 	if (rs->sc_dkdev.dk_nwedges != 0 && part != RAW_PART) {
    619 		error = EBUSY;
    620 		goto bad;
    621 	}
    622 	pmask = (1 << part);
    623 
    624 	if ((rs->sc_flags & RAIDF_INITED) &&
    625 	    (rs->sc_dkdev.dk_openmask == 0))
    626 		raidgetdisklabel(dev);
    627 
    628 	/* make sure that this partition exists */
    629 
    630 	if (part != RAW_PART) {
    631 		if (((rs->sc_flags & RAIDF_INITED) == 0) ||
    632 		    ((part >= lp->d_npartitions) ||
    633 			(lp->d_partitions[part].p_fstype == FS_UNUSED))) {
    634 			error = ENXIO;
    635 			goto bad;
    636 		}
    637 	}
    638 	/* Prevent this unit from being unconfigured while open. */
    639 	switch (fmt) {
    640 	case S_IFCHR:
    641 		rs->sc_dkdev.dk_copenmask |= pmask;
    642 		break;
    643 
    644 	case S_IFBLK:
    645 		rs->sc_dkdev.dk_bopenmask |= pmask;
    646 		break;
    647 	}
    648 
    649 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    650 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    651 		/* First one... mark things as dirty... Note that we *MUST*
    652 		 have done a configure before this.  I DO NOT WANT TO BE
    653 		 SCRIBBLING TO RANDOM COMPONENTS UNTIL IT'S BEEN DETERMINED
    654 		 THAT THEY BELONG TOGETHER!!!!! */
    655 		/* XXX should check to see if we're only open for reading
    656 		   here... If so, we needn't do this, but then need some
    657 		   other way of keeping track of what's happened.. */
    658 
    659 		rf_markalldirty( raidPtrs[unit] );
    660 	}
    661 
    662 
    663 	rs->sc_dkdev.dk_openmask =
    664 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    665 
    666 bad:
    667 	raidunlock(rs);
    668 
    669 	return (error);
    670 
    671 
    672 }
    673 /* ARGSUSED */
    674 int
    675 raidclose(dev_t dev, int flags, int fmt, struct lwp *l)
    676 {
    677 	int     unit = raidunit(dev);
    678 	struct cfdata *cf;
    679 	struct raid_softc *rs;
    680 	int     error = 0;
    681 	int     part;
    682 
    683 	if (unit >= numraid)
    684 		return (ENXIO);
    685 	rs = &raid_softc[unit];
    686 
    687 	if ((error = raidlock(rs)) != 0)
    688 		return (error);
    689 
    690 	part = DISKPART(dev);
    691 
    692 	/* ...that much closer to allowing unconfiguration... */
    693 	switch (fmt) {
    694 	case S_IFCHR:
    695 		rs->sc_dkdev.dk_copenmask &= ~(1 << part);
    696 		break;
    697 
    698 	case S_IFBLK:
    699 		rs->sc_dkdev.dk_bopenmask &= ~(1 << part);
    700 		break;
    701 	}
    702 	rs->sc_dkdev.dk_openmask =
    703 	    rs->sc_dkdev.dk_copenmask | rs->sc_dkdev.dk_bopenmask;
    704 
    705 	if ((rs->sc_dkdev.dk_openmask == 0) &&
    706 	    ((rs->sc_flags & RAIDF_INITED) != 0)) {
    707 		/* Last one... device is not unconfigured yet.
    708 		   Device shutdown has taken care of setting the
    709 		   clean bits if RAIDF_INITED is not set
    710 		   mark things as clean... */
    711 
    712 		rf_update_component_labels(raidPtrs[unit],
    713 						 RF_FINAL_COMPONENT_UPDATE);
    714 		if (doing_shutdown) {
    715 			/* last one, and we're going down, so
    716 			   lights out for this RAID set too. */
    717 			error = rf_Shutdown(raidPtrs[unit]);
    718 
    719 			/* It's no longer initialized... */
    720 			rs->sc_flags &= ~RAIDF_INITED;
    721 
    722 			/* detach the device */
    723 
    724 			cf = device_cfdata(rs->sc_dev);
    725 			error = config_detach(rs->sc_dev, DETACH_QUIET);
    726 			free(cf, M_RAIDFRAME);
    727 
    728 			/* Detach the disk. */
    729 			pseudo_disk_detach(&rs->sc_dkdev);
    730 		}
    731 	}
    732 
    733 	raidunlock(rs);
    734 	return (0);
    735 
    736 }
    737 
    738 void
    739 raidstrategy(struct buf *bp)
    740 {
    741 	int s;
    742 
    743 	unsigned int raidID = raidunit(bp->b_dev);
    744 	RF_Raid_t *raidPtr;
    745 	struct raid_softc *rs = &raid_softc[raidID];
    746 	int     wlabel;
    747 
    748 	if ((rs->sc_flags & RAIDF_INITED) ==0) {
    749 		bp->b_error = ENXIO;
    750 		goto done;
    751 	}
    752 	if (raidID >= numraid || !raidPtrs[raidID]) {
    753 		bp->b_error = ENODEV;
    754 		goto done;
    755 	}
    756 	raidPtr = raidPtrs[raidID];
    757 	if (!raidPtr->valid) {
    758 		bp->b_error = ENODEV;
    759 		goto done;
    760 	}
    761 	if (bp->b_bcount == 0) {
    762 		db1_printf(("b_bcount is zero..\n"));
    763 		goto done;
    764 	}
    765 
    766 	/*
    767 	 * Do bounds checking and adjust transfer.  If there's an
    768 	 * error, the bounds check will flag that for us.
    769 	 */
    770 
    771 	wlabel = rs->sc_flags & (RAIDF_WLABEL | RAIDF_LABELLING);
    772 	if (DISKPART(bp->b_dev) == RAW_PART) {
    773 		uint64_t size; /* device size in DEV_BSIZE unit */
    774 
    775 		if (raidPtr->logBytesPerSector > DEV_BSHIFT) {
    776 			size = raidPtr->totalSectors <<
    777 			    (raidPtr->logBytesPerSector - DEV_BSHIFT);
    778 		} else {
    779 			size = raidPtr->totalSectors >>
    780 			    (DEV_BSHIFT - raidPtr->logBytesPerSector);
    781 		}
    782 		if (bounds_check_with_mediasize(bp, DEV_BSIZE, size) <= 0) {
    783 			goto done;
    784 		}
    785 	} else {
    786 		if (bounds_check_with_label(&rs->sc_dkdev, bp, wlabel) <= 0) {
    787 			db1_printf(("Bounds check failed!!:%d %d\n",
    788 				(int) bp->b_blkno, (int) wlabel));
    789 			goto done;
    790 		}
    791 	}
    792 	s = splbio();
    793 
    794 	bp->b_resid = 0;
    795 
    796 	/* stuff it onto our queue */
    797 	BUFQ_PUT(rs->buf_queue, bp);
    798 
    799 	/* scheduled the IO to happen at the next convenient time */
    800 	wakeup(&(raidPtrs[raidID]->iodone));
    801 
    802 	splx(s);
    803 	return;
    804 
    805 done:
    806 	bp->b_resid = bp->b_bcount;
    807 	biodone(bp);
    808 }
    809 /* ARGSUSED */
    810 int
    811 raidread(dev_t dev, struct uio *uio, int flags)
    812 {
    813 	int     unit = raidunit(dev);
    814 	struct raid_softc *rs;
    815 
    816 	if (unit >= numraid)
    817 		return (ENXIO);
    818 	rs = &raid_softc[unit];
    819 
    820 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    821 		return (ENXIO);
    822 
    823 	return (physio(raidstrategy, NULL, dev, B_READ, minphys, uio));
    824 
    825 }
    826 /* ARGSUSED */
    827 int
    828 raidwrite(dev_t dev, struct uio *uio, int flags)
    829 {
    830 	int     unit = raidunit(dev);
    831 	struct raid_softc *rs;
    832 
    833 	if (unit >= numraid)
    834 		return (ENXIO);
    835 	rs = &raid_softc[unit];
    836 
    837 	if ((rs->sc_flags & RAIDF_INITED) == 0)
    838 		return (ENXIO);
    839 
    840 	return (physio(raidstrategy, NULL, dev, B_WRITE, minphys, uio));
    841 
    842 }
    843 
    844 int
    845 raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
    846 {
    847 	int     unit = raidunit(dev);
    848 	int     error = 0;
    849 	int     part, pmask;
    850 	struct cfdata *cf;
    851 	struct raid_softc *rs;
    852 	RF_Config_t *k_cfg, *u_cfg;
    853 	RF_Raid_t *raidPtr;
    854 	RF_RaidDisk_t *diskPtr;
    855 	RF_AccTotals_t *totals;
    856 	RF_DeviceConfig_t *d_cfg, **ucfgp;
    857 	u_char *specific_buf;
    858 	int retcode = 0;
    859 	int column;
    860 	int raidid;
    861 	struct rf_recon_req *rrcopy, *rr;
    862 	RF_ComponentLabel_t *clabel;
    863 	RF_ComponentLabel_t *ci_label;
    864 	RF_ComponentLabel_t **clabel_ptr;
    865 	RF_SingleComponent_t *sparePtr,*componentPtr;
    866 	RF_SingleComponent_t component;
    867 	RF_ProgressInfo_t progressInfo, **progressInfoPtr;
    868 	int i, j, d;
    869 #ifdef __HAVE_OLD_DISKLABEL
    870 	struct disklabel newlabel;
    871 #endif
    872 	struct dkwedge_info *dkw;
    873 
    874 	if (unit >= numraid)
    875 		return (ENXIO);
    876 	rs = &raid_softc[unit];
    877 	raidPtr = raidPtrs[unit];
    878 
    879 	db1_printf(("raidioctl: %d %d %d %d\n", (int) dev,
    880 		(int) DISKPART(dev), (int) unit, (int) cmd));
    881 
    882 	/* Must be open for writes for these commands... */
    883 	switch (cmd) {
    884 #ifdef DIOCGSECTORSIZE
    885 	case DIOCGSECTORSIZE:
    886 		*(u_int *)data = raidPtr->bytesPerSector;
    887 		return 0;
    888 	case DIOCGMEDIASIZE:
    889 		*(off_t *)data =
    890 		    (off_t)raidPtr->totalSectors * raidPtr->bytesPerSector;
    891 		return 0;
    892 #endif
    893 	case DIOCSDINFO:
    894 	case DIOCWDINFO:
    895 #ifdef __HAVE_OLD_DISKLABEL
    896 	case ODIOCWDINFO:
    897 	case ODIOCSDINFO:
    898 #endif
    899 	case DIOCWLABEL:
    900 	case DIOCAWEDGE:
    901 	case DIOCDWEDGE:
    902 		if ((flag & FWRITE) == 0)
    903 			return (EBADF);
    904 	}
    905 
    906 	/* Must be initialized for these... */
    907 	switch (cmd) {
    908 	case DIOCGDINFO:
    909 	case DIOCSDINFO:
    910 	case DIOCWDINFO:
    911 #ifdef __HAVE_OLD_DISKLABEL
    912 	case ODIOCGDINFO:
    913 	case ODIOCWDINFO:
    914 	case ODIOCSDINFO:
    915 	case ODIOCGDEFLABEL:
    916 #endif
    917 	case DIOCGPART:
    918 	case DIOCWLABEL:
    919 	case DIOCGDEFLABEL:
    920 	case DIOCAWEDGE:
    921 	case DIOCDWEDGE:
    922 	case DIOCLWEDGES:
    923 	case RAIDFRAME_SHUTDOWN:
    924 	case RAIDFRAME_REWRITEPARITY:
    925 	case RAIDFRAME_GET_INFO:
    926 	case RAIDFRAME_RESET_ACCTOTALS:
    927 	case RAIDFRAME_GET_ACCTOTALS:
    928 	case RAIDFRAME_KEEP_ACCTOTALS:
    929 	case RAIDFRAME_GET_SIZE:
    930 	case RAIDFRAME_FAIL_DISK:
    931 	case RAIDFRAME_COPYBACK:
    932 	case RAIDFRAME_CHECK_RECON_STATUS:
    933 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
    934 	case RAIDFRAME_GET_COMPONENT_LABEL:
    935 	case RAIDFRAME_SET_COMPONENT_LABEL:
    936 	case RAIDFRAME_ADD_HOT_SPARE:
    937 	case RAIDFRAME_REMOVE_HOT_SPARE:
    938 	case RAIDFRAME_INIT_LABELS:
    939 	case RAIDFRAME_REBUILD_IN_PLACE:
    940 	case RAIDFRAME_CHECK_PARITY:
    941 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
    942 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
    943 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
    944 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
    945 	case RAIDFRAME_SET_AUTOCONFIG:
    946 	case RAIDFRAME_SET_ROOT:
    947 	case RAIDFRAME_DELETE_COMPONENT:
    948 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
    949 		if ((rs->sc_flags & RAIDF_INITED) == 0)
    950 			return (ENXIO);
    951 	}
    952 
    953 	switch (cmd) {
    954 
    955 		/* configure the system */
    956 	case RAIDFRAME_CONFIGURE:
    957 
    958 		if (raidPtr->valid) {
    959 			/* There is a valid RAID set running on this unit! */
    960 			printf("raid%d: Device already configured!\n",unit);
    961 			return(EINVAL);
    962 		}
    963 
    964 		/* copy-in the configuration information */
    965 		/* data points to a pointer to the configuration structure */
    966 
    967 		u_cfg = *((RF_Config_t **) data);
    968 		RF_Malloc(k_cfg, sizeof(RF_Config_t), (RF_Config_t *));
    969 		if (k_cfg == NULL) {
    970 			return (ENOMEM);
    971 		}
    972 		retcode = copyin(u_cfg, k_cfg, sizeof(RF_Config_t));
    973 		if (retcode) {
    974 			RF_Free(k_cfg, sizeof(RF_Config_t));
    975 			db1_printf(("rf_ioctl: retcode=%d copyin.1\n",
    976 				retcode));
    977 			return (retcode);
    978 		}
    979 		/* allocate a buffer for the layout-specific data, and copy it
    980 		 * in */
    981 		if (k_cfg->layoutSpecificSize) {
    982 			if (k_cfg->layoutSpecificSize > 10000) {
    983 				/* sanity check */
    984 				RF_Free(k_cfg, sizeof(RF_Config_t));
    985 				return (EINVAL);
    986 			}
    987 			RF_Malloc(specific_buf, k_cfg->layoutSpecificSize,
    988 			    (u_char *));
    989 			if (specific_buf == NULL) {
    990 				RF_Free(k_cfg, sizeof(RF_Config_t));
    991 				return (ENOMEM);
    992 			}
    993 			retcode = copyin(k_cfg->layoutSpecific, specific_buf,
    994 			    k_cfg->layoutSpecificSize);
    995 			if (retcode) {
    996 				RF_Free(k_cfg, sizeof(RF_Config_t));
    997 				RF_Free(specific_buf,
    998 					k_cfg->layoutSpecificSize);
    999 				db1_printf(("rf_ioctl: retcode=%d copyin.2\n",
   1000 					retcode));
   1001 				return (retcode);
   1002 			}
   1003 		} else
   1004 			specific_buf = NULL;
   1005 		k_cfg->layoutSpecific = specific_buf;
   1006 
   1007 		/* should do some kind of sanity check on the configuration.
   1008 		 * Store the sum of all the bytes in the last byte? */
   1009 
   1010 		/* configure the system */
   1011 
   1012 		/*
   1013 		 * Clear the entire RAID descriptor, just to make sure
   1014 		 *  there is no stale data left in the case of a
   1015 		 *  reconfiguration
   1016 		 */
   1017 		memset((char *) raidPtr, 0, sizeof(RF_Raid_t));
   1018 		raidPtr->raidid = unit;
   1019 
   1020 		retcode = rf_Configure(raidPtr, k_cfg, NULL);
   1021 
   1022 		if (retcode == 0) {
   1023 
   1024 			/* allow this many simultaneous IO's to
   1025 			   this RAID device */
   1026 			raidPtr->openings = RAIDOUTSTANDING;
   1027 
   1028 			raidinit(raidPtr);
   1029 			rf_markalldirty(raidPtr);
   1030 		}
   1031 		/* free the buffers.  No return code here. */
   1032 		if (k_cfg->layoutSpecificSize) {
   1033 			RF_Free(specific_buf, k_cfg->layoutSpecificSize);
   1034 		}
   1035 		RF_Free(k_cfg, sizeof(RF_Config_t));
   1036 
   1037 		return (retcode);
   1038 
   1039 		/* shutdown the system */
   1040 	case RAIDFRAME_SHUTDOWN:
   1041 
   1042 		if ((error = raidlock(rs)) != 0)
   1043 			return (error);
   1044 
   1045 		/*
   1046 		 * If somebody has a partition mounted, we shouldn't
   1047 		 * shutdown.
   1048 		 */
   1049 
   1050 		part = DISKPART(dev);
   1051 		pmask = (1 << part);
   1052 		if ((rs->sc_dkdev.dk_openmask & ~pmask) ||
   1053 		    ((rs->sc_dkdev.dk_bopenmask & pmask) &&
   1054 			(rs->sc_dkdev.dk_copenmask & pmask))) {
   1055 			raidunlock(rs);
   1056 			return (EBUSY);
   1057 		}
   1058 
   1059 		retcode = rf_Shutdown(raidPtr);
   1060 
   1061 		/* It's no longer initialized... */
   1062 		rs->sc_flags &= ~RAIDF_INITED;
   1063 
   1064 		/* free the pseudo device attach bits */
   1065 
   1066 		cf = device_cfdata(rs->sc_dev);
   1067 		/* XXX this causes us to not return any errors
   1068 		   from the above call to rf_Shutdown() */
   1069 		retcode = config_detach(rs->sc_dev, DETACH_QUIET);
   1070 		free(cf, M_RAIDFRAME);
   1071 
   1072 		/* Detach the disk. */
   1073 		pseudo_disk_detach(&rs->sc_dkdev);
   1074 
   1075 		raidunlock(rs);
   1076 
   1077 		return (retcode);
   1078 	case RAIDFRAME_GET_COMPONENT_LABEL:
   1079 		clabel_ptr = (RF_ComponentLabel_t **) data;
   1080 		/* need to read the component label for the disk indicated
   1081 		   by row,column in clabel */
   1082 
   1083 		/* For practice, let's get it directly fromdisk, rather
   1084 		   than from the in-core copy */
   1085 		RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
   1086 			   (RF_ComponentLabel_t *));
   1087 		if (clabel == NULL)
   1088 			return (ENOMEM);
   1089 
   1090 		retcode = copyin( *clabel_ptr, clabel,
   1091 				  sizeof(RF_ComponentLabel_t));
   1092 
   1093 		if (retcode) {
   1094 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1095 			return(retcode);
   1096 		}
   1097 
   1098 		clabel->row = 0; /* Don't allow looking at anything else.*/
   1099 
   1100 		column = clabel->column;
   1101 
   1102 		if ((column < 0) || (column >= raidPtr->numCol +
   1103 				     raidPtr->numSpare)) {
   1104 			RF_Free( clabel, sizeof(RF_ComponentLabel_t));
   1105 			return(EINVAL);
   1106 		}
   1107 
   1108 		retcode = raidread_component_label(raidPtr->Disks[column].dev,
   1109 				raidPtr->raid_cinfo[column].ci_vp,
   1110 				clabel );
   1111 
   1112 		if (retcode == 0) {
   1113 			retcode = copyout(clabel, *clabel_ptr,
   1114 					  sizeof(RF_ComponentLabel_t));
   1115 		}
   1116 		RF_Free(clabel, sizeof(RF_ComponentLabel_t));
   1117 		return (retcode);
   1118 
   1119 	case RAIDFRAME_SET_COMPONENT_LABEL:
   1120 		clabel = (RF_ComponentLabel_t *) data;
   1121 
   1122 		/* XXX check the label for valid stuff... */
   1123 		/* Note that some things *should not* get modified --
   1124 		   the user should be re-initing the labels instead of
   1125 		   trying to patch things.
   1126 		   */
   1127 
   1128 		raidid = raidPtr->raidid;
   1129 #ifdef DEBUG
   1130 		printf("raid%d: Got component label:\n", raidid);
   1131 		printf("raid%d: Version: %d\n", raidid, clabel->version);
   1132 		printf("raid%d: Serial Number: %d\n", raidid, clabel->serial_number);
   1133 		printf("raid%d: Mod counter: %d\n", raidid, clabel->mod_counter);
   1134 		printf("raid%d: Column: %d\n", raidid, clabel->column);
   1135 		printf("raid%d: Num Columns: %d\n", raidid, clabel->num_columns);
   1136 		printf("raid%d: Clean: %d\n", raidid, clabel->clean);
   1137 		printf("raid%d: Status: %d\n", raidid, clabel->status);
   1138 #endif
   1139 		clabel->row = 0;
   1140 		column = clabel->column;
   1141 
   1142 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1143 			return(EINVAL);
   1144 		}
   1145 
   1146 		/* XXX this isn't allowed to do anything for now :-) */
   1147 
   1148 		/* XXX and before it is, we need to fill in the rest
   1149 		   of the fields!?!?!?! */
   1150 #if 0
   1151 		raidwrite_component_label(
   1152 		     raidPtr->Disks[column].dev,
   1153 			    raidPtr->raid_cinfo[column].ci_vp,
   1154 			    clabel );
   1155 #endif
   1156 		return (0);
   1157 
   1158 	case RAIDFRAME_INIT_LABELS:
   1159 		clabel = (RF_ComponentLabel_t *) data;
   1160 		/*
   1161 		   we only want the serial number from
   1162 		   the above.  We get all the rest of the information
   1163 		   from the config that was used to create this RAID
   1164 		   set.
   1165 		   */
   1166 
   1167 		raidPtr->serial_number = clabel->serial_number;
   1168 
   1169 		RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
   1170 			  (RF_ComponentLabel_t *));
   1171 		if (ci_label == NULL)
   1172 			return (ENOMEM);
   1173 
   1174 		raid_init_component_label(raidPtr, ci_label);
   1175 		ci_label->serial_number = clabel->serial_number;
   1176 		ci_label->row = 0; /* we dont' pretend to support more */
   1177 
   1178 		for(column=0;column<raidPtr->numCol;column++) {
   1179 			diskPtr = &raidPtr->Disks[column];
   1180 			if (!RF_DEAD_DISK(diskPtr->status)) {
   1181 				ci_label->partitionSize = diskPtr->partitionSize;
   1182 				ci_label->column = column;
   1183 				raidwrite_component_label(
   1184 							  raidPtr->Disks[column].dev,
   1185 							  raidPtr->raid_cinfo[column].ci_vp,
   1186 							  ci_label );
   1187 			}
   1188 		}
   1189 		RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
   1190 
   1191 		return (retcode);
   1192 	case RAIDFRAME_SET_AUTOCONFIG:
   1193 		d = rf_set_autoconfig(raidPtr, *(int *) data);
   1194 		printf("raid%d: New autoconfig value is: %d\n",
   1195 		       raidPtr->raidid, d);
   1196 		*(int *) data = d;
   1197 		return (retcode);
   1198 
   1199 	case RAIDFRAME_SET_ROOT:
   1200 		d = rf_set_rootpartition(raidPtr, *(int *) data);
   1201 		printf("raid%d: New rootpartition value is: %d\n",
   1202 		       raidPtr->raidid, d);
   1203 		*(int *) data = d;
   1204 		return (retcode);
   1205 
   1206 		/* initialize all parity */
   1207 	case RAIDFRAME_REWRITEPARITY:
   1208 
   1209 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1210 			/* Parity for RAID 0 is trivially correct */
   1211 			raidPtr->parity_good = RF_RAID_CLEAN;
   1212 			return(0);
   1213 		}
   1214 
   1215 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1216 			/* Re-write is already in progress! */
   1217 			return(EINVAL);
   1218 		}
   1219 
   1220 		retcode = RF_CREATE_THREAD(raidPtr->parity_rewrite_thread,
   1221 					   rf_RewriteParityThread,
   1222 					   raidPtr,"raid_parity");
   1223 		return (retcode);
   1224 
   1225 
   1226 	case RAIDFRAME_ADD_HOT_SPARE:
   1227 		sparePtr = (RF_SingleComponent_t *) data;
   1228 		memcpy( &component, sparePtr, sizeof(RF_SingleComponent_t));
   1229 		retcode = rf_add_hot_spare(raidPtr, &component);
   1230 		return(retcode);
   1231 
   1232 	case RAIDFRAME_REMOVE_HOT_SPARE:
   1233 		return(retcode);
   1234 
   1235 	case RAIDFRAME_DELETE_COMPONENT:
   1236 		componentPtr = (RF_SingleComponent_t *)data;
   1237 		memcpy( &component, componentPtr,
   1238 			sizeof(RF_SingleComponent_t));
   1239 		retcode = rf_delete_component(raidPtr, &component);
   1240 		return(retcode);
   1241 
   1242 	case RAIDFRAME_INCORPORATE_HOT_SPARE:
   1243 		componentPtr = (RF_SingleComponent_t *)data;
   1244 		memcpy( &component, componentPtr,
   1245 			sizeof(RF_SingleComponent_t));
   1246 		retcode = rf_incorporate_hot_spare(raidPtr, &component);
   1247 		return(retcode);
   1248 
   1249 	case RAIDFRAME_REBUILD_IN_PLACE:
   1250 
   1251 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1252 			/* Can't do this on a RAID 0!! */
   1253 			return(EINVAL);
   1254 		}
   1255 
   1256 		if (raidPtr->recon_in_progress == 1) {
   1257 			/* a reconstruct is already in progress! */
   1258 			return(EINVAL);
   1259 		}
   1260 
   1261 		componentPtr = (RF_SingleComponent_t *) data;
   1262 		memcpy( &component, componentPtr,
   1263 			sizeof(RF_SingleComponent_t));
   1264 		component.row = 0; /* we don't support any more */
   1265 		column = component.column;
   1266 
   1267 		if ((column < 0) || (column >= raidPtr->numCol)) {
   1268 			return(EINVAL);
   1269 		}
   1270 
   1271 		RF_LOCK_MUTEX(raidPtr->mutex);
   1272 		if ((raidPtr->Disks[column].status == rf_ds_optimal) &&
   1273 		    (raidPtr->numFailures > 0)) {
   1274 			/* XXX 0 above shouldn't be constant!!! */
   1275 			/* some component other than this has failed.
   1276 			   Let's not make things worse than they already
   1277 			   are... */
   1278 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1279 			       raidPtr->raidid);
   1280 			printf("raid%d:     Col: %d   Too many failures.\n",
   1281 			       raidPtr->raidid, column);
   1282 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1283 			return (EINVAL);
   1284 		}
   1285 		if (raidPtr->Disks[column].status ==
   1286 		    rf_ds_reconstructing) {
   1287 			printf("raid%d: Unable to reconstruct to disk at:\n",
   1288 			       raidPtr->raidid);
   1289 			printf("raid%d:    Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, column);
   1290 
   1291 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1292 			return (EINVAL);
   1293 		}
   1294 		if (raidPtr->Disks[column].status == rf_ds_spared) {
   1295 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1296 			return (EINVAL);
   1297 		}
   1298 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1299 
   1300 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1301 		if (rrcopy == NULL)
   1302 			return(ENOMEM);
   1303 
   1304 		rrcopy->raidPtr = (void *) raidPtr;
   1305 		rrcopy->col = column;
   1306 
   1307 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1308 					   rf_ReconstructInPlaceThread,
   1309 					   rrcopy,"raid_reconip");
   1310 		return(retcode);
   1311 
   1312 	case RAIDFRAME_GET_INFO:
   1313 		if (!raidPtr->valid)
   1314 			return (ENODEV);
   1315 		ucfgp = (RF_DeviceConfig_t **) data;
   1316 		RF_Malloc(d_cfg, sizeof(RF_DeviceConfig_t),
   1317 			  (RF_DeviceConfig_t *));
   1318 		if (d_cfg == NULL)
   1319 			return (ENOMEM);
   1320 		d_cfg->rows = 1; /* there is only 1 row now */
   1321 		d_cfg->cols = raidPtr->numCol;
   1322 		d_cfg->ndevs = raidPtr->numCol;
   1323 		if (d_cfg->ndevs >= RF_MAX_DISKS) {
   1324 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1325 			return (ENOMEM);
   1326 		}
   1327 		d_cfg->nspares = raidPtr->numSpare;
   1328 		if (d_cfg->nspares >= RF_MAX_DISKS) {
   1329 			RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1330 			return (ENOMEM);
   1331 		}
   1332 		d_cfg->maxqdepth = raidPtr->maxQueueDepth;
   1333 		d = 0;
   1334 		for (j = 0; j < d_cfg->cols; j++) {
   1335 			d_cfg->devs[d] = raidPtr->Disks[j];
   1336 			d++;
   1337 		}
   1338 		for (j = d_cfg->cols, i = 0; i < d_cfg->nspares; i++, j++) {
   1339 			d_cfg->spares[i] = raidPtr->Disks[j];
   1340 		}
   1341 		retcode = copyout(d_cfg, *ucfgp, sizeof(RF_DeviceConfig_t));
   1342 		RF_Free(d_cfg, sizeof(RF_DeviceConfig_t));
   1343 
   1344 		return (retcode);
   1345 
   1346 	case RAIDFRAME_CHECK_PARITY:
   1347 		*(int *) data = raidPtr->parity_good;
   1348 		return (0);
   1349 
   1350 	case RAIDFRAME_RESET_ACCTOTALS:
   1351 		memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
   1352 		return (0);
   1353 
   1354 	case RAIDFRAME_GET_ACCTOTALS:
   1355 		totals = (RF_AccTotals_t *) data;
   1356 		*totals = raidPtr->acc_totals;
   1357 		return (0);
   1358 
   1359 	case RAIDFRAME_KEEP_ACCTOTALS:
   1360 		raidPtr->keep_acc_totals = *(int *)data;
   1361 		return (0);
   1362 
   1363 	case RAIDFRAME_GET_SIZE:
   1364 		*(int *) data = raidPtr->totalSectors;
   1365 		return (0);
   1366 
   1367 		/* fail a disk & optionally start reconstruction */
   1368 	case RAIDFRAME_FAIL_DISK:
   1369 
   1370 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1371 			/* Can't do this on a RAID 0!! */
   1372 			return(EINVAL);
   1373 		}
   1374 
   1375 		rr = (struct rf_recon_req *) data;
   1376 		rr->row = 0;
   1377 		if (rr->col < 0 || rr->col >= raidPtr->numCol)
   1378 			return (EINVAL);
   1379 
   1380 
   1381 		RF_LOCK_MUTEX(raidPtr->mutex);
   1382 		if (raidPtr->status == rf_rs_reconstructing) {
   1383 			/* you can't fail a disk while we're reconstructing! */
   1384 			/* XXX wrong for RAID6 */
   1385 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1386 			return (EINVAL);
   1387 		}
   1388 		if ((raidPtr->Disks[rr->col].status ==
   1389 		     rf_ds_optimal) && (raidPtr->numFailures > 0)) {
   1390 			/* some other component has failed.  Let's not make
   1391 			   things worse. XXX wrong for RAID6 */
   1392 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1393 			return (EINVAL);
   1394 		}
   1395 		if (raidPtr->Disks[rr->col].status == rf_ds_spared) {
   1396 			/* Can't fail a spared disk! */
   1397 			RF_UNLOCK_MUTEX(raidPtr->mutex);
   1398 			return (EINVAL);
   1399 		}
   1400 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1401 
   1402 		/* make a copy of the recon request so that we don't rely on
   1403 		 * the user's buffer */
   1404 		RF_Malloc(rrcopy, sizeof(*rrcopy), (struct rf_recon_req *));
   1405 		if (rrcopy == NULL)
   1406 			return(ENOMEM);
   1407 		memcpy(rrcopy, rr, sizeof(*rr));
   1408 		rrcopy->raidPtr = (void *) raidPtr;
   1409 
   1410 		retcode = RF_CREATE_THREAD(raidPtr->recon_thread,
   1411 					   rf_ReconThread,
   1412 					   rrcopy,"raid_recon");
   1413 		return (0);
   1414 
   1415 		/* invoke a copyback operation after recon on whatever disk
   1416 		 * needs it, if any */
   1417 	case RAIDFRAME_COPYBACK:
   1418 
   1419 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1420 			/* This makes no sense on a RAID 0!! */
   1421 			return(EINVAL);
   1422 		}
   1423 
   1424 		if (raidPtr->copyback_in_progress == 1) {
   1425 			/* Copyback is already in progress! */
   1426 			return(EINVAL);
   1427 		}
   1428 
   1429 		retcode = RF_CREATE_THREAD(raidPtr->copyback_thread,
   1430 					   rf_CopybackThread,
   1431 					   raidPtr,"raid_copyback");
   1432 		return (retcode);
   1433 
   1434 		/* return the percentage completion of reconstruction */
   1435 	case RAIDFRAME_CHECK_RECON_STATUS:
   1436 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1437 			/* This makes no sense on a RAID 0, so tell the
   1438 			   user it's done. */
   1439 			*(int *) data = 100;
   1440 			return(0);
   1441 		}
   1442 		if (raidPtr->status != rf_rs_reconstructing)
   1443 			*(int *) data = 100;
   1444 		else {
   1445 			if (raidPtr->reconControl->numRUsTotal > 0) {
   1446 				*(int *) data = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
   1447 			} else {
   1448 				*(int *) data = 0;
   1449 			}
   1450 		}
   1451 		return (0);
   1452 	case RAIDFRAME_CHECK_RECON_STATUS_EXT:
   1453 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1454 		if (raidPtr->status != rf_rs_reconstructing) {
   1455 			progressInfo.remaining = 0;
   1456 			progressInfo.completed = 100;
   1457 			progressInfo.total = 100;
   1458 		} else {
   1459 			progressInfo.total =
   1460 				raidPtr->reconControl->numRUsTotal;
   1461 			progressInfo.completed =
   1462 				raidPtr->reconControl->numRUsComplete;
   1463 			progressInfo.remaining = progressInfo.total -
   1464 				progressInfo.completed;
   1465 		}
   1466 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1467 				  sizeof(RF_ProgressInfo_t));
   1468 		return (retcode);
   1469 
   1470 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS:
   1471 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1472 			/* This makes no sense on a RAID 0, so tell the
   1473 			   user it's done. */
   1474 			*(int *) data = 100;
   1475 			return(0);
   1476 		}
   1477 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1478 			*(int *) data = 100 *
   1479 				raidPtr->parity_rewrite_stripes_done /
   1480 				raidPtr->Layout.numStripe;
   1481 		} else {
   1482 			*(int *) data = 100;
   1483 		}
   1484 		return (0);
   1485 
   1486 	case RAIDFRAME_CHECK_PARITYREWRITE_STATUS_EXT:
   1487 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1488 		if (raidPtr->parity_rewrite_in_progress == 1) {
   1489 			progressInfo.total = raidPtr->Layout.numStripe;
   1490 			progressInfo.completed =
   1491 				raidPtr->parity_rewrite_stripes_done;
   1492 			progressInfo.remaining = progressInfo.total -
   1493 				progressInfo.completed;
   1494 		} else {
   1495 			progressInfo.remaining = 0;
   1496 			progressInfo.completed = 100;
   1497 			progressInfo.total = 100;
   1498 		}
   1499 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1500 				  sizeof(RF_ProgressInfo_t));
   1501 		return (retcode);
   1502 
   1503 	case RAIDFRAME_CHECK_COPYBACK_STATUS:
   1504 		if (raidPtr->Layout.map->faultsTolerated == 0) {
   1505 			/* This makes no sense on a RAID 0 */
   1506 			*(int *) data = 100;
   1507 			return(0);
   1508 		}
   1509 		if (raidPtr->copyback_in_progress == 1) {
   1510 			*(int *) data = 100 * raidPtr->copyback_stripes_done /
   1511 				raidPtr->Layout.numStripe;
   1512 		} else {
   1513 			*(int *) data = 100;
   1514 		}
   1515 		return (0);
   1516 
   1517 	case RAIDFRAME_CHECK_COPYBACK_STATUS_EXT:
   1518 		progressInfoPtr = (RF_ProgressInfo_t **) data;
   1519 		if (raidPtr->copyback_in_progress == 1) {
   1520 			progressInfo.total = raidPtr->Layout.numStripe;
   1521 			progressInfo.completed =
   1522 				raidPtr->copyback_stripes_done;
   1523 			progressInfo.remaining = progressInfo.total -
   1524 				progressInfo.completed;
   1525 		} else {
   1526 			progressInfo.remaining = 0;
   1527 			progressInfo.completed = 100;
   1528 			progressInfo.total = 100;
   1529 		}
   1530 		retcode = copyout(&progressInfo, *progressInfoPtr,
   1531 				  sizeof(RF_ProgressInfo_t));
   1532 		return (retcode);
   1533 
   1534 		/* the sparetable daemon calls this to wait for the kernel to
   1535 		 * need a spare table. this ioctl does not return until a
   1536 		 * spare table is needed. XXX -- calling mpsleep here in the
   1537 		 * ioctl code is almost certainly wrong and evil. -- XXX XXX
   1538 		 * -- I should either compute the spare table in the kernel,
   1539 		 * or have a different -- XXX XXX -- interface (a different
   1540 		 * character device) for delivering the table     -- XXX */
   1541 #if 0
   1542 	case RAIDFRAME_SPARET_WAIT:
   1543 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1544 		while (!rf_sparet_wait_queue)
   1545 			mpsleep(&rf_sparet_wait_queue, (PZERO + 1) | PCATCH, "sparet wait", 0, (void *) simple_lock_addr(rf_sparet_wait_mutex), MS_LOCK_SIMPLE);
   1546 		waitreq = rf_sparet_wait_queue;
   1547 		rf_sparet_wait_queue = rf_sparet_wait_queue->next;
   1548 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1549 
   1550 		/* structure assignment */
   1551 		*((RF_SparetWait_t *) data) = *waitreq;
   1552 
   1553 		RF_Free(waitreq, sizeof(*waitreq));
   1554 		return (0);
   1555 
   1556 		/* wakes up a process waiting on SPARET_WAIT and puts an error
   1557 		 * code in it that will cause the dameon to exit */
   1558 	case RAIDFRAME_ABORT_SPARET_WAIT:
   1559 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1560 		waitreq->fcol = -1;
   1561 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1562 		waitreq->next = rf_sparet_wait_queue;
   1563 		rf_sparet_wait_queue = waitreq;
   1564 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1565 		wakeup(&rf_sparet_wait_queue);
   1566 		return (0);
   1567 
   1568 		/* used by the spare table daemon to deliver a spare table
   1569 		 * into the kernel */
   1570 	case RAIDFRAME_SEND_SPARET:
   1571 
   1572 		/* install the spare table */
   1573 		retcode = rf_SetSpareTable(raidPtr, *(void **) data);
   1574 
   1575 		/* respond to the requestor.  the return status of the spare
   1576 		 * table installation is passed in the "fcol" field */
   1577 		RF_Malloc(waitreq, sizeof(*waitreq), (RF_SparetWait_t *));
   1578 		waitreq->fcol = retcode;
   1579 		RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1580 		waitreq->next = rf_sparet_resp_queue;
   1581 		rf_sparet_resp_queue = waitreq;
   1582 		wakeup(&rf_sparet_resp_queue);
   1583 		RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1584 
   1585 		return (retcode);
   1586 #endif
   1587 
   1588 	default:
   1589 		break; /* fall through to the os-specific code below */
   1590 
   1591 	}
   1592 
   1593 	if (!raidPtr->valid)
   1594 		return (EINVAL);
   1595 
   1596 	/*
   1597 	 * Add support for "regular" device ioctls here.
   1598 	 */
   1599 
   1600 	switch (cmd) {
   1601 	case DIOCGDINFO:
   1602 		*(struct disklabel *) data = *(rs->sc_dkdev.dk_label);
   1603 		break;
   1604 #ifdef __HAVE_OLD_DISKLABEL
   1605 	case ODIOCGDINFO:
   1606 		newlabel = *(rs->sc_dkdev.dk_label);
   1607 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1608 			return ENOTTY;
   1609 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1610 		break;
   1611 #endif
   1612 
   1613 	case DIOCGPART:
   1614 		((struct partinfo *) data)->disklab = rs->sc_dkdev.dk_label;
   1615 		((struct partinfo *) data)->part =
   1616 		    &rs->sc_dkdev.dk_label->d_partitions[DISKPART(dev)];
   1617 		break;
   1618 
   1619 	case DIOCWDINFO:
   1620 	case DIOCSDINFO:
   1621 #ifdef __HAVE_OLD_DISKLABEL
   1622 	case ODIOCWDINFO:
   1623 	case ODIOCSDINFO:
   1624 #endif
   1625 	{
   1626 		struct disklabel *lp;
   1627 #ifdef __HAVE_OLD_DISKLABEL
   1628 		if (cmd == ODIOCSDINFO || cmd == ODIOCWDINFO) {
   1629 			memset(&newlabel, 0, sizeof newlabel);
   1630 			memcpy(&newlabel, data, sizeof (struct olddisklabel));
   1631 			lp = &newlabel;
   1632 		} else
   1633 #endif
   1634 		lp = (struct disklabel *)data;
   1635 
   1636 		if ((error = raidlock(rs)) != 0)
   1637 			return (error);
   1638 
   1639 		rs->sc_flags |= RAIDF_LABELLING;
   1640 
   1641 		error = setdisklabel(rs->sc_dkdev.dk_label,
   1642 		    lp, 0, rs->sc_dkdev.dk_cpulabel);
   1643 		if (error == 0) {
   1644 			if (cmd == DIOCWDINFO
   1645 #ifdef __HAVE_OLD_DISKLABEL
   1646 			    || cmd == ODIOCWDINFO
   1647 #endif
   1648 			   )
   1649 				error = writedisklabel(RAIDLABELDEV(dev),
   1650 				    raidstrategy, rs->sc_dkdev.dk_label,
   1651 				    rs->sc_dkdev.dk_cpulabel);
   1652 		}
   1653 		rs->sc_flags &= ~RAIDF_LABELLING;
   1654 
   1655 		raidunlock(rs);
   1656 
   1657 		if (error)
   1658 			return (error);
   1659 		break;
   1660 	}
   1661 
   1662 	case DIOCWLABEL:
   1663 		if (*(int *) data != 0)
   1664 			rs->sc_flags |= RAIDF_WLABEL;
   1665 		else
   1666 			rs->sc_flags &= ~RAIDF_WLABEL;
   1667 		break;
   1668 
   1669 	case DIOCGDEFLABEL:
   1670 		raidgetdefaultlabel(raidPtr, rs, (struct disklabel *) data);
   1671 		break;
   1672 
   1673 #ifdef __HAVE_OLD_DISKLABEL
   1674 	case ODIOCGDEFLABEL:
   1675 		raidgetdefaultlabel(raidPtr, rs, &newlabel);
   1676 		if (newlabel.d_npartitions > OLDMAXPARTITIONS)
   1677 			return ENOTTY;
   1678 		memcpy(data, &newlabel, sizeof (struct olddisklabel));
   1679 		break;
   1680 #endif
   1681 
   1682 	case DIOCAWEDGE:
   1683 	case DIOCDWEDGE:
   1684 	    	dkw = (void *)data;
   1685 
   1686 		/* If the ioctl happens here, the parent is us. */
   1687 		(void)strcpy(dkw->dkw_parent, rs->sc_xname);
   1688 		return cmd == DIOCAWEDGE ? dkwedge_add(dkw) : dkwedge_del(dkw);
   1689 
   1690 	case DIOCLWEDGES:
   1691 		return dkwedge_list(&rs->sc_dkdev,
   1692 		    (struct dkwedge_list *)data, l);
   1693 
   1694 	default:
   1695 		retcode = ENOTTY;
   1696 	}
   1697 	return (retcode);
   1698 
   1699 }
   1700 
   1701 
   1702 /* raidinit -- complete the rest of the initialization for the
   1703    RAIDframe device.  */
   1704 
   1705 
   1706 static void
   1707 raidinit(RF_Raid_t *raidPtr)
   1708 {
   1709 	struct cfdata *cf;
   1710 	struct raid_softc *rs;
   1711 	int     unit;
   1712 
   1713 	unit = raidPtr->raidid;
   1714 
   1715 	rs = &raid_softc[unit];
   1716 
   1717 	/* XXX should check return code first... */
   1718 	rs->sc_flags |= RAIDF_INITED;
   1719 
   1720 	/* XXX doesn't check bounds. */
   1721 	snprintf(rs->sc_xname, sizeof(rs->sc_xname), "raid%d", unit);
   1722 
   1723 	rs->sc_dkdev.dk_name = rs->sc_xname;
   1724 
   1725 	/* attach the pseudo device */
   1726 	cf = malloc(sizeof(*cf), M_RAIDFRAME, M_WAITOK);
   1727 	cf->cf_name = raid_cd.cd_name;
   1728 	cf->cf_atname = raid_cd.cd_name;
   1729 	cf->cf_unit = unit;
   1730 	cf->cf_fstate = FSTATE_STAR;
   1731 
   1732 	rs->sc_dev = config_attach_pseudo(cf);
   1733 
   1734 	if (rs->sc_dev==NULL) {
   1735 		printf("raid%d: config_attach_pseudo failed\n",
   1736 		       raidPtr->raidid);
   1737 	}
   1738 
   1739 	/* disk_attach actually creates space for the CPU disklabel, among
   1740 	 * other things, so it's critical to call this *BEFORE* we try putzing
   1741 	 * with disklabels. */
   1742 
   1743 	disk_attach(&rs->sc_dkdev);
   1744 
   1745 	/* XXX There may be a weird interaction here between this, and
   1746 	 * protectedSectors, as used in RAIDframe.  */
   1747 
   1748 	rs->sc_size = raidPtr->totalSectors;
   1749 }
   1750 #if (RF_INCLUDE_PARITY_DECLUSTERING_DS > 0)
   1751 /* wake up the daemon & tell it to get us a spare table
   1752  * XXX
   1753  * the entries in the queues should be tagged with the raidPtr
   1754  * so that in the extremely rare case that two recons happen at once,
   1755  * we know for which device were requesting a spare table
   1756  * XXX
   1757  *
   1758  * XXX This code is not currently used. GO
   1759  */
   1760 int
   1761 rf_GetSpareTableFromDaemon(RF_SparetWait_t *req)
   1762 {
   1763 	int     retcode;
   1764 
   1765 	RF_LOCK_MUTEX(rf_sparet_wait_mutex);
   1766 	req->next = rf_sparet_wait_queue;
   1767 	rf_sparet_wait_queue = req;
   1768 	wakeup(&rf_sparet_wait_queue);
   1769 
   1770 	/* mpsleep unlocks the mutex */
   1771 	while (!rf_sparet_resp_queue) {
   1772 		tsleep(&rf_sparet_resp_queue, PRIBIO,
   1773 		    "raidframe getsparetable", 0);
   1774 	}
   1775 	req = rf_sparet_resp_queue;
   1776 	rf_sparet_resp_queue = req->next;
   1777 	RF_UNLOCK_MUTEX(rf_sparet_wait_mutex);
   1778 
   1779 	retcode = req->fcol;
   1780 	RF_Free(req, sizeof(*req));	/* this is not the same req as we
   1781 					 * alloc'd */
   1782 	return (retcode);
   1783 }
   1784 #endif
   1785 
   1786 /* a wrapper around rf_DoAccess that extracts appropriate info from the
   1787  * bp & passes it down.
   1788  * any calls originating in the kernel must use non-blocking I/O
   1789  * do some extra sanity checking to return "appropriate" error values for
   1790  * certain conditions (to make some standard utilities work)
   1791  *
   1792  * Formerly known as: rf_DoAccessKernel
   1793  */
   1794 void
   1795 raidstart(RF_Raid_t *raidPtr)
   1796 {
   1797 	RF_SectorCount_t num_blocks, pb, sum;
   1798 	RF_RaidAddr_t raid_addr;
   1799 	struct partition *pp;
   1800 	daddr_t blocknum;
   1801 	int     unit;
   1802 	struct raid_softc *rs;
   1803 	int     do_async;
   1804 	struct buf *bp;
   1805 	int rc;
   1806 
   1807 	unit = raidPtr->raidid;
   1808 	rs = &raid_softc[unit];
   1809 
   1810 	/* quick check to see if anything has died recently */
   1811 	RF_LOCK_MUTEX(raidPtr->mutex);
   1812 	if (raidPtr->numNewFailures > 0) {
   1813 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1814 		rf_update_component_labels(raidPtr,
   1815 					   RF_NORMAL_COMPONENT_UPDATE);
   1816 		RF_LOCK_MUTEX(raidPtr->mutex);
   1817 		raidPtr->numNewFailures--;
   1818 	}
   1819 
   1820 	/* Check to see if we're at the limit... */
   1821 	while (raidPtr->openings > 0) {
   1822 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1823 
   1824 		/* get the next item, if any, from the queue */
   1825 		if ((bp = BUFQ_GET(rs->buf_queue)) == NULL) {
   1826 			/* nothing more to do */
   1827 			return;
   1828 		}
   1829 
   1830 		/* Ok, for the bp we have here, bp->b_blkno is relative to the
   1831 		 * partition.. Need to make it absolute to the underlying
   1832 		 * device.. */
   1833 
   1834 		blocknum = bp->b_blkno;
   1835 		if (DISKPART(bp->b_dev) != RAW_PART) {
   1836 			pp = &rs->sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
   1837 			blocknum += pp->p_offset;
   1838 		}
   1839 
   1840 		db1_printf(("Blocks: %d, %d\n", (int) bp->b_blkno,
   1841 			    (int) blocknum));
   1842 
   1843 		db1_printf(("bp->b_bcount = %d\n", (int) bp->b_bcount));
   1844 		db1_printf(("bp->b_resid = %d\n", (int) bp->b_resid));
   1845 
   1846 		/* *THIS* is where we adjust what block we're going to...
   1847 		 * but DO NOT TOUCH bp->b_blkno!!! */
   1848 		raid_addr = blocknum;
   1849 
   1850 		num_blocks = bp->b_bcount >> raidPtr->logBytesPerSector;
   1851 		pb = (bp->b_bcount & raidPtr->sectorMask) ? 1 : 0;
   1852 		sum = raid_addr + num_blocks + pb;
   1853 		if (1 || rf_debugKernelAccess) {
   1854 			db1_printf(("raid_addr=%d sum=%d num_blocks=%d(+%d) (%d)\n",
   1855 				    (int) raid_addr, (int) sum, (int) num_blocks,
   1856 				    (int) pb, (int) bp->b_resid));
   1857 		}
   1858 		if ((sum > raidPtr->totalSectors) || (sum < raid_addr)
   1859 		    || (sum < num_blocks) || (sum < pb)) {
   1860 			bp->b_error = ENOSPC;
   1861 			bp->b_resid = bp->b_bcount;
   1862 			biodone(bp);
   1863 			RF_LOCK_MUTEX(raidPtr->mutex);
   1864 			continue;
   1865 		}
   1866 		/*
   1867 		 * XXX rf_DoAccess() should do this, not just DoAccessKernel()
   1868 		 */
   1869 
   1870 		if (bp->b_bcount & raidPtr->sectorMask) {
   1871 			bp->b_error = EINVAL;
   1872 			bp->b_resid = bp->b_bcount;
   1873 			biodone(bp);
   1874 			RF_LOCK_MUTEX(raidPtr->mutex);
   1875 			continue;
   1876 
   1877 		}
   1878 		db1_printf(("Calling DoAccess..\n"));
   1879 
   1880 
   1881 		RF_LOCK_MUTEX(raidPtr->mutex);
   1882 		raidPtr->openings--;
   1883 		RF_UNLOCK_MUTEX(raidPtr->mutex);
   1884 
   1885 		/*
   1886 		 * Everything is async.
   1887 		 */
   1888 		do_async = 1;
   1889 
   1890 		disk_busy(&rs->sc_dkdev);
   1891 
   1892 		/* XXX we're still at splbio() here... do we *really*
   1893 		   need to be? */
   1894 
   1895 		/* don't ever condition on bp->b_flags & B_WRITE.
   1896 		 * always condition on B_READ instead */
   1897 
   1898 		rc = rf_DoAccess(raidPtr, (bp->b_flags & B_READ) ?
   1899 				 RF_IO_TYPE_READ : RF_IO_TYPE_WRITE,
   1900 				 do_async, raid_addr, num_blocks,
   1901 				 bp->b_data, bp, RF_DAG_NONBLOCKING_IO);
   1902 
   1903 		if (rc) {
   1904 			bp->b_error = rc;
   1905 			bp->b_resid = bp->b_bcount;
   1906 			biodone(bp);
   1907 			/* continue loop */
   1908 		}
   1909 
   1910 		RF_LOCK_MUTEX(raidPtr->mutex);
   1911 	}
   1912 	RF_UNLOCK_MUTEX(raidPtr->mutex);
   1913 }
   1914 
   1915 
   1916 
   1917 
   1918 /* invoke an I/O from kernel mode.  Disk queue should be locked upon entry */
   1919 
   1920 int
   1921 rf_DispatchKernelIO(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req)
   1922 {
   1923 	int     op = (req->type == RF_IO_TYPE_READ) ? B_READ : B_WRITE;
   1924 	struct buf *bp;
   1925 
   1926 	req->queue = queue;
   1927 
   1928 #if DIAGNOSTIC
   1929 	if (queue->raidPtr->raidid >= numraid) {
   1930 		printf("Invalid unit number: %d %d\n", queue->raidPtr->raidid,
   1931 		    numraid);
   1932 		panic("Invalid Unit number in rf_DispatchKernelIO");
   1933 	}
   1934 #endif
   1935 
   1936 	bp = req->bp;
   1937 
   1938 	switch (req->type) {
   1939 	case RF_IO_TYPE_NOP:	/* used primarily to unlock a locked queue */
   1940 		/* XXX need to do something extra here.. */
   1941 		/* I'm leaving this in, as I've never actually seen it used,
   1942 		 * and I'd like folks to report it... GO */
   1943 		printf(("WAKEUP CALLED\n"));
   1944 		queue->numOutstanding++;
   1945 
   1946 		bp->b_flags = 0;
   1947 		bp->b_private = req;
   1948 
   1949 		KernelWakeupFunc(bp);
   1950 		break;
   1951 
   1952 	case RF_IO_TYPE_READ:
   1953 	case RF_IO_TYPE_WRITE:
   1954 #if RF_ACC_TRACE > 0
   1955 		if (req->tracerec) {
   1956 			RF_ETIMER_START(req->tracerec->timer);
   1957 		}
   1958 #endif
   1959 		InitBP(bp, queue->rf_cinfo->ci_vp,
   1960 		    op, queue->rf_cinfo->ci_dev,
   1961 		    req->sectorOffset, req->numSector,
   1962 		    req->buf, KernelWakeupFunc, (void *) req,
   1963 		    queue->raidPtr->logBytesPerSector, req->b_proc);
   1964 
   1965 		if (rf_debugKernelAccess) {
   1966 			db1_printf(("dispatch: bp->b_blkno = %ld\n",
   1967 				(long) bp->b_blkno));
   1968 		}
   1969 		queue->numOutstanding++;
   1970 		queue->last_deq_sector = req->sectorOffset;
   1971 		/* acc wouldn't have been let in if there were any pending
   1972 		 * reqs at any other priority */
   1973 		queue->curPriority = req->priority;
   1974 
   1975 		db1_printf(("Going for %c to unit %d col %d\n",
   1976 			    req->type, queue->raidPtr->raidid,
   1977 			    queue->col));
   1978 		db1_printf(("sector %d count %d (%d bytes) %d\n",
   1979 			(int) req->sectorOffset, (int) req->numSector,
   1980 			(int) (req->numSector <<
   1981 			    queue->raidPtr->logBytesPerSector),
   1982 			(int) queue->raidPtr->logBytesPerSector));
   1983 		VOP_STRATEGY(bp->b_vp, bp);
   1984 
   1985 		break;
   1986 
   1987 	default:
   1988 		panic("bad req->type in rf_DispatchKernelIO");
   1989 	}
   1990 	db1_printf(("Exiting from DispatchKernelIO\n"));
   1991 
   1992 	return (0);
   1993 }
   1994 /* this is the callback function associated with a I/O invoked from
   1995    kernel code.
   1996  */
   1997 static void
   1998 KernelWakeupFunc(struct buf *bp)
   1999 {
   2000 	RF_DiskQueueData_t *req = NULL;
   2001 	RF_DiskQueue_t *queue;
   2002 	int s;
   2003 
   2004 	s = splbio();
   2005 	db1_printf(("recovering the request queue:\n"));
   2006 	req = bp->b_private;
   2007 
   2008 	queue = (RF_DiskQueue_t *) req->queue;
   2009 
   2010 #if RF_ACC_TRACE > 0
   2011 	if (req->tracerec) {
   2012 		RF_ETIMER_STOP(req->tracerec->timer);
   2013 		RF_ETIMER_EVAL(req->tracerec->timer);
   2014 		RF_LOCK_MUTEX(rf_tracing_mutex);
   2015 		req->tracerec->diskwait_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2016 		req->tracerec->phys_io_us += RF_ETIMER_VAL_US(req->tracerec->timer);
   2017 		req->tracerec->num_phys_ios++;
   2018 		RF_UNLOCK_MUTEX(rf_tracing_mutex);
   2019 	}
   2020 #endif
   2021 
   2022 	/* XXX Ok, let's get aggressive... If b_error is set, let's go
   2023 	 * ballistic, and mark the component as hosed... */
   2024 
   2025 	if (bp->b_error != 0) {
   2026 		/* Mark the disk as dead */
   2027 		/* but only mark it once... */
   2028 		/* and only if it wouldn't leave this RAID set
   2029 		   completely broken */
   2030 		if (((queue->raidPtr->Disks[queue->col].status ==
   2031 		      rf_ds_optimal) ||
   2032 		     (queue->raidPtr->Disks[queue->col].status ==
   2033 		      rf_ds_used_spare)) &&
   2034 		     (queue->raidPtr->numFailures <
   2035 		      queue->raidPtr->Layout.map->faultsTolerated)) {
   2036 			printf("raid%d: IO Error.  Marking %s as failed.\n",
   2037 			       queue->raidPtr->raidid,
   2038 			       queue->raidPtr->Disks[queue->col].devname);
   2039 			queue->raidPtr->Disks[queue->col].status =
   2040 			    rf_ds_failed;
   2041 			queue->raidPtr->status = rf_rs_degraded;
   2042 			queue->raidPtr->numFailures++;
   2043 			queue->raidPtr->numNewFailures++;
   2044 		} else {	/* Disk is already dead... */
   2045 			/* printf("Disk already marked as dead!\n"); */
   2046 		}
   2047 
   2048 	}
   2049 
   2050 	/* Fill in the error value */
   2051 
   2052 	req->error = bp->b_error;
   2053 
   2054 	simple_lock(&queue->raidPtr->iodone_lock);
   2055 
   2056 	/* Drop this one on the "finished" queue... */
   2057 	TAILQ_INSERT_TAIL(&(queue->raidPtr->iodone), req, iodone_entries);
   2058 
   2059 	/* Let the raidio thread know there is work to be done. */
   2060 	wakeup(&(queue->raidPtr->iodone));
   2061 
   2062 	simple_unlock(&queue->raidPtr->iodone_lock);
   2063 
   2064 	splx(s);
   2065 }
   2066 
   2067 
   2068 
   2069 /*
   2070  * initialize a buf structure for doing an I/O in the kernel.
   2071  */
   2072 static void
   2073 InitBP(struct buf *bp, struct vnode *b_vp, unsigned rw_flag, dev_t dev,
   2074        RF_SectorNum_t startSect, RF_SectorCount_t numSect, void *bf,
   2075        void (*cbFunc) (struct buf *), void *cbArg, int logBytesPerSector,
   2076        struct proc *b_proc)
   2077 {
   2078 	/* bp->b_flags       = B_PHYS | rw_flag; */
   2079 	bp->b_flags = B_CALL | rw_flag;	/* XXX need B_PHYS here too??? */
   2080 	bp->b_bcount = numSect << logBytesPerSector;
   2081 	bp->b_bufsize = bp->b_bcount;
   2082 	bp->b_error = 0;
   2083 	bp->b_dev = dev;
   2084 	bp->b_data = bf;
   2085 	bp->b_blkno = startSect;
   2086 	bp->b_resid = bp->b_bcount;	/* XXX is this right!??!?!! */
   2087 	if (bp->b_bcount == 0) {
   2088 		panic("bp->b_bcount is zero in InitBP!!");
   2089 	}
   2090 	bp->b_proc = b_proc;
   2091 	bp->b_iodone = cbFunc;
   2092 	bp->b_private = cbArg;
   2093 	bp->b_vp = b_vp;
   2094 	if ((bp->b_flags & B_READ) == 0) {
   2095 		bp->b_vp->v_numoutput++;
   2096 	}
   2097 
   2098 }
   2099 
   2100 static void
   2101 raidgetdefaultlabel(RF_Raid_t *raidPtr, struct raid_softc *rs,
   2102 		    struct disklabel *lp)
   2103 {
   2104 	memset(lp, 0, sizeof(*lp));
   2105 
   2106 	/* fabricate a label... */
   2107 	lp->d_secperunit = raidPtr->totalSectors;
   2108 	lp->d_secsize = raidPtr->bytesPerSector;
   2109 	lp->d_nsectors = raidPtr->Layout.dataSectorsPerStripe;
   2110 	lp->d_ntracks = 4 * raidPtr->numCol;
   2111 	lp->d_ncylinders = raidPtr->totalSectors /
   2112 		(lp->d_nsectors * lp->d_ntracks);
   2113 	lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
   2114 
   2115 	strncpy(lp->d_typename, "raid", sizeof(lp->d_typename));
   2116 	lp->d_type = DTYPE_RAID;
   2117 	strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
   2118 	lp->d_rpm = 3600;
   2119 	lp->d_interleave = 1;
   2120 	lp->d_flags = 0;
   2121 
   2122 	lp->d_partitions[RAW_PART].p_offset = 0;
   2123 	lp->d_partitions[RAW_PART].p_size = raidPtr->totalSectors;
   2124 	lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
   2125 	lp->d_npartitions = RAW_PART + 1;
   2126 
   2127 	lp->d_magic = DISKMAGIC;
   2128 	lp->d_magic2 = DISKMAGIC;
   2129 	lp->d_checksum = dkcksum(rs->sc_dkdev.dk_label);
   2130 
   2131 }
   2132 /*
   2133  * Read the disklabel from the raid device.  If one is not present, fake one
   2134  * up.
   2135  */
   2136 static void
   2137 raidgetdisklabel(dev_t dev)
   2138 {
   2139 	int     unit = raidunit(dev);
   2140 	struct raid_softc *rs = &raid_softc[unit];
   2141 	const char   *errstring;
   2142 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2143 	struct cpu_disklabel *clp = rs->sc_dkdev.dk_cpulabel;
   2144 	RF_Raid_t *raidPtr;
   2145 
   2146 	db1_printf(("Getting the disklabel...\n"));
   2147 
   2148 	memset(clp, 0, sizeof(*clp));
   2149 
   2150 	raidPtr = raidPtrs[unit];
   2151 
   2152 	raidgetdefaultlabel(raidPtr, rs, lp);
   2153 
   2154 	/*
   2155 	 * Call the generic disklabel extraction routine.
   2156 	 */
   2157 	errstring = readdisklabel(RAIDLABELDEV(dev), raidstrategy,
   2158 	    rs->sc_dkdev.dk_label, rs->sc_dkdev.dk_cpulabel);
   2159 	if (errstring)
   2160 		raidmakedisklabel(rs);
   2161 	else {
   2162 		int     i;
   2163 		struct partition *pp;
   2164 
   2165 		/*
   2166 		 * Sanity check whether the found disklabel is valid.
   2167 		 *
   2168 		 * This is necessary since total size of the raid device
   2169 		 * may vary when an interleave is changed even though exactly
   2170 		 * same components are used, and old disklabel may used
   2171 		 * if that is found.
   2172 		 */
   2173 		if (lp->d_secperunit != rs->sc_size)
   2174 			printf("raid%d: WARNING: %s: "
   2175 			    "total sector size in disklabel (%d) != "
   2176 			    "the size of raid (%ld)\n", unit, rs->sc_xname,
   2177 			    lp->d_secperunit, (long) rs->sc_size);
   2178 		for (i = 0; i < lp->d_npartitions; i++) {
   2179 			pp = &lp->d_partitions[i];
   2180 			if (pp->p_offset + pp->p_size > rs->sc_size)
   2181 				printf("raid%d: WARNING: %s: end of partition `%c' "
   2182 				       "exceeds the size of raid (%ld)\n",
   2183 				       unit, rs->sc_xname, 'a' + i, (long) rs->sc_size);
   2184 		}
   2185 	}
   2186 
   2187 }
   2188 /*
   2189  * Take care of things one might want to take care of in the event
   2190  * that a disklabel isn't present.
   2191  */
   2192 static void
   2193 raidmakedisklabel(struct raid_softc *rs)
   2194 {
   2195 	struct disklabel *lp = rs->sc_dkdev.dk_label;
   2196 	db1_printf(("Making a label..\n"));
   2197 
   2198 	/*
   2199 	 * For historical reasons, if there's no disklabel present
   2200 	 * the raw partition must be marked FS_BSDFFS.
   2201 	 */
   2202 
   2203 	lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS;
   2204 
   2205 	strncpy(lp->d_packname, "default label", sizeof(lp->d_packname));
   2206 
   2207 	lp->d_checksum = dkcksum(lp);
   2208 }
   2209 /*
   2210  * Wait interruptibly for an exclusive lock.
   2211  *
   2212  * XXX
   2213  * Several drivers do this; it should be abstracted and made MP-safe.
   2214  * (Hmm... where have we seen this warning before :->  GO )
   2215  */
   2216 static int
   2217 raidlock(struct raid_softc *rs)
   2218 {
   2219 	int     error;
   2220 
   2221 	while ((rs->sc_flags & RAIDF_LOCKED) != 0) {
   2222 		rs->sc_flags |= RAIDF_WANTED;
   2223 		if ((error =
   2224 			tsleep(rs, PRIBIO | PCATCH, "raidlck", 0)) != 0)
   2225 			return (error);
   2226 	}
   2227 	rs->sc_flags |= RAIDF_LOCKED;
   2228 	return (0);
   2229 }
   2230 /*
   2231  * Unlock and wake up any waiters.
   2232  */
   2233 static void
   2234 raidunlock(struct raid_softc *rs)
   2235 {
   2236 
   2237 	rs->sc_flags &= ~RAIDF_LOCKED;
   2238 	if ((rs->sc_flags & RAIDF_WANTED) != 0) {
   2239 		rs->sc_flags &= ~RAIDF_WANTED;
   2240 		wakeup(rs);
   2241 	}
   2242 }
   2243 
   2244 
   2245 #define RF_COMPONENT_INFO_OFFSET  16384 /* bytes */
   2246 #define RF_COMPONENT_INFO_SIZE     1024 /* bytes */
   2247 
   2248 int
   2249 raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
   2250 {
   2251 	RF_ComponentLabel_t clabel;
   2252 	raidread_component_label(dev, b_vp, &clabel);
   2253 	clabel.mod_counter = mod_counter;
   2254 	clabel.clean = RF_RAID_CLEAN;
   2255 	raidwrite_component_label(dev, b_vp, &clabel);
   2256 	return(0);
   2257 }
   2258 
   2259 
   2260 int
   2261 raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
   2262 {
   2263 	RF_ComponentLabel_t clabel;
   2264 	raidread_component_label(dev, b_vp, &clabel);
   2265 	clabel.mod_counter = mod_counter;
   2266 	clabel.clean = RF_RAID_DIRTY;
   2267 	raidwrite_component_label(dev, b_vp, &clabel);
   2268 	return(0);
   2269 }
   2270 
   2271 /* ARGSUSED */
   2272 int
   2273 raidread_component_label(dev_t dev, struct vnode *b_vp,
   2274 			 RF_ComponentLabel_t *clabel)
   2275 {
   2276 	struct buf *bp;
   2277 	const struct bdevsw *bdev;
   2278 	int error;
   2279 
   2280 	/* XXX should probably ensure that we don't try to do this if
   2281 	   someone has changed rf_protected_sectors. */
   2282 
   2283 	if (b_vp == NULL) {
   2284 		/* For whatever reason, this component is not valid.
   2285 		   Don't try to read a component label from it. */
   2286 		return(EINVAL);
   2287 	}
   2288 
   2289 	/* get a block of the appropriate size... */
   2290 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2291 	bp->b_dev = dev;
   2292 
   2293 	/* get our ducks in a row for the read */
   2294 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2295 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2296 	bp->b_flags |= B_READ;
   2297  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2298 
   2299 	bdev = bdevsw_lookup(bp->b_dev);
   2300 	if (bdev == NULL)
   2301 		return (ENXIO);
   2302 	(*bdev->d_strategy)(bp);
   2303 
   2304 	error = biowait(bp);
   2305 
   2306 	if (!error) {
   2307 		memcpy(clabel, bp->b_data,
   2308 		       sizeof(RF_ComponentLabel_t));
   2309 	}
   2310 
   2311 	brelse(bp);
   2312 	return(error);
   2313 }
   2314 /* ARGSUSED */
   2315 int
   2316 raidwrite_component_label(dev_t dev, struct vnode *b_vp,
   2317 			  RF_ComponentLabel_t *clabel)
   2318 {
   2319 	struct buf *bp;
   2320 	const struct bdevsw *bdev;
   2321 	int error;
   2322 
   2323 	/* get a block of the appropriate size... */
   2324 	bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
   2325 	bp->b_dev = dev;
   2326 
   2327 	/* get our ducks in a row for the write */
   2328 	bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
   2329 	bp->b_bcount = RF_COMPONENT_INFO_SIZE;
   2330 	bp->b_flags |= B_WRITE;
   2331  	bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
   2332 
   2333 	memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
   2334 
   2335 	memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
   2336 
   2337 	bdev = bdevsw_lookup(bp->b_dev);
   2338 	if (bdev == NULL)
   2339 		return (ENXIO);
   2340 	(*bdev->d_strategy)(bp);
   2341 	error = biowait(bp);
   2342 	brelse(bp);
   2343 	if (error) {
   2344 #if 1
   2345 		printf("Failed to write RAID component info!\n");
   2346 #endif
   2347 	}
   2348 
   2349 	return(error);
   2350 }
   2351 
   2352 void
   2353 rf_markalldirty(RF_Raid_t *raidPtr)
   2354 {
   2355 	RF_ComponentLabel_t clabel;
   2356 	int sparecol;
   2357 	int c;
   2358 	int j;
   2359 	int scol = -1;
   2360 
   2361 	raidPtr->mod_counter++;
   2362 	for (c = 0; c < raidPtr->numCol; c++) {
   2363 		/* we don't want to touch (at all) a disk that has
   2364 		   failed */
   2365 		if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
   2366 			raidread_component_label(
   2367 						 raidPtr->Disks[c].dev,
   2368 						 raidPtr->raid_cinfo[c].ci_vp,
   2369 						 &clabel);
   2370 			if (clabel.status == rf_ds_spared) {
   2371 				/* XXX do something special...
   2372 				   but whatever you do, don't
   2373 				   try to access it!! */
   2374 			} else {
   2375 				raidmarkdirty(
   2376 					      raidPtr->Disks[c].dev,
   2377 					      raidPtr->raid_cinfo[c].ci_vp,
   2378 					      raidPtr->mod_counter);
   2379 			}
   2380 		}
   2381 	}
   2382 
   2383 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2384 		sparecol = raidPtr->numCol + c;
   2385 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2386 			/*
   2387 
   2388 			   we claim this disk is "optimal" if it's
   2389 			   rf_ds_used_spare, as that means it should be
   2390 			   directly substitutable for the disk it replaced.
   2391 			   We note that too...
   2392 
   2393 			 */
   2394 
   2395 			for(j=0;j<raidPtr->numCol;j++) {
   2396 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2397 					scol = j;
   2398 					break;
   2399 				}
   2400 			}
   2401 
   2402 			raidread_component_label(
   2403 				 raidPtr->Disks[sparecol].dev,
   2404 				 raidPtr->raid_cinfo[sparecol].ci_vp,
   2405 				 &clabel);
   2406 			/* make sure status is noted */
   2407 
   2408 			raid_init_component_label(raidPtr, &clabel);
   2409 
   2410 			clabel.row = 0;
   2411 			clabel.column = scol;
   2412 			/* Note: we *don't* change status from rf_ds_used_spare
   2413 			   to rf_ds_optimal */
   2414 			/* clabel.status = rf_ds_optimal; */
   2415 
   2416 			raidmarkdirty(raidPtr->Disks[sparecol].dev,
   2417 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2418 				      raidPtr->mod_counter);
   2419 		}
   2420 	}
   2421 }
   2422 
   2423 
   2424 void
   2425 rf_update_component_labels(RF_Raid_t *raidPtr, int final)
   2426 {
   2427 	RF_ComponentLabel_t clabel;
   2428 	int sparecol;
   2429 	int c;
   2430 	int j;
   2431 	int scol;
   2432 
   2433 	scol = -1;
   2434 
   2435 	/* XXX should do extra checks to make sure things really are clean,
   2436 	   rather than blindly setting the clean bit... */
   2437 
   2438 	raidPtr->mod_counter++;
   2439 
   2440 	for (c = 0; c < raidPtr->numCol; c++) {
   2441 		if (raidPtr->Disks[c].status == rf_ds_optimal) {
   2442 			raidread_component_label(
   2443 						 raidPtr->Disks[c].dev,
   2444 						 raidPtr->raid_cinfo[c].ci_vp,
   2445 						 &clabel);
   2446 			/* make sure status is noted */
   2447 			clabel.status = rf_ds_optimal;
   2448 
   2449 			/* bump the counter */
   2450 			clabel.mod_counter = raidPtr->mod_counter;
   2451 
   2452 			/* note what unit we are configured as */
   2453 			clabel.last_unit = raidPtr->raidid;
   2454 
   2455 			raidwrite_component_label(
   2456 						  raidPtr->Disks[c].dev,
   2457 						  raidPtr->raid_cinfo[c].ci_vp,
   2458 						  &clabel);
   2459 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2460 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2461 					raidmarkclean(
   2462 						      raidPtr->Disks[c].dev,
   2463 						      raidPtr->raid_cinfo[c].ci_vp,
   2464 						      raidPtr->mod_counter);
   2465 				}
   2466 			}
   2467 		}
   2468 		/* else we don't touch it.. */
   2469 	}
   2470 
   2471 	for( c = 0; c < raidPtr->numSpare ; c++) {
   2472 		sparecol = raidPtr->numCol + c;
   2473 		/* Need to ensure that the reconstruct actually completed! */
   2474 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   2475 			/*
   2476 
   2477 			   we claim this disk is "optimal" if it's
   2478 			   rf_ds_used_spare, as that means it should be
   2479 			   directly substitutable for the disk it replaced.
   2480 			   We note that too...
   2481 
   2482 			 */
   2483 
   2484 			for(j=0;j<raidPtr->numCol;j++) {
   2485 				if (raidPtr->Disks[j].spareCol == sparecol) {
   2486 					scol = j;
   2487 					break;
   2488 				}
   2489 			}
   2490 
   2491 			/* XXX shouldn't *really* need this... */
   2492 			raidread_component_label(
   2493 				      raidPtr->Disks[sparecol].dev,
   2494 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2495 				      &clabel);
   2496 			/* make sure status is noted */
   2497 
   2498 			raid_init_component_label(raidPtr, &clabel);
   2499 
   2500 			clabel.mod_counter = raidPtr->mod_counter;
   2501 			clabel.column = scol;
   2502 			clabel.status = rf_ds_optimal;
   2503 			clabel.last_unit = raidPtr->raidid;
   2504 
   2505 			raidwrite_component_label(
   2506 				      raidPtr->Disks[sparecol].dev,
   2507 				      raidPtr->raid_cinfo[sparecol].ci_vp,
   2508 				      &clabel);
   2509 			if (final == RF_FINAL_COMPONENT_UPDATE) {
   2510 				if (raidPtr->parity_good == RF_RAID_CLEAN) {
   2511 					raidmarkclean( raidPtr->Disks[sparecol].dev,
   2512 						       raidPtr->raid_cinfo[sparecol].ci_vp,
   2513 						       raidPtr->mod_counter);
   2514 				}
   2515 			}
   2516 		}
   2517 	}
   2518 }
   2519 
   2520 void
   2521 rf_close_component(RF_Raid_t *raidPtr, struct vnode *vp, int auto_configured)
   2522 {
   2523 	struct lwp *l;
   2524 
   2525 	l = curlwp;
   2526 
   2527 	if (vp != NULL) {
   2528 		if (auto_configured == 1) {
   2529 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2530 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2531 			vput(vp);
   2532 
   2533 		} else {
   2534 			(void) vn_close(vp, FREAD | FWRITE, l->l_cred, l);
   2535 		}
   2536 	}
   2537 }
   2538 
   2539 
   2540 void
   2541 rf_UnconfigureVnodes(RF_Raid_t *raidPtr)
   2542 {
   2543 	int r,c;
   2544 	struct vnode *vp;
   2545 	int acd;
   2546 
   2547 
   2548 	/* We take this opportunity to close the vnodes like we should.. */
   2549 
   2550 	for (c = 0; c < raidPtr->numCol; c++) {
   2551 		vp = raidPtr->raid_cinfo[c].ci_vp;
   2552 		acd = raidPtr->Disks[c].auto_configured;
   2553 		rf_close_component(raidPtr, vp, acd);
   2554 		raidPtr->raid_cinfo[c].ci_vp = NULL;
   2555 		raidPtr->Disks[c].auto_configured = 0;
   2556 	}
   2557 
   2558 	for (r = 0; r < raidPtr->numSpare; r++) {
   2559 		vp = raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp;
   2560 		acd = raidPtr->Disks[raidPtr->numCol + r].auto_configured;
   2561 		rf_close_component(raidPtr, vp, acd);
   2562 		raidPtr->raid_cinfo[raidPtr->numCol + r].ci_vp = NULL;
   2563 		raidPtr->Disks[raidPtr->numCol + r].auto_configured = 0;
   2564 	}
   2565 }
   2566 
   2567 
   2568 void
   2569 rf_ReconThread(struct rf_recon_req *req)
   2570 {
   2571 	int     s;
   2572 	RF_Raid_t *raidPtr;
   2573 
   2574 	s = splbio();
   2575 	raidPtr = (RF_Raid_t *) req->raidPtr;
   2576 	raidPtr->recon_in_progress = 1;
   2577 
   2578 	rf_FailDisk((RF_Raid_t *) req->raidPtr, req->col,
   2579 		    ((req->flags & RF_FDFLAGS_RECON) ? 1 : 0));
   2580 
   2581 	RF_Free(req, sizeof(*req));
   2582 
   2583 	raidPtr->recon_in_progress = 0;
   2584 	splx(s);
   2585 
   2586 	/* That's all... */
   2587 	kthread_exit(0);	/* does not return */
   2588 }
   2589 
   2590 void
   2591 rf_RewriteParityThread(RF_Raid_t *raidPtr)
   2592 {
   2593 	int retcode;
   2594 	int s;
   2595 
   2596 	raidPtr->parity_rewrite_stripes_done = 0;
   2597 	raidPtr->parity_rewrite_in_progress = 1;
   2598 	s = splbio();
   2599 	retcode = rf_RewriteParity(raidPtr);
   2600 	splx(s);
   2601 	if (retcode) {
   2602 		printf("raid%d: Error re-writing parity!\n",raidPtr->raidid);
   2603 	} else {
   2604 		/* set the clean bit!  If we shutdown correctly,
   2605 		   the clean bit on each component label will get
   2606 		   set */
   2607 		raidPtr->parity_good = RF_RAID_CLEAN;
   2608 	}
   2609 	raidPtr->parity_rewrite_in_progress = 0;
   2610 
   2611 	/* Anyone waiting for us to stop?  If so, inform them... */
   2612 	if (raidPtr->waitShutdown) {
   2613 		wakeup(&raidPtr->parity_rewrite_in_progress);
   2614 	}
   2615 
   2616 	/* That's all... */
   2617 	kthread_exit(0);	/* does not return */
   2618 }
   2619 
   2620 
   2621 void
   2622 rf_CopybackThread(RF_Raid_t *raidPtr)
   2623 {
   2624 	int s;
   2625 
   2626 	raidPtr->copyback_in_progress = 1;
   2627 	s = splbio();
   2628 	rf_CopybackReconstructedData(raidPtr);
   2629 	splx(s);
   2630 	raidPtr->copyback_in_progress = 0;
   2631 
   2632 	/* That's all... */
   2633 	kthread_exit(0);	/* does not return */
   2634 }
   2635 
   2636 
   2637 void
   2638 rf_ReconstructInPlaceThread(struct rf_recon_req *req)
   2639 {
   2640 	int s;
   2641 	RF_Raid_t *raidPtr;
   2642 
   2643 	s = splbio();
   2644 	raidPtr = req->raidPtr;
   2645 	raidPtr->recon_in_progress = 1;
   2646 	rf_ReconstructInPlace(raidPtr, req->col);
   2647 	RF_Free(req, sizeof(*req));
   2648 	raidPtr->recon_in_progress = 0;
   2649 	splx(s);
   2650 
   2651 	/* That's all... */
   2652 	kthread_exit(0);	/* does not return */
   2653 }
   2654 
   2655 static RF_AutoConfig_t *
   2656 rf_get_component(RF_AutoConfig_t *ac_list, dev_t dev, struct vnode *vp,
   2657     const char *cname, RF_SectorCount_t size)
   2658 {
   2659 	int good_one = 0;
   2660 	RF_ComponentLabel_t *clabel;
   2661 	RF_AutoConfig_t *ac;
   2662 
   2663 	clabel = malloc(sizeof(RF_ComponentLabel_t), M_RAIDFRAME, M_NOWAIT);
   2664 	if (clabel == NULL) {
   2665 oomem:
   2666 		    while(ac_list) {
   2667 			    ac = ac_list;
   2668 			    if (ac->clabel)
   2669 				    free(ac->clabel, M_RAIDFRAME);
   2670 			    ac_list = ac_list->next;
   2671 			    free(ac, M_RAIDFRAME);
   2672 		    }
   2673 		    printf("RAID auto config: out of memory!\n");
   2674 		    return NULL; /* XXX probably should panic? */
   2675 	}
   2676 
   2677 	if (!raidread_component_label(dev, vp, clabel)) {
   2678 		    /* Got the label.  Does it look reasonable? */
   2679 		    if (rf_reasonable_label(clabel) &&
   2680 			(clabel->partitionSize <= size)) {
   2681 #ifdef DEBUG
   2682 			    printf("Component on: %s: %llu\n",
   2683 				cname, (unsigned long long)size);
   2684 			    rf_print_component_label(clabel);
   2685 #endif
   2686 			    /* if it's reasonable, add it, else ignore it. */
   2687 			    ac = malloc(sizeof(RF_AutoConfig_t), M_RAIDFRAME,
   2688 				M_NOWAIT);
   2689 			    if (ac == NULL) {
   2690 				    free(clabel, M_RAIDFRAME);
   2691 				    goto oomem;
   2692 			    }
   2693 			    strlcpy(ac->devname, cname, sizeof(ac->devname));
   2694 			    ac->dev = dev;
   2695 			    ac->vp = vp;
   2696 			    ac->clabel = clabel;
   2697 			    ac->next = ac_list;
   2698 			    ac_list = ac;
   2699 			    good_one = 1;
   2700 		    }
   2701 	}
   2702 	if (!good_one) {
   2703 		/* cleanup */
   2704 		free(clabel, M_RAIDFRAME);
   2705 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2706 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2707 		vput(vp);
   2708 	}
   2709 	return ac_list;
   2710 }
   2711 
   2712 RF_AutoConfig_t *
   2713 rf_find_raid_components()
   2714 {
   2715 	struct vnode *vp;
   2716 	struct disklabel label;
   2717 	struct device *dv;
   2718 	dev_t dev;
   2719 	int bmajor, bminor, wedge;
   2720 	int error;
   2721 	int i;
   2722 	RF_AutoConfig_t *ac_list;
   2723 
   2724 
   2725 	/* initialize the AutoConfig list */
   2726 	ac_list = NULL;
   2727 
   2728 	/* we begin by trolling through *all* the devices on the system */
   2729 
   2730 	for (dv = alldevs.tqh_first; dv != NULL;
   2731 	     dv = dv->dv_list.tqe_next) {
   2732 
   2733 		/* we are only interested in disks... */
   2734 		if (device_class(dv) != DV_DISK)
   2735 			continue;
   2736 
   2737 		/* we don't care about floppies... */
   2738 		if (device_is_a(dv, "fd")) {
   2739 			continue;
   2740 		}
   2741 
   2742 		/* we don't care about CD's... */
   2743 		if (device_is_a(dv, "cd")) {
   2744 			continue;
   2745 		}
   2746 
   2747 		/* hdfd is the Atari/Hades floppy driver */
   2748 		if (device_is_a(dv, "hdfd")) {
   2749 			continue;
   2750 		}
   2751 
   2752 		/* fdisa is the Atari/Milan floppy driver */
   2753 		if (device_is_a(dv, "fdisa")) {
   2754 			continue;
   2755 		}
   2756 
   2757 		/* need to find the device_name_to_block_device_major stuff */
   2758 		bmajor = devsw_name2blk(dv->dv_xname, NULL, 0);
   2759 
   2760 		/* get a vnode for the raw partition of this disk */
   2761 
   2762 		wedge = device_is_a(dv, "dk");
   2763 		bminor = minor(device_unit(dv));
   2764 		dev = wedge ? makedev(bmajor, bminor) :
   2765 		    MAKEDISKDEV(bmajor, bminor, RAW_PART);
   2766 		if (bdevvp(dev, &vp))
   2767 			panic("RAID can't alloc vnode");
   2768 
   2769 		error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2770 
   2771 		if (error) {
   2772 			/* "Who cares."  Continue looking
   2773 			   for something that exists*/
   2774 			vput(vp);
   2775 			continue;
   2776 		}
   2777 
   2778 		if (wedge) {
   2779 			struct dkwedge_info dkw;
   2780 			error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD,
   2781 			    NOCRED, 0);
   2782 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2783 			VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2784 			vput(vp);
   2785 			if (error) {
   2786 				printf("RAIDframe: can't get wedge info for "
   2787 				    "dev %s (%d)\n", dv->dv_xname, error);
   2788 				continue;
   2789 			}
   2790 
   2791 			if (strcmp(dkw.dkw_ptype, DKW_PTYPE_RAIDFRAME) != 0)
   2792 				continue;
   2793 
   2794 			ac_list = rf_get_component(ac_list, dev, vp,
   2795 			    dv->dv_xname, dkw.dkw_size);
   2796 			continue;
   2797 		}
   2798 
   2799 		/* Ok, the disk exists.  Go get the disklabel. */
   2800 		error = VOP_IOCTL(vp, DIOCGDINFO, &label, FREAD, NOCRED, 0);
   2801 		if (error) {
   2802 			/*
   2803 			 * XXX can't happen - open() would
   2804 			 * have errored out (or faked up one)
   2805 			 */
   2806 			if (error != ENOTTY)
   2807 				printf("RAIDframe: can't get label for dev "
   2808 				    "%s (%d)\n", dv->dv_xname, error);
   2809 		}
   2810 
   2811 		/* don't need this any more.  We'll allocate it again
   2812 		   a little later if we really do... */
   2813 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   2814 		VOP_CLOSE(vp, FREAD | FWRITE, NOCRED, 0);
   2815 		vput(vp);
   2816 
   2817 		if (error)
   2818 			continue;
   2819 
   2820 		for (i = 0; i < label.d_npartitions; i++) {
   2821 			char cname[sizeof(ac_list->devname)];
   2822 
   2823 			/* We only support partitions marked as RAID */
   2824 			if (label.d_partitions[i].p_fstype != FS_RAID)
   2825 				continue;
   2826 
   2827 			dev = MAKEDISKDEV(bmajor, device_unit(dv), i);
   2828 			if (bdevvp(dev, &vp))
   2829 				panic("RAID can't alloc vnode");
   2830 
   2831 			error = VOP_OPEN(vp, FREAD, NOCRED, 0);
   2832 			if (error) {
   2833 				/* Whatever... */
   2834 				vput(vp);
   2835 				continue;
   2836 			}
   2837 			snprintf(cname, sizeof(cname), "%s%c",
   2838 			    dv->dv_xname, 'a' + i);
   2839 			ac_list = rf_get_component(ac_list, dev, vp, cname,
   2840 				label.d_partitions[i].p_size);
   2841 		}
   2842 	}
   2843 	return ac_list;
   2844 }
   2845 
   2846 
   2847 static int
   2848 rf_reasonable_label(RF_ComponentLabel_t *clabel)
   2849 {
   2850 
   2851 	if (((clabel->version==RF_COMPONENT_LABEL_VERSION_1) ||
   2852 	     (clabel->version==RF_COMPONENT_LABEL_VERSION)) &&
   2853 	    ((clabel->clean == RF_RAID_CLEAN) ||
   2854 	     (clabel->clean == RF_RAID_DIRTY)) &&
   2855 	    clabel->row >=0 &&
   2856 	    clabel->column >= 0 &&
   2857 	    clabel->num_rows > 0 &&
   2858 	    clabel->num_columns > 0 &&
   2859 	    clabel->row < clabel->num_rows &&
   2860 	    clabel->column < clabel->num_columns &&
   2861 	    clabel->blockSize > 0 &&
   2862 	    clabel->numBlocks > 0) {
   2863 		/* label looks reasonable enough... */
   2864 		return(1);
   2865 	}
   2866 	return(0);
   2867 }
   2868 
   2869 
   2870 #ifdef DEBUG
   2871 void
   2872 rf_print_component_label(RF_ComponentLabel_t *clabel)
   2873 {
   2874 	printf("   Row: %d Column: %d Num Rows: %d Num Columns: %d\n",
   2875 	       clabel->row, clabel->column,
   2876 	       clabel->num_rows, clabel->num_columns);
   2877 	printf("   Version: %d Serial Number: %d Mod Counter: %d\n",
   2878 	       clabel->version, clabel->serial_number,
   2879 	       clabel->mod_counter);
   2880 	printf("   Clean: %s Status: %d\n",
   2881 	       clabel->clean ? "Yes" : "No", clabel->status );
   2882 	printf("   sectPerSU: %d SUsPerPU: %d SUsPerRU: %d\n",
   2883 	       clabel->sectPerSU, clabel->SUsPerPU, clabel->SUsPerRU);
   2884 	printf("   RAID Level: %c  blocksize: %d numBlocks: %d\n",
   2885 	       (char) clabel->parityConfig, clabel->blockSize,
   2886 	       clabel->numBlocks);
   2887 	printf("   Autoconfig: %s\n", clabel->autoconfigure ? "Yes" : "No" );
   2888 	printf("   Contains root partition: %s\n",
   2889 	       clabel->root_partition ? "Yes" : "No" );
   2890 	printf("   Last configured as: raid%d\n", clabel->last_unit );
   2891 #if 0
   2892 	   printf("   Config order: %d\n", clabel->config_order);
   2893 #endif
   2894 
   2895 }
   2896 #endif
   2897 
   2898 RF_ConfigSet_t *
   2899 rf_create_auto_sets(RF_AutoConfig_t *ac_list)
   2900 {
   2901 	RF_AutoConfig_t *ac;
   2902 	RF_ConfigSet_t *config_sets;
   2903 	RF_ConfigSet_t *cset;
   2904 	RF_AutoConfig_t *ac_next;
   2905 
   2906 
   2907 	config_sets = NULL;
   2908 
   2909 	/* Go through the AutoConfig list, and figure out which components
   2910 	   belong to what sets.  */
   2911 	ac = ac_list;
   2912 	while(ac!=NULL) {
   2913 		/* we're going to putz with ac->next, so save it here
   2914 		   for use at the end of the loop */
   2915 		ac_next = ac->next;
   2916 
   2917 		if (config_sets == NULL) {
   2918 			/* will need at least this one... */
   2919 			config_sets = (RF_ConfigSet_t *)
   2920 				malloc(sizeof(RF_ConfigSet_t),
   2921 				       M_RAIDFRAME, M_NOWAIT);
   2922 			if (config_sets == NULL) {
   2923 				panic("rf_create_auto_sets: No memory!");
   2924 			}
   2925 			/* this one is easy :) */
   2926 			config_sets->ac = ac;
   2927 			config_sets->next = NULL;
   2928 			config_sets->rootable = 0;
   2929 			ac->next = NULL;
   2930 		} else {
   2931 			/* which set does this component fit into? */
   2932 			cset = config_sets;
   2933 			while(cset!=NULL) {
   2934 				if (rf_does_it_fit(cset, ac)) {
   2935 					/* looks like it matches... */
   2936 					ac->next = cset->ac;
   2937 					cset->ac = ac;
   2938 					break;
   2939 				}
   2940 				cset = cset->next;
   2941 			}
   2942 			if (cset==NULL) {
   2943 				/* didn't find a match above... new set..*/
   2944 				cset = (RF_ConfigSet_t *)
   2945 					malloc(sizeof(RF_ConfigSet_t),
   2946 					       M_RAIDFRAME, M_NOWAIT);
   2947 				if (cset == NULL) {
   2948 					panic("rf_create_auto_sets: No memory!");
   2949 				}
   2950 				cset->ac = ac;
   2951 				ac->next = NULL;
   2952 				cset->next = config_sets;
   2953 				cset->rootable = 0;
   2954 				config_sets = cset;
   2955 			}
   2956 		}
   2957 		ac = ac_next;
   2958 	}
   2959 
   2960 
   2961 	return(config_sets);
   2962 }
   2963 
   2964 static int
   2965 rf_does_it_fit(RF_ConfigSet_t *cset, RF_AutoConfig_t *ac)
   2966 {
   2967 	RF_ComponentLabel_t *clabel1, *clabel2;
   2968 
   2969 	/* If this one matches the *first* one in the set, that's good
   2970 	   enough, since the other members of the set would have been
   2971 	   through here too... */
   2972 	/* note that we are not checking partitionSize here..
   2973 
   2974 	   Note that we are also not checking the mod_counters here.
   2975 	   If everything else matches execpt the mod_counter, that's
   2976 	   good enough for this test.  We will deal with the mod_counters
   2977 	   a little later in the autoconfiguration process.
   2978 
   2979 	    (clabel1->mod_counter == clabel2->mod_counter) &&
   2980 
   2981 	   The reason we don't check for this is that failed disks
   2982 	   will have lower modification counts.  If those disks are
   2983 	   not added to the set they used to belong to, then they will
   2984 	   form their own set, which may result in 2 different sets,
   2985 	   for example, competing to be configured at raid0, and
   2986 	   perhaps competing to be the root filesystem set.  If the
   2987 	   wrong ones get configured, or both attempt to become /,
   2988 	   weird behaviour and or serious lossage will occur.  Thus we
   2989 	   need to bring them into the fold here, and kick them out at
   2990 	   a later point.
   2991 
   2992 	*/
   2993 
   2994 	clabel1 = cset->ac->clabel;
   2995 	clabel2 = ac->clabel;
   2996 	if ((clabel1->version == clabel2->version) &&
   2997 	    (clabel1->serial_number == clabel2->serial_number) &&
   2998 	    (clabel1->num_rows == clabel2->num_rows) &&
   2999 	    (clabel1->num_columns == clabel2->num_columns) &&
   3000 	    (clabel1->sectPerSU == clabel2->sectPerSU) &&
   3001 	    (clabel1->SUsPerPU == clabel2->SUsPerPU) &&
   3002 	    (clabel1->SUsPerRU == clabel2->SUsPerRU) &&
   3003 	    (clabel1->parityConfig == clabel2->parityConfig) &&
   3004 	    (clabel1->maxOutstanding == clabel2->maxOutstanding) &&
   3005 	    (clabel1->blockSize == clabel2->blockSize) &&
   3006 	    (clabel1->numBlocks == clabel2->numBlocks) &&
   3007 	    (clabel1->autoconfigure == clabel2->autoconfigure) &&
   3008 	    (clabel1->root_partition == clabel2->root_partition) &&
   3009 	    (clabel1->last_unit == clabel2->last_unit) &&
   3010 	    (clabel1->config_order == clabel2->config_order)) {
   3011 		/* if it get's here, it almost *has* to be a match */
   3012 	} else {
   3013 		/* it's not consistent with somebody in the set..
   3014 		   punt */
   3015 		return(0);
   3016 	}
   3017 	/* all was fine.. it must fit... */
   3018 	return(1);
   3019 }
   3020 
   3021 int
   3022 rf_have_enough_components(RF_ConfigSet_t *cset)
   3023 {
   3024 	RF_AutoConfig_t *ac;
   3025 	RF_AutoConfig_t *auto_config;
   3026 	RF_ComponentLabel_t *clabel;
   3027 	int c;
   3028 	int num_cols;
   3029 	int num_missing;
   3030 	int mod_counter;
   3031 	int mod_counter_found;
   3032 	int even_pair_failed;
   3033 	char parity_type;
   3034 
   3035 
   3036 	/* check to see that we have enough 'live' components
   3037 	   of this set.  If so, we can configure it if necessary */
   3038 
   3039 	num_cols = cset->ac->clabel->num_columns;
   3040 	parity_type = cset->ac->clabel->parityConfig;
   3041 
   3042 	/* XXX Check for duplicate components!?!?!? */
   3043 
   3044 	/* Determine what the mod_counter is supposed to be for this set. */
   3045 
   3046 	mod_counter_found = 0;
   3047 	mod_counter = 0;
   3048 	ac = cset->ac;
   3049 	while(ac!=NULL) {
   3050 		if (mod_counter_found==0) {
   3051 			mod_counter = ac->clabel->mod_counter;
   3052 			mod_counter_found = 1;
   3053 		} else {
   3054 			if (ac->clabel->mod_counter > mod_counter) {
   3055 				mod_counter = ac->clabel->mod_counter;
   3056 			}
   3057 		}
   3058 		ac = ac->next;
   3059 	}
   3060 
   3061 	num_missing = 0;
   3062 	auto_config = cset->ac;
   3063 
   3064 	even_pair_failed = 0;
   3065 	for(c=0; c<num_cols; c++) {
   3066 		ac = auto_config;
   3067 		while(ac!=NULL) {
   3068 			if ((ac->clabel->column == c) &&
   3069 			    (ac->clabel->mod_counter == mod_counter)) {
   3070 				/* it's this one... */
   3071 #ifdef DEBUG
   3072 				printf("Found: %s at %d\n",
   3073 				       ac->devname,c);
   3074 #endif
   3075 				break;
   3076 			}
   3077 			ac=ac->next;
   3078 		}
   3079 		if (ac==NULL) {
   3080 				/* Didn't find one here! */
   3081 				/* special case for RAID 1, especially
   3082 				   where there are more than 2
   3083 				   components (where RAIDframe treats
   3084 				   things a little differently :( ) */
   3085 			if (parity_type == '1') {
   3086 				if (c%2 == 0) { /* even component */
   3087 					even_pair_failed = 1;
   3088 				} else { /* odd component.  If
   3089 					    we're failed, and
   3090 					    so is the even
   3091 					    component, it's
   3092 					    "Good Night, Charlie" */
   3093 					if (even_pair_failed == 1) {
   3094 						return(0);
   3095 					}
   3096 				}
   3097 			} else {
   3098 				/* normal accounting */
   3099 				num_missing++;
   3100 			}
   3101 		}
   3102 		if ((parity_type == '1') && (c%2 == 1)) {
   3103 				/* Just did an even component, and we didn't
   3104 				   bail.. reset the even_pair_failed flag,
   3105 				   and go on to the next component.... */
   3106 			even_pair_failed = 0;
   3107 		}
   3108 	}
   3109 
   3110 	clabel = cset->ac->clabel;
   3111 
   3112 	if (((clabel->parityConfig == '0') && (num_missing > 0)) ||
   3113 	    ((clabel->parityConfig == '4') && (num_missing > 1)) ||
   3114 	    ((clabel->parityConfig == '5') && (num_missing > 1))) {
   3115 		/* XXX this needs to be made *much* more general */
   3116 		/* Too many failures */
   3117 		return(0);
   3118 	}
   3119 	/* otherwise, all is well, and we've got enough to take a kick
   3120 	   at autoconfiguring this set */
   3121 	return(1);
   3122 }
   3123 
   3124 void
   3125 rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
   3126 			RF_Raid_t *raidPtr)
   3127 {
   3128 	RF_ComponentLabel_t *clabel;
   3129 	int i;
   3130 
   3131 	clabel = ac->clabel;
   3132 
   3133 	/* 1. Fill in the common stuff */
   3134 	config->numRow = clabel->num_rows = 1;
   3135 	config->numCol = clabel->num_columns;
   3136 	config->numSpare = 0; /* XXX should this be set here? */
   3137 	config->sectPerSU = clabel->sectPerSU;
   3138 	config->SUsPerPU = clabel->SUsPerPU;
   3139 	config->SUsPerRU = clabel->SUsPerRU;
   3140 	config->parityConfig = clabel->parityConfig;
   3141 	/* XXX... */
   3142 	strcpy(config->diskQueueType,"fifo");
   3143 	config->maxOutstandingDiskReqs = clabel->maxOutstanding;
   3144 	config->layoutSpecificSize = 0; /* XXX ?? */
   3145 
   3146 	while(ac!=NULL) {
   3147 		/* row/col values will be in range due to the checks
   3148 		   in reasonable_label() */
   3149 		strcpy(config->devnames[0][ac->clabel->column],
   3150 		       ac->devname);
   3151 		ac = ac->next;
   3152 	}
   3153 
   3154 	for(i=0;i<RF_MAXDBGV;i++) {
   3155 		config->debugVars[i][0] = 0;
   3156 	}
   3157 }
   3158 
   3159 int
   3160 rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
   3161 {
   3162 	RF_ComponentLabel_t clabel;
   3163 	struct vnode *vp;
   3164 	dev_t dev;
   3165 	int column;
   3166 	int sparecol;
   3167 
   3168 	raidPtr->autoconfigure = new_value;
   3169 
   3170 	for(column=0; column<raidPtr->numCol; column++) {
   3171 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3172 			dev = raidPtr->Disks[column].dev;
   3173 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3174 			raidread_component_label(dev, vp, &clabel);
   3175 			clabel.autoconfigure = new_value;
   3176 			raidwrite_component_label(dev, vp, &clabel);
   3177 		}
   3178 	}
   3179 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3180 		sparecol = raidPtr->numCol + column;
   3181 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3182 			dev = raidPtr->Disks[sparecol].dev;
   3183 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3184 			raidread_component_label(dev, vp, &clabel);
   3185 			clabel.autoconfigure = new_value;
   3186 			raidwrite_component_label(dev, vp, &clabel);
   3187 		}
   3188 	}
   3189 	return(new_value);
   3190 }
   3191 
   3192 int
   3193 rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
   3194 {
   3195 	RF_ComponentLabel_t clabel;
   3196 	struct vnode *vp;
   3197 	dev_t dev;
   3198 	int column;
   3199 	int sparecol;
   3200 
   3201 	raidPtr->root_partition = new_value;
   3202 	for(column=0; column<raidPtr->numCol; column++) {
   3203 		if (raidPtr->Disks[column].status == rf_ds_optimal) {
   3204 			dev = raidPtr->Disks[column].dev;
   3205 			vp = raidPtr->raid_cinfo[column].ci_vp;
   3206 			raidread_component_label(dev, vp, &clabel);
   3207 			clabel.root_partition = new_value;
   3208 			raidwrite_component_label(dev, vp, &clabel);
   3209 		}
   3210 	}
   3211 	for(column = 0; column < raidPtr->numSpare ; column++) {
   3212 		sparecol = raidPtr->numCol + column;
   3213 		if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
   3214 			dev = raidPtr->Disks[sparecol].dev;
   3215 			vp = raidPtr->raid_cinfo[sparecol].ci_vp;
   3216 			raidread_component_label(dev, vp, &clabel);
   3217 			clabel.root_partition = new_value;
   3218 			raidwrite_component_label(dev, vp, &clabel);
   3219 		}
   3220 	}
   3221 	return(new_value);
   3222 }
   3223 
   3224 void
   3225 rf_release_all_vps(RF_ConfigSet_t *cset)
   3226 {
   3227 	RF_AutoConfig_t *ac;
   3228 
   3229 	ac = cset->ac;
   3230 	while(ac!=NULL) {
   3231 		/* Close the vp, and give it back */
   3232 		if (ac->vp) {
   3233 			vn_lock(ac->vp, LK_EXCLUSIVE | LK_RETRY);
   3234 			VOP_CLOSE(ac->vp, FREAD, NOCRED, 0);
   3235 			vput(ac->vp);
   3236 			ac->vp = NULL;
   3237 		}
   3238 		ac = ac->next;
   3239 	}
   3240 }
   3241 
   3242 
   3243 void
   3244 rf_cleanup_config_set(RF_ConfigSet_t *cset)
   3245 {
   3246 	RF_AutoConfig_t *ac;
   3247 	RF_AutoConfig_t *next_ac;
   3248 
   3249 	ac = cset->ac;
   3250 	while(ac!=NULL) {
   3251 		next_ac = ac->next;
   3252 		/* nuke the label */
   3253 		free(ac->clabel, M_RAIDFRAME);
   3254 		/* cleanup the config structure */
   3255 		free(ac, M_RAIDFRAME);
   3256 		/* "next.." */
   3257 		ac = next_ac;
   3258 	}
   3259 	/* and, finally, nuke the config set */
   3260 	free(cset, M_RAIDFRAME);
   3261 }
   3262 
   3263 
   3264 void
   3265 raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
   3266 {
   3267 	/* current version number */
   3268 	clabel->version = RF_COMPONENT_LABEL_VERSION;
   3269 	clabel->serial_number = raidPtr->serial_number;
   3270 	clabel->mod_counter = raidPtr->mod_counter;
   3271 	clabel->num_rows = 1;
   3272 	clabel->num_columns = raidPtr->numCol;
   3273 	clabel->clean = RF_RAID_DIRTY; /* not clean */
   3274 	clabel->status = rf_ds_optimal; /* "It's good!" */
   3275 
   3276 	clabel->sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
   3277 	clabel->SUsPerPU = raidPtr->Layout.SUsPerPU;
   3278 	clabel->SUsPerRU = raidPtr->Layout.SUsPerRU;
   3279 
   3280 	clabel->blockSize = raidPtr->bytesPerSector;
   3281 	clabel->numBlocks = raidPtr->sectorsPerDisk;
   3282 
   3283 	/* XXX not portable */
   3284 	clabel->parityConfig = raidPtr->Layout.map->parityConfig;
   3285 	clabel->maxOutstanding = raidPtr->maxOutstanding;
   3286 	clabel->autoconfigure = raidPtr->autoconfigure;
   3287 	clabel->root_partition = raidPtr->root_partition;
   3288 	clabel->last_unit = raidPtr->raidid;
   3289 	clabel->config_order = raidPtr->config_order;
   3290 }
   3291 
   3292 int
   3293 rf_auto_config_set(RF_ConfigSet_t *cset, int *unit)
   3294 {
   3295 	RF_Raid_t *raidPtr;
   3296 	RF_Config_t *config;
   3297 	int raidID;
   3298 	int retcode;
   3299 
   3300 #ifdef DEBUG
   3301 	printf("RAID autoconfigure\n");
   3302 #endif
   3303 
   3304 	retcode = 0;
   3305 	*unit = -1;
   3306 
   3307 	/* 1. Create a config structure */
   3308 
   3309 	config = (RF_Config_t *)malloc(sizeof(RF_Config_t),
   3310 				       M_RAIDFRAME,
   3311 				       M_NOWAIT);
   3312 	if (config==NULL) {
   3313 		printf("Out of mem!?!?\n");
   3314 				/* XXX do something more intelligent here. */
   3315 		return(1);
   3316 	}
   3317 
   3318 	memset(config, 0, sizeof(RF_Config_t));
   3319 
   3320 	/*
   3321 	   2. Figure out what RAID ID this one is supposed to live at
   3322 	   See if we can get the same RAID dev that it was configured
   3323 	   on last time..
   3324 	*/
   3325 
   3326 	raidID = cset->ac->clabel->last_unit;
   3327 	if ((raidID < 0) || (raidID >= numraid)) {
   3328 		/* let's not wander off into lala land. */
   3329 		raidID = numraid - 1;
   3330 	}
   3331 	if (raidPtrs[raidID]->valid != 0) {
   3332 
   3333 		/*
   3334 		   Nope... Go looking for an alternative...
   3335 		   Start high so we don't immediately use raid0 if that's
   3336 		   not taken.
   3337 		*/
   3338 
   3339 		for(raidID = numraid - 1; raidID >= 0; raidID--) {
   3340 			if (raidPtrs[raidID]->valid == 0) {
   3341 				/* can use this one! */
   3342 				break;
   3343 			}
   3344 		}
   3345 	}
   3346 
   3347 	if (raidID < 0) {
   3348 		/* punt... */
   3349 		printf("Unable to auto configure this set!\n");
   3350 		printf("(Out of RAID devs!)\n");
   3351 		free(config, M_RAIDFRAME);
   3352 		return(1);
   3353 	}
   3354 
   3355 #ifdef DEBUG
   3356 	printf("Configuring raid%d:\n",raidID);
   3357 #endif
   3358 
   3359 	raidPtr = raidPtrs[raidID];
   3360 
   3361 	/* XXX all this stuff should be done SOMEWHERE ELSE! */
   3362 	raidPtr->raidid = raidID;
   3363 	raidPtr->openings = RAIDOUTSTANDING;
   3364 
   3365 	/* 3. Build the configuration structure */
   3366 	rf_create_configuration(cset->ac, config, raidPtr);
   3367 
   3368 	/* 4. Do the configuration */
   3369 	retcode = rf_Configure(raidPtr, config, cset->ac);
   3370 
   3371 	if (retcode == 0) {
   3372 
   3373 		raidinit(raidPtrs[raidID]);
   3374 
   3375 		rf_markalldirty(raidPtrs[raidID]);
   3376 		raidPtrs[raidID]->autoconfigure = 1; /* XXX do this here? */
   3377 		if (cset->ac->clabel->root_partition==1) {
   3378 			/* everything configured just fine.  Make a note
   3379 			   that this set is eligible to be root. */
   3380 			cset->rootable = 1;
   3381 			/* XXX do this here? */
   3382 			raidPtrs[raidID]->root_partition = 1;
   3383 		}
   3384 	}
   3385 
   3386 	/* 5. Cleanup */
   3387 	free(config, M_RAIDFRAME);
   3388 
   3389 	*unit = raidID;
   3390 	return(retcode);
   3391 }
   3392 
   3393 void
   3394 rf_disk_unbusy(RF_RaidAccessDesc_t *desc)
   3395 {
   3396 	struct buf *bp;
   3397 
   3398 	bp = (struct buf *)desc->bp;
   3399 	disk_unbusy(&raid_softc[desc->raidPtr->raidid].sc_dkdev,
   3400 	    (bp->b_bcount - bp->b_resid), (bp->b_flags & B_READ));
   3401 }
   3402 
   3403 void
   3404 rf_pool_init(struct pool *p, size_t size, const char *w_chan,
   3405 	     size_t xmin, size_t xmax)
   3406 {
   3407 	pool_init(p, size, 0, 0, 0, w_chan, NULL, IPL_BIO);
   3408 	pool_sethiwat(p, xmax);
   3409 	pool_prime(p, xmin);
   3410 	pool_setlowat(p, xmin);
   3411 }
   3412 
   3413 /*
   3414  * rf_buf_queue_check(int raidid) -- looks into the buf_queue to see
   3415  * if there is IO pending and if that IO could possibly be done for a
   3416  * given RAID set.  Returns 0 if IO is waiting and can be done, 1
   3417  * otherwise.
   3418  *
   3419  */
   3420 
   3421 int
   3422 rf_buf_queue_check(int raidid)
   3423 {
   3424 	if ((BUFQ_PEEK(raid_softc[raidid].buf_queue) != NULL) &&
   3425 	    raidPtrs[raidid]->openings > 0) {
   3426 		/* there is work to do */
   3427 		return 0;
   3428 	}
   3429 	/* default is nothing to do */
   3430 	return 1;
   3431 }
   3432 
   3433 int
   3434 rf_getdisksize(struct vnode *vp, struct lwp *l, RF_RaidDisk_t *diskPtr)
   3435 {
   3436 	struct partinfo dpart;
   3437 	struct dkwedge_info dkw;
   3438 	int error;
   3439 
   3440 	error = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred, l);
   3441 	if (error == 0) {
   3442 		diskPtr->blockSize = dpart.disklab->d_secsize;
   3443 		diskPtr->numBlocks = dpart.part->p_size - rf_protectedSectors;
   3444 		diskPtr->partitionSize = dpart.part->p_size;
   3445 		return 0;
   3446 	}
   3447 
   3448 	error = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, l->l_cred, l);
   3449 	if (error == 0) {
   3450 		diskPtr->blockSize = 512;	/* XXX */
   3451 		diskPtr->numBlocks = dkw.dkw_size - rf_protectedSectors;
   3452 		diskPtr->partitionSize = dkw.dkw_size;
   3453 		return 0;
   3454 	}
   3455 	return error;
   3456 }
   3457 
   3458 static int
   3459 raid_match(struct device *self, struct cfdata *cfdata,
   3460     void *aux)
   3461 {
   3462 	return 1;
   3463 }
   3464 
   3465 static void
   3466 raid_attach(struct device *parent, struct device *self,
   3467     void *aux)
   3468 {
   3469 
   3470 }
   3471 
   3472 
   3473 static int
   3474 raid_detach(struct device *self, int flags)
   3475 {
   3476 	struct raid_softc *rs = (struct raid_softc *)self;
   3477 
   3478 	if (rs->sc_flags & RAIDF_INITED)
   3479 		return EBUSY;
   3480 
   3481 	return 0;
   3482 }
   3483 
   3484 
   3485